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Stainless steel electrodes were immersed in open seawater and polarized for some days at−200 mV vs. Ag/

AgCl. The current increase indicated the formation of biofilms that catalysed the electrochemical reduction of

oxygen. These wild, electrochemically active (EA) biofilms were scraped, resuspended in seawater and used

as the inoculum in closed 0.5 L electrochemical reactors. This procedure allowed marine biofilms that are

able to catalyse oxygen reduction to be formed in small, closed small vessels for the first time. Potential

polarisation during biofilm formation was required to obtain EA biofilms and the roughness of the surface

favoured high current values. The low availability of nutrients was shown to be a main limitation. Using an

open reactor continuously fed with filtered seawater multiplied the current density by a factor of around 20,

up to 60 µA/cm2, which was higher than the current density provided in open seawater by the initial wild

biofilm. These high values were attributed to continuous feeding with the nutrients contained in seawater

and to suppression of the indigenous microbial species that compete with EA strains in natural open

environments. Pure isolates were extracted from the wild biofilms and checked for EA properties. Of more

than thirty different species tested, onlyWinogradskyella poriferorum and Acinetobacter johsonii gave current

densities of respectively 7% and 3% of the current obtained with the wild biofilm used as inoculum. Current

densities obtained with pure cultures were lower than those obtained with wild biofilms. It is suspected that

synergetic effects occur in whole biofilms or/and that wild strains may be more efficient than the cultured

isolates.

1. Introduction

According to a considerable number of authors, the low efficiency

of the cathode process is a major limitation in microbial fuel cells

(MFCs) [1]. Oxygen is the most usual final electron acceptor for the

MFC cathode reaction because of its high redox potential (+0.82 V vs.

SHE) and its low cost thanks to its abundance in air. Platinum is the

most efficient catalyst for oxygen reduction in MFCs [2–5] but Pt appli-

cation remains limited because of its excessive cost and its possible poi-

soning by components of the substrate or by-products from the anodic

compartment. In addition, thepHvalue,which is commonly in the range

of 6.0 to 8.0 in MFCs, reduces the catalytic activity of Pt [6,7]. Other

metals deposited on a variety of carbon supports and chemically

modified electrodes including pyrolysed iron (II) phtalocyanine (FePc)

and Cobalt tetramethyl phenylporphyrin (CoTMPP) have been studied

to replace Pt [6,8,9]. Nevertheless, Pt is unfortunately the only catalyst

proven to date to withstand thousands of hours of operation.

Microbial cathodes have been attracting increasing attention as an

inexpensive and sustainable alternative to abiotic cathodes. Bio-

cathodes can be classified as aerobic or anaerobic, depending on the

terminal electron acceptors. Using nitrate as electron acceptor, max-

imum power densities of around 10 W/m3 have been obtained [10],

while open air biocathodes have provided powers up to 83 and 65 W/

m3 for batch fed and continuous systems respectively. Microbial

graphite felt cathodes catalysing the oxygen reduction and inoculated

with sludge and river sediments have reached 2.2 A/m2 [11] in a

continuously recirculated MFC system.

The catalysis of oxygen reduction by microbial biofilms deposited

onmetallic materials has beenwidely studied in the domain of aerobic

corrosion for a long time. In this framework, it has been stated that

biofilms formed in natural seawater efficiently catalyse oxygen

reduction on stainless steels [12]. From fundamental studies carried

out in the field of corrosion, it has been reported that forming sea-

water biofilm on stainless steel may be a promising track for designing

new low-cost microbial cathodes for fuel cells. This approach was

initiated in 2005with a biofilm-covered cathode that supported current

densities of up to 1.89 A/m2 [13]. Since this date, several attempts have

been made to implement marine microbial cathodes in MFCs in a sea

environment [14,15]. Different technical problems have been identified
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but an extremely important limitation is the requirement for large

volumes of fresh seawater. Actually, developing efficient seawater bio-

films requires stainless steels to be exposed under constant polarisation

for several days in large volumes of seawater that is continuously

renewed [16]. Experiments performed in closed vessels containing only

a few litres of fresh seawater did not give electrochemically effective

biofilms.

This study aimed first to reconstruct electrochemically active (EA)

biofilms in easy-to-handle laboratory conditions, i.e. in closed elec-

trochemical vessels. The second objective was to progress in under-

standing the mechanisms of microbial catalysis by identifying and

isolating microbial strains that made up the EA seawater biofilms and

to check the electrochemical efficiency of each isolate in pure cultures.

