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Summary  

Central to the organization of behavior is the ability to predict the values of 

outcomes to guide choices. The accuracy of such predictions is honed by a 

teaching signal that indicates how incorrect a prediction was (‘reward 

prediction error’, RPE). In several reinforcement learning contexts such as 

Pavlovian conditioning and decisions guided by reward history, this RPE 

signal is provided by midbrain dopamine neurons. In many situations, 

however, the stimuli predictive of outcomes are perceptually ambiguous. 

Perceptual uncertainty is known to influences choices, but it has been unclear 

whether or how dopamine neurons factor it into their teaching signal. To cope 

with uncertainty, we extended a reinforcement learning model with a belief 

state about the perceptually ambiguous stimulus; this model generates an 

estimate of the probability of choice correctness, termed decision confidence. 

We show that dopamine responses in monkeys performing a perceptually 

ambiguous decision task comply with the model’s predictions. Consequently, 

dopamine responses did not simply reflect a stimulus’ average expected 

reward value, but were predictive of the trial-to-trial fluctuations in perceptual 

accuracy. These confidence-dependent dopamine responses emerged prior to 

monkeys’ choice initiation raising the possibility that dopamine impacts 

impeding decisions, in addition to encoding a post-decision teaching signal. 

Finally, by manipulating reward size, we found that dopamine neurons reflect 

both the upcoming reward size and the confidence in achieving it. Together, 

our results show that dopamine responses convey teaching signals that are 

also appropriate for perceptual decisions. 
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Introduction 

In the struggle of life animals survive by following a simple dictum: win big and win 

often [1]. Finding bigger wins (e.g. more food reward) and more likely wins is 

particularly challenging when these are not available in their nearby environment. In 

these situations a process of trial and error is required to selectively reinforce the 

most successful actions. Inspired by the study of animal behavior, a machine 

learning approach called reinforcement learning provides a rigorous framework to 

understand how to select winning behaviors. The key to reinforcement learning is 

adjusting the expected reward values associated with each behavior based on the 

outcomes of one’s actions. These adjustments to reward values are based on the 

discrepancy between the received and predicted value, referred to as the reward 

prediction error [2]. There is a great deal understood about the neural mechanisms 

underlying reinforcement learning and it is well established that midbrain dopamine 

neurons broadcast reward prediction error signals [3-6]. Here we address whether 

dopamine neurons provide appropriate prediction error signals when there is 

ambiguity in the cues that predict rewards. 

Computing reward prediction error, by definition, requires predicting the value of 

impending outcomes. Such value prediction relies on different sources of information 

and correspondingly distinct processes as dictated by the behavioral context. In one 

context, distinct, unambiguous cues that predict different reward outcomes are used 

to guide decisions. Because there is no uncertainty in identifying the cues, the 

accuracy of outcome predictions is limited instead by potentially complex, 

probabilistic reward payoff contingencies. Thus the expected value of each decision 

can be estimated based on the experienced outcomes associated with the cues. 

These estimates can be produced by classic reinforcement learning algorithms [2]. In 

the context of ambiguous stimuli requiring perceptual decisions, animals face an 

additional challenge, because reward history alone can only provide an inaccurate 

estimate of upcoming outcome value. Rather, estimating the value of the choice 

requires an evaluation of the immediate percept and the decision process to 

compute the probability that the choice will be correct [7-9]. Thus, reward history-

guided and perceptual decisions, despite having fundamental similarities, differ in the 

computations required for reward prediction and hence prediction error estimation.  

The phasic activity of dopamine neurons has been the subject of many studies, a 

few employing choice behaviors and many using simple Pavlovian conditioning tasks 

[10, 11]. The results of these studies can be chiefly summarized as showing that 

dopamine responses encode prediction error, consistent with the temporal difference 

reinforcement learning (TDRL) algorithm [3-6, 12-23]. In contrast to this large body of 

literature characterizing how reward history determines dopamine responses, 

dopamine neurons have been rarely studied in perceptual decision tasks [24, 25]. 

Observations from these studies revealed that dopamine neurons exhibit temporally-
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extended responses during the perceptual choice and that they can reflect subjective 

sensory experiences, rather than physical stimulus intensity [24, 25].  

To understand dopamine neuron responses in perceptual decision making, we 

constructed a reinforcement learning model that incorporated a belief state to infer 

the trial-by-trial probability of choice correctness, reflecting the confidence in the 

decision. We compared dopamine neuronal responses recorded during a visual 

decision task to predictions of our model. These analyses enable us to show that 

dopamine prediction errors can reflect decision confidence in addition to reward 

magnitude and these signals emerge even before the behavioral manifestation of 

choice.  

Results 

Previously, Nomoto and colleagues studied midbrain dopamine neurons in a 

perceptual decision task [24]. Here we reexamined these neuronal responses in an 

attempt to identify signatures of prediction errors based on the value of a perceptual 

decision that requires an on-line estimate of the probability of choice correctness. 

The behavioral task and monkeys’ performance have been described previously [24] 

and explained in the Supplemental Experimental Procedures. Briefly, two Japanese 

macaques performed a two-alternative forced-choice reaction time task (Figure 1A, 

see Figure S1A). In each trial, monkeys were presented with a random dot motion 

visual stimulus and were trained to move their gaze to one of two targets based on 

the direction of motion and receive juice reward for their correct choices. Choice 

difficulty was adjusted by varying the coherence of dots pseudo-randomly from trial 

to trial. Across blocks of varying lengths, one motion direction was associated with a 

large reward magnitude while the other one was associated with a small reward. 

Animals could categorize easy (high coherence) stimuli almost perfectly but were 

challenged with more difficult (low coherence) stimuli (Figure S1B). Moreover, due to 

the asymmetric reward schedule, when presented with low coherence stimuli, 

animals showed bias toward the direction associated with the larger reward (Figure 

S1B, C). 

A reinforcement learning model incorporating perceptual uncertainty 

To examine whether the activity of dopamine neurons reflect the value of a 

perceptual decision, we constructed a computational model (Figure 1A). A 

reinforcement model for our behavioral task needs to deal with the perceptual 

ambiguity inherent in the random dot stimulus as well as keep track of the history of 

rewards delivered after left and right choices. The phasic responses of dopamine 

neurons in tasks in which reward values are based on prior experience are well 

captured by a standard temporal difference reinforcement learning (TDRL) model [3, 

26]. For tasks involving noisy sensory information, variants of the TDRL based on 

partially observable Markov decision process (POMDP) have been proposed [27-30]. 

POMDPs capture the intuitive notion that under perceptual uncertainty a decision 
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maker faces an additional obstacle beyond stimulus-reward association, the need to 

make an estimate of the true state of the environment based on the current 

perceptual experience. This estimate is referred to as the ‘belief state’ [29, 30], and 

can be used to infer the probability that the choice will turn out to be correct, i.e. 

decision confidence. POMDP-based TDRL incorporates this belief into the 

computation of state values from which a choice can be made and a prediction error 

can be generated.  

Having received a motion stimulus, 𝑠𝑚, the model represents a noisy estimate of it, 

sampled from a normal distribution with constant variance and mean given by the 

true stimulus, �̂�𝑚~𝒩(𝑠𝑚, 𝜎2). In a Bayesian framework, a subject’s belief about the 

stimulus is not limited to a single estimated value but comprises a belief distribution 

over all possible values of 𝑠𝑚, given by 𝑝(𝑠𝑚|�̂�𝑚). Assuming that the subject’s prior is 

that stimuli are uniformly delivered, the belief state distribution will also be Gaussian 

with the same variance as the sensory noise distribution, and mean given by �̂�𝑚, 

�̂�𝑚: 𝑝(𝑠𝑚|�̂�𝑚) = 𝒩(�̂�𝑚, 𝜎2) (Figure 1A). The model also stores the values of taking a 

left (L) or right (R) action, given each possible state 𝑠𝑚 : 𝑄(𝑠𝑚, 𝐿) and 𝑄(𝑠𝑚, 𝑅) , 

respectively. On each trial, the value of left and right choices are computed as the 

expected values of these Q-values, given the belief state �̂�𝑚 = 𝑝(𝑠𝑚|�̂�𝑚). That is:  

𝑄�̂�𝑚
(𝐿)  = 〈𝑄(𝑠𝑚, 𝐿)〉�̂�𝑚

 and 𝑄�̂�𝑚
(𝑅)  =  〈𝑄(𝑠𝑚, 𝑅)〉�̂�𝑚

, where 〈. 〉𝑝  denotes the 

expectation operator. Thus Q-values integrate both past rewards as well as the 

currently computed belief. The choice is computed by comparing 𝑄�̂�𝑚
(𝐿)  and 

𝑄�̂�𝑚
(𝑅). When the rewards for correct choices are equal across sides, then the only 

factor contributing to the choice is the current sensory signal. However, when 

rewards are unequal then choices are biased toward the larger value side in 

proportion to their relative size. The reward expectation associated with the choice 

(i.e. decision value) is given by 𝑄�̂�𝑚
(𝑐ℎ𝑜𝑖𝑐𝑒). Upon receiving the outcome (small, 

large or no reward) the model computes the prediction error, 𝛿𝑚 , the difference 

between the received reward size and the decision value, which incorporates both 

past rewards and the subjective belief about the accuracy of the current choice. This 

prediction error is then used to update 𝑄(𝑠𝑚, 𝐿) and 𝑄(𝑠𝑚, 𝑅), which are used to make 

decisions in subsequent trials. Therefore, by employing a belief state, the POMPD-

based TDRL model can represent the trial-by-trial probability that the choice will turn 

out to be correct. Therefore, our main model introduces a case in which reward 

predictions (and hence prediction errors) are computed based on the same state 

inference process used by the decision making system.  

