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Abstract

This thesis addresses the problem of blind signal separation (BSS) using
independent component analysis (ICA). In blind signal separation, signals
from multiple sources arrive simultaneously at a sensor array, so that each
sensor array output contains a mixture of source signals. Sets of sensor
outputs are processed to recover the source signals or to identify the mix-
ing system. The term blind refers to the fact that no explicit knowledge of
source signals or mixing system is available. Independent component anal-
ysis approach uses statistical independence of the source signals to solve
the blind signal separation problems. Application domains for the material
presented in this thesis include communications, biomedical, audio, image,
and sensor array signal processing.

In this thesis reliable algorithms for ICA-based blind source separation
are developed. In blind source separation problem the goal is to recover all
original source signals using the observed mixtures only. The objective is to
develop algorithms that are either adaptive to unknown source distributions
or do not need to utilize the source distribution information at all. Two
parametric methods that can adapt to a wide class of source distributions
including skewed distributions are proposed. Another nonparametric tech-
nique with desirable large sample properties is also proposed. It is based
on characteristic functions and thereby avoids the need to model the source
distributions. Experimental results showing reliable performance are given
on all of the presented methods.

In this thesis theoretical conditions under which instantaneous ICA-
based blind signal processing problems can be solved are established. These
results extend the celebrated results by Comon of the traditional linear real-
valued model. The results are further extended to complex-valued signals
and to nonlinear mixing systems. Conditions for identification, uniqueness,
and separation are established both for real and complex-valued linear mod-
els, and for a proposed class of non-linear mixing systems.
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Chapter 1

Introduction

1.1 Motivation

Multichannel observations are often encountered in signal processing appli-
cation areas. For example, there may be several microphones recording the
sound waves in audio and speech signal processing, in biomedical signal pro-
cessing there are several sensors measuring e.g. heart or brain activity, and
in communication systems multiple antennas are receiving the communica-
tion signals. Multiple time series may be describing the same phenomenon,
e.g. consumer confidence, in econometrics, and several images, e.g. in dif-
ferent wave lengths or from different angles, may be available from the same
object in image processing. These measurements can be obtained over a
period of time (e.g. in communications), or over a certain surface area (e.g.
in image processing). Such measurements can be then discretized such that
there is a collection of observation vectors, each vector representing all mea-
surements from different sensors at a specific observation time instant or
spatial location.

Often each of these several measurements is a mixture of some source
signals. For instance, each communication antenna receives the superposi-
tion of all communication signals transmitted in the same carrier frequency,
and each sensor measuring the brain activity records the brain activity sig-
nals coming from different areas of the brain. Although different sensors
may be recording a mixture of the same source signals, the measurements
may be different in all sensors due to the differences in e.g. positions of the
sensors. For instance, each antenna receives each transmitted signal from a
different angle with different amplitude depending the relative positioning
of the transmitter and the antenna. Systems with multiple signal emitters
and multiple sensors used for observing them are generally called multiple-
input multiple-output (MIMO) systems. An example of a MIMO system is
illustrated in Figure 1.1.

In blind source separation (BSS) the observations from a MIMO system
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Figure 1.1: A MIMO system. Three signals produced by sources (speak-
ers) are recorded by three sensors (microphones). Each microphone records
slightly different mixture of speech due to the differences in the relative dis-
tances and angles between the mouths and the microphones, and due to
the multipath propagation, i.e. the same waveform propagates via different
paths.

are processed in order to recover initial multiple source signals. The term
blind refers to the fact that there is no, or little, explicit information about
the mixing process or about the source signals, and statistical or structrual
properties of the signals are used instead. Similarly, in blind signal extrac-
tion the objective is to estimate a selective number of source signals with
desired properties from a possibly large number of mixed original signals. In
blind system identification the interest lies in estimating the mixing system
instead of the original signals. All these and related blind estimation prob-
lems are generically called blind signal processing (BSP) problems [CA02].

Many BSP problems can be solved by stochastically modeling the source
signals, i.e. modeling each observation vector as an outcome of a random
process at a specific time instance, and assuming that the signals are sta-
tistically independent. This approach is known as independent component

2



analysis (ICA). Recent textbooks [CA02, HKO01, Hay00] provide a good
introduction to ICA-based BSP.

1.2 Scope of the thesis

The purpose of this thesis is to further develop the theory of ICA-based
blind signal processing, and derive algorithms for practical ICA-based blind
source separation. This thesis considers only the situation where there is no
time dependency in the mixing system, i.e. the system is instantaneous, nor
any time dependency in the source signals themselves, i.e. each source signal
is considered as an outcome of a random process that consist of independent
identically distributed (i.i.d.) random variables. Some results on ICA-based
methods utilizing time structure in the system, e.g. convolutive mixing, or
in the source signals, e.g. autocovariance, can be found from [CA02, HKO01,
Hay00].

The first goal of this thesis is to develop reliable algorithms for ICA-
based blind source separation. The objective is to develop algorithms that
are either adaptive to unknown source distributions or do not need to utilize
the source distribution information at all. The algorithms should perform
reliably for all type of source signals, and their performance should improve
as there are more observations available (consistency).

The second goal of this thesis is to establish theoretical conditions under
which instantaneous ICA-based BSP problems can be solved. This includes
the traditional linear real-valued model and its extensions to complex-valued
signals and to nonlinear mixing systems. The conditions should be estab-
lished for identification, extraction, and separation type of BSP problems.

1.3 Contribution of the thesis

The contributions of this thesis include the following.

• Extended Generalized Lambda Distribution (EGLD) is proposed as
an adaptive score function model in the ICA separation problem.

• The use of L-moments is proposed for the estimation of the Generalized
Lambda Distribution (GLD) and the use of Pearson system in the ICA
separation problem is introduced in co-operation with the co-authors.

• Characteristic function-based method is proposed for the ICA separa-
tion problem. The connection of the criterion to nonlinear correlations-
based independence characterization is derived.

• Consistent characteristic function-based objective function is proposed
for the ICA separation problem. Consistency being established in
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[CB04]. Novel minimization algorithm for the consistent objective
function is developed, and connection to the cumulant-based methods
is established.

• The concept “uniqueness” is introduced to the ICA models. Separa-
bility conditions for the real-valued linear ICA model are extended to
necessary conditions by removing earlier requirement of finite second-
order moments. Conditions for identifiability and uniqueness are es-
tablished.

• A class of nonlinear ICA models is introduced, and the separability
of the class is established. A generic algorithm for separation of these
models is proposed. A nonlinear ICA model is applied to an image
enhancement problem.

• Conditions for separability, identifiability, and uniqueness of complex-
valued ICA models are established. The condition for separability is
shown to be sufficient and necessary.

• A characterization of second-order structure of circular and non-
circular complex-valued random vectors, a decomposition of complex
normal random vector, and extensions of the Darmois-Skitovich theo-
rem to complex-valued random variables are established.

1.4 Summary of publications

This thesis consists of nine publications and a summary. The summary part
of the thesis is organized as follows: Chapter 2 introduces the general ICA
model and reviews the related probabilistic concepts and optimization algo-
rithms. The theoretical conditions for linear real and complex-valued ICA
models are summarized in Chapter 3. Chapter 4 introduces a class of non-
linear ICA models and reviews are related nonlinear model. Source adaptive
ICA separation methods are reviewed and Pearson and EGLD-based meth-
ods are summarized in Chapter 5. Chapter 6 reviews characteristic function-
based ICA methods and summarizes the JECFICA algorithm. Chapter 7
provides a brief summary and outlines future research.

In Publication I, a EGLD-based BSS method is introduced. An ICA
method utilizing the method of moments for fitting the EGLD, the mutual
information contrast, and the fixed point algorithm [H+] is proposed. The
good performance of the algorithm is demonstrated in simulations.

In Publication II, a Pearson system-based BSS method is introduced. An
ICA method utilizing the method of moments for finding the parameters of
the Pearson system, the mutual information contrast, and the fixed point
algorithm [H+] is proposed. The simulation examples demonstrate that the
method can separate both super- and sub-Gaussian sources.
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In Publication III the methods proposed in Publication I and in Publica-
tion II are further studied and compared. It is demonstrated in simulations
that the standard BSS methods may perform poorly in the cases where
the sources have asymmetric distributions. Due to source adaptation the
EGLD and Pearson system based methods reliably separate the sources.
Additionally the method of L-moments is proposed for the estimation of
GLD parameters.

Publication IV proposes the use of characteristic functions to solve reli-
ably the ICA-based BSS problem without need to model the source distri-
butions. The method utilizing empirical characteristic functions, pairwise
processing, and golden section search is proposed. The reliable performance
is demonstrated in simulations.

Publication V improves the method of Publication IV by introducing the
consistent objective functions. The consistency of such objective functions
was recently shown in [CB04]. Additionally, a connection between the two
dimensional criterion introduced in Publication IV and the independence
characterization by nonlinear correlations is established.

Publication VI introduces a class of nonlinear ICA models. The condi-
tions for separability are established, and a generic method for separation is
proposed. An application to image enhancement is presented.

In Publication VII the characteristic function-based methods of Publica-
tion IV and of Publication V are further developed. A fast minimization of
the two dimensional objective function based on Fourier series representation
is proposed. A connection to cumulant-based methods is established, and
criteria for noisy ICA are proposed. Further extensive simulations highlight
the highly reliable performance of the proposed method.

The sufficient conditions for separability, identifiability, and uniqueness
of real-valued linear ICA models are established in Publication VIII. The
conditions for separability are proved to be necessary thereby extending the
seminal results by Comon [Com94].

The sufficient conditions for separability, identifiability, and uniqueness
of complex-valued linear ICA models are established in Publication IX. The
conditions for separability are also found to be necessary. A novel charac-
terization of the second-order structure of complex random vectors, and a
decomposition of complex normal random vectors is derived. This is ap-
plied to derive the characteristic functions and the entropy of complex nor-
mal random vector. Also extensions of the Darmois-Skitovich theorem to
complex-valued random variables are presented.

The author of this thesis proposed the use of EGLD system and derived
the analytical results in Publication I. The experiments were performed and
the writing was done in co-operation with co-authors.

In Publication II, the idea of using the Pearson system for the score func-
tion modeling is due to Juha Karvanen. Also the idea of using L-moments
for estimating the EGLD parameters, proposed in Publication III, is due to
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him. The implementation of the ICA method, the experiment designs, and
writing were done by Jan Eriksson in co-operation with the co-authors.

The results in publications IV–IX were derived independently by the au-
thor of this thesis. Visa Koivunen contributed in steering the research, and
helped in writing and structuring the publications. Annaliisa Kankainen,
the second author of Publication V, helped providing useful references.
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Chapter 2

Overview of ICA

2.1 Problem formulation and general assumptions

The general discrete-time blind source separation (BSS) system model is
described by the input-output relationship

x[k] = F{s[k], n̄[k]}, (2.1)

where k is the discrete time index, x[k] is the observed multidimensional
mixture signal and n̄[·] is the noise. The goal of BSS is to reconstruct the
original source signal s[k] and/or identify the system operator F{·} from
the observed mixture signal without explicit knowledge of the source signals
nor the system operator. The term blind is used to distinguish the problem
from the cases, where there is some explicit information available, e.g. a
known training source signal.

