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Abstract 

 

The development of a satisfactory the three-dimensional image system is a constant 

pursuit of the scientific community and entertainment industry.  Among the many 

different methods of producing three-dimensional images, integral imaging is a 

technique that is capable of creating and encoding a true volume spatial optical model of 

the object scene in the form of a planar intensity distribution by using unique optical 

components.  The generation of depth maps from three-dimensional integral images is 

of major importance for modern electronic display systems to enable content-based 

interactive manipulation and content-based image coding.  The aim of this work is to 

address the particular issue of analyzing integral images in order to extract depth 

information from the planar recorded integral image.  

To develop a way of extracting depth information from the integral image, the unique 

characteristics of the three-dimensional integral image data have been analyzed and the 

high correlation existing between the pixels at one microlens pitch distance interval has 

been discovered.  A new method of extracting depth information from viewpoint image 

extraction is developed.   The viewpoint image is formed by sampling pixels at the same 

local position under different micro-lenses. Each viewpoint image is a two-dimensional 

parallel projection of the three-dimensional scene.  Through geometrically analyzing the 

integral recording process, a depth equation is derived which describes the mathematic 

relationship between object depth and the corresponding viewpoint images 

displacement.  With the depth equation, depth estimation is then converted to the task of 

disparity analysis.  A correlation-based block matching approach is chosen to find the 

disparity among viewpoint images.   

To improve the performance of the depth estimation from the extracted viewpoint 

images, a modified multi-baseline algorithm is developed, followed by a neighborhood 

constraint and relaxation technique to improve the disparity analysis.  To deal with the 

homogenous region and object border where the correct depth estimation is almost 

impossible from disparity analysis, two techniques, viz. Feature Block Pre-selection and 

“Consistency Post-screening, are further used.  The final depth maps generated from the 

available integral image data have achieved very good visual effects. 
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Chapter 1 

Introduction 

1.1 The research area 

The development of three dimensional (3D) imaging systems is a constant pursuit of the 

scientific community and entertainment industry (Motoki1995, Taub2002, 3dcgi).  

There is growing evidence that 3D imaging techniques will have the potential to 

establish a future mass-market in the fields of entertainment and communications. One 

of the much discussed applications that exist for 3D display and video communication 

systems is 3D television.  

Many different approaches have been adopted in attempts to realize free viewing 3D TV 

systems (Okoshi1976, McAllister 1993). Holographic systems can produce still images 

with high quality and give an extremely realistic reproduction of the spatial images but 

have difficulty in producing and displaying moving spatial images due to the 

requirements for the coherent light sources (Gabor1948, Leith1963, Outwater1999).  

Recently, several groups have demonstrated autostereoscopic Television systems 

(Actualdepth, DTI, DDD, 4D-Vision, Philips, Genex, Stereographics).  Most of them 

work on the principle of presenting multiple images to the viewer by use of temporal or 

spatial multiplexing of several discrete viewpoints to the eyes.  The viewing effect 

depends on the viewpoint number, a higher quality experience being enjoyed when the 

viewpoint number is high.  This creates the problem of simultaneously generating or 
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capturing enough views in real time at an affordable cost which cause major difficulty 

in the displaying system.  To date, integral imaging is a technique that is capable of 

creating and encoding a true volume spatial optical model of the object scene in the 

form of a planar intensity distribution by using unique optical components (McCormick 

1995, Okano 1998, Min 2001, Naeumra 2001, Yano 2002).  

An innovative and unique optical system for transferring full parallax three dimensional 

images has been developed by the 3D Imaging Group at De Montfort University 

(DMU) (Davies 1994, McCormick1995).  The two-tier optical camera arrangement 

overcomes the image degradation caused by the two-stage recording process and allows 

direct spatially correct 3D image capture for orthoscopic display.  Subsequently, Okano 

et al reported an integral GRINROD optical transmission array that produced 3D image 

data suitable for imaging by 4 multiplexed CCD elements, an arrangement previously 

proposed to achieve the required resolution by McCormick et al (Arai 1998, 

McCormick 1992).  To date most researchers have concentrated on establishing 

appropriate viewing parameter characterization and improved image generation. In 

respect of stereoscopic systems a number of groups have tackled data compression and 

computer graphical generation of image views (Min 2001, Naeumra2001).  However 

there are many data processing issues that require specialist solutions unique to integral 

image (II).  One of these issues, the knowledge of spatial position is particularly useful 

to enable content-based interactive manipulation and content-based image coding.  The 

work in this thesis addresses the particular issue of analyzing integral images in order to 

extract spatial position information from the planar recorded II. 

 

1.2 Scope of the thesis and original contribution 

An integral image has a unique image format.  In the simplest form, the image is 

captured by a special camera having a photographic emulsion placed behind a micro-

lens array whose back surface is coincident with lens focal length.  The 3D information 

from the object space is embedded in two-dimensional (2D) recording data.  Although 

the data exists in 2D format, it contains all the 3D spatial information that can be 

replayed to reconstruct a true 3D optical model.  
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To find out the way of extracting depth information from the integral images, two 

aspects are investigated:  the general depth measurement methods used in the computer 

vision area and the mechanism of spatial information encoding within integral images.  

Previously, a mathematical model of the integral imaging system has been analyzed and 

described and an approach to the extraction of depth information based on the image 

inverse theory has been investigated (Manolache 2001, 2002).  The approach uses the 

point-spread function of the optical recording to describe the associated integral 

imaging system and tackles the 3D spatial reconstruction task as an inverse problem.  

However, the image inverse problem proves to be ill posed and the discrete 

correspondents are ill conditioned.  The approach can only work on the simulation due 

to the inherent loss of information associated with the model in the recording process.  

Analysing the mechanisms existing in the spatial encoding of the II data, current work 

leads to a new approach for obtaining depth information through the formation of 

viewpoint images.   

Each viewpoint image is extracted utilising the unique optical properties associated with 

the recording of the integral image.  The viewpoint image is a 2D parallel recording of 

the 3D space and is significantly different from the traditional 2D image taken with an 

ordinary camera.  How the viewpoint image is formed is explained in the thesis.  A 

number of  possible applications of viewpoint image extraction are given. 

Following viewpoint image extraction, a mathematical relationship, which describes the 

depth of an object point and the corresponding recording position in two viewpoint 

images, is derived through geometrical analysis of the II recording process.  A depth 

equation is then formed to give the relationship between the depth and the 

corresponding displacement between two viewpoint images.  Therefore, the task of 

depth estimation is converted to the task of disparity analysis among viewpoint images.  

The disparity analysis techniques developed by other researchers are adapted according 

to the unique format of the Integral image to improve the performance of depth 

estimation.  The hybrid algorithm constructed consists of a modified multi-baseline 

algorithm, neighbourhood constraint and relaxation technique, multi-candidates pre-

screening technique, feature block pre-selection technique and consistency post-

screening technique.  
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The thesis contains the following original contributions: 

1. A new way of analyzing 3D integral imaging system through viewpoint image 

extraction. 

2. A new depth equation which gives the mathematical relationship of the object 

depth and the displacement of the  corresponding viewpoint images.  

3. A novel way of obtaining depth information from the II through viewpoint 

image extraction and disparity analysis. 

4. A modified multi-baseline algorithm used to improve the depth estimation 

performance from the extracted viewpoint images. 

5. Application of the neighbourhood constraint and relaxation techniques to 

improve the depth estimation performance from the extracted viewpoint images.  

6. Application of the feature block pre-selection and consistency post-screen 

technique to improve the depth estimation performance from the extracted 

viewpoint images. 

7. Achievement of accurate depth measurement result and acceptable depth maps 

from realistic 3D II. 

  

1.3 Outline of the thesis 

Chapter1 introduces the subject of the research work, providing an overview of 3D 

integral image, the need for depth information in 3D integral image processing and the 

scope and original contribution of this work.  

Chapter2 contains a brief historical overview of two 3D imaging techniques: 

stereoscopic and autostereoscopic display.  It concentrates on the free view 

(autostereoscopic) system and provides a detailed description of the 3D integral imaging 

system developed by the 3D Imaging Group at De Montfort University.    
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Chapter3 begins to address the task of depth extraction from 3D integral images.  

Common depth extraction methods in the computer vision area and previous work on 

depth extraction from integral image (II) are investigated.     

Chapter4 presents a new approach to the extraction of the depth information through 

viewpoint image extraction. The unique characteristic of 3D integral image data is 

analysed, and the direction selectivity existing in integral recording is observed.   A 

depth equation, which gives the object depth and corresponding displacement between 

viewpoint images, is then derived through geometric analysis of the integral recording 

process.  After viewpoint image extraction, a correlation-based block matching method 

is used to obtain the disparity between viewpoint images.  To measure the accuracy of 

the depth estimation, a simple object scene which only contains two depth levels is 

specially designed.  The depth measurement result is given in this chapter.  

In Chapter5, a modified multi-baseline algorithm with neighbourhood constraint and 

relaxation technique is adapted to improve the depth measurement performance on the 

extracted viewpoint images.   The multi-baseline stereo is performed by making the 

matching judgment from an accumulated evaluation function of different image pairs 

with different baseline.  Modification of the original multi-stereo algorithm is carried 

out to accommodate the fact that the viewpoint image is generated in a different way 

from a traditional 2D image. Mathematical analysis and the experimental tests 

performed using the modified multi-baseline algorithm are given.  The experiments 

prove the effectiveness of the modified multi-baseline algorithm described, both on 

computer generated and captured II. 

Improvements are reported using neighbourhood constraint and relaxation technique 

with a relatively complicated score function rather than the simple SSD function used in 

the matching task.  This is shown to result in a more accurate disparity estimation being 

obtained regarding the matching position. To improve the computation efficiency, a 

multi-candidate prescreening technique is also adopted.  Experiments show an obvious 

improvement on the depth map generated from the algorithm, both on the computer 

generated and captured II.   
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To deal with the two most difficult situations in matching analysis, untraceable 

(homogenous) region and untrackable (object border, object occlusion and 

reappearance) region, “feature block pre-selection” and “consistency post-screening” 

techniques are used in Chapter 6.  The principle is to remove the false matching results 

by identifying them either before or after the matching process.  The “feature block pre-

selection” is implemented by evaluating the variance within a matching block and the 

“consistency post-screening” is implemented by evaluating the residue from the score 

function.  Experiments show the benefits of using the two techniques to rule out invalid 

disparity results existing in the disparity map.  Acceptable depth maps are obtained for 

both the computer generated and captured II data, including an image with a natural 

scene as background. 

Finally, Chapter 7 gives a summary of the research undertaken and the achievements 

made.  Possible further developments of the current research work are also suggested. 
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Chapter 2  

Overview of 3D Imaging Techniques 

 

 

Traditional 2D displays like cathode ray tubes (CRT) or liquid crystal displays (LCD) 

are popular for a wide range of applications. However, in current applications, these 

systems display the spatial information from only one perspective view. More and more 

visual imaging applications need to be able to portray natural and graphically generated 

environments in three dimensions.  The greatly improved sensations of depth and 

naturalness provided by a 3D display can cause viewers to perceive an increase in the 

overall picture quality, leading them to prefer 3D presentation (Motoki1995, Taub2002, 

3dcgi).   

A large variety of 3D imaging systems have been reported by a number of independent 

research groups, either as general-purpose display units or targeting a specific 

application (Siegel1995, McCormick1995, Dodgson1997, Outwater1999, 

Kanghans2002).  Among them, Autostereoscopic display provides 3D perception 

without the need for special glasses or head gear.  This chapter gives a brief overview of 
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3D display technologies, concentrating on Autostereoscopic (free-viewing) systems.  

An outline of the construction and operation of the integral 3D imaging system 

developed by the 3D Imaging Group at De Montfort University (DMU) is then 

presented.   Finally, a brief description of the history and current situation of the 

development of 3D Television is given. 

 

2.1 Three dimensional imaging systems 

2.1.1 3D with glasses (stereoscopy) 

3D displays which require the viewer to wear special glasses are reasonably well 

known.  The earliest type of 3D display is stereoscopic imaging which can be traced 

back to Wheatstone’s work in 1832 (Valyus1966).  Figure 2.1 shows the Wheatstone 

stereoscope, in which two geometric 2D drawings exhibiting disparity are viewed using 

a special device called a reflecting mirror stereoscope.  Figure 2.2 is a top view of it.  

These primitive devices operated by displaying two images side-by-side, one for each 

eye.  Therefore, the two views are channeled separately to the corresponding eye by the 

simple optical elements.   

 

 

Figure 2.1: Wheatstone’s stereoscope ([Okoshi 1976]) 
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Figure 2.2:  Top view of Wheatstone’s stereoscope ([Okoshi 1976]) 

 

In later developments of stereoscopic displays, viewers are required to wear special 

image selective glasses. The glasses themselves select which of the two images is 

visible to each of the viewer’s eyes. The technology can divide in three categories 

(Okoshi1976, Benton1980, Kratomi1972, McAllister1993):  

I) Anaglyph method:  The left-eye and right-eye images are projected or displayed 

using two different colours (red/green, cyan/magenta, etc).  The viewer observes the 

images through a pair of colour glasses.  The glasses act as a selective device so that 

each eye only sees one corresponding image.  

II) Polarization method:  The left-eye and right-eye images are projected or displayed 

through Polaroid filters and are polarized orthogonally.  The viewer observes the 

images through a pair of Polaroid glasses so that each eye will perceive only one 

image. 

III) Time division method: The two images are sent alternately to the two eyes using a 

double frame rate display combining with shuttered glasses. The shuttered glasses 

shield each eye alternatively and present the left-eye image to left eye and the right-

eye image to the right eye.  

Stereoscopy is one of the simplest ways by far to provide 3D perception using 2D 

display systems and many entertainment and commercial systems are still using and 

developing these technologies.  The principle exists in using various channeling 
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methods to separate left/right eye images to the corresponding eye.  However, the 

various channeling methods impose their own disadvantages.  For example, the 

anaglyph display, which presents the left and right components of a stereo pair 

simultaneously using colour coding, produces eye strain due to rivalry between each eye 

and suffers from colour rendition problems. Polarizing or time division shuttering 

methods produce similar eye strains as light reaching the eyes is attenuated.  Most of all, 

it is not comfortable for the viewer to wear a pair of glasses for long periods in order to 

see the 3D effect.  This limits the acceptance and applications of the stereoscopic 

display.   

2.1.2 Autostereoscopic displays 

Autostereoscopic display systems (free-viewing) are more acceptable to observer and 

therefore are more commercially viable.  Auto-stereoscope systems can be subdivided 

into four types: Create the viewing of an object though reconstruction of the wave 

fronts, (Holography ); Create viewing that occupies a true volume space (Volumetric 

Displays); Use complex tracking systems to channel the correct information to the 

viewer (Two-view Display, Head-tracking Image System and Multi-view Display 

System); Use a physical sampling optical device to encode the angular information 

contained in a scene (Integral Imaging System).  

1) Holography 

A hologram is a light wave interference pattern recorded on photographic film (or other 

suitable surface) that can produce a 3D image when illuminated by suitable light.  The 

principle of holography was established by Denis Gabor (Gabor1948, Gabor1949).  

Figure 2.3 illustrates how a hologram is recorded (Amateur Holography).  A coherent 

light source, laser beam, is required in the capture process in order to produce 

interference fringes on the recording medium.  The laser beam is split into two beams. 

The reference beam is spread by a lens or curved mirror and aimed directly at the film 

plate. The object beam is spread and aimed at the object.  The object reflects light and 

the reflected light is incident on the holographic film-plate.  The two beams (reference 

and reflected) then interact and form a recorded interference pattern on the film.  During 
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the replay process, a 3D image of the original object appears when the hologram is 

illuminated from the original direction of the reference beam.  The produced 3D images 

are virtually indistinguishable from real objects. By shifting position, the viewer can 

look around or over objects in the foreground to see what is behind them.   

 

Figure 2.3:  An illustration of holography recording ([Amateur Holography]) 

The unique characteristic of holography is the idea of recording both the phase and the 

amplitude of the light waves from an object.  Since all recording materials respond only 

to the intensity in the image, it is necessary to convert the phase information into 

variations of intensity.  Holography does this by interfering coherent light from the 

object and the reference beams derived from the same source.   