The alternative model reflects a scenario in which dopamine neurons do not have 

access to perceptual uncertainty contributing to the current choice. Instead, 

dopamine neurons’ value predictions and prediction error computations are informed 

by an independent sensory stream (see Figure S2A and Experimental Procedures). 

By comparing these two models, we identified several distinct features of prediction 

error signals computed solely based on reward history from those that additionally 
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have access to the perceptual uncertainty underlying the choice process. 

We refer to the prediction errors of the first model as decision value prediction errors 

(DPE), because these incorporate information about the current decision process. 

This is in contrast to prediction errors produced by the alternative model, which we 

refer to as the Markov Decision Process MDP prediction error (MDP-PE) that does 

not have direct access to the sensory evidence underling choice computation.  

To test the novel features of prediction errors in our belief state-dependent TDRL 

model, we wanted to isolate the contribution of the belief computation by first 

considering only large-reward trials (i.e. trials in which the model chose the side with 

the large reward). Following training, the model with the belief state produces three 

task-related prediction error responses (Figure 1B, top panel). First, there is a 

prediction error evoked by the fixation cue, the earliest predictor of a potential 

reward. This signal is uniform across all trial types and is proportional to the average 

value of a trial. Second, the model generates another prediction error when the 

stimulus is presented. This signal encodes the difference between the value of the 

current decision and the average value of a trial (indicated by the fixation cue) and 

can thus take on positive or negatives values. Finally, the model generates a 

prediction error at the moment of feedback signaling the deviation between the 

actual and the predicted outcome, i.e. the decision value at the stimulus time. The 

alternative TDRL model also generates three task-related prediction errors (Figure 

1B, bottom panel). Similar to the TDRL model with the belief state, prediction errors 

evoked by the fixation cue are uniform across trials. However, the prediction errors to 

stimuli and feedback are different from those generated by the alternative model in 

several ways (Figure 1B, cf. Figure 1C-E with Figure 1F-H).  

First, prediction errors generated by TDRL model with the belief state are distinct for 

correct and error outcomes (Figure 1C, D). At the time of the stimulus and outcome, 

prediction errors of the model with belief state reflect both stimulus difficulty as well 

as the upcoming outcome, thus qualitatively differing from those generated by the 

alternative model, which only reflect stimulus difficulty (Figure 1F, G). Second, the 

magnitude of prediction error at the time of the stimulus is predictive of decision 

accuracy (Figure 1E and H, see Figure S2C); decisions in trials with high prediction 

errors have greater accuracy for the same stimulus difficulty (Figure 1E), in sharp 

contrast with the alternative model (Figure 1H).  

Next we sought to clarify the critical features of the belief-state model that lead to 

these distinct predictions. For optimal decision making, keeping track of the full belief 

distribution, 𝑝(𝑠𝑚|�̂�𝑚), is necessary in general [31]. However, in a two alternative 

choice task with binary feedback (reward or no reward), after a decision is made, the 

relevant features of belief state distribution can be summarized as a confidence 

statistic. Decision confidence, in a statistical sense, is defined as the probability that 

the chosen action turns out to be the correct action, given the sensory evidence. This 
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can be formalized as 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐ℎ𝑜𝑖𝑐𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡) , where percept, the internal 

representation of the stimulus, is specified by the belief state. In our model, this 

quantity can be determined by computing the probability that the correct action 

corresponding to different stimulus states is the same as the chosen action (see 

Experimental Procedure). When computed for different stimulus difficulties and 

plotted separately for correct and incorrect trials, the pattern of computed 

𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐ℎ𝑜𝑖𝑐𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡) closely resembled the prediction error pattern of our 

belief-based TDRL model (Figure 2A, cf. Figure 1C-D). This indicates that the 

prediction errors generated by the model with a belief state are mathematically 

equivalent to decision confidence. Note that keeping track of the entire belief 

distribution, while important for optimal behavior in non-stationary environments, is 

not necessary for our behavioral task. Because of the stationarity typical of 

laboratory decision tasks, a reduced version of our model that uses the mean of the 

belief state to assign a single state to the motion stimulus, without keeping track of 

the full distribution could also account for our data (see Figure S2B and Experimental 

Procedure). In summary, when the model incorporates information about the current 

decision process, after learning, it contains the knowledge about the relationship 

between quality of internal evidence and the expected outcome of the decision, in 

other words, decision confidence. 

The signature predictions of the TDRL model with the belief state (Figure 1C) can be 

intuitively understood using a signal detection theory inspired approach to decision 

confidence. Here, confidence reflects the distance between the internal 

representation of the stimulus (percept), and decision boundary, 𝑏, or more precisely 

confidence is a calibrated function of this distance, 𝑐 = 𝑓𝑐|𝑝𝑒𝑟𝑐𝑒𝑝𝑡 − 𝑏|, as shown 

previously [32]. Figure 2B illustrates how the stimulus and boundary configurations 

that could lead to a given choice offer an intuition behind model predictions. For 

correct choices, distance between stimulus distribution and the boundary increases 

as the stimulus becomes easier. For error choices, which happen when a stimulus is 

perceived to be on the wrong side of the boundary, the distance between stimulus 

sample and boundary tends to be smaller for easy stimuli because the overlapping 

region of the stimulus distribution is smaller. Thus, although errors are less frequent 

for easy stimuli, when they occur, the distance from the stimulus sample to the 

boundary is small, and hence confidence is low. 

Responses of dopamine neurons reflect decision confidence 

Next we analyzed the activity of 75 dopamine neurons recorded while monkeys 

performed the perceptual decision task (Supplemental Experimental Procedures) 

[24]. We first limited our analysis to trials in which animals chose the large-reward 

side, which enabled us to isolate the contribution of the perceptual decision process 

independent of reward size. The responses of these neurons closely matched the 

prediction errors produced by our model with a belief state. Figure 3A and B show 

responses of an example dopamine neuron and neuronal population aligned to the 
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stimulus and feedback tone (see Figure S3A-C for responses to the fixation cue), 

and separated based on the trial outcome. After stimulus onset, the early responses 

(until ~200 ms) were uniform, and only later components (~200-500ms) reflected 

stimulus coherence [24]. These later responses increased with stimulus coherence 

for correct choices (Linear regression on single neurons, 67/75 positive and 5/75 

negative slope, P < 0.01, 3/75 not significant) and decreased for error choices 

(Linear regression on single neurons: 33/75 with negative and 5/75 positive slope, P 

< 0.01, 37/75 not significant), consistent with the DPEs of the model with belief state 

(cf. Figure 1C with Figure 3C and D). Note that analyzing dopamine responses using 

a longer temporal window (60-600 ms after the stimulus onset) displayed very similar 

response patterns (Figure S3D). Responses to the feedback tone also showed 

graded sensitivity to both the stimulus coherence and the animal’s choice similar to 

the DPE signals (cf. Figure 1D with Figure 3C and D; Linear regression on single 

neurons for correct trials: 53/75 with positive, 8/75 with negative slope, P < 0.01, 

14/75 not significant; Linear regression on single neurons for error trials: 27/75 with 

negative, 14/75 with positive slope, P < 0.01, 34/75 not significant). To further 

quantify when this choice outcome-selectivity (difference between correct and error 

trials) arose in individual neurons, we used receiver operating characteristic (ROC) 

analysis and computed area under ROC curve (AUC) in sliding time windows 

(Experimental Procedures). Figure 3B shows that the majority of neurons showed 

outcome-selective responses to the stimulus and feedback (61/75 and 66/75 

neurons, for responses to the stimulus and feedback tone, respectively, permutation 

test on sliding ROCs, P < 0.001). These results suggest that during perceptual 

decisions, dopamine responses do not simply reflect the average value of the 

perceptually ambiguous stimulus but are also predictive of the trial-to-trial 

fluctuations in decision outcome.  

Confidence-dependent dopamine responses arise prior to observed choice 

We next considered the time course of choice outcome-selectivity in relation to 

saccade initiation, which is the earliest observable measure of choice commitment 

(Figure 4A and B). We found that the difference in dopamine responses between 

correct and error choices emerged considerably before action initiation (Figure 4A, 

Mann-Whitney U test on responses during 300 ms before saccade onset: 33/75 

neurons with larger pre-saccadic activity for correct compared to error trials, P < 

0.05; sliding ROC analysis with permutation test: 45/75 neurons extending up to 300 

ms before the saccade onset, P < 0.001). Thus, outcome-selective dopamine 

responses begin even before the behavioral manifestation of choice commitment. 

Our model further predicts that dopamine signals should be predictive of choice 

accuracy (Figure 1E and H, see Figure S2C). We found that the graded levels of pre-

choice dopamine responses (during the 300 ms before saccade onset) predicted the 

accuracy of monkeys (Figure 4C, Linear regression on single neurons: 58/75 with 

positive and 1/75 with negative slope, P < 0.01, 16/75 not significant). Moreover, this 
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predictive property of responses should go beyond what can be inferred from 

stimulus difficulty alone, such that trials with larger prediction errors should have 

increased accuracy for the same stimulus difficulty (Figure 1E). To test this, we 

separated trials based on the rate of the pre-choice dopamine activity (below versus 

above 75 percentile) and found that monkeys’ psychometric slopes were significantly 

greater when dopamine activity was high (Figure 4D, Mann-Whitney U test on 

session-by-session slopes of the psychometric functions: Monkey L: p = 1.99 X 10-6, 

Monkey K: p = 0.002; Mann-Whitney U test on individual data points, p < 0.05 in both 

monkeys). We next considered the possibility that this difference in performance is 

due to different durations of sensory evidence integration. There was no difference in 

reaction times for a given stimulus difficulty for high and low pre-choice dopamine 

activity (Figure S4A, p > 0.1; Mann-Whitney U test) and the difference in 

psychometric slopes (Figure 4D) held even when we only considered high or low 

reaction times (median split, p < 0.01 in both monkeys). These analyses exclude the 

possibility that dopamine firing simply indexes reaction times and thus the accuracy 

differences observed are a direct consequence of differential sensory evidence 

integration. In contrast to this choice-predictive phasic dopamine activity, separating 

trials based on the pre-stimulus tonic activity or phasic activity to the fixation cue did 

not reveal correlations with perceptual accuracy (P > 0.1 in both monkeys, Mann-

Whitney U test, Figure S4B-C). Theoretical accounts as well as pharmacological 

studies in humans suggested that the tonic levels of dopamine correlate with factors 

such as average reward rate that reflect response vigor ([33, 34], but see [35] for 

pre-trial dopamine action potentials). In our data the tonic firing of dopamine neurons 

before trial initiation does not correlate with decision accuracy. 