The general problem of Eq. (2.1) is naturally ill-posed, and further con-
straints are needed. A common approach is to model the signals stochasti-
cally, that is, to view the source signal as a realization of a random process.
Then one can exploit statistical properties of the processes e.g. in time or in
space to obtain the goal. A relatively recent approach is to try to obtain the
solution based on the assumption that the source signals are stochastically
mutually independent. This approach is known as independent component
analysis (ICA). If the system is memoryless, the model is called instanta-
neous ICA, and the problems where noise is taken into account the model
is known as noisy ICA. If the signals have no time structure, then they are
typically assumed to be vector random processes of independent identically
distributed (i.i.d.) random vectors (r.vc.’s). Thus the general instantaneous
time-independent noiseless ICA model is described by the equation

x̄ = F(s̄), (2.2)

where (s̄1, . . . , s̄m)T = s̄ are unknown mutually independent non-degenerate
random variables (r.v.’s) called sources, F(·) is an unknown mixing function,
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and x̄ = (x̄1, . . . , x̄p)T are mixtures, i.e., the observed r.vc. (sensor array
output). In the traditional setting, the mixing functions are constrained to
be matrices, i.e. linear mappings, and the ICA model is described by the
equation

x̄ = As̄, (2.3)

and the model is known as linear ICA model. When this property does not
hold, the corresponding model is naturally called nonlinear ICA model. It
should be noted that the methods to solve linear ICA model-based BSP
problems usually require nonlinear methods, e.g. higher order statistics.

The models with the form (2.2) are studied in this thesis. The ICA mod-
els with system memory, e.g. convolutive mixtures, have also found some
applications, for instance in audio and speech separation and wireless com-
munications. In convolutive mixtures, the system operator F is multidimen-
sional linear time-invariant filter (usually also with finite impulse response).
For recent reviews of such ICA models, ICA models with time structured
processes, or with noise, the reader is referred to the recent textbooks [CA02,
Chapters 8 and 9][HKO01, Chapters 15 and 18] [Hay00, Chapter 8 and 9].

2.2 Anatomy of ICA methods

An ICA method is an algorithm which, given a realization x[·] of the pro-
cess (2.2), estimates or learns the system function F(·) and/or the source
signals s[·]. Since ICA is based on the crucial assumption on mutual in-
dependence of sources, the first step in derivation of an ICA method is to
formulate a criterion which serves as a measure of independence. After that
there is essentially two ways to proceed, as noted for instance in [APJ03]:

1. Derive an algorithm to optimize the criterion with respect to the space
of mixing functions, and then replace the theoretical quantities in the
optimization algorithm by their estimates obtained from the mixture
signal x[·].

2. Derive an objective function, which estimates the criterion from the
mixture signal x[·], and then derive an algorithm to optimize the ob-
jective function with respect to the space of mixing functions.

The most of commonly used ICA methods as well as the methods pro-
posed in Chapter 5 of this thesis are of the first type whereas the methods
proposed in Section 6.3 belong to the second class. The difference between
the two approaches comes from the optimizing algorithms which usually
include differential operators. Thus the first approach places smoothness
constraints on the criterion thereby possibly restricting the class of allowed
r.v.’s. On the other hand, this may lead to easier computations. In many
cases, however, the two approaches may lead to the same final method.
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From the optimization point of view, it is convenient that a criterion
attains its maximum if and only if the components of a r.vc. are mutually
independent. Furthermore the criterion should be invariant with respect to
permutation and scaling. Such criteria are generally called contrast functions
[Com94]. Finally, ICA methods that work on the entire data set are called
batch methods, whereas the methods that work sequentially one sample at
the time are referred to as on-line methods.

2.3 Measuring stochastic independence

The stochastic independence is a property of the underlying probability
space. Since in ICA modeling one is not working directly with the prob-
ability space but with r.v.’s (i.e. mappings of the space), the definition of
independence should be given in terms of functions of r.vc.’s in order to be
useful for formulating a criterion. The definition is usually given in terms
of distribution functions (d.f.’s) as follows. A r.vc. x̄ has independent com-
ponents if and only if its joint d.f. Fx̄ factors to a product of the marginal
d.f.’s Fx̄k

, i.e.

Fx̄(t) =
p∏

k=1

Fx̄k
(tk) (2.4)

for all t = (t1, . . . , tp)T ∈ Rp. This definition could be used [BZP00] as a
basis of forming a criterion. However, finding the factorization of Eq. (2.4)
is numerically cumbersome. Therefore, alternative characterizations of in-
dependence are considered in this section.

2.3.1 Correlation

A natural starting point in finding independent components is to require
that r.v.’s are uncorrelated, i.e.

E(s̄,r̄)T

{
(s̄− Es̄

{
s̄
}
)(r̄ − Er̄

{
r̄
}
)
}

= 0, (2.5)

where Es̄

{
·
}

denotes the expectation with respect to r.vc. s̄ and T denotes
the transpose of a vector. Thus, the covariance matrix measures the pair-
wise linear correlation. Correlations are quantified by off-diagonal elements
of the covariance matrix. Although uncorrelateness implies independence
for jointly Gaussian r.vc.’s, r.vc.’s in general can have uncorrelated but de-
pendent marginals. However, uncorrelateness is a necessary condition for
independence whenever the covariance exists (i.e. for r.v.’s with finite vari-
ance).

Any r.vc. with finite marginal variances can be linearly transformed
such that the resulting r.vc. has uncorrelated components with equal (unit)
variance. Such a r.vc. is called white, and procedure of making a r.vc.
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white is referred as whitening transform. This is essentially the same as per-
forming the well-known principal component analysis (PCA) or the discrete
Karhunen-Lóeve transform in signal processing jargon. It is easily shown
that whitening a r.vc. in a linear ICA structure (Eq. (2.3) with at least
as many mixtures as sources results to a r.vc. with orthonormal mixing of
the sources. Consequently the matrix A in Eq. (2.3) becomes orthonormal.
Since by the singular value decomposition any matrix A can be decomposed
as UΛV T , where U and V are orthonormal matrices and Λ is a diagonal
matrix, PCA reduces the number of unknown system parameters to half.
This technique is used in many practical ICA algorithms, and it can be said
that “PCA reduces approximately the number of unknown systems parame-
ters to half”. For details and algorithms performing the whitening transform
in ICA context, see [HKO01, Chapter 6][CA02, Chapter 3].

Independence can be guaranteed with nonlinear correlations. Two r.v.’s
s̄ and r̄ are independent if and only if

E(s̄,r̄)T

{
F(s̄)G(r̄)

}
= Es̄

{
F(s̄)

}
Er̄

{
G(r̄)

}
(2.6)

for all functions F and G ranging over a separating class of functions
[Bre92, Feu93]. A well-known separating class consists of the functions
cos(tx), sin(tx), t ≥ 0. This requires infinite number of correlation val-
ues which is impractical. However, one may try to rely on a few well-chosen
functions and hope that they guarantee independence. Incidentally, the pio-
neering work [Jut87] in ICA was essentially based on this idea (see [HKO01,
Chapter 12.2]).

2.3.2 Mutual Information

If it assumed that the source r.v.’s have d.f.’s which are absolutely continuous
with respect to Lebesque measure, i.e. r.v.’s with the probability density
function (p.d.f.), the condition for independence may be also stated as

fx̄(t) =
p∏

k=1

fx̄k
(tk) (2.7)

for all t ∈ Rp by employing the joint p.d.f. fx̄ and the marginal p.d.f.’s fx̄k
.

Since this is again a functional relationship, one might try to average the
function values over Rp. This leads to the expression

MI(x̄) ,
∫
fx̄(t) log

fx̄(t)∏p
k=1 fx̄k

(tk)
dt = Ex̄

{
log

fx̄(x̄)∏p
k=1 fx̄k

(x̄k)
}

(2.8)

known as the mutual information (m.i.), which is the Kullback-Leibler di-
vergence [CT91]

KL
(
fx̄, fs̄

)
,

∫
fx̄(t) log

fx̄(t)
fs̄(t)

dt = Ex̄

{
log

fx̄(x̄)
fs̄(x̄)

}
10



between the joint p.d.f. and the product of the marginal p.d.f.’s. Mutual in-
formation is also the difference between the sum of entropies of the marginals
and the entropy of a r.vc. x̄

H(x̄) , −
∫
fx̄(t) log fx̄(t)dt = −Ex̄

{
log fx̄(x̄)

}
, (2.9)

i.e.

MI(x̄) = KL
(
fx̄,

p∏
k=1

fx̄k

)
=

p∑
k=1

H(x̄k)−H(x̄). (2.10)

Kullback-Leibler divergence is a semi-distance, and therefore mutual infor-
mation is always non-negative and zero only for independent marginals,
i.e. −MI(·) is a contrast function [Com94]. For further properties, see
[CT91, Gra90]. It should be also recognized that Kullback-Leibler diver-
gence can be defined more generally [Kul68, Gra90], but this is rarely used
in the BSS context.

2.3.3 Characteristic function, generating functions, mo-
ments and cumulants

A characteristic function (c.f.) of a p-dimensional r.vc. x̄ is defined (see
[Ush99, Cup75, LO77]) as

φx̄(t) ,
∫

Rp

e<t,x>dFx̄(x) = Ex̄

{
e<t,x̄>

}
,

where t = (t1, . . . , tp)T ∈ Rp, < ·, · > denotes the standard vector inner
product, and  is the imaginary unit, 2 = −1. Characteristic functions
are connected to d.f.’s via Fourier transform, they always exist, and are
unique, i.e. there is one-to-one correspondence between c.f.’s and d.f.’s.
Therefore by (2.4), a r.vc. x̄ has independent components if and only if the
joint c.f. φx̄(t) factorizes to the product of the marginal c.f.’s, i.e. for all
t = (t1, . . . , tp)T ∈ Rp,

φx̄(t) =
p∏

k=1

φx̄k
(tk), (2.11)

where φx̄k
denotes the c.f. of the kth marginal distribution. Thus depen-

dence may be quantified by deviations of the difference

∆φx̄(t) , φx̄(t)−
p∏

k=1

φx̄k
(tk) (2.12)

from zero. The independence characterization (2.11) is also obtained from
the nonlinear correlation characterization (2.6), since complex exponentials
form a separating class of functions [Bre92].
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The c.f. φx̄ of a r.v. x̄ is said to be analytic [Luk70, Ush99], if there exists
a function of the complex variable such that the function is analytic in a
neighborhood of zero, and the restriction of the complex function to the real
line coincides with φx̄ in the neighborhood. This is extended naturally to
c.f.’s of r.vc.’s. Analytic c.f.’s have the appealing property that all c.f. factors
of an analytic c.f. are also analytic c.f.’s. The r.v.’s x̄ with analytic c.f.’s
are exactly those r.v.’s for which the moment generating function (m.g.f.)
Mx̄(t) , Ex̄

{
etx̄

}
exists, i.e. Mx̄(t) is convergent for all t belonging to an

interval containing the origin. The moments Ex̄

{
x̄k

}
of a r.v. x̄ with the

m.g.f. Mx̄(t) are finite for all k ∈ N, and they are obtained as the kth
derivative of Mx̄ evaluated at zero. Independence can be also characterized
with m.g.f.’s by an identity analogous to (2.11).

Since a c.f. is continuous and equals unity at zero, there exists a neigh-
borhood of the origin where the principal branch of logarithm of the c.f. is
uniquely defined. The function ψx̄ , log φx̄ is called the second character-
istic function (s.c.f.) of a r.vc. x̄. A necessary condition for independence
by Eq. (2.11) is given by the identity

ψx̄(t) =
p∑

k=1

ψx̄k
(tk) (2.13)

for all t in the neighborhood of the origin where the s.c.f.’s are defined. If
two analytic c.f.’s coincide for all t in a neighborhood of the origin, they
are the same. Thus the condition (2.13) is also sufficient for r.vc.’s with
analytic c.f.’s. The coefficients of the differentials at t = 0 of s.c.f. are
called cumulants. Because of this property s.c.f. is sometimes called the
cumulant generating function. However, this is somewhat misleading, since
s.c.f. exists even when the cumulants do not. Therefore, it is better to
reserve the name cumulant generating function for the logarithm of m.g.f.
From Eq. (2.13) it may be seen that the cross-cumulants should vanish for
a r.vc. with independent marginals.

