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ABSTRACT

In this dissertation, we investigate location based services in wireless ad hoc

networks from four different aspects - i) location privacy in wireless sensor networks

(privacy), ii) end-to-end secure communication in randomly deployed wireless sensor

networks (security), iii) quality versus latency trade-off in content retrieval under

ad hoc node mobility (performance) and iv) location clustering based Sybil attack

detection in vehicular ad hoc networks (trust).

The first contribution of this dissertation is in addressing location privacy in

wireless sensor networks. We propose a non-cooperative sensor localization algorithm

showing how an external entity can stealthily invade into the location privacy of

sensors in a network. We then design a location privacy preserving tracking algorithm

for defending against such adversarial localization attacks. Next we investigate secure

end-to-end communication in randomly deployed wireless sensor networks. Here,

due to lack of control on sensors’ locations post deployment, pre-fixing pairwise keys

between sensors is not feasible especially under larger scale random deployments.

Towards this premise, we propose differentiated key pre-distribution for secure end-

to-end secure communication, and show how it improves existing routing algorithms.

Our next contribution is in addressing quality versus latency trade-off in content

retrieval under ad hoc node mobility. We propose a two-tiered architecture for

efficient content retrieval in such environment. Finally we investigate Sybil attack

detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple

counterfeit identities risking trust of a vehicular ad hoc network, and then easily

escape the location of the attack avoiding detection. We propose a location based

clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks

in vehicular ad hoc networks.
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1. INTRODUCTION

Wireless ad hoc network is a class of network systems primarily characterized

by wireless communication and infrastructure-less operations in a distributed envi-

ronment. Due to the minimal configuration and deployment requirements, wireless

ad hoc networks can be formed and dispersed very quickly. Hence this class of

networks are very useful for various applications in environments with minimum in-

frastructure. With the emerging advances in wireless communication technology and

increasing emphasis on user centric services, wireless ad hoc networks are becoming

more practical. Three canonical examples of wireless ad hoc networks that are in-

creasingly emerging in military and civilian missions are Wireless Sensor Networks,

Mobile Ad hoc Networks and Vehicular Ad hoc Networks. Brief descriptions of these

networks and their applications are provided below.

• Wireless Sensor Network: Wireless Sensor Network (WSN) is a network

consisting of wireless sensing devices (sensors or sensor nodes) with limited

processing and computing capabilities. Sensor nodes can sense, measure and

collect data about physical or environmental conditions, process the data and

communicate using wireless messages [162]. Wireless sensors use communi-

cation standards like IEEE 802.15.4, ISA100, ZigBee, WirelessHART etc. for

sending or receiving messages. Figure 1.1 shows a typical wireless sensor node

(or mote).

In spite of various resource constraints of sensor nodes, such as limited memory,

limited computational power and energy, low bandwidth, short communication

range, WSNs have gained significant importance due to their huge range of ap-

plications in real life. The main reasons behind the vast growth of WSNs are

the infrastructure-less, autonomous mode of operation, scalability and ease of



2

deployment of sensors. A few examples of applications of WSNs are: surveil-

lance [70], target tracking [164], [115], environment monitoring [151], health

monitoring [114], habitat monitoring [108], natural disaster (landslide, forest

fire etc) detection and relief [9], [172], emergency response [106], seismic

sensing [98], structural health assessment [107] etc.

In a centralized WSN, sensor nodes collect data from the surrounding environ-

ment and collaboratively forward the data to more powerful nodes, commonly

known as base stations. Base stations process the data and send information

to different applications and services which use this information for various

purposes. A host of applications enable sensors to operate in completely dis-

tributed fashion wherein data processing, computation and other algorithms

are executed collaboratively on the sensor nodes without interference from any

central authority. In either case, nodes in a WSN usually collaborate among

themselves allowing hassle-free operations such as data gathering, information

fusion, encryption and authentication, single or multi-hop routing etc. Usually

sensor nodes are small, inexpensive and resource-constrained, making them

vulnerable to internal or environmental failures. A number of sensor network

algorithms suggest reconfiguration of nodes for increasing robustness and sleep

/ wake up cycles of nodes for optimized resource utilization. This behavior in

a WSN leads to change of network topology over time.

Wireless Sensor and Actor Networks (WSANs) are a type of wireless sensor

networks in which sensors and actors collaborate to perform a task. Actors are

usually more powerful entities than sensors, often with special characteristics

like mobility, higher processing power etc. Usually sensors collect sensing data

whereas actors take decisions and perform appropriate actions depending on

the environment [77], [111]. Coordination between sensors and actors and
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timeliness of reporting sensed date impose some additional research challenges

in WSANs, as discussed in [77].

Figure 1.1. Wireless Sensor Node

• Mobile Ad hoc Network: Mobile Ad hoc Network (MANET) is a col-

lection of autonomous mobile devices that can communicate over relatively

bandwidth-constrained wireless links and dynamically self-organize in an ar-

bitrary and temporary fashion [3]. In other words, MANETs are a class of

mobile P2P networks with ad hoc self-organization and dynamic network topol-

ogy. MANETs facilitate users and devices to seamlessly interconnect in areas

with no pre-existing communication infrastructure [33]. With increasing use

of hand-held mobile devices, laptops, PDAs and embedded devices, MANETs

are becoming increasingly popular and practical. Some of the canonical appli-

cations of MANETs include military communication and operations [72], [62],

emergency services and information propagation [153], [52], commercial and

infotainment applications [134] etc.
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MANET research has received significant attention ever since it emerged in

the 1990’s as a part of new generation networking advances. The reasons

behind it are two-fold : i) the increasing application of this type of network in

real life and ii) the need of special standards and protocols in absence of pre-

existing fixed infrastructure in this environment. Localization, single or multi-

hop routing, data management, user location privacy, secure communication

etc are instances of some of the major research issues in MANETs.

• Vehicular Ad hoc Network: Vehicular Ad hoc Network (VANET) is a type

of mobile ad hoc network in which moving vehicles serve as nodes. Vehicles

are equipped with On Board Units (OBU) such as sensors, transceivers and

computing devices. These nodes are used for routing of data packets as they

move from one place to another. Road Site Units (RSU) usually comprise

of smart embedded devices including sensors, traffic controllers etc. RSUs

and OBUs can communicate among themselves. Nodes in VANETs usually

communicate using short range wireless communication technology, such as

Dedicated Short Range Communication (DSRC), bluetooth, IEEE 802.11 etc.

Figure 1.2 shows a DSRC device.

As the potential of VANETs in improving urban transportation and lifestyle

has unfolded, particularly since the last decade, a great amount of research

effort has been dedicated to VANETs. Eventually VANETs are becoming the

backbone of Intelligent Transport System (ITS) [160], [163]. The role of

VANETs is integral specially in an urban environment, in applications such as

emergency disaster response and recovery [138], electronic toll services [97],

ubiquitous information and service sharing [100], [144], traffic congestion con-

trol [37], route planning [160] etc. VANETs are potent in making driving a

safer, more comfortable and time-efficient experience to consumers (i.e. the
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drivers and passengers) through the pervasive flow of notifications, route in-

formation and services [18], [80]. As made possible by VANETs, today’s

drivers and passengers can avail almost any kind of web technology, services

and benefits while driving.

Recently there have been several collaboration between government and indus-

try for deploying VANETs in order to improve ITS infrastructure, services and

safety [122], [148]. A number of VANET test-beds are also deployed in dif-

ferent academic research labs. A few such initiatives are CarTel at MIT [75],

[116], DRIVE-IN at CMU [128], DOME at UMASS-Amherst [150], CVET at

UCLA [90] etc. Emergency notification, vehicle tracking, secure communica-

tion, information retrieval, multi-hop routing, location privacy etc are some of

the issues gaining focus in contemporary research in VANETs.

Figure 1.2. DSRC transceiver
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Location Based Service: The definition of Location Based Service (LBS)

has evolved over time with the progress in sensing and mobile technology. In

context of computer programming, LBS is defined as a general class of com-

puter program-level services that include specific controls for location and time

data [154]. As cellular technology was prospering in 1990’s, the notion of lo-

cation based services or applications started being used in context of cellular

devices and networks. As discussed in [60], LBS entails the concept of sub-

scribing and switching of services and service providers based on location of

the mobile user. The network here represented new generation hierarchical

wireless networks, particularly cellular networks. However even in 90’s, some

futuristic services extended scope of application in other next generation net-

works as well. For instance, location information enhanced emergency service

architecture is proposed in realm of vehicular networks and personal commu-

nication networks [59]. A novel location based alarm detection and security

service are proposed in [131].

With the emergence of pervasive computing, smart mobile devices have be-

come an integral part of everyday life. Advances in mobile and sensor based

technologies coupled with popularity of pervasive and ubiquitous computing

have extended the scope of location based services to a host of new networks

and systems. Particularly in the realm of wireless ad hoc networks, where lo-

cation of nodes is a vital factor for many applications, use of location based

services is on a rise. A host of new generation LBSs are available in different

networks such as WSN, MANET and VANET. Routing, content management,

data replication, context-aware service sharing and recommendation, security

and privacy services, [170], [50], [49], [24], [76], [67] etc. are some instances of

contemporary LBSs in wireless ad hoc networks.
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1.1. MOTIVATION

As the impact and importance of wireless ad hoc networks grow extensively,

more research challenges are arising in this arena. With computing evolving to be

ubiquitous, contextual information is a fundamental input to many applications in

the field of wireless ad hoc networks [147], [2], [87]. As mentioned earlier in this

section, location information, hence, is a very critical issue to be studied in wireless

ad hoc networks. Many of the application and operation of wireless ad hoc networks

exploit location information. We now discuss the specific importance of location

information in the different types of networks mentioned earlier in this section.

• Location based services in WSNs:

WSNs typically operate in large scale and are deployed randomly (often dropped

from air). To perform collaborative operations, sensor nodes in the network

need to estimate the location of themselves as well as other sensors. For ex-

ample, if a fire is detected by sensors in a forest, the location of the fire can

be estimated if the locations of reporting sensors are known. An intuitive ap-

proach for localization of sensor nodes can be to have a GPS device mounted

on each node. Considering that sensors are supposed to be cheap, this solution

is a very expensive one and is not scalable too. Localization techniques using

other network resources and properties, such as beacon messages, probabilistic

methods, etc. have been proposed in literature. We discuss localization in

WSNs in further detail in Section 2.2.1.

From the purview of security and privacy, location information of sensors is

a critical factor to many security threats and privacy breaches. For example,

localization of sensors by an unauthorized entity in a battlefield can aid enemies

to destroy the network completely or partially. It might also help them in

deriving knowledge about the network, such as network topology, coverage
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holes, location of base station etc. and penetrate in a nation’s defense network.

To be precise, the network functionality can be compromised when location

information of sensors is exposed. Preserving location information of sensors

from adversarial agents is hence a very critical requirement in WSNs.

• Location based services in MANETs:

With rapid increases in mobile networking today, mobile ad hoc networks have

gained increased prominence. With mobility, information propagation is much

faster compared to static environments, there are increased avenues for ac-

cess to information in mobile spaces, newer and more robust connections can

be discovered on the fly for improved services. Interestingly though, mobility

brings in challenges along with opportunities. For instance, when connections

are ephemeral, long-term trust associations cannot be enforced, routing paths

can be interrupted under mobility, and establishing secure connections are in-

creasingly challenging. At the heart of these features of MANETs, is location

information whose dynamics create these opportunities and challenges. There

are currently a number of research directions being pursued in the realm of rout-

ing [50], [117], content management and information retrieval [170], [49], [40],

data replication and caching [31], security [169], [6] etc. in MANETs, where

location plays a vital role.

• Location Based Services in VANETs:

Given the highly mobile nature of nodes in VANETs, location based services

receive significant importance in VANETs. We illustrate this premise using a

few cases below.

a) Routing in VANETs is mostly location based. Majority of the routing

protocols in VANET use location information as one of the key inputs, as

discussed in the surveys in [96], [100].
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b) Information in VANETs is highly context-sensitive [125], [10], [36]. For

example, the popularity relevance of a piece of content or relevance of traffic

information vary with the location of the node which contains it.

c) Location privacy is one of the most emergent research topics in VANETs

as providing location privacy aware services is considered to be very cru-

cial [139], [140]. In the highly dynamic environment of a VANET, trust of

users and providers vary significantly over time. So it is evident that a user is

more likely to be concerned about his / her privacy in such an environment.

Although location information is a valuable input in many applications, many

users would agree to trade quality of service against location privacy.

The trends in recent technological progress and user demand clearly indicate

that location based services are growing in prolific fashion [12]. This dissertation

investigates several location based services in wireless ad hoc networks, as discussed

in Section 1.2.

1.2. CONTRIBUTIONS

The contributions of this dissertation is four-fold.

• Location Privacy in WSNs:

The dissertation first investigates location privacy in WSNs. We define a rep-

resentative adversarial localization attack on WSN wherein a mobile adversary

(typically a robot) surreptitiously moves in the network while simultaneously

capturing sensor communication signals. The adversary can detect wireless

signals and measure their physical properties like Angle of Arrival (AoA) and

Receive Signal Strength Indicator (RSSI) and localize sensor positions using

existing techniques in [27], [161] and [152]. The dissertation formalizes this
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attack model using theoretical analysis and simulations. The goal of the sen-

sor network is to localize the adversary, while simultaneously preserving its

location privacy from the adversary. We propose a light-weight distributed

protocol for preserving sensor location privacy against adversarial localization.

The main challenge comes from the sensors performing two conflicting objec-

tives simultaneously: localize the adversary, and hide from the adversary. This

dissertation investigates the defense approach in elaborate details under the

adversarial localization attack.

• Secure End-to-End Communication in Randomly Deployed WSNs:

We address the issue of providing end-to-end secure communications in ran-

domly deployed wireless sensor networks. In order to address the location

disparity issue between sensors and sinks stemming from random deployment

of nodes, we propose differentiated key pre-distribution. The idea behind this

approach is to distribute different number of keys to different sensors to enhance

the resilience of certain links in the network. This feature is leveraged during

routing, where nodes route through links with higher resilience. We present our

end-to-end secure communication protocol based on the above methodology by

extending well known location centric (GPSR) and data centric (minimum hop)

routing protocols.

• Quality versus Latency Trade-off in Content Retrieval under Ad hoc

Node Mobility:

The next contribution of the dissertation is in the realm of query-driven content

retrieval in MANETs where the main challenge is to optimize search latency

while maintaining quality of response under ad hoc mobility of nodes. When

a user submit a query to a mobile node, the local node may not have the most

relevant content to the query. Searching the peer nodes is likely to retrieve
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more relevant content, but at the cost of search overhead as delay. There is

a clear trade-off between search latency and quality of responses that become

significant in MANETs.