2. Materials and methods (or Experimental section)

2.1. Biofilm growth on site

Wild EA biofilms were formed in natural seawater at the ISMAR

marine station, located in the port of Genoa, Italy. Stainless steel

electrodes were immersed in a tank containing 100 L seawater, which

was continuously renewed at a rate of about 1.5–2 L min−1 with sea-

water directly pumped from the sea. Tests were performed during Jan-

uary 2006, a period when seawater had the following main

characteristics: 11 °Cb temperatureb13 °C; 6 mg/Lbdissolved oxygenb

8 mg/L; 8bpHb8.2; 33.5‰bsalinityb36.5‰. An Ag/AgCl electrode

filled with KCl 3 M (INGOLD 103633040) was used as the reference

electrode. Stainless steel electrodes (95 mm×25mm×1 mm)were cut

from a plate of super-austenitic alloy 254 SMO (UNSS 31254: Cr=19.5–

20.5%, Ni=17.5–18.5%, Mo=6–6.5%, N=0.18–0.22%, Cu=0.5–1%,

Sb0.01%, Sib0.8%, Pb0.03%, Mnb1%, Cb0.02%, Fe = balance) and

treated with emery papers of up to P1200. Electrical connections bet-

ween electrode samples in the solution and wires outside were made

with titanium rods (Ø=2mm) screwed on to the electrodes. The area

of titanium rod exposed to seawater was a negligible fraction of the

connected stainless steel electrode surface area (STi/SSSb5%). Electrodes

covered with EA biofilms were sent from Genoa and stored at 4 °C in

seawater for several days before being used to prepare the bacterial

suspension or isolate the strains.

2.2. Preparation of bacterial suspension from wild biofilms

Stainless steel electrodes covered with marine aerobic biofilm and

seawater used for the transport were placed in a 50 mL glass cell. The

system was exposed to ultrasounds in an ultrasonic bath (Transsonic

950/H, Prolabo, frequency 35 kHz) for 3 periods of 5 min separated by

5-minute periods of cooling in order to disrupt the biofilm structure.

The bacterial suspension obtained was centrifuged for 10 min at

10,000g (Sigma 3k20, Bioblock Scientific) and the pellet was resus-

pended in 10 mL fresh seawater.

2.3. Electrochemical setups

Experiments were carried out in reactors containing 500 mL

seawater, continuously stirred (magnetic barrel 150 rpm) and/or

bubbled with air. The reactors were inoculated with a 10 mL

suspension of wild biofilm (details in Section 2.2). The top of the

reactor comprised six sampling ports. One to four working electrodes

of 254 SMO stainless steel having a projected surface area of 25 cm2

were placed in the same reactor and connected to the same counter

and reference electrodes through a multi-potentiostat (VMP2, soft-

ware EC-Lab v.8.3, Bio-Logic SA). Each working electrode was

monitored independently by means of an N-STAT device (Bio-Logic

SA). The auxiliary electrode was a platinum grid of large surface area

and an Ag–AgCl electrode was used as the reference electrode. The

stainless steel was cleaned before each experiment by immersion in

2% HF 0.5 M HNO3 solution for 20 min and rinsed for 1 h with distilled

water. The potential of theworking electrodes was fixed at−200 mV/

Ag–AgCl during chronoamperometry. In continuous experiments, the

continuous seawater flow was installed on the bottom of the reactor

and the outlet was an overflow system. The seawater flow was 1.5 L/

day and seawater was filtered with a 0.2 µm filter before entering the

system.

2.4. Fluorescent microscopy and 3D imaging

Microbial colonisation and 3D biofilm structure were investigated

on the electrode surface by epifluorescence microscopy. Electrodes

were extracted from the reactors and washed carefully with seawater

to remove all materials except the attached biofilms. The biofilm was

stained with 0.03% orange acridine (A6014, Sigma) for 10 min. The

samples were then left to dry in ambient air and analysed with a Carl

Zeiss Axiotech 100 microscope equipped for epifluorescence with an

HBO 50/ac mercury light source and the Zeiss 09 filter (excitor

HP450–490, reflector FT 10, barrier filter LP520). Images were ac-

quired with a monochrome digital camera (Evolution VF) and pro-

cessed with the Image-Pro Plus 5.0 software.

The average surface roughness (Ra) of the cleaned electrodes was

measured using a Zygo New View 100 OMP-0348K white light

interferometer.

