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a b s t r a c t

Ecotoxicological experiments have been performed in laboratoryscale microcosms to investigate the

sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of

phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm

versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a

prototype rotating annular bioreactor (RAB) with Taylor–Couette type flow under constant operating

conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different

maturation levels, and then exposed to nominal initial alachlor concentration of 10 mg L−1 in either intact

or recolonized biofilms for 15 days in microcosms (mean timeweighted average concentration – TWAC

of 5.52±0.74 mg L−1).

At the end of the exposure period, alachlor effects were monitored by a combination of biomass descrip

tors (ashfree dry mass – AFDM, chlorophyll a), structural molecular fingerprinting (TRFLP), carbon

utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of

AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed

on diatom composition or functional and structural properties of the bacterial community regardless of

whether they were intact or recolonized. The intact threedimensional structure of the biofilm did not

appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level

of 4.4 weeks – intact phototrophic biofilms were significantly influenced by the biofilm maturation pro

cesses rather than alachlor exposure. The diatom communities which were largely composed of mobile

and colonizer lifeform populations were not affected by alachlor.

This study showed that the effect of alachlor (at initial concentration of 10 mg L−1 or mean TWAC of

5.52±0.74 mg L−1) is mainly limited to biomass reduction without apparent changes in the ecological

succession trajectories of bacterial and diatom communities and suggested that carbon utilization spec

tra of the biofilm are not damaged resulting. These results confirmed the importance of considering

the influence of maturation processes or community age when investigating herbicide effects. This is

particularly important with regard to the use of phototrophic biofilms as bioindicators.

1. Introduction

Pesticides are one of the most important sources of pollution for
continental aquatic environments (Kreuger, 1998). By mechanisms
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including surface runoff, residual pesticides applied to agricultural
lands migrate to surface and ground waters (e.g. Payraudeau et al.,
2009). The intensive use of pesticides causes many disturbances
in aquatic ecosystems (reviewed in DeLorenzo et al., 2001), the
most important being the erosion of structural and/or functional
biodiversity. In terms of ecotoxicology, the issue should not be
limited to risk assessment on individual organisms but expanded
to assessment at the ecosystem scale through the use of bio
indicators to assess ecosystem health. In this context, for aquatic
ecosystems, phototrophic biofilms, microbial aggregates composed
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of heterotrophic micro and meioorganisms and phototrophic
microorganisms embedded in an exopolymeric matrix, provide
a particularly relevant model, based on their complex microbial
community structures, spatial and temporal dynamics and variety
of ecosystem services functions. These aggregates are considered
as a key compartment of aquatic environments due to their contri
bution to most of the primary production, food resource for aquatic
grazers, mineralization and element recycling processes (Battin
et al., 2003), absorption (Lawrence et al., 2001) and biodegrada
tion of chemical contaminants (VercraeneEairmal et al., 2010).
Phototrophic biofilms are susceptible to biological and biochemical
perturbation by herbicides, resulting in damage to overall ecosys
tem functioning. Numerous studies (Pesce et al., 2011; Guasch
et al., 2012), in field, microcosm or mesocosm, have detected the
sensitivity of phototrophic biofilms to herbicides depending on:
the chemical (Debenest et al., 2009), the structural or functional
endpoint observed (Villeneuve et al., 2011c), the trophic status
(Pratt and Barreiro, 1998), the seasonal effects (Dorigo et al., 2004),
the community composition (Guasch et al., 1997), the herbicide
exposure level and frequency (Tlili et al., 2011), the phosphorus
gradient (Tlili et al., 2010) and the current velocity (Villeneuve et al.,
2011a).

To our knowledge mostly studies investigating the influ
ence of phototrophic biofilms development stage as well
thickness on its response to pollutants concern some metals
(Admiraal et al., 1999; Ivorra et al., 2000; Duong et al., 2010).
For organic pollutants, Guasch et al. (1997) observed that
the response of phototrophic biofilms to atrazine was influ
enced by colonization time when experiments were carried
out in winter when environmental conditions were relatively
constant.

The model toxic molecule used in the present work
was the alachlor herbicide [2chloroN(2,6diethylphenyl)N
(methoxymethyl) acetamide] which is extensively used as a
preemergence chloroacetanilide herbicide applied to corn and
soybeans. This molecule is detected worldwide in surface waters,
at variable concentrations from less than 1 mg L−1 with peaks of
several tens of mg L−1 (Taghavi et al., 2010; Abrantes et al., 2010).
Chloroacetanilide herbicides are known to inhibit the elongation
of very long chain fatty acids in plants and algae (Böger et al.,
2000) resulting in impaired cell development (Junghans et al., 2003;
Valloton et al., 2008). To our knowledge, the toxicity of alachlor
has mainly been assessed using singlespecies acute toxicity tests
on green algae (Fairchild et al., 1997), cyanobacteria (Singh and
Datta, 2005), bacteria and protozoa (Bonnet et al., 2007). A few
studies showed the response of phototrophic biofilm communities
to alachlor (Spawn et al., 1997; Carder and Hoagland, 1998; Pesce
et al., 2011). For concentrations lower than 5 mg L−1 of alachlor,
biomass growth (based on chlorophyll a and ashfree dry mass
(AFDM)) were inhibited and for concentrations up to 30 mg L−1 algal
species composition was affected.

The main objectives of this project were to assess the sen
sitivity of phototrophic biofilm communities to alachlor, with
regard to biofilm age and physical structure (intact biofilm
versus regrown from resuspension biofilm). Firstly, phototrophic
biofilms were cultivated in a prototype rotating annular biore
actor (RAB) with Taylor–Couette type flow, specifically intended
for the cultivation and investigation of phototrophic biofilms
and operating under constant conditions, and then used for
ecotoxicological experimentation after 1.6 and 4.4 weeks of
development. Ecotoxicological experiments were performed in
microcosms with intact or recolonized biofilms exposed to
10 mg L−1 of alachlor. At the end of the exposure period, the
response of the communities of biofilms was assessed by a
multimetric approach including both structural and functional
descriptors.