In many applications, for mobile ad hoc networks, the content that is most

accurately matching to the query, is not the only one requested. In many cases,

users are willing to compromise with accuracy of response in the interests of

retrieving contents in a more timely manner, even if they are only less accurate

ones (but preferably more in number). Through our research in this topic, we

have come up with a novel two-tiered architecture to address this trade-off. The

first tier of our architecture attempts to retrieve a better matching content by

searching peer nodes, whereas the second tier returns the user with reasonably

relevant but popular contents with very less delay.

• Location Clustering based Sybil Attack Detection in VANETs:

The final contribution of this dissertation is in proposing a location clustering

based scheme for Sybil attack detection, in the realm of VANETs. We propose

a fuzzy time-series clustering based algorithm for location clustering of mobile

nodes for Sybil attack detection in VANETs. The proposed method identifies

the number of Sybil nodes and their identities with a very low false positive

and false negative rate under different attack intensities. We take into consid-

eration the aberration in localizing moving vehicles in a practical scenario and

use extensive preprocessing and feature extraction methods for improved the

accuracy of detection.

1.3. ORGANIZATION

The rest of this dissertation is organized in the following way. We present re-

search on location privacy in WSNs, including detailed study on both attack and
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defense model, in Section 2. Section 3 includes a scheme for end-to-end secure

communication in WSNs. In Section 4, we present our work on the multi-tiered

architecture for content retrieval in MANETs. In Section 5, we design and analyze

a time-series clustering based method for Sybil attack detection in VANETs. We

summarize all the contributions of this research in Section 6 and conclude this dis-

sertation in Section 7 with summary of findings from this research and final remarks.
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2. LOCATION PRIVACY IN WIRELESS SENSOR NETWORKS

In this section of the dissertation, we investigate a privacy based service,

namely, providing location privacy in wireless sensor networks. We study this prob-

lem from perspectives of - i) the attacker that invades into location privacy of sensors

and ii) the sensor network that defends against such an attack. We first define a

practical wireless sensor network problem wherein an adversary that is not cooper-

ating with the wireless sensor network attempts to surreptitiously discover locations

of sensors in the network. The adversary (or localizer) leverages from analyzing raw

wireless signals emanated by the sensors. Our objective in this section is to formally

define and analyze this attack model and subsequently preserve location privacy of

the sensor nodes under such attack. Although localization in wireless sensor net-

works is a widely researched topic, not many work address localization in scenarios

where the nodes do not cooperate with the entity attempting to localize sensors.

In this dissertation, we first propose a new method for localization of sensors in a

non-cooperative environment by a mobile localizer, wherein the localizer receives no

cooperation from the sensor nodes that constitute the sensor network. The localizer

localizes the sensors using physical properties of the sensor communication messages:

Angle of Arrival (AoA) and Received Signal Strength Indicator (RSSI). Using the

proposed method, the localizer can determine the presence of sensor node at a cer-

tain location with some error margin. This work shows how an external entity can

invade in the location privacy of sensors in a network without being localized by

the sensors. We call this kind of attack as adversarial localization. In other words,

adversarial localization refers to passive attacks where an adversary attempts to dis-

close physical locations of sensors in the network by physically moving in the network

while eavesdropping on communication messages exchanged by sensors. Our next
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contribution towards location privacy in wireless sensor networks is in designing a

novel solution for defending against adversarial localization using a location privacy

preserving tracking algorithm. The principle of the proposed approach is to allow

sensors intelligently predict their own importance in light of two conflicting goals

they have - preserving location privacy and tracking the adversary. The proposed

algorithms ensures high degree of adversary localization, while also protecting lo-

cation privacy of many sensors. Theoretical analysis and extensive simulations are

conducted to demonstrate the performance of both the attack and defense models.

2.1. THE ATTACK MODEL

Localization of sensors in a Wireless Sensor Network (WSN) has been an im-

portant topic of research over the past few years. Most of these works consider

cooperation from the sensor nodes to estimate their locations themselves or using

assistance from external agents. However, in real life scenarios, cooperation from the

sensor network might not be available to the external agent that is trying to localize

sensors in the network. A canonical example of such a situation is sensor localization

in unfriendly or battlefield environments where the objective of the external agent

is to stealthily localize nodes in a network belonging to an enemy agent. However,

non-cooperative localization of sensors has not been researched much, which is the

focus of this research. We formally define the problem and propose a novel method

for localization of sensors in a WSN by a mobile localizer without any coopera-

tion from the sensor nodes. The proposed approach, NCLOCS (Non-cooperative

Localization of Sensors), employs a mobile agent (called the localizer) that moves

passively in the sensor network and captures sensor communication messages. The

localizer has no knowledge about the content of these messages which are encrypted

using secure keys. However, the localizer can measure some physical properties of the

communication signal, such as Angle of Arrival (AOA) and Received Signal Strength
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Indicator (RSSI). Using the proposed NCLOCS method, the localizer can determine

the presence of sensor node at a location with some error margin. The salient fea-

tures of NCLOCS are that it can efficiently associate communication signals with

sensors without any prior knowledge, and filters many likely false sensor locations

over time. Using theoretical analysis and extensive simulations, we demonstrate the

performance of NCLOCS from the perspective of localization accuracy and detection

time. NCLOCS (Non-cooperative Localization of Sensors): In this section of the dis-

sertation, we first discuss the proposed attack model for invading location privacy

of sensors in a network. The work has been submitted to a journal, as mentioned in

[41].

2.1.1. Background And Related Work. Over past few years, Wireless

Sensor Networks (WSNs) have become a critical component of a host of services

and applications. Some such applications include area surveillance, wildlife monitor-

ing, pervasive health monitoring, driving alert generation, seismic monitoring etc.

In specific, wireless sensors have been of great importance in security applications

leading to the extensive usage of WSNs in military environment. As a result, nu-

merous testbeds have been designed and practically deployed in military settings. In

this section, we address the issue of an external mobile agent attempting to localize

wireless sensors without cooperation from the sensors themselves, an issue which has

not been addressed much.

To understand the importance of non-cooperative localization in WSNs, it is

necessary to first understand the threat imposed by maliciously operated WSNs. In

specific, these threats are relevant and critical for military applications. In many mis-

sions of late, military personnel are being routinely employed in enemy battlefields

with minimal prior knowledge of threats imposed in such fields. Traditional threats

included landmines, IEDs, sniper fires etc. However, with the advances in sensor

network technologies, coupled with their wide dissemination and acceptance, it is
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quite reasonable to envisage a WSN employed as a threat against military person-

nel in terms of monitoring their movements, triggering explosives, notifying enemy

agents etc. Another representative threat occurs when enemy agents seize control

over critical infrastructures in war zones like oil-fields, airports, power plants etc.

and deploy a sensor network to guard such infrastructures. How to defeat such types

of maliciously deployed WSNs is our motivation behind this work.

Towards this end, having the location information of the sensors in the un-

friendly WSN can be useful in the aforementioned battlefield scenarios. A host of

advantages are present when locations of sensors in an unfriendly network are known.

For instance, number of nodes in the network can be estimated using location infor-

mation of sensors helping in the measurement adversary’s strength. The topology of

the network can be estimated which can assist in coordinated and maximal impact

counter-measures against the network. Location information of sensors will useful in

derivation of further crucial information like coverage holes in the network, identi-

fication of the most important nodes with maximum connectivity, determination of

optimal intrusion paths involving minimal detection through the network etc. Also,

the sensors can be physically destroyed or deactivated to defeat the purpose of the

enemy WSN. In fact, the localizer’s side can selectively deactivate or launch cyber

attacks at some sensors at crucial locations to cripple the functioning of the entire

network. Therefore, clearly the location information of enemy sensors can provide

one with significant amount of advantage in battlefields and security applications.

We point out that there is more than one approach to defeat a maliciously op-

erated WSN, such as, destroying the nodes physically over a larger scale; launching

packet drop or falsification attacks using active agents to subvert the functionality of

the network, etc. Such approaches have several shortcomings. Large scale physical

attacks can be cost-prohibitive and also may cause irreparable damages to the de-

ployment field which we may need to protect (e.g., oil-fields, airports, power-plants
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etc.). Active agents interrupting network performance can be detected using ad-

vanced security algorithms [136]. On the other hand, a passive countermeasure is

to listen to the message content of the sensors and leverage it to design subsequent

defense strategies. However, it may be likely that the inimical sensors encrypt their

messages. Discovering keys and encryption protocols must entail breaking into and

capturing sensors which again violates the stealth requirement. The objective of this

work is to design a mechanism that can cause a high degree of destructive potential

to maliciously operated sensor networks, while still maintaining a sufficient degree

of stealth during execution.

Location information of sensor nodes being a critical input to many of the

existing WSN applications, localization of sensors has been widely researched [4].

However, most of these techniques involve co-operation from the sensor nodes in order

to enable estimation of their locations by nodes in the network or outside agents,

whereas localization of sensors in unfriendly and non-cooperative environment has

not investigated often. Towards this premise, we design a technique to localize sensor

nodes without any cooperation from the sensor network. We propose to employ a

physically mobile agent called the localizer (typically a mobile robot), which will

stealthily move in the network listening for sensor-to-sensor communication signals.

It can be noted that different mobility platforms are available now enabling agents

to move within a field [26]. Any such agent can be used as the mobile localizer

which will attempt to measure the Angle of Arrival (AoA) and the Received Signal

Strength Indicator (RSSI) of the wireless sensor messages it can receive. However,

the localizer does not have any information on the message content or the id of

the sensor sending the message (potentially due to message encryption). Using this

information, we design a method for the localizer to estimate sensor locations in

the network. At the initial stages of the protocol execution, location estimates are

derived. Since the localizer does not know which sensor is sending which signal,
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there will be many false estimates during localization. We then incorporate a novel

location scoring mechanism with a corresponding score translation mechanism, such

that with the reception of more and more sensor signals, the protocol will filter out

many false positives and gradually converge to real sensor locations. Integrating

location information with the existing defense mechanisms can minimize the affect

of enemy network and expedite the recovery from the attack, thereby enhancing

security and survivability in battlefield applications to a great extant. We conduct

a detailed theoretical analysis and extensive numerical simulations to demonstrate

the performance of our protocol. Our analysis demonstrates that the localization

protocol can effectively determine adversarial sensor locations with reasonable small

false positives. Furthermore, we demonstrate that when the localizer has additional

information on network behavior like transmission ranges and communication model,

the localization accuracy improves.

It can be noted that, mobile agents in sensor networks can be mobility-enabled

robots or other sensor based actuators. A survey of mobility in WSNs can be found

in [26].

Related Work: Localizing sensor nodes in unfriendly environment falls under

the purview of security in WSNs. There is a host of existing literature which deal with

different security related problems in WSNs. Therefore, a pertinent point to study

here is the difference between existing works in sensor networks security from our

work. Existing work on WSN security by far and by large consider the sensor network

to be benign whereas role of the adversary is to disrupt the network operations.

Recently there is an increasing research interest which use mobile equipment to

assist node getting their positions. Although these researches only consider the

positioning in a cooperative situation, they shed some light on how to solve our

problem. Typically, the standard attack model used in existing WSN security works

is where the adversary captures a small percentage of network nodes that then behave
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maliciously. How to harness the potential of a relatively large number of benign

sensor nodes to defeat the malicious operations of a few compromised sensors is the

major theme in existing WSN security research. Instances of works in the framework

include secure key management [54, 64, 102, 21, 74], location verification [48, 7, 141,

105, 47], secure localization [165, 93, 92, 91, 166], secure routing [83], maintaining

integrity of sensor identities [124] etc.

Localization in WSNs has been an eminent topic of research. Existing literature

usually propose collaborative localization of sensor nodes wherein the nodes coop-

erate with the localizer in the process of localization. Although existing researches

mostly consider the positioning in a cooperative situation, they shed some light on

how to solve our problem. In [20, 121, 69] sensors utilize their connectivity informa-

tion to a small number of static beacons for localization. The localization algorithm

includes determining centroids of triangles formed with beacon nodes, determining

orientations of nodes with respect to beacons, triangle overlaps formed between bea-

cons and regular nodes. In [142], distance measurement between sensors and static

beacons are utilized for location estimation. In the Cricket indoor location support

system [129], the range estimation between sensors and beacons is done using time

difference of arrival between RF and ultrasound signals. Typically, the range is de-

termined as a function of the time difference of arrival between an RF signal and

an ultrasound signal, since RF signals travel much faster than ultrasound signals. A

similar method is used for range determination in [142], although the authors focus

on ad hoc deployments in an out door environment in [142].

In [121], the authors addressed the problem of how nodes in a connected ad

hoc network collaboratively find their headings and positions under the assumption

that all nodes have the AoA capability with some precision but only some nodes

know their positions. An ad hoc positioning system (APS) with some error control

mechanism was proposed. In this method, nodes adjacent to some landmarks get
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their bearings directly from the landmarks, and this information is propagated to

their neighbors. Nodes not immediately adjacent to landmarks use that information

to infer their own bearings with respect to the landmarks. This process is continued

in a hop by hop fashion. When enough bearings with respect to the non-collinear

landmarks are collected, a node can estimate its position. The position calculation

is done at the node side even when moving landmarks are present. This approach

needs higher degree requirements (≥ 9) than complete connectivity (6) and many

landmarks (35%) to achieve high coverage. The precision which is on the order of

one radio hop is very low for an attacking purpose.

While the scheme in [121] is based on AoA, in [32] some representative range

based localization techniques in sensor network were reviewed and evaluated. The

results show that these kinds of techniques also require high node density (degree of

ten) with a moderate beacon fraction (20%) to achieve acceptable coverage and pre-

cision. Analysis and simulation showed that higher performance can be obtained by

using both range and bearing information, even with imprecise bearing. It is known

that received signal strength indicator (RSSI) is a nonlinear function of the range

given the transmit power, so study the relationship between the distance probabil-

ity distribution function with respect to RSSI can help measure the distance using

RSSI. In [145], a mobile beacon aware of its position is broadcasting continuously

its instant coordinates while moving around in the sensor network. A node mea-

sures RSSI when it receives a beacon signal. Each RSSI and the associated known

coordinates form a constraint on node position. After multiple measurements are

taken, the Bayesian inference is applied to compute the node’s position either at

a base station or on the sensor node itself. Higher precision than the RSSI based

multi-lateration approach is reported. However, this approach needs careful system

calibration to build the distance probability distribution function at different RSSI,
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which is not an easy task. It fails when transit power varies, which is not rare in

sensor networks.

Mobility assisted WSN localization is a topic that has received attention re-

cently. In the probabilistic approach presented in [145], a mobile beacon aware of

its position continuously broadcasts its coordinates. A sensor measures RSSI of the

signal when it receives one from the mobile and estimates its likely range using a

Bayesian inference method [130] proposed a method where the mobile measures dis-

tances between sensor pairs until these distance constraints form a globally rigid

structure that guarantees a unique localization. These pair-wise distances were then

used to get the coordinates of the nodes.