Dopamine responses integrate decision confidence and reward size  

Until now, we focused on the large-reward side trials to isolate the contribution of the 

perceptual decision process to prediction error signals. Next, we investigated how 

the neuronal representation of decision confidence interacts with reward size. 

Therefore, we evaluated our model predictions after including both small- and large-

reward trials (Experimental Procedures), and similarly, examined neuronal 

responses in all trials irrespective of the reward size. DPEs computed by the TDRL 

model with the belief state jointly reflected confidence estimates and expected 

reward size (Figure 5A). When rewards associated with left and right choices differ, 

𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚, 𝑅) are updated to reflect these rewards whereas the belief state, 

𝑝(�̂�𝑚|𝑠𝑚), continues to reflect the trial-by-trial probability that sensory categorization 

will turn out to be correct. Because decision value represents the product of these 

variables, it jointly reflects reward size as well as the confidence in obtaining it. 

Therefore, DPEs should reflect both reward and confidence predictions. To test this 

directly we asked whether the population of dopamine neurons that showed 

confidence-dependent responses (61/75 neurons quantified with the sliding ROC 

analysis, Figure 3B), do so mainly irrespective of the expected reward size. We 

separated dopamine responses to the stimulus and feedback tone based on the 
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saccade direction (i.e. towards the side associated with small or large reward) and 

trial outcome (error or correct). The population neuronal responses were modulated 

by both decision confidence and reward size, resembling the DPE predictions (cf. 

Figure 5A and B) and showed marked differences from the prediction of a 

conventional TDRL model (Figure S5).  

Next we sought to isolate the effect of decision confidence on dopamine responses 

irrespective of reward size. Therefore, we quantified the differences in responses 

between correct and errors trials by computing the area under the ROC curve (AUC). 

Confidence encoding predicts that the difference between cue-driven correct and 

error response increases with increasing stimulus coherence (Figure 5A), and hence 

the AUC measure should capture this trend [32]. Indeed, at the time of stimulus, 

AUC measures for both small and large reward conditions showed a significant 

positive relation with stimulus coherence (Figure 5C; linear regression of population 

AUC onto stimulus coherence: P < 0.001 for both small and large reward conditions). 

Similarly, at the time of feedback, AUCs for both reward conditions showed a 

significant inverse relation with stimulus coherence (Linear regression of population 

AUC onto stimulus coherence: P < 0.001 for both small and large reward conditions). 

Thus, for both small and large reward conditions, dopamine responses showed 

stronger outcome sensitivity (larger AUC) as stimulus coherence increased.  

Finally, we examined the extent to which stimulus-driven responses reflected both 

decision confidence and reward size for each neuron. To quantify confidence and 

reward encoding independently, we compared the difference between responses for 

correct vs. error trials and for large vs. small reward trials using ROC analysis 

(Figure 5D, left panels). The majority of neurons encoded both decision confidence 

as well as upcoming reward size with similar strength (Figure 5D, right panel, ROC 

analysis with permutation test in 39/75 neurons, P < 0.01), while a fraction of 

neurons reflected only one variable reliably (9/75 outcome selective only, 22/75 

reward size selective only, ROC analysis with permutation test, P < 0.01; for the 

sake of comparison a fixed time window, 220-500 ms, was used after the stimulus 

although the time course of encoding across neurons is variable, Figure 3B, 4B). 

Interestingly, neurons which only showed outcome selectively (9/75 neurons) did so 

while monkeys showed clear behavioral sensitivity to reward size manipulation in 

these sessions (P < 0.01, Mann-Whitney U test on estimated psychometric bias). 

Together, these analyses indicate that dopamine neurons compute prediction errors 

by taking into account both the expected reward size as well as the subjective belief 

about the correctness of a perceptual choice. 

Discussion 

Taken together our analyses reveal a close correspondence between the phasic 

activity of dopamine neurons during a perceptual decision task and a reinforcement 

learning model extended with a belief state. In Bayesian decision theory belief states 

serve as estimates of the uncertain true states [29]. Specifically, in our model the 
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role of the belief state is to represent the uncertainty arising from a perceptually 

ambiguous stimulus and enables a prediction about the probability that the stimulus 

categorization will be correct. In our decision task, this state inference process is 

equivalent to a computation of statistical decision confidence [9], as our analyses 

revealed (Figure 2a). In fact, the distinctive signatures of our belief-state-dependent 

TDRL model (Figure 1C-E, see Figure S2C), that are qualitatively different from a 

TDRL without belief-state (Figure 1F-H), are precisely those that have been used to 

identify decision confidence in the orbitofrontal and pulvinar neuronal responses as 

well as rodent and human confidence-reporting behavior [8, 32, 36, 37]. These 

similarities support the hypothesis that dopamine prediction error signals incorporate 

estimates of decision confidence during perceptual decision making. We emphasize 

that in our task monkeys were not trained to report their decision confidence, thus 

our results do not imply a neuronal correlate of confidence reporting behavior but 

rather reveal the neuronal representation of a signal that is consistent with the 

computation of decision confidence. In other words, we use the term confidence in a 

statistical sense, i.e. the probability that a choice is correct given the evidence [9, 

31], and show that an RL model that reflects this computation accounts for dopamine 

responses under perceptual uncertainty.  

Dopaminergic integration of decision confidence and reward value signals 

Our perceptual decision task with an asymmetric reward schedule allowed us to 

dissociate two information sources for computing expected rewards and prediction 

errors: trial-by-trial estimates of reward probability and the history-dependent 

estimates of reward size. Thus, while our findings are fully consistent with the notion 

that dopamine responses reflect reward expectation, they reveal how reward 

expectations are formed based on uncertain sensory evidence. From this standpoint, 

our results agree with previous findings that dopamine responses integrate across all 

relevant reward dimensions to encode the subjective expected value of future 

rewards [21].  

A previous study, using a vibrotactile detection task, showed that dopamine 

responses can vary with perceptual reports rather than stimulus physical parameters 

[25]. Dopamine responses for correct detection trials increased with stimulus 

intensity but not for missed stimuli, suggesting that perceptual uncertainty might 

influence dopamine response. However, that study did not test the relationship 

between choice accuracy and dopamine activity, thus the relationship of those data 

to prediction errors requiring belief state computation remain unclear. In addition, in 

that study choice reports were delayed, unlike in our reaction time task that enabled 

us to observe pre-choice responses that were predictive of performance. Thus, 

without taking a computational approach, it remained unclear what type of 

computations might underlie those observations and also how they could be related 

to dopamine prediction error responses observed in reward history-guided tasks. 

The asymmetric reward schedule in the task allowed us to examine dopamine 
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responses in relation to the computations underlying confidence and demonstrate 

that dopamine neurons perform confidence estimation simultaneously with reward 

size-dependent prediction error signaling. We suggest that dopamine responses in 

the vibrotactile detection task [25] can also be explained by our computational 

framework incorporating belief states, given that correct detection responses 

increase with increasing confidence in the sensory percept [38].   

In another related study, Matsumoto and Takada [39] explored dopamine neuronal 

responses in a delayed match-to-sample visual search task and suggested that they 

reflected the monkey’s subjective judgment of success. Examining these neuronal 

responses in light of a model that estimates confidence in visual search success 

might reveal signatures of confidence coding in that study as well. 

A unified framework for understanding dopamine in perceptual and reward 

history-guided tasks 

From a computational perspective, it is straightforward to see that computing 

decision confidence is necessary for estimating the trial-by-trial value of a perceptual 

decision, which can be combined with reinforcement-based expected reward value 

for computing prediction errors. Therefore, our results are a natural extension of the 

well-established framework according to which dopamine neurons carry reward 

prediction signals. Reward prediction errors have been mostly studied in reward 

history-guided tasks where past outcomes are sufficient to compute the value of 

upcoming reward [3-6, 12, 14-16, 18-22]. Our findings thus provide an instance of a 

computational framework in which both reward history-guided and perceptual 

choices can be studied. Consistent with predictions of this framework, dopamine 

prediction errors reflected both past rewards as well as immediate belief about the 

outcome of sensory categorization, supporting the view that these neurons access a 

wider range of computations than previously thought [15, 16, 39, 40]. From this 

perspective, these results can serve as a bridge between reward history-guided and 

perceptually-guided decision making, which while both integral components of 

decisions in natural settings, have been mostly studied in isolation (but see [41-44]). 

We note that explaining our neuronal responses does not require incorporating an 

explicit confidence variable into the RL framework. RL models without any explicit 

confidence computation, such as our POMDP model implementations, could account 

for the observed neuronal responses, as long as prediction errors are computed in 

relation to value predictions that are based on the sensory evidence used for the 

choice computation. While such models do not incorporate any explicit confidence 

variable, their prediction errors reflect the 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑐ℎ𝑜𝑖𝑐𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡), i.e. decision 

confidence, as our simulation indicated (Figure 2A, see Experimental Procedure). 

