13,842 research outputs found

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Object-Based 3-D Reconstruction of Arterial Trees from Magnetic Resonance Angiograms

    Full text link
    By exploiting a priori knowledge of arterial shape and smoothness, subpixel accuracy reconstructions are achieved from only four noisy projection images. The method incorporates a priori knowledge of the structure of branching arteries into a natural optimality criterion that encompasses the entire arterial tree. An efficient optimization algorithm for object estimation is presented, and its performance on simulated, phantom, and in vivo magnetic resonance angiograms is demonstrated. It is shown that accurate reconstruction of bifurcations is achievable with parametric models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85841/1/Fessler111.pd

    Depth measurement in integral images.

    Get PDF
    The development of a satisfactory the three-dimensional image system is a constant pursuit of the scientific community and entertainment industry. Among the many different methods of producing three-dimensional images, integral imaging is a technique that is capable of creating and encoding a true volume spatial optical model of the object scene in the form of a planar intensity distribution by using unique optical components. The generation of depth maps from three-dimensional integral images is of major importance for modern electronic display systems to enable content-based interactive manipulation and content-based image coding. The aim of this work is to address the particular issue of analyzing integral images in order to extract depth information from the planar recorded integral image. To develop a way of extracting depth information from the integral image, the unique characteristics of the three-dimensional integral image data have been analyzed and the high correlation existing between the pixels at one microlens pitch distance interval has been discovered. A new method of extracting depth information from viewpoint image extraction is developed. The viewpoint image is formed by sampling pixels at the same local position under different micro-lenses. Each viewpoint image is a two-dimensional parallel projection of the three-dimensional scene. Through geometrically analyzing the integral recording process, a depth equation is derived which describes the mathematic relationship between object depth and the corresponding viewpoint images displacement. With the depth equation, depth estimation is then converted to the task of disparity analysis. A correlation-based block matching approach is chosen to find the disparity among viewpoint images. To improve the performance of the depth estimation from the extracted viewpoint images, a modified multi-baseline algorithm is developed, followed by a neighborhood constraint and relaxation technique to improve the disparity analysis. To deal with the homogenous region and object border where the correct depth estimation is almost impossible from disparity analysis, two techniques, viz. Feature Block Pre-selection and ā€œConsistency Post-screening, are further used. The final depth maps generated from the available integral image data have achieved very good visual effects

    Neural models of inter-cortical networks in the primate visual system for navigation, attention, path perception, and static and kinetic figure-ground perception

    Full text link
    Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs). Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours. Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals

    Structural and Functional Network-Level Reorganization in the Coding of Auditory Motion Directions and Sound Source Locations in the Absence of Vision

    Get PDF
    Epub 2022 May 2hMT+/V5 is a region in the middle occipitotemporal cortex that responds preferentially to visual motion in sighted people. In cases of early visual deprivation, hMT+/V5 enhances its response to moving sounds. Whether hMT+/V5 contains information about motion directions and whether the functional enhancement observed in the blind is motion specific, or also involves sound source location, remains unsolved. Moreover, the impact of this cross-modal reorganization of hMT+/V5 on the regions typically supporting auditory motion processing, like the human planum temporale (hPT), remains equivocal. We used a combined functional and diffusion-weighted MRI approach and individual in-ear recordings to study the impact of early blindness on the brain networks supporting spatial hearing in male and female humans. Whole-brain univariate analysis revealed that the anterior portion of hMT+/V5 responded to moving sounds in sighted and blind people, while the posterior portion was selective to moving sounds only in blind participants. Multivariate decoding analysis revealed that the presence of motion direction and sound position information was higher in hMT+/V5 and lower in hPT in the blind group. While both groups showed axis-of-motion organization in hMT+/V5 and hPT, this organization was reduced in the hPT of blind people. Diffusion-weighted MRI revealed that the strength of hMT+/V5-hPT connectivity did not differ between groups, whereas the microstructure of the connections was altered by blindness. Our results suggest that the axis-of-motion organization of hMT+/V5 does not depend on visual experience, but that congenital blindness alters the response properties of occipitotemporal networks supporting spatial hearing in the sighted.SIGNIFICANCE STATEMENT Spatial hearing helps living organisms navigate their environment. This is certainly even more true in people born blind. How does blindness affect the brain network supporting auditory motion and sound source location? Our results show that the presence of motion direction and sound position information was higher in hMT+/V5 and lower in human planum temporale in blind relative to sighted people; and that this functional reorganization is accompanied by microstructural (but not macrostructural) alterations in their connections. These findings suggest that blindness alters cross-modal responses between connected areas that share the same computational goals.The project was funded in part by a European Research Council starting grant MADVIS (Project 337573) awarded to O.C., the Belgian Excellence of Science (EOS) program (Project 30991544) awarded to O.C., a Flagship ERA-NET grant SoundSight (FRS-FNRS PINT-MULTI R.8008.19) awarded to O.C., and by the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 701250 awarded to V.O. Computational resources have been provided by the supercomputing facilities of the UniversitĆ© catholique de Louvain (CISM/UCL) and the Consortium des Ɖquipements de Calcul Intensif en FĆ©dĆ©ration Wallonie Bruxelles (CƉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11 and by the Walloon Region. A.G.-A. is supported by the Wallonie Bruxelles International Excellence Fellowship and the FSR Incoming PostDoc Fellowship by UniversitĆ© Catholique de Louvain. O.C. is a research associate, C.B. is postdoctoral researcher, and M.R. is a research fellow at the Fond National de la Recherche Scientifique de Belgique (FRS-FNRS)