Different from all the other approaches in which the computation of the nodes’

positions is done either on the sensor nodes or in a base station, authors in [126] use

one mobile robot aware of its position to perform location estimation based on the

RSSI measurements of the radio message from the nodes. Their contribution is the

use of a robust extended Kalman filter-based state estimator to solve the localization.

A small scale experiment (4 indoor nodes) showed it can achieve one meter accuracy.

Although the convergence speed is not quick enough, (since it took about 5 minutes

(150 steps) to achieve a relatively precise estimation, while in this period of time

some nodes may be inactive,) this is still a promising approach to our problem since

a sensor node does nothing special except normal communication. It is well known

that how to choose the weighting matrices in Kalman filter is not trivial because

it needs some prior knowledge of the measurement noise. This approach assumes

that the robot knows which RSSI measurement comes from which transmitter when

multiple nodes can be sensed, which may not be true in a non-cooperative situation.

Differences between the above works and ours: In our work, the sensor network

under consideration belongs to the unfriendly entities. In other words, the localized

sensor nodes are inimical nodes where no co-operation can be received from the
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sensors during localization. Our problem is to defeat the operations of an entire

network of sensors and not just a few sensors in the network. Furthermore, we will

have virtually no information on any aspect of the network or its operation charac-

teristics. Consequently, approaches that leverage knowledge of the network behavior,

and/ or the presence of a large number of benign entities cannot be leveraged as a

defense mechanism. An added challenge is the requirement of stealth in the defense

mechanism which makes our problem quite harder from existing problems in WSN

security.

However, Yang et. al. in [161] have studied a similar problem where the

goal is to localize sensors in a network deployed by an adversary. In their solution,

a set of monitors are deployed at the boundaries of the network to receive sensor

signals and localize sensors. Deploying such monitors can be an expensive operation.

Furthermore, it is assumed that all monitors can listen to all the communication

signals of all sensors which is impractical for large area networks. Furthermore, in

[161] it is assumed that the monitors are aware of the initial transmission power of

all sensors in the network. This information is possible to obtain only if the monitors

have insider information on the sensor network (obtained possibly by breaking into

sensor nodes) which violates the stealth concept that we believe is critical. In this

work, we design a new approach for localizing maliciously deployed sensors using

a physical mobile agent moving in the network, and collecting sensor signals. Our

approach does not need any expensive equipment, global network view, or insider

information on the sensors present in the network.

2.1.2. Problem Definition. The system model in this problem comprise

of two entities: the sensor network and the localizer. In this section, we present the

models of both entities from the perspective of their features and capabilities.
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Sensor Network Model: In this work, we consider a static sensor network that

has been randomly (not necessarily uniformly) deployed with N sensors. For sim-

plicity, we assume that the network is square in shape with dimensions L × L. In

real life, the area of interest is not likely to be of perfect square shape. But for the

ease of computation, even area of irregular shape can be enclosed within an imagi-

nary square. As we assume that the localizer is aware of the boundary of the area

of interest, it can only visit the area of overlap between the imaginary square and

the actual area of interest. In real life, it is also possible that the exact network

area covered by the enemy sensors is unknown to the localizer. However we propose

that the localizer can initially enclose the most critical area for localization and later

increase the size of surveyed area by visiting squares adjacent to the initial area. The

sensors in the network communicate with each other using encrypted communication

messages. Each sensor is assumed to transmit with the same initial transmit power,

Ptx. Note that Ptx is unknown to the mobile localizer.

The traffic model of the sensors depends on the network application and the

behavior of sensed events. The data reporting process in WSNs is usually classified

into three categories: event-driven, time-driven and query-driven [8]. In the time-

driven case, sensors send their data periodically to the sink. Event-driven networks

are used when it is desired to inform the data sink about the occurrence of an

event. In query-driven networks, sink node sends a request for gathering data when

needed. Our main focus will be on the event-driven networks with Poisson model for

packet generation. We suppose that the events are independent (both temporally

and spatially) and occur with equal probability over the area. In this case, Poisson

distribution can be used effectively to model the generation of data packets [133].
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When the average rate of packet generation, λ, is known, the distribution of the

number of data packets, Z, generated by each node, from time 0 to T is,

P (Z = z) =
e−λT (λT )z

z!
(1)

where z is a nonnegative integer. In the case of the packet generation distribu-

tion obeying the Poisson model, the time duration between two consecutive packet

transmissions, t, has an exponential distribution with mean 1
λ
:

ft (x) = λe−xλu (x) (2)

where u(x) denotes the unit step function. We will consider a Poisson sensors

traffic model in this study.

Localizer Model: The localizer in our problem is a mobile agent that can phys-

ically move from one location to another. For practical purposes a miniature robot

serves this purpose. The localizer is equipped with the capability to measure angle

of arrival (AoA) and received signal strength (RSSI) of a source signal. Note that

AoA measurements typically require either an antenna array, or several ultrasound

receivers. This is currently available in small formats in wireless nodes such as the

one developed by the Cricket Compass project [129] from MIT. We assume that the

localizer can detect any signal it receives provided the received power level is ≥ P̄rx,

which is the localizer ’s receiver threshold. The localizer is aware of the network

boundary within which it wishes to localize sensors. We assume that the sensors

deployed are not equipped to track mobile intruders. In this context, it can be noted

that certain existing works address the issue of sensors tracking the localizer to pro-

tect their own location privacy and report to the base station about the localizer [45].
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However, these protocols are mostly valid for a particular type of sensors, for exam-

ple vibration sensors. Besides, in Section 2.1.7 we show that by random movement

policy, the localizer maximizes the probability of localization over time.

2.1.3. Proposed Solution. In this Section, we present our localization

protocol. The protocol is executed in three phases: The estimation phase, measure-

ment phase and the localization phase. Each phase is discussed in detail below. For

reader’s convenience, important notations and their terminologies are presented in

Table 2.1.

Table 2.1. Important Notations and Terminologies
Term Description

θ Sensor angle of arrival measured by
localizer in degrees

εAoA Error bound in angle of arrival
measured by localizer in degrees

εRSSI Error bound in RSSI
measured by localizer in metres

L× L Total network area in m2

M ×M The area to be localized m2

g × g Total number of grids in the network
d = M

g
Grid size in m

N Number of Sensors
Tx Actual transmission range of sensor
T̄x Estimated transmission range of sensor
λ Packet inter arrival rate
ρ Density of sensors

Initiation phase: Without loss of generality, we assume that the localizer has

to localize within a square area of size M ×M . Note that when M = L, the area

to be localized is the entire sensor network deployment area. The localizer initially

divides the area of interest into a 2−D rectangular grid (g × g) where each grid is

a square of dimension of size d = M
g

. The objective of the localizer is to eventually
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determine those grids that contain atleast one sensor in them. The size of the grid is

an application parameter and is variable. For high accuracy of localization, d can be

set quite small, while for lower accuracies, d can be set correspondingly larger. We

want to point out that in most of the applications, locating sensors to a grid level

instead of exact point-level is sufficient. Usually, point level localization involves

more number of measurements and incurs some error as well. We relax the point

level localization requirement, thereby expediting the overall localization process. In

security sensitive situations as the one considered in this work, longer time to localize

a node increases the probability of detection and risk of attack for the localizer. Hence

in this case, trading localization accuracy with delay in localization is sensible.

Observation time: The localizer traverses the entire network area, stopping

at each intersection of vertical and horizontal grid lines. The time spent at each

observation point (Tobs) is chosen such that the localizer can observe at least one

transmission from each node in the neighborhood. Thus, Tobs depends on the un-

derlying traffic pattern. For instance, for a Poisson model with rate λ, a Tobs = 10
λ

would ensure that the localizer is able to observe messages from a particular sensor

in the neighborhood with a probability of atleast 0.99995 (from equation 1). Waiting

for longer durations improves this probability further. For scenarios where λ is not

known apriori, we outline a simple method for obtaining a rough estimate. The local-

izer at various random locations observes the packet intervals from multiple sensors.

This average packet interval multiplied by the average number of neighbors (which is

again an estimate at different locations using the AoA) gives an approximate value

for λ. We again note that waiting for longer durations only improves the accuracy

of localization; thus, overestimating inter-packet arrival time is more helpful than

harmful and an accurate estimate is not required.

Note that it is not compulsory that the sensor traffic model follows Poisson

distribution. In scenarios where the traffic model is not Poisson, similar to the above
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approach, the localizer can estimate mean (µT ) and standard deviation (σT ) of inter-

packet arrival times. We can then use Chebyshev’s inequality, which states that ”in

any data sample or probability distribution, no more than 1
k2

of the values are more

than k standard deviations away from the mean” [85]. Thus, the localizer waits for

Tobs = µT + k × σT (where k = 6), ensuring it observes a message from a sensor in

the neighborhood atleast 97.2% of the time, where µT and σT are the means and

standard deviations of the distribution respectively.

Transmission power and Range of the sensors: Recall that the localizer is un-

aware of the initial transmission power (PTx) of the sensors. To estimate Ptx, the

following approach is used. The localizer as usual traverses the entire network,

listens to various messages and collects information regarding angle of arrival and

received power PRx. We note that closeness here is relative to the sensor’s trans-

mission range Tx, which is again an unknown. First, when a message is received,

the probability that the source is within 5% of Tx (again, Tx is unknown) can be

computed as,

P5% =
π (0.05Tx)

2

πTx
2 . (3)

Thus, the probability that the source is not within 5% of Tx is P̄5% = 1− P5%.

Further, if the localizer receives m messages, then the probability that atleast one

message was transmitted by a node within 0.05Tx can be computed as 1− P̄m
5%. For

example, if 1000 messages were observed during the entire process of localization,

then the probability that atleast one message was transmitted by a node within

0.05Tx is 0.92. For a network of sufficient scale, these many number of messages

is actually quite reasonable for the localizer to have listened to during the entire

process of localization. Finally, based on the above reasoning, we use the maximum
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receiving power observed over all the messages as approximate receiving power at a

distance of 5%Tx, based on which the transmission range Tx can be estimated.

Once, the transmission power is estimated, the upper bound of the transmission

range (T̄x) of the sensors can be estimated. We note that, in practice, wireless

transmissions are not circular and for several uncontrollable reasons, the attenuation

cannot be accurately estimated [171]. However, from our protocol’s perspective,

we are only interested in the upper bound. Again, if the attenuation is varying

drastically, the upper bound might not be tight; however, this will only cause a slight

drop in protocol performance. Further, to improve the performance, we propose to

consider only the messages received with a signal strength above a given threshold.

We elaborate on this later in this section.

2.1.4. Localization Phase Using Only AoA. Our localization protocol

is comprised of two phases: A grid score assignment phase and a score translation

phase, as described in Algorithm 1.

Algorithm 1 Grid Score Assignment Algorithm Executed by the localizer

1: for each grid Gi,j in the network do
2: Grid Score Pi,j = 0
3: end for
4: for each grid intersection point in the network do
5: Listen to messages for a duration of Tobs
6: for each received message k do
7: Measure AoA/ RSSI of k
8: Determine Localized Zone of k
9: Area of Localized Zone = Zk

10: for each grid (i, j) overlapped with
Localized Zone do

11: Ai,j,k = Area overlapped between grid Gi,j and Zk
12: Pi,j = 1−

∏
∀k

(1− pi,j,k)

13: end for
14: end for
15: end for
16: Return Grid Score Pi,j for all grids
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First, the localizer starts by traversing the entire grid, stopping at each intersec-

tion of vertical and horizontal lines. At each stop, the localizer listens for messages.

We propose the localizer to listen for a duration of 10/λ to ensure that atleast one

transmission from each sensor in the neighborhood is observed with high probability,

where λ is the packet arrival rate assuming Poisson distribution.

For each message received, the localizer stores the following information: the

angle of arrival, received signal strength (RSSI ) and localizer ’s location. Based on

AoA information (i.e., θ) and the estimated transmission range (T̄x, as estimated

earlier in the section), the localizer computes the sector that would enclose the

transmitting node. We also refer to this sector as the zone that would enclose the

transmitting node. The localizer assigns score to each grid within the zone based on

area of overlap between the zone and grid.

2.1.5. Improving Accuracy by Using RSSI. Using only AoA informa-

tion might generate several false positives. Moreover, if the localizer spends more

time in vicinity of a certain point, the grids which are far away from that point will

accumulate more score irrespective of position of the transmitting node. For instance,

consider a scenario where the transmitting sensor is very close to the localizer. In

this case, the localizer wrongly assigns higher probability to farther grid cells (since,

farther the grid, the wider is the sector/zone, and hence larger the area of overlap).

To reduce the number of false positives, we propose to use RSSI information. We

note that RSSI might vary significantly even for messages from same node and hence,

the distance estimates using RSSI might also vary significantly. So, instead of using

RSSI directly, we propose to use RSSI only to filter some messages rather than for

computing distances. In other words, the localizer would consider a message for score

computation, only if the RSSI for the message is greater than a threshold - P̄Rx−Th.

T̄Rx−Th would then be the corresponding maximum distance a transmitting sensor

could be from the localizer, beyond which the message would not be considered for
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localization. This limits the width of the sector (hence decreasing the numerator

in Equation 4) and thus reduces the false positives as illustrated through simula-

tions. We also note the trade-off in choosing P̄Rx−Th: a high value would mean that

large fraction of messages are filtered out and localizer might have to stop at several

more locations to ensure all sensors are localized; smaller values would increase false

positives. We further study the choice of T̄Rx−Th through simulations.

The localizer also uses the RSSI information to estimate the location of trans-

mitting sensor with more accuracy and assign score on grids depending upon the

distance between the grid and the estimated location of the sensor. Section 2.1.6

describes the score assignment method used by the localizer.

2.1.6. Score Assignment. Once a zone is computed, the localizer

assigns grid scores as follows: For each grid Gi,j that overlaps with the zone Zk

corresponding to a message transmission k, the grid score pi,j,k is the probability

that the node corresponding to message k is located in the grid Gi,j and is computed

as,

pi,j,k = f(x) ∗ Area of overlap between Gi,j and Zk
Area of Zk

(4)

where f(x) = 1√
2πσ2

e−
x−µ2

2σ2 , µ is the distance corresponding to measured RSSI (TRx)

and σ2 is the error in RSSI measurement, εRSSI .

Finally, the cumulative score Pi,j represents the probability that a grid Gi,j

consists of atleast one sensor. Initially, Pi,j is set to zero. Subsequent values are

computed using,

Pi,j = 1− (1− Pi,j) ∗ (1− pi,j,k)

Pi,j = 1−
∏
∀k

(1− pi,j,k) . (5)
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Finally, the localizer uses the aggregate scores (i.e., Pi,j) for each grid cell to

check if it consists a node or not. We propose a simple approach for score translation.