2. Material and methods

2.1. Phototrophic biofilm production

Phototrophic biofilms were produced in a laboratory prototype
of a rotating annular bioreactor (RAB) with Taylor–Couette type
flow, as described in details by Paule et al. (2011). Initially, the
bioreactor was run in batch culture mode for a seeding period to
allow the microorganisms to become attached before the con
tinuous culture mode started. During the seeding phases, the
bioreactor ran in closed recirculation, connected to an aquarium
(10 L) where the inoculum obtained by a resuspension of natu
ral biofilms from various river stone was incubated (Paule et al.,
2011). Two seeding phases were separated by a 24h period where
the RAB operated in continuous culture mode. The biofilm culture
was investigated under controlled turbulent flowing conditions
for 8 weeks. The bioreactor was continuously fed with a syn
thetic culture medium (the inlet throughput was 26 mL min−1)
which consisted of tap water supplemented with nitrate, phos
phate and silicate (average concentrations during the culture in
the RAB water exit: NO3

−N = 4.2 mg L−1, PO4
3−P = 0.356 mg L−1,

SiO2 = 10.9 mg L−1, conductivity = 368 mS cm−1, pH = 7.1, dissolved
organic carbon – DOC = 1.1 mg L−1).

The inside of the RAB was illuminated by fluorescent lamps
including cool daylight (Osram L15W/865 Luminux, Germany) and
fluora (Osram L15W/77, Germany) tubes in equal proportions, with
light/dark periods of 16 h/8 h and average recorded values were
180±10 mmol s−1 m−2.

After 1.6 and 4.4 weeks of development in the RAB (experimen
tal conditions called “1.6 weeks” and “4.4 weeks”, respectively),
a sampling of 9 colonized plates was carried out. Among these 9
plates from each sampling time, 6 plates were used directly for the
microcosm study (experimental condition called “Plates with intact
biofilm”). The last set of 3 plates was scraped with a microscope
slide previously treated with 95% alcohol to ensure no trace of DNA.
The biofilm from each plate was suspended in 90 mL of filter steril
ized tap water (0.2 mm pore size filter, cellulose acetate membrane,
Whatman) and homogenized (tissue homogenizer at 13,500 rpm,
Ultra Turrax, T25). Each biofilm suspension homogenate was sub
divided into aliquots, a first 45 mL subsample for the analyses of
biomass descriptors (AFDM and chlorophyll a), algal abundance,
TRFLP and carbon source utilization assays (Biolog), and a sec
ond 45 mL subsample as inoculum source for the microcosm study
(experimental condition called “recolonized biofilm”).

2.2. Microcosm setup

The impact of alachlor on the phototrophic microbial biofilm
communities, was assessed in microcosms containing either samp
ling plates from RAB, with an intact threedimensional structured
biofilm, or inoculated with a suspension of biofilm from a samp
ling plate. The microcosm system consisted of glass beakers of
500 mL (VWR) previously autoclaved. Moreover, the beakers used
for the experimental conditions “recolonized biofilm” contained
clean glass slides treated with 95% alcohol allowing to study the
impact of alachlor on the development of a new biofilm. Each
beaker was initially filled with 300 mL of a sterile synthetic culture
medium similar to the culture medium feeding the RAB but with 2×
concentrations of each nutrient to avoid nutrient limitation (NO3

−
N = 8 mg L−1, PO4

3−P = 0.6 mg L−1, SiO2 = 30 mg L−1). Some beakers
were treated with a nominal initial concentration of 10 mg L−1 of
alachlor, and others untreated were kept as controls. Alachlor pur
chased from Sigma–Aldrich (purity 99%) was dissolved in acetone
(analytic quality, VWR) to make a stock alachlor solution. Aliquots
of this stock solution were then added to treated microcosms to



obtain the final tested concentration. The final concentration of
solvent added to each beaker was less than 0.005% (v/v).

For each experiment in microcosm (“1.6 weeks” and “4.4
weeks”) monitored for 15 days, the experimental design consisted
of a treated at 10 mg L−1 alachlor and untreated intact biofilm
treatments, and treated at 10 mg L−1 alachlor and untreated recol
onized biofilm treatments. Each treatment supported 3 identical
replicate beakers randomly. Each plate or slide represented one
replicate. All the beakers were maintained in a temperature con
trolled (20 ◦C) chamber on a multipost magnetic stirrer (Poly 15,
Fiers Variomag and Fisher scientific), illuminated by 4 cool daylight
fluorescent tubes (F18W/GRO, Sylvania, Germany) which were
positioned 30 cm above beakers. The system operated with 16 h
light cycles. The illumination was measured as air PAR irradiance
level by a flat quantum sensor (model LI189, LICOR, Inc, Lincoln,
NE) at a distance from the multipost magnetic stirrer equivalent to
the midheight of a beaker (50 cm from the fluorescent tubes), the
average recorded values were 37±4 mmol s−1 m−2. Before addi
tion of intact biofilm plates or resuspended biofilms collected from
bioreactor, the beakers were incubated for 5 h to obtain stable water
chemical conditions.

2.3. Experimental schedule

To summarize, experimental conditions during the microcosm
study included two biofilm development period lengths in the
RAB (“1.6 weeks” and “4.4 weeks”, giving different maturation lev
els of phototrophic biofilms) and two biomass structural states
(“intact biofilm” and “recolonized biofilm”). Thus, the present study
compares the sensitivity of biofilm communities to alachlor expo
sure throughout its maturation stage: either the colonization step
(treatment called “recolonized biofilm”) or the thickening level
(treatment called “intact biofilm”) associated to different develop
ment ages (after 1.6 and 4.4 weeks of development in RAB) in order
to discover if the thickness of biofilm might be a protective barrier
during the contamination to alachlor.