Another related issue is that, while keeping track of the full belief state is necessary 

for efficient choice computation and updating in a non-stationary environment, 

keeping track of the first moment of the belief state is sufficient for explaining our 

neuronal data (Figure S2B). Nevertheless, we favor the POMDP model that includes 
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a full belief state for several reasons. Optimal processing in the face of perceptual 

uncertainty requires that sensory stimuli should be probabilistically represented. By 

representing the stimulus as a distribution, POMDPs offer the normative framework 

to cope with such uncertainty. This comes at the cost of only one additional variable, 

the belief state, but no additional parameters. As a consequence, this framework can 

be broadly applied. For instance, beliefs might have a non-Gaussian distribution, 

when Bayesian inference is used and the belief state is influenced by not only the 

external stimulus, but also by the statistics of the environment as reflected the 

Bayesian prior. 

A previous modeling study suggested a neuronal network implementation of POMDP 

framework, focusing primarily on the computational reasons behind the extended 

time course of dopamine, as well as prediction errors in perceptual decision tasks of 

the type described here [30]. The model we developed is based on fundamentally 

similar ideas from machine learning for introducing perceptual ambiguity into the RL 

framework. Our approach was to generate several diagnostic predictions of the 

model, those that contrast it with a TDRL without a belief state, and test them against 

the activity of dopamine neurons. This approach enabled us to demonstrate that the 

main computational requirement necessary to account for dopamine responses 

under perceptual uncertainty is decision confidence. Statistical confidence explains 

the relation between the dopamine prediction errors, stimulus coherence and 

animal’s choice (Figure 3). This analysis also provides evidence against the 

interpretation that the difference in dopamine activity in correct/error trials reflects an 

attentional process, rather than decision confidence, because trials with different 

dopamine responses lead to different slopes of the psychometric function but 

comparable lapse rates (Figure 4). Finally, our model identifies the contribution of 

both reward size and confidence in shaping dopamine responses (Figure 5). As 

mentioned, the diagnostic predictions of our model do not depend on the specific 

way confidence is computed: confidence estimates based on the belief state of a 

POMDP or explicit confidence signals generated using frameworks such as evidence 

accumulation [7] or attractor models [45], when incorporated into a RL model, would 

yield similar predictions (Figure 2). Confidence models based on evidence 

accumulation have proven useful for explaining how neuronal responses in parietal 

cortex evolve over time to represent decision confidence [7]. In our implementation, 

we assumed that confidence estimation occurs as a discrete processing step, which 

appears consistent with the transient nature of dopamine responses observed here. 

Nevertheless it will be interesting to evaluate models where confidence estimation 

unfolds across time [7]. 

Implications for decision making 

It is generally believed that dopamine neurons do not have a direct role in computing 

immediate decisions [14]. Rather, decisions are generated elsewhere in the brain 

and conveyed to the dopamine system, where a prediction error is computed in 
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relation to an already prepared or completed choice, which helps guide future 

choices. The fact that dopamine responses reflect both reward size and subjective 

belief in receiving the reward suggest that they can act as a teaching signal for a 

both reward history-guided and perceptual decisions[46]. Moreover, dopamine 

responses begin to predict the decision outcome rapidly (~200 ms) after the stimulus 

onset, and well before (~200 ms) the earliest behavioral manifestation of choice 

commitment (i.e. saccade initiation). This time course is comparable to choice and 

confidence-dependent activity that appears around 200-300 ms after stimulus onset 

during random dots task in monkeys’ parietal cortex and dorsal pulvinar [7, 36], 

suggesting that the observed dopamine signals might be received from other brain 

regions involved in the perceptual choice process such as the caudate nucleus [47]. 

This time course suggests that prediction error signals reflect the evolving decision 

process. Given the dense dopaminergic projections to brain regions involved in 

decision making [48], the early dopamine prediction errors might even be able to 

influence the current choice computation, for instance by modulating the gain of 

evidence accumulation [49]. Alternatively, pre-decision dopamine responses do not 

impact choices directly but other aspects of immediate behavior such as the 

willingness to complete the trial [50]. In conclusion, our results formally extend the 

prediction error coding framework of dopamine neurons into the perceptual decision 

making domain and suggest that dopamine broadcasts prior to choice commitment 

may influence the on-going decision process. 
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Experimental Procedures 

Animal care and surgical procedures were in accordance with the U.S. National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and with 

Tamagawa University guidelines for the use and care of laboratory animals in 

research. 

Temporal difference reinforcement learning models 

We used two variants of the temporal difference reinforcement learning (TDRL) 

model to simulate dopamine neuronal activity: a TDRL model incorporating a belief 

state that deals with the uncertainty it faces when performing the perceptual decision 

making and a TDRL model that did not have access to this belief state (‘alternative 

TDRL’). The basic features of the model implementation that were common among 

the model variants are described in the Supplemental Experimental Procedure.  

We simulated the sequence of behavioral events in each trial as states, 𝑠. For our 

task, these states are ‘initial, ‘fixation cue’, ‘motion stimulus’, ‘feedback and ‘end’, 

denoted as 𝑠𝑖 , 𝑠𝑓𝑐 , 𝑠𝑚 , 𝑠𝑓𝑏 , 𝑠𝑒 .  In each state, the agent performs an action, 𝑎 , 

observes an outcome and transits to the next state. 

TDRL model with the belief state 

Here we use a partially observable Markov decision processes (POMDP) formalism 

to deal with the uncertainty inherent in the random dot stimulus. Apart from ‘motion 

stimulus’ state, all other states are defined as fully observable and thus the same as 

in the previous section.  

For the case of ‘motion stimulus’ state, due to the noisy nature of the stimulus, the 

agent has an imperfect knowledge about the true underlying state and represents it 

in a probabilistic manner. Motion stimuli ranged from -50% to 50% (50% of dots 

moving to left and right, respectively). We used a discrete form of these stimuli (21 

different levels of motion coherence), i.e. -50%, -45% …, 0, …, 45%, 50%, 

corresponding to motion stimulus states 𝑠𝑚. We assume that due to the uncertainty 

inherent in the random dot stimulus, in each trial, subject does not directly observe 

𝑠𝑚 but an internal noisy estimate of it which, in each trial, is sampled from a normal 

distribution with constant variance 𝜎2 around the true stimulus; that is �̂�𝑚~𝒩(𝑠𝑚, 𝜎2). 

A subject’s belief about the stimulus comprises a belief distribution over all possible 

values of 𝑠𝑚; this distribution can be denoted by 𝑝(𝑠𝑚|�̂�𝑚). In our implementation, we 

discretized this belief distribution �̂�𝑚: 𝑝(𝑠𝑚|�̂�𝑚) = 𝒩(�̂�𝑚, 𝜎2)  and truncated it to 

values between – 50% and 50%. 

The Q-values of actions left and right for each state 𝑠𝑚 are denoted as 𝑄(𝑠𝑚, 𝐿) and 

𝑄(𝑠𝑚, 𝑅), respectively. For each motion coherence state ranging from -50% to 50%, 

the model learns and updates the Q-values of choosing left or right.  
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Under this setting, given a belief 𝑝(𝑠𝑚|�̂�𝑚), the net value of actions L and R are 

computable as the expected values of 𝑄(𝑠𝑚, 𝐿) and  𝑄(𝑠𝑚, 𝑅)  under the belief 

state,  �̂�𝑚: 𝑝(𝑠𝑚|�̂�𝑚): 

𝑄�̂�𝑚
(𝐿) = 〈𝑄(𝑠𝑚, 𝐿)〉�̂�𝑚

= ∑ 𝑝(𝑠𝑚|�̂�𝑚). 𝑄(𝑠𝑚, 𝐿)

𝑠𝑚∈{−50%,..,50%}

 

𝑄�̂�𝑚
(𝑅) = 〈𝑄(𝑠𝑚, 𝑅)〉�̂�𝑚

= ∑ 𝑝(𝑠𝑚|�̂�𝑚). 𝑄(𝑠𝑚, 𝑅)

𝑠𝑚∈{−50%,..,50%}

 

                  Eq. 1  

For action selection, we assume that the animal just chooses the action that has the 

highest value. That is 𝑎 = argmax
𝐴

𝑄�̂�𝑚
(𝐴). 

Upon observing the stimulus and selecting a choice, the prediction error is computed 

as: 

𝛿𝑚 = 𝑄�̂�𝑚
(𝑎) − 𝑉𝑓𝑐                                                                           Eq. 2 

where 𝑉𝑓𝑐 is the expected value of reward during fixation cue presentation: 

𝑉𝑓𝑐 =
𝑄�̂�𝑚

(𝐿) + 𝑄�̂�𝑚
(𝑅)

2
 

                             Eq. 3 

When the agent occupies the fixation cue state, the belief 𝑝(𝑠𝑚|�̂�𝑚) is a uniform 

distribution. 

After performing action 𝑎 and receiving the reward feedback 𝑅, the prediction error is 

𝛿𝑓𝑏 = 𝑅 − 𝑄�̂�𝑚
(𝑎)                                              Eq. 4 

Based on this prediction error the Q-value of action 𝑎 will be updated as: 

𝑄(𝑠𝑚, 𝑎) ← 𝑄(𝑠𝑚, 𝑎) + 𝛼. 𝛿𝑓𝑏 . 𝑝(𝑠𝑚|�̂�𝑚), ∀𝑠𝑚 ∈ {−0.50%, . . ,0.50%};                Eq. 5                                                                                        

where 𝛼 is the learning rate.  