A grid cell is assumed to consist a sensor if its score is greater than a certain threshold.

If score is lesser, it is assumed not to contain a sensor. For illustration, assume a

grid cell size of d = T̄x/5 = 1. Then, the maximum overlap area for a grid cell

is approximately 0.39 (when it is farthest from the localizer). Thus, the maximum

score is the overlap area divided by the sector area i.e. 0.179. We note that during

every observation interval, at each corner of the grid cell (total of four corners), the

localizer receives an average of 10 messages from each sensor, since it waits for 10/λ

duration. The localizer receives more than 40 messages as it might receive messages

from other locations as well. Now, assuming an average score of around 0.09 (half

the maximum) and 40 messages, the aggregate score would be 1−(1−0.09)40 ≈ 0.98.

Thus, a grid containing a sensor should get an aggregated score very close to 1. In

this work, we assume a grid contains a sensor if Pi,j > 0.95.

2.1.7. Analysis. In this section, we derive some properties of the proposed

protocol using theoretical analysis. First, we derive a lower bound on the probability

of false positive when the proposed scheme is being used, where false positive is

defined as follows. A grid cell is treated as a False Positive (FP) if the protocol

incorrectly concludes that it contains a sensor while it does not.

Theorem 1 Let there be a grid Gi,j with no sensor in it. The probability of it being

detected to be one with sensor is TTh ≥ (1−N(1
2
(d
2

+ εRSSI), εRSSI) ∗ d2

2Zk
), where,

• d is the diagonal length of a grid,

• εRSSI is the error in RSSI measurement, and

• Zk is the area of the circle, a grid present within which will have a non-zero

probability to be assigned with some score if the localizer is present in the

circle.
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Proof 1 Let r denote the radius of the circle within which Gi,j will have a non-zero

probability to be assigned with some score if the localizer is present in the circle. We

approximate the radius r = T̄Rx−Th + g
2
. The dotted area in Figure 2.1, shows the

area, presence of a sensor in which will lead to score assignment to Gi,j due to error

in RSSI measurement, εRSSI . Radius of this circle, r̄ is approximated as (εRSSI + d
2
).

Figure 2.1. The localizer represented by the big dot and the area Zk represented by
dotted area

Number of grids enclosed in this circle is approximately Acircle
Agrid

− Ccircle
d

where

Acircle is the area of the circle, Agrid is the area of the grid, Ccircle is circumference

of the circle and d =
√

2g is the diagonal length of the grid. So the number of grids

(ngrids) is,

ngrids =
πr2

d2
− 2πr√

2d
=
πr

d
(
r

d
−
√

2) =
πr

d2
(r −

√
2d) (6)
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As in the proposed protocol the localizer stops at every corner of a grid to

capture sensor messages, the number of times the localizer will stop within the circle

(nstops) can be expressed as,

nstops ≈ 4 ∗ ngrids (7)

The dotted area in Figure 2.1 is approximately,

Afalse−positive = πr̄2 − d2 = π(εRSSI +
d

2
)2 − d2 (8)

Hence the number of messages originated from Afalse−positive at every time instant is

denoted by ρAfalse−positiveλ. The localizer will be there for the time duration xnstops.

Hence total number of messages originated (nmsg) is as follows -

nmsg = x nstops ρ Afalse−positive λ

= x λ ρ
4 π r

d2
(r −

√
2d) [π(εRSSI +

d

2
)2 − d2]

= 4 x λ ρ π r(r −
√

2d)[
π

d2
(εRSSI +

d

2
)2 − 1] (9)

Considering average case,
Aoverlap
AZk

=
d2

2

AZk
Average distance between localizer and

sensor within circle of radius d
2

+ εRSSI is Davg, where

Davg = (T̄Rx−Th +
d

2
)− [

d
2

+ εRSSI

2
+
T̄Rx−Th − εRSSI

2
] =

T̄Rx−Th + d
2

2
. (10)

Now the score accumulated for Gi,j due to error εRSSI can be expressed as, (1−Π(1−

f(x)∗
d2

2

Zk
)). So the probability of false positive is, TTh ≥ (1−N(1

2
(d
2

+εRSSI), εRSSI)∗
d2

2Zk
).
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2.1.8. Performance Evaluations. The performance of the proposed

protocol is evaluated and analyzed in this section.

Experimental Setup: We developed a simulator using C++ for data collection.

In order to emulate random sensor deployment real network scenario, varying number

of nodes are randomly placed in an area of 1000m× 1000m with the average density

of nodes per grid as a constant for each run. For all the simulations, transmission

range of the sensors is kept as 100m and message transmission rate λ is set to 0.05.

A localizer moves in the network at a constant speed while pausing at corners of a

grid for a wait time of Tobs. The maximum observation time of the mobile localizer at

every point is set as Tobs = 10
λ

. For each set of parameters, we repeat the experiment

for 20 different seeds for statistical reasons. We vary the number of nodes from 250

to 1000. A grid cell is categorized to contain a sensor if Pi,j > 0.95. Further, we

introduce additional random attenuation/noise factor that could reduce the RSSI

signal strength by up to 40% [171]. We also assumed an error bound in angle of

arrival degrees of ε = 6 deg [129].

Metrics: In specific, we define three metrics to study the performance of the

proposed protocol, as presented below.

• Percentage of False Positives (Pfp): A grid cell is treated as a False Positive

(FP) if the protocol incorrectly concludes that it contains a sensor while it does

not. The percentage of FPs is computed as number of FPs divided by total

number of grid cells i.e, g × g.

• Percentage of False Negatives (Pfn): A grid cell is treated as a False Negative

(FN), if the protocol concludes that the cell does not contain a sensor while the

cell indeed contains atleast one sensor. The percentage of FNs is the number

of FNs divided by total number of grid cells.
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• Detection Time (Td): The average time taken by the localizer to detect if

there is a sensor in the grid or not. Whenever a localizer observes that a grid

exceeded this threshold of 0.95, the localizer records the total time spent by

far within the transmission range of T̄Rx−Th distance 1.

We note that the aim to minimize both Nfp and Nfn. First, we study the trade-

offs between the grid size and false positives/negatives when only AoA is considered.

Later, we analyze the performance for the proposed improved technique where both

AoA and RSSI are considered, along with error in estimation, epsilonrssi. To elab-

orate, we study the improvement in the performance by selectively ignoring the

messages with RSSI below P̄Rx−Th.

We perform three sets of experiments to study the effect of three different local-

ization techniques on the false positives and false negatives. The three localization

methods use score assignment using -

1. only AoA

2. AoA and RSSI

3. AoA and RSSI with error (epsilonrssi)

Apart from that, in this work we also study the effect of varying RSSI threshold

(illustrated later in this section) on FP and FNs, as well as the effect of varying λ

on detection time.

Results: The performance of the proposed protocol is studied with respect to

two different varying network parameters, viz, number of nodes in the network and

grid size, d (length of a side of grid). Figure 2.2 present the performance of the

1Referring back to Section 2.1.7, T̄Rx−Th is the distance corresponding to the threshold RSSI.
The threshold RSSI value, P̄Rx−Th, is defined as the minimum RSSI of a message such that if
P̄Rx−Th > Preceived, then the message is not considered towards score accumulation by the localizer.
Please note that Preceived is the RSSI of a message received by the localizer at any time.
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proposed localization protocol for varying number of nodes in the network with only

AoA information. We simulated the performance for various accuracies i.e., grid

sizes (i.e., d = (20, 40, 60, 80) meters). Firstly, we note that the number of false

negatives is very less than the corresponding number of false positives. In other

words, if a node is present in a grid, the localizer correctly identifies it to contain a

sensor with high very probability. On the other hand, the localizer might incorrectly

identify grids to be containing a sensor even though they do not. We attribute the

increased number of false positives to scenarios where a sensor is located closely to

the grid boundary lines, i.e., close to the border of a grid. In such cases, most of

the times, a false positive is produced. As the proposed protocol cannot accurately

identify which grid the sensor is located in, and assigns high scores for multiple

grids adjoining the borders of the grid where the sensor is located, false positives are

likely to occur. Figure 2.2 show that in specific, with higher number of nodes in the

network, the possibility of FPs and FNs usually increase as more number of sensors

enhance the number of sensors located close to the grid boundaries. Furthermore, it

can be observed that FPs tend to reduce with increasing value of d, as higher values

of d result in reduction of number of sensors that are close to grid borders.

In Figure 2.3 both AOA and RSSI are considered to study FPs and FNs re-

spectively. Like Figure 2.2, Figure 2.3 also include varying number of nodes as input

parameter, and the results are plotted for all the four different values of d. The trend

of results obtained in Figure 2.3 reflects that of Figure 2.2, except for the decline

number of FPs and FNs for all the cases. It can also be noted that FP and FN rates

stabilize for larger values of number of nodes. This happens because beyond a cer-

tain point, even if number of nodes and thereby message communication increases,

it does not affect the score accumulation.This characteristics show the scalability of

our approach.
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Figure 2.2. (a) False positives rate and (b) false negatives rate for different node
density with AOA

In Figure 2.4, both AoA and RSSI with error, epsilonrssi, are considered. The

network parameters are same as the previous two figure, i.e., number of nodes and

grid size. The improved performance of the proposed technique which includes AoA

as well as RSSI information with it’s error, εRSSI = 1.5 for localization can be

verified from the reduced number of FPs and FNs. The results of the same are

plotted in Figure 2.4. They reflect similar trends as the previous figures, . These

figures demonstrate the effectiveness of the proposed protocol over methods which

do not consider both AOA and RSSI information, or fail to include the RSSI error

margin. A better rate of convergence is achieved in results presented in Figure 2.4,

as number of nodes increase.

It can be noted that in all these three figures, that is Figures 2.2, 2.3 and 2.4,

better performance is obtained for larger values of d, compared to smaller values.

This phenomenon can be explained from the fact that smaller d implies smaller

error margin, which is more difficult to attain. But for larger values of the grid,

score accumulation is fast, and probability of the grid having a sensor is higher too.
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Figure 2.3. (a) False positives rate and (b) false negatives rate for different node
density with AOA and RSSI
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Figure 2.4. (a) False positives rate and (b) false negatives rate for different node
density with AOA and RSSI with epsilonrssi

Owing to this property of the system, both FP and FN rates are better for bigger

size of the grid.

Figure 2.5 presents the results for different P̄Rx−Th, i.e., when we use RSSI

information to filter messages received from farther sensors. Here d = 20m. For

ease of presentation, we use the term maximum sensor distance threshold (T̄Rx−Th)

to represent a corresponding maximum distance the filtering would permit. In other
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words, for a given P̄Rx−Th, T̄Rx−Th is the distance that corresponds to a RSSI of

P̄Rx−Th.
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Figure 2.5. (a) False positives rate and (b) false negatives rate for different scenarios
with AoA and RSSI with epsilonrssi

We can see that choosing a high P̄Rx−Th that corresponds to a low T̄Rx−Th

drastically reduces the number of FPs. The reason for this behavior (as explained

in the previous section) is the shrinking of sector widths (to minimize far away grids

from receiving higher scores) with RSSI information that was not the case with pure

AoA. This enforces better fairness in eliminating far away unlikely locations, hence

reducing the percentage of False Positives. The number of False Negatives does not

change appreciably with RSSI , since RSSI filtering only helps eliminate potentially

unlikely sensor locations; potentially correct locations are still retained.

Effect on Detection Time: The effect of varying packet arrival rate, λ,

on detection time is studied in Figure 2.6. For cases when both AOA and RSSI

are used, the average detection time is usually more than when only AoA is used.

Considering RSSI error model with AOA improves the performance farther as the

average detection time is the least for all values of λ when AOA and RSSI with error
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is used. These plots also demonstrate that for higher packer arrival rate, detection

time is comparatively low, due to faster score accumulation under higher message

traffic. However, for all the cases, detection time converges for a certain value of λ

indicating the minimum detection time even with high message traffic. These plots

clearly show that the proposed method is more efficient in reducing detection time

compared to other methods.
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Figure 2.6. Detection time versus packet arrival rate

2.1.9. Final Remarks. This work studies the problem of localizing nodes

in a wireless sensor networks without cooperation from sensors themselves. This is a

practical problem in scenarios like battlefields where cooperation from sensors may



41

not be available for localization. We propose a new method called NCLOCS wherein

a localizer moves in the network and detects raw sensor communication signals, while

measuring AoA and RSSI of the signals. We incorporate practical error models in

these measurements and design a score assignment scheme for grid-based localization

of the sensors. We theoretically derive a lower bound on the false positive for the

proposed method. Depending on desired accuracy, our protocol can achieve very low

false positives and false negatives. The detection time of sensors also lower signifi-

cantly when the proposed method is employed. The work presented in this section

shows that it is possible an outside entity to localize sensors in a wireless sensor

network with some amount of error, even without any cooperation from the sensor

network, and thereby compromising the location privacy of the entire network. This

location information can be used to infer farther critical information that can be uti-

lized in defending against or imposing security threats on inimical networks, making

the proposed non-cooperative localization a novel addition to existing security issues

in wireless sensor networks. Towards this premise, our next contribution in this sec-

tion is in designing a light-weight distributed protocol for tracking a mobile intruder

in a WSN while simultaneously preserving location privacy of the sensor nodes.

2.2. THE DEFENSE MODEL

Security in WSNs has been researched from various aspects such as confiden-

tiality, availability and integrity. A critical input to many of the security threats

discussed in the existing literature is sensors’ location information. A host of ben-

efits are patent to adversaries when sensor location privacy is compromised. For

instance, the number of sensors nodes in the network can be estimated which can

help gauge network strength; optimal intrusion paths involving minimal detection

through the network can be determined, physical destruction of sensors can be ac-

complished to compromise network functionality etc. Hence Adversarial localization
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is an important privacy problem in Wireless Sensor Networks. Adversarial localiza-

tion refers to attacks wherein an adversary aims to discover position of sensors in a

network. Under such attacks location privacy of sensors is compromised. Defending

against adversarial localization by protecting location privacy of sensors is hence a

critical security requirement.

LPPT (Location Privacy Preserving Tracking): In this work, we address the

problem of defending against adversarial localization by securing location privacy of

sensors in wireless sensor networks. The contribution of our work is three-fold.

• We propose a technique for preserving sensor location privacy against adversar-

ial localization. The proposed protocol, viz, Location Privacy Preserving Track-

ing or LPPT , reduces loss of location privacy upon detection of adversarial

entity in the network.

• In addition to aiding location privacy of sensors, the proposed LPPT protocol

allows sensors to track the adversary with very few communication messages.

The core challenge comes from the sensors performing two conflicting objec-

tives: simultaneously localize the adversary, and hide from the adversary. The

principle of the proposed approach is to allow sensors intelligently predict their

own importance as a measure of these two conflicting requirements. Only a

few important sensors will participate in any message transmissions during

adversary localization. This ensures sufficient degree of adversary localization,

while also protecting locations of many sensors.