For each biofilm development period lengths in RAB, the exper
imental design was as follows: 6 colonized plates were sampled
from the RAB and immediately transferred to 6 beakers. Moreover,
each subsample of the three biofilm homogenates (45 mL), after
centrifugation (12,000× g for 20 min, at 4 ◦C), was resuspended into
6 or 8 mL, then subdivided and equally inoculated (3–4 mL) into
a total of 6 other beakers which contained the glass slides previ
ously cleaned with alcohol 90%. Thus the amount of resuspended
biofilm homogenate inoculated into beakers gave average final con
centrations at day 0 of 15 and 45 mg AFDM L−1 from 1.6 and 4.4
weeks biofilm ages, respectively. For each experimental condition
(biofilm and suspension), each group of 6 beakers included 3 repli
cate control beakers without alachlor and 3 replicates with alachlor
10 mg L−1. All the beakers were closed with the lid of a Petri dish. A
window was performed on the middle of the lid to allow the glass
slides and plates to be inserted and maintained vertically in the
beakers. The loss of water volume by evaporation was compensated
by addition of distilled water.

At the end of experiments (15 days), all glass slides (6 slides
corresponded to 3 replicates for each treated and untreated micro
cosm) and plates (6 plates corresponded to 3 replicates for each
treated and untreated microcosm) were sampled to assess the
intact (from plates) and reformed biofilm (from glass slides)
response to alachlor exposure. Biofilms were removed from plates
and slides by scraping as described above. Biofilms were suspended
in 50 mL (biofilm from slides) or 90 mL (biofilm from plates) of tap
water previously filtered through a 0.2 mm pore size filter (cellulose
acetate membrane, Whatman) and homogenized (tissue homoge
nizer at 13,500 rpm, Ultra Turrax, T25). From these homogenates
(50 or 90 mL), aliquots were taken for analyses of biomass

descriptors, algal and diatom composition, bacterial community
structure, and carbon source utilization profiles assays.

Water samples (70 mL) from each microcosm were collected
after 5 days of incubation and at the end of incubation to evaluate
the alachlor residual concentrations and the water physico
chemical characteristics.

2.4. Water physicochemical parameters

Nutrient concentrations during the culture in RAB and ecotox
icological experiments, including nitrates, silica, and orthophos
phates, and DOC concentrations were measured as described by
Paule et al. (2009, 2011). Conductivity (and temperature) and pH
values were measured with a conductimeter Hanna HI 99 1300 and
a pH meter 320WTV (electrodes Sentix41), respectively. Dissolved
oxygen concentrations were determined with an Oxi323 oxymeter
(electrodes oxicalS).

Dissolved oxygen concentrations, pH, temperature and conduc
tivity values during the culture in RAB were measured at the water
outlet valve of the reactor as described by Paule et al. (2011).

For the measurement of residual alachlor concentrations,
the water samples (5 mL) were filtered through Whatman GF/F
glass fibre filters (0.7 mm pore size) and analyzed at “Labo
ratoire Départemental de l’Eau” (Toulouse, France), using high
performance liquid chromatography coupled tandem to mass
spectrometry (HPLC–MS–MS, Thermo Fisher, model EQuan TSQ
Quantum ultra) with ionization electron spray source and equipped
with a preconcentration column (Thermo Fisher Hypersil GOLD
C18, 12 mm particle size, 20×2.1 mm), by a direct sample injection.
The sample volume was 2 mL. The alachlor separation was moni
tored using a Thermo Fisher Hypersil GOLD C18 (3 mm particle size,
50×2.1 mm) column.

2.5. Biofilm characterization

2.5.1. Biomass descriptors

From the biofilm suspension homogenate, AFDM (aliquot from
10 to 50 mL), and chlorophyll a were measured as described by
Paule et al. (2009).

2.5.2. Algal composition

Diatom composition of biofilms cultivated in the RAB (sam
pled at 1.6 and 4.4 weeks) and at the end of the ecotoxicological
experiments was estimated from aliquots of the biofilm suspen
sion homogenates (5 mL), preserved in formalin solution (3%) and
kept in darkness at 4 ◦C until analysis. Identification and counting
of 400 diatom frustules were performed as described previously
by Roubeix et al. (2011a). Taxonomic identifications for all species
were checked from the taxonomic literature of Central Europe and
recent nomenclature updates (see Table S1 in the supplementary
material to access to the links from different Data bases referring
to image for each indentified diatom species).

As proposed by Pappas and Stoermer (1996), the efficiency for
counting our samples (diatoms community with a maximum of 12
species) with 400 diatom frustules is comprised between 0.968 and
0.98.

For the biofilms sampled in the RAB after 1.6 and 4.4 weeks of
culture, algal composition was estimated from a pool of aliquots
of 5 mL clustering biomasses from 3 plates. The total density and
abundance percentages were determined with an inverted micro
scope (Axiovert 10, Zeiss, West Germany) (Utermöhl, 1958).

2.5.3. Carbon source utilization profiles

Community level analysis of carbon source utilization pro
files for all experimental conditions were evaluated by using
commercial Ecoplates (Biolog, Hayward, CA, USA). Each microplate
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was inoculated with 100 mL of an aliquot of biofilm suspension
homogenate (5 mL) previously filtered on polycarbonate filter
(0.3 mm pore size, GS 25 mm, Whatman) and then incubated in the
dark at 20 ◦C for 7 days. Each microplate was used for one exper
imental condition (3 replicates). The absorbance was measured
every day at 590 nm using a multi well plate reader (Spectro Max
plus 384, Molecular Device). For every absorbance value, the con
trols were subtracted. For statistical analysis, the net absorbances
at 168 h of incubation were used. The substrates were grouped by
guild following their chemical structure (Choi and Dodds, 1999):
amines, amino acids, carbohydrates, carboxylic acids, polymers
and phenolic compounds. As described by Leflaive et al. (2005),
a principal component analysis (PCA) was conducted on the guild
categorization.