Following learning, the prediction errors at different states of the task exhibit the 

patterns plotted in Figure 1B-E. 

 

Model prediction errors and decision confidence 

We now show by simulation that, in the context of our task, the probability that the 

choice turns out to be correct given the sensory evidence, i.e. the decision 

confidence, is qualitatively equivalent to prediction error at the motion stimulus state, 

𝛿𝑚.  

In order to compute decision confidence, 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑎, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡), we first compute, for 

each possible motion coherence, 𝑠𝑚, whether the choice 𝑎 that was made on the 
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basis of 𝑝(𝑠𝑚|�̂�𝑚) is the same as the choice that would have been made on the basis 

of 𝑠𝑚. In other words, if the choice that would have been made on the basis of 𝑠𝑚 

(i.e., by comparing 𝑄(𝑠𝑚, 𝑅)  and 𝑄(𝑠𝑚, 𝐿) ) was the same as 𝑎 , that choice is 

considered correct, and otherwise incorrect: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑎, 𝑝(𝑠𝑚|�̂�𝑚), 𝑠𝑚) = {1
𝑖𝑓 [ 𝑎 = 𝑅 𝑎𝑛𝑑 𝑄(𝑠𝑚, 𝑅) > 𝑄(𝑠𝑚, 𝐿) ]

𝑜𝑟 [ 𝑎 = 𝐿 𝑎𝑛𝑑 𝑄(𝑠𝑚, 𝑅) < 𝑄(𝑠𝑚, 𝐿) ]

0 𝑜. 𝑤.

                    Eq. 6 

Having defined choice correctness for each possible 𝑠𝑚, we define confidence as the 

expected value of choice correctness, under the belief distribution  �̂�𝑚: 𝑝(𝑠𝑚|�̂�𝑚): 

𝑝 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑎, 𝑝(𝑠𝑚|�̂�𝑚)) = 〈𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑎, 𝑝(𝑠𝑚|�̂�𝑚), 𝑠𝑚)〉�̂�𝑚
                                     Eq. 7 

where 〈. 〉𝑝 is the expectation operator under the distribution p. In other words: 

𝑝 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑎, 𝑝(𝑠𝑚|�̂�𝑚)) = ∑ 𝑝(𝑠𝑚|�̂�𝑚). 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑎, 𝑝(𝑠𝑚|�̂�𝑚), 𝑠𝑚)

𝑠𝑚∈{−50%,..,50%}

 

                  Eq. 8 

Simulation of this equation indicates that, in our TDRL model with the belief state 

prediction errors reflect the probability that the choice will turn out to be correct, and 

thus implicitly reflect decision confidence (Figure 2A). 

Note that tracking the full belief distribution, as normatively prescribed for efficient 

choice in more complex tasks requiring Bayesian updating, is not essential for our 

behavioral task. A reduced version of our POMDP model that uses the mean of the 

belief state to assign a single state, �̂�𝑚, to the motion stimulus and arrive at a choice 

by comparing 𝑄(�̂�𝑚, 𝐿)  and 𝑄(�̂�𝑚, 𝑅)  (𝑎 = argmax
𝐴

𝑄(𝐴) ) results in prediction error 

patterns similar to those of our full POMDP model (see Figure S2B).  

To isolate the effect of decision confidence on model prediction errors, in Figure 1, 

we illustrate predictions of the model only in trials for which the agent choses the 

large reward side. To investigate the effect of decision confidence and reward size, 

in Figure 5, we illustrate the predictions of the model in all trials, independent of the 

reward size. 

 

The alternative model 

The alternative model introduces a case in which the dopamine system does not 

have direct access to the sensory evidence used for the decision process. In this 

model, the decision making system assign one state, �̂�𝑚, to the motion stimulus and 

makes the choice by comparing 𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚, 𝑅) (𝑎 = argmax
𝐴

𝑄(𝐴)). Since the 

dopamine system does not have direct access to the sensory evidence used for 

choice, it assigns another state, �̂�𝑚′ , to the motion stimulus, which could be identical 

to different from the one used for choice, �̂�𝑚. The dopamine system uses the largest 
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of 𝑄(�̂�𝑚′, 𝐿) and 𝑄(�̂�𝑚′, 𝑅) for prediction error computation at the motion stimulus and 

feedback states (Figure S2A). As such, in this model, the state inference and choice 

computation are identical to the reduced POMDP (Figure S2B) but the model reflects 

the situation that the dopamine system does not have access to the sensory 

evidence used for choice. 

Figure 1, illustrates predictions of the alternative model only in large-reward trials 

and Figure S5 illustrates the predictions of the model in all trials, independent of the 

reward size. 

 

Analysis of the neuronal data 

We analyzed only the trials in which the monkey made directional choices and thus 

we excluded trials in which the monkey broke fixation before the onset of the random 

dot motion stimuli. For analyses shown in Figure 3 and 4, we only included trials in 

which animals made a saccade towards large-reward side. This enabled us to isolate 

the neuronal representation of decision confidence independent of reward size. For 

analysis shown in Figure 5, we included all trials regardless of saccade direction, 

which allowed us to examine the effect of decision confidence and reward size on 

dopamine neuronal responses. Because testing predictions of our model requires 

both correct and error trials, in all our analysis, we included both types of trials.  

All data analyses and modeling were performed using custom-made software coded 

with Matlab (MathWorks). Supplemental Experimental Procedure includes details of 

statistical analyses on neuronal responses. 
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Figure Legends 

Figure 1. Predictions of a temporal difference learning model that incorporates 

a belief state 

(A) Schematic of a TDRL model incorporating a belief state for performing the 

random dot motion discrimination task (see Experimental Procedures and Figure 

S1). Having observed a noisy readout of the motion stimulus �̂�𝑚, the model forms a 

belief, denoted by �̂�𝑚: 𝑝(𝑠𝑚|�̂�𝑚) , representing the probability distribution over all 

motion stimulus states, 𝑠𝑚 (red bars, for simplicity only six states are shown in the 

panel). The model also stores the values of taking a left or right action, given each 

possible state 𝑄(𝑠𝑚, 𝐿) and 𝑄(𝑠𝑚, 𝑅), respectively. On each trial, the value of left and 

right decisions are computed: 𝑄�̂�𝑚
(𝐿)  = 〈𝑄(�̂�𝑚, 𝐿)〉�̂�𝑚

 and 𝑄�̂�𝑚
(𝑅)  =  〈𝑄(�̂�𝑚, 𝑅)〉�̂�𝑚

. 

The choice is made by comparing 𝑄�̂�𝑚
(𝐿)  and 𝑄�̂�𝑚

(𝑅) . The reward expectation 

associated with the choice (i.e. decision value) is 𝑄�̂�𝑚
(𝑐ℎ𝑜𝑖𝑐𝑒). Upon receiving the 

outcome (small, large or no reward) the model computes the prediction error, 𝛿𝑚, the 

difference between the received reward size and the decision value. This prediction 

error, together with the belief state, is then used to update 𝑄(𝑠𝑚, 𝐿) and 𝑄(𝑠𝑚, 𝑅), 

which are used in the subsequent trials. 

(B) Schematic of prediction error function of the TDRL model with belief state (top) 

and the alternative TDRL model (bottom), as a function of stimulus difficulty and 

decision outcomes (i.e. correct or error). DPE refers to decision value prediction 

errors for the model with a belief state, while MDP-PE stands for Markov Decision 

Process prediction error of the model without belief state. Unlike the model without 

the belief state, prediction errors at the time of stimulus in the model with the belief 

state reflect the decision outcome. Note that since some stimuli predict below 

average reward rates, the resulting prediction errors at the motion stimulus state can 

be negative.  

(C-E) Properties of the TDRL model with belief state. The plots are from a model run 

with asymmetric reward sizes and in order to isolate the effect of belief on the model 

behavior, only trials with a choice toward the large-reward side are shown. Note that 

decision values depend on both belief and the reward size, hence for large-reward 

choices, DPEs take on slight positive values even for stimuli with close to zero 

coherence. See Figure S2 for additional predictions of this model. 

(C) DPEs at the time of stimulus show dependency on both stimulus coherence and 

decision outcome. These prediction errors reflect subjective belief about the choice 

correctness.  

(D) Model’s DPEs at the time of the outcome feedback. These prediction errors 

reflect the difference between the value of obtained reward and the values predicted 

at stimulus time, shown in (C). 
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(E) The model’s psychometric curves plotted separately for high and low DPEs at the 

time of stimulus (above and below 75th percentile, respectively). Trials with larger 

DPEs for the same stimulus coherence predict increased choice accuracy. 

(F-H) as in (C-E) for a TDRL model without belief state. Note that both TDRL model 

with belief state and the alternative TDRL model have qualitatively similar predictions 

when only correct trials are taken into account. Thus, for comparing the two models, 

it is essential to include both correct and error trials. See Figure S2 for schematic of 

this model. See also Figures S1 and S2. 

 

Figure 2. Prediction errors of the TDRL model with belief state reflect decision 

confidence  

(A) The pattern of estimated decision confidence. The simulation 

of 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 | 𝑐ℎ𝑜𝑖𝑐𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡)  in this model shown as a function of stimulus 

coherence separately for correct and error choices (see Experimental Procedure). 

Note the similarity of these patterns with prediction errors in the belief-state TDRL 

model (cf. the panel with Figure 1C). 

 (B) Signal detection theory-inspired intuition illustrating the model’s predictions. For 

the same external stimulus, the distance between a percept s and the decision 

boundary b differs across trials (compare s1 and s2 for the difficult stimulus example 

and s3 and s4 for the easy stimulus example) leading to different confidence 

estimates (distance between the percept s, and the boundary b), as shown in the 

middle panel. 