2.3.4 Complex random variables

In many applications signals are complex-valued in Eq. (2.1). Therefore, for
these type of applications, complex-valued random quantities are needed in
Eq. (2.2). A p-variate complex r.vc. x̄ is defined as a r.vc. of the form

x̄ = x̄R + x̄I , (2.14)

where x̄R and x̄I are p-variate real r.vc.’s. Due to the separability of the
complex space, the probabilistic structure of the r.vc. x̄ of (2.14) is equiv-
alent to the structure of 2p-variate real r.vc. (x̄T

R x̄T
I )T . Therefore, the
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probabilistic tools for complex r.vc.’s can be defined through this equiva-
lence. For instance, the c.f. of the complex r.vc. x̄ is given as

φx̄(z) , φx̄R(zR) = Ex̄R

{
exp

(
 <zR, x̄R>

)}
= Ex̄

{
exp

(
Re

{
<z, x̄>

})}
,

(2.15)
where z ∈ Cp and the operator ()R gives for a p-variate complex vector the
2p-dimensional real representation described above.

Although the probabilistic structure of the complex r.vc.’s can be easily
described by their real counterparts, the operational structure can not. This
is due to the fact that the p-dimensional complex space is not equivalent to
the 2p-dimensional real space as an inner product space. Thus r.vc.’s with
values in complex space have distinct properties, and they need to be studied
separately from their real counterparts. Some work on complex r.vc.’s can
be found from [AGL96a, AGL96b, NM93, Pic96, PB97, SS03, VK96].

The difference between real and complex r.vc.’s is evident already from
the second-order properties studied in Publication IX. Since the real normal
r.vc.’s are fully specified by the mean and the second-order structure, this
leads to the characterization of complex normal r.vc.’s. A complex r.vc. x̄
is naturally called complex normal if x̄R is multivariate real normal r.vc.
Let λ = (λ1, . . . , λp)T be a vector such that 1 ≥ λ1 ≥ · · · ≥ λp ≥ 0, and
let diag

(
λ

)
denote the p× p square matrix with λ on its main diagonal and

zeros elsewhere. Now it is shown in Publication IX that any complex normal
r.vc. n̄ with mean µ can be decomposed as

n̄ = C(n̄R + n̄I) + µ, (2.16)

where C is a nonsingular complex matrix and independent zero mean multi-
normal real r.vc.’s n̄R and n̄I have the covariance matrices diag

(
1+λ

2

)
and

diag
(

1−λ
2

)
(respectively) for some λ. The vector λ is called the spectrum

of the r.vc. n̄, and the elements of a spectrum λ are called spectral coef-
ficients. The decomposition (2.16) together with the spectrum λ allows a
complete characterization of complex normal r.vc.’s, and an easy derivation
of some fundamental theorems. For instance, the entropy (see Eq. (2.9)) of
a complex normal r.vc. n̄ is given as (see Publication IX)

H(n̄) = H(n̄R) = log
(
det(πeCCH)

)
+

1
2

p∑
k=1

log(1− λ2
k),

where C is given by Eq. (2.16), CCH = En̄

{
(n̄−En̄

{
n̄

}
)(n̄−En̄

{
n̄

}
)H

}
is

the covariance matrix of the r.vc. n̄, and (λ1, . . . , λp)T denotes its spectrum.
The spectrum is an inherited property of any complex r.vc. x̄ with sec-

ond order statistics. Indeed, it can be shown that the spectrum is invariant
with respect to nonsingular linear transformations. There always exists a
nonsingular transformation C such that the r.vc. ȳ = Cx̄ has the covari-
ance matrix equal to the identity matrix and the pseudo-covariance matrix
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Eȳ

{
(ȳ − Eȳ

{
ȳ
}
)(ȳ − Eȳ

{
ȳ
}
)T

}
is a diagonal matrix with the spectrum in

its diagonal. Such a transform is called a strong-uncorrelating transform. If
the spectrum of a r.vc. is distinct, then the strong uncorrelating transform
is essentially unique. For the proofs of these statements, see Publication IX.

If the spectrum of a r.vc. x̄ consists of zeros, the r.vc. is called circular
(or proper). Most of the result concerning complex r.vc.’s in the literature
are derived for circular r.vc.’s. Therefore, the results allowing any spectrum
contain the results for circular r.vc.’s as special cases.

The characterization of the complex normal r.vc. and the second order
statistics is used in Publication IX to extend some independence related
theorems of the real-valued r.vc.’s to the complex-valued r.vc.’s. These the-
orems, including the extension of the celebrated Darmois-Skitovich theorem
[KLR73], allow the extension of results concerning real-valued ICA models
to be extended to the complex field. This is done in Section 3.2.

2.3.5 Discussion

It is important to realize that although all the expressions of independence in
this section are necessary conditions for independence, only the conditions
(2.4), (2.6), and (2.11) are also sufficient for all r.v.’s. This means that
if other expressions are used, then there exist r.vc.’s such that either the
condition is satisfied but the marginals are dependent or the expression is
not defined. If such an expression, e.g. mutual information, is used as the
basis for an ICA criterion, the corresponding methods, e.g. those considered
in Chapter 5, are only guaranteed to work with the subset of r.v.’s for
which the expression is also sufficient for independence. Consequently, such
ICA methods are limited to a subclass of problems. In the case of mutual
information, the model is limited to r.v.’s that have p.d.f.’s. Moreover, these
quantitities may be hard to estimate. For instance, there does not even exist
an umbiased estimator for mutual information [Pan03].

Although the independence related expressions remain essentially the
same for complex-valued r.vc.’s, the behavior of these quantities is different
from their real counterparts due to the difference in multiplication structure.
Therefore, the properties of functions of complex r.vc.’s should be studied
separately. The second-order properties of complex r.vc.’s are studied in
Publication IX. Additionally, some well-known theorems for real r.vc.’s are
extended to complex-valued r.vc.’s. These theorems cover both circular and
non-circular complex r.vc.’s. The publication is also referred for references
for literature about complex r.vc.’s.

2.4 Review of optimization algorithms

Every ICA method needs an optimization method for minimizing or maxi-
mizing the employed ICA criterion. In these optimization techniques there
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is nothing specifically ICA related, although some new development has
taken place while researching the BSS problem. Optimization algorithms
have been studied for a long time, and there are plenty of algorithms (e.g.
[Lue73, PTVF92, GL89]) to choose from. Thus only the basic methods used
in ICA context (for details, see [Hay00, HKO01, CA02]) are reviewed in this
Section.

2.4.1 Gradient descent methods

The most classical method of minimizing a function with respect to param-
eter vector α is gradient descent. It is based on the observation that the
gradient ∇F of the function F gives the direction of the greatest increase
of the function value. Thus the gradient descent algorithm starts with an
initial guess, and calculates the gradient at this point. Then the parame-
ter vector is updated to the opposite direction of the gradient by a small
amount (step size). The gradient is evaluated at the new parameter value,
the parameter vector is updated, and so on. This is repeated until the min-
imum is found. The algorithm has a direct generalization to matrix valued
parameters with the matrix gradient (see e.g. [HKO01, Chapter 3]). The
gradient descent algorithm for functions involving r.v.’s is called stochastic
gradient descent [Hay96, p. 11], since the true gradient depends on the un-
known distribution, and the corresponding method is an approximate or a
stochastic implementation of the true descent procedure. The ICA methods
proposed in Chapter 5 use enhanced versions of this type of optimization
idea to be described in the following.

The main problem with the steepest descent method is the selection of
the correct step size, which is crucial for the convergence even to a local min-
imum as well as for the convergence speed. This problem can be avoided by
the use of the inverse of second derivative of the function, i.e. the inverse
of the Hessian in the multidimensional parameter case. Such an algorithm
is known as Newton’s method. Since the direct calculation of the inverse
of the Hessian may be computationally demanding, there are a number of
algorithms that make a trade-off between the convergence speed and compu-
tational complexity. A popular ICA method known as FastICA [HO97, H+]
uses quasi-Newton optimization specifically tailored to the ICA model (for
different versions and details, see [HKO01, Chapter 8]).

The ordinary gradient gives the direction of the deepest ascent for pa-
rameters in the Euclidean orthogonal coordinate system. However, this is
not true if the coordinate system is non-Euclidean. For example, this is the
case when the parameter space is the space of all invertible matrices or the
space of all orthonormal matrices. If the parameter space is Riemannian, the
deepest ascent direction is given by natural gradient ∇N [ACY96] or relative
gradient [CL96] first introduced in [CUR94]. The corresponding gradient
descent optimization algorithm is known as natural gradient learning. In-
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Figure 2.1: The shortest path between Vardø, Norway, and Sagres, Portugal,
on the map (dotted line) and in reality (solid arc). The gradients towards
the shortest path are given using the map geometry (Euclidean) and the
true geometry (Riemannian).

tuitive difference between natural and conventional gradients is understood
by the well-known map analogy: the shortest path between two places on
earth is given by an arc on a map. The natural gradient gives the direction
of the arc while the ordinary gradient gives the direction of the straight line
between the two points on the map. See Figure 2.1 for an illustration. A
detailed discussion of natural gradient methods for different type of ICA
and BSS problems can be found from [CA02, Chapter 6][Hay00, Chapters
2 and 3]. See [Man02, Dou00, DAK00, EAS98] for related algorithms with
orthogonality constraints and for further references.

2.4.2 Jacobi algorithms

Another popular optimization method type in ICA context are algorithms,
which are based on a classical idea in multivariate numerical analysis [GL89]:
instead of optimizing directly with respect to all dimensions of data, one
optimizes the function iteratively in a pairwise manner. This means that
instead of hopefully going directly towards the global optimum, one finds
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the optimum of two dimensional data, transforms the data accordingly, and
hopes that by iterating this several times to each pair finally leads to the
global optimum. This is especially useful approach if the parameter space
consists of orthonormal matrices since each two dimensional orthonormal
matrix can be parameterized with a single parameter. Such algorithms are
known as Jacobi algorithms [Car99, Com94].

The advantage of the Jacobi algorithms is that the two-dimensional op-
timization surface and function may be relatively simple compared to the
full multidimensional case. The main drawback is that the computational
complexity is quadratic with respect to the number of dimensions. The ICA
methods presented in Chapter 6 use Jacobi type of optimization.

Jacobi optimization has been extensively used [Car99, Com94] in the ICA
context when the function to be optimized can be viewed as a set of matrices
whose off-diagonals should vanish for the correct parameter (usually an or-
thonormal matrix). Since the matrices are also estimated, the off-diagonals
of different matrices do not usually vanish simultaneously for any param-
eter value, and one is left to find a parameter vector that minimizes the
off-diagonals e.g. in mean square sense. An example of such a procedure is
called joint diagonalization [Car96]. This optimization procedure is behind
the well-known JADE algorithm [CS93, Car], where a set of forth-order cu-
mulant matrices are orthogonally jointly diagonalized. In the the CHESS
method [Yer00] described in Section 6.2 the matrices are obtained from the
second derivative of the s.c.f. In the SOBI method [BAMCM97] , a set of
autocovariance matrices are unitary diagonalized, and a method for unitary
diagonalizing cumulants of any order greater or equal to three is proposed
in [Mor01]. See also [Yer02] for a recent extension of joint-diagonalization
to non-orthonormal matrices.

2.5 Discussion

The most important part for the success of an ICA method is naturally
the correct model structure, i.e. if the system is linear, memoryless, con-
volutive etc. If the model approximately holds, then the criterion the ICA
method is based on becomes crucial. If the criterion does not quantify the
independence well or it is hard to estimate, one can not expect a good per-
formance from the method no matter which type of optimization is used.
The mutual information is a relatively good independence measure, but it
is extremely hard to estimate. The characteristic function-based criteria
allow good quantification of the dependence, and are also relatively eas-
ily estimated. However, the computational costs of the estimation seems
to be higher, especially if compared to the methods approximating mutual
information.