2.5.4. Bacterial community structure

After centrifugation (12,000× g at 4 ◦C for 20 min, Heraeus Mul
tifuge) of an aliquot of 20–50 mg dry mass of the biofilm suspension
homogenate (Lyautey et al., 2005a), the pellet was stored at−80 ◦C
until further analysis. Genomic DNA extraction was performed on
the pellet using a DNeasy Plant Mini Kit according to the manufac
turer’s protocol (Qiagen Laboratories). The integrity of the extracted
DNA was checked as described by Paule et al. (2009).

The 16S rRNA genes were amplified by PCR and the bacterial
community structure was studied by TRFLP as described by Paule
et al. (2011). Restriction digestion was performed with HaeIII, HinfI
and Hpa. TRFLP profiles were aligned by a webbased tool, TAlign
(http://inismor.ucd.ie/∼talign/) as previously described by Smith
et al. (2005) with a confidence interval of 0.5.

2.6. Data analysis

The difference in physicochemical characteristics and the dif
ference in AFDM, chlorophyll a, the number of diatoms deformities
and the number of TRFs between biofilm samples were assessed
with the Mann–Whitney test using SPSS software 13.0. Differences
were considered statistically significant at p≤0.05.

To assess changes in the bacterial community structure in
microcosms, a PCA was performed from the logtransformed T
RF abundance data. A hierarchical cluster analysis was performed
based on Bray Curtis similarity matrices generated from the
logtransformed diatom abundance. PCA and hierarchical cluster
analyses were realized on the samples clustered following biomass
structure state (intact biofilm versus recolonized biofilm) using
Primer v6 software (PrimerE, Ltd, Lutton, United Kingdom). Peaks
<0.5% of the total area were excluded from the analysis and TRFs
that differed in size by 0.5 bp or less were considered to be identical.

This baseline of 0.5% was defined in accordance with the
approaches of Osborne et al. (2006). Statistical analyses of PCA were
run using an analysis of similarity (ANOSIM) via primer v6 software
on Bray Curtis similarity matrices generated from logtransformed
TRF abundance or guild categorization data (Clarke, 1993). The
global R value was considered statistically significant at p < 0.05
uncorrected.

3. Results

3.1. Characterization of phototrophic biofilms collected in RAB

The 1.6 weeksold biofilm exhibited lower AFDM and chloro
phyll a values (1.12±0.28 mg cm−2 and 6.2 mg cm−2 for AFDM
and chlorophyll a, respectively) than 4.4 weeksold biofilm
(2.45±0.30 mg cm−2 and 31.7 mg cm−2 for AFDM and chlorophyll
a, respectively) (p > 0.05) (Fig. 1, for T0 conditions). The 1.6 weeks
old biofilm was composed of 33% Diatoms, 51.7% Chlorophyceae,
and 14.9% Cyanobacteria with the following dominant phototrophic



Fig. 1. Plots of AFDM (A) and chlorophyll a (B) values (±SD, n = 3) after 15 days of incubation in the control (Co) and exposed to nominal initial alachlor concentration of

10 mg L−1 (A10) microcosms according to the different experimental conditions (1.6 and 4.4 weeks: ages of biofilms when collected in the RAB; plates with intact biofilm

from RAB or slides recolonized biofilm). “T0” indicated the date where fresh biofilm plates were sampled after 1.6 and 4.4 weeks of biofilm development in the RAB.

taxa at the genus level: 31.5% of Nitzschia, 28% of Scenedesmus and
Desmodesmus and 13% of Lyngbya spp. In contrast, 4.4 weeksold
biofilm was composed of 4.1% Diatoms (only Nitzschia) and 95.5%
Chlorophyceae with the dominant species 74.9% of Scenedesmus.
Moreover the 1.6 weeksold biofilms exhibited higher specific algal
richness (13) than the 4.4 weeksold biofilms (7).

3.2. Physicochemical parameters in microcosms

Physicochemical parameters measured in water samples from
control and alachlor treated microcosms during both ecotoxico
logical experiments are presented in Table 1. Values of pH and
conductivity were relatively homogenous throughout the exper
iment irrespective of the experimental conditions. Although, a
decrease of nitrate and orthophosphate levels was recorded, an
increase in DOC was detected throughout the times of incuba
tion. Similarly, a reduction of residual alachlor concentration was
observed over time. Observations are similar between both exper
iments “1.6 weeks” and “4.4 weeks”. The timeweighted average
concentration (TWAC), defined as the sum of the mean alachlor con
centration in the exposure medium at each measured time interval
multiplied by that time interval and divided by the total time of
observation, give a mean value of 5.52±0.74 mg L−1 for all the
experiments (TWAC varied from 4.6 to 6.5 mg L−1), with a nominal
initial alachlor concentration of 10 mg L−1.

3.3. Phototrophic biofilms response to alachlor exposure in

microcosms

3.3.1. Biomass descriptors

Fig. 1 presents the impact of alachlor exposure on the biomass
descriptors (AFDM and chlorophyll a) for the different exper
imental conditions. The intact biofilms sampled in the control
and alachlor treated microcosms at the end of both experiments
“1.6 weeks” and “4.4 weeks” exhibited AFDM values ranged from
0.25 to 1.75 mg cm−2 and chlorophyll a values ranged from 9.5
to 13.5 mg cm−2. Although the recolonized biofilms from slides
exhibited AFDM values ranged from 0.15 to 0.45 mg cm−2 and
chlorophyll a values ranged from 0.05 to 0.1 mg cm−2.

Alachlor induced significant effects on AFDM for the exper
imental conditions “1.6 weeks and Plates with intact biofilm”
(Mann–Whitney, p < 0.05), associated with processes of loss of
biomass and/or inhibition of growth (Fig. 1A). No significant effect
of alachlor was observed on chlorophyll a irrespective of the struc
tural state of biomasses (intact biofilm or recolonized biofilm)
(Mann–Whitney, p > 0.05) (Fig. 1B). Biofilms of the experimental

conditions “4.4 weeks and Plates with intact biofilm” sampled at the
end of the microcosm experiment exhibited high loss of biomass
(AFDM and chlorophyll a) irrespective of exposure to alachlor and
control microcosms related to the temporal evolution of intact
biofilm (p < 0.05).