• We study the adversary performance extensively through theoretical analysis

as well as via simulations. We comparatively discuss the performance of a

naive tracking protocol and LPPT in securing sensors’ location privacy while

achieving better tracking accuracy. We also evaluate the energy efficiency of

the proposed protocol through simulations.
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The research presented in this section has been published in [46] and a journal

version is ready to be submitted.

2.2.1. Background and Related Work. Research on location privacy

in WSN is presented in many of existing literature [110], [156], [81], [120]. There are

two intuitive approaches to protect location privacy in WSNs. The first is to encrypt

all sensor messages using techniques proposed by [55], [22], [104] etc. Adversaries

will hence not be able to decrypt messages, and hence the identities of sensors appear

to be preserved. Unfortunately, this technique fails since (even with encryption) the

adversary can still measure raw physical (and location specific) properties of the

wireless signals like Angle of Arrival (AoA) and Receive Signal Strength Indicator

(RSSI) emitted by sensors, and then use triangulation/ trilateration techniques to

localize sensors. Repeated messages from the same sensors naturally leak more

location information until eventually sensors are accurately localized. The second

approach is to let all sensors sleep, and so no information of sensors’ positions is

leaked. Unfortunately, the sensors do not accomplish the WSN mission in this case,

and the network is rendered useless. Preserving location privacy of sensors while still

maintaining sufficient network performance is very challenging, and is the focus of

this work.

We point out that to the best of our knowledge, the work presented in this

chapter is unique in terms of defending sensor networks against adversarial localiza-

tion. This chapter is a revised and expanded version of [45] wherein we design a

protocol for defending sensor networks against adversarial localization based on the

attack model in [27]. However, the work in [45] had some limitations which are ad-

dressed in this paper, primarily from the perspective of evaluating the protocol from

the perspective of location privacy, adversarial localization and energy efficiency.

Localization in WSNs: We now talk about some existing techniques for local-

ization in WSNs. The problem of sensor localization has been very well studied,
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although in co-operative environments only. Usually, one or more beacon nodes with

known positions assist in localizing other sensors. In works like [20, 121] sensors

utilize their connectivity information (without making any distance estimates) to a

small number of static beacons for localization. The localization algorithm includes

determining centroids of triangles formed with beacon nodes, determining orienta-

tions of nodes with respect to beacons, triangle overlaps formed between beacons

and regular nodes.

Localization in WSNs can be classified into range-free and range-based. In

the former, sensors do not consider the physical distance between themselves and

the sources of beacons. Rather they use just the connectivity information. In [20],

sensors localize themselves as the centroid of reference beacons. The accuracy here

is dependent on the separation between the beacons and their transmission range.

In [121], the authors use angle of arrival (AoA) measure to beacons for localization.

Sensors adjacent to beacons get their bearings directly by measuring AoA to beacons,

and this information is propagated to their neighbors. This process is continued in a

hop by hop fashion. When enough bearings with respect to the non-collinear beacons

are collected, a node can estimate its position. In the APIT algorithm [69], a sensor

can be located within a certain number of triangles estimated by the algorithms with

respect to beacon positions. The final position is determined to be one within the

center of gravity of the overlapping area of the triangles.

On the other hand, range based approaches use the distance between sensors

and beacons for location estimation. Received signal strength indicator (RSSI) and

time difference of arrival (TDOA) are two metrics that are typically used for range

estimation. It is generally accepted that RSSI is not a good indicator of range, as

power in radio signal can be significantly attenuated depending on the environment.

Also the obstructions in the environment and shadow effects prevent RSSI from be-

ing a reliable metric. In works like [129, 142], distance measurement between sensors
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and static beacons are utilized for location estimation. In the Cricket indoor loca-

tion support system [129], the range estimation between sensors and beacons is done

typically using the Time Difference of Arrival (TDOA) method. In this method,

the range is determined as a function of the time difference of arrival between an

RF signal and an ultra sound signal, since RF signals travel much faster than ultra-

sound signals. A similar method is used for range determination in [142], although

the authors focus on ad hoc deployments in an outdoor environment. A bio-inspired

distance estimation based collaborative location technique is presented in [88]. An-

other distance reconstruction based localization method is proposed in [101]. Time

of arrival is used for source node localization in the work in [51].

2.2.2. Problem Definition. The problem of defending WSNs against ad-

versarial localization can be viewed as a game played between two opposing entities

- the sensors in the network and the adversary. The goal of the sensors is to local-

ize the adversary, while simultaneously minimizing information leakage in terms of

communication messages. The adversary’s goal is to physically move in the network,

while simultaneously attempting to localize sensors.

Sensor Network Model: In our work, we consider a sensor network where the

deployment field is clustered into multiple grids. Clustering a sensor network has

been widely adopted in practice like [157], [71], [1]. Advantages of clustering include

better network scalability, decreased routing complexity, improved power efficiency

etc. We assume that sensors know their positions in the network, which can be

accomplished using localization techniques in [19], [73]. We also assume that sensors

encrypt their messages using light weight techniques like [55], [22]. The mission of

the sensors is to localize adversaries physically moving in the network. To do so,

sensors are equipped with ranging hardware that they use to determine distances

from the adversary (can be accomplished by typical vibration or infrared sensors).
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Adversary Model: We consider an adversary that is physically moving in the

network like a programmable robot. The adversary’s movement is either random or

controlled. While the adversary can have any objective in its mobility, it also has

the objective of localizing sensor positions passively. By passive, we mean that the

adversary will not launch any active attack on the network like breaking into sensors

to determine their positions, or disclose encryption keys. Rather the adversary will

discover sensor positions based on information leakage of radio signals which sensors

transmit in the network. The adversary will accomplish this by passively intercepting

communication messages, and measuring raw physical properties like RSSI or AoA or

both. Using these measurements, sensor localization can be done via triangulation/

trilateration techniques [28]. Clearly, more the number of messages from the sensors,

more is the information leaked to the adversary, and better is the adversary’s estimate

of the sensor positions. The performance of the sensors is measured by means of a

metric called Adversary Location Certainty, which denotes how accurately the sensors

localize the adversary. The success of the adversary is measured by a metric called

Sensor Location Leakage, which is quantified by the area within which the adversary

can correctly localize the sensors. The main problem addressed in this work is to

design a protocol to be executed by sensors at run-time that -

1. maximizes Adversary Location Certainty,

2. minimizes Sensor Location Leakage simultaneously.

Based on the defined problem, a location privacy preserving tracking algorithm

is proposed.

2.2.3. Proposed Solution. Exploiting the trade-off between localization

performance and location privacy, we propose LPPT , a light-weight and distributed

protocol for defending wireless sensor networks against adversarial localization.
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Preliminaries: Before introducing the steps involved in LPPT , we first define

and discuss important definitions used later in the section.

1) Grid Level Localization: The role of the sensors in the network is to pri-

marily localize the adversary. Since sensor network hardware and the nature of

wireless medium are error prone, accurate tracking of any intruder necessitates sig-

nificantly large number of sensor readings and messages as demonstrated by work

in [1], [99], [66], [17], [159], [89]. However, in many practical applications of sensor

networks for target tracking, accurate (point level) localization may be an overkill.

For example, in a typical indoor environment, it may be enough if sensors can local-

ize a target to a room rather than a point. Even in outdoor battlefield environments,

localizing an intruder within (say) a few meters is practically enough during surveil-

lance. Motivated by these practical considerations, in this section, the localization

accuracy is Grid Level. By Grid Level localization we mean that the adversary is

considered to be localized at all times when sensors are correctly aware of grid where

the adversary is physically present, and lost at other times. Note that the grid size

is application specified depending on the nature of the sensor network mission.

In this work, we initially assume (for ease of elucidation) that the deployment

field is fully covered, i.e., every point in the field is within the sensing range of one

or more sensors. However, the proposed scheme will work without modification even

if this assumption does not hold. Note that in order to localize any adversary in

the network, sensors will have to communicate using wireless messages. Even in grid

level localization, since multiple sensors will likely be sensing the adversary at any

point in time, there may be multiple messages transmitted. Clearly there is a trade-

off between accuracy of localizing the adversary and number of messages transmitted

by sensors even if the localization accuracy is relaxed.

Figure 2.7(a) and Figure 2.7(b) represent the difference between point level and

grid level localization using a simple network structure. The solid line in both the
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figures correspond to the path taken by a localizer in the network. The shaded dots

represent the sensors. In Figure 2.7(a) the sensors aim at point level localization,

which is to localize the adversary with a negligible error. In Figure 2.7(b) the entire

network is divided into square grids of equal size. The objective of a scheme using

such an approach is to localize an adversary to be inside one of the grids. In this

work, we follow the second approach for adversarial localization.

(a) point level localization (b) grid level localization

Figure 2.7. Different levels of localization

Although we assume that the network area is virtually divided into a number

of square grids, it can be noted that the grids can as well be of an irregular shape.

In practical scenarios, dividing a network area into perfect square grids might not be

always feasible because of the irregularity of the shape of the region. Still, a virtual

grid structure can still be overlaid by approximating the ends of the network area to

be part of a perfect square grid.

2) Fixed Parameters: Here we discuss definitions for Fixed Parameters, which

are those parameters in LPPT whose values remain unchanged during the entire

network mission. There are five fixed parameters used in the LPPT protocol -
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Neighboring Grids, dimax, d
i
min, dmax sensor and dmin sensor. For ease of understand-

ing, we consider a square grid. However, the definitions below (and the proposed

protocol) can work for arbitrary shaped grids as well.

Neighboring Grids: For each grid in the network, we divide their neighboring

grids into two classes Regular Neighbors and Corner Neighbors. Regular Neighbors

of a Grid, g, are those neighboring grids which are in the immediate Up, Down,

Left and Right position of g. Corner Neighbors of a Grid, g, are those neighboring

grids which are in the immediate diagonal positions of g. We also assume that the

transmission range of every sensor is long enough so that it can communicate with

all sensors in its neighboring grids.

dimax: For each grid in the network, dimax is the minimum Euclidean distance

between the sensor i in the grid and the adversary, beyond which the sensor i can

deterministically assume that the adversary is not in the same grid as itself. In other

words, it is the distance between a sensor and the farthest boundary point of the

grid in which the sensor is present. We consider every grid to have a vertical axis

passing through its center, and clockwise angle is measured to be positive. Consider

a sensor i (represented as a dot) in Figure 2.8(a). Let the angle made by a straight

line drawn between the center of the grid and the sensor i, and the vertical axis be

θ and the distance between the center of the grid and the sensor be ε. Considering

that the sensor might be included in any of the four quadrants:

dimax =

√
2r2 + (−1)n 2rε

(
sin θ + (−1)k cos θ

)
+ ε2 (11)

where, n =

⌊
θ

180

⌋
and k =

⌊
θ

90

⌋
.
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dimin: For each grid in the network, dimin is the maximum Euclidian distance

between the sensor i in the grid and the adversary, within which a sensor can deter-

ministically assume that the adversary is in the same grid as itself. That is, it is the

distance between a sensor and the closest boundary point of that grid in which the

sensor is present, as shown in Figure 2.8(b), and given by:

dimin = d{r + (−1)n ε sin θ} , {r + (−1)m ε cos θ}e (12)

where, n =

⌈
θ

180

⌉
and m =

⌈
θ + 90

180

⌉
.

 sin! 

 cos! 
! 

dmax
i
 

r 

(a) dimax calculation

 

(r –  cos!) 

(r –  sin!) 

! 

dmin
i
 

r 

(b) dimin calculation

Figure 2.8. Illustration of dimax and dimin

dmax and dmin sensor: For each grid, the sensor with the minimum value of dimax

among all sensors in that grid is the dmax sensor of the grid. Similarly, the sensor

with the maximum value of dimin among all sensors in that grid is the dmax sensor.

We also define the dmax and dmin circles as the circles whose centers are the positions
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of the dmax and dmin sensors, and whose radii are dmax and dmin respectively for each

grid.

We wish to point out that each sensor can calculate the above parameters

independently with knowledge of other sensor positions in the grid. The parameters

once determined are fixed, and do not change subsequently.

3) Dynamic Parameters: We now discuss the parameters used in LPPT whose

values are dynamically altered as a function of adversary’s last estimated location,

namely, d
′i
max, d

′i
min, d

′
max sensor and d

′
min sensor. For all subsequent discussions in

this section, we consider that the adversary is currently localized in Grid g.

d
′i
max: For each sensor i in a corner neighbor of grid g, we define its d

′i
max as

the distance between sensor i and the edge of the corner neighbor, closest to the

adversary.

d
′i
min: For each sensor i in the neighboring grids (both regular and corner neigh-

bors) of grid g, we define d
′i
min as the distance between sensor i and the perpendicular

distance between sensor i and the boundary of Grid g.

d
′
max sensor: Recall that there can be different values for d

′i
max for each sensor

i in the neighboring grids of grid g. For each sensor in a neighboring grid, we define

its d
′i
max circle as a circle of radius d

′i
max centered at the location of sensor i. Among

all such sensors, the one whose d
′i
max circle overlaps the most with its neighboring

grids is considered to be d
′
max sensor of Grid g.

d
′
min sensor: Recall that there can be different values for d

′i
min for each sensor

i in the corner neighbors of grid g. For each sensor in a particular corner neighbor,

we define its d
′i
min circle as a circle of radius d

′i
min centered at the location of sensor

i. Among all such sensors, the one whose d
′i
min circle covers the most area in its grid

is considered to be dimin sensor of Grid g.
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We wish to point out here that the values for the dynamic parameters can

change based on which grid the adversary is currently localized. However, irrespec-

tive of where the adversary is localized, depending on the current position of the

adversary, each sensor can calculate each of the above parameters independently

with known positions of other sensors in the grid.

Location Privacy Preserving Tracking Protocol Description

We now discuss the details of the LPPT protocol. The protocol is presented

in Algorithm 2, and is divided into two broad phases: Initialization phase and Post

Initialization Phase. During the initialization phase, the adversary is localized for

the first time in the network. The post initialization phase deals with the tracking

of the adversary as it moves in the network, while sensors are also attempting to

preserve their location privacy from the adversary. The details of both phases are

discussed below:

1. Initialization Phase: Initially when the adversary enters the network, the first

three sensors sensing the adversary will exchange messages and triangulate the

adversary to a grid. This is the initialization phase, following which all sen-

sors start executing the protocol for adversary localization and sensor location

privacy preservation as discussed later in this section.

2. Post Initialization Phase: In this phase, the sensors in neighboring grid of the

adversary calculate d
′
max and d

′
min sensors and update them with each new

grid location of the adversary. We define adversary-sensing circle of a sensor

SX to be the circle with SX at center and radius equal to the distance between

adversary and sensor SX .