Many variations on and enhancements to the basic process have been proposed and 

demonstrated incorporating variations in both viewing conditions and fabrication 

techniques (Benton1980, Kasper 1987, Outwater1999, Hariharan2002).  Depending on 

the precise materials and technique used in the capture process, reconstruction may take 

place under coherent or incoherent illumination.  The white light reflection hologram, 

which can be found on credit cards, magazine covers and recording packaging, etc, is 

perhaps one of the best known developments from the earlier hologram.  However, 

problems exist when attempting to transfer the holographic technique to the display of 

moving spatial images.  An additional problem is the capture of natural scenes as there 

are the requirements in making hologram for coherent light sources, dark room 

conditions and high mechanical stability during recording. These considerations reduce 

the practical utility of the holography technique for general 3D spatial video imaging 

applications. 
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2) Volumetric displays 

Most volumetric displays are portrayed as large transparent spheres with imagery 

seeming to hover inside (Lewis1971, Kanghans2002).  The most common architectures 

use a rotating projection screen, a gas or a series of liquid crystal panels.  As an 

example, Figure2.4 illustrates a swept-screen volumetric display system. In this system, 

a three-dimensional data set is first converted into a series of "slices," similar to thin 

slices of an apple around its core. These slices are stored in a memory bank. A high-

speed digital projector illuminates a rotating screen with hundreds of slices of voxel 

data at a reasonable frequency. Viewers perceive a sharp 3D image due to the fusion 

caused by the persistence of vision in the eye.  

 

Figure 2.4: A swept-screen volumetric display system ([Actuality Systems]) 
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One benefit of volumetric displays is that they often have large fields of view, such as 

360 degrees around the display, viewable simultaneously by an almost unlimited 

number of people.  Volumetric displays are always difficult to design and make, which 

limited its application in 3D display area.  

3) Two-view Display, Head-tracking Image System and Multi-view 

Display System 

The simplest and earliest Autostereoscopic imaging technique is the “Parallax barrier 

method”, which achieves image channeling by interposing a grid-like barrier between 

the viewer and the display screen (Okoshi 1976). The stereo-pair images are interleaved 

in alternate strips in precise register with the grid screen so that the left eye can only see 

the strips from the left eye image and the right eye can only see the strips from the right 

eye image. This is illustrated in Figure 2.5. The downside of this technique is that only 

if the viewer stands at the ideal distance and in the correct position can both eyes see the 

correct images and perceive a stereoscopic effect.  In addition, the viewer perceives a 

reduced brightness since the barrier is used between viewer and the image.  

 

Figure 2.5: Viewing a parallax barrier display ([Bourke1999]) 

If the position of the viewer’s head is known, the appropriate images (left and right), 

could be displayed to the appropriate zones adaptively so that each eye can always see 

the correct images.  This is the principle used in the head tracking systems 

(Tetsutani1994).  The limitation of most head tracking systems is that they are single-

viewer since the display can only be adjusted to one viewer’s eye position.  This is only 
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acceptable in some applications.  Beside, it would be pointless to replace the wearing of 

special glasses with the wearing of a special head tracker for viewers to view the 3D 

effect. 

A similar methodology is used in the lenticular screen method, where the lenticular lens 

is used as a directional selective scene to separate the left-eye and right-eye view to 

correct eyes.  The simplest form of such a display is comprised of alternating vertical 

strips of the left-eye/right-eye images, the same as in parallax barrier display, see Figure 

2.6.  However, each stereo pair of view strips is located precisely behind a lenticular 

screen during the display rather than the parallax barrier.  The lenticular screen works in 

a similar way to the parallax barrier in directing the corresponding images to different 

eyes.  The advantage over the barrier method is that refraction rather than occlusion is 

used hence better image brightness can be achieved from the lenticular screen display.  

 

Figure 2.6: Viewing a lenticular screen display ([Bourke1999]) 

To integrate a “look-around” capability and increase the number of viewing zones, 

multiple stereo viewpoints are provide by locating bands derived from many views 

(Harman 1996, Dodgson1997),  therefore allowing the viewer to move their head from 

side to side and see different aspects of the 3D scene.  In recent years, many three 

dimensional television recording and display systems have concentrated on the method 

of using of multi-camera capture and multi-view displays to allow a certain degree of 

look-around capability.  The viewing effect depends on the number of viewpoints.  The 

difficulty of simultaneously generating or capturing enough views in real time at an 

affordable cost becomes the major problem in this type of system. 
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4) Integral imaging  

Integral imaging is a technique that is capable of creating and encoding a true volume 

spatial optical model of the object scene in the form of a planar intensity distribution by 

using unique optical components. It is akin to holography in that 3D information is 

recorded on a 2D medium and can be replayed as a full 3D optical model.  However, in 

contrast to holography, coherent light sources are not required for integral imaging.  

This conveniently allows more conventional live capture and display procedures to be 

adopted.  

All integral imaging can be traced from the work of Gabriel Lippmann (Lippmann 

1908), where a micro-lens sheet was used to record the optical model of an object scene.  

The micro-lens sheet was made up of many micro-lenses having the same parameters 

and the same focal plane.  In the arrangement, the recording film is placed at the focal 

plane of the micro-lens sheet, as illustrate in Figure 2.7.  Following the film 

development, a full natural colour scene with continuous parallax can be replayed using 

another micro-lens sheet with appropriate parameters.  The replayed image is spatially 

inverted as shown in Figure2.8 

 

Figure 2.7: The recording of an integral image 

 

Figure 2.8: The replay of an integral image (The viewer perceives a spatial inverted 3D scene) 
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To overcome the problem imposed by the pseudoscopic (spatially inverted) nature of 

the integral image, a modification to the Lippmann system was proposed by Ives 

(Ives1931), in which a second recording process is introduced before replaying, as 

shown in Figure 2.9.  When the second-stage photograph is replayed, a 3D image with 

correct spatial depth (orthoscopic) can be observed, see Figure 2.10. 

 

Figure2.9: A second stage recording of integral photograph 

 

 

Figure 2.10: Replay and viewing of the orthoscopic image scene 

The two-stage recording process can produce an orthoscopic 3D scene with corrected 

spatial position.  However, substantial image quality degradation is introduced due to 

the distortions introduced by the micro-lenses and film emulsion, stray light, etc.  To 

overcome this problem, a two-tier network as a combination of macro-lens arrays and 

micro-lens arrays was reported by Davies and McCormick in DMU (Davies1994).  The 

two-tier network works as an optical “transmission inversion screen” which overcomes 

the image degradation caused by the two-stage recording process and allows direct 

spatially correct 3-D image capture for orthoscopic replay. Theoretically, this network is 

able to capture object space from 0.3m to infinity.  In consequence, the integral 

photographic technique pioneered by Lippmann has been improved.  With recent 
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progress in micro-lens manufacturing techniques, integral imaging is becoming practical 

and prospective 3D display technology and hence is attracting much interest.  

 

2.2 An advanced integral imaging system  

The optics of an advanced form of integral imaging system employing a two-tier optical 

network was developed and has been described in detail by Davies and McCormick 

(Davies1988, 1994, McCormick1992, 1994, 1995).  The optical arrangement, shown in 

figure 2.11, comprises two macro-lens arrays placed equidistantly behind and in front of 

an auto-collimating transmission screen (ATS). The ATS is made up of two microlens 

arrays separated by their joint focal distance. The recording plane is a photographic 

plate whose position coincides with the focal plane of another microlens array. 

 

Figure 2.11: The advanced integral imaging system ([Davies 1994]) 



Chapter 2. Overview of 3D Imaging Techniques 

 18 

The optical transmission process of the advanced optical system is illustrated in Figure 

2.12.  The input macro-lens array first transmits the compressed object space to or near 

the central double micro-lens screen (ATS). The screen inverts the spatial sense of each 

intermediary image and simultaneously presents these spatially reversed 3D optical 

models to the corresponding output macro-lenses. The output macro-lenses array then 

re-transposes the optical model to the correct spatial location.  The final integrated 

optical model before recording, formed by the second macro-lens array, is a true 3D 

optical 1:1 reconstruction of the original object.  

 

Figure 2.12: The optical transmission within the advanced integral imaging system 

([Manolache1999]) 

The II is recorded on a film using a microlens array put after the two-tier optical 

network.  Each microlens of the recording array samples a fractional part of the 

pseudoscopic scene, many microlenses record directional information of the scene from 

different viewing angles.  Therefore, parallax information for any particular point is 

spread over the recording plane.  The angular information is further recorded by a film 

placed at the focal plane of the microlens array.  This recorded II can be replayed by 

overlaying it with a microlens array having the same parameters. 

In the above outlined capture and display processes, microlens arrays are used in both 

the encoding and decoding of the planar intensity distribution. The arrays used for this 

purpose typically comprise square based spherical lens-lets, which are capable of 

encoding the object scene with continuous parallax in all directions. A section of such a 

lens array is illustrated in Figure 2.13a.  It is also possible to record and replay integral 
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3D images using lenticular sheets, which comprise many thin cylindrical lenses 

(lenticular sheet), as shown in Figure 2.13b.  Integral images recorded in this way 

possess parallax only in one direction.  It is worth mentioning that the integral image 

produced by the lenticular sheet is not the same as multi-view image with lenticular 

screen display.  In the multi-view display system, the lenticular sheet is used merely for 

spatial de-multiplexing of multiple separate views of an object scene.  To distinguish 

this difference, the term unidirectional integral image (UII) is used in the thesis to 

represent the image generated by integral imaging technique using lenticular sheet.  The 

term Omni-directional integral image (OII) is consequently used to represent the 

integral image formed using the square based spherical microlens arrangements in 

recording. 

 

Figure 2.13 Diagrammatic representation of the lens array ([Forman 1999]) 

 

2.3 Three dimensional Television (3D TV) 

Among the many applications of 3D image technology, 3D TV attracts the strong 

interest of the entertainment industries.  However, the advent of 3D TV has been slower 

than many predicted.  "Three-dimensional television is like the circus: it comes and it 

goes, and people line up to see it every time it appears," remarked Daniel Symmes, 

president of Dimension 3, a 3-D Television production company in Woodland Hills, 

Calif.  “3D TV is a bigger change to television than the switch from standard definition 
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to HDTV”, states Chris Yewdall, president of Dynamic Digital Depth (DDD), etc.  The 

question, now as then, is whether 3-D has staying power or will remain a gimmicky 

fad? (Taub2002) 

Almost everyone has seen or heard of 3D television shows or 3D theme park attractions.  

It is recognized that an acceptable 3D TV system should ideally be: 

I) Autostereoscopic (does not require glasses), 

II) Transmittable within existing broadcast bandwidth, full natural colour suitable high 

resolution flicker free displays. 

III)  Compatible with 2D such that 3D signals can be accepted and displayed by a 2D 

receiver as a 2D image. 

Most of the 3D TV developed in the past has relied upon the use of special glasses to 

experience the three dimensional effect. Today, many companies are aimed at 

developing technologies that can remove the need for glasses.  These include Actuality 

System’s volumetric display (Perspecta), Deep Video Imaging’s 3D display 

(actualdepth), Dimension Technologies’s Virtual Window™, The Dresden 3D GmbH 

(D4D), etc.  Most of the techniques work on the principle of presenting multiple images 

to the viewer by use of temporal or spatial multiplexing of several discrete viewpoints to 

the eyes.  Recently, the DDD company together with screen manufacturer, 4D-vision, 

claimed that 3D TV without glasses has become a reality.  In the developed system, the 

depth information is stored in a small separate data channel that can be transmitted 

along with a broadcast or DVD signal and decoded using a special set-top box.  For a 

good viewing effect, a great number of planes are needed and it takes a long time to 

create the proper look for just one still image.  Therefore, the problem of simultaneously 

generating or capturing enough views in real time at an affordable cost still exists.    

A schematic of 3D TV based on the integral imaging technique is illustrated in Figure 

2.14 (McCormick1995).  As mentioned in the previous section, a pseudoscopic optical 

model of the object scene is produced by the two-tier transmission unit in one recording.  

The encoding microlens array produces an intensity distribution of the object scene at 

its back face.  At this point, instead of placing a photographic film, a copy lens is used 
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to copy the current planar encoding of the object scene on to a high resolution CCD 

imaging device.  The recorded 3D data is then transmitted to the user after coding.  Both 

flat panel and projection displays can be used as output devices.  Unlike multi-view 

systems, the advanced integral imaging system has the capability of capturing the 3D 

scene in one single stage with continuous parallax, providing good live display 

practicality and look-around capability in real time.  Despite the fact that there are a 

number of technological challenges that need to be overcome, the 3D integral imaging 

technique probably has the most potential in producing future 3D TV.  

 

Figure 2.14: A schematic of 3D TV ([McCormick 1995]) 
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2.4 Summary 

This chapter gives a brief review of 3D imaging techniques, concentrating on free-view 

(Autostereoscopic) systems, followed by a detailed description of the 3D integral 

imaging system developed by the 3D Imaging Group at De Montfort University.   As a 

promising technique in 3D display, the application of integral imaging in 3D TV has 

been envisaged. 
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Chapter 3  

Review of the depth extraction 

methods from 3D images 

 

Depth information is used in many applications, for example, 3D modeling of 

natural objects, 3D remote handling and quality control, virtual studio and 3D 

telepresence.  In chapter 2, the 3D imaging system at De Montfort University 

is described by which a 3D image of true optical models can be recorded.  The 

replayed image demonstrates continuous parallax in all directions.  If 

successfully engineered, this 3D imaging system could have enormous 

implications for both leisure and industrial applications. One of the major 

potential applications is 3D TV systems.  In this application, the generation of 

a depth map is essential if real and/or computer generated objects are to be 

integrated within integral 3D TV images. It is also essential to enable content-

based image coding and content-based interactive manipulation to be carried 

out. 

The simplest and most convenient way of representing and storing the depth 

measurements taken from a scene is a depth map.  A depth map is a 2D array 

where the x and y distance information corresponds to the rows and columns of 

the array as in an ordinary image, and the corresponding depth readings (z 

values) are stored in the array‟s elements.  It is similar to a grey scale image 

but the depth information is used to replace the intensity information.  The aim 
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of the present work is to generate a depth map from 3D integral image (II) 

data.  It is therefore useful to both consider the techniques used for depth 

estimation in current computer vision applications and to acquire a deep 

understanding of the 3D II data. 

 

3.1 Common approaches to obtain depth 

information  

1) Stereo vision 

Perhaps the most common approach in obtaining information on the 3D 

structure and distance within a scene is stereo vision (Forstner 1986, Hannah 

1989, Matthies 1989, Trucco 1998, Okutomi 1993). Figure3.1 illustrates a top 

view of a stereo system composed of two pinhole cameras. The left and right 

image planes are coplanar, and are represented by the segments Il and Ir 

respectively.  Ol and Or are the centers of projection.  The optical axes of the 

two cameras are parallel.  

 

Figure 3.1: A simplified stereo imaging system 
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The method by which stereo determines the position in space of P and Q is 

triangulation, that is, by intersecting the rays defined by the centers of 

projection and the images of P and Q, pl , pr , ql , qr .  Triangulation depends 

crucially on the solution of the correspondence problem: If (pl , pr ) and (ql , qr ) 

are chosen as pairs of corresponding image points, intersecting the rays 

rrll pOpO   and 
rrll qOqO  leads to interpreting the image points as 

projections of P and Q.  However, if (pl , qr ) and (ql , pr ) are the selected pairs 

of corresponding points, triangulation will return the wrong object point P  

and Q .   

Provided that the correspondence problem has been solved, the position of a 

single point P or Q can be recovered from the corresponding projections on Il 

and Ir.  Figure 3.2 illustrates the estimation of depth from the corresponding 

projection points in two images.  Consider the single object point, P, from its 

projections, pl, pr. The distance ( ) between the two cameras project center, is 

called the baseline in a stereo system.  If xl and xr are the coordinates of pl and 

pr with respect to the principal points cl and cr, f is the common focal length of 

two cameras and Z is the distance between P and the baseline, from the similar 

triangles (pl , P, pr) and (Ol , P, Or), we have: 

 

Figure 3.2: depth estimation in stereo vision 
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ZfZ

xx rl     (3.1) 

Solving (3.1) for the depth Z, gives:  

d
fZ      (3.2) 

where, lr xxd  is the disparity, which is the difference between the 

corresponding points in the two images.  Here, the depth of a point (Z) is 

inversely proportional to the disparity (d).  A big disparity means the object 

point is close to the recording camera.  Normally,  and f are fixed in stereo 

vision, the depth of the object point can be determined from the disparity.  

On the other hand, for an object point at a particular depth, the disparity is 

proportional to the baseline ( ).  This implies that if there is a fixed error in 

determining the disparity then the accuracy of depth determination will 

increase with  increase.   Since the disparity can only be measured in pixel 

differences, increased  will lead to better accuracy in depth measurement.  

However, as the camera separation becomes large, difficulties arise in finding 

the corresponding points in the two camera images. In order to measure the 

depth of a point it must be visible to both cameras and we must also be able to 

identify this point in both images.  However, as the camera separation 

increases, the differences in the scene recorded by each camera will increase.  

It becomes increasingly difficult to match corresponding points in the images.  

This is known as the stereo correspondence problem.  Corresponence problem 

is the primary computational problem for stereo vision.  Different approaches 

have been researched concerning this problem(Mori 1973, Lucas 1981, 

Forstner 1986, Barnard 1989, Okutomi 1993, Trucco 1998). 