3.3.2. Bacterial communities

The response of bacterial communities from phototrophic
biofilms exposed to alachlor according to its level of maturation and
structural state were determined by TRFLP. No significant alachlor
effect was observed on the TRFs numbers irrespective the experi
mental conditions (data not shown) (p > 0.05). Principal component
analysis (PCA) was performed on the TRF logtransformed abun
dance data according to the structural state of biomasses incubated
at the start of experiments (Fig. 2). The two axes accounted for
44.4 and 17.8% of the total variance for the experimental condition
“Plates with intact biofilm” (Fig. 2A) and for 54.8 and 12% for the
experimental condition “Slides recolonized biofilm” (Fig. 2B). This
analysis was strengthened by the similar trends observed with PCAs
scatterplot figured between the first and third axes. The first three
axes accounted for 74.7 and 71.5% of the variation of TRFLP pat
terns for both experimental conditions “Plates with intact biofilm”
and “Slides recolonized biofilm”, respectively (data not shown).

For the experimental condition “Plates with intact biofilm”
(Fig. 2A), PCA shows temporal variations of bacterial communities
from 1.6 weeksold biofilm during the microcosm study (ANOSIM,
global R = 1, p = 0.01). However, no temporal variation was observed
for the 4.4 weeksold biofilm incubated on plates. For the experi
mental condition “Slides recolonized biofilm” (Fig. 2B), the profiles
of bacterial community structure were distributed according to
the maturation level of biofilms incubated (1.6 versus 4.4 weeks)
(ANOSIM, global R = 0.981, p = 0.01).

No change of the bacterial community structure was induced
by the alachlor exposure compared to the control, irrespective of
the maturation level (1.6 and 4.4 weeks) and the structural state
of biomasses (intact biofilm or recolonized biofilm), respectively
(Fig. 2A, ANOSIM, global R = 0.122, p = 0.25) (Fig. 2B, ANOSIM, global
R =−0.093, p = 0.71).

3.3.3. Carbon source utilization profiles

PCAs were performed on the guild categorization according
to the structural state of biomasses (intact biofilm or recolonized
biofilm) (Fig. 3). The two axes accounted for 62.6 and 18.3%, and
77.2 and 13.2% of the total variance for the “Plates with intact
biofilm” and for the “Slides recolonized biofilm”, respectively. This
analysis was strengthened by the similar trends observed with



Fig. 2. Changes in the bacterial community structure assessed by principal component analysis (PCA) based on the TRFLP data after 15 days of incubation in the control

(white symbols � and ©) and exposed to nominal initial alachlor concentration of 10 mg L−1 (black symbols � and d) microcosms according to the different experimental

conditions, 1.6 weeks (squares � and �) and 4.4 weeks (circles © and d) biofilms; plates with intact biofilm from RAB (A) or slides recolonized biofilm (B). Symbols “star”

and “cross” in (A) design the results for fresh biomasses sampled after 1.6 and 4.4 weeks of biofilm development in the RAB, respectively. Circles correspond to a similarity

between samples of 70%.

PCAs scatterplot figured between the first and third axes. The first
three axes accounted for 90.2 and 95% of the variation of Biolog
patterns for the conditions “Plates with intact biofilm” and “Slides
recolonized biofilm”, respectively (data not shown).

No significant effect of alachlor was observed on the carbon
source utilization profiles irrespective of the different experimen
tal conditions considered (Fig. 3A, ANOSIM, global R = 0.093, p = 0.2)
(Fig. 3B, ANOSIM, global R = 0.278, p = 0.9). For the biofilms of the
experimental condition “Slides recolonized biofilm”, the commu
nities from 1.6 weeksold biofilm exhibited a tendency to use the
carboxylic acids and carbohydrates while the communities from
4.4 weeksold biofilm appeared to preferentially use the amines
and phenolic compounds (Fig. 3B).

In agreement with the analysis of bacterial community struc
ture (Fig. 2), the PCA according to the experimental condition
“Plates with intact biofilm” showed temporal variations of bacte
rial communities from 1.6 weeksold biofilm through incubation
accompanied by changes in the preferential utilization of carbon
source (Fig. 3A). Conversely, no significant temporal variation was
observed for the bacterial communities from 4.4 weeksold biofilm.

3.3.4. Diatom communities

For the experimental condition “Plates with intact biofilm”,
senescence of the biofilms samples from 4.4 weeksold biofilm
prevented the counting and identification of the diatom species
because of a too low preservation of the frustules. Data from these
samples were thus not included in the analysis (Fig. 4 and Table 2).
A total of 12 diatom species identified throughout the microcosm
experiments had a relative abundance >1%, and were considered
as characteristic of each diatom community (Fig. 4). For the diatom
communities of the experimental condition “Slides recolonized
biofilm” (Fig. 4B), compositions were divergent depending on mat
uration level of biofilms incubated (1.6 and 4.4 weeks) (ANOSIM,
global R = 1, p = 0.01). The diatom communities from 1.6 weeks
old biofilm were mainly composed of Nitzschia palea (Kützing) W.
Smith (NPAL), Nitzschia amphibia Grunow f. amphibia (NAMP) and
Eunotia minor (Kützing) Grunow in Van Heurck (EMIN), and the
communities from 4.4 weeksold biofilm were essentially com
posed of NAMP and NPAL associated with different proportions
(Table 2 and Supplementary material for the link of image for
each diatom species). Diatom communities which were collected at
the end of microcosm experiment exhibited no significant change

induced by alachlor exposure, irrespective of the structural state
and the maturation level of the biofilms incubated at the start of
microcosm experiment (experimental condition “Plates with intact
biofilm”: ANOSIM, global R = 0.185, p = 0.14) (experimental condi
tion “Slides recolonized biofilm”: ANOSIM, global R = 0.074, p = 0.5).
For the experimental condition “Plates with intact biofilm”, no
temporal variation was observed through incubation, with diatom
communities mainly composed of NPAL (82–87%) (Table 2). No sig
nificant abnormal forms of diatoms were observed in response to
alachlor treatments (data not shown).