Since adversary localization is grid level, the protocol allows message trans-

mission by sensors only when a grid switch by the adversary is detected. At

different steps of the LPPT protocol, the sensors use four different types of
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messages - definitive grid switch indicator (m1), call for collaboration (m2),

collaboration for localization (m3) and triangulation initiator (m4). Each

message contains a message type field whose value indicates which of the four

types the message is, and is sent out based on two possible cases of the adver-

sary switching grids, as presented subsequently. We are going to discuss the

purpose of these four messages subsequently in this section.

Case 1 – Definitive Grid Switch Detection: This is the case where sensors in

the network can detect a grid switch by the adversary and also are aware of

which grid the adversary switches to. In this case, only a single message m1 is

transmitted to update sensors in vicinity of the adversary about its grid switch.

The two possibilities leading to Definitive Grid Switch Detection are following.

(a) When a dmin sensor of a neighboring grid, say g∗, starts sensing the ad-

versary, it indicates the adversary’s movement into the dmin circle, which is

possible only in case of a grid switch to g∗. The dmin sensor broadcasts message

m1 updating current position of adversary to be g∗ and adversary’s distance

from it. As a grid switch is detected, all the sensors receiving m1 update the

set of neighbors of current grid, d
′
max and d

′
min sensors. In this case, only a

single message m1 is transmitted to update sensors in vicinity of the adversary

about its grid switch.

Every time the location of the adversary is updated through different messages

throughout execution of LPPT , sensors sending and receiving those messages

store the updated locations. This information is later reported to the base

station through collaborative routing. We do not discuss about the routing as

it is beyond the scope of the proposed technique, however existing techniques

can be used for the same.
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(b) Another possibility of identifying and broadcasting adversary’s grid switch

using only one message is when d
′
min sensor of a neighboring grid g∗ starts

sensing the adversary, indicating adversary’s grid switch to g∗. Similar to Case

1 (a), the d
′
min sensor of g∗ updates the location information and its distance

from adversary by broadcasting message m1.

Case 2 – Potential Grid Switch Detection: This is the case where sensors in

the network can detect a grid switch by the adversary, but are uncertain of the

grid the adversary has switched to. This case can also occur following any of

the two possibilities, as discussed subsequently.

(a) Before Case 1 (a) or Case 1 (b) occurs for a particular grid switch of the

adversary, the grid switch can be detected when the dmax sensor of current grid

stops sensing the adversary. Although it signifies adversary’s movement outside

the current grid, this itself cannot be used to determine which neighboring grid

the adversary has moved to. Therefore the following steps will be executed.

Step 1: The dmax sensor will broadcast message m2 to initiate the localization

procedure.

Step 2: Upon receiving message m2, every sensor sensing the adversary com-

putes the two points of intersection of the sensing circles of the sender of m2

and itself. The adversary should be present in either of these two points. Based

on the location of these points, the sensors intelligently try to localize the ad-

versary. The next steps of the protocol can be divided into two more sub-cases

based on the location of the intersection points.

(i) If the two points are included in a single grid, say g∗∗, the adversary has

clearly moved to grid g∗∗. Otherwise, if only one of the intersection points falls

in a neighboring grid (say g∗∗) of last known adversary grid, g∗∗ is the new

location of the adversary, as the adversary can move only to neighboring grids
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in a single step. After concluding about adversary’s new location, a sensor Si

waits for a time t, ( where t is the distance of the adversary from Si), to avoid

any redundant message communication. In this time interval t, the adversary

might have moved within the grid or to a new grid, leading a dmin sensor

or d
′
min sensor to start sensing the adversary and sending m1. Hence, after

waiting for time t, if no other sensor has sent m1 in this interval of time t, Si

broadcasts m3 updating the grid location of adversary and its distance from

Si. In this case, two messages, m2 and m3, are broadcast among the sensors

to determine and update the new grid location of the adversary.

(ii) If both the points of intersection fall into different neighboring grids, it

is possible that the adversary has moved to any of the two grids. So after

waiting for time t, if another sensor has sent m1 or m2 in that time, a sensor Si

broadcasts messagem3. Every sensor Sj receivingm3 and sensing the adversary

computes point of intersection of sensing circles of sender of m2 and m3 and

itself. The grid containing this point is recognized by sensor Sj as the new

location of the adversary. To avoid redundant message, sensor Sj waits for

time t
′
. We define t

′
as, t

′
= [(distance of the adversary from Sj) + c], where c

is a constant. The constant c is chosen large enough to ensure that the value of

t
′
is most likely greater than the value of t (for other sensors whose positions are

known to Sensor Sj), so that if any sensor can satisfy the criteria mentioned in

(i), it can send message before Sj and thus only two messages will be required

to perform the localization. If no other sensor has sent message m4 in that

time t
′
, Sj broadcasts m4 updating new position of the adversary. In this case,

three messages, m2, m3 and m4 are required to localize the adversary.

b) Before a grid switch is detected by any of the previous cases, d
′
max sensor

of a corner neighbor of the current grid might start sensing the adversary. It

signifies that the adversary has moved to a new grid, but this information is
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Algorithm 2 Pseudocode of the LPPT defense protocol

Initialization Phase
while When adversary is first sensed by three sensors do

Triangulate adversary to a grid
end while
End Initialization Phase

Post Initialization Phase
for Each step of adversary do

while Adversary position is in grid g do
if Adversary enters dmin circle of Grid g∗ then

Refer to Section 2.2.3 Case 1 (a)
else if Adversary enters d

′
min circle of Grid g∗ then

Refer to Section 2.2.3 Case 1 (b)
else if Adversary enters dmax circle of Grid g then

Refer to Section 2.2.3 Case 2 (a)
else if Adversary enters d

′
max circle of corner neighbor g∗∗ of Grid g then

Refer to Section 2.2.3 Case 2 (b)
end if

end while
end for

insufficient to determine exactly which grid the adversary has moved to. In

this case, two steps similar to Case 2 (a) are followed.

Step 1: The d
′
max sensor broadcasts message m2 and the localization procedure

begins.

Step 2: The successive steps in this case are exactly similar to the Step 2 in

Case 2 (a). Even in this case, either two or three messages are required to

locate the adversary.

Summary: The proposed LPPT protocol enables sensors localize the adversary

with minimal messages via a combination of intelligent use of the previous adversary

location, and sensors’ current locations. However, it is likely that under unfavorable

sensor deployments, and due to constraints on preserving location privacy, the ad-

versary can be lost in some cases. We study this trade-off (i.e., accuracy of localizing
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adversary vs. preserving sensor location privacy) extensively in Section 2.2.5. We

wish to point out that LPPT protocol is executed by sensors independent of the

objective of the adversary.

2.2.4. Analysis of LPPT. In this section we perform theoretical analysis of

LPPT protocol from the perspective of sensor location privacy compared to a brute

force tracking algorithm where all sensors send messages on sensing an adversary.

Let us define the circle CX as one with radius p centered at the sensor SX such

that any message SX transmitted can be sensed by the adversary if it is within CX .

The adversary is moving within the network with speed v. The sensors send periodic

messages at a rate λ when they sense the adversary. On an average, the adversary

will spend πp2/2v time units in the circle CX and receive N = λπp2/2v messages

from SX .

Now we analyze the scenario considering the proposed defense protocol being

employed by the sensors in the network. We assume that the sensing range of a

sensor is similar to that of the adversary. The probability that a sensor is a dimin

sensor or a dimax sensor is 1/ρ, where ρ is the average density of sensors per grid. The

probability that a sensor is d
′i
min or a d

′i
max sensor is given by

∑8
k=0 ρ

−k. Hence the

average number of messages sent per time unit is 0.67
(
1/ρ+

∑8
k=0 ρ

−k). So messages

sent during the average time adversary is in CX is Nnew = 0.67
(
1/ρ+

∑8
k=0 ρ

−k) πp2
2v

.

Figure 2.9 demonstrates the sensor location leakage for LPPT vs. the brute

force tracking. Since more number of messages leads to more location leakage of

the sensors, the simulation data presented shows that location privacy of sensors

is significantly high in our protocol. With lower values of speed of adversary, the

number of message savings (and consequently location privacy) is more compared

to brute force method. This phenomenon can be explained from the fact that the

adversary has more chances to receive sensor messages in the brute force protocol

(compared to LPPT protocol) when it moves slow. The LPPT protocol is consistent



58

in terms of message conservation for all varying adversary speeds, since it requires

message transmissions only upon grid switch by adversary. We present more results

and insights pertaining to actual location disclosure of sensors by the adversary with

LPPT protocol in Section 2.2.5. Note that the different speeds of adversary chosen

in Figure 2.9 are consistent with speeds of typical miniature robots as evidenced in

[34], [78], [57].

Figure 2.9. Comparison of the average number of messages sent with/without the
LPPT protocol

2.2.5. Performance Evaluation. In this section, we evaluate the per-

formance of our defense protocol via simulations. We consider a sensor network

clustered into 15×15 grids, where the sensors are uniformly and randomly deployed.

By default the sensor density is 10 sensors per grid. The adversary randomly moves

in the network for 12,000 time units, and is equipped with unlimited memory to

store and process communication messages sent by sensors. To clearly demonstrate
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the strength of our protocol, we assume that the radio range of the adversary is

unlimited (i.e., the adversary can eavesdrop on any message sent by any sensor in

the network). We have three key performance metrics, described below.

Metrics: The performance metrics that we use to evaluate the proposed LPPT

protocol are as following:

1. Adversary Location Certainty: It is the percentage of time that the adver-

sary’s position is correctly localized to a grid. We also study the percentage

of currently detected grid switches by the adversary to show the true positive

rate of our protocol in terms of tracking adversary’s movement.

2. Sensor Location Leakage: Sensor location leakage is quantified by the area

within which the adversary can correctly localize the sensors. Ideally, when

the area of localization is large, the leakage is less and more is the location

privacy.

3. Energy Efficiency: We also study the energy efficiency of our protocol in

terms of how the motivation for protecting sensor location privacy (via message

conservation) also impacts energy efficiency of the overall network.

Simulation Results: The results obtained from the self-made C++ simulator is

plotted and analyzed to evaluate the performance of the proposed protocol. Eval-

uating Adversary Location Certainty : In Figure 2.10, we plot Adversary Location

Certainty as a function of number of time units spent by the adversary in the net-

work for a network density of 10 sensors per grid. As we can see close to 90% of

the time the sensors are able to correctly localize the adversary in our protocol. The

loss of about 10% in localization certainty comes from the trade-off is minimizing

message communication which is evaluated subsequently.

In Figure 2.11, we plot Adversary Location Certainty as a function of number

of sensors per grid when the time spent by the adversary is 12, 000 time units. As
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Figure 2.10. Adversary’s location certainty Vs. Time spent by adversary in the
network

we can see, even for very low sensor densities of 3 sensors per grid, the Adversary

Location Certainty is 75%. When the density increases, the success of localizing

the adversary dramatically increases. The success rate begins to flatten at around

95% beyond when the number of sensors per grid is 15. This is due to certain

ephemeral stay at certain grids, which are unavoidable when the adversary moves in

the network. Such ephemeral transitions are very difficult to detect in practice even

when sensor density is extremely large.

It can be noted that the number of grid switches detected by the sensors can be

different from the adversary’s location certainty. This difference occurs due to the

fact that, a grid switch can be detected in some cases, without correctly detecting

the exact grid the adversary has moved to. In Figure 2.12 and Figure 2.13, we study

the accuracy of grid switch detection over different network parameters.

As we propose grid level localization to LPPT , detecting each grid switch of

the adversary can be considered to be as good as tracking it with 100% precision.

However, due to range-based measurement errors and presence of uncertainty region
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Figure 2.11. Adversary’s location certainty Vs. Density of sensors in the network

Figure 2.12. Percentage of detected grid switch by adversary Vs. Time spent by
adversary in the network
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in the network, the grid switches might not be detected accurately all the time. But

our simulation results show that in about 90% of the cases, grid switch is detected

correctly. Figure 2.13 denotes that the percentage of grid switch detected by the

adversary is not affected by time spent by the adversary in the network as it remains

almost parallel to X-axis.

Figure 2.13. Percentage of detected grid switch by adversary Vs. Density of sensors
in the network

Figure 2.13 depicts that with increasing sensor density in the network, percent-

age of detected grid switch improves, and gradually converges close to 95%. It does

not reach 100% for the same reason as above in that ephemeral grid switches are

very difficult to detect even with high sensor density.

Evaluating Sensor Location Leakage : We now study the location privacy gained

by sensors while tracking the adversary with LPPT protocol. Our metric of sensor

location leakage is the area within which adversary can localize a sensor. When

the area of localization by the adversary is larger, less is the location leakage, and
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more is the location privacy for the sensor network. Figure 2.14 shows the trend of

Location Leakage with respect to time units spent by the adversary in the network.

First, we observe that when the adversary spends more time in the network, area

within which sensor is localized decreases. This phenomenon occurs as with more

time spent in the network, the adversary can capture more messages transmitted by

sensors. However, with LPPT protocol, the area within which a sensor is localized

is much larger (i.e, sensor location privacy increases) compared to the brute force

protocol, clearly depicting the effectiveness of LPPT in preserving location privacy

of sensors.
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Figure 2.14. Sensor location leakage Vs. varying times spent by adversary in the
network

Evaluating Energy Efficiency : We study energy efficiency as an orthogonal

feature of the proposed LPPT protocol in Figure 2.15 and Figure 2.16. Figure 2.15

shows that the number of messages spent per detected grid switch by adversary

remains almost constant over varying adversary movement duration. The strength
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of the proposed method is that it prevents the adversary from obtaining more location

information of sensors by simply spending more time in the network. The steadiness

in the curve over time clearly depicts this idea.

Figure 2.15. Messages per grid switch Vs. time units spent by adversary in the
network

Figure 2.16 on the other hand, demonstrates that with increasing density of the

network the average messages to detect each grid switch decreases, thereby enhancing

energy efficiency of the proposed protocol.

In Figure 2.17 and Figure 2.18, we study energy efficiency with respect to

varying network parameters, for adversary localization with and without LPPT .

Figure 2.17 shows that for varying time units spent by the adversary, the total

number of messages sent by all sensors remains very low with LPPT , compared to

the naive protocol where the number of messages increases linearly. Throughout this

set of simulations, the sensor network density has been kept constant at 10 sensors

per grid.
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Figure 2.16. Messages per grid switch Vs. Density of sensors in the network

Figure 2.17. Total number of messages sent Vs. Time spent by adversary in the
network
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Figure 2.18 also shows that for varying density of sensors in the network, the

total number of messages sent by all sensors remains very low with LPPT , compared

to the naive protocol where the number of messages increases linearly. Throughout

this set of simulations, the time spent by adversary in the network has been kept

constant at 12, 000 time units.