Gradient-based methods usually offer a fast optimization for ICA meth-
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ods if the gradient is easily computed. This is usually the case if the method
is based on the mutual information or a related criterion. However, when
the gradient is computationally cumbersome, as it seems to be the case with
characteristic function or cumulants -based criteria, the Jacobi algorithms
offer usually a decent optimization alternative.
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Chapter 3

Identifiability, separability,
and uniqueness of linear ICA
models

In a BSS problem, the goal is to reconstruct the original source signals
and/or identify the mixing system (or its inverse) only from the observations.
In the ICA model there is an underlying assumption that the original source
r.v.’s are mutually independent. To what extend and with what restrictions
this is possible, i.e. when the model is well-defined, is considered is this
chapter.

The traditional real-valued ICA model is considered in Section 3.1. The
original results for this model were established by Comon [Com94] stat-
ing essentially the separability and the system identification conditions for
models with at least as many mixture r.v.’s as source r.v.’s with finite vari-
ance. These results are extended to cases where there are more sources
than mixtures and also the requirement for finite variances is relaxed in
Publication VIII. The extension to complex-valued variables introduced in
Publication IX is treated in Section 3.2.

3.1 Real-valued linear instantaneous ICA model

The linear instantaneous real-valued ICA model is obtained from the general
model (2.2) by allowing only linear mixing functions, i.e.

x̄ = As̄, (3.1)

where (s̄1, . . . , s̄m)T = s̄ are unknown real-valued independent r.v.’s, i.e.
sources, A is a constant p × m unknown mixing matrix, p ≥ 2, and
x̄ = (x̄1, . . . , x̄p)T are mixtures, i.e., the observed r.vc. (sensor array out-
put). The couple (A, s̄) is called a representation of r.vc. x̄. It is said
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that a representation is reduced if no two columns in the mixing matrix are
colinear, that is, the columns in the mixing matrix are not pairwise linearly
dependent. Finally, a reduced representation (B, r̄) of x̄ is proper, if it sat-
isfies the same assumptions as (A, s̄) in Eq. (3.1), i.e. the representation
(B, r̄) satisfies the assumptions for the model.

When there are more sources than mixtures, the ICA model is termed
overcomplete ICA, and the problem is underdetermined source separation.
Since x̄ = As̄ = (AΛP )(P−1Λ−1s̄), where r̄ = P−1Λ−1s̄ has independent
components, for scaling by any diagonal matrix Λ with nonzero diagonals
and for any permutation matrix P , the mixtures x̄ can never have com-
pletely unique representation. These ambiguities are called the fundamental
indeterminacy.

If one does not assume reduced representations, it is hard to obtain any
type of uniqueness. Indeed, if any two columns, say αk and αl, of A are
colinear, i.e. αk = aαl for some constant a ∈ R, then x̄ has also a represen-
tation with only m− 1 source r.v.’s by combining the kth and lth source to
a single source as̄k + s̄l. Furthermore, suppose that colinear columns were
allowed. Then if any of the source r.v.’s has a divisible distribution, then x̄
would have representations also for some dimension m̂ > m. A divisible dis-
tribution means that the c.f. of a r.v. r̄ can be written as product of n c.f.’s
for some positive integer n > 1 [Luk70], i.e. the r.v. r̄ can be presented as a
sum

∑n
k=1 r̄k of independent r.v.’s r̄k, k = 1, . . . , n. A r.v. can even have an

infinitely divisible distribution, and then the mixture x̄ would have repre-
sentations for any given dimension m̂ ≥ m. Infinitely divisible distributions
include normal, Cauchy, Poisson, Gamma and all α-stable distributions (for
the use of heavy-tailed distributions in signal processing, see e.g. [NS95]).

One is trying to solve the BSP problem based on a priori assumptions
about the model. The solutions not satisfying these assumptions have little
meaning. Thus, alternative non-proper representations of x̄ should not be
considered. In many cases, a mixture has infinitely non-proper representa-
tions as the following example shows.

Example 1. Let s̄1 and s̄2 be non-normal independent r.v.’s and let n̄1, n̄2

and n̄3 be independent and standard normal (also independent of s̄1 and of
s̄2). Then the mixture

x̄ =
(

1 0
0 1

) (
s̄1 + n̄1 + n̄2

s̄2 + n̄1 − n̄2

)
=

(
1 0 cos(t) sin(t)
0 1 − sin(t) cos(t)

) 
s̄1
s̄2√
2n̄1√
2n̄2



=
(

1 0 cos(t) sin(t) sin(t)
0 1 − sin(t) cos(t) cos(t)

) 
s̄1
s̄2√
2n̄1

n̄2

n̄3

 ,
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where t ∈ R is an arbitrary angle, has a unique (up to the fundamen-
tal indeterminacy) representation among representations with no normal
r.v.’s. However, it has infinitely non-trivially different reduced representa-
tions with four r.v.’s and (non-reduced) representations for more than four
source r.v.’s.

The different underlying assumptions required for the ICA model are
defined below, and studied in detail in the following subsections. The first
definition formalizes the concept of the traditional source separation in the
ICA context.

Definition 1. The model (3.1) is called separable, if for every matrix W
such that Wx̄ has m independent components, we have ΛP s̄ = Wx̄ for
some diagonal matrix Λ (with nonzero diagonals) and permutation matrix
P . Moreover, such a separating matrix W has to always exist.

Separating matrices are also called solution matrices. It is seen that a
separating matrix is unique up to the scaling and permutation of its rows
for a given separable mixture.

Sometimes we can not separate the sources in the sense of Definiton 1,
but the goal may be the blind identification of the system or some proba-
bilistic treatmeat of the source signals. These ideas are formalized in the
following definitions.

Definition 2. The model (3.1) is called identifiable, if in every proper rep-
resentations (A, s̄) and (B, r̄) of x̄, every column of A is colinear with a
column of B and vice versa.

Definition 3. The model (3.1) is called unique, if the model is identifiable
and further source r.vc.’s s̄ and r̄ in different proper representations have
the same distribution for some permutation up to changes of location and
scale.

3.1.1 Identifiability

Identifiability states the conditions when it is possible to identify the mixing
system up to the fundamental indeterminacy. This is formulated in the
following theorem proved in Publication VIII.

Theorem 3.1.1 (Identifiability of Linear ICA). The model of Eq. (3.1)
is identifiable, if

(i) all source r.v.’s are non-normal, or

(ii) the mixing matrix A is of full column rank and at most one source r.v.
is normal.
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Since independent normal r.v.’s are independent for any orthogonal
transformation, the mixing matrix associated with Gaussian source r.v.’s
can not be identified (see Example 1 in Publication VIII). For overcom-
plete ICA, even single normal r.v. is too much (see Example 3 in Publica-
tion VIII).

It also follows from the assumption on reduced representations that iden-
tifiability does not only guarantee that columns in different representations
are necessarily linearly dependent but also that the number of sources, or the
model order, is the same. For more information on ICA methods identifying
underdetermined mixtures, see e.g. [HKO01, Tal01a, LMVC03].

3.1.2 Separability

Separability addresses the problem of whether (and if so, under what con-
ditions) it is possible to reconstruct the original source signals up to the
fundamental indeterminacy. It is seen that separation is possible in gen-
eral if there are at least equal number of mixtures as sources, and at most
one normal source. This is formulated in the following theorem originally
established in [Com94] and extended in Publication VIII by removing the
requirement for finite variances. Separation of infinite-variance sources was
considered in [SYM01].

Theorem 3.1.2 (Separability of Linear ICA). The model of Eq. (3.1)
is separable if and only if the mixing matrix A is of full column rank and at
most one source r.v. is normal.

It should be noticed that although the scaling is unavoidable ambiguity
in ICA, the location can be recovered (up to scaling) in a separable model.
Furthermore, the separation is only possible if there are at least as many
mixtures as sources. Some separation methods are presented in chapters 5
and 6 of this thesis.

3.1.3 Uniqueness

Separation in the sense of Definition 1 is only possible if there are at least as
many mixtures as sources. However, even if there are fewer mixtures than
sources, the model may be identifiable. In these cases, it would be valuable
if also the distribution of the sources could be uniquely determined. Then it
might be possible to reconstruct the original sources in a non-deterministic
way, e.g. by maximizing the a posteriori distribution, as for instance in
[PK97, GC98, LLS99, Com04]. Thus, uniqueness essentially means separa-
bility for overcomplete mixtures.

Except for the last condition, the following theorem is proved in Pub-
lication VIII. In the theorem � denotes the Khatri-Rao product, i.e. the
columnwise Kronecker product of matrices. It is said in the following that
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a c.f. φ1(t) has an exponential factor with a polynomial P(t), if φ1(t) can
be written as φ1(t) = φ2(t) exp(P(t)) for a c.f. φ2(t).

Theorem 3.1.3 (Uniqueness of Linear ICA). The model of Eq. (3.1)
is unique if any of the following properties holds.

(i) The model is separable.

(ii) All c.f.’s of source r.v.’s are analytic (or all c.f.’s are non-vanishing),
and none of the c.f.’s has an exponential factor with a polynomial of
degree at least 2.

(iii) All source r.v.’s are non-normal with non-vanishing c.f.’s, and
rank

[
A�A

]
= m.

(iv) All source r.v.’s have non-vanishing c.f.’s without exponential factors
with a polynomial of degree k, 1 < k ≤ q, and rank

[
(A�)qA

]
= m >

rank
[
(A�)q−1A

]
.

(v) All source r.v.’s are non-normal with finite variances and non-
vanishing c.f.’s, and rank

[
(A�)3A

]
= m.

Proof of Case (v). The model is identifiable by Theorem 3.1.1. Without loss
of generality we may assume that sources have zero mean and unit variance,
since the means can be removed and there is the scaling ambiguity anyway.
Then uniqueness follows from the main theorem in [SR00], which states
that the distribution of the sources is uniquely determined if the mixing
matrix satisfies the assumed rank condition, given the first two moments,
and assuming c.f.’s are non-vanishing.

By Marcinkiewicz theorem all c.f.’s of the form exp
(
P(t)

)
are normal

(or degenerate). Further, all c.f. factors of an analytic c.f.’s are analytical.
Therefore, it seems 1 that if analytical s.c.f.’s differ by a polynomial, then
the polynomial must be of degree at most two. Thus it is conjectured that
the analytic part of Case (ii) could be reformulated in a compact form as

(ii’) All source r.v.’s have m.g.f.’s and none has a normal component.

R.v. x̄ is said to have a normal component, if it allows the decomposition
x̄ = s̄+ n̄ for some independent r.v. s̄ and a normal r.v. n̄.

In Case (ii) the number of sources for any given number of mixtures is
unlimited. In other cases, the number of sources is limited. However, it
grows fast for the last three cases as the number of mixtures gets larger.
Additionally, the cases (iii) and (iv) impose no restrictions on the moments

1According to prof. Nikolai Ushakov from NTSU, Norway, it is not known if there exist
analytical c.f.’s φ1(t) and φ2(t) and a polynomial P(t) of degree greater than 2 such that
φ1(t) = φ2(t) exp

(
P(t)

)
(personal communication).
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of the source r.v.’s. Especially, they apply to all non-normal α-stable distri-
butions. This follows from the canonical representation of the stable distri-
butions (e.g. Theorem 5.7.3. in [Luk70]).

In Case (v) the rank condition holds if
(
p+2
3

)
≥ m with some trivial

exceptions, and surely does not hold if
(
p+2
3

)
< m [SR00]. This means that

the existence of the variances of the sources can guarantee the uniqueness
of the model up to, for instance, 220 sources for only ten mixtures.