 

Figure 3. Dopamine responses reflect both stimulus difficulty and choice 

(A) Top panels: Raster plots of an example dopamine neuron aligned to stimulus 

onset and feedback tone onset, which indicated the trial outcome (correct or error). 

For error trials of low stimulus coherence and all correct trials, only a fraction of trials 

(randomly selected) is shown. Bottom panels: pre-stimulus time histograms (PSTHs) 

of the example neuron aligned to different task events. In the PSTHs, trials with 

different stimulus difficulties were collapsed. Horizontal gray bars indicate temporal 

windows used for analyses in (C). For illustration purposes, in all figures, we treat 

stimuli of equal coherence together, regardless of motion direction. To isolate the 

effect of decision confidence on neuronal responses, only trials in which the monkey 

made a saccade to the large-reward side were included in all panels of this figure. 

See Figure S3 for neuronal responses to the fixation cue. Unless otherwise stated, in 

all figures error bars are s.e.m. across trials or neurons (for single neuron examples 

and population, respectively). 

(B) Top panels: PSTHs of dopamine population (averaged across 75 neurons 

recorded in two monkeys) aligned to different task events. Trials with different 

stimulus difficulties were collapsed. Horizontal gray bars indicate temporal windows 
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used for analyses in (D). Bottom panels: Running area under ROC curve (AUC) for 

each neuron aligned to different events (see Experimental Procedures). The AUCs 

significantly larger than 0.5 indicate larger dopamine responses in correct trial 

compared to the error trials. For illustration, AUCs in each panel are sorted based on 

the time of the first of three consecutive significant analysis time steps (P < 0.001).  

(C) The average responses of the example dopamine neuron at the time of stimulus 

and feedback tone. These neuronal responses resembled the DPE of the TDRL 

model shown in Figure 1C and D.  

(D) The population dopamine responses at the time of stimulus and feedback tone. 

These neuronal responses resembled the DPE of the TDRL model shown in Figure 

1c and d and differed markedly from prediction errors of the alternative TDRL model 

shown in Figure 1F and G. See also Figure S3. 

 

Figure 4. Dopamine activity predicts choice accuracy prior to behavioral 

response 

(A) PSTH of an example neuron and the entire neuronal population aligned to 

saccade onset (i.e. the time in which the animal gaze left the central fixation). In the 

PSTHs, trials with different stimulus difficulties were collapsed. Horizontal gray bars 

indicate temporal windows used for analyses in B-D. Only choices towards the large-

reward size were included in all panels of this figure. 

(B) Left: Area under ROC curve (AUC) for the example neuron measured from pre-

saccade dopamine responses (during 250 ms prior to saccade initiation). At each 

stimulus coherence neuronal responses in correct and error trials were used to 

compute AUC. Right:  running AUC for all neurons aligned to the saccade onset. For 

this analysis, trials from all tested coherence levels were collapsed and running AUC 

for each neuron was measured by comparing neuronal responses in each time bin of 

correct and error trials.  

(C) Choice accuracy as a function of dopamine pre-saccade responses (measured 

for each neuron from responses during 300 ms before saccade initiation).  

(D) Animals’ psychometric curves separated based on the pre-saccade dopamine 

responses (below and above 75th percentile, respectively). See also Figure S4. 

 

Figure 5. Dopamine responses reflect both decision confidence and reward 

size. 

(A) Prediction errors of a TDRL model with belief state trained on an asymmetric 

reward schedule. Unlike Figure 1C-D, here all trials irrespective of reward size were 

included. See Figure S5 for analogous plots from a TDRL model that does not 

include a belief-state. 
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(B) Population dopamine responses at the time of stimulus and feedback tone 

separated based on the reward size condition (small/large reward) as well as 

decision outcome (error/correct). Unlike Figure 3 and 4, all trials (irrespective of 

reward size condition) were included in all panels of this figure. 

(C) Average AUCs of dopamine responses to stimulus and feedback tone for 

different reward conditions. The AUC of each individual neuron at each stimulus 

coherence level was measured by comparing neuronal responses in correct and 

error trials and were then averaged across neurons. For both small and large reward 

conditions neuronal AUCs increased at the time of stimulus (left) and decreased at 

the feedback time (right), as a function of stimulus coherence. These results 

remained statistically significant even when responses of all recorded cells are taken 

into account (Linear regression of population AUCs onto stimulus coherence; 

stimulus time: P = 0.03 and P = 0.000006, reward time: P = 0.04 and P = 0.007 for 

small and large reward conditions, respectively).  

(D) Left: PSTHs of example dopamine neuron (same neuron shown in Figure 3) 

separated based on the upcoming reward size (i.e. reward size associated with the 

saccade direction, top panel) or based on the upcoming outcome (correct/error, 

bottom panel). These responses were used to measure area under ROC curve 

shown on the right. Right: scatter plot of AUCs measured for each neuron 

quantifying reward size coding and decision confidence coding for each individual 

neuron. For each neuron, the statistical significance was estimated using 

permutation test (see Experimental Procedures). Circled point indicates the example 

neuron shown on the left panels. See also Figure S5. 

 

Supplemental Information 

Supplemental Information includes Supplemental Experimental Procedures and 5 
figures. 
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Supplemental Figures 

Figure S1. Monkeys’ decisions reflect both stimulus difficulty and reward magnitude (Related to 

Figure 1). 

(A) Monkeys’ psychometric curves separated based on the response side to which the large reward 

magnitude was assigned. Animals could categorize easy random dot motion stimuli almost perfectly and 

were challenged with more difficult stimuli. Moreover, monkeys tended to respond in the direction 

associated with the large juice reward. Dots indicate data averaged across all testing sessions. Thick lines 

represent logistic fits to the data. Both animals showed significant bias towards the side with larger 

reward (p < 0.05, in both animals, permutation test). In all panels, error bars are s.e.m. across test 

sessions. 

(B) Choice reaction time. The saccadic reaction times were z-normalized and separated based on motion 

coherence (its absolute value) and saccade direction (to the side associated with large or small reward). 

Monkeys showed faster reaction times when making saccade to the side associated with the larger reward 

(compare dashed lines with solid lines). Moreover, animals’ reaction times were modulated by stimulus 

difficulty and decision outcome (i.e. correct or error) in a manner consistent with predictions of the TDRL 

model with belief state. 

Supplemental Data



 

Figure S2. Schematic of the alternative model and the reduced POMDP model and additional predictions 

of the main TDRL model (Related to Figure 1). 

(A) In this model, the decision making system assign one state, �̂�𝑚 (shown in orange), to the motion 

stimulus and makes the choice by comparing 𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚 , 𝑅) (𝑎 = argmax
𝐴

𝑄(𝐴)). Since the 

dopamine system does not have direct access to the sensory evidence used for choice, it assigns another 

state, �̂�𝑚′ (shown in purple), to the motion stimulus, which could be identical to different from the one 

used for choice,�̂�𝑚. The larger Q-value (𝑄(�̂�𝑚′, 𝐿)or𝑄(�̂�𝑚′ , 𝑅)) is used for prediction error computation. 

The dopamine prediction error patterns of this model are shown in Figure 1F-H. 

(B) Schematic of the reduced POMDP model. This model does not include a full belief state but uses the 

mean of the belief state to assign a single state �̂�𝑚  to the motion stimulus and perform choice by 

comparing 𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚, 𝑅)(𝑎 = argmax
𝐴

𝑄(𝐴)). The prediction error patterns are similar to those 

of our full POMDP model (see Figure 1C-E). Such a reduced model could achieve what the full POMDP 

achieves in one trial, over many of trials. 

(C) Decision accuracy of the TDRL model with full belief state as a function of decision value prediction 

errors (DPEs) at the time of stimulus. 

  



 

Figure S3. Dopamine responses to the fixation cue do not predict reaction times (Related to Figure 3). 

(A) Dopamine population responses to the fixation cue. The black horizontal bar indicates the temporal 

window used for the analysis shown in (B) and (C). 

(B) Dopamine responses to the fixation cue plotted as a function of z-scored fixation reaction time. In 

each panel of the figure, the line shows single linear regression on the population responses. 

(C) Dopamine responses to the fixation spot as a function of z-scored choice reaction time.  

(D) The population dopamine responses at the time of motion stimulus measured 60-600 ms after the 

stimulus onset. 



 

Figure S4. Pre-choice dopamine responses do not predict reaction times and fixation or pre-stimulus 

dopamine responses do not predict choice accuracy (Related to Figure 4). 

(A) Animals’ saccadic reaction times separated based on the pre-saccade dopamine responses (below 

and above 75th percentile, respectively).  

(B) Choice accuracy as a function of dopamine responses to the fixation cue (below and above 75th 

percentile, respectively) computed separately for the two monkeys. 

(B) Choice accuracy as a function of dopamine pre-stimulus tonic responses (below and above 75th 

percentile, respectively) computed separately for the two monkeys. 

 



 

Figure S5. Prediction errors of the alternative TDRL model when all trials, regardless of reward size re 

included in the analysis (Related to Figure 5). 

 

 

 

 

  



Supplemental Experimental Procedures 

Temporal difference reinforcement learning models 

Here we describe the basic features of the model implementation that were common among all model 

variants. 

We simulated the sequence of behavioral events in each trial as states, 𝑠. For our task, these states are 

‘initial, ‘fixation cue’, ‘motion stimulus’, ‘feedback and ‘end’, denoted as 𝑠𝑖, 𝑠𝑓𝑐, 𝑠𝑚, 𝑠𝑓𝑏 , 𝑠𝑒 . In each 

state, the agent performs an action, 𝑎, observes an outcome and transits to the next state, 𝑠′. 

