20 research outputs found

    A Study of V2V Communication on VANET: Characteristic, Challenges and Research Trends

    Get PDF
    Vehicle to Vehicle (V2V) communication is a specific type of communication on Vehicular Ad Hoc Network (VANET)  that attracts the great interest of researchers, industries, and government attention in due to its essential application to improve safety driving purposes for the next generation of vehicles. Our paper is a systematic study of V2V communication in VANET that cover the particular research issue, and trends from the recent works of literature. We begin the article with a brief V2V communication concept and the V2V application to safety purposes and non-safety purposes; then, we analyze several problems of V2V communication for VANET related to safety issues and non-safety issues. Next, we provide the trends of the V2V communication application for VANET. Finally, provide SWOT analysis as a discussion to identify opportunities and challenges of V2V communication for VANET in the future. The paper does not include a technical explanation. Still, the article describes the general perspective of VANET to the reader, especially for the beginner reader, who intends to learn about the topic

    ASGR: An Artificial Spider-Web-Based Geographic Routing in Heterogeneous Vehicular Networks

    Get PDF
    Recently, vehicular ad hoc networks (VANETs) have been attracting significant attention for their potential for guaranteeing road safety and improving traffic comfort. Due to high mobility and frequent link disconnections, it becomes quite challenging to establish a reliable route for delivering packets in VANETs. To deal with these challenges, an artificial spider geographic routing in urban VAENTs (ASGR) is proposed in this paper. First, from the point of bionic view, we construct the spider web based on the network topology to initially select the feasible paths to the destination using artificial spiders. Next, the connection-quality model and transmission-latency model are established to generate the routing selection metric to choose the best route from all the feasible paths. At last, a selective forwarding scheme is presented to effectively forward the packets in the selected route, by taking into account the nodal movement and signal propagation characteristics. Finally, we implement our protocol on NS2 with different complexity maps and simulation parameters. Numerical results demonstrate that, compared with the existing schemes, when the packets generate speed, the number of vehicles and number of connections are varying, our proposed ASGR still performs best in terms of packet delivery ratio and average transmission delay with an up to 15% and 94% improvement, respectively

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Formation control of autonomous vehicles with emotion assessment

    Get PDF
    Autonomous driving is a major state-of-the-art step that has the potential to transform the mobility of individuals and goods fundamentally. Most developed autonomous ground vehicles (AGVs) aim to sense the surroundings and control the vehicle autonomously with limited or no driver intervention. However, humans are a vital part of such vehicle operations. Therefore, an approach to understanding human emotions and creating trust between humans and machines is necessary. This thesis proposes a novel approach for multiple AGVs, consisting of a formation controller and human emotion assessment for autonomous driving and collaboration. As the interaction between multiple AGVs is essential, the performance of two multi-robot control algorithms is analysed, and a platoon formation controller is proposed. On the other hand, as the interaction between AGVs and humans is equally essential to create trust between humans and AGVs, the human emotion assessment method is proposed and used as feedback to make autonomous decisions for AGVs. A novel simulation platform is developed for navigating multiple AGVs and testing controllers to realise this concept. Further to this simulation tool, a method is proposed to assess human emotion using the affective dimension model and physiological signals such as an electrocardiogram (ECG) and photoplethysmography (PPG). The experiments are carried out to verify that humans' felt arousal and valence levels could be measured and translated to different emotions for autonomous driving operations. A per-subject-based classification accuracy is statistically significant and validates the proposed emotion assessment method. Also, a simulation is conducted to verify AGVs' velocity control effect of different emotions on driving tasks