Figure 2.18. Total number of messages sent Vs. Average number of sensors per grid

2.2.6. Final Remarks. We addressed an important problem, namely the

defense of sensor networks against adversarial localization. The problem spanned

the three critical dimensions of target tracking, sensor localization and privacy in

sensor networks, which to the best of our knowledge is unique. The principle of

our defense protocol, LPPT is to allow sensors to intelligently predict their own

importance as a measure of the two conflicting requirements: adversary localization

and sensor location privacy. Only a few such important sensors will participate in
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any message transmission. This ensures high degree of adversary localization, while

also protecting location privacy of many sensors. However, there still remains scope

of improvement for this work. The results presented in this dissertation are obtained

from a C++ simulation developed to evaluate the proposed solution. We show that

if LPPT is used by the nodes in the network, high degree of adversary localization

accuracy is achieved while preserving location privacy of a large portion of the nodes.
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3. END-TO-END SECURE COMMUNICATION IN RANDOMLY
DEPLOYED WIRELESS SENSOR NETWORKS

In randomly deployed wireless sensor networks, one of the most fundamental

challenges comes from lack of control where sensors are located in the network after

deployment. Particularly, under larger scale deployments, pre-establishing neigh-

bor proximity information is not feasible leading to the impossibility of pre-fixing

pairwise keys between sensors. Beyond this challenge to securing communications

in wireless sensor networks, energy limitations of sensor nodes clearly imply that

complex cryptographic operations like public key based schemes are harder to im-

plement in wireless sensor networks. Finally, while existing work focuses primarily

on securing node-to-node communications, the issues of end-to-end secure communi-

cations (i.e., between a node to base station) is mostly ignored, especially considering

the significant location disparities between nodes and the base station in large scale

sensor networks.

In this section, we design an end to end secure communication protocol WSNs

taking into consideration the location disparity issues arising from random deploy-

ment of sensor nodes. Specifically, our protocol is based on a methodology called

differentiated key pre-distribution. The core idea is to distribute different number

of keys to different sensors to enhance the resilience of certain links. This feature

is leveraged during routing, where nodes route through those links with higher re-

silience. The work presented in this section has been published in [65].

3.1. BACKGROUND AND RELATED WORK

In order to provide secure communications between neighboring nodes in ran-

domly deployed WSNs, Random key pre-distribution (RKP) was proposed [56]. In

its basic version, each sensor is pre-distributed with k distinct keys randomly chosen
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from a large pool of K keys. After deployment, neighboring nodes use these pre-

distributed keys to establish a pairwise key between them. Communications between

neighboring sensors in each hop are encrypted/decrypted using these pairwise keys.

Many key management protocols have been proposed based on key pre-distribution

[23], [39], [94], [95], [103], [174], [112] etc., mostly improving upon one or more fea-

tures of [56]. Cryptographic solutions for secure communication is proposed in some

existing work [25], [123].

Attack Models: In the standard attack model used in secure communications

in WSNs [23], [56], [174], etc., the attacker launches two types of attacks. In node

capturing attack, the attacker physically captures a certain percent of sensor nodes,

and is able to disclose the pre-distributed and pairwise keys stored in those captured

nodes. The sink node is assumed to be well protected and cannot be captured. In link

monitoring attack, the attacker monitors all wireless links after deployment. Clearly,

all communications of captured nodes are deciphered by the attacker. Furthermore,

by combining the disclosed pre-distributed keys and messages recorded, the attacker

can infer some pairwise keys between other nodes that are not captured. The attack

model used in our work is one where the attacker launches both node capturing and

link monitoring attacks.

The resilience of each hop (link) can be reflected by the number of shared

pre-distributed keys in the link. It is known that under uniform key distribution,

i.e. each sensor pre-distributed with equal number of keys, will achieve maximum

average number of shared pre-distributed keys in each link. However, there is an

inherent limitation in uniform key distribution as demonstrated in Figure 3.1. In

Figure 3.1, we have 1000 nodes randomly deployed in a circular network with radius

500 meters, where k = 40, K = 10000 and communication range of each node

is 100 meters. We can see that a majority of links have low resilience (i.e., small

number of shared keys), while the percentage of links that are highly resilient is quite
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Figure 3.1. Percentage of links with varying number of shared keys.

low. This clearly restricts the room for routing protocols to choose more resilient

links during end to end communications. Installing more keys into each node is

not always preferable since it enables the attacker to disclose more keys upon node

captures, which could again compromise the link resilience. Table 3.1 shows that

using the proposed differentiated key pre-distribution, number of links with high

resilience has been increased than random key pre-distribution, demonstrating the

potential effectiveness of the proposed approach in secure communication.

In this section, we design a scheme based on differentiated key pre-distribution

among sensor nodes that significantly improves resilience among sensor nodes under

key capture, and where routing is adapted towards those links that are more secure.

3.2. PROBLEM DEFINITION

We will now introduce our differentiated key pre-distribution methodology. In

order to provide a high quality of end to end secure communications, it is clear that
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Table 3.1. Increase of the number of Links with Different number of Shared Keys
under Differentiated Key Pre-distribution

# of shared keys 0 1 2 3 4
# of links increase 54% −8% −20% −29% −19%
# of shared keys 5 6 7 8 >8

# of links increase −2% 25% 56% 183% 475%

we should enhance the resilience of individual links in the network. An intuitive way

to do so is to increase the number of keys pre-distributed into each node (k). When

the number of shared keys in each link increases, resilience seems to increase since

all shared keys have to be disclosed to compromise the link.

However, such a solution is counter-productive. When k increases, more keys

are disclosed per node capture. The compromise of only a small percent of nodes

can disclose many more keys to the attacker, which compromises the resilience of

links. We need an approach by which link resilience can be enhanced without the

downside of disclosing more keys to the attacker. On the other side, the number of

pre-distributed keys (k) is also subject to the memory constraint of sensor nodes.

In this section, we propose a methodology called differentiated key pre-distribution

to enhance the quality of end to end secure communications in randomly deployed

WSNs. Our methodology is based on the observation that links in the network are

not equally important with respect to secure communications. Only the links used

for data transmission have impacts on security. The core idea of our methodology

is to pre-distribute different number of keys to different nodes. We keep the average

number of keys per node the same as that in uniform key pre-distribution, so that

the attacker impact (e.g., average number of keys disclosed per node capture) re-

mains the same. By distributing more keys to some nodes, the links between those

nodes tend to have much higher resilience than the link resilience under uniform key
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pre-distribution. These high resilient links are preferred during routing to enhance

the end to end secure communications.

Use of this methodology to provide end to end secure communications between

sensor nodes and the sink in randomly deployed WSNs, raises the following important

questions:

• How to determine the parameters in key pre-distribution? We need to deter-

mine the number of node classes, the number of nodes in each class, and the

number of keys distributed into nodes in each class. Determining the optimal

values of these parameters needs a rigorous derivation of end to end secure

communication performance.

• How to pre-distribute different number of keys into different classes of nodes?

An intuitive way is always choosing keys randomly from the key pool regardless

of node class. Is there any better way to achieve higher resilience?

• How to perform routing given links have different resilience? In this situation,

the length of routing path and energy balancing are not the only factors to

consider during routing path selection. Link resilience also plays a role. Care

should be taken to make a good balance among these factors.

Based on these objectives, we design the proposed solution to the problem

discussed.

3.3. PROPOSED SOLUTION

We now present our end to end secure communication protocol based on the

methodology above. Our protocol consists of two components: differentiated key

management and resilience aware routing. Table 3.2 lists the parameters in protocol

description and their notations.
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Table 3.2. Protocol Parameters
Notation Protocol parameter

S network area (= πR2)
r communication range
N number of nodes in the network
c number of node classes
ni number of class i nodes (1 ≤ i ≤ c)
ki number of keys pre-distributed in class i node (1 ≤ i ≤ c)
K number of keys in key pool
Nc number of captured nodes

Differentiated Key Management: The proposed differentiated key management

consists of two stages: key pre-distribution and pairwise key establishment. The main

difference between the proposed key management protocol and traditional RKP

based key management protocols lies in the stage of key pre-distribution.

3.3.1. Key Pre-distribution. We study a network with N sensor nodes

and one sink node. The N sensor nodes are divided into c classes, each of which

has ni (1 ≤ i ≤ c) nodes. We call the sensors in the ith class as class i nodes. We

then pre-distribute ki (1 ≤ i ≤ c and k1 ≥ k2 ≥ · · · ≥ kc) unique keys chosen from a

large key pool with size K into each class i node, detail of which will be discussed

subsequently in this section. Note that, the sink node is pre-distributed with all K

keys in the key pool. After this, the sink is deployed strategically at certain position,

while the N sensor nodes are deployed randomly in the network. The N sensor nodes

will execute the following protocols for pairwise key establishment and routing.

We detail our key pre-distribution in the following. For each class 1 node, its k1

unique keys are chosen randomly from the key pool. However we use a semi-random

way to distribute keys into all other nodes to increase the chance of key sharing

between these nodes and class 1 nodes. We define bxc as the largest integer no more

than x, and define dxe as the smallest integer no less than x. For a node in class i
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(i > 1), bki/n1c keys are first chosen randomly from the distributed keys in each of

n1 − (ki − bki/n1c · n1) class 1 nodes, which are chosen randomly from all n1 class

1 nodes. For the remaining ki − bki/n1c · n1 class 1 nodes, dki/n1e keys are chosen

randomly from the distributed keys of each node. If some of the chosen keys are the

same, the redundant keys will be re-chosen until all ki keys are distinct.

We illustrate with a simple example. Let N = 100, c = 2, n1 = 20, n2 = 80,

k1 = 80, k2 = 30. The following is the key pre-distribution procedure. For each of the

20 nodes in class 1, we choose 80 distinct keys randomly from the key pool. For each

of the 80 nodes in class 2, we choose 30 distinct keys as follows. We first randomly

classify class 1 nodes into two types. Type A has 10 (i.e., n1 − (k2 − bk2/n1c · n1))

nodes, and Type B has 10 (i.e., k2 − bk2/n1c · n1) nodes. Now, bk2/n1c = 1 key is

chosen randomly from the pre-distributed keys in each of the 10 Type A class 1 nodes

above, and is distributed into the class 2 nodes under discussion. Then, dk2/n1e = 2

keys are chosen randomly from the pre-distributed keys in each of the 10 Type B

class 1 nodes above, and are distributed into the class 2 nodes under discussion. At

this point, the class 2 node has 30 keys distributed. If these 30 keys are unique,

key distribution is over. Otherwise, we redo the preceding 2 steps for the duplicate

keys until all 30 keys are unique. Note that since k1 > k2, uniqueness can always be

guaranteed.

By distributing keys in this way, we guarantee ki unique keys are distributed,

and the number of keys chosen from each class 1 node are balanced and differs by

at most 1. The reason we pre-distribute keys for class i nodes in the above semi-

random way instead of purely randomly is two folded. First, we can enhance the

probability that a class i node shares key with a class 1 node. Second, we do not

decrease the probability that a class i node shares key with a non-class 1 node. Both

facts are confirmed by our simulation, and can help increase link resilience. Besides,

pre-distributing keys for non-class 1 nodes in the above way will not decrease the
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effective key space much. Effective key space is defined as the number of keys in the

key pool that are distributed in at least one sensor node. This is because when the

values of n1, k1 and K are carefully chosen, the number of unique pre-distributed

keys among the n1 class 1 nodes is already close to K.

3.3.2. Pairwise Key Establishment. Once nodes are pre-distributed

with keys and deployed, they start to discover their neighbors within their commu-

nication range r via local communication, and obtain the key IDs of their neighbors’

pre-distributed keys. With the above information, each node constructs all the one-

hop and two-hop key paths to all its neighbors. If node i shares pre-distributed keys

with a neighbor j, there is one direct key path with one hop between them. How-

ever, node i will also construct all the two-hop key paths with each of its neighbors,

regardless of whether a one-hop key path has been constructed or not, to enhance

the link resilience (the attacker has to compromise all key paths for a link between

two nodes in order to compromise this link). Suppose node i wants to construct all

two-hop key paths with node j now. To do so, node i sends a request to its neighbors,

containing the node IDs of i and j. After a neighboring node m receives the request,

it checks if it shares pre-distributed keys with node i and shares pre-distributed keys

with node j. If both conditions are satisfied, node m sends a reply back to node i.

In this way, a two-hop key path i−m− j is constructed. If possible, other two-hop

key paths are also constructed as above. After node i constructs all two-hop key

paths to node j, node i will generate multiple random key shares, and transmit each

key share on each key path. Key shares are encrypted/decrypted hop by hop by a

combination (e.g., XOR) of all shared keys on that hop. Ultimately, the pairwise key

between nodes i and j is a combination of all the key shares (e.g, XOR) transmitted.

Nodes also estimate and store the number of protection keys for each link as follows.

Assume there are p two-hop key paths between i and j, each with the help of proxy
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sl (1 ≤ l ≤ p), and denote k(i, j) as the number of shared keys between i and j. The

number of protection keys between i and j (key(i, j)) is,

key(i, j) = k(i, j) +

p∑
l=1

min(k(i, sl), k(sl, j)). (13)

We calculate key(i, j) like this because the resilience of a two-hop key path is

mainly decided by the weaker link (the one with fewer shared keys). The larger the

number of protection keys for a link, the more resilient is the link in general.

3.3.3. Resilience Aware Routing. In this section, we will describe how

to incorporate our differentiated key pre-distribution with popular WSN routing pro-

tocols for end to end secure communications. We particularly focus on one popular

location centric routing protocol and one popular data centric routing protocol. In-

corporation with other routing paradigms is similar. The basic idea is to tune the

routing protocols such that they consider link resilience as a metric during routing.

In order to prevent overuse of a few nodes, we will let nodes choose several next hop

nodes, and use one at each time to prolong network lifetime.

• Extensions to location centric routing protocol: The location centric routing

protocol we extend is GPSR [84]. In GPSR, each node chooses a neighbor

as the next hop that is closest to the sink. In order to achieve high end to

end secure communications without compromising network lifetime, we extend

GPSR protocol as follows. Each node i assigns a weight to all its secure neigh-

bors (neighbors with which a pairwise key is established) that are closer to the

sink than itself. We denote U(i) as the set of node i’s secure neighbors that are

closer to the sink than itself, and recall key(i, j) is the number of protection
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keys for the link between nodes i and j. We assign weight to each node j in

set U(i) as,

wj =
key(i, j)α∑

m∈U(i) key(i,m)α
. (14)

Here wj is the probability that i chooses j as the forwarder. When α = 0,

all nodes in U(i) are given equal priority regardless of link resilience. When α

is positive, more resilient links are given higher priority. When α approaches

infinity, only the most resilient links are chosen for routing. An intermediate

value of α can be used to achieve a good balance between security and lifetime,

which can be decided by security policy and other factors. For example, a

large value of α can be chosen when high resilience is preferred and energy

consumption imbalance is not a serious issue, while a small value of α can be

chosen when energy is limited and energy consumption balance is critical. We

will study the sensitivity of security and lifetime to α in Section 3.4.