2.5. Population analysis of wild biofilms

The biofilm was removed from the stainless steel cathode by

sonication (Branson™ 3200) and cell suspensions were used for

cultivation experiments. Marine Agar and Marine Broth media from

Difco were used to isolate heterotrophic marine bacteria. These media

contain minerals that nearly duplicate the major mineral composition

of seawater, with the addition of peptones and yeast extract that

provide a good source of nutrients. The inoculated culture media were

incubated aerobically at 20 °C for several days. Pure cultures were

obtained from all growth media and isolates were stored at−80 °C in

MicroBank™ vials. Population analysis of wild biofilm has been

described in detail by Vandecandelaere et al. (this issue). Shortly, all

isolates were grouped and tentatively identified (MIS, Newark, USA)

using whole cell fatty acid methyl ester analysis (FAME) as described

by Mergaert et al. [17]. The FAME profiles obtained were grouped

using the BioNumerics 4.61 (Applied Maths, Belgium) software.

Subsequently, 16S rRNA gene sequence analysis was performed on

selected representatives of each of the FAME clusters to elucidate their

exact taxonomic position as described previously [17].

3. Results and discussion

3.1. Formation of wild biofilms on site

Type 254 SMO stainless steel (SS) was used for this study because

of its excellent corrosion resistance in seawater due to the synergistic

action of the alloying elements [18]. Six 254 SMO SS electrodes of

25 cm2 projected surface area each were immersed under constant

polarisation at −200 mV/Ag–AgCl for 15 days in an open seawater

area of a marine station located at the Genoa harbour. The current

density recorded during polarisation is reported in Fig. 1a. No current

was detected during the first two days because oxygen reduction is

very slow on a clean SS electrode without any catalyst. Starting from

the third day, the current increased exponentially until day 10. This

phenomenon has been correlated to the development of a microbial

biofilm on the SS surface able to catalyse oxygen reduction [13,19].

From day 10 to day 15, a constant current density around 2.2 μA/cm2

was recorded. Comparing these data to analogous experiments that

have been performed in recent years (Fig. 1b), the maximal value of

current density obtained here was significantly lower; usual current



densities were about one order of magnitude higher (10–20 μA/cm2)

[13,16]. Pollution of SS surfaces by other non-specific organisms such

non-EA microorganisms, algae, zooplankton… may be suspected. The

low temperature of the sea in winter may also be a possible cause of

the lower current density obtained here. Nevertheless, the biofilms

obtained here were scraped from the electrode surfaces and resus-

pended in fresh seawater to be used as the inoculum for the laboratory

experiments.

3.2. Biofilm reconstruction in closed laboratory reactors

Two SS electrodes were placed in the bioreactor containing 0.5 L

seawater. One of them was continuously polarised at −200 mV/Ag–

AgCl as in the experiments performed in open seawater, the other was

left at open circuit potential. No current was detected on the polarised

electrode for 1 day before the bacteria inoculation. Adding 10 mL of a

wild biofilm suspension led to an almost instantaneous production of

a small weak current that increased exponentially during the second

day (Fig. 2), following the kinetics of microbial EA biofilm growth [20].

At the same time, no current was detected when the electrode kept at

open circuit was polarised for a few minutes at −200 mV/Ag–AgCl,

indicating that constant polarisation at −200 mV/Ag–AgCl was

required for EA biofilm formation on the electrode surface.

Several control experiments were performed to confirm the real

implication of the aerobic biofilm on oxygen reduction. First, a clean

electrode was introduced in the bioreactor when maximal cathodic

current was detected on the working SS electrode to verify the role of

planktonic bacteria on oxygen reduction catalysis. This control did not

show any current at all. A second control experiment was performed

with a SS electrode under constant polarisation in 0.5 L fresh natural

seawater without addition of the wild biofilm suspension. No current

was obtained during 8 days of polarisation (Fig. 2), confirming that

EA biofilms could not be formed in only natural seawater. Conse-

quently, the current obtained was due to the wild biofilm suspension

added into the reactor and not to indigenous microorganisms nat-

urally present in the seawater used as the medium.

The exponential increase in the current obtained on the polarized

electrode stopped at the end of the second day and the current then

gradually decreased over 6 days at a rate averaging 0.2 µA/cm2 per

day. It may be suspected that the population of electroactive bacteria

attached on the surface was substantially eliminated by the interven-

tion of Protozoa, such as amoeba, known to be fierce predators of

bacteria [21]. The current drop may also have been due to a limitation

of the bacterial growth by the depletion of essential nutrients such as

carbon, nitrogen or phosphorous sources in the closed reactor.