    Performance Modeling of Vehicular Clouds Under Different Service Strategies

    Get PDF
    The amount of data being generated at the edge of the Internet is rapidly rising as a result of the Internet of Things (IoT). Vehicles themselves are contributing enormously to data generation with their advanced sensor systems. This data contains contextual information; it's temporal and needs to be processed in real-time to be of any value. Transferring this data to the cloud is not feasible due to high cost and latency. This has led to the introduction of edge computing for processing of data close to the source. However, edge servers may not have the computing capacity to process all the data. Future vehicles will have significant computing power, which may be underutilized, and they may have a stake in the processing of the data. This led to the introduction of a new computing paradigm called vehicular cloud (VC), which consists of interconnected vehicles that can share resources and communicate with each other. The VCs may process the data by themselves or in cooperation with edge servers. Performance modeling of VCs is important, as it will help to determine whether it can provide adequate service to users. It will enable determining appropriate service strategies and the type of jobs that may be served by the VC such that Quality of service (QoS) requirements are met. Job completion time and throughput of VCs are important performance metrics. However, performance modeling of VCs is difficult because of the volatility of resources. As vehicles join and leave the VC, available resources vary in time. Performance evaluation results in the literature are lacking, and available results mostly pertain to stationary VCs formed from parked vehicles. This thesis proposes novel stochastic models for the performance evaluation of vehicular cloud systems that take into account resource volatility, composition of jobs from multiple tasks that can execute concurrently under different service strategies. First, we developed a stochastic model to analyze the job completion time in a VC system deployed on a highway with service interruption. Next, we developed a model to analyze the job completion time in a VC system with a service interruption avoidance strategy. This strategy aims to prevent disruptions in task service by only assigning tasks to vehicles that can complete the tasks’ execution before they leave the VC. In addition to analyzing job completion time, we evaluated the computing capacity of VC systems with a service interruption avoidance strategy, determining the number of jobs a VC system can complete during its lifetime. Finally, we studied the computing capacity of a robotaxi fleet, analyzing the average number of tasks that a robotaxi fleet can serve to completion during a cycle. By developing these models, conducting various analyses, and comparing the numerical results of the analyses to extensive Monte Carlo simulation results, we gained insights into job completion time, computing capacity, and overall performance of VC systems deployed in different contexts

    Performance Modeling of Vehicular Clouds Under Different Service Strategies

    Get PDF
    The amount of data being generated at the edge of the Internet is rapidly rising as a result of the Internet of Things (IoT). Vehicles themselves are contributing enormously to data generation with their advanced sensor systems. This data contains contextual information; it's temporal and needs to be processed in real-time to be of any value. Transferring this data to the cloud is not feasible due to high cost and latency. This has led to the introduction of edge computing for processing of data close to the source. However, edge servers may not have the computing capacity to process all the data. Future vehicles will have significant computing power, which may be underutilized, and they may have a stake in the processing of the data. This led to the introduction of a new computing paradigm called vehicular cloud (VC), which consists of interconnected vehicles that can share resources and communicate with each other. The VCs may process the data by themselves or in cooperation with edge servers. Performance modeling of VCs is important, as it will help to determine whether it can provide adequate service to users. It will enable determining appropriate service strategies and the type of jobs that may be served by the VC such that Quality of service (QoS) requirements are met. Job completion time and throughput of VCs are important performance metrics. However, performance modeling of VCs is difficult because of the volatility of resources. As vehicles join and leave the VC, available resources vary in time. Performance evaluation results in the literature are lacking, and available results mostly pertain to stationary VCs formed from parked vehicles. This thesis proposes novel stochastic models for the performance evaluation of vehicular cloud systems that take into account resource volatility, composition of jobs from multiple tasks that can execute concurrently under different service strategies. First, we developed a stochastic model to analyze the job completion time in a VC system deployed on a highway with service interruption. Next, we developed a model to analyze the job completion time in a VC system with a service interruption avoidance strategy. This strategy aims to prevent disruptions in task service by only assigning tasks to vehicles that can complete the tasks’ execution before they leave the VC. In addition to analyzing job completion time, we evaluated the computing capacity of VC systems with a service interruption avoidance strategy, determining the number of jobs a VC system can complete during its lifetime. Finally, we studied the computing capacity of a robotaxi fleet, analyzing the average number of tasks that a robotaxi fleet can serve to completion during a cycle. By developing these models, conducting various analyses, and comparing the numerical results of the analyses to extensive Monte Carlo simulation results, we gained insights into job completion time, computing capacity, and overall performance of VC systems deployed in different contexts

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr
    corecore