• Extensions to data centric routing protocol: In traditional minimum hop rout-

ing protocol [143], a variant of Directed Diffusion routing protocol, a node will

choose a neighbor on the minimum hop path to the sink. We can extend this

protocol in a similar way as above. During the next hop determination pro-

cess, packets are forwarded only on the minimum hop secure paths. A secure

path consists of links that have pairwise keys established. We denote the set

of neighbors on the minimum hop secure path of node i by U(i). Note that in

a relatively dense network, there could be several minimum hop secure paths

between node i and the sink. Node i then assigns a weight wj to each of its

secure neighbors j in the set U(i). The expression of wj is given in (2).
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Remarks: In the following, we will discuss the issues of empty set U(i) (dis-

cussed in Section 3.3.3), possibility of longer hops, extending our solutions to hier-

archical networks, and the possibility of applying public key cryptography.

In extending GPSR, a node i may find that its set U(i) is empty. In such case,

node i can follow the right hand rule in [84] to choose a secure neighbor that is further

away from the sink than i itself. If node i does not to have any secure neighbor, it

may increase its communication range to find some secure neighbors. Applying such

rules will eliminate loops and guarantee finding a secure path if it exists. Increasing

communication range for more secure neighbors works for the extended minimum

hop protocol as well.

We point out that the number of path hops in our schemes could be larger than

that in traditional GPSR or minimum hop routing schemes. This is because in our

schemes, nodes choose neighbors considering both path length and link resilience, and

thus could choose neighbors on a path with more hops. Besides, as mentioned above,

a node may choose a secure neighbor that is further away from the sink than itself.

Intuitively, a path with more hops tends to decrease path resilience as the chance

of attacker compromising at least one hop is increased. However, in our schemes,

the path resilience improvement via choosing highly resilient links overwhelms the

negative effect of a little longer paths of a small percentage of nodes. Overall, the

path resilience will be improved.

In this work, we have focused on flat topologies. In some situations nodes could

be deployed in hierarchies. The end to end routing here occurs in more than one

plane, i.e., sensor to cluster head via multiple sensors, and cluster head to sink via

multiple cluster heads. Our methodology and protocols are applicable in hierarchical

networks. Cluster heads are chosen as class 1 nodes (provisioned with more keys),
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while other sensors are chosen as class 2 nodes, class 3 nodes and so on depending

on number of hierarchy levels.

3.4. PERFORMANCE EVALUATION

In this section, we present performance evaluation using the data obtained from

the self-made simulator. We first describe our simulation setup, and then report

performance data and our observations.

3.4.1. Simulation Setup. We conduct our simulation using a self-made

simulator in C. The network is circular with radius 500 meters, where 1000 nodes

are uniformly deployed at random. The sink is at the center of the network. Unless

otherwise specified, the default parameters are: c = 2, n1 = 200, n2 = 800, k1 = 80,

k2 = 30, k = 40, K = 10000, r = 100 meters, α = 1 and Nc = 50. The default

values of k1, k2 and k are chosen such that k1n1/(n1 + n2) + k2n2/(n1 + n2) = k,

which means the average number of keys disclosed to the attacker is the same in our

differentiated key pre-distribution and the original RKP scheme for the same number

of captured nodes. Our communication model is one where sensors periodically

transmit data to the sink. In the legend in all figures, our GPSR and our minhop

refer to our protocols extending GPSR [84] and minimum hop [143] routing presented

in Section 3.3.3 respectively. The legends GPSR and minhop refer to the traditional

GPSR and minimum hop routing protocols following the uniform key pre-distribution

respectively. Each point in the simulation data is the average of 100 runs based on

independent random seeds, ensuring that the data presented and analyzed is free

from any bias.

3.4.2. Simulation Results. The simulation results are plotted and

analyzed to evaluate the performance of the proposed scheme under different network

parameters.
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Sensitivity of Pe2e to Attack Intensity: In Figure 3.2, we first compare our

differentiated key pre-distribution with the traditional uniform key pre-distribution

(for both GPSR and minimum hop routing protocols) under different number of

captured nodes Nc. We find that while the performance of all schemes degrades

with increasing Nc, our schemes are consistently better than those of traditional

schemes. We also find that the improvement increases with larger values of Nc. This

is because when the attacker captures more nodes, the resilience of highly resilient

links in our schemes degrades at a much slower pace than those of the less resilient

links in traditional schemes. Besides, we can also observe that the end to end security

under minimum hop based protocols is better than their GPSR counterparts. This is

because minimum hop based protocols always choose the path with minimum hops,

while the GPSR based protocols may choose longer paths, which compromises end

to end resilience. The cost though is the increased initial energy consumption in

query flooding.

Sensitivity of Pe2e to Network Density: In Figure 3.3, we compare our schemes

and traditional schemes under different communication range r, which in turn cor-

responds to different network density (i.e., number of neighbors per node). When

r is small, Pe2e is low due to both low connectivity (many nodes cannot find secure

neighbors) and low resilience (fewer proxies resulting in fewer key paths for each

link). When r increases, Pe2e increases correspondingly. For all values of r, our

scheme performs consistently better.

Sensitivity of Network Lifetime to Parameter α: Recall from Section 3.3.3 that

α is the knob that trades-off security with lifetime. In Figure 3.4, we compare our

schemes and traditional schemes for varying α. We define network lifetime as the

time until when the first node has used all its energy. Since traditional schemes do

not have weight assignment, they are insensitive to α. The lifetime in our schemes

decreases with larger values of α. This is because a larger value of α means more
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Figure 3.2. Sensitivity of Pe2e to number of captured nodes Nc.

priority is given to links with high resilience, thereby draining the corresponding

neighbors more rapidly.

We also observe that the extended GPSR has higher lifetime compared with

extended minimum hop for smaller values of α, and the difference diminishes as

α increases. This is because for smaller values of α, lifetime is mainly decided by

total number of candidate forwarders of each node. In extended GPSR, each node

usually can find more forwarders (secure neighbors closer to sink) than it can find in

extended minimum hop protocol (secure neighbors on minimum hop secure path).

When α increases, lifetime is mainly decided by the number of most secure neighbors

of each node. This number is similar for both protocols, and hence they have similar

lifetimes when α increases. We also observe that lifetime of traditional GPSR scheme
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Figure 3.3. Sensitivity of Pe2e to communication range r.

Figure 3.4. Sensitivity of lifetime to parameter α.

is lower than that of traditional minimum hop scheme. This is because in traditional

GPSR scheme, some nodes are so positioned that most of their nearby nodes will
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choose them as forwarders, which results in their energy being drained quickly. While

in traditional minimum hop scheme, nodes are less likely to be the only one on the

minimum hop path of most of their neighbors, and thus traffic is more balanced.

Sensitivity of Pe2e and Network Lifetime to Number of Class 1 Nodes: In Fig-

ure 3.5 and Figure 3.6, we compare the traditional schemes, our schemes with default

parameters, and our schemes with optimal parameters. The average number of keys

pre-distributed per node is the same across all schemes for fairness of comparison. In

Figure 3.5, we find that traditional schemes are insensitive to n1 since all nodes are

given same number of keys. Our schemes achieve much better performance under

intermediate values of n1, while the performance of our schemes is close to that of

traditional schemes for very small and very large values of n1. This is because when

n1 approaches 0 or 1000, all nodes will be given same number of keys, and thus our

schemes degrade to traditional schemes.

In Figure 3.6, we also observe that lifetime of the traditional schemes is insensi-

tive to n1 due to the same reason as above. The lifetime of our schemes increases with

the value of n1. The case when n1 = 0 can be treated as the same as n1 = 1000. This

is because for small values of n1, the class 1 nodes are given many keys initially, and

so they tend to be used as forwarders much more frequently and the lifetime tends

to be small. When n1 increases, the number of keys given to class 1 nodes decreases,

thus helping to distribute the load more evenly and improve network lifetime.

3.5. FINAL REMARKS

In this section, we address the issue of providing end to end secure commu-

nications in randomly deployed wireless sensor networks addressing the challenges

emanating from random locations of sensor nodes and sinks. We propose differen-

tiated key pre-distribution, where the idea is to distribute different number of keys

to different sensors to enhance the resilience of certain links in the network. This
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Figure 3.5. Sensitivity of Pe2e to number of class 1 nodes n1.

Figure 3.6. Sensitivity of lifetime to number of class 1 nodes n1.
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feature is leveraged during routing, where nodes route through links with higher

resilience. We present our end to end secure communication protocol based on

the above methodology by extending well known location centric (GPSR) and data

centric (minimum hop) routing protocols. It can be noted that secure end-to-end

communication among multiple collaborative sensor networks is a contemporary re-

search problem. As the application and importance of WSNs extend over cutting

edge technological advances, collaborative sensor networks are gaining potential in

cloud computing, target tracking, secure communication and various other research

areas. Network resource sharing and load-balancing are among the main advantages

of collaborative sensor networks. Collaborative sensor networks are an emergent

application in sensor clouds. Our approach can be extended to address secure com-

munication in collaborative networks too. Each of the sensor networks can have

their individual collection of secure communication keys distributed randomly among

them. Intuitively, there is a positive probability of any two of the sensor networks

sharing a few common keys, which they can use for secure intra-network commu-

nication. But as this number of shared keys increase, the communication within

networks is facilitated although resilience of the link reduces and vice versa. Clearly,

there is a trade-off between resilience and intra-network communication. The pro-

posed method can be redesigned to address this trade-off and use as a solution for

secure intra-network communication for collaborative WSNs.
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4. QUALITY VS. LATENCY TRADE-OFF IN CONTENT
RETRIEVAL UNDER AD HOC NODE MOBILITY

In this section, we address the issue of content retrieval in Mobile Ad hoc

Networks (MANETs). In MANETs, the rapid mobility of nodes warrants the need

of reducing search latency during peer-to-peer searches for query-driven content re-

trieval, so that response can be routed back to the source before it changes location.

This implies that the fundamental trade-off between accurate searches for queries

and associated latencies should be addressed in content management application

under ad hoc node mobility. In this section, we investigate this quality versus la-

tency trade-off in peer-to-peer searches for content retrieval in MANETs or general

mobile P2P networks. We use the terms mobile P2P networks and MANETs inter-

changeable in this section as our proposed solution can be used for either of these

environments.

Content retrieval is a canonical problem in mobile P2P networks. When a

query is issued by a user in a mobile P2P network, it is unlikely that content most

accurately matching the query is found in the database of the local node, and the

query needs to be forwarded to peer nodes. Clearly, there is a trade-off between user

satisfaction (i.e., accuracy or quality 1 of content retrieved to the query issued) and

overhead. Unfortunately, in existing techniques, searches for queries at each node is

a best effort process, and in the worst case, the entire database has to be searched.

For any query issued by a user, we have two objectives: reduce system overhead in

searching for accurate content in the network, and enabling the identification and

retrieval of popular content related to the query issued. We aim to accomplish both

1We use the term quality of response and accuracy of response interchangeably in this disser-
tation. Quality or accuracy of response is defined by the similarity between the query and the
content. The formal definition of metrics to measure it is included in section 4.2
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objectives by incorporating adaptiveness to the retrieval process from both the user

side and system side.

From scalability perspective, the overhead can be tremendous when the number

of queries increases. Our first motivation is to reduce the search overhead based on

two observations: a) Based on past knowledge of query searches, the system itself

can derive some intelligence on the expected accuracy of content available for queries

issued, and use this knowledge to limit wasteful searches and hence limit the search

overhead for similar queries in the future; b) In many scenarios, it is likely that users

may not always desire content perfectly matching queries issued, and if users can

specify this in their queries, the searching overhead can be significantly reduced.

In mobile P2P networks with multiple users, different users will share similar

interests and hence issue similar queries at different points in space and time. Since

a search process for any query typically involves multiple nodes, each node in the

system gradually can recognize queries that are popular among users. With this

knowledge, each node in the system can naturally also learn to identify popular

content in its local database. For any query issued subsequently by a user, if this

query is similar to popular queries serviced by the local node earlier, then the local

node can quickly retrieve corresponding popular content to the user, while continuing

the regular process of searching for accurate content.

Our Contributions: The contributions of this research in content retrieval in

mobile P2P networks is three-fold.

• We design a Multi-Tiered architecture and a suite of protocols for content

retrieval in mobile P2P networks. Tier 1 in our architecture is designed for

reducing the search overhead at each node when searching for content cor-

responding to queries issued. The premise of our approach stems from the

observation that when queries are short, the system has a much higher chance

of retrieving more accurate content. When queries get longer, then the chances
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that highly accurate content can be found is lower. In this section, we first

demonstrate how the trend of accuracy vs. query length follows the trend of

a logistic function in practice. With knowledge of this trend, each node can

then make intelligent choices on when to stop searching the database further

when the node determines that more accurate content is unlikely to be found

further. Secondly, logistic functions are governed by a parameter α that gov-

erns the rate of growth. By making this parameter user adaptive, users can

also decide the desired accuracy of content requested, using which overhead in

the system can be reduced during searches. In this tier, flooding based rout-

ing is used to route queries and responses with reduced search latency so that

responses can be returned to the source location on a timely manner under ad

hoc node mobility.

• We design a novel technique for retrieving popular content for queries issued

and present it as Tier 2 in our architecture. We exploit a basic feature in

mobile P2P networks for this purpose, namely the fact that multiple nodes

are searched for every query issued. As such, when similar queries are issued

by multiple nodes, it naturally allows popular queries to be disseminated to

many more nodes in the system. It can be noted that as any node retrieves

files from the network via intermediate nodes, different nodes gain knowledge

about the content of other nodes. This knowledge can be used to improve the

efficiency of content retrieval from peer nodes. In our Tier 2 design, we define

a new metric called Rank for each content in its local database, where the rank

for each content is computed as a function of the popularity of its keywords.

We then introduce a new concept called Chained Bloom Filter, where popular

keywords already processed by the node are linked to popular content in a

space efficient manner in the content. When new queries come in, we design

a protocol that efficiently allows to determine if the keywords requested in the
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query are popular (i.e., they are in the Filter), and if they are, it quickly returns

the correspondingly linked popular files.

• We conduct detailed theoretical analysis and simulations to analyze the perfor-

mance of our proposed techniques. Our analysis demonstrate that the accuracy

of content retrieved does follow a logistic trend that can be captured with a pa-

rameter α. We also show that by allowing this parameter to be user adaptive,

the search overhead during the retrieval process dramatically reduces. Our

analysis also demonstrate that the proposed rank and Chained Bloom Filter

techniques are effective in both determination of popular content, and also for

quick retrieval during subsequent searches.

The work presented in this section is published in [44].

4.1. BACKGROUND AND RELATED WORK

