97,719 research outputs found

    Turbulence accelerates the growth of drinking water biofilms

    Get PDF
    Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation. Hydrodynamics play a crucial role in shaping biofilms. Thus, knowing how biofilms form, develop and disperse under different flow conditions is critical in the successful management of these systems. Here, the development of biofilms after 4 weeks, the initial formation of biofilms within 10 h and finally, the response of already established biofilms within 24-h intervals in which the flow regime was changed, were studied using a rotating annular reactor under three different flow regimes: turbulent, transition and laminar. Using fluorescence microscopy, information about the number of microcolonies on the reactor slides, the surface area of biofilms and of extracellular polymeric substances and the biofilm structures was acquired. Gravimetric measurements were conducted to characterise the thickness and density of biofilms, and spatial statistics were used to characterise the heterogeneity and spatial correlation of biofilm structures. Contrary to the prevailing view, it was shown that turbulent flow did not correlate with a reduction in biofilms; turbulence was found to enhance both the initial formation and the development of biofilms on the accessible surfaces. Additionally, after 24-h changes of the flow regime it was indicated that biofilms responded to the quick changes of the flow regime. Overall, this work suggests that different flow conditions can cause substantial changes in biofilm morphology and growth and specifically that turbulent flow can accelerate biofilm growth in drinking water

    Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    Get PDF
    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SpIF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, spIF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved

    Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms

    Get PDF
    Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm−2) or 5.34 ± 0.33 log (gu cm−2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to 300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation

    Marine aerobic biofilm as biocathode catalyst

    Get PDF
    Stainless steel electrodes were immersed in open seawater and polarized for some days at − 200 mV vs. Ag/AgCl. The current increase indicated the formation of biofilms that catalysed the electrochemical reduction of oxygen. These wild, electrochemically active (EA) biofilms were scraped, resuspended in seawater and used as the inoculum in closed 0.5 L electrochemical reactors. This procedure allowed marine biofilms that are able to catalyse oxygen reduction to be formed in small, closed small vessels for the first time. Potential polarisation during biofilm formation was required to obtain EA biofilms and the roughness of the surface favoured high current values. The low availability of nutrients was shown to be a main limitation. Using an open reactor continuously fed with filtered seawater multiplied the current density by a factor of around 20, up to 60 µA/cm2, which was higher than the current density provided in open seawater by the initial wild biofilm. These high values were attributed to continuous feeding with the nutrients contained in seawater and to suppression of the indigenous microbial species that compete with EA strains in natural open environments. Pure isolates were extracted from the wild biofilms and checked for EA properties. Of more than thirty different species tested, only Winogradskyella poriferorum and Acinetobacter johsonii gave current densities of respectively 7% and 3% of the current obtained with the wild biofilm used as inoculum. Current densities obtained with pure cultures were lower than those obtained with wild biofilms. It is suspected that synergetic effects occur in whole biofilms or/and that wild strains may be more efficient than the cultured isolates

    Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms

    Get PDF
    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate thesensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages ofphototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilmversus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in aprototype rotating annular bioreactor (RAB) with Taylor–Couette type flow under constant operatingconditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with differentmaturation levels, and then exposed to nominal initial alachlor concentration of 10 ug L−1in either intactor recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration – TWACof 5.52 ± 0.74 ug L−1).At the end of the exposure period, alachlor effects were monitored by a combination of biomass descrip-tors (ash-free dry mass – AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbonutilization spectra (Biolog) and diatom species composition. We found significant effects that in terms ofAFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observedon diatom composition or functional and structural properties of the bacterial community regardless ofwhether they were intact or recolonized. The intact three-dimensional structure of the biofilm did notappear to confer protection from the effects of alachlor. Bacterial community structure and biomass levelof 4.4 weeks – intact phototrophic biofilms were significantly influenced by the biofilm maturation pro-cesses rather than alachlor exposure. The diatom communities which were largely composed of mobileand colonizer life-form populations were not affected by alachlor.This study showed that the effect of alachlor (at initial concentration of 10 ug L−1or mean TWAC of5.52 ± 0.74 ug L−1) is mainly limited to biomass reduction without apparent changes in the ecologicalsuccession trajectories of bacterial and diatom communities and suggested that carbon utilization spec-tra of the biofilm are not damaged resulting. These results confirmed the importance of consideringthe influence of maturation processes or community age when investigating herbicide effects. This isparticularly important with regard to the use of phototrophic biofilms as bio-indicators

    Growth limiting conditions and denitrification govern extent and frequency of volume detachment of biofilms

    Get PDF
    This study aims at evaluating the mechanisms of biofilm detachment with regard of the physical properties of the biofilm. Biofilms were developed in Couette–Taylor reactor under controlled hydrodynamic conditions and under different environmental growth conditions. Five different conditions were tested and lead to the formation of two aerobic heterotrophic biofilms (aeHB1 and aeHB2), a mixed autotrophic and heterotrophic biofilm (MAHB) and two anoxic heterotrophic biofilms (anHB1 and anHB2). Biofilm detachment was evaluated by monitoring the size of the detached particles (using light-scattering) as well as the biofilm physical properties (using CCD camera and image analysis). Results indicate that volume erosion of large biofilm particles with size ranging from 50 to 500 lm dominated the biomass loss for all biofilms. Surface erosion of small particles with size lower than 20 lm dominates biofilm detachment in number. The extent of the volume detachment events was governed by the size of the biofilm surface heterogeneities (i.e., the absolute biofilm roughness) but never impacted more than 80% of the mean biofilm thickness due to the highly cohesive basal layer. Anoxic biofilms were smoother and thinner than aerobic biofilms and thus associated with the detachment of smaller particles. Our results contradict the simplifying assumption of surface detachment that is considered in many biofilm models and suggest that discrete volume events should be considered

    Chronic Wounds: The Persistent Infection Problem

    Get PDF
    Chronic wounds heal poorly and can have a huge impact on a sufferer’s life. They are caused by a number of factors, one of which is the presence of persistent infections. Many standard treatments are unsuccessful at destroying these infections as the bacteria form a biofilm. Biofilms encase the bacteria, preventing immune cells from destroying them. There are multiple bacterial species within a biofilm, sometimes with antibiotics resistance, and which species are present changes over time. The changing, multi-species nature of biofilms can make finding an effective antibiotic treatment difficult. Also, bacteria in biofilms genetically differ from planktonic bacteria, and are often less susceptible to antibiotics. Additionally, biofilms are thought to reduce the access of antibiotics to the bacteria within. These reasons are discussed in further detail in this review, along with some of the reasons why bacteria can prevent wound closure
    corecore