37,705 research outputs found

    Contributions to theory and algorithms of independent component analysis and signal separation

    Get PDF
    This thesis addresses the problem of blind signal separation (BSS) using independent component analysis (ICA). In blind signal separation, signals from multiple sources arrive simultaneously at a sensor array, so that each sensor array output contains a mixture of source signals. Sets of sensor outputs are processed to recover the source signals or to identify the mixing system. The term blind refers to the fact that no explicit knowledge of source signals or mixing system is available. Independent component analysis approach uses statistical independence of the source signals to solve the blind signal separation problems. Application domains for the material presented in this thesis include communications, biomedical, audio, image, and sensor array signal processing. In this thesis reliable algorithms for ICA-based blind source separation are developed. In blind source separation problem the goal is to recover all original source signals using the observed mixtures only. The objective is to develop algorithms that are either adaptive to unknown source distributions or do not need to utilize the source distribution information at all. Two parametric methods that can adapt to a wide class of source distributions including skewed distributions are proposed. Another nonparametric technique with desirable large sample properties is also proposed. It is based on characteristic functions and thereby avoids the need to model the source distributions. Experimental results showing reliable performance are given on all of the presented methods. In this thesis theoretical conditions under which instantaneous ICA-based blind signal processing problems can be solved are established. These results extend the celebrated results by Comon of the traditional linear real-valued model. The results are further extended to complex-valued signals and to nonlinear mixing systems. Conditions for identification, uniqueness, and separation are established both for real and complex-valued linear models, and for a proposed class of non-linear mixing systems.reviewe

    A Unifying View on Blind Source Separation of Convolutive Mixtures based on Independent Component Analysis

    Full text link
    In many daily-life scenarios, acoustic sources recorded in an enclosure can only be observed with other interfering sources. Hence, convolutive Blind Source Separation (BSS) is a central problem in audio signal processing. Methods based on Independent Component Analysis (ICA) are especially important in this field as they require only few and weak assumptions and allow for blindness regarding the original source signals and the acoustic propagation path. Most of the currently used algorithms belong to one of the following three families: Frequency Domain ICA (FD-ICA), Independent Vector Analysis (IVA), and TRIple-N Independent component analysis for CONvolutive mixtures (TRINICON). While the relation between ICA, FD-ICA and IVA becomes apparent due to their construction, the relation to TRINICON is not well established yet. This paper fills this gap by providing an in-depth treatment of the common building blocks of these algorithms and their differences, and thus provides a common framework for all considered algorithms

    Enhanced IVA for audio separation in highly reverberant environments

    Get PDF
    Blind Audio Source Separation (BASS), inspired by the "cocktail-party problem", has been a leading research application for blind source separation (BSS). This thesis concerns the enhancement of frequency domain convolutive blind source separation (FDCBSS) techniques for audio separation in highly reverberant room environments. Independent component analysis (ICA) is a higher order statistics (HOS) approach commonly used in the BSS framework. When applied to audio FDCBSS, ICA based methods suffer from the permutation problem across the frequency bins of each source. Independent vector analysis (IVA) is an FD-BSS algorithm that theoretically solves the permutation problem by using a multivariate source prior, where the sources are considered to be random vectors. The algorithm allows independence between multivariate source signals, and retains dependency between the source signals within each source vector. The source prior adopted to model the nonlinear dependency structure within the source vectors is crucial to the separation performance of the IVA algorithm. The focus of this thesis is on improving the separation performance of the IVA algorithm in the application of BASS. An alternative multivariate Student's t distribution is proposed as the source prior for the batch IVA algorithm. A Student's t probability density function can better model certain frequency domain speech signals due to its tail dependency property. Then, the nonlinear score function, for the IVA, is derived from the proposed source prior. A novel energy driven mixed super Gaussian and Student's t source prior is proposed for the IVA and FastIVA algorithms. The Student's t distribution, in the mixed source prior, can model the high amplitude data points whereas the super Gaussian distribution can model the lower amplitude information in the speech signals. The ratio of both distributions can be adjusted according to the energy of the observed mixtures to adapt for different types of speech signals. A particular multivariate generalized Gaussian distribution is adopted as the source prior for the online IVA algorithm. The nonlinear score function derived from this proposed source prior contains fourth order relationships between different frequency bins, which provides a more informative and stronger dependency structure and thereby improves the separation performance. An adaptive learning scheme is developed to improve the performance of the online IVA algorithm. The scheme adjusts the learning rate as a function of proximity to the target solutions. The scheme is also accompanied with a novel switched source prior technique taking the best performance properties of the super Gaussian source prior and the generalized Gaussian source prior as the algorithm converges. The methods and techniques, proposed in this thesis, are evaluated with real speech source signals in different simulated and real reverberant acoustic environments. A variety of measures are used within the evaluation criteria of the various algorithms. The experimental results demonstrate improved performance of the proposed methods and their robustness in a wide range of situations

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    An adaptive stereo basis method for convolutive blind audio source separation

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in PUBLICATION, [71, 10-12, June 2008] DOI:neucom.2007.08.02
    corecore