The red blood cells or erythrocytes are biconcave shaped cells and consist
mostly in a membrane delimiting a cytosol with a high concentration in
hemoglobin. This membrane is highly deformable and allows the cells to go
through narrow passages like the capillaries which diameters can be much
smaller than red blood cells one. They carry oxygen thanks to hemoglobin, a
complex molecule that have very high affinity for oxygen. The capacity of
erythrocytes to load and unload oxygen is thus a determinant factor in their
efficacy. In this paper, we will focus on the pulmonary capillary where red
blood cells capture oxygen. We propose a camera method in order to numerically
study the behavior of the red blood cell along a whole capillary. Our goal is
to understand how erythrocytes geometrical changes along the capillary can
affect its capacity to capture oxygen. The first part of this document presents
the model chosen for the red blood cells along with the numerical method used
to determine and follow their shapes along the capillary. The membrane of the
red blood cell is complex and has been modelled by an hyper-elastic approach
coming from Mills et al (2004). This camera method is then validated and
confronted with a standard ALE method. Some geometrical properties of the red
blood cells observed in our simulations are then studied and discussed. The
second part of this paper deals with the modeling of oxygen and hemoglobin
chemistry in the geometries obtained in the first part. We have implemented a
full complex hemoglobin behavior with allosteric states inspired from
Czerlinski et al (1999).Comment: 17 page