Apart from the ‘motion stimulus’ state, in which the agent learns which action (left or right) to take, in 

all other states the agent visits the subsequent state based on a pre-defined transition probability. This 

transition function indicates the probability that the agent visits the state 𝑠′ from its current state 𝑠, as  

𝑝𝑠𝑠′ = 𝑝{𝑠𝑡+1 = 𝑠′| 𝑠𝑡 = 𝑠}                          Eq. 1 

For instance, we set the probability of transition from the ‘fixation cue’ to the ‘motion stimulus’ to 0.99, 

meaning that in 99% of trials the agent visits ‘motion stimulus’ after the ‘fixation cue’ state. In the 

remaining 1% trials, after the ‘fixation cue’ the agent visits the ‘trial end’ state, resembling trials in which 

animals failed to fixate. These transition probabilities were set to reproduce animals’ highly stable 

success in fixating on the fixation cue (~99% of trials) and were kept constant across all trials of the 

model run. For our model illustrations in Figure 1,2, 5 and Figure S5, we only include trials in which the 

agent reached ‘motion stimulus’ state. 

The goal of the agent is to take actions that maximize the discounted cumulative reward, defined as: 

𝑅𝑡 =  ∑ 𝛾𝑘 ∞
𝑘=0 𝑟𝑡+𝑘+1                                                              Eq. 2  

where 𝑟𝑡 is the immediate reward the agent receives in transitioning from 𝑠𝑡−1 to 𝑠𝑡 and 𝛾 is a discount 

factor that controls the degree to which immediate rewards are preferred to rewards achieved in 

subsequent state transitions.  

When occupying state 𝑠, the state-action value, 𝑄(𝑠, 𝑎), defines the expected cumulative reward when 

the agent occupies state 𝑠 and takes action 𝑎: 

𝑄(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘+1|𝑠0 = 𝑠, 𝑎0 = 𝑎]                                                         Eq. 3              

After the transition from 𝑠𝑡 to 𝑠𝑡+1, the agent makes a comparison between the prior value prediction and 

current value estimate and computes a prediction error, defined as: 

𝛿𝑡 = 𝑟𝑡+1 +  𝛾𝑄(𝑠𝑡+1 , 𝑎𝑡+1) −  𝑄(𝑠𝑡  , 𝑎𝑡)                                                                                           Eq. 4                                                                  

The agent uses the computed prediction error to update the action value estimates, using the following 

updating rule: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼𝛿𝑡                    Eq. 5                                                                                     

where  𝛼  is the learning rate. For our simulations we set 𝛼 = 0.01  and 𝛾 = 1  (i.e. no temporal 

discounting). 

Behavioral task 

The behavioral task has been described previously in detail [S1] and is outlined here briefly. Two male 

monkeys (Japanese macaques, weighing 7-9.5 kg) were rewarded in each trial for correct discrimination 

of the motion direction of a random dot motion stimulus. We used a set of random dot motion stimuli 

with two directions (right and left), and four coherence levels (0, 10, 25, and 50% for monkey L; 0, 2.5, 

10, and 50% for monkey K). A trial started with the appearance of a fixation cue at the center of the 

monitor, followed by a dynamic random dot motion stimulus and two peripheral targets, after which the 



monkey were free to make a saccade to one of two targets to indicate its choice. The random dot motion 

stimulus disappeared as soon as the monkey made an eye movement. Monkeys kept their gaze on the 

chosen target for 0.5 s and then received different auditory feedbacks for correct and error choices. If the 

monkey chose correctly, a high pitch feedback tone (1000 Hz, 0.2 s) was delivered, followed by a juice 

reward immediately after the tone offset. When the choice was incorrect, only a low pitch feedback tone 

(400 Hz, 0.2 s) was delivered, with an additional 5 s timeout as a penalty. Error trials were repeated to 

the animal and monkeys had near perfect performance in these repeat trials. Thus, it is more accurate to 

describe error trials as having delayed reward, rather than no reward. At the zero coherence level, motion 

direction was randomly assigned as either “rightward” in half of the trials or “leftward” in the other half. 

In each block of 126-168 trials, one direction of motion was associated with a large reward (0.38 ml), 

and the other was associated with a small reward (0.16 ml). The direction-reward contingency was fixed 

throughout a given block and reversed in the subsequent block. Animals could categorize easy (high 

motion coherence) stimuli almost perfectly but were challenged by more difficult stimuli (low motion 

coherence) and showed bias toward the direction associated with the large reward (Figure S1). 

Analysis of the behavioral data 

The behavioral data have been described in detail previously [S1]. We fitted the choice data to a logistic 

function (Figure S1A). For the analysis of choice reaction time (the interval between the onset of the 

random dot motion stimulus and the time that animal’s saccade landed on one of the target) and fixation 

reaction time (the interval between the onset of the fixation cue and the time that animal’s saccade landed 

on it), we normalized each trial’s reaction time by computing session-by-session z-scored reaction times 

(Figure S1B and Figure S3B and C).  

Localization and recording of dopamine neurons 

Dopamine neuronal recording has been described in details previously [S1] and will be described here 

briefly. We estimated the location of the substantia nigra by proton density-enhanced magnetic resonance 

(MR) images. We placed a round recording chamber (Crist Instrument) on the skull with dental cement 

so that the center of the recording chamber targeted the substantia nigra pars compacta. Recordings were 

made using an epoxy-coated tungsten electrode (shank diameter, 0.25 mm, 0.5–1.5 M measured at 

1000 Hz (FHC). Dopamine neurons were identified according to their low tonic irregular spontaneous 

firing rates (<10 Hz), relatively long duration of action potentials (>1.5 ms), and transient responses to 

unexpected reward delivery.  

Analysis of the neuronal data 

The temporal windows used for the analysis of the neuronal data are shown in Figure 3, 4 and Figure S3 

(post fixation cue: 80-280 ms, pre random dot motion stimulus (for tonic dopamine response): -500−0 

ms, post random dot motion stimulus: 220−500ms, pre saccade: -300−0 ms, post feedback tone: 80−330 

ms). Because dopamine neurons showed qualitatively similar responses in the present study, the time 

windows specified above were applied to all recorded neurons (apart from minimal modifications on the 

analysis time window used for illustrated example neurons, as shown with gray horizontal bars in Figure 

3 and 4). We used raw neuronal firing rates for all our analysis, apart from the analysis shown in Figure 

3D and 5B in which we z-scored normalized the activity of each neuron. 

To quantify the time course of dopamine responses in the correct and error trials, we used sliding window 

receiver operating curve (ROC) analyses (sliding window of 250 ms shifted in 10 ms steps) aligned to 

different task events. We used the area under constructed ROC curve (AUC) as the index indicating 

differential neuronal activity in correct and error trails (AUCs close to 1 indicate larger dopamine 

responses in the correct trial compared to the error trials and AUCs close to 0 correspond to smaller 

neuronal responses in the correct trials compared to the error trials). To assess the statistical significance 

of computed AUCs, we used a permutation test (with 200,000 resamples) and determined the first 

instance that the AUC reached statistical significance during each trial by finding the time epoch that the 

permutation test indicated statistical significance (P < 0.001) in three consecutive time steps. We also 

used AUC measures to quantify neuronal response difference in a fixed time window after task events 

(as defined above) in correct/error trials as well as small/large reward trials (Figure 5C and D) and 

examined their statistical significance using permutation test, P < 0.01.  
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Supplemental Figures 

Figure S1. Monkeys’ decisions reflect both stimulus difficulty and reward magnitude (Related to 

Figure 1). 

(A) Monkeys’ psychometric curves separated based on the response side to which the large reward 

magnitude was assigned. Animals could categorize easy random dot motion stimuli almost perfectly and 

were challenged with more difficult stimuli. Moreover, monkeys tended to respond in the direction 

associated with the large juice reward. Dots indicate data averaged across all testing sessions. Thick lines 

represent logistic fits to the data. Both animals showed significant bias towards the side with larger 

reward (p < 0.05, in both animals, permutation test). In all panels, error bars are s.e.m. across test 

sessions. 

(B) Choice reaction time. The saccadic reaction times were z-normalized and separated based on motion 

coherence (its absolute value) and saccade direction (to the side associated with large or small reward). 

Monkeys showed faster reaction times when making saccade to the side associated with the larger reward 

(compare dashed lines with solid lines). Moreover, animals’ reaction times were modulated by stimulus 

difficulty and decision outcome (i.e. correct or error) in a manner consistent with predictions of the TDRL 

model with belief state. 
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Figure S2. Schematic of the alternative model and the reduced POMDP model and additional predictions 

of the main TDRL model (Related to Figure 1). 

(A) In this model, the decision making system assign one state, �̂�𝑚 (shown in orange), to the motion 

stimulus and makes the choice by comparing 𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚 , 𝑅) (𝑎 = argmax
𝐴

𝑄(𝐴)). Since the 

dopamine system does not have direct access to the sensory evidence used for choice, it assigns another 

state, �̂�𝑚′ (shown in purple), to the motion stimulus, which could be identical to different from the one 

used for choice,�̂�𝑚. The larger Q-value (𝑄(�̂�𝑚′, 𝐿)or𝑄(�̂�𝑚′ , 𝑅)) is used for prediction error computation. 

The dopamine prediction error patterns of this model are shown in Figure 1F-H. 

(B) Schematic of the reduced POMDP model. This model does not include a full belief state but uses the 

mean of the belief state to assign a single state �̂�𝑚  to the motion stimulus and perform choice by 

comparing 𝑄(�̂�𝑚, 𝐿) and 𝑄(�̂�𝑚, 𝑅)(𝑎 = argmax
𝐴

𝑄(𝐴)). The prediction error patterns are similar to those 

of our full POMDP model (see Figure 1C-E). Such a reduced model could achieve what the full POMDP 

achieves in one trial, over many of trials. 