The importance of the non-analytical c.f.’s to be non-vanishing is demon-
strated in the following example.

Example 2 (Adapted from Remark 3 in [SR00]). Let x̄ =
(

1 0 1
0 1 1

)( s̄1
s̄2
r̄1

)
with the following Pólya-type c.f.’s (see e.g. [Ush99]):

φs̄1(t) = φs̄2(t) =

{
1− |t|, |t| ≤ 1
0, |t| > 1

,

and

φr̄1(t) =

{
1− |t|

2 , |t| ≤ 2
0, |t| > 2

.

Define further a c.f. φr̄2(t) = φr̄1(t), |t| ≤ 2, and φr̄2(t + 4) = φr̄2(t). But
now φx̄

(
(t1 t2)T

)
= φs̄1(t1)φs̄2(t2)φr̄1(t1 + t2) = φs̄1(t1)φs̄2(t2)φr̄2(t1 + t2),

and thus r.vc. x̄ has another representation x̄ =
(

1 0 1
0 1 1

)( s̄1
s̄2
r̄2

)
. Since r.v.’s

r̄1 and r̄2 differ more than just by the change of location and scale, it is seen
that the corresponding model can not be unique.

Another example of identifiable but non-unique representation is given
in Example 2 of Publication VIII. It is based on the property that r.v.’s
have a normal component, which means that the corresponding s.c.f.’s have
a polynomial term of degree two. The example can be generalized to r.v.’s,
which do not have a normal component, but the s.c.f. has a polynomial
term P(t) of any degree. This is shown for a third order polynomial in the
following example.

Example 3. Let φ1(t) = exp(t3)φ2(t), and let independent r.v.’s s̄k,
k = 1 . . . , 6, and r̄k, k = 1 . . . , 6, have non-vanishing c.f.’s φ1 and φ2 (re-
spectively). Existence of such c.f.’s follows from Lemma 3 in [SR00]. Since
2t31−108t32 +(t1 +7t2)3− (t1−2t2)3− (t1 +3t2)3− (t1 +6t2)3 ≡ 0, it follows
that the c.f. of a r.vc.

x̄ =
(

1 0 1 1 1 1
0 1 7 −2 3 6

) (
3
√

2s̄1 −3 3
√

4s̄2 s̄3 −s̄4 −s̄5 −s̄6
)T

equals to the c.f. of a r.vc.(
1 0 1 1 1 1
0 1 7 −2 3 6

) (
3
√

2r̄1 −3 3
√

4r̄2 r̄3 −r̄4 −r̄5 −r̄6
)T
,
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i.e. x̄ has two representations that are not equivalent.

C.f.’s with a factor exp
(
P(t)

)
are not limited by moment properties, since

it is known [Gol73] that for any even polynomial P(t), P(0) = 0, there exist
c.f.’s φ1 and φ2 such that φ1(t) = φ2(t) exp

(
P(t)

)
, and the corresponding

r.v.’s possess moments of all orders. Further, it is known [SR00] that the
c.f.’s φ1 and φ2 can be non-vanishing for polynomials of all orders. Thus
Examples 2 and 3 show that requirement of non-vanishing c.f.’s without
exponential polynomial factors can not be in general avoided, i.e. there is
not much room for improvement in Theorem 3.1.3.

3.1.4 Discussion

M.g.f.’s have most of the nice properties of c.f.’s, and are further real-valued.
Therefore, in the light of Conjecture 3.1.3(ii’), they might offer a natural
framework for developing algorithms that try to reconstruct the original
signals in underdetermined ICA. This is also supported by the fact that
the existing identification algorithms are all based on either cumulants (e.g.
[LMVC03]) or on c.f.’s (e.g. [Tal01a]).

3.2 Complex linear instantaneous signal model

The real-valued model of Eq. (3.1) can be extended to complex domain, i.e.

x̄ = As̄, (3.2)

where (s̄1, . . . , s̄m)T = s̄ are unknown complex-valued independent non-
constant r.v.’s and A is a constant p×m unknown complex-valued matrix,
p ≥ 2. As noted in subsection 2.3.4, the operator structure of complex r.vc.’s
is different from real r.vc.’s. Therefore, it is not a priori clear under what
conditions the model (3.2) is well-defined. Considering two dimensional real
r.vc.’s it may actually appear that the model is not identifiable under any
general conditions as the following example shows.

Example 4. Let r̄k, k = 1 . . . , 4, be independent real r.v.’s, and let A1, A2,
B1, and B2 be 2×2 nonsingular real matrices. Define s̄1 = A1(r̄1 r̄2)T and
s̄2 = A2(r̄3 r̄4)T . Now s̄1 and s̄2 are independent, but so are also ȳ1 and
ȳ2, (

ȳ1

ȳ2

)
=

(
B1 0
0 B2

)
P

(
A−1

1 0
0 A−1

2

) (
s̄1

s̄2

)
,

for any permutation matrix P .

However, it turns out that theorems similar to the real case (Section 3.1)
hold also in complex domain as it was shown in Publication IX. This is
considered next.
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3.2.1 Identifiability, separability, and uniqueness

The definitions of different degrees of unambiguity, i.e. identifiability, sepa-
rability, and uniqueness, do not require any changes for the complex model
(3.2). However, notice that in uniqueness by scaling it is now meant complex
scaling, i.e. multiplication by a complex number. The relevant theorems are
all stated in this subsection. For the proofs and some examples, see Publi-
cation IX.

The identifiability theorem is completely analogous to the real-case.

Theorem 3.2.1 (Identifiability of Linear Complex ICA). The model
of Eq. (3.2) is identifiable, if

(i) no source r.v. is complex normal, or

(ii) the model is separable.

The separability is different from the separability of real r.v.’s. Namely,
it turns out that mixtures of some complex normal r.v.’s can be separated
(see Example 5 in Publication IX).

Theorem 3.2.2 (Separability of Linear Complex ICA). The model of
Eq. (3.2) is separable if and only if the complex mixing matrix A is of full
column rank and there are no two complex normal source variables with the
same spectral coefficient.

Some work on separation algorithms for complex ICA can be found from
[Car93, Com94, BH00, Fio03, ASM03]. Notice also that if the source r.vc.
has a distinct spectrum, then the separation can be achieved simply by
applying the strong-uncorrelating transform (see Publication IX), i.e. using
the second order statistics only.

Finally, the first two cases of the real uniqueness theorem (Theo-
rem 3.1.3) can be extended also to the complex case. The rest of the cases
depend on the structure of the coefficients in the mixing matrix, and further
work is needed to see if those theorems also have a complex counterpart.

Theorem 3.2.3 (Uniqueness of Linear Complex ICA). The model of
Eq. (3.2) is unique if either of the following properties hold.

(i) The model is separable.

(ii) All c.f.’s of source r.v.’s are analytic (or all c.f.’s are non-vanishing),
and none of the c.f.’s has an exponential factor with a polynomial of
degree at least two, i.e. no source r.v. has the c.f. φ1 such that
φ1(z) = φ2(z) exp(P(z, z∗)) for some polynomial P(z, z∗) of degree at
least two.
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3.3 Discussion

Identifiability considers the reconstruction of the mixing system. It is rather
striking that theoretically we can obtain the mixing matrix from only two
sensors for whatever number of non-Gaussian sources. It would be rather
interesting to know what are the true practical limitations. This is ulti-
mately connected to the convergence rate of the central limit theorem. The
separation, that is the exact reconstruction of the source signals by a trans-
formation, is only possible if there are at least as many sensors as sources.
However, it may turn out that there are some other ways of reconstructing
the source signals in underdetermined unique models, since the full proba-
bilistic information can be recovered. Developing such algorithms may be
an interesting future research topic.

There are some differences between real- and complex-valued ICA mod-
els. First, the separability of some complex mixtures with more than a
single normal r.v. is rather surprising. Second, some complex mixtures can
be separated by the second order statistics only. This may have interesting
applications in areas where one can affect the statistics of the source signals,
e.g. in communications.
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Chapter 4

Nonlinear instantaneous ICA
models

Both the models introduced in the previous chapter were subclasses of the
general instantaneous ICA model of Eq. (2.2) with the restriction that
the mixing functions are linear. It can be fairly easily shown (see e.g.
[HP99, TJ99b]) that there are infinite number of mixing functions that pro-
duce independent marginals but are still mixtures of original independent
sources. Thus, the general model is not separable in the sense [Tal01b]
that if a function produces independent components from the mixture, each
component is necessarily a transformation of a source signal.

However, one may still find classes of functions and r.v.’s such that the
corresponding model is separable. This type of ICA model is called non-
linear instantaneous ICA. Some interesting nonlinear models are reviewed
in this section. A fairly general class of nonlinear models stemming from
the addition theorem [Acz66] is considered in Section 4.1. These models are
introduced in Publication VI. A overview of the well-known post-nonlinear
model is given in Section 4.2. Recent reviews of nonlinear general ICA mod-
els and methods are given in [JK03, JBZH04]. Some nonlinear ICA mod-
eling approaches, especially Bayesian methods, can be found from [HKO01,
Chapter 17]. A general framework and relative gradient-based method for
separation of nonlinear mixtures whose parameters form a Lie group, is
presented in [Tal02].

4.1 Models implied by Addition Theorem

Symmetry is a fundamental property of the physics of nature [HL]. Math-
ematically symmetry is described by the group theory (see [HL] for a nice
discussion on symmetry in nature and the group theory). Therefore, from
the application point of view, it is natural to require that the mixing func-
tions in Eq. (2.2) satisfy the group axioms with respect to source r.v.’s. This

28



motivates the following construction.
A closed operation ◦ on a set forms a group [Sco87], if the operation is

associative, there exists a unit element, and every element has an inverse
element. A group is called Abelian if additionally the group operation is
commutative. It is straightforward to check that any continuous and strictly
monotonic (i.e. invertible) function G : R → U gives an Abelian group on
an open interval U ⊆ R by defining for all u, v ∈ U,

u ◦ v , G(G−1(u) + G−1(v)). (4.1)

By denoting x = G−1(u), y = G−1(v), and H2

(
u, v

)
= u ◦ v, Eq. (4.1) can

be written as
G(x+ y) = H2

(
G(x),G(y)

)
. (4.2)

This type of equations are called addition theorems [Acz66]. It can be shown
[Acz66] that given an Abelian operation ◦ on an open interval U, Eq. (4.2)
is satisfied for a unique (up to constant multiplication of its argument) con-
tinuous strictly monotonic function G. The converse is also true. For a
fixed continuous function G satisfying (4.2) with some function H2

(
·, ·

)
, the

operation H2

(
·, ·

)
necessarily defines an Abelian group and G is strictly

monotonic.
Since G has the inverse function G−1, it follows by (4.2)

G(kx) = G(x+ x+ · · ·+ x) = G(x) ◦ G(x) ◦ · · · ◦ G(x) , k ? G(x) = k ? u,

which gives a new multiplication operation ? for an integer k. This extends
uniquely by continuity to all reals a by defining

a ? u , G(ax) = G(aG−1(u)). (4.3)

Using operators defined by Eq. (4.1) and Eq. (4.3) one can define a nonlinear
function

F : Um → R, F(u1, . . . , um) = (a1 ? u1) ◦ (a2 ? u2) ◦ · · · ◦ (am ? um), (4.4)

where the parenthesis could be dropped since ◦ is associative. Using these
type of functions as mixing functions, a nonlinear ICA model of Eq. (2.2)
can be written as

x̄ = F(s̄) =


F1(s̄1, . . . , s̄m)
F2(s̄1, . . . , s̄m)

...
Fp(s̄1, . . . , s̄m)

 =


a11 ? s̄1 ◦ a12 ? s̄2 ◦ · · · ◦ a1m ? s̄m

a21 ? s̄1 ◦ a22 ? s̄2 ◦ · · · ◦ a2m ? s̄m
...

ap1 ? s̄1 ◦ ap2 ? s̄2 ◦ · · · ◦ apm ? s̄m

 .
(4.5)

These models were introduced in Publication VI. It should be emphasized
that any continuous strictly monotonic function introduces a model of the
form (4.5) by Eq.’s (4.1) and (4.3).
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Now, let αk = (a1k a2k · · · apk)T . Since the location parameter of
a separable linear ICA model can be recovered as noted on page 22, the
following separability result holds (see Publication VI and Theorem 3.1.2).