4. Discussion

The objectives of the present study were to assess alachlor tox
icity on microbial communities of phototrophic biofilm in relation
to age and state (intact versus recolonized biofilm). Phototrophic
biofilm grown in RAB under stable operating conditions was pre
ferred to the use of natural phototrophic biofilms collected in situ.
In RAB, the growth of biofilm was mainly driven by autogenic fac
tors, favouring the development of simplified biofilms structures
with low algal diversity (Paule et al., 2011). The choice of devel
opment times (“1.6 and 4.4 weeks”) was based on the observations
on phototrophic biofilm growth reported in a previous study (Paule
et al., 2011). During the microcosm alachlor exposure experiments,
factors which influence the growth of phototrophic biofilms were
maintained constant (light, temperature and hydrodynamic), thus
the difference recorded between controls (Co) and alachlortreated
(A10) microcosms are attributable to alachlor. Levels of alachlor
in the treated microcosms decreased over time for both experi
ments (“1.6 and 4.4 weeks”) with a pseudohalflife of 4.2±0.1 and
2.8±0.8 days for slides and plates experiments, respectively, and
a mean TWAC of 5.52±0.74 mg L−1. The current study exhibited
lower halflife values than those recorded in previous studies which
range from 9.7 to 180 days (Graham et al., 1999, 2000; Ensz et al.,
2003; Knapp et al., 2003). However, they are consistent with the
halflife values recorded for sediment–water systems containing
higher biomass levels (Laabs et al., 2007). Numerous mechanisms
could be involved in the disappearance of alachlor within our
microcosms including photodegradation, hydrolysis, adsorption
(on the biofilm or microcosm materials), biosorption (internaliza
tion in microbial cells), and volatilization mechanisms (Chesters
et al., 1989), although previous studies in aquatic systems suggest



Fig. 3. Results of the principal component analysis (PCA) carried out on the carbon source group utilized (net optical density at 168 h) by microbial communities after 15

days of incubation in the control (white symbols � and©) and exposed to nominal initial alachlor concentration of 10 mg L−1 (black symbols � and d) microcosms according

to the different experimental conditions (1.6 weeks (squares � and �) and 4.4 weeks (circles© and d) biofilms; plates with intact biofilm from RAB (A) or slides recolonized

biofilm (B). Symbols “star” and “cross” design the results for fresh biomasses sampled after 1.6 and 4.4 weeks of biofilm development in the RAB, respectively. Big circles

correspond to a similarity between samples of 70%. For (A) and (B), projection of the variables (carbon source guild) on the component planes with a: amines; aa: amino

acids; c: carbohydrates; ca: carboxylic acids; p: polymers; pc: phenolic compounds.

that the key mechanism of disappearance of alachlor is biotrans
formation catalyzed by the nonspecific Glutathione Stransferase
(GST) enzyme (e.g. Graham et al., 2000). In the hypothesis of
biodegradation processes, the results could be the presence of
alachlor metabolites (e.g. alachlor OA – oxanilic acid; alachlor ESA
– ethane sulfonic acid). Previous study on other chloroacetanilide
herbicides recorded a lower toxicity of the metabolites compared
to that of their parent compounds (Roubeix et al., 2012).

4.1. Alachlor toxicity throughout development stages

The chloroacetanilide herbicides are well known to inhibit the
elongation of unsaturated chain fatty acid in plants and algae
(Böger et al., 2000), thus inhibiting cell development (Junghans
et al., 2003). No significant change caused by the alachlor expo
sure for 15 days at mean TWAC of 5.52±0.74 mg L−1 was observed
in the present study in terms of bacterial and diatom commu
nity structures and carbon source utilization profiles irrespective



Fig. 4. Cluster of the similarity in taxonomic composition of diatom communities after 15 days of incubation in the control (Co) and exposed to nominal initial alachlor

concentration of 10 mg L−1 (A10) microcosms according to the different experimental conditions 1.6 weeks (1.6) and 4.4 weeks (4.4) biofilms; plates with intact biofilm from

RAB (A) or slides recolonized biofilm (B). “T0” indicated the date where fresh biofilm plates were sampled after 1.6 weeks of biofilm development in the RAB. The letters a, b

and c indicate replicates from same experimental condition.

the development stages. Moreover no diatom frustules exhibited
a significant number of deformities (p > 0.05). Only the biomass
based on AFDM results was impacted for the condition “1.6 weeks
and Plates with intact biofilm” which is consistent with the pro
cesses of growth inhibition. Furthermore, the absence of change in
the structure evaluated by TRFLP and physiological states evalu
ated by Biolog of bacterial communities would indicate that some
functions of biofilm are not damaged resulting in unperturbed over
all ecosystem functioning. Previous results (Spawn et al., 1997)
described a significant negative effect on the chlorophyll a levels for
alachlor concentrations of 10 mg L−1, and changes in dominant algal
composition at higher level of alachlor (30 mg L−1). Algal commu
nity biovolume was impacted throughout experiments in streams
treated with alachlor at 90 mg L−1 (Carder and Hoagland, 1998).

Ecologically, this reduction of the amount of biomass (AFDM)
could impair the quality of biofilm as a food resource for aquatic
grazers, and change the community contribution to organic matter

mineralization and element recycling. Furthermore, the absence
of change in the structure evaluated by TRFLP and physiological
states evaluated by Biolog of bacterial communities would indi
cate that some functions of biofilm are not damaged resulting in
unperturbed overall ecosystem functioning.