To discern the reasons for this current fall, several electrochemi-

cal reactors were run in parallel with SS electrodes polarised at

−200 mV/Ag–AgCl using the following media:

a) synthetic sterile seawater (composition g/L: NaCl 24.53, MgCl2
5.20, Na2SO4 4.09, CaCl2 1.16, KCl 0.695, NaHCO3 0.021, salinity

35 g/L, pH 8.0) containing no trace of organic nutrients or living

microorganisms.

b) natural seawater without any special treatment,

c) sterile seawater that was 0.2 μm filtered to remove microorgan-

isms naturally present in water, such as sea heterotrophic bacteria,

cyanobacteria, algae or zooplankton [22].

The maximum current density obtained using natural seawater

was of the same order as that observed in the previous experiment

(Fig. 3b). In filtered seawater (Fig. 3c), the current increased faster

than in fresh seawater. This can be explained by less intense microbial

competition to colonize the SS surface because the seawater was

previously cleared of its microbial population. The maximal current

density was much higher, since it reached 2.0 μA/cm2, but the phe-

nomenon of current collapse was still observed.

The charges Q calculated by integrating the current over time

(Coulomb) that were consumed for 8 days were relatively close

(around 5800 mC) when natural or filtered seawater was used. This

tends to prove that the system was regulated by the availability of

nutrients present in the media. The experiment performed with

synthetic seawater confirmed this explanation since it contained no

nutrients, and no cathodic current was detected (Fig. 3a). It was

confirmed here that the availability of a sufficient quantity of growing

nutrients that allow bacteria to multiply was a key factor in the

formation of efficient EA marine biofilms.

Similar experiments were reproduced in natural seawater with

two different surface finishes of the SS electrodes: (a) finish as

delivered with an average surface roughness Ra=0.3 µm, (b) wet

Fig. 1. Cathodic current (absolute value, and logarithmic scale) evolution of SS electrode

polarised at−200 mV vs. Ag/AgCl in open natural seawater (T=11–12 °C) at the CNR-

ISMAR marine station located in the port of Genoa, Italy. (a) This study, and (b) usual

analogous experiment [16].

Fig. 2. Current evolution obtained in closed reactors containing 0.5 L fresh seawater

with SS electrodes polarised at −200 mV vs. Ag/AgCl with or without (control)

inoculation with resuspended wild biofilm.

Fig. 3. Current evolution obtained in closed reactors inoculatedwith 10 mL resuspended

wild biofilm with SS electrodes polarised at −200 mV vs. Ag/AgCl; effect of medium:

synthetic seawater (a), natural seawater (b) and filtered natural seawater (c).



polished leaving a mirror-like surface with Rab0.05 µm. A maximal

current density of 1.7 μA/cm2 was obtained with the non-polished SS

electrode after 2 days, while less than 0.5 μA/cm2was recorded on the

polished surface (Fig. 4). Epifluorescent pictures showed that the non-

polished electrode had a greater bacterial colonisation, even if the

difference in colonisation did not seem sufficient to explain a tripling

of the current. The influence of surface roughness on the adhesion of

microbes is still under debate. It seems that the dominant trend is to

assume that roughness values of the order of the size of bacterial cells

favour bacterial settlement [23–25]. Nevertheless, Hilbert et al. [26]

have demonstrated that the adherence of Pseudomonas sp., Listeria

monocytogenes and Candida lipolytica to stainless steel is not affected

by surface roughness ranging from polished stainless steel (Rab0.01)

to ground stainless steel (Ra 0.9). Here, polishing the surface slightly

decreased the bacterial settlement but had a more marked effect on

the current density. The literature on the influence of stainless steel

roughness on corrosion resistance is unanimous [26]. Similarly,

polishing the electrodes affected bacterial colonisation here but it

also decreased the electrochemical properties of the material,

certainly by decreasing the current exchanges.

Finally, a similar experiment was performed in continuous mode

with an open 0.5 L bioelectrochemical reactor equipped with four

individually addressed working electrodes. The reactor was first put in

a closed loop for 48 h to allow the pioneer bacteria of the wild biofilm

suspension to adhere to the electrode surface, then seawater was

renewed continuously with an 8-hour residence time. An increasing

cathodic current was detected after a few hours of polarisation and it

began to fall after 24 h. Feeding the reactor continuously with fresh

seawatermade the current increase again overmore than 35 days. The

current density increased overall with fluctuations due to changes in

temperature or accidental flow fall. Current densities of the order of

45 μA/cm2 were reached in these conditions, with a maximum peak

value of 60 μA/cm2. The accidental flow falls that provoked current

decrease proved that continuous feeding with nutriments was a

requirement to sustain high current densities (Fig. 5).