2) Structure from motion  

An alternative approach for obtaining information on the 3D structure within a 

scene is to extract depth information from the spatial and temporal changes 

occurring in an image sequence.  In most literature, this is referred to as the 
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method of obtaining structure from motion (SFM).  The SFM can be described 

as:  Given a series of images taken at different times with moving objects in 

the scene or a scene filmed by a moving camera, useful information about the 

scene can be obtained by analysing and understanding the difference between 

images caused by the motion.  Over the past decades, SFM has been a central 

problem in computer vision. The literature contains a variety of schemes for 

dealing with this issue (Aggarwal 1988, Huang 1994, Srinivasan 2000, Dallaert 

2002).  Among them, approaches to calculating optical flow and setting up 

relationships between optical flow and 3D structure/motion parameters are the 

most popular particularly as no prior knowledge is required about the point of 

correspondence. 

The basic idea of SFM from optical flow involves two steps: 

1) The use of the image brightness constancy equation to calculate the 

components of the motion field (Optical flow). 

2) Using the basic equation of the motion field to calculate the depth. 

The image brightness constancy equation is described as: 

 0)( t

T EvE          3.3)  

Where, E (the image brightness) is a function of the spatial coordinates of the 

image plane, x,y and time t.  E=E(x,y,t). The motion field v, has two 

components, xv  and yv .  In components, the image brightness constancy 

equation can be written as: 

0tyyxx EvEvE        3.4) 

The basic equation of the motion field is described as: 

2Z

PVZV
fv z          3.5) 
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Where, P=[X,Y,Z]
T
 is a 3D point in the usual camera reference frame and  

PwTV  is the relative motion between P and the camera.  In 

components, the relationship can be written as: 
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The SFM through calculating optical flow method involves complicated 

mathematical computation. For simplicity, a restricted case where the camera 

is known to be translating along the X (horizontal axis), as shown in Figure 

3.3, is given as an example.  In the example, the camera has focal length f 

which is oriented along the Z axis and moves only along the X direction. 

 

Figure3.3:  The camera system used in the example 

 

Under the assumption of the restricted camera moving in the example, the 

basic equations of the motion field 3.6) and 3.7) can be simplified as:  

 xx T
Z

f
v          3.8) 
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0yv          3.9) 

Substituting the motion field equation into the image brightness constancy 

equation, gives: 

00)( tyxx EET
Z

f
E        3.10) 

Therefore, the depth Z of a point can be easily derived out from equation 3.10) 

in the example: 

 x

x

t fT
E

E
Z         3.11) 

Where, Et, Ex can be estimated directly from the image or the image sequence. 

As only one camera is needed to recover the depth information and a depth 

solution can be found without correspondence, the SFM based on optical flow 

method has gained wide interest by researchers in last two decades. However, 

it is worth noticing that the validity of the image brightness constancy equation 

is only under the assumptions of Lambertian surfaces, pointwise light source is 

at infinity and there is no photometric distortion.  In addition, the optical flow 

obtained from the equation is only an approximation of the normal component 

of the motion field.  It often performs poorly in highly textured and fast motion 

regions. Besides, the method is very sensitive to noise in a practical case since 

derivation is involved in the calculation.  

 

3.2 Depth extraction from integral images  

1) Depth from disparity  

The mathematical model of the integral imaging system developed in 3D 

image group has been analyzed and described in detail by Manolache 

(Davies1994, Manolache1999).  Figure 3.4 illustrates the two tier optical 
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network for a UII camera system with associated Cartesian coordinate system 

Oxyz. The Z-axis denotes the depth direction, while the x, y-axes describe the 

lateral positions.  

 

Figure3.4: 3D UII camera system using a two tier optical network ([Manolache 

1999]). 

 

It is proved that as a result of the optical process of the two macrolens array 

and the ATS screen, each object point P(xp,yp,zp) is reconstructed as an optical 

model formed by intersecting modulated ray bundles at the location P‟(xp,yp,-

zp), which is the equal conjugate image location of point P with respect to the 

Oxy plane (Manolache1999).   In the integral recording, the intensity 

distributions related to the integral image P‟ of P are recorded on a 

photographic plate that lies behind the recording microlens array. Each 

microlens of the recording array records a fractional part of the scene, many 

microlenses recording directional information of the point from different 

viewing angles. Therefore, parallax information about this particular point is 

spread over the recording plane, as shown in Figure 3.5.  The recorded data 

under kth microlens, centred at the point Pk‟, has coordinates: 

pk xx '          3.12) 
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Figure 3.5: microlens recording  

Where, cl is the coordinate of the first microlens centre.   

Similar equations exist for point Pj‟. Thus, the disparity between two recorded 

intensity distributions of the point P corresponding to microlenses k and j can 

be written as: 

||

|||)|(

P

rP
jk

ZD

kjZFD
d       3.15) 

This expression allows the recovery of the position of a physical point when 

the disparity between the recording, centred at ),,( ''' FDyxP jjj
and 

),,( ''' FDyxP kkk are known.  Namely: 
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The equation 3.18) allows retrieve depth from the disparity mathematically.   

However, in a practical case, each microlens used in the integral recording can 

be regarded as a very small low resolution camera.  In a typical case, using a 

600um pitch sized lenticular sheet in recording, the pixel numbers 

corresponding to the small pitch size is no more than 30 pixels. Therefore, the 

problem of matching corresponding intensity distributions under each 

microlens is very difficult due to the very low resolution achievable.   

Consequently, deriving the depth of a point using equation 3.18 directly from 

the disparity is practically impossible.   

 

2)  Point spread function in the 3D unidirectional integral recording 

system 

In the previous work, the role of diffraction due to the very fine pitch of a 

microlens involved in this optical process is further considered.  It is 

considered that each object point will give rise to an intensity distribution in 

the image, shown in Figure 3.5.  This intensity distribution function is called 

the point spread function (psf).  The calculation of the point spread function of 

the II system has to take into account the three microlens arrays (ATS screen 

plus the recording microlens array) through which light pass on.  The point 

spread function behind a specific microlens k of the recording array of point P 

can be obtained by using the Fresnel-Kirchhoff formula (Manolache1999):  
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With an inclination factor correction, the point spread function of the whole 

process is given as (Manolache1999): 
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k

kktotal yxpsftyxpsf ),(cos),( 2      3.20) 

where, k  is the angle subtended to the normal by the recording ray P‟P‟k. 

2

22

4

222
2

1 245.0106.0
rr

r F

a

Fb
w       3.21)

  

2

22

4

222
2

2 245.0106.0
rr

r F

a

Fb
w       3.22) 

ra is the distance between the reconstructed model P‟ and the recording 

microlens array ( || Pr ZDa ), and ψr, φr and F are the length, width and the 

focal distance of a recording microlens,  λ is the wavelength.  

From above equations, it can be seen that the shape of the totalpsf  , is a two 

variable Gaussian function, and the energy forming the recorded intensity 

distribution is concentrated on a rectangular spot whose dimensions depends 

on point depth.  Therefore, it is reasonable to think of using it as a tool for 

extracting depth information from the integral images.  

3) Depth extraction as an inverse problem  

When the object space is imaged and recorded, the resulting intensity 

distribution Irec in the recorded II is the convolution between the point spread 

function and the object space Iobj(Manolache2000): 

objrec IpsfI *         3.23) 

On the other hand, provided the inverse function of psf, denoted by Inv(psf), is 

known, the intensity distribution of the object can be calculated as: 

recobj IpsfInvI *)(ˆ         3.24) 



Chapter 3.  Review of depth extraction method from 3D images 

 34 

This computation in equation 3.24) allows the reconstruction of the object 

space from the recorded image. 

In order to provide the numerical model for the above approach, a matrix 

formulation is necessary.  The recorded image has a natural discrete structure.  

However, the object space is a continuous space and therefore needs to be 

transformed to a discrete space (a set of discrete points).  For the recorded 

image, assuming the horizontal section of an image is taken with a semi-

cylindrical microlens array which contains m microlens, and there are p pixels 

on the image under each microlens, the recorded intensity distribution can be 

represented by a vector with n=m*p elements, as shown in figure3.6.  If the 

object space is conceived as a set of points q with well determined spatial 

coordinates, one can associate a n*q matrix PSF to the point spread function 

whose elements PSF[l,k] are the maximum intensity produced by the object 

point k in the image pixel l.  Under this sampling scheme, the convolutions in 

formulae 3.23), 3.24) become ordinary matrix multiplications: 

objrec IPSFI         3.25) 

 

Figure 3.6:  Conversion of the continuous space to discrete space  
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The inverse transformation corresponding to matrix PSF is represented either 

by the inverse matrix PSF
-1

, if PSF is invertible, or by the Penrose-Moore 

pseudo-inverse matrix PSF
+ 

( TT PSFPSFPSFPSF *)( 1 ). 

recobj IPSFI 1ˆ  or  recobj IPSFÎ     3.26) 

Each element of matrix PSF gives the corresponding relationship between 

object point „k‟ and image pixel „l‟. After reversal, each element of the pseudo 

inverse matrix PSF
+
[k, l] gives a description of the corresponding relationship 

between image pixel „l‟ and object point „k‟.    

As an example, assume object space contains a square shaped object and a 

fence-like background, as shown in Figure 3.7.  For simplicity, only one object 

plane is considered here.  A rectangle net (21*15) is chosen for describe the 

object space, as shown in Figure 3.8.  The parameters of the assumed camera 

system are: 

Camera aperture is 195mm 

D, the distance from ATS screen to recording microlens array is 341.8575mm 

Zref, the reference plane of object space is 327.0878mm 

F, φ, the focal length and pitch size of the microlens sheet is 3.23mm, 1.124mm 

respectively. 

Zd,Yd, the sample distance in Z,Y space for object space is 1mm and φ/2 respectively. 

There are 21 microlenses in recording microlens array and 15 pixels under each 

microlens.  

 

Figure 3.7:  An assumed object  
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Figure 3.8:  The rectangular net model of the object space. 

 

Under the condition that each small rectangle space (voxel) can be represented 

as a point on its centre position, a PSF315*315 matrix corresponding to the 

assumed camera system with the defined discrete space can be formed from 

equation 3.20.  Using the PSF matrix, an UII can be generated on the assumed 

object shown in Figure 3.6.   The generated UII data is shown in Figure 3.9 

which can be replayed by using a microlens sheet with suitable parameters.  

 

 

Figure 3.9:  The UII data generated by a PSF matrix from an assumed object  

 

Using the corresponding PSF
+
 matrix, the object space can be further 

reconstructed from Figure 3.10.  It can be seen from the reconstructed object 
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space on Figure 3.10 that the original object space has been reconstructed with 

the correct position except for some small intensity change within the object 

space in the simulation.   

 

Figure 3.10: The reconstructed object space from the UII data generated by the PSF 

matrix.  

 

Figure 3.11 is the reconstructed object space from figure 3.8 using an MPSF
+
 

matrix, where all elements of the right half of the PSF matrix are set to zero.  

This removes all the objects in the rear part of the object space (the fence-like 

background).  

 

Figure 3.11:  The reconstructed object with the fence-like background removed 

 

The above experiment shows the effectiveness of the depth extraction approach 

based on image inverse theory with a corresponding PSF matrix on simulation 

data.  However, the effort of applying the approach to a realistic integral image 

proves in vain, both on computer generated or captured images.  This is due to 

the very ill-posed discrete correspondents associated with the direct process 
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(Bertero1998, Manolache2002).  As an improvement, a hierarchical adaptive 

regularization method is further used in order to obtain high resolution in 

object space reconstruction and a constrained least squares solution of the 

depth extraction problem(Manolache2002).  The new algorithm proved to be 

capable of producing high resolution reconstruction and computation efficient 

in simulation but still could not work out the depth from a realistic II.   The 

question raised is: “When the discrete points are used to represent the object 

space, what is the maximum size of the voxel that can be represented by one 

single point in the optical recording process?” To work out the depth extraction 

task from realistic II‟s, an alternative way needs to be considered.  The new 

approach is described in the following chapters in detail.   

 

3.3 Summary 

This chapter begins with the common depth extraction method used in the 

computer vision area and then moves to the task of extracting depth 

information from 3D II‟s.  Due to the unique recording process existing in the 

information distribution of the integral image, common approaches used in 

stereo vision can not be directly applied to obtain depth information from the 

II.  Previous work has attempted to tackle this task as an image inverse 

problem where the object space is taken as a set of discrete points and a 

corresponding PSF matrix is used to represent the relationship between object 

point and the recorded II.  The approach achieves accurate results for 

simulation data but has difficulty when applied to realistic II data due to the 

inherent loss of the information associated with the discrete model.   To 

produce a workable technique for the depth extraction task applicable to 

realistic II‟s, an alternative way needs to be considered.   
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Chapter 4  

Depth Extraction from Unidirectional 

Integral Image data 

Depth extraction is an important task both for content-based image coding and data 

manipulation, additionally a depth map is essential if real and/or computer generated 

objects are to be integrated within integral 3D TV images. However, due to the unique 

recording process involved in integral imaging, common depth estimation approaches 

cannot be directly applied to obtain depth from integral images.  Previous work 

attempted to tackle the task used a novel depth extraction method based on image 

inverse.  The method achieves good results on simulation but it is unable to obtain the 

depth solution from the real integral image due to the very ill-posed discrete 

correspondents associated with the direct process (Manolache1999, 2000, 2001).  The 

theme of this PhD work is to find an alternative way to solve the depth extraction.  For 

simplicity, unidirectional integral images are used.  However, extension to Omni-

directional integral images is straight forward. 
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4.1 Extracting viewpoint images from 

unidirectional integral image (UII) data  

4.1.1 Characteristics of UII data 

In chapter 2, it was shown that a true 3D optical model could be replayed from the 

recorded UII data.  Although the data exists in a 2D format, it contains all the necessary 

3D spatial information.  The depth information is embedded in the recording in a unique 

manner.  Prior to investigating the methods by which to extract depth information from 

UII data, a better understanding of the unique optical recording process is necessary.  

Figure 4.1 is an example of UII data (Horseman).  The 3-D scene can be replayed by 

overlaying it with a suitable micro-lens sheet. 

 

 Figure 4.1:  An example of captured UII data (Horseman).    
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Figure 4.2:  Four magnified sections of Figure 4.1. (a) region A, (b) region B, (c) region C, (d) 

region D. 

 

Figure 4.2 (a)(b)(c)(d) illustrates four magnified areas taken from Figure 4.1.   

Observation shows that a regular banded structure exists in the image. Generally, the 

banded structure is comprised of two distinct components: black bands with low 

intensity and image bands with significant intensity variation.  In this image, the width 

of the banded structure corresponds to 8 pixels. 

Image profile analysis can be used to identify the intensity values along an outline path 

in an image.  As an example, the profile along the blue horizontal line in Figure 4.1 is 

shown in Figure 4.3.  A more detailed appreciation can be gained from Figure 4.4 that 

shows three enlarged portions of the data given in Figure 4.3.  It can be seen from the 

profile that the low intensity values appear in the image at a regular interval.  The 

interval is found to be at 8 pixels distance and is coincident with the banded structure 

observed from Figure 4.2.   
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Figure 4.3:  The profile of one horizontal line in Figure 4.1 

 

 

 
(a) 

 

 
(b) 
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(c) 

Figure 4.4: Three enlarged parts of the image profile. 

 

An auto-correlation analysis was further carried out along the horizontal line.  The result 

is shown in Figure 4.5.  It can be seen that the pixel at position P1 is more related to 

pixels at positions P9, P17 than pixels at the positions P2, P3.  This is fundamentally 

different from the result obtained in an ordinary 2D image, where the neighbouring 

pixels have a high correlation due to being spatially adjacent.  The local maximum of 

the correlation appears at a period of 8 pixels.  This indicates that not only does the 

black band appear at the period of one microlens, the data within the image bands, 

which contains significant intensity variation has strong correlation at a particular 

interval.  In this image, the interval is of one microlens pitch length.   

 

Figure 4.5:  The unbiased auto-correlation analysis result. The intensity of a pixel in UII is 

closer to the pixels in one micro-lens distance rather than its adjacent pixels. 
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4.1.2 Extraction of viewpoint images from the UII data  

The key feature of the II recording process is the use of a micro-lenses sheet to sample 

image data.  For an ideal recording, all parallel rays entering the same micro-lens are 

recorded at the same position on the recording medium if it is coincident with the back 

focal plane of the micro-lens.  This is shown in Figure 4.6(a).  As a result, the rays in 

figure 4.6(a) annotated with an arrow are recorded at the local position marked as 1n , 

while the rays without arrows are recorded at the local position marked as 2n .  Since 

many micro-lenses are involved in the integral image recording, for all the rays in the 

same direction, the recording pixels will have identical local positions under their own 

particular corresponding micro-lens. This is illustrated in Figure 4.6(b), where all rays 

annotated with an arrow are recorded on the positions marked by 1n .  The different 

recording positions only depend on which micro-lens surface the ray reaches.   