Theorem 4.1.1 (Separability of Addition Theorem models). Sup-
pose the model (4.5) holds such that at most one of the r.v.’s G−1(s̄k),
k = 1, 2, . . . ,m is normal, where G is the function defined by the opera-
tor ◦, and that vectors αk, k = 1, 2, . . . ,m, define a full column rank ma-
trix A =

(
α1 α2 ··· αm

)
. Then the model (4.5) is separable up to arbitrary

permutation and a constant ?-multiplication (defined in Eq. (4.3)) of each
source.

Theorem 3.1.1 and Theorem 3.1.3 (results from Publication VIII) are
similarly extended to addition theorem models. An important consequence
of Theorem 4.1.1 is that if G does not preserve normality, then it is possible
to separate normal r.v.’s contrary to the linear model.

A function is called algebraic, if it can be formed by using finite number
additions, subtractions, multiplications, divisions, and root taking. All ana-
lytic algebraic mixing functions of Eq. (4.4) are obtained from the following
fundamental theorem from the theory of elliptic functions, see [Acz66] for
references to the original papers.

Theorem 4.1.2. Every single-valued analytic function G with an algebraic
addition theorem is either a rational function of x, or a rational function
of eax or a doubly periodic function (a rational function of Weierstrass’
p-function and its derivative).

However, there are some non-algebraic and non-analytic mixing func-
tions that are of engineering interest. The operator ◦ may be described
by common non-algebraic operations such as the exponential function or
the trigonometric functions. Furthermore, the function G could be defined
piecewise. This type of models arise, if the system is homogeneous within
certain interval of signal values but treats differently values from two differ-
ent intervals. In the following example the model has two “subsystems” (for
negative and positive signals), which are both linear, but the overall model
is not.

Example 5. By Eq. (4.1) the piecewise linear function

G(x) =

{
x x ≥ 0
bx x < 0

, (4.6)

where b is a positive constant, introduces the group operation

u ◦ v =


u+ v, uv ≥ 0
1
b min(u, v) + max(u, v), uv < 0, b ≥ −min(u,v)

max(u,v)

min(u, v) + bmax(u, v), uv < 0, b < −min(u,v)
max(u,v)

,
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which is seen to be bilinear in first and third quadrants of R2. The multipli-
cation operation is given by

a ? u =


1
bau, a, u < 0
au, a ≥ 0
bau, a < 0, u ≥ 0

.

Notice that by Theorem 4.1.1, normal r.v.’s can be separated in the ICA
model (4.5) defined by the function (4.6) (assuming b 6= 1).

A separation method for the addition theorem models (4.5) with known
structure (i.e. function G is known) is obtained from any ICA method for the
linear model (3.1) with the following generic procedure (see Publication VI):

1. Transform every value of the observed signal x[k], k = 1, . . . , N , with
the function G−1.

2. Use the linear ICA method for the transformed signal.

3. Transform the output of the linear method with the function G.

Such a method is applied in Publication VI to the reduction of light reflection
from specular object surfaces in natural images. Also a toy example of
separation of Gaussian signals is presented for illustration purposes.

4.2 Post-nonlinear model

Another nonlinear ICA model (2.2) is described by

x̄ = F(As̄), (4.7)

where F(t) = (F1(t1), . . . ,Fp(tp))T is a component-wise nonlinear function.
The model is known as post-nonlinear (PNL) model [TJ99c], and can be
viewed as linear mixing followed by a nonlinear distortion at each sensor.
Since F(·) is also unknown, the PNL model provides a wide variety of non-
linear mixing systems.

The separating structure of Eq. (4.7) is a pair (G,W ), where G is also a
component-wise nonlinear function, such that WG(x̄) has m mutually in-
dependent components. The model of Eq. (4.7) is then separable if for every
separating structure (G,W ) the r.vc. WG(x̄) is a permuted, scaled, and
translated version of the source s̄. The separability of the PNL model (4.7)
is shown in [TJ99c] under the following conditions:

(i) The number of mixtures is equal to the number of sources, i.e. p = m,
and the matrix A is invertible.
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(ii) The matrix A has at least two nonzero entries per row or per column.

(iii) Functions Fk, k = 1, . . . , p, of Eq. (4.7) , are differentiable and invert-
ible functions such that the derivative of the composition of Gk and Fk

does not vanish.

(iv) Each source s̄k, k = 1, . . . ,m, has a p.d.f. such that it vanishes at least
at a single point.

For slightly more restricting conditions, but for a simpler proof, see [BZ02].
Especially conditions (iii) and (iv) are restrictive. Further research is needed
to determine if the conditions could be relaxed.

The PNL model does not describe truly nonlinear mixing but rather
nonlinear distortion after linear mixing. However, if the components Fk

of F are the same and p = m, i.e. F(t) = (F(t1), . . . ,F(tm))T , then by
writing s̄ = F−1(r̄) and using the addition theorem (4.2), the model of
Eq. (4.7) reduces to an addition theorem model (4.5) in source r.v.’s r̄k,
k = 1, . . . ,m. Therefore, the PNL mixture can be viewed as an outcome
of a truly nonlinear mixing. If the mixing functions of Eq. (4.5) satisfy
conditions for PNL mixture, the statement may be formulated another way
around: the addition theorem models belong to the class of PNL models
with post-processing.

Methods for separating the PNL mixtures based on mutual information
and score function estimation are proposed in [TJ99c, TJ99a]. A geometric
algorithm based on the border detection for bounded PNL models is pro-
posed in [BZJN02, BZ02]. Methods essentially relying on the c.f. difference
condition of Eq. (2.12) are proposed in [APJ03, Ach03].

4.3 Discussion

So far, there have been relatively few applications of nonlinear ICA mod-
els. However, it is hard to imagine any physical mixing system that would
not satisfy the group operations. Furthermore, many of PNL outputs can
actually be viewed as results of a truly nonlinear mixing described by the
addition theorem. It is probably fair to say, at this state of development of
nonlinear ICA models and algorithms, that there either do not exist many
blindly invertible truly nonlinear mixing systems in nature, or that they are
yet to be found. However, they are likely to belong to the class of models
described by the addition theorem because of the inherited symmetry in
nature.

It is stated in [JK03, JBZH04] that the general addition theorem sepa-
ration method described on page 31 is not blind, since the function G has to
be known. This statement is inaccurate requiring some clarification. The

32



proposed method is blind in exactly the same way as the usual linear ICA:
unknown mixing coefficients are obtained from mixtures of unknown source
signals. Indeed, the linear ICA model of Eq. (3.1) is just a special case of
the model of Eq. (4.5) with G(x) = x.

Naturally, there might be room for additional degrees of freedom (i.e.
blindness) in addition theorem models. That is, instead of considering a
model described by a known function G, one could try to find a param-
eterized family of functions such that each of them describes an addition
theorem model, and the parameters are also unknown. An example of a
such class of functions is obtained from Example 5 by taking the constant
b as a parameter. However, with such an extension, one should show that
only the true parameter values b and A lead to independent components
for any allowed r.v.’s. This might be an interesting topic for a future re-
search, and one should especially look for families where the sources could
be recovered up to scaling (no non-linear distortion). Since this extension
can be viewed as a PNL mixture, the separation conditions proved for PNL
mixtures give sufficient but rather restrictive conditions for some function
classes. There exists also an interesting connection to nonlinear filtering
theory. Namely, taking G(x) = exp(x) the function of Eq. (4.4) defines a
homomorphic system [OS89].
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Chapter 5

Source adaptive methods for
blind separation

When the gradient based optimization is applied to the mutual information
criterion of Eq. (2.8), it turns out that the optimal gradient depends on the
unknown distribution of the sources. ICA methods that try to calculate the
optimal gradient by also estimating the source distribution, or a function re-
lated to it, are generally called source adaptive ICA methods. In sections 5.2
and 5.3 two such ICA methods, originally introduced in Publication I and
in Publication II respectively, are reviewed. These methods are applicable
to separating the linear instantaneous model of Eq. (3.1). Source adaptive
methods are first briefly reviewed in Section 5.1. For convenience, it is as-
sumed that the number of sources is equal to the number of mixtures, i.e.
A is a square matrix of rank m.

5.1 Overview of mutual information-based separa-
tion methods

Let
ȳ = Wx̄. (5.1)

Then the ICA separating methods based on m.i. (2.8) criterion minimize
the m.i. of ȳ, i.e. the separating matrix is obtained as

Ŵ = argmin
W

MI(Wx̄). (5.2)

It is possible to use the second type approach (see Section 2.2) in deriving
the ICA method (e.g. [DT00, MI03]). However, since the p.d.f.’s are un-
known, the direct estimation of m.i. is hard [Pan03]. It is also possible to
approximate m.i. by series approximations. However, the resulting approx-
imation is in terms of moments, and moments and cumulants are related.
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Therefore, this type of approximation methods are essentially the same as
cumulant methods treated in Section 6.1. A more traditional way is to adopt
the first type of approach (see Section 2.2), and directly solve (5.2) using a
stochastic gradient descent method. By Eq. (2.10) and the relation (5.1),

MI(ȳ) =
p∑

k=1

H(ȳk)−H(x̄)− log |det(W )|,

and a direct calculation gives the matrix gradient

∇MI(ȳ) = Eȳ

{
ϕȳ(ȳ)x̄T

}
− (W T )−1 = Eȳ

{
ϕȳ(ȳ)ȳT

}
(W T )−1 − (W T )−1,

(5.3)
where ϕȳ(t) =

(
ϕȳ1(t1), . . . , ϕȳp(tp)

)T is the vector of the score functions

ϕȳ(t) , − d

dt
log fȳ(t) = −

f ′
ȳ(t)
fȳ(t)

(5.4)

of the marginal r.v.’s of the r.vc. ȳ. The associated natural gradient is given
by

∇NMI(ȳ) = ∇MI(ȳ)W T W =
(
Eȳ

{
ϕȳ(ȳ)ȳT

}
− I

)
W , (5.5)

see [CA02, Hay00, HKO01, Car98, Pha96] for detailed derivation and histor-
ical references. Eq. (5.3) shows that the gradient is a function of the updated
output ȳ and the previous estimate of W in every iteration of the learning
algorithm. Essentially the same result is obtained with other methods rely-
ing on Eq. (2.7), e.g. information maximization [BS95], (quasi)-maximum
likelihood approach [PG97], and maximization of non-Gaussianity [DL95],
see [Hay00, HKO01, CA02, Car98] for detailed discussion and references.

In order to have a complete ICA method, an estimate of Eȳ

{
ϕȳ(ȳ)ȳT

}
is

needed. The expectation operator can be replaced by the realization sample
average, and therefore the only remaining problem is the unknown vector of
score functions ϕȳ(·). Perhaps the simplest solution is to use a score vec-
tor comprised of fixed nonlinear functions ϕ(·). The resulting methods can
be interpreted from the nonlinear correlation (2.6) viewpoint. Rather sur-
prisingly, some well-chosen nonlinear functions seem to work well in many
practical situations, see [Hay00, Appendix 3.3 and Section 4.6][HKO01, Sec-
tion 14.3][CA02, Chapter 6] for some local stability theorems. However, in
the view of the necessity part of Eq. (2.6), it comes as no surprise that meth-
ods relying on a fixed nonlinearity are bound to fail for some r.vc.’s even
in the case, where it is assumed that the sources have symmetric p.d.f.’s
[MD02].