In parallel, the biofilm development on the surface of the stainless

steel electrode was followed by epifluorescence microscopy by

extracting one of the working electrodes at days 7, 19 and 36. After

7 days' polarisation, the biofilm coverage rate was 8%. It was 26% after

19 days and reached 63% at the end of the experiment (day 36).

Several images of the same plot were taken at different focal planes z

in the direction perpendicular to the electrode surface (thickness) in

order to rebuild the 3-dimensional structure of the biofilm using an

image processing software.

Fig. 6a shows a z-profile of the 3D-reconstruction, indicating an

average of 20 µm for the biofilm thickness. The voids and the cavities

in the biofilm are visualised in Fig. 6b corresponding to the projected

volume of the biofilm. The biofilm structure consisted of microbial cell

clusters covering 60–65% of the surface. The clusters were loaf-

shaped, with a basal diameter of 10–20 µm. In a study on microbial

corrosion, Mattila et al. [27] used confocal microscopy analysis to

describe the development of a marine biofilm on stainless steel

coupons left at open circuit in natural seawater. The development of

aerobic marine biofilms is known to induce an increase (ennoblement

in terms of corrosion) of the free potential at open circuit, which may

shift the material to potential values where the passive layer can be

disrupted, leading to local corrosion. The authors linked the start of

potential ennoblement to the formation of mushroom-like microbial

structures 50 μm in diameter and 10 μm in height, covering 1–5% of

the steel surface. Biofilm mushrooms grew in height to reach 100 μm

after 21 days while the coverage of the steel surface approached 20%.

There is a similarity between the biofilm formed on a non-polarised

steel surface and the biofilm obtained here under polarisation, but the

EA biofilms formed here were thinner and covered a higher pro-

portion of the electrode surface area. The higher availability of elec-

trons that the metal can provide due to polarisation may explain the

higher biofilm coverage. On the other hand, in quiescent conditions,

the lack of nutriments may incline the biofilm to increase its surface

growth towards the bulk to favour nutriment transfer from the bulk,

which can explain the formation of high mushrooms. Differences in

electron and nutriment availability were seen to drastically affect the

structure of the biofilm observed here, which was composed of many

compact, thin clusters that covered a large part of the electrode

surface.

3.3. Isolates from wild biofilms

Analysis of themicrobial population of thewild biofilms is described

in detail by Vandecandelaere et al. (this issue). The goal was not to

characterize all the strains fromthebiofilmbutonly to extract the easily-

cultivable bacteria. Then, heterotrophicmarinebacteriawere isolatedon

a specific solid medium for cultivable marine bacteria. Serial growths of

bacterial strainswere limited to aminimumnumber of steps in order to

not lose completely the electro-activity of the isolated strains. In general,

the majority of the isolates were identified as Gram-negative bacteria.

The isolates proved to belong mainly to five different phylogenetic

groups: Alphaproteobacteria, Gammaproteobacteria, Firmicutes, Acti-

nobacteria and Flavobacteriaceae.

Bacterial communities were investigated during biofilm formation

in coastal seawater by Lee et al. [28]. Identification of major populations

by 16S rRNA gene sequences indicated that gamma-Proteobacteria

(Pseudomonas, Acinetobacter, Alteromonas, and uncultured gamma-

Proteobacteria) were predominant in the community for approximately

9 h, while the ratio of alpha-Proteobacteria (Loktanella, Methylobacter-

ium, Pelagibacter, and uncultured alpha-Proteobacteria) increased

approximately 4.8 fold during approximately 36 h of the biofilm

formation, emerging as the predominant group. Results of this study

Fig. 4. Current evolution obtained in 0.5 L natural seawater inoculated with 10 mL resuspended wild biofilm with SS electrodes polarised at −200 mV vs. Ag/AgCl; effect of the

surface roughness polished (a) or not (b) on both current and colonisation.



indicated that some species of gamma-Proteobacteria were more

important as the pioneering population.

A large number of aerobic bacterial strains were isolated from the

wild EA biofilms. Pure cultures of all the predominant isolates that

could be suspected of being implicated in the generation of current

were tested in closed electrochemical reactors. The list of bacteria

tested here is presented in Table 1.