 

 
 

Figure 4.6: The direction selectivity in UII recording. 

 
 

From the image point of view, all pixels in the UII data that are at the same relative 

position under different micro-lenses contain the recording of the object scene from a 

single direction.  As an example, all pixels marked as 1n  contains only the recording 

from 1  direction.  Consequently, a strong correlation is found between pixels displaced 

by one micro-lens interval.   
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Therefore, by sampling all the pixels at the same local position under different micro-

lenses, a new synthetic image can be formed.  The new images, termed here viewpoint 

images, contain all the information within the object scene recorded from one particular 

view direction.  By selecting pixels corresponding to other positions under the micro-

lenses enables other viewpoint images to be constructed. Figure 4.7 graphically 

illustrates how the viewpoint images are extracted.  The eight viewpoint images 

extracted from the captured UII data (Horseman) are shown in Figure 4.8.   

 

Figure 4.7: Illustration of viewpoint image extraction. 

(For simplicity, assume there are only four pixels under each microlens, pixels in the same 

position under different micro-lenses, represented by the same color, are employed to form 

one viewpoint image.) 

 

It is worth mentioning that the viewpoint image is different from the sub-image used in 

previous work, where a sub-image is defined as a group of adjacent pixels on the 

recording film under the same recording micro-lens, as shown in figure 4.9a.  When 

look at each sub-image separately, each pixel of the sub-image is responsible for 

recording a large spatial angle, see figure 4.9b.  This explains why high correlation does 

not exist between the spatially adjacent pixels.   
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(a)     (b) 

 

   
(c)        (d) 

 

   
(e)     (f) 

 

   
(g)     (h) 

Figure 4.8:  Eight Viewpoint images extracted from the UII data, Horseman.  

(The image is scaled at 1/8 in the vertical direction) 
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(a) 

 

 

 

 
(b) 

 

Figure 4.9:  Illustration of the sub-image used in previous work.  

(For simplicity, only four pixels are assumed under each micro-lens.  A group of pixels under 

the same microlens are defined as one sub-image) 

 

It is also worth noticing that the viewpoint image extracted is different from the 

traditional 2D image captured directly from an ordinary camera.  It is a parallel 

projection recording of the 3D space rather than a perspective projection recording as in 

traditional 2D recording as shown in Figure 4.10.  This illustrates how an integral 

display system is fundamentally different from a multi-view display system.  In a multi-

view display system, the multiple 2D images taken using traditional cameras placed at 

different positions are interlaced to construct a one multi-view image that generates a 

3D effect replaying an angular disparity of the component images.   However, the II is 

formed by using unique optical components (microlens sheet) encoding the true volume 

spatial optical model of the object scene directly in a form of a planar intensity 

distribution. 
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(a) The viewpoint image is a recording of the parallel projection of the 3D space 

 

 

(b) The 2D image taken by a traditional camera is a recording of the perspective projection of the 3D 

space 

Figure 4.10: The difference between a viewpoint image and a common 2D image 

 

 

 

4.1.3 Pre-processing UII data before viewpoint image extraction 

The UII data obtained through photographic capture is then scanned to the computer 

and converted to electronic data.  The most common distortion caused by the scanner is 

that due to the rotational translation.  This can be neglected in most of the image 
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applications.  However, in viewpoint image extraction, positioning is very important to 

enable the correct pixel to be extracted. Therefore, to correct for rotation and scale, the 

initial UII data obtained from the scanner is processed before extracting the viewpoint 

image (Forman 1999, Zaharia2001).  

Two stages are involved in rotational correction.  The first stage involves assessing the 

degree of rotational error in the scanned data.  The second stage is to apply an 

appropriate correction in such a way that the structure of the intensity distribution is 

preserved. 

Figure 4.11 diagrammatically illustrates a scanned UII data with an exaggerated 

rotational error.  This can be recognized from the black bands (low intensity region) of 

the image, which should be vertical.   

 

Figure 4.11: Rotational error in a scanned intensity distribution (Forman 1999) 

 

If points ‘A’ and ‘B’ are chosen from a black band, the error angle can be calculated as: 

)(tan 1

h

w          4.1) 

To align the image, a rotation in the opposite sense (  ) is necessary to perfectly align 

the UII data before further process.  
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Another important aspect is to make sure that all pixels are extracted from the same 

position under each micro-lenses.  For simplicity, the integral images are resized so that 

an integral number of pixels (N) are presented under each micro-lens.   

If p(mm) is the pitch size of the lenticular microlens sheet and R(dpi) is the scanning 

resolution, in order to have N pixels under each lenticular microlens sheet, the scale 

factor (Sf ) can be calculated as: 

pR

N
S f

4.25*
         4.2) 

 

 

4.1.4 Application of viewpoint image extraction  

After viewpoint image extraction, the original integral image, which contains spatial 

coding information of the 3D object scene, is represented by a number of images in 2D 

recording format.  This provides a possible way of analyzing and processing 3D integral 

images.   

As an example, for image enhancement task, it is reasonable to expect the replayed 3D 

visual effect will be improved if the visual effect of each viewpoint image is improved.  

The idea is to first extract viewpoint images from the UII data and then apply existing 

2D image enhancement algorithms to each extracted viewpoint image, thereby 

producing a high quality UII by integrating the enhanced viewpoint images.  Similar 

processing can be carried out using other image processing and analysis tasks, such as, 

noise removal, edge detection.  Consequently viewpoint images lead themselves to 

standard techniques in processing 3D UII data.  In addition, the high correlation found 

within viewpoint images is also very useful in data compression in choosing an 

optimized scheme for pixel grouping.   However, the main task in this thesis is to extract 

depth information from the UII data.  Viewpoint image extraction provides a new 

approach to the task.  The remainder of this thesis deals with this task in detail.   
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4.2 Geometric analysis of the UII recording process  

1) Depth equation  

To obtain the depth information from the extracted viewpoint images, geometric 

analysis of the optical recording procedure is carried out to find the mathematical 

relationship between object depth and the corresponding viewpoint image 

displacements.  Figure 4.12 depicts the Cartesian coordinate system used in the analysis.  

Only one dimension is considered since only one direction disparity exists in the UII.  

The z-axis denotes the depth and the x-axis represents the lateral position.  The z-axis 

starts from the plane coincident with the micro-lenses surface, while the x-axis is 

measured from the center of the first micro-lens.  

 

(a)        (b) 

Figure 4.12: (a) The Cartesian coordinate used in geometric analysis.  (b) An enlarged micro-

lens.  (Pixels marked by ‘*’ are sampled out to form one viewpoint image, pixels marked by ‘o’ 

are sampled out to form another viewpoint image.) 

Suppose the first viewpoint image is formed by choosing pixels at an offset ds1 from 

micro-lens center, which record rays only from the θ1 direction; the second viewpoint 

image is formed by extracting pixels at an offset ds2 from the micro-lenses center, 

which records rays only from the θ2 direction.  Consider an object point P (x0 ,D) as 

shown in Figure 4.12.  A ray from P in the θ1 direction forms the corresponding record 

in the first viewpoint image.  This ray intersects the x-axis at point P1(x1 0) and then 

enters the micro-lens sheet at the N1th micro-lens.  Following lens refraction, the ray is 
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recorded at pixel Q1.   Q1 is the corresponding recording pixel in viewpoint image one.  

Similarly, the corresponding recording pixel Q2 in the second viewpoint image is 

formed by project a ray from P in direction θ2.  The ray enters the N2th micro-lens, 

intersects the x-axis at point P2 (x2 0) and is recorded on the film at pixel Q2.  

The following geometric relationship can be easily obtained from Figure 4.12: 

101 tgDxx           4.3) 

  )5.0()5.0( 1111 NtgdrxN       4.4) 

F

ds
tg 1

1            4.5) 

From equations 4.3)- 4.5), we have:  

 


 )5.0(
)(

)5.0( 1
1

01 N
F

dsdD
xN r      4.6) 

Similar equation can be written for the second viewpoint image:  

 


 )5.0(
)(

)5.0( 2
2

02 N
F

dsdD
xN r      4.7) 

Manipulating equation 4.6) and 4.7) yields: 

 


 )1(
)()(

)1( 21
21

21 NN
F

dsdsdD
NN r     4.8) 

Defining ‘baseline’ =ds1-ds2 as the sampling distance between two viewpoint images.  

Since only one pixel is extracted from each micro-lens unit to form one viewpoint 

image, one pixel in one viewpoint image corresponds to one micro-lens unit in the UII.  

Therefore, one unit of disparity between the two viewpoint images is equal to one 

micro-lens unit distance in the original UII data, that is,  d= 21 NN  .   

Substituting d and   into equation 4.8), we have the mathematical relationship for 

depth D and disparity d: 
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 


 )1(
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)1( d
F

dD
d r        4.9) 

The depth equation of the object point P0 depth (D) can be written as: 

rd
Fd

D 





)1(
           4.10) 

Here, 1d  represents that the expected value is d and varies in the range d-1 to d+1.  

  is the sample distance between two viewpoint images.   , F is the pitch size, focal 

length of the micro-lens sheet respectively. dr is the height of the sag of the micro-lens, 

as shown in Figure 4.12 b).   

In most cases, dr<<D, without concerning the error range, depth equation can be 

simplified to 






Fd
D


             4.11) 

Equation 4.11) can be used to calculate the object depth from the corresponding 

disparity between two viewpoint images.  Given the corresponding displacement 

between two viewpoint images and the micro-lens sheet parameters used in recording, 

the depth of any object point can be easily calculated from the depth equation.  It also 

can be seen that the displacement of viewpoint image pair is proportional to the depth 

and increases as the baseline increases.   

2) Depth estimation error 

The error range for the depth estimation from two viewpoint images is: 

FE 





          4.12) 

The error range is in an inverse proportional to the baseline, which indicates that a 

longer baseline can give a better accuracy when using two viewpoint images in the 

depth estimation.  Figure 4.13 graphically illustrate the ambiguity existing in the 

integral recording.  Since all the parallel rays entering the same micro-lens have the 



Chapter4: Depth Extraction from Unidirectional Integral Images 

 

 54 

same recording pixel, any point in the green diamond region in Figure 4.13a, can be 

identically recorded in the two viewpoint images as point P.  Therefore, ambiguity 

exists when determining the exact position of the object point from two viewpoint 

images. Fortunately, the ambiguity region can be reduced by introducing more 

constraints, that is, by using the information from another viewpoint image, as shown in 

Figure 4.13b.  In an ideal situation, this ambiguity region is reduced to zero by an 

infinite number of viewpoint images.    

 
Figure 4.13: Ambiguity existing in integral recording: (a) The ambiguity region existing when 

two viewpoint images are considered; (b) The ambiguity region when more rays are involved.  

 

4.3 Disparity analysis of viewpoint images 

The derived depth equation shows that the depth can be calculated from the 

corresponding displacement between two viewpoint images.  Therefore, the next step in 

depth extraction is to carry out a disparity analysis to establish the correspondence 

between two viewpoint images.  

Disparity analysis has been a major research topic in computer vision for many years.  

For simplicity and effectiveness, a correlation-based block-matching method is used 

here.  The basic idea of the block-matching method is to locate a candidate block in the 

second image that can best match a target block in the first image.  This is illustrated in 

Figure 4.14, where only one dimension is considered for simplicity.  Assuming two 

viewpoint images, I1 and I2, (x, y) are the coordinates of the point being analyzed. I1(x, 

y) is the intensity of the point (x, y), w is the local window used in matching and R is 

the search range in the second image associated with the first image.  In general, the 
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algorithm can be mathematically described as finding out the matching position (x+d,y), 

],[ RRd   in the second image where a score function has the minimum: 

 )}}({minarg{* dscored
Rd

        4.13) 

 
Figure 4.14: An illustration of block matching method. 

 

Using three popular correlation-based block-matching criteria, namely, sum of the 

square difference (SSD), sum of absolute difference (SAD) and cross correlation (CC), 

the three score functions can be mathematically described as: 

1. Criterion:  SSD 





wyx

ydxIyxIdSSDdscore
,

2

21 )],(ˆ),(ˆ[)()(     4.14) 

2. Criterion: SAD 





wyx

ydxIyxIdSADdscore
,

21 |),(ˆ),(ˆ|)()(     4.15) 

3. Criterion: CC 
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Where, IyxIyxI  ),(),(ˆ  and 



wyx

yxI
N

I
,

),(
1

.  N is the number of pixels within the 

window.  The local window intensity adjustment is introduced in order to reduce the 

error caused by the variation of the illumination between different viewpoint images.  

This is found out to be particularly important in analysing the disparity between 

viewpoint images due to the directional illumination differences. 

 

4.4 Experiments on depth estimation 

To test the feasibility of depth estimation using the outlined approach, a UII, which 

contains a matchbox placed in front of a plane background as the scene was captured.  

Some letters are printed on the plane background as patterns to facilitate the disparity 

analysis.  The recorded UII is therefore limited to two specific depth planes.  The 

optical system used to capture the image is explained in detail in Davies and 

McCormick (Davies 1988).  Figure 4.15 illustrates the integral recording process.  The 

pitch size (ψ), focal length (F) and the radius of curvature (r) of the micro-lens array 

used in this recording are 0.6mm, 1.237mm and 0.88mm, respectively.  The 

corresponding recorded UII data is shown in Figure 4.16.  Figure 4.17 shows the 12 

viewpoint images extracted from the UII data.  The 3D scene can be replayed by 

overlaying the recording film with a micro-lenses sheet having the same parameters, as 

shown in Figure 4.18.   

 

 

Figure 4.15: The Unidirectional Integral recoding process of a 3-D object, matchbox. 
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Figure 4.16: The captured UII data, matchbox. 

 

 

Figure 4.18: Replay of the 3-D optical object scene using a decoder (micro-lens array) with 

appropriate parameters.  (For illustration, the replayed scene is shown in colour green). 

 

.  
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        (1)        (2)         (3) 

 

   

        (4)        (5)         (6) 

 

   

        (7)        (8)         (9) 

 

   

        (10)       (11)         (12) 

 
Figure 4.17: The twelve viewpoint images extracted from the UII data (matchbox). 
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Examining the twelve viewpoint images, it is seen that the first and last two are of poor 

visual quality.  This is caused by recording quality deterioration near to the micro-lens 

edges (poor microlens form).  As discussed in section 4.2, a long baseline is preferred in 

depth estimation to achieve high accuracy.  Ignoring the poor viewpoint images, the 3rd 

viewpoint image (VI3) and the 10
th

 viewpoint image (VI10) were selected to represent 

the longest practical baseline for the system and were initially used.  Two local 

windows, one within object region (w1) and another within background region (w2), 

were chosen from the first image (VI3) for measuring the depth, as shown in figure 4.19.  

The task is to find the corresponding matching positions in the second image (VI10) for 

the two windows, respectively. 

 

 

 

 

Figure 4.19: The two windows chosen for depth estimation. 

[w1: (20, 80 - 60,100) w2: (110, 20 - 140, 100)] 

 

 

A full-search algorithm was used sequentially adopting the three criteria previously 

described.   The searching range is chosen from –20 to 20 pixels for the object region 

and –10 to 10 pixels for the background region.  The results of the three score functions 

are plotted in Figure 4.20.  For the chosen object region, a disparity of 9 is obtained 

from the SSD and CC criteria, 8 from the SAD criterion.  Similarly, a disparity of 3 is 

obtained for the background region.  
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(a) w1 

 

 

(b) w2 

Figure 4.20: The score functions plotted for the two windows. 

(All score functions are normalized to 1. The expected disparity is obtained from the position 

where the score functions have global minimum.) 

 

 



Chapter4: Depth Extraction from Unidirectional Integral Images 

 

 61 

Using the derived depth equation, the depth of the object region can be estimated as 

19.1mm from the results of the SSD and CC criteria, 17.0mm on the result of the SAD 

criterion.  From equation 4.12, the error range obtained from this viewpoint image pair 

(VIP) is 2.1mm.  All three criteria give the depth of background region as 6.4mm with 

the same error range.  Since the matchbox is attached to the plane background, the 

thickness of the matchbox is the difference between the two depths, as shown in figure 

4.18.  Therefore, the thickness of the matchbox is calculated as 12.7mm, 12.7mm and 

10.6mm from the respectively three criteria.  Since each measure gives an error range of 

2.1mm, the measure error range for the thickness of the matchbox is 4.2mm.  Using a 

Vernier caliper gauge, the thickness of the matchbox is measured as 15.6mm.  The 

relative error of the depth estimation obtained from the three criteria is 18.5%, 18.5%, 

32%, respectively.  