    The role of direction-selective visual interneurons T4 and T5 in Drosophila orientation behavior

    Get PDF
    In order to safely move through the environment, visually-guided animals use several types of visual cues for orientation. Optic flow provides faithful information about ego-motion and can thus be used to maintain a straight course. Additionally, local motion cues or landmarks indicate potentially interesting targets or signal danger, triggering approach or avoidance, respectively. The visual system must reliably and quickly evaluate these cues and integrate this information in order to orchestrate behavior. The underlying neuronal computations for this remain largely inaccessible in higher organisms, such as in humans, but can be studied experimentally in more simple model species. The fly Drosophila, for example, heavily relies on such visual cues during its impressive flight maneuvers. Additionally, it is genetically and physiologically accessible. Hence, it can be regarded as an ideal model organism for exploring neuronal computations during visual processing. In my PhD studies, I have designed and built several autonomous virtual reality setups to precisely measure visual behavior of walking flies. The setups run in open-loop and in closed-loop configuration. In an open-loop experiment, the visual stimulus is clearly defined and does not depend on the behavioral response. Hence, it allows mapping of how specific features of simple visual stimuli are translated into behavioral output, which can guide the creation of computational models of visual processing. In closedloop experiments, the behavioral response is fed back onto the visual stimulus, which permits characterization of the behavior under more realistic conditions and, thus, allows for testing of the predictive power of the computational models. In addition, Drosophilaā€™s genetic toolbox provides various strategies for targeting and silencing specific neuron types, which helps identify which cells are needed for a specific behavior. We have focused on visual interneuron types T4 and T5 and assessed their role in visual orientation behavior. These neurons build up a retinotopic array and cover the whole visual field of the fly. They constitute major output elements from the medulla and have long been speculated to be involved in motion processing. This cumulative thesis consists of three published studies: In the first study, we silenced both T4 and T5 neurons together and found that such flies were completely blind to any kind of motion. In particular, these flies could not perform an optomotor response anymore, which means that they lost their normally innate following responses to motion of large-field moving patterns. This was an important finding as it ruled out the contribution of another system for motion vision-based behaviors. However, these flies were still able to fixate a black bar. We could show that this behavior is mediated by a T4/T5-independent flicker detection circuitry which exists in parallel to the motion system. In the second study, T4 and T5 neurons were characterized via twophoton imaging, revealing that these cells are directionally selective and have very similar temporal and orientation tuning properties to directionselective neurons in the lobula plate. T4 and T5 cells responded in a contrast polarity-specific manner: T4 neurons responded selectively to ON edge motion while T5 neurons responded only to OFF edge motion. When we blocked T4 neurons, behavioral responses to moving ON edges were more impaired than those to moving OFF edges and the opposite was true for the T5 block. Hence, these findings confirmed that the contrast polarityspecific visual motion pathways, which start at the level of L1 (ON) and L2 (OFF), are maintained within the medulla and that motion information is computed twice independently within each of these pathways. Finally, in the third study, we used the virtual reality setups to probe the performance of an artificial microcircuit. The system was equipped with a camera and spherical fisheye lens. Images were processed by an array of Reichardt detectors whose outputs were integrated in a similar way to what is found in the lobula plate of flies. We provided the system with several rotating natural environments and found that the fly-inspired artificial system could accurately predict the axes of rotation

    Cortical Models for Movement Control

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-l-0409)

    Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance

    Get PDF
    This paper overviews maximum likelihood and Gaussian methods of estimating continuous time models used in finance. Since the exact likelihood can be constructed only in special cases, much attention has been devoted to the development of methods designed to approximate the likelihood. These approaches range from crude Euler-type approximations and higher order stochastic Taylor series expansions to more complex polynomial-based expansions and infill approximations to the likelihood based on a continuous time data record. The methods are discussed, their properties are outlined and their relative finite sample performance compared in a simulation experiment with the nonlinear CIR diffusion model, which is popular in empirical finance. Bias correction methods are also considered and particular attention is given to jackknife and indirect inference estimators. The latter retains the good asymptotic properties of ML estimation while removing finite sample bias. This method demonstrates superior performance in finite samples.Maximum likelihood, Transition density, Discrete sampling, Continuous record, realized volatility, Bias Reduction, Jackknife, Indirect Inference
    • ā€¦
    corecore