After 24 h of incubation at 28 °C, the fresh bacteria were cen-

trifuged and recuperated in filtered natural seawater. The bacterial

suspensions obtained were then used to inoculate the electrochemi-

cal bioreactors containing 500 mL filtered seawater and equipped

with SS electrodes polarised at −200 mV/Ag–AgCl. Seven different

Roseobacter species of Alphaproteobacteria had been tested in a

previous work and did not give any current (paper in preparation).

Among the 24 isolates tested here (Table 1), only two strains

generated cathodic current (Fig. 7): Winogradskyella poriferorum and

Acinetobacter johsonii. They gave maximal cathodic current densities

of 0.1 µA/cm2 and 0.04 µA/cm2 corresponding respectively to only 7%

and 3% of the current obtained in similar batch conditions with the

whole wild biofilm inoculum. To the best of our knowledge, for now

only two isolates have been reported to possess the capability to

catalyse the electrochemical reduction of oxygen in pure cultures:

Sphingobacterium sp. and Acinetobacter sp. [11]. As observed here,

the current densities that were obtained with pure cultures of these

two species were lower than the current provided by the whole wild

biofilm (14 and 31% respectively).

There were two main differences between wild biofilm inoculum

andbacterial isolates: i)wild biofilmswere composedof complexmixed

populations, ii) wild biofilms were scraped and resuspended without

any intermediate planktonic culture. In consequence, two different or

complementary assumptions can explain that only 2 strains exhibited

EA properties, and that these two strains exhibited lower efficiency than

whole biofilms. On the one hand, it may be thought that the high

efficiency of natural mixed biofilms is due to synergetic interactions

between different strains. Conversely, or in complement, it may be

suspected that most wild strains lose their EA properties during the

intermediate planktonic cultures.

4. Conclusions

This work has presented the first case of reconstruction, in a small

closed volume, of a marine biofilm that was able to efficiently catalyse

the reduction of oxygen. Up to now, it had not been possible to form

EA biofilms directly on polarised electrodes in small volumes of

seawater. It has been shown here that inoculating the reactor with a

wild EA biofilm allows marine biofilms to be formed that keep their

activity for oxygen reduction. Using a continuously fed reactor

Fig. 5. Current evolution obtained in continuous reactor inoculated with 10 mL resuspended wild biofilm and fed with natural seawater since day 2; SS electrodes polarised at

−200 mV vs. Ag/AgCl. Epifluorescent microscopy pictures of stainless steel surface at different stages of biofilm formation.

Fig. 6. 3D structure of the aerobic biofilm formed on stainless steel after 36 days of

constant polarisation at −200 mV vs. Ag/AgCl; a) z-profiles, and b) top view of the

rebuilt structure.

Table 1

List of isolates tested in electrochemical reactors.

Bacterial class Bacterial isolates

Actinobacteria Actinobacterium sp.

Arthrobacter agilis

Arthrobacter oxydans

Frigoribacterium sp.

Gammaproteobacteria Aeromonas ichtiosmia

Acinetobacter johsonii

Acinetobacter calcoaceticus

Idiomarina loihiensis

Marinobacter hydrocarbonoclasticus

Pseudoalteromonas tetraodonis

Flavobacteriaceae Maribacter goseongensis

Winogradskyella poriferorum

Firmicutes Bacillus cohnii

Bacillus firmus

Bacillus pumilus

Exiguobacterium lactigenes

Paenibacillus sp.

Staphylococcus cohnii

Staphylococcus saprophyticus

sp.: species.



demonstrated that the availability of nutrients was the key factor that

limited the development of EA biofilms in closed reactors. The reactor

continuously fed with fresh seawater provided current densities in

laboratory conditions higher than the values obtained initially with

the wild biofilm in natural open environments. The continuous

provision of the nutrients contained in natural seawater to the system

was one of the reasons for the high current density reached. On the

other hand, filtering the seawater avoided competition from indige

nous common strains with the EA strains coming from the inoculum.

These results represent a major step in improving the efficiency of

marine EA biofilms for oxygen reduction. Checking the isolates for EA

properties confirmed that Acinetobacter spp. are promising candi-

dates. The current densities obtained with pure cultures were still

lower than those obtained with wild whole biofilms. Synergetic

effects can be suspected in whole biofilms and wild strains may be

more efficient than the cultured isolates.
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