Another, theoretically more justified method is to adapt to the source
distributions by estimating the score vector ϕȳ(·). This type of source adap-
tive ICA is essentially adaptive score function modeling. Two parametric
solutions, originally introduced in Publication I and in Publication II, are
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considered in the following sections of this chapter. Another method relying
on generalized Gaussian distribution is presented in [CCA00], a method us-
ing the t-distribution is proposed in [CM99], a nonparametric method based
on linear combination of basis function is found from [PG97], and a kernel
density estimation based methods are proposed in [BPR04, LY03]. Both the
generalized Gaussian distribution and the t-distribution are symmetrical.

5.2 Extended generalized lambda distribution

By the relation (5.4), a parametric model for the score function is obtained
from any twice differentiable parametric model for d.f.’s. This approach was
taken in Publication I, where the extended generalized lambda distribution
(EGLD) was used as the d.f. model. This distribution family is a generaliza-
tion of Tukey’s lambda distribution [Tuk60], and it has been mainly used in
fitting a distribution to the empirical data. The latest extension, the EGLD
family [KDM96], is a combination of generalized lambda distribution (GLD)
and generalized beta distribution (GBD). See Figure 1 in Publication I for
the characterization of the EGLD family and some common distributions in
terms of the third and the fourth central moments.

A r.v. x̄ belongs to the GLD family if its inverse d.f. can be expressed
in the form

F−1
x̄ (u) = λ1 +

uλ3 − (1− u)λ4

λ2
, (5.6)

where 0 ≤ u ≤ 1 and λ1, λ2, λ3 and λ4 are the parameters of the distribution.
The other part of EGLD, the GBD family is characterized by the p.d.f.

fx̄(t) = aβ2
−(β3+β4+1)(t− β1)β3(β1 + β2 − t)β4 , (5.7)

where a is a constant and β1, β2, β3 and β4 are the parameters of the
distribution. The score functions of the EGLD distributions (5.6) and (5.7)
can be solved in a closed form, see Publication III for correct formulas.

Finally, one needs to estimate the parameters of distributions. This
can be achieved [KDM96] by the method of moments, which means that
the estimated moment values are substituted in the place of the theoretical
moments directly calculated from the formulas describing the family. In the
case of GBD, the parameters can be given in a closed form in terms of the
sample moments. On the other hand, the corresponding GLD equations do
not allow simple formulas, and computationally complex numerical solutions
are needed. These solutions are tabulated in [DK96], and they have been
used in the EGLD based method in Publication I and in Publication III.

A more convenient way to estimate the parameters of GLD distribution
is proposed in Publication III. It is based on L-moments, which are linear
combinations of order statistics. In this case, the parameters of GLD are
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Figure 5.1: Performance of different ICA methods for four Rayleigh(1) dis-
tributed signals with varying signal length. Compared methods: EGLD-ICA
(Section 5.2), Pearson-ICA (Section 5.3), JECFICA (Section 6.3), FastICA
[H+], and JADE [Car].

obtained in a simpler form, and thus the extensive use of the tabulated
values is avoided.

Comparison of the performance of the conventional moment based ICA
method (EGLD-ICA) and four other methods is presented in Fig. 5.1. In the
simulation four signals with skewed distributions (Rayleigh(1) distributed)
were mixed with varying signal length. For each of 500 realization, the
quality of separation was measured by the performance index [ACY96]

J ,
p∑

k=1

( p∑
l=1

|P kl|
maxn |P kn|

− 1
)

+
p∑

l=1

( p∑
k=1

|P kl|
maxn |P nl|

− 1
)
, (5.8)

where the matrix P = (P kl) , WA for the solution matrix estimate W and
the true mixing matrix A. The zero value corresponds to the perfect sepa-
ration. The average performance as function of signal length is presented in
Fig. 5.1 and the detailed analysis of the performance for the signal length
500 is plotted in Fig. 5.2. For longer signals, EGLD-ICA shows the best
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Figure 5.2: Performance of different ICA methods for four Rayleigh(1) dis-
tributed signals with signal length 500. Compared methods: EGLD-ICA
(Section 5.2), Pearson-ICA (Section 5.3), JECFICA (Section 6.3), FastICA
[H+], and JADE [Car].

performance among tested methods. Another simulation with four discrete
Poisson(1) signals is presented in figures 6.1 and 6.2. Also there the EGLD-
ICA method shows relatively good performance although it was designed for
absolutely continuous distributions. Extensive simulation examples showing
the reliable performance of the EGLD methods are presented in Publica-
tion III. For some new estimation procedures of EGLD parameters and for
further references, see [KM99].

5.3 Pearson system

Another parametric model for the score function is proposed in Publica-
tion II. A r.v. x̄ belonging to the Pearson system is described through the
differential equation

f ′
x̄(t) =

(t− a)fx̄(t)
b0 + b1t+ b2t2

, (5.9)
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where a, b0, b1, and b2 are parameters of the distribution. In the view of the
equations (5.4) and (5.9), the Pearson system is convenient for modeling the
score functions. The score may be easily found to be

ϕx̄(t) = − (t− a)
b0 + b1t+ b2t2

. (5.10)

Since only the the score functions and not the densities are actually needed
in gradients, the simplicity of the score (5.10) makes the Pearson system
particularly appealing for a source adaptive ICA method. The parameters
of the Pearson system can be found using the method of moments, and the
corresponding equations can be solved in a closed form, see Publication II.
Such an ICA method is called Pearson-ICA.

The simulations results presented in figures 5.1 and 5.2 show that
Pearson-ICA has only marginally worse average performance than EGLD-
ICA for longer signals, but it shows better performance for short signals.
The same phenomenon is also apparent in the simulation results presented
in figures 6.1 and 6.2. Further simulations are presented in Publication II,
in Publication III, and in [BPR04]. It is seen that the Pearson system
based ICA works reliably, and also separates skewed distributions with high
fidelity. All distributions modeled by Eq. (5.9) are unimodal. For the exten-
sion of the Pearson system to multi-modal distributions, and also for some
additional simulation examples, see [KK02].

5.4 Discussion

In his 1998 review paper [Car98], J-F. Cardoso states that the design of
practical algorithms achieving source adaptivity is the first open question
in ICA. The methods proposed in sections 5.2 and 5.3 provide feasible so-
lutions to this problem. Both the proposed methods can model asymmetric
distributions unlike other parametric models proposed for ICA in the litera-
ture. The EGLD family covers slightly wider class of distributions than the
Pearson system, and it can be therefore considered a bit more general. How-
ever, the computational simplicity allowed by the direct relationship to the
score function makes the Pearson system an appealing choice for a source
adaptive ICA method.

Both EGLD and Pearson methods are able to separate significantly
larger family of distributions than any conventional method with any fixed
nonlinear score function. Furthermore, the computational cost is only
marginally higher. Therefore, these adaptive methods should be preferred
over the traditional fixed nonlinearity methods unless one has some spe-
cific a priori knowledge about the source distributions. Furthermore, both
proposed methods can exploit the skewness information of the distribution.
Therefore, they may be also preferable to the traditional nonparametric
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methods such as JADE [Car] implicitly assuming that the distributions are
symmetric.
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Chapter 6

Characteristic function-based
methods for blind separation

The mutual information-based separation methods discussed in Chapter 5
lead essentially to the estimation of the score function. However, the distri-
bution and the score of the sources are nuisance parameters for separable
models. One may ask if it is really necessary to estimate them. Furthermore,
the use of m.i. limits the methods to class of the source r.v.’s where p.d.f.’s
exist, and the direct estimation of m.i. is hard. A solution for these problems
may be obtained by using the independence characterization of Eq. (2.11)
instead of m.i. (2.8) as a criterion. Cumulant-based methods are reviewed
in Section 6.1, and a method based on derivatives of s.c.f. is reviewed in
Section 6.2. Finally, a c.f.-based method originally introduced in Publica-
tion IV and further improved in Publication V and in Publication VII is
proposed in Section 6.3.

6.1 Cumulant-based methods

An alternative criterion for independence can be constructed based on
Eq. (2.13) showing that all cross-cumulants should vanish for independent
marginals. Additionally, the Taylor expansion of Eq. (2.13) gives the optimal
relative weighting between different order cumulants to be minimized. How-
ever, cumulants need to be estimated in any cumulant-based ICA method,
thus factors like estimation error variance should be also considered in de-
signing such an ICA method.

Popular methods such as JADE [Car] use prewhitening to obtain an or-
thogonal mixture, and then find the final orthonormal matrix by minimizing
a criterion based on equally weighted fourth order cumulants (see [HKO01]).
This implicitly assumes that the source distributions are symmetrical. Some
more advanced methods (see [PM01, Mor01]) incorporate third order cumu-
lants with different weighting between third and fourth order cumulants at

41



the price of increased computational complexity. Computationally attrac-
tive method optimally combining second and fourth order cumulants was
recently proposed in [SY04].

Since there is one-to-one correspondence between cumulants and mo-
ments, the methods based on polynomial approximations, such as Gram-
Charlier (see [HKO01]), of m.i. (2.8) can be viewed as cumulant-based
methods. Furthermore, cumulants are usually estimated through sample
moments.

6.2 Characteristic function enabled source separa-
tion

Instead of approximating Eq. (2.13) with cumulants, an alternative method
based on the same equation and called CHaracteristic-function Enabled
Source Separation (CHESS) was proposed in [Yer00]. If the 2nd order mo-
ments of a r.vc. x̄ exist, the Hessian of s.c.f. exist. Now the identity
φAs̄(t) = φs̄(AT t) implies ∂2

∂t2
ψAs̄(t) = A

(
∂2

∂t2
ψs̄(t)

)
AT . Since ∂2

∂t2
ψs̄(t)

is diagonal for independent marginals, one could separate the mixture of
Eq. (3.1) with the following method:

1. Estimate the matrix ∂2

∂t2
ψx̄(t)

)
at points t ∈ {t1, . . . , tK}.

2. Jointly diagonalize (see Section 2.4.2) the K matrices.

The matrices are easily estimated from the realization vectors x[k], k =
1, . . . , N , using empirical characteristic functions (e.c.f.’s). Namely, the
value of c.f. φx̄ of r.vc. x̄ can be directly estimated at any point t by
the e.c.f. defined [Csö81, Ush99] as

φ̂x̄(t) ,
1
N

N∑
k=1

ei<t,x[k]>. (6.1)

At every fixed point t, the empirical characteristic function is an unbiased es-
timator of the corresponding characteristic function, and the estimator con-
verges both almost surely and in the mean square sense which implies con-
sistency. Further, it is almost surely uniformly consistent on each bounded
subset in Rp.

Additionally, it was proposed in [Yer00] to evaluate the second derivative
matrices ∂2

∂t2
ψx̄(z) also with complex arguments z ∈ Cp. However, the

benefits of this extension are unclear.
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6.3 Jacobi optimized empirical characteristic
function ICA

The advantage of the difference ∆φx̄(t) of Eq. (2.12) compared to the anal-
ogous difference obtained from Eq. (2.4) is that the former allows direct
estimate of its value at any point using the e.c.f.’s. The square

|∆φx̄(t)|2 = |φx̄(t)−
p∏

k=1

φx̄k
(tk)|2 (6.2)

of the difference (2.12) is always nonnegative, and zero for all t ∈ Rp iff
r.vc. x̄ has independent components. Thus an objective function (see Sec-
tion 2.2) is obtained if c.f.’s in Eq.(6.2) are replaced by their empirical coun-
terparts (6.1), and the function is evaluated at a point t0. Since the theoreti-
cal difference can then vanish at a point even if the marginals are dependent,
a better objective function is obtained by summing the square values eval-
uated at different points tk. This e.c.f.-based ICA method is introduced in
Publication IV. Minimization is done by orthogonal Jacobi algorithm (see
Section 2.4.2), where the required two dimensional minimization is achieved
numerically by using the golden section search [PTVF92]. See also Publica-
tion V for a derivation based on the separating class of Eq. (2.6).