To our knowledge, few studies have investigated the toxic
ity of alachlor at a communitylevel using phototrophic biofilms
(e.g. Spawn et al., 1997; Carder and Hoagland, 1998). However,
studies have explored the impact of metolachlor, metazachlor
or acetochlor, chloroacetanilide herbicides which share a similar
mode of action than alachlor (e.g. Noack et al., 2004; Relyea, 2009;
Debenest et al., 2009; Roubeix et al., 2011a, 2012). For example,
previous studies observed that metolachlor and metazachlor gen
erated growth inhibition suggested by lower chlorophyll a levels
of phototrophic biofilms exposed at 5 and 30 mg L−1 (Noack et al.,
2004; Debenest et al., 2009). Conversely, Roubeix et al. (2011a)
did not detect any significant effect on the biomass (AFDM and
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chlorophyll a) of biofilms exposed to metolachlor at 5 and 30 mg L−1

for 14 days but recorded significant difference between the control
and exposed diatom communities in terms of species composi
tion. Furthermore, previous works demonstrated the occurrence
of frustule and cellular deformations in diatoms and green algae
at high concentrations of metolachlor (30 mg L−1) (Liu and Xiong,
2009; Roubeix et al., 2011a). Shortassays for 96 h on the impact
of acetochlor on freshwater bacterial communities revealed dose
dependent impact on their structure, evident in the development
of three distinct dose dependent clusters (0, 1 and 5 mg L−1; 50 and
100 mg L−1 and 500 mg L−1) and, an increase in the number of car
bon sources utilized which may illustrate an increased functional
diversity (Foley et al., 2008).

Tolerance of bacterial and diatom communities to alachlor
observed in the present study irrespective of the treatment may
be explained by (i) the environmental context suggesting the
presence of tolerant species in biofilms collected in the RAB and
initially present in the inoculum (epilithic biofilms from various
river stones), (ii) a first perturbation during the exposure by chang
ing the operating conditions (including nutrient concentrations,
illumination, hydrodynamic conditions and resuspension), because
communities which previously seem to have been impacted by
other stresses often respond weakly to a second stress (Tlili et al.,
2008), (iii) a shorter exposure period associated with the fast dis
appearance of alachlor over time in aqueous phase, giving a TWAC
lower than the nominal initial concentration, (iv) for intact biofilm,
its thickness which may act as a protective barrier limiting transfers
with the water column (Wicke et al., 2008), (v) a natural eco
logical succession of communities, in other terms the influence
of autogenic factors dominating allogenic factors associated with
reduced exchanges between microorganisms and water column
compared to microorganism interactions inside aggregates, and
(vi) a low toxicity of chloroacetanilide herbicides linked to their
mode of action or the ability of microorganisms to biodegrade by
cometabolisms reactions catalyzed by nonspecific GST enzyme
(Debenest et al., 2009).

It is interesting to observe that the thin biofilms developing over
15 days on the slides (corresponding to the first stage of biofilm
development) from the resuspended biofilms, did not exhibit
higher sensitivity to alachlor. It has been suggested that the thick
ness of biofilm could provide better protection against alachlor,
decreasing diffusion barrier slowing transfers (Villeneuve et al.,
2011b). The growth of phototrophic biofilms may be higher influ
enced by factors such as the use of artificial supports (Kröpfl et al.,
2006; Lane et al., 2003; Murdock and Dodds, 2007) or nutrient
rich medium used during the experiment (Hillebrand and Sommer,
2000), thus masking the potential effects of alachlor. Noack et al.
(2004) observed that the growth of biofilm was influenced by both
the presence of metazachlor and the ability of species to grow on
artificial supports.

Jurgensen and Hoagland (1990) observed that changes in hydro
dynamic conditions had a greater impact on phototrophic biofilms
relative to pulsed atrazine exposures. In the present study, the state
of first stage of biofilm development which suggest the most water
column – biofilm interactions seems to be the less affected by the
presence of herbicide.

4.2. Influence of phototrophic biofilm environmental context on

the response to alachlor

The bacterial and algal species composition, the thickness, com
pactness and elasticity of the threedimensional structure and the
functions of biofilms are mediated by their environmental context
(e.g., light, nutrient, current velocities). Previous studies concluded
that biofilms growing under fast current conditions presented a



more compact structure (Battin et al., 2003). Most importantly,
it has been reported that phototrophic biofilms exhibiting elastic
threedimensional architecture are more sensitive to pesticide than
phototropic biofilms exhibiting compact structure (Guasch et al.,
2003). The nature elastic or compact of threedimensional archi
tecture of biofilm is depending on present algae species. Zippel and
Neu (2005) concluded that greenalgal dominated biofilms pre
sented a less stable and compact structure. In the present study,
Chlorophyceae represented 51.7 and 95.5% of the algal taxa abun
dance for the 1.6 and 4.4 weeksold biofilms, respectively.

A review about the impact of herbicides on freshwater micro
bial communities suggested the importance of initial composition
of communities in the response of biofilm to herbicide exposure
(Villeneuve et al., 2011c). Chloroacetanilide herbicides disturb the
elongation of very long chain fatty acids. Thus the membranes
lose their rigidity and permeability, leading to impaired cell divi
sion. Mohr et al. (2008) studied the effects of metazachlor on the
response of phytoplankton and suggested that the sensitivity of
algal species may be due to the presence of very long chain fatty
acids in their membrane.

Algal communities present in the biofilms initially collected
from the RAB are dominated by green algae such as Scenedesmus,
Desmodesmus and diatoms including Nitzschia palea (Kützing) W.
Smith. Published toxicity data for alachlor using Scenedesmus

species show EC50 varied greatly from 6 to 1328 mg L−1 depend
ing on species (Desmodesmus quadricaudatus 1328 mg L−1, Fairchild
et al., 1998; Scenedesmus vacuolatus 37.8 mg L−1, Junghans et al.,
2003; and Selenastrum capricornutum 6 mg L−1, Fairchild et al.,
1997). Spawn et al. (1997) observed a significant effect of alachlor
on Scenedesmus spp. for concentrations up to 30 mg L−1 and
Nitzschia spp. was significantly affected at 10 mg L−1. In the present
study, only the 1.6 weeksold biofilm observed a significant loss
on AFDM induced by alachlor exposure, associated certainly to its
algal composition.