(C) Decision accuracy of the TDRL model with full belief state as a function of decision value prediction 

errors (DPEs) at the time of stimulus. 

  



 

Figure S3. Dopamine responses to the fixation cue do not predict reaction times (Related to Figure 3). 

(A) Dopamine population responses to the fixation cue. The black horizontal bar indicates the temporal 

window used for the analysis shown in (B) and (C). 

(B) Dopamine responses to the fixation cue plotted as a function of z-scored fixation reaction time. In 

each panel of the figure, the line shows single linear regression on the population responses. 

(C) Dopamine responses to the fixation spot as a function of z-scored choice reaction time.  

(D) The population dopamine responses at the time of motion stimulus measured 60-600 ms after the 

stimulus onset. 



 

Figure S4. Pre-choice dopamine responses do not predict reaction times and fixation or pre-stimulus 

dopamine responses do not predict choice accuracy (Related to Figure 4). 

(A) Animals’ saccadic reaction times separated based on the pre-saccade dopamine responses (below 

and above 75th percentile, respectively).  

(B) Choice accuracy as a function of dopamine responses to the fixation cue (below and above 75th 

percentile, respectively) computed separately for the two monkeys. 

(B) Choice accuracy as a function of dopamine pre-stimulus tonic responses (below and above 75th 

percentile, respectively) computed separately for the two monkeys. 

 



 

Figure S5. Prediction errors of the alternative TDRL model when all trials, regardless of reward size re 

included in the analysis (Related to Figure 5). 

 

 

 

 

  



Supplemental Experimental Procedures 

Temporal difference reinforcement learning models 

Here we describe the basic features of the model implementation that were common among all model 

variants. 

We simulated the sequence of behavioral events in each trial as states, 𝑠. For our task, these states are 

‘initial, ‘fixation cue’, ‘motion stimulus’, ‘feedback and ‘end’, denoted as 𝑠𝑖, 𝑠𝑓𝑐, 𝑠𝑚, 𝑠𝑓𝑏 , 𝑠𝑒 . In each 

state, the agent performs an action, 𝑎, observes an outcome and transits to the next state, 𝑠′. 

Apart from the ‘motion stimulus’ state, in which the agent learns which action (left or right) to take, in 

all other states the agent visits the subsequent state based on a pre-defined transition probability. This 

transition function indicates the probability that the agent visits the state 𝑠′ from its current state 𝑠, as  

𝑝𝑠𝑠′ = 𝑝{𝑠𝑡+1 = 𝑠′| 𝑠𝑡 = 𝑠}                          Eq. 1 

For instance, we set the probability of transition from the ‘fixation cue’ to the ‘motion stimulus’ to 0.99, 

meaning that in 99% of trials the agent visits ‘motion stimulus’ after the ‘fixation cue’ state. In the 

remaining 1% trials, after the ‘fixation cue’ the agent visits the ‘trial end’ state, resembling trials in which 

animals failed to fixate. These transition probabilities were set to reproduce animals’ highly stable 

success in fixating on the fixation cue (~99% of trials) and were kept constant across all trials of the 

model run. For our model illustrations in Figure 1,2, 5 and Figure S5, we only include trials in which the 

agent reached ‘motion stimulus’ state. 

The goal of the agent is to take actions that maximize the discounted cumulative reward, defined as: 

𝑅𝑡 =  ∑ 𝛾𝑘 ∞
𝑘=0 𝑟𝑡+𝑘+1                                                              Eq. 2  

where 𝑟𝑡 is the immediate reward the agent receives in transitioning from 𝑠𝑡−1 to 𝑠𝑡 and 𝛾 is a discount 

factor that controls the degree to which immediate rewards are preferred to rewards achieved in 

subsequent state transitions.  

When occupying state 𝑠, the state-action value, 𝑄(𝑠, 𝑎), defines the expected cumulative reward when 

the agent occupies state 𝑠 and takes action 𝑎: 

𝑄(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘+1|𝑠0 = 𝑠, 𝑎0 = 𝑎]                                                         Eq. 3              

After the transition from 𝑠𝑡 to 𝑠𝑡+1, the agent makes a comparison between the prior value prediction and 

current value estimate and computes a prediction error, defined as: 

𝛿𝑡 = 𝑟𝑡+1 +  𝛾𝑄(𝑠𝑡+1 , 𝑎𝑡+1) −  𝑄(𝑠𝑡  , 𝑎𝑡)                                                                                           Eq. 4                                                                  

The agent uses the computed prediction error to update the action value estimates, using the following 

updating rule: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼𝛿𝑡                    Eq. 5                                                                                     

where  𝛼  is the learning rate. For our simulations we set 𝛼 = 0.01  and 𝛾 = 1  (i.e. no temporal 

discounting). 

Behavioral task 

The behavioral task has been described previously in detail [S1] and is outlined here briefly. Two male 

monkeys (Japanese macaques, weighing 7-9.5 kg) were rewarded in each trial for correct discrimination 

of the motion direction of a random dot motion stimulus. We used a set of random dot motion stimuli 

with two directions (right and left), and four coherence levels (0, 10, 25, and 50% for monkey L; 0, 2.5, 

10, and 50% for monkey K). A trial started with the appearance of a fixation cue at the center of the 

monitor, followed by a dynamic random dot motion stimulus and two peripheral targets, after which the 



monkey were free to make a saccade to one of two targets to indicate its choice. The random dot motion 

stimulus disappeared as soon as the monkey made an eye movement. Monkeys kept their gaze on the 

chosen target for 0.5 s and then received different auditory feedbacks for correct and error choices. If the 

monkey chose correctly, a high pitch feedback tone (1000 Hz, 0.2 s) was delivered, followed by a juice 

reward immediately after the tone offset. When the choice was incorrect, only a low pitch feedback tone 

(400 Hz, 0.2 s) was delivered, with an additional 5 s timeout as a penalty. Error trials were repeated to 

the animal and monkeys had near perfect performance in these repeat trials. Thus, it is more accurate to 

describe error trials as having delayed reward, rather than no reward. At the zero coherence level, motion 

direction was randomly assigned as either “rightward” in half of the trials or “leftward” in the other half. 

In each block of 126-168 trials, one direction of motion was associated with a large reward (0.38 ml), 

and the other was associated with a small reward (0.16 ml). The direction-reward contingency was fixed 

throughout a given block and reversed in the subsequent block. Animals could categorize easy (high 

motion coherence) stimuli almost perfectly but were challenged by more difficult stimuli (low motion 

coherence) and showed bias toward the direction associated with the large reward (Figure S1). 

Analysis of the behavioral data 

The behavioral data have been described in detail previously [S1]. We fitted the choice data to a logistic 

function (Figure S1A). For the analysis of choice reaction time (the interval between the onset of the 

random dot motion stimulus and the time that animal’s saccade landed on one of the target) and fixation 

reaction time (the interval between the onset of the fixation cue and the time that animal’s saccade landed 

on it), we normalized each trial’s reaction time by computing session-by-session z-scored reaction times 

(Figure S1B and Figure S3B and C).  

Localization and recording of dopamine neurons 

Dopamine neuronal recording has been described in details previously [S1] and will be described here 

briefly. We estimated the location of the substantia nigra by proton density-enhanced magnetic resonance 

(MR) images. We placed a round recording chamber (Crist Instrument) on the skull with dental cement 

so that the center of the recording chamber targeted the substantia nigra pars compacta. Recordings were 

made using an epoxy-coated tungsten electrode (shank diameter, 0.25 mm, 0.5–1.5 M measured at 

1000 Hz (FHC). Dopamine neurons were identified according to their low tonic irregular spontaneous 

firing rates (<10 Hz), relatively long duration of action potentials (>1.5 ms), and transient responses to 

unexpected reward delivery.  

Analysis of the neuronal data 

The temporal windows used for the analysis of the neuronal data are shown in Figure 3, 4 and Figure S3 

(post fixation cue: 80-280 ms, pre random dot motion stimulus (for tonic dopamine response): -500−0 

ms, post random dot motion stimulus: 220−500ms, pre saccade: -300−0 ms, post feedback tone: 80−330 

ms). Because dopamine neurons showed qualitatively similar responses in the present study, the time 

windows specified above were applied to all recorded neurons (apart from minimal modifications on the 

analysis time window used for illustrated example neurons, as shown with gray horizontal bars in Figure 

3 and 4). We used raw neuronal firing rates for all our analysis, apart from the analysis shown in Figure 

3D and 5B in which we z-scored normalized the activity of each neuron. 

To quantify the time course of dopamine responses in the correct and error trials, we used sliding window 

receiver operating curve (ROC) analyses (sliding window of 250 ms shifted in 10 ms steps) aligned to 

different task events. We used the area under constructed ROC curve (AUC) as the index indicating 

differential neuronal activity in correct and error trails (AUCs close to 1 indicate larger dopamine 

responses in the correct trial compared to the error trials and AUCs close to 0 correspond to smaller 

neuronal responses in the correct trials compared to the error trials). To assess the statistical significance 

of computed AUCs, we used a permutation test (with 200,000 resamples) and determined the first 

instance that the AUC reached statistical significance during each trial by finding the time epoch that the 

permutation test indicated statistical significance (P < 0.001) in three consecutive time steps. We also 

used AUC measures to quantify neuronal response difference in a fixed time window after task events 

(as defined above) in correct/error trials as well as small/large reward trials (Figure 5C and D) and 

examined their statistical significance using permutation test, P < 0.01.  
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