Since the difference (2.12) can vanish even for dependent marginals, it
should be evaluated at every point to guarantee independence. One way to
do this is to integrate the nonnegative quadratic function (6.2) over Rp, i.e.
to consider independence criteria of the form∫

Rp

|∆x̄(t)|2gp(t)dt, (6.3)

where gp(·) is an appropriate nonnegative weight function. This functional
form is considered in [Kan95, KU98] for testing the independence, and in-
troduced in Publication V as an ICA criterion. The empirical counterpart
of Eq. (6.3) (see Eq. (9) in Publication VII) has a desirable statistical large
sample property. Namely it is a consistent estimator of independence for all
r.vc.’s with an appropriate weight function. One such weight function is the
product of standard normal p.d.f.’s which was used in [Kan95] and in Pub-
lication V. Another appropriate weight function is the product of standard
Laplace p.d.f.’s, which was introduced in Publication VII. The objective
functions associated with these weight functions are called consistent objec-
tive functions. It was recently proved [CB04] that such objective functions
are indeed consistent, i.e. the matrix minimizing the objective function
converges to the true demixing matrix (with fundamental indeterminacy
eliminated) as the signal length approaches infinity. If the p.d.f.’s exist, the
criteria (6.3) is related through Parseval’s theorem to the quadratic indepen-
dece criteria formed from the independece characterization (2.7) [APJ03].
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This suggests connection to Kernel-ICA [BJ02]. See also [APJ03, Ach03]
for additional weight functions, which are derived as the Fourier transform
of a summable kernel function.

Minimization of the consistent objective functions can be done similarly
to the objective function corresponding to Eq. (6.2). However, the evaluation
of the two-dimensional consistent objective function has high computational
complexity. In order to minimize the number of evaluations needed, an
alternative minimization method was proposed in Publication VII. It is
based on the property that the objective functions under two-dimensional
orthonormal transformations are periodic and have a very good Fourier series
approximation with only very few coefficients. The ICA method based on
this minimization of a consistent objective function is called Jacobi optimized
Empirical Characteristic Function ICA (JECFICA). The simulation results
presented in figures 5.1 and 5.2 show reliable performance for skewed signals
already with a relatively short signal length. JECFICA was also tested
for discrete distributions with four Poisson(1) distributed signals using the
performance index (see Eq. (5.8)) as the performance measure. Its superior
performance among tested methods is apparent from figures 6.1 and 6.2.
See Publication VII for additional simulations showing that JECFICA is an
extremely reliable ICA method. Finally, see Publication VII for extension
of the difference (2.12) for noisy ICA.

6.4 Discussion

The JECFICA method proposed in Publication VII is the only existing ICA
method so far that directly minimizes a criterion quantifying independence
for all r.v.’s. Furthermore, the consistency property [CB04] of its objective
functions establishes that the method has desirable large sample properties
that remain to be found for other ICA methods. Methods that do not use
the c.f. criterion are either based on a criterion that do not guarantee inde-
pendence for all r.v.’s, or they need approximations for the corresponding
criterion. The other methods based on the c.f. criterion do not take the
full advantage of its possibilities. The cumulant-based methods essentially
approximate the criterion through Taylor series, and CHESS relies on a few
points in the criterion. Despite extensive simulations, we are yet to face
a mixture with reasonable signal length where JECFICA fails. The main
drawback of the method is the computaional complexity, since the number
of operations grows in square with respect to the number of source signals.
Moreover, the number of operations for the introduced consistent objective
functions also grows in square with respect to the number of signal samples.
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Figure 6.1: Performance of different ICA methods for four Poisson(1) dis-
tributed signals with varying signal length. Compared methods: EGLD-ICA
(Section 5.2), Pearson-ICA (Section 5.3), JECFICA (Section 6.3), FastICA
[H+], and JADE [Car].
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Figure 6.2: Performance of different ICA methods for four Poisson(1) dis-
tributed signals with signal length 500. Compared methods: EGLD-ICA
(Section 5.2), Pearson-ICA (Section 5.3), JECFICA (Section 6.3), FastICA
[H+], and JADE [Car].
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Chapter 7

Conclusion

7.1 Summary

This thesis addressed the problem of blind signal separation using inde-
pendent component analysis (ICA). These methods allow solving many dif-
ficult signal processing problems in different application domains. Blind
techniques are very important in applications for which there are sets of
recorded data or observations, but exact details of the system which pro-
duced the observations are unknown. The ICA-based methods have shown
to be very successful blind approach.

In this thesis, the theoretical conditions for the traditional linear ICA
model to qualify as blind separation model were established. It was shown
that it is both sufficient and necessary that the mixing matrix is of full
column rank and that there is at most one Gaussian source signal. It was also
shown that for identifying the mixing matrix it is enough to have no Gaussian
signals no matter how many sources signals there are for a given number of
sensors. This gives conditions for the linear ICA techniques to be used as
a blind system identification methods. Additionally, a stronger concept of
uniqueness applying also to the cases where there are more source signals
than sensors was introduced. Uniqueness quantifies the situations where
ICA models could be used to develop blind signal extraction techniques
when there are more sources than sensors. Sufficient conditions were also
found for uniqueness.

The results of the real-valued linear ICA models were extended into two
directions. First, the conditions for separability, identifiability, and unique-
ness were derived for the models with complex-valued signals. Separability
condition was again shown to be both sufficient and necessary. Surprisingly,
in a complex case, some Gaussian signal mixtures were shown to be separa-
ble. In order to establish this result, a novel characterization of second-order
statistics of complex random vectors and decomposition of complex normal
random vectors were derived. Second, the real-valued linear models were
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extended to nonlinear mixing models by introducing a class of nonlinear
models. These models were shown to be separable, and a generic separa-
tion technique was proposed. An instance of this model class was applied
successfully to an image enhancement problem.

Finally, two different types of techniques for blind source separation
based on ICA were proposed in this thesis. In the first approach, source
adaptation was proposed as a method for separation. The EGLD family
of distributions and the Pearson system were used as a flexible models for
source distributions. The strength of these parametric families is that they
model a wide class of source distributions, including asymmetric distribu-
tions, while the estimation of the parameters is still a relatively simple pro-
cedure. In the second approach, the idea was to measure directly stochastic
independence of the signals instead of trying to model the sources. It was
shown that characteristic functions provide a criterion quantifying the inde-
pendence for all distributions. Furthermore, the terms in the expression are
relatively easily estimated. Based on this expression, an objective function
was proposed. It was recently shown to be consistent [CB04] and thereby
it guarantees a good performance. Finally, an algorithm for relatively fast
minimization of the consistent objective function was derived.

7.2 Future work

The linear real-valued ICA model as a tool for blind separation has been
extensively studied over the past fifteen years. The methods presented in
this thesis are highly reliable for all type of sources while still being rela-
tively fast. Thus, it is natural to consider this basic separation of instanta-
neous mixtures of real-values sources a relatively well-understood problem
with feasible solutions. However, there are relatively few ICA techniques
for blind identification and even fewer for blind source extraction for the
underdetermined case. These techniques should have a huge demand in
some application areas, e.g. in communications. The development of these
methods ought to get more attention in the future. A possible option is to
base these methods on moment generating functions as noted in the end of
Chapter 3.

Surprisingly, only few authors have considered directly the linear instan-
taneous ICA model in the complex domain. Since it was shown in this thesis
that the complex-valued ICA models are also well-defined, a reliable sepa-
ration of complex mixtures should be possible. An interesting option would
be an extension of the characteristic function based techniques to complex
signals.

Nonlinear ICA models have so far found only few applications. This is
more likely due to the fact that nonlinear methods are relatively unknown
and difficult to analyse than due to the lack of possible applications. Nonlin-
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ear models proposed in this thesis should cover many situations of practical
interest. However, they might be more appealing if the methods developed
would be more flexible to the exact knowledge of the system structure. As
noted in the end of Chapter 4, a possibility is to form hierarchical para-
metric models from individual addition theorem models. The development
of separation methods for such models is a challenging task. However, one
should benefit greatly from ideas used to develop separating algorithms for
PNL mixtures.
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Variables and Vectors, volume 48 of Translation of Mathemat-
ical Monographs. AMS, 1977.

[Lue73] D.G. Luenberger. Introduction to Linear and Nonlinear Pro-
gramming. Addison-Wesley, Reading, MA, 1973.

[Luk70] E. Lukacs. Characteristic Functions. Griffin, London, Great
Britain, second edition, 1970.

[LY03] Y. Lomnitz and A. Yeredor. A blind-ML scheme for blind
source separation. In Proc. of the 2003 IEEE Workshop on
Statistical Signal Processing, pages 581–584, St. Louis, MO,
October 2003.

[Man02] J.H. Manton. Optimization algorithms exploiting unitary
constraints. IEEE Trans. Signal Processing, 50(3):635–650,
March 2002.

[MD02] H. Mathis and S.C. Douglas. On the existence of universal
nonlinearities for blind source separation. IEEE Trans. Signal
Processing, 50(5):1007–1016, May 2002.

55



[MI03] E.G. Miller and J.W. Fisher III. Independent compo-
nents analysis by direct entropy minimization. Report No.
UCB/CSD-3-1221, University of California, Berkeley, CA,
January 2003.

[Mor01] E. Moreau. A generalization of joint-diagonalization crite-
ria for source separation. IEEE Trans. Signal Processing,
49(3):530–541, March 2001.

[NM93] F.D. Neeser and J.L. Massey. Proper complex random pro-
cesses with applications to information theory. IEEE Trans.
Inform. Theory, 39(4):1293–1302, July 1993.

[NS95] C.L. Nikias and M. Shao. Signal Processing with α-Stable
Distributions and Applications. Wiley, New York, NY, 1995.

[OS89] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal
Processing. Prentice Hall, Englewood Cliffs, NJ, 1989.

[Pan03] L. Paninski. Estimation of entropy and mutual information.
Neural Computation, 15(6):1191–1253, June 2003.

[PB97] B. Picinbono and P. Bondon. Second-order statistics of com-
plex signals. IEEE Trans. Signal Processing, 45(2):411–420,
February 1997.

[PG97] D.T. Pham and P. Garat. Blind separation of mixture of in-
dependent sources through a quasi-maximum likelihood ap-
proach. IEEE Trans. Signal Processing, 45(7):1712–1725, July
1997.

[Pha96] D.T. Pham. Blind separation of instantaneous mixture of
sources via an independent component analysis. IEEE Trans.
Signal Processing, 44(11):2768–2779, November 1996.

[Pic96] B. Picinbono. Second-order complex random vectors and
normal distributions. IEEE Trans. Signal Processing,
44(10):2637–2640, October 1996.

[PK97] P. Pajunen and J. Karhunen. Blind separation of binary
sources with less sensors than sources. In Proc. of the 1997
Int. Conference on Neural Networks, pages 1994–1997, Hous-
ton, TX, June 1997.

[PM01] J-C. Pesquet and E. Moreau. Cumulant-based independence
measures for linear mixtures. IEEE Trans. Inform. Theory,
47(5):1947–1956, July 2001.

56



[PTVF92] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, second edition, 1992.

[Sco87] W.R. Scott. Group Theory. Dover Publications, Inc., New
York, NY, reprint edition, 1987.
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