As a number of viewpoint images have been obtained from the UII data, it is reasonable 

to think that the result of the depth estimation can be improved by using more viewpoint 

images in the disparity analysis. Table 4.1 lists the disparities for the seven different 

viewpoint image pairs (VIPs) and Table 4.2 lists the corresponding depths calculated 

from each VIP.   The corresponding error ranges for each VIP are list in Table 4.3.  The 

statistical results of the depth obtained from seven different VIPs are given in Table 4.4 

Table 4.1: Disparities obtained from different VIPs 

VIP VIP1 

VI3&VI4 

VIP2 

VI3&VI5 

VIP3 

VI3&VI6 

VIP4 

VI3&VI7 

VIP5 

VI3&VI8 

VIP6 

VI3&VI9 

VIP7 

VI3&VI10 

SSD 2 3 3 6 7 8 9 

CC 2 3 3 6 7 8 9 

SAD 2 3 3 6 7 8 8 

(a) w1 

 

VIP VIP1 

VI3&VI4 

VIP2 

VI3&VI5 

VIP3 

VI3&VI6 

VIP4 

VI3&VI7 

VIP5 

VI3&VI8 

VIP6 

VI3&VI9 

VIP7 

VI3&VI10 

SSD 0 0 0 1 2 1 3 

CC 0 0 0 1 2 1 3 

SAD 0 0 0 1 2 2 3 

(b) w2 
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Table 4.2: the depths (mm) estimated from different VIP’s 

VIP VIP1 

VI3&VI4 

VIP2 

VI3&VI5 

VIP3 

VI3&VI6 

VIP4 

VI3&VI7 

VIP5 

VI3&VI8 

VIP6 

VI3&VI9 

VIP7 

VI3&VI10 

SSD 29.7 22.3 14.8 22.3 20.8 17.8 19.1 

CC 29.7 22.3 14.8 22.3 20.8 17.8 19.1 

SAD 29.7 22.3 14.8 22.3 20.8 17.8 17.0 

(a) w1 

VIP VIP1 

VI3&VI4 

VIP2 

VI3&VI5 

VIP3 

VI3&VI6 

VIP4 

VI3&VI7 

VIP5 

VI3&VI8 

VIP6 

VI3&VI9 

VIP7 

VI3&VI10 

SSD 0 0 0 3.7 5.9 2.5 6.4 

CC 0 0 0 3.7 5.9 2.5 6.4 

SAD 0 0 0 3.7 5.9 4.9 6.4 

(b) w2 

Table 4.3: The error range (mm) obtained from different VIP’s 

VIP VIP1 

VI3&VI4 

VIP2 

VI3&VI5 

VIP3 

VI3&VI6 

VIP4 

VI3&VI7 

VIP5 

VI3&VI8 

VIP6 

VI3&VI9 

VIP7 

VI3&VI10 

Error range 14.8 7.4 4.8 3.7 3.0 2.5 2.1 

 

Table 4.4: The statistical results of the depths (mm) estimated from VIP’s 

Statistic results Mean Std Median 

SSD 21.0 4.7 20.8 

CC 21.0 4.7 20.8 

SAD 20.7 4.9 20.8 

(a) w1 

Statistic results Mean Std Median 

SSD 2.6 2.8 2.5 

CC 2.6 2.8 2.5 

SAD 3.0 2.9 3.7 

(b) w2 
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No obvious difference can be found from the statistical results of the three criteria. The 

results of the standard deviation show a slightly better estimate for the SSD and CC 

criteria.  The mean value gives the thickness of the matchbox at 18.4mm, 18.4mm and 

17.7mm for SSD, CC and SAD criterion, respectively.  The median value from the three 

criteria gives the thickness at 18.3mm, 18.3mm and 17.4mm, respectively.  Compared 

with the manually measured result (15.6mm), all results have an estimation error less 

than 20%  

4.5 Summary 

In this chapter, a method of extracting depth information from the UII data by extracting 

viewpoint images is explored and discussed.   Three steps are involved in the approach: 

(i) Extracting viewpoint images from UII data; (ii) Finding the displacement from the 

extracted viewpoint images; (iii) Calculating the depth from the displacements.  

The viewpoint image is formed by sampling pixels at the same local position under 

different micro-lenses. Each viewpoint image is a 2D parallel projection of the 3D 

scene.  Through geometrically analyzing the UII recording process, a depth equation has 

been derived which describes the mathematical relationship between object depth and 

the corresponding viewpoint images displacement.  Using the depth equation developed, 

the task of depth estimation has then converted into the task of disparity analysis.  A 

correlation-based block matching method has been chosen to find the disparity among 

viewpoint images.  

To test the efficiency of the approach, an object scene which only contains two depths 

(one for the object surface, one for the background) has been captured as an integral 

image.  By selecting two matching windows in the object region and background 

region, respectively, the thickness of the object has been estimated with an error of less 

than 20%.  

The performance of the disparity analysis is of great importance in achieving correct 

depth estimation. The following work is mainly concerned with developing algorithms 

to improve the performance of disparity analysis on extracted viewpoint images.  
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Chapter5  

Disparity Analysis on Extracted Viewpoint 

Images 

After obtaining the depth equation in Chapter 4, the task of depth extraction from UII 

data has successfully reduced to the task of disparity analysis on extracted viewpoint 

images.  The performance of the depth estimation directly depends on the performance 

of the disparity analysis on viewpoint images. It was therefore decided to investigate 

approaches in order to improve the disparity analysis.  This can be divided into two 

sections.  In the first section, a multi-baseline stereo technique is adapted to improve the 

matching results by using the information from multiple viewpoint images.  

Subsequently, an algorithm based on a neighborhood constraint & relaxation technique 

to further improve the disparity analysis performance is presented.    Experiments show 

that both techniques work effectively in achieving a good matching result.  An obvious 

improvement in both precision and correctness can be found from the depth 

measurement results.  The depth map and object space reconstruction can be achieved 

from the UII data with acceptable quality, both on the captured and computer generated 

UII data.   
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5.1 Disparity analysis using a multi-baseline 

technique   

5.1.1 Trade-off between precision and correctness in matching 

The derived depth equation indicates that the displacement for an object point between 

recording viewpoint images is proportional to the baseline of the viewpoint image pair.  

The baseline acts as a magnification factor when measuring disparity (d) from which the 

depth (D) can be obtained.  The depth equation also reveals that the accuracy of the 

depth estimation is related to the baseline.  For precise distance estimation, a long 

baseline is desired.  However, a longer baseline means a larger disparity range must be 

searched to find the matching position. As a result, the chance of a false match is greater 

when using a long baseline.  This is very similar to stereo matching in which choosing a 

baseline is a tradeoff between precision and accuracy.  

To examine the efficiency of the matching strategy in choosing a baseline, a simple 

experiment was undertaken.  Using the example on the UII data (matchbox) in the 

pervious chapter where a window w2 within the background region is chosen for 

measuring the background depth in the scene.  Using the viewpoint image pair (VIP7) 

with the longest baseline, a disparity of 3 is obtained within the disparity search length 

R7 (R7=10), see Figure 4.19 (b).  This gives the depth of the background as mm4.6 with 

an error range of 2.1mm.   Now, considering a relatively small sized window (w3) 

within the background region, as shown in Figure 5.1, the depth is again calculated.  

Figure 5.2 shows the corresponding evaluation function for the window (w3) from the 

same viewpoint image pair. This time, a matching position of 9 can be found on the 

result, which gives the depth at 19.2mm for the region.  This is quite different from the 

result obtained using w2.  However, the result is expected to be the same as w2 since w3 

and w2 refer to regions at the same depth.  
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Figure 5.1:  Use of a relatively small sized window (w3) 

 

 

 

 

 

Figure 5.2 The disparity evaluation function for w3 on the VIP7  ( R7=10)  

 

 

This different depth estimation result is caused by false matching in the disparity 

analysis.   False matching occurs when the matching signal is not strong enough to 

overcome the interference from the noise signal.  A relatively small sized window is 

more easily affected by noise since less matching information is available.   If the 

disparity evaluation functions obtained on w2 and w3 (Figure 4.20 and Figure 5.2) are 

considered it is seen that several local minima exist on the curve.  The appearance of the 

local minimum in the evaluation function is caused by the periodic intensity distribution 
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in the scene which can be observed from figure 5.1.   False matching is especially easy 

to occur around this periodic position. 

The false matching occurs could be precluded by using a short baseline since a 

relatively shorter disparity searching range would be presented.  For illustration, Figure 

5.3 show the disparity evaluation functions obtained from two other viewpoint image 

pairs with shorter baseline: VIP2 and VIP4.  The baseline in VIP2 is 2/7 of that in VIP7.  

For the same depth search range, the corresponding disparity searching range is 2/7 of 

that in VIP7 since the disparity is in a direct ratio to the baseline of the image pair.  

Previously, the disparity search range for VIP7 (R7) is chosen as 10, therefore, 

72 *
7

2
RR =2.85.  Similar relationship exist for VIP4 which has a baseline length of 4/7 

of the VIP7, and therefore has the corresponding disparity 74 *
7

4
RR =5.71.  Within 

the corresponding searching range, only one local minimum can be found on the 

corresponding functions, it is 1 for VIP2 and 2 for VIP4 respectively, see Figure 5.3.   

The corresponding depth can be calculated as 7.4mm in both cases.  The error range 

obtained for the two VIP is 7.4mm and 3.7mm respectively, see Table4.3.  These results 

( mm4.74.7  and mm7.34.7 ) are consistent with the result previously obtained on 

window w2 ( mm1.24.6 ) within the error range.  However, the ambiguity we had from 

the two viewpoint image pairs are 7/2 and 7/4 times of using the longest baseline and 

therefore the uncertainty in depth estimation is increased.   

The trade-off in choosing baseline is similar to what happens in stereo matching, where 

two common approaches are used to deal with the problem.  The first approach is to use 

a coarse-to-fine strategy where a low resolution image is used at the first stage to obtain 

a coarse matching result. A fine matching is then carried out on the high resolution 

image using the results obtained from the coarse matching (Bierling 1988, Barnard 

1989, Hannah 1989, Chen and Medioni 1990).  An alternative approach is to use 

multiple consecutive images and take advantage of the redundancy of information 

contained in multiple images of the same scene to obtain a robust and precise 

measurement. The tracking of features becomes easy between a pair of consecutive 

images over a short searching range. A more precise estimation can be obtained by 
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integrating the noisy individual measurements imposing certain constraints (Matthies 

1989, Okutomi 1993).  The procedure using a coarse resolution does not always result 

in the removal of the false matching, especially when it is caused by the inherent 

ambiguity  Therefore, an approach of using multiple images of the same scene is 

considered since multiple viewpoint images with regular baseline interval have been 

obtained from the UII data by viewpoint image extraction.   More precisely, a multi-

baseline technique developed by Okutomi and Kanade is adapted (Okutomi 1993).  The 

multiple-baseline stereo algorithm developed by Okutomi and Kanade and the 

modification made to adapt to viewpoint images extracted from integral images are 

described in the following parts of this section.  

 
(a) The disparity evaluation function for VIP2  ( R2=2.85) 

 

 

 

 
(b) The disparity evaluation function for VIP4  ( R4=5.91) 

 

Figure 5.3:  Using a shorter baseline in matching analysis on window w3 
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5.1.2 Using a multi-baseline technique in depth analysis  

1) Multi-baseline stereo algorithm 

In the multiple-baseline stereo algorithm developed by Okutomi and Kandade (Okutomi  

1993), the multiple stereo image pairs with different baselines are generated by a lateral 

displacement of a camera.  The matching is performed by accumulating the evaluation 

function from each stereo image pair and then making a judgment from the accumulated 

evaluation function.  This is different from the traditional method, where the judgment 

is carried out on the score function from each pair directly. The final result is obtained 

from all intermediate judgments.  

For illustration, if a one dimensional situation is considered and SSD criterion is used as 

the score function, the traditional stereo matching algorithm can be described as:  Given 

a stereo pair, find the disparity that minimizes the score function. 

)}}({minarg{* dscored
Rd

        

wyx

ydxIyxIdSSDdscore
,

2

21 )],(ˆ),(ˆ[)()(      5.1) 

The Multi-baseline algorithm in stereo is described as:  Given n stereo pairs with 

different baselines, find the ζ that minimizes the sum of the SSD-in-inverse-distance 

function.  

D

1
 

*

* 1

D
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'
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n

i
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)],(ˆ),(ˆ[)()(     5.2) 

In the new matching score function, the inverse distance  (
D

1
) is used as the 

variable instead of the disparity d.  The reason for using  instead of d is because the 
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disparity d varies as the baseline varies in stereo vision, while the depths kept constant 

for different baselines.  Therefore, the inverse distance does not change with different 

baselines and the same minimum can be expected to obtain from the SSD-in-inverse 

distance functions with respect to different baselines.  This enables the score function 

from different image pairs to be directly accumulated.   

The “multiple-baseline stereo” algorithm has proved to be effective in reducing 

mismatching and increase matching precision in stereo matching by both mathematical 

analysis and practical work in stereo vision (Okutomi 1993).   

 

2) A modified multi-baseline algorithm 

In the current work, disparity analysis from extracted viewpoint images is the objective.  

The extracted viewpoint images form multiple VIPs with different „baseline‟ at regular 

length intervals.  In this respect, the multiple VIPs can be viewed as being similar to 

multiple stereo image pairs used in multi-baseline stereo.  However, the viewpoint 

images are generated using a different approach and the definition of baseline is 

different from that used in stereo vision as well.  Therefore, some modification to the 

standard algorithm is necessary.  The modification proposed is to use a SSSD-in-

distance function (SSSD(D)) to replace the SSSD-in-inverse-distance function 

( )(SSSD ) used in stereo vision. 

The modified multi-baseline algorithm can be written as: 

)}}({minarg{
'

* DscoreD
RD

 

n

i wyx

i

i y
F

D
xIyxIDSSSD

2 ,

2

1 )],(ˆ),(ˆ[)(      5.3) 

The use of D  instead of  is because the depth is directly proportional to the disparity 

in the integral depth equation rather than an inverse relationship in stereo vision.  This 

allows the evaluation functions from different viewpoint image pairs can be easily 

accumulated.   
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3) Mathematical proof of the modified multi-baseline algorithm 

The mathematical proof on how the ambiguity can be removed from multiple viewpoint 

image pairs using the modified multi-baseline criterion is now outlined: 

I) Suppose I1(x,y) and Ii(x,y) are the intensity functions of an image pair. The image 

intensity functions I1(x,y) and Ii(x,y) near the matching position can be represented 

as: 

I1(x,y)=I(x,y)+n1(x,y)       

 5.4) 

And 

Ii(x,y)=I(x,y-dri)+ni(x,y)        5.5) 

Where n1(x,y) and ni(x,y) are used to represent the noise and dri is the 

disparity for the image pair on matching point. 

In a traditional matching algorithm, the SSD value of pair i, SSDi (di) over a 

window w at a pixel position (x,y) for the  candidate disparity di is defined as  

wyx

iiii ydxIyxIdSSD
,

2

1 )],(),([)(       5.6) 

The di that gives a minimum of SSDi(di) is determined as the estimate 

disparity. 

Assuming ni(x,y) is independent Gaussian white noise ),( yxn ~ )2,0( 2

nN , 

the expected value of SSDi(di) can be represented as  

22

,

2)],(),([)]([ nwii

wyx

ii NydrdxIyxIdSSDE         5.7) 

Where, Nw is the number of points in the searching window.   

)]([ ii dSSDE is expected to take a minimum value when di is at the right 

disparity dri. 
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II) Suppose there is a same or similar pattern on the image around the matching 

position (x,y) so that 

I(x,y)=I(x+a,y)        5.8)  

where, a≠0 is a constant.  This will cause ambiguity since E[SSDi(di)] is also 

expected to be a minimum at position dri+a.  

III) In our current task, from the derived depth equation in chapter 4, we know that the 

measured disparity d depends upon the depth of object point (D) and the baseline 

of the viewpoint image pair.  Therefore, the candidate and real disparity di,  dri  can 

be given as: 

F

D
d i

i          5.9) 

and 

F

D
dr ir

i         5.10) 

where Dr and D are the real and candidate depth of point (x,y), respectively.  

Substituting (5.9) and (5.10) in (5.7), the E[SSDi(D)] with respect to the 

distance D is obtained as. 
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IV) Now again suppose I(x,y) has the same pattern around (x,y) and (x+a, y).  The 

equation 5.11 is expected to have a minimum value both at 0
)(

F

DD ir  and 

a
F

DD ir )(
, which corresponding to D=Dr and 

i

i

r

Fa
DD .  It is 

important to notice that the false depth estimation, 
i

i

Fa
Df , varies for 

different baseline. 
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In the modified multi-baseline algorithm, the new evaluation function, 

SSSD(D), is now the sum of SSD(D):   

SSSD(D)= )]([ i

1

DSSD
n

i

 

The expect value of SSSD(D) is: 

E[SSSD(D)]=
n

i wyx

nw

ir nNy
F

DD
xIyxI

1 ,

22 2)],
)(

(),([  5.12) 

This function is expected to have minimum only when all SSDi(D) have the 

minimum.   