The present study compares the sensitivity of diatoms in
biofilms of different ages and structural states to alachlor exposure.
Based on assessment of species composition, no effect of alachlor
was observed on the diatom communities. In the literature, the
relationship between the composition of diatoms and the presence
of pesticide is not clear (Morin et al., 2009). Some species are con
sidered to be tolerant in some cases and sensitive in other cases
(Guasch et al., 1998; Dorigo et al., 2004; Morin et al., 2009).

Ecological guilds (high, low and motile profiles), previously
described by Passy (2007), are defined as a group of species which
live in the same environment but are differently adapted to biotic
factors (Passy, 2007; Berthon et al., 2011).

Dominant diatom species observed in the present study,
Nitzschia palea (Kützing) W. Smith (NPAL) and Nitzschia amphibia

Grunow f. amphibia (NAMP), are well known to be hyper
eutraphentic species and are motile guild diatoms (fastmoving
mobile diatoms) (Rimet and Bouchez, 2011; Roubeix et al., 2011b).
For example, NPAL which has been indicated as resistant to atrazine
exposure (Guasch et al., 1998; Downing et al., 2004), exhibited
an increased abundance with pesticide contamination (diuron,
azoxystrobin and tebuconazole, Rimet and Bouchez, 2011), and
appeared indifferent to diuron exposure in another study (Roubeix
et al., 2011b). Various studies have shown that the species of
diatoms selected in a pesticide contaminated environment were
motile guild species (Guasch et al., 1998; Dorigo et al., 2004; Morin
et al., 2009).

4.3. Influence of temporal evolution of phototropic biofilm on the

response to alachlor exposure

Intact biofilms from the experiment “4.4 weeks” were mainly
affected by the incubation period, illustrated by a high loss of

AFDM in both control and alachlor treatments (Co and A10), this
may suggest that the biofilms matured and underwent sloughing
(Biggs, 1996). This is in accordance with the observations on growth
of biofilm and the subsequent senescence observed for growth
in the RAB (Paule et al., 2011). This senescence could mask the
effect induced by alachlor in “4.4 week biofilms” in our study. Dur
ing phototrophic biofilm growth in RAB (undisturbed conditions),
autogenic factors are predominant favouring autogenic detach
ment rarely observed in natural environments (Biggs, 1996).

In the microcosm experiments, the bacterial communities were
mainly influenced by the biofilm maturation processes rather than
alachlor exposure during the experiment “1.6 weeks” although no
changing of bacterial communities was observed in the microcosm
experiments during the experiment “4.4 weeks”. These observa
tions are in accordance with the results recorded for the growth
inside the RAB (Paule et al., 2011). Indeed, during the culture, the
bacterial community structure changed according to colonization
time, followed by a stable phase after 4.4 weeks. In the present
study, changes due to alachlor exposure may have been masked by
the temporal evolution of biofilms. Therefore if river biofilms are to
be effective bioindicator of water quality (Montuelle et al., 2011),
understanding this temporal dynamic will be important.

4.4. The influence of phototrophic biofilm biodiversity on the

response to alachlor exposition

In the present study, the lowalgal diversity did not increase
sensitivity to alachlor, as shown by continued growth suggested by
increasing AFDM values. The observed temporal changes of bacte
rial community structure and utilization of different carbon sources
during the incubation period for biofilm collected at 1.6 weeks also
indicated little impact of alachlor. Despite the species poor algal
communities resulting from suspension inoculated into the micro
cosms and herbicide exposure, the colonization and growth of
biofilms on slides occurred. These observations suggest the impor
tance of the relationship between the stability of ecosystem and the
biodiversity, which is a major question in ecology (Mac Cann, 2000).
The hypothesis “stabilitybiodiversity” suggests that higher biodi
versity is associated with higher resistance to stress. For instance,
Zhang and Zhang (2006) recorded high resistance of highly diver
sified algal communities exposed to temperature variations. Our
results are consistent with the observations of Villeneuve et al.
(2011b). These authors observed that lower diversity biofilm com
munities from homogenous mesocosms presented no particular
sensitivity to diuron. Pesce et al. (2006) demonstrated that the
effect of diuron on the phototrophic communities of the biofilms
depended more on the initial specific taxonomic composition than
on the number of species present. Although a high taxonomic bio
diversity did not correspond to high functional diversity (Hughes
et al., 2007), the response of communities to stress could be mainly
influenced by the presence of key species, which may change with
community development or age.

5. Conclusion

The present work indicates that the effect of exposure to a
nominal initial alachlor concentration of 10 mg L−1 (mean TWAC of
5.52±0.74 mg L−1) is mainly limited to reduction of phototrophic
biofilm biomass associated with the inhibition of growth. There
were few apparent changes detected in the ecological succes
sion trajectories or composition of microbial communities. This
effect was consistent with the mode of action of alachlor although
the outcome appeared to be influenced by species composi
tion and temporal ecological succession of biofilm communities.
When biofilm structured microbial communities were exposed



to alachlor, there was no evidence on the role of the biofilm
as a barrier to alachlor. In addition, alachlor did not disturb the
communities during the first stage of slide colonization, although
highly conditioned by the allogenic factors at this stage of devel
opment (Lyautey et al., 2005b). Phototrophic biofilms were most
strongly influenced by the temporal dynamic of microbial commu
nity development and senescence which may mask the potential
effect of alachlor. Thus, in ecotoxicological experiments, it is essen
tial to consider the age of biofilms in the assessment of potential
effects. Our results showed the difficulty to distinguish the impact
of pesticide from that of other perturbations, such as incubation
and operating conditions. Moreover, the intact threedimensional
structure of the biofilm did not appear to confer protection from
the effects of alachlor. A multitude of effects induced by the pes
ticides are reported in the literature and greater standardization
will require to use these communities as indicators. Studying
phototrophic biofilms as dynamic aggregates allowed us to under
take an ecotoxicological approach integrating the concepts of
ecological succession in microbial communities and the physical
threedimensional structure of the biofilm.
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