V) Now, considering the ambiguity caused by the same pattern around (x, y) and (x, 

y+a). Each SSDi(D) can achieve the minimum at two positions( D=Dr, 

D=Dr+
i

Fa **
).     However, the false depth estimation D=Dr+

i

Fa **
 

varies for different baseline since i varies with the change of i.  The equation 

achieves a minimum for every SSDi(D) only when D=Dr.  Therefore, even when 

ambiguity exists in the object space, Dr is the only position that )]([ DSSDE i  can 

achieve minimum.  Ambiguity is removed using the modified multi-baseline 

algorithm.  
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5.1.3 Experiments 

5.1.3.1 Reducing false matching 

An experiment was carried out to show how the false matching in depth estimation can 

be removed using the modified multi-baseline algorithm on multiple viewpoint images: 

Figure 5.4(h) shows the accumulated evaluation function obtained from the modified 

multi-baseline algorithm on the window w3 used in section 5.1.1, see Figure 5.1.  For 

comparison, the disparity evaluation functions from each viewpoint pair with respect to 

different baselines are shown in Figure 5.4 (a)-(g).     

The results of figure 5.4 can be summarized as: 

(1) A longer baseline produces better resolution but the chance of mismatching is 

greater since a longer searching range is involved. As can be seen from Figure 

5.3(d)-(f),  more than one local minimum exist in the valid searching range and 

mismatching can occur around those positions due to the effect of noise or a 

non-balanced illumination, as an example, the false matching can be obtained on 

Figure 5.4(g).  

(2) Mismatching can be precluded from the image pairs using a shorter baseline 

where only one local minimum exist in the score function, see Figure 5.4(a)-(c).  

However, the curve around the minimum is rather flat which gives a low 

resolution in depth estimation. 

(3) By considering all the image pairs with different baselines, the accumulated 

score function gives a single clear, sharp minimum, see Figure 5.4(h).  The 

mismatching has been effectively removed by integrating the results using 

different baselines. 

The outcome is matching with the mathematical analysis described in previous 

sections. 
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Figure 5.4: The evaluation functions versus distance. (  is the baseline, R is the searching 

range. The horizontal axis is normalized to 7b/ψF=1. The vertical axis is normalized to [0~1]. 

(a) =b; R=2 (b) =2b; R=4 (c) =3b; R=6 (d) =4b; R=8 (e) =5b; R=10 (f) =6b; 

R=12 (g) =7b; R=14 (h) result obtained from the modified multi-baseline algorithm) 
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5.1.3.2 Improving the depth estimation precision 

To measure the thickness of the matchbox in the UII data, the two windows (w1 and 

w2) were chosen again, see Figure 4.19.  However, the SSSD(D) function is used 

instead of SSD(d) function as evaluation criterion to accumulate the information from 

multiple viewpoint images.  Figure 5.5 shows the accumulated score functions obtained 

from the modified multi-baseline algorithm.  A disparity of 9 can be found for w1, 

which gives a depth of 19.1mm for the object region. A disparity of 2 is obtained for w2, 

and this estimates the background depth to be 4.2mm.  Therefore, the thickness of the 

matchbox can be calculated as 14.9mm.  The actual matching thickness, as measured, is 

15.6mm and therefore the error is 4.5%.  This represents an improvement of 13% over 

the result obtained using traditional block matching algorithm. 

 

(a) w1  

 

(b) w2  

Figure 5.5: The score functions obtained by using multi-baseline technique. 

(The horizontal axis is normalized to 7b/ψF=1 and the vertical axis is normalized to [0~1]) 
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The matching analysis only gives a discrete displacement.  A more precise matching 

position can be obtained by using sub-pixel analysis.  Based on the fact that the actual 

precise matching position is obtained from the actual minimum position on the score 

function, a polynomial curve was used to fit the function around the minimum position.  

The minimum of the polynomial curve can be regarded as the minimum position of the 

score function.  Figure 5.6 shows the two polynomial curves obtained for the two 

minimum positions from Figure 5.5.  The precise matching position can be found at 

9.2535 for w1 and 2.0109 for w2 from the continuous functions.  This gives the depth of 

the matchbox surface as 19.6mm and the background plane for 4.3mm, respectively.  

The estimated thickness of the matchbox is 15.3mm on the results.  When compared to 

the manually measured value (15.6mm), the relative error is less than 2% in this 

measurement.   

 
 

(a) w1 

 

 
(b) w2 

Figure 5.6:  Precise solution finding from polynomial curve fitting. 
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Table 5.1 lists all the depth measurement results obtained for the matchbox using 

different algorithms.  The improvement, using the modified multi-baseline with 

polynomial curve fitting, is obvious. 

Table 5.1: Comparison of the depth measure results on matchbox using different algorithms  

based on SSD criterion 

Method used Thickness of the 

matchbox (mm) 

Error 

Mean 18.4 17.9% 

Median 17.3 10.9% 

Multi-baseline  14.9 4.5% 

Multi-baseline with polynomial curve fitting 15.3 1.9% 

 

 

 

 

5.1.3.3 Generating the depth map and reconstructing the 3D object  

a) Photographically captured UII data  

A dense depth map of the object scene can be obtained by applying the developed 

multi-baseline algorithm to every position of the viewpoint image.  Generally, under the 

condition that all the pixels within the matching window are at the same depth, a larger 

local window is more noise-resistant than a small window in the depth extraction task 

since a large window contains more information and is easier to distinguish from the 

false matching positions.  However, with the increase in window size, pixels at different 

depths start to enter the matching window and make correct matching difficult.  To 

investigate the effect of window size, several different local window sizes are used for 

comparison.  The corresponding depth maps are shown in Figure 5.7. 
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(a) Using a 7*7 sized local window in matching  

 

 

(b) Using a 15*15 sized local window in matching  

 

      

(c) Using a 21*21sized local window in matching  

Figure5.7: The depth maps obtained for the matchbox with different matching window sizes. 
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For most regions, the depth is correctly estimated.  The contour of the matchbox is 

clearly delineated on the three depth map generated from different matching window 

sizes.  The errors can be mainly divided into three categories:  

e1, error caused by lack of texture  

e2, error caused by occlusion. 

 e3, error caused by illumination change in different areas, including shadows. 

The error e1 caused by lack of texture can be effectively reduced by increasing the 

window size used in matching.  In contrast, the error e2 caused by occlusion (around the 

object border) increases as the matching window size increase.   

For both the object region and the background region, the colour in the depth map is 

slightly deeper on the left side.  This indicates the object scene was not normal to the 

camera, as illustrated in Figure 5.8. 

 

 

Figure 5.8:  The object scene used in taken the UII data, matchbox.  
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Having obtained the depth, the 3D object space reconstruction is straight forward.   This 

is carried out by mapping the intensity information onto the depth results.  The 

reconstructed object scene for the matchbox is shown in Figure 5.9. 

.  

Figure 5.9: Reconstruction of the 3D object from the Captured UII data (matchbox) using the 

depth map generated from a 21*21 local window size. 

 

 

 

b) Computer generated UII data 

To test the feasibility of the depth estimation approach on computer generated UII data, 

a synthetic UII data (cg_box), which contains the similar object scene as the captured 

UII data (matchbox) was computer generated using a modified PoV-Ray software 

developed by Cartwright in 3D Image Techniques groups, De Montfort University 

(Cartwright 2000).   The package uses a Ray-tracing technique in produce images in a 

way similar to the operation of the camera, casting rays out into the scene in a camera 

model based on pinhole model (Appel 1968, Povray 1999).  The modification is carried 

out by interfacing the integral imaging code into the POV-Ray source.  

Figure 5.10 shows the computer-generated UII data (cg_box). The parameters of the 

recording micro-lenses sheet are the same as those used in recording the photographic 
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UII (matchbox).  A 3-D scene can be replayed in a same way as replaying the 

matchbox, see Figure 4.16.  

 

 

 

Figure 5.10: The computer generated UII data (cg_box). A 3D scene with a small box float 

abovet can be replayed as a 3D  

 

Similar procedures were carried out to extract the depth information from the computer 

generated UII data.  Figure5.11 shows the eight extracted viewpoint images and Figure 

5.12 shows the depth maps obtained from different local window size.  The 

reconstructed object space using the depth map obtained from the 7*7 matching window 

is shown in Figure 5.13. 
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(a)     (b) 

 

   

(c)     (d) 

 

   

(e)     (f) 

 

   

(g)     (h) 

Figure 5.11: Eight viewpoint images extracted from the computer generated UII data (cg_box). 
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(a) matching window size 3*3  

 

(b) matching window size 7*7 

 

(c) matching window size 15*15 

Figure5.12: The depth maps obtained from the computer generated UII data (cg_box,)  
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Figure 5.13: The reconstructed object space from the UII data (cg_box). 

Generally speaking, a better resolution and depth estimation can be found from the 

computer-generated UII since the illumination is well controlled and also no noise is 

present in the recording process.  The conclusion from choosing different window sizes 

is the same as before: a smaller matching window size gives more error within 

object/background region due to lack of enough features for correct matching.  A bigger 

matching window size improves the matching results within object/background region 

but gives a worse contour of the object.   To further improve performance, it was 

decided to explore the use of neighbourhood constraint and relaxation technique by 

considering the spatial constraint.  
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5.2 Disparity analysis using neighbourhood 

constraint and relaxation technique  

This section presents an algorithm based on a neighbourhood constraint and relaxation 

technique to further improve the disparity analysis performance. Instead of using the 

simple SSD criterion as the matching evaluation function as in most literature, a 

relatively complicated criterion is used in considering the spatial constraint to determine 

the matching position.  A multi-candidate pre-screen technique is also used to improve 

computation efficiency.   

 

5.2.1 Theoretical foundation of the neighbourhood constraint and 

relaxation technique 

1) Neighbourhood constraint 

The neighbourhood constraint is based on the spatial-consistency rule.  That is, the 

depth is piecewise continuous in the space (Orchard 1993, Dufaux 1995, Chen 1999).  

Therefore, the disparity can be more robustly estimated if the disparity within the 

neighborhood is considered. To better determine the matching position of a feature 

block, the neighbouring blocks (N(Bi,j)) are considered rather than individually 

considering each block (Bi,j). 

The neighbourhood of a block is illustrated in Figure 5.14.   

 

Figure 5.14:  The neighourhood (B) of a block Bi,j  being analyzed.  
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If we consider the neighbourhood constraint, the new score function used in 

determining the matching position can be introduced as: 

)(

,,,,,

,,

),(),(),(),(
jilk BB

lkjilkjiji dBSSDBBWdBSSDdBscore


   5.13) 

where, jiB ,  represents the window around pixel ),( ji , whose disparity is to be 

determined. )( , jiBN is the set of neighbouring blocks of jiB , , as shown in Figure 5.14.  

),( ,, jilk BBw is the weighting factor for the different neighbour blocks.  The weighting 

scheme is introduced to reduce the estimation error caused when the neighbourhood 

block contains pixels in different depth by putting more emphasis on the center block 

than the periphery block.  The weighting factors can be made to be dependent on several 

factors.  For example, the distance to the central block, the confidence of the blocks and 

the color/texture similarity.  In terms of the distance, a Gaussian-like function can be 

applied to the weighting factor based on the fact that objects are spatially continuous.  

The closer in spatial distance, the more possible they are having the same/similar depth.   

In terms of confidence, a block with large variance always contains more information 

for matching hence the result is more trustable.  Therefore, it is always practical to put 

more emphasis on the blocks with larger variance than blocks with small variance.  As 

for colour/texture similarity, based on the fact that the blocks within the same object 

usually have high texture/color similarity, it is reasonable to put high weighting factor 

on those blocks which have high similarity in color/texture characters to the centre 

block.  By adjusting the weight factor, the neighbourhood of a block can be involved in 

determining the matching position by provide certain amount of support. 

 

2) Neighbourhood relaxation 

Neighborhood relaxation is used to allow for local variations of the disparity among 

neighbouring blocks in considering that the expected disparity of a neighbouring block 

is not necessarily equal to the centre block.  To enable flexibility in considering the 
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disparities of the neighbor blocks, a small 


 is incorporated to allow some disparity 

variations among the neighboring blocks.  

Considering the neighbourhood relaxation, the score function can be written as: 

)(

,,,,,

,,

)},({min),(),(),(
jilk BB

lkjilkjiji dBSSDBBWdBSSDdBscore


   5.14) 

This is the completed score criterion for neighbourhood constraint and relaxation.  The 

neighbourhood constraint is implemented by summing the SSD functions of the 

windows in the neighbourhood. The neighbourhood relaxation is implemented by 

incorporating 


to allow a certain degree of disparity vibrations among neighbouring 

blocks.  The first item is treated as the image force which reflects the influence of the 

feature block and is similar to the external energy function of the popular SNAKE 

algorithm used in detecting object contour.  The second item reflect the influence of the 

neighbours and is similar to the internal energy of the SNAKE algorithm.   

The expected disparity is obtained on the position where the score function has the 

minimum.  

)}},({minarg{ ,,
* dBscored ji

Rd
ji


       5.15) 

3) Multi-candidate pre-screening 

It is obvious that the Neighborhood Constraint and Relaxation criterion involves more 

calculation than traditional block matching considering the neighbourhood.  To avoid 

unnecessary computation, a multi-candidate pre-screening strategy is used.  

The idea is to carry out a two-stage voting scheme.  This is based on the fact that the 

true disparity is likely to have a small residue but not always yields the minimum 

residue in the simple score criterion.  However, implementation of a residue threshold 

by simple calculation the simple score criterion can at least preclude those positions that 

are unlikely to be the matching position.  In the first stage, a simple criterion is used to 

choose candidates. In current case, the SSD function is used as the simple criterion.  

Final judgment is carried out in the second stage by using a more complete and 

complicated criterion on the chosen candidates.   
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The method of using multi-candidates pre-screening in obtaining the candidates can be 

described by the following steps: 

I) Use the simple score criterion, SSD function to calculate the residue for all 

possible disparity positions.  The minimum residue is obtained and recorded. 

II) Choose a residue threshold ( thR ): The residue threshold is always set as  times 

of the minimum residue to allow a suitable number of candidates.   

residueRth min_ ,  ( 1).        5.16) 

III) Choose the candidates identified by the residue threshold ( thR ).  All searching 

positions having residues lower than the threshold are accepted as candidates 

while others are rejected.   

Figure 5.15 graphically illustrates how the candidates are chosen according to the 

residue threshold. The larger the thR , the more candidates are chosen and involved in the 

further competition, vice versa. After Pre-screening process, only those competent 

candidates are kept for further process using the complete evaluation function. This 

effectively reduces the computation. 

 

Figure 5.15: Multi-candidate pre-screening. 
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5.2.2 Implementation of the „neighborhood constraint and 

relaxation‟ algorithm  

The „neighbourhood constraint and relaxation‟ algorithm is implemented using C 

language under the UNIX operating system.  The algorithm mainly contains two 

modules: 

1) Use multi-candidate pre-screening technique to choose candidates for matching 

position.  

2) Use neighbourhood constraint and relaxation criterion to find the correct matching 

position from the candidates. 

 

The main parameters used in the program are: 

1) Basic block matching window size (bw)  

2) Residue threshold ( thR ) parameter  

3) Neighbourhood block number (NBN)   

4) Neighbourhood weight factor (NWF)  

 

Figure 5.16 shows the arrangement of the neighbourhood block sequence in the 

algorithm.  The neighbourhood block is arranged in a sequence according to the 

distance to the centre block.  The closer blocks (1,2,3,4) are followed by farther blocks 

(5,6,7,8).   The number NBN defines the number of blocks in the sequence that can be 

chosen as „neighbour‟.  A bigger NBN gives a bigger neighbourhood.  Usually, NBN is 

chosen as the following numbers: 4, 8, 12, 20, 24, 28, 36, 44 and 48.  As an example, 

when NSN=12, all blocks with number no more than 12 (marked in grey in figure 5.16), 

are chosen as the neighbourhood the feature block.   
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Figure 5.16: The neighbourhood blocks sequence. 

 

In the algorithm, the NWF is defined according to the inverse distance to the central 

block, as shown in table 5.2.  Hence, a close neighbouring block gives more 

contribution to the evaluation function. The further the distance between the 

neighbouring block and the center block, the less effect the block has on the final score 

function.  

 

Table 5.2: The NWF for the neighbourhood blocks shown in Figure 5.16. 

Neighbouring block number NWF 

1~4 nw 

5~8 0.707 nw 

9~12 0.5 nw 

13~20 0.447 nw 

21~24 0.354 nw 

25~28 0.333 nw 

29~36 0.316 nw 

37~44 0.277 nw 

45~48 0.236 nw 

 

To combine with the multi-baseline technique used in previous chapter, a SSSD(D) 

function is used to replace SSD(d) function in the score function in equation 5.15).  The 

score function combining two techniques can be written as:  

)(
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lkjilkjiji DBSSSDBBWDBSSSDDBscore
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  5.17) 

The output result is a data file that contains the corresponding disparity between 

viewpoint images.   
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Procedure 5.1 and 5.2 are the two major modules used in the programming:  

Procedure 5.1:  multi-candidate pre-screening 

Input arguments:  

Thres                     {Residue threshold ( thR )parameter , ( 1 ) }   

dfd.search_range  {the searching range for  two adjacent viewpoint image pair} 

Results: 

dfd.candidate        {mark the candidates} 

Functions: 

get_best_residue   {get the minima residue of the matching block on SSSD criterion } 

get_residue            {get the residue for the searching position on SSSD criterion } 

 

For each feature block 

        minima_ residue= get_best_residue ()          

        residue_threshold =Thres*minima_residue 

        For each searching position  dfd.search_range        

                 residue=get_residue()         

                 If residue< residue_threshold 

                      Set the corresponding position of dfd.candidate to valid 

                 Else 

                       Set the corresponding position of dfd.candidates to invalid 

 

Procedure 5.2:  Neighbourhood constraint and relaxation 

Input arguments:  

Thres                     {Residue threshold ( thR )parameter , ( 1 ) }   

Results: 

dfd.candidate        {mark the candidates} 

Functions: 

get_l_residue     {get the min_residue for the block on a displacement within    

relaxation} 

get_residue            {get the residue for the searching position on SSSD criterion } 

 

For each feature block  ( jiB , ) 

        For each candidate searching position   l 

                Calculate the score: 

                     Set initial total_score=get_residue ( jiB , , l ) 

                      Set initial valid =1; 

                      For each neighbouring block ( lkB , ) 

                              total_score=total_score+w[ lkB , ]*get_l_residue( lkB , ,l)          

                              total_valid=total_valid+w[ lkB , ] 

         score=total_score/total_valid 

record the min_score of score and its corresponding displacement vx 
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 5.2.3 Experimental test  

1) Captured UII data with simple object scene  

The captured UII data, matchbox, is initially used to test the algorithm.  Figure 5.17 

shows the depth map obtained from the algorithm combining multi-baseline and 

neighbourhood relaxation & constraint technique using the initial parameters listed in 

Table 5.3.  A reasonably good result can be obtained at the first instance except for the 

bottom left corner of the matchbox.  

 

Figure 5.17: The depth map for the captured UII data, matchbox, using the initial parameters list 

in Table 5.3. 

 

Table 5.3: The parameters used in generating Figure 5.17 from the UII data, matchbox. 

 Initial parameters Final parameters  

Valid viewpoint image numbers (N) 7 

Basic searching range (R) 3 

Basic Block Matching window size (bw) 15 10 

Residue threshold ( thR ) parameter  2.0 2.0 

Neighbourhood block number (NBN) 12 8 

Neighbourhood weight factor(NWF) 0.5 0.5 
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The basic matching window size (bw) decides the basic measure scale.  Figure 5.18 

shows the depth maps obtained using different basic matching window sizes.  

Increasing the matching window size may increase the chance of false matching.  

However, the bigger the matching window size, the less the detail can be obtained on 

the depth map.  In the current case, bw =10 is considered as a suitable parameter.  

The neighbourhood block number (NBN) decides how many neigbhours are involved in 

calculation. A large neighbourhood block number means that more neighbourhood 

blocks are considered.  Figure 5.19 shows the depth maps obtained using different 

neighbourhood block numbers.   NBN=0 means no neighbourhood is involved in 

calculation. It can be seen from Figure 5.19 that an increase in neighbourhood block 

numbers leads to a smoother depth map.  In the current example, NBN=8 is considered 

as a suitable parameter.  

 

 

Figure 5.18: Comparison of depth maps obtained using different matching window sizes 
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Figure 5.19: Comparison of depth maps obtained using different NBN (bw=10) 

 

The Neighbourhood weight factor (NWF) support NBN in putting certain weight on the 

neighboring block.  It is always set to a value between 0~1 so the centre block always 

has the principal influence.  A high NWF enables more contribution from neighborhood 

blocks while NWF=0 means no contribution is received from the neighbouring blocks.  

Examining the results in Figure 5.20, NWF=0.2 is considered as a suitable parameter. 

The residue threshold parameter  acts as a factor in deciding the threshold for 

choosing candidates in the multi-candidates prescreening stage. A bigger  will get 

more candidates and hence introduce more calculation.  However, if the  is set too 

small, the true matching position might be overlooked in the first round selection.  As 

shown in figure 5.21(a) and (b), the false matching results are caused by setting a too 

small residue threshold parameter.   
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Figure 5.20: Comparison of depth map obtained using different NWF (bw=10, NBN=8) 

 

 

Figure 5.21: Comparison of depth map obtained using different Residue threshold parameters.  

(a) =1.2 (b) =1.5 (c) =2.0 (d) =5.0  (bw=10, NBN=12, NWF=0.5) 
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In the end, Figure 5.22 compares the depth maps obtained from four different 

algorithms: (a) GF algorithm: Use traditional block matching criterion, median of the 

results on different viewpoint image pairs is chosen as the final result.  (b) MB 

algorithm: Use traditional block matching criterion with multi-baseline technique. (c) 

NRC algorithm: Use neighbourhood relaxation and constraint criterion and median for 

integrating the results from different pairs. (d)MB-NCR algorithm: Use neighbourhood 

relaxation and constraint criterion with multi-baseline technique.   It is seen that the best 

result is achieved by using the MB-NCR algorithm.  Compared with the depth map 

obtained from MB algorithm, almost all the false matching results exist in the object 

and background region has been removed with a good object contour perceived. 

 

Figure 5.22: Comparison of depth maps obtained using different algorithms on the captured UII 

data (Matchbox, bw=10).  
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2) Computer generated UII data with simple object scene 

Figure 5.23 compares the depth maps obtained from the computer generated UII data 

(Cg_box), using the four different algorithms with parameters list in Table 5.4.  Again, 

it can be notice that almost all the false matching results has been removed and a good 

object contour has achieved on the depth map using the MB-NRC algorithm. 

 

Figure 5.23: Compare the depth maps obtained from different algorithms on the computer 

generated UII data, cg_box4 (bw=3).  

 

Table 5.4: The basic parameters used in generating depth maps for cg_box 

Algorithm GF MB NRC MB&NRC 

Viewpoint image numbers (N) 8 

Basic searching range (R) 3 

Block Matching window size (w) 3 

Residue threshold parameter  5.0 

Neighbourhood block number (NBN) none 8 

Neighbourhood weight factor none 0.8 
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3) More captured UII data 

Further experiments were carried out on more Captured UII data taken by researchers 

within the 3d Image Group.  These images are shown in Annex, as Image A.2 

(Horseman), Image A.3 (Tank) and Image A.4 (Lab).   All the images can be replayed 

by using a microlens sheet with suitable parameters.  Figure 5.24(a) ~ 5.26(a) shows the 

extracted depth maps. For comparison, the 2D views of each scene are shown in figure 

5.24(b) ~ 5.26(b), respectively.  The parameters used in the algorithm in generating the 

depth map are listed in table 5.5.   

I) For figure 5.24(a), the different depths of the horse and the man who sits up on the 

horse can be correctly perceived from the extracted depth map. The head of the 

horse appears in the colour yellow.  The forelegs of the horse appear in the colour 

green.  The man is in the colour light blue and a slightly darker blue colour was 

obtained for the rear-legs and tail of the horse. The recording plane is found out to 

be positioned around the forelegs of the horse in the object scene.  Poor results are 

obtained on the background region due to the lack of enough features in the region 

for matching.  

II) For the second image (Tank), it is difficult to distinguish the contour of the tank 

from Figure 5.25(a).   However, the colour variation gives a blur perception of the 

base under the tank.  A brighter color means a position in the front of the scene.  

Again, poor results are obtained in the background region.  

III) The last image (Lab) contains a quite complicated object scene with multiple 

objects and a natural background of a laboratory.  In the middle of the object 

scene is a toy-plane placed in the foreground supported by a stand-frame behind 

it.  The toy-plane is followed by a lamp on the left side and a man on the right.  

Some flowers are put in front of the man (at a position relative to the lower part of 

face and neck). The background is a half-open door with some flowers inside the 

door.  On the depth map, Figure 5.26(a), most of the objects in the scene are 

perceived with correct depth.  The toy-plane is in front of the scene plane in the 

colour orange followed with the supporting stand-frame in yellow.  The contour of 
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the lamp on the left side and the man on the right side can be just distinguished.  

The half open door in the rear of the scene appears in the colour blue.    

 

 

      

(a) depth map     (b) 2D view image 

Figure 5.24: The depth map and one of the 2D views of the UII data (Horseman). 

 

 

 

(a) depth map     (b) 2D view image 

Figure 5.25: The depth map and one of the 2D views of the UII data (Tank). 
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(a) depth map     (b) 2D view image 

Figure 5.26: The depth map and one of the 2D views of the UII data (Lab). 

 

 

Table 5.5: The parameters used in obtaining Figure 5.24 ~ 5.26  

 Horseman Tank Lab 

Viewpoint image numbers (N) 8 8 12 

Valid viewpoint image numbers (VN) 4  5 8 

Basic searching range (R) 4 4 4 

Block Matching window size (w)  5 4 5 

Residue threshold ( thR ) parameter  2 1.2 1.5 

Neighbourhood shape number (NSN) 8 4 12 

Neighbourhood weight factor (NWF) 0.8 0.8 0.8 
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5.3 Summary 

This chapter presents the work using a modified multi-baseline algorithm with 

neighbourhood relaxation and constraint technique to improve the performance for the 

disparity analysis on the extracted viewpoint image.  The first section concentrates on 

adapting the modified multi-baseline algorithm by using the information from multiple 

viewpoint images.  Mathematical analysis on how the modified algorithm can remove 

ambiguities in the depth estimation from multiple viewpoint image pairs is given.  

Experiments proved the effectiveness of the algorithm.  The depth measurement 

obtained from the matchbox using the modified multi-baseline algorithm with a 

polynomial curve fitting gives an error of less than 2% in the example.  Depth map and 

object space reconstruction can be achieved from both the captured and computer 

generated UII data with acceptable quality.  The size of the local window used in 

matching is found to be a factor that affects the final depth estimation result.  

To further improve the performance of the disparity analysis, the second section 

presents a neighbourhood relaxation and constraint technique in considering the spatial 

constraint.  This is carried out by using a more complicated score function in deciding 

the matching position through considering the spatial constraint from the 

neighbourhood.  A multi-candidates prescreen technique is also used to improve the 

computation efficiency.  Experiments have shown an obvious improvement on the depth 

map achieved from the MB-NCR algorithm combining both the neighbourhood 

relaxation and constraint criterion and multi-baseline technique.  Several captured UII‟s 

contain complex object scenes taken by the researchers within this group are used.  

Using the MB-NCR algorithm combine two techniques presented in this chapter, most 

of the objects in the scene can be perceived at the correct depth position.  The most 

prominent errors are found on the background region due to lack of enough features for 

matching.  
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Chapter 6  

 “Feature Block Pre-selection” and 

“Consistency Post-screening”  

Following the work in previous chapters, this chapter examines approaches to 

improving the precision and correctness of the results gained from the disparity analysis 

of viewpoint images.  As reported in chapter 5, it is within the homogenous regions that 

errors frequently appear due to the lack of sufficient features within the matching 

window.  Another difficult region is around object borders where two different 

displacements exist within the matching block.  In this chapter, two techniques, “feature 

block pre-selection” and “consistency post-screening” are employed to deal with these 

two situations.  Experiments have shown that the two techniques worked successful in 

detecting those results with low confidence.  Combined with the techniques used in 

previous chapters, it is anticipated that improved results can be achieved for the depth 

map generated from the UII data. 
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6.1 Feature block pre-selection 

1) Untraceable block 

In chapter 4, the basic idea of the block-matching method to locate a candidate block in 

the second image that can best match a target block in the first image is described.  This 

is carried out by comparing the residues between two blocks.  Matching is found at the 

position where a minimum residue is obtained.  The confidence of matching depends on 

the information contained within the block.  The more information contained within the 

matching window, the more noise-resistant is the result.  However, information details 

are not uniformly distributed in the spatial domain, that is, some parts of the image have 

more details than others.  One extreme circumstance is a block without texture, that is 

where the intensity is constant within the block.  The block of pixels may look identical 

to another block of pixels and consequently more than one position will give the 

minimal-residue.   In this case, the minimal-residue criterion does not always deliver the 

true matching position for depth estimation.   We call these blocks “untraceable”.  

Another case might be a block that does not contain prominent texture features and 

finding the correct matching position is extremely difficult due to image noise 

disturbance.   Consequently, the disparity results obtained for these blocks will have low 

confidence for depth estimation.   

 

2) Detecting the untraceable blocks 

The untraceable block causes false matching and thereby a faulty depth analysis 

process.  For a good matching efficiency, it is advisable to identify these blocks before 

the matching process.  A scheme to do this can be implemented by evaluating the 

variance of the blocks. When the intensity variance within the block is smaller than a 

given threshold, the block can be considered as “untraceable”.  The matching results 

obtained from the “untraceable” blocks can then be recognized as having low 

confidence.  Only the blocks that contain enough features for a confident match are kept 

for further analysis.  This represents “feature blocks pre-selection” and is an efficient 

and informative procedure.   In the final depth map, the depth of these untraceable 
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positions can be recovered from the neighbourhood blocks and therefore the approach 

leads to an effective gain in the process. 

 

6.2 Consistency post-screening 

1) Untrackable block 

The matching algorithm in disparity analysis relies on the assumption that the image 

intensity, corresponding to a point, remains constant in different images.  However, it is 

not always true on all occasions.  For example, the pixel intensity in the circle shown in 

Figure 6.1 is not constant due to occlusion.   

 

Figure 6.1 Occlusions occurs when viewing from different positions. 

Other situations that can occur are where a block is located at the object boundary.  

Since at least two different displacements exist within the block, it is impossible to find 

a single disparity correctly to compensate the block.  We call the object boundary, 

occlusion, and reappearance regions as “untrackable” regions.  The exact matching 

position does not exist for “untrackable” regions.  It is extremely useful to identify these 

blocks in the matching process.   

2) Detecting the untrackable block 

The consistency post-screening technique is used to identify these untrackable blocks.  

This is carried out by evaluating the residue from the score function based on the 

following observations: 
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I) When the estimated disparity ( *
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In total, the residue from the score function after considering the neighbourhood 

will be less than the weighted sum of the residue thresholds:  
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III) If block Bk,l  and  Bi,j are in different objects in different depths,  *
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 is away from  
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

,  equation 6.2) no longer holds.  In most situations:  
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Therefore equation 6.3) is unlikely to be satisfied. 

Consistency post-screening is carried out by evaluating all results with the estimated 

disparities using the relationship given in equation 6.3).  The blocks that fail in the 

criterion are recognised as untrackable and can be marked out and discarded.  The depth 

of these positions is later recovered by considering the neighbouring.  

 

 



Chapter 6. “Feature Block Pre-selection” and “Consistency Post-screening”  

 

 107 

6.3 Implementation of the hybrid algorithm  

The hybrid algorithm combining “Feature block pre-selection” and “consistency post-

screening” technique along with the previous multi-baseline and neighbourhood 

constraint and relaxation techniques is implemented using C language under the UNIX 

operating system.  The algorithm contains five major modules: 

1) Using feature block pre-selection to identify the untraceable blocks. 

2) Using multi-candidate pre-screening to choose candidates. 

3) Using neighbourhood constraint and relaxation criterion with multi-baseline 

technique to find out the correct matching position. 

4) Using consistency post-screening to detect the untrackable blocks. 

5)  Recovering the invalid results by considering neighbouring positions.  

In addition to the parameters used in the previous algorithm, the feature block pre-

selection threshold parameter (FBth), is contained in the hybrid algorithm.  This 

parameter acts in the same manner as a factor in evaluating the requirement for the 

variance within the block for a confident matching estimation.  A larger FBth requires 

more feature information for the matching window hence increasing the FBth gives 

more untraceable positions.  

The residue threshold parameter  has two functions in this algorithm.  The first is to 

act in the same manner as in previous chapter in deciding the threshold for choosing 

candidates in the multi-candidate prescreening stage. A bigger  will get more 

candidates.  Another function introduced in the hybrid algorithm is to act as a threshold 

in evaluating the validity of the matching results in the consistency post-screening stage.  

A bigger  allows a loose constraint in the post-screen evaluation stage and hereby less 

untrackable positions will be detected.   

Two different schemes are used to recover the untraceable and untrackable regions.  In 

order to achieve a good boundary for the objects, the median of the eight valid 

neighbouring points is used for the untrackable region, while the mean value with a 

weighting factor is used to compensate the untraceable region in order to have a good 
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continuity within the object.  The output is a depth map data file corresponding to the 

UII data.  

Procedure 6.1~6.3 lists the three major program modules in addition to previous MB-

NRC algorithm: 

Procedure 6.1:  feature blocks pre-selection 

Input arguments:  

currFrame     {intensity distribution for the first viewpoint image} 

var_thres      { Feature block pre-selection threshold parameter (FBth):} 

Results: 

dfd.mode     {mark the valid feature blocks} 

 

For each blocks 

       Calculate the mean intensity value within the block. 

        For each pixel position 

                Calculate the mean intensity value within the block 

        Calculate the variance within the block 

        If variance >  var_thres 

              Set the corresponding position of dfd.mode to valid 

        else 

              Set the corresponding position of dfd.mode to invalid 

 

Procedure 6.2:  Consistency post-screen 

Input arguments:  

Frames_vx                    {the estimated disparity results from neighbourhood            

constraint and relaxation analysis }   

Results: 

Frames_vx                    {mark the untrackable disparity results} 

Functions: 

get_residue            {get the residue for the searching position using SSD criterion } 

get_residue_th        { get the residue threshold of the block }  

 

For each valid feature block ( jiB , ) 

        For each valid neighbouring block  ( lkB , )      
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                  Find the minimum residue of the block ( lkB , ) around the estimated                                                                   

displacement within a certain range vibration. 

                   Accumulate the residue with weight  (score) 

                   Accumulate the threshold with weight (score_th) 

        If (score>score_th) 

                   Set the corresponding results to untrackable 

 

Procedure 6.3: Postprocess (recover the invalid depth results from its   neighborhood) 

Input arguments:  

Frames_fmv                    {integrated disparity results} 

Results: 

Frames_fmv          

 

For each disparity result (i,j) 

         If (Frames_fmv(i,j)=untraceable) 

                 Frames_fmv(i,j)=mean(the eight adjacent valid results) 

         If (Frames_fmv(i,j)=untrackable) 

                 Frames_fmv(i,j)=median(the eight adjacent valid results) 

 

 

 

 

 

 

6.4 Experiments 

1) Computer generated UII data  

The hybrid algorithm was first applied to the computer generated UII data, cg_box, to 

test for the feasibility.  Figure 6.2 shows the depth maps obtained from the hybrid 

algorithm using different feature block pre-selection threshold parameters (FBth).  To 

illustrate the effects of using feature block pre-selection and consistency post-screening 

techniques, the untraceable positions are marked in dark blue while the untrackable 

positions are marked in dark red in the depth maps.  The other parameters used are the 

same as in the previous chapter, see Table 5.4.   



Chapter 6. “Feature Block Pre-selection” and “Consistency Post-screening”  

 

 110 

 

Figure 6.2: Comparison of depth maps obtained using different feature block prescreen selection 

threshold: (a)FBth=0, (b)FBth=1, (c)FBth=2,  (d)FBth=3 

 

More untraceable positions are detected when the feature block prescreen selection 

threshold is increased.  The positions detected as untraceable correspond to the low 

intensity variation regions in the object scene, see Figure 5.11(a).  As expected, the 

detected untrackable positions appear around object borders.  In the image being 

analysed, only very small intensity variance (FBth>0) within the matching window can 

lead to correct depth estimation.  This is because the simple UII data used in the 

example is particularly designed for the matching task and no recording noise existing 

in the computer generated UII data.   

A further test was carried out on another computer generated integral image (cg_balls) 

which contains several objects at different depths and a blank background.  The UII data 

is shown in Annex, Image A.6.  Figure 6.3 shows one of the 2D viewpoint images in 

grey level coding.  The object scene contains a red ball in the middle of the scene 

followed by a golden ribbon-like object underneath.  In the upper-left part of the scene 

is a blue ball behind the recording plane.  A yellow ring is positioned the rear most.   
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Figure 6.3:  View images from cg_balls in gray level coding. 

 

Figure 6.4 shows the corresponding depth map obtained from the hybrid algorithm after 

recovering the invalid results by its neighbours.  The parameters used are listed in Table 

6.1.  Objects at different depths have been successfully detected: The red ball in the 

foreground appears as the colour orange. The golden ribbon-like object that traverses 

the scene and passes beneath the red ball is colour coded from orange through yellow to 

green.  The blue ball behind the recording plane appears in the colour light blue and the 

yellow ring in the rear-most is blue.  The background region (without pattern) is 

detected as untraceable and is represented by dark blue.  The positions of the objects can 

be clearly interpreted from the depth map given in Figure 6.4.  Continuous depth 

variation is perceivable.  For example, the depth variation of the red ball can be clearly 

appreciated from the colour coded depth map.  

 

Figure 6.4: The depth map for cg_balls 
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Table 6.1: The parameters used in obtaining Figure 6.4  

Viewpoint image numbers (N) 8 

Basic searching range (R) 6 

Block Matching window size (w)  3 

Feature block pre-selection threshold parameter (FBth) 1 

Residue threshold ( thR ) parameter  2.0 

Neighbourhood shape number (NSN) 12 

Neighbourhood weight factor 0.8 

 

 

2) Captured UII data  

After successfully applying the algorithm to computer generated integral images; a 

further test was carried out on captured photographic integral images.   Initially, the UII 

data (Lab), which contains a quite complicated object scene with multiple objects and a 

natural background of a laboratory, was considered.  Figure 6.5 compares the depth 

maps obtained from different feature block pre-selection threshold parameters (FBth) 

without using post-processing to recover the invalid results.  It is seen that increasing 

the feature block pre-selection threshold can increase the untraceable regions been 

detected.  This can lead to a good detection for the background, as shown in Figure 

6.5(e) and (f).   However, increasing of the feature block pre-selection threshold results 

in more regions within the object space becoming untraceable and the big untraceable 

region detected within object can not be properly recovered from the neighbourhood. In 

the current task, FBth =3 is chosen for a good viewing effect on the depth map, though 

there is some sacrifice of the neatness in the background.  
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(a) FBth =0     (b) FBth =1 

   

(c) FBth =2     (d) FBth =3 

  

(e) FBth =4     (f) FBth =5 

Figure 6.5: Comparison of the depth maps obtained from different feature block pre-selection 

thresholds on the captured UII data (Lab).  

 

The effect of the consistency post-screening technique can be illustrated by referring to 

Figure 6.6.  The figures compare the depth map obtained using different values of 
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residue threshold parameters ( ).  The untrackable regions are marked in dark red in the 

depth map.  With the increase of the residue threshold parameter ( ), less positions are 

detected as untrackable.  From the results, =1.3 appears to be a suitable parameter in 

this case.   

   

(a) =1.1    (b) =1.2 

   

(c) =1.3    (d) =1.5 

Figure 6.6: Comparison of the depth maps obtained from different residue threshold parameters 

on the captured UII data (Lab).  

Figure 6.7 shows the final depth map obtained from Figure 6.6(c) after the invalid 

region has been removed (large area of untraceable region was kept intact as the 

background).  Compared with previous result in Figure 5.26(c), the objects are clearly 

protrude from the screen plane and distinguished from the background. 
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Figure 6.7: The depth map obtained from the hybrid algorithm on the captured UII data (Lab)  

Figure 6.8 ~6.10 shows the final depth maps obtained from other UII data generated in 

the group (matchbox, horseman, and tank) respectively using the parameters listed in 

Table 6.2.  Obvious improvement can be found in the results, especially on the images 

that contain regions lacking in detail.  The horseman and the tank can now be easily 

recognized from the depth maps with the background marked out.  The depth variations 

within objects are perceivable.  For example, in figure 6.9, the horse is standing in a 

position with the head towards the camera, the depth increasing from the head to the 

tail.  In figure 6.10, the tank is standing on the middle of the terrain.  The picture was 

taken from the upper-front corner position of the tank.  Details of the scenes are shown 

in Figure 5.26. 

Table 6.2: The parameters used in obtaining Figure 6.7 ~6.10  

 Matchbox Horseman Tank Lab 

Viewpoint image numbers (N) 12 8 8 12 

Valid viewpoint image numbers (VN) 7 4  5 8 

Basic searching range (R) 3 4 4 4 

Basic block Matching window size (bw)  10 5 4 4 

Residue threshold ( thR ) parameter  2.0 2 1.2 1.3 

Neighbourhood shape number (NSN) 8 8 4 12 

Neighbourhood weight factor (NWF) 0.5 0.8 0.8 0.8 

Feature block pre-selection threshold 4 6 4 3 
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Figure 6.8: The depth map from captured UII data, matchbox.  

 

 
 

Figure 6.9.: The depth map from captured UII data, horseman.  

 

 

 
Figure 6.10: The depth map from captured UII data, tank 
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6.5 Summary 

Two additional techniques--- “feature block pre-selection” and “consistency post-

screening” are adopted to further improve the performance of the disparity analysis.  

Experiments have proved that the algorithm works effectively in detecting those 

positions that have difficulty in obtaining a correct match.  The conclusion from the 

experiments has shown to be beneficial in ruling out and recovering the invalid disparity 

results that exist in the disparity map.  Combined with the techniques used in previous 

chapters, an improvement can be achieved on the final depth map following the removal 

of the invalid results.  The conclusion to be drawn from the experiments is that the 

overall performance of the algorithm is improved and good depth maps can be 

generated from both the computer generated and the captured UII data.  
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Chapter 7 

Conclusions and Further Work 

7.1 Conclusions 

The present research work has approached the task of decoding the depth information 

embedded in a planar recording of a 3D-integral image. For simplicity, only UII data is 

presented and analysed but the results and approaches can be easily applied to OII data.   

The 3D integral camera system and the associated image formation and recording 

process have been presented.  The unique characteristics of the 3D-integral image data 

has been analysed and it has been shown that high correlation exists between the pixels 

at one microlens pitch distance interval.  A new way of analysis 3D integral image has 

been established through viewpoint image extraction.   

The viewpoint image extracted from the integral image is different from the traditional 

camera captured 2D image.  An integral 3D imaging system is therefore fundamentally 

different from a multi-view display system, in which multiple 2D images are taken 

using traditional cameras placed at different positions.  Similar replay results can only 

be achieved using a multi-view system when the object scene is distance ( ) from the 

optical center of the recording cameras and enough image views are taken.  
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Viewpoint image extraction enables many well-established 2D image analysis and 

processing techniques to be applied to the 3D integral image with little or no 

adjustment.   

Viewpoint image extraction explores a practical way of obtain depth information from 

the 3D integral data.  

The main theme of the work is depth extraction from UII data.  The depth equation 

which gives the mathematical relationship between object depth and the corresponding 

displacement among viewpoint images has been derived through geometric optical 

analysis of the integral recording. The depth extraction task has been converted to a 

disparity analysis task.  The depth map of a 3D integral image has been estimated with 

an acceptable error range using a correlation-based block matching analysis on the 

extracted viewpoint images 

To improve the ability to more accurately measure depth in 3D UII’s, a number of 

existing methodologies have been considered.  These have been modified to create 

improved and appropriate UII depth extraction algorithms.  

Initially, a multi-baseline technique has been adapted to overcome the ambiguity that 

exists in disparity analysis due to the similar patterns within the object scene.  In the 

multi-baseline technique, the matching judgment is carried out using an accumulated 

score function from all the viewpoint image pairs with different baselines.  This enables 

a robust and precise measurement to be made by taking advantage of information 

redundancy contained in multiple images of the same scene.   Modifications to an 

original multi-stereo algorithm have been carried out to accommodate the fact that the 

viewpoint image is generated in a different way from a traditional 2D image and a new 

depth equation has been formulated to account for the difference in the definition of the 

baseline between stereo and integral images.   The effectiveness of the modified multi-

baseline algorithm has been proved both mathematically and experimentally.  Accurate 

depth measurement has achieved on the testing UII data and depth maps and object 

scene reconstruction have been carried out on both computer generated and camera 

captured UII data.  
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A neighbourhood constraint and relaxation technique has been applied to further 

improve the disparity analysis performance.  This was instituted in an effort to obtain a 

good trade-off in choosing a suitable window size for matching.  The algorithm uses a 

complicated evaluation criterion in considering the spatial constraint.  The 

neighbourhood of the block is involved in the evaluation with suitable weighting 

factors and flexible disparity variance allowance.  In general, a higher weighting factor 

is assigned to a block which has the great possibility of being in the same object as the 

feature block.  Within the neighbourhood constraint and relaxation algorithm, a two-

stage voting scheme with a multi-candidate pre-screening strategy is introduced to 

improve the computation efficiency.  The multi-candidate pre-screening used in the 

first stage largely reduces the number of computations in the second stage of decision 

making.  Experiments showed an obvious improvement in the depth map generated 

from the algorithm. 

The untraceable homogenous region and untrackable region around object borders are 

two very difficult situations for disparity analysis to deal with.  To enable correct depth 

estimation within these regions “feature block pre-selection” and “consistency post-

screening” techniques have been introduced.  The untraceable region and untrackable 

region are detected either before or after the matching analysis.  The depths of these 

positions can be roughly recovered by considering the neighbouring positions using 

spatial constraints.  The large homogeneous region in the image is recognized as 

background.  The final depth maps obtained from the available UII data are visually 

satisfactory and represent a marked improvement when compared to previous results.  

In a conclusion, a new way of analyzing 3D integral imaging system through viewpoint 

image extraction has been established.  A new depth equation, which describes the 

mathematical relationship between object depth and corresponding viewpoint images 

displacement has been developed and depth maps have been generated from realistic 

II’s through disparity analysis.  The developed hybrid disparity analysis algorithm with 

the feature block pre-selection and consistency post-screen technique is not confined to 

analysis the disparity on viewpoint images. The principle can be used in analyzing the 
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disparity from a sequence of 2D images for obtaining spatial or motion information of 

objects in a scene.   

 

7.2 Further work 

1)  A number of techniques might further improve the performance of the disparity 

analysis.  For examples:  

I) Within the neighborhood constraint and relaxation algorithm described in the 

thesis, a fine weight scheme could be considered for identifying color/texture 

similarity and lead to an improved estimate of the confidence gained from the 

disparity matching result.  

II) The hybrid disparity analysis algorithm involves using several techniques with 

different parameters.  These parameters are currently manually operated 

according to the results achieved on the final depth map.  In addition, the 

performance of the depth extraction is subjectively evaluated.  It is proposed 

that automatic operating of the parameters could be achieved by setting up a 

cost function as an objective evaluation function.  With the objective evaluation 

standard, either simulated annealing or genetic algorithms maybe adapted to 

adjust the parameters to achieve improved results for the output depth map. 

III) Considering the basic matching window size used in matching, an adaptive 

window could be used by evaluating the local variation of the intensity and 

disparity (Kanade and Okutomi1990, Okutomi and Kanade 1991).  

IV) Current work has concentrated on the gray-level coded UII data, where the 

matching is carried out by comparing the intensity variations between matching 

windows.  By considering the colour information in the matching process, better 

results supposed to be achievable.  

Using a RGB color model, the matching evaluation equation can be written as:    
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2) Current work on depth extraction has concentrated on UII data involving only 1D 

space in the disparity analysis. The same approach can be used to extract the depth map 

from OII data by considering the disparity that exists in 2D space.  

3) A segmentation algorithm to divide the 3D image into different 3D object planes 

according to the different object depth should be developed to enable content-based 

image coding and content-based interactive manipulation for Virtual Studios.     

A proposed 3D II decomposing scheme is given in figure 8.1.  Along the red arrow, the 

3D II which contains multiple objects can be decomposed into several 3D II plane (3D 

II P1 & 3D II P2), each 3D II plane only contains one object in a particular depth.  

Therefore, each object can be manipulated separately according to the requirement.  For 

example, different objects from several 3D II either computer generated or 

photographically captured can be combined or removed flexibly in a virtual studio. 

Along the green arrow, each 3D II plane can be further decomposed into sub-viewpoint 

images (SVI).  Each sub-viewpoint image is a 2D parallel recording of a particular 

object.    With the depth information obtained for each object plane, each 3D II plane 

could be coded as one sub-viewpoint image plus the corresponding depth coding for the 

plane.  Hence, an efficient compression scheme can be achieved for the content-based 

coding scheme.  In the proposed content-based coding scheme, each 3D II is now 

represented by a number of 2D images with different objects, this will enable easy 

content-based image retrieval which is essential in searching and retrieval from huge 

images files.  
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Figure 7.1: The proposed 3D II decomposing model  

(For illustration, assume only two objects exist in the scene) 
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Appendix: The Test Integral Image data  

 

The intensity distributions presented in this appendix are those which have been used in 

generated depth map described in this thesis.  They have been reproduced at the correct 

scale for three dimensional display use the lenticular sheets provided.  The appropriate 

lenticular sheet for each intensity distribution is given in its caption.  

  

 

 

Image A.1:  Horseman (600um) 
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Image A.2:  Matchbox (600um) 

 

 

Image A.3: Tank (600um) 
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Image A.4: Lab (600um) 
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Image A.5:  cg_box (600um) 

 

 

 

 

 

Image A.6:  cg_balls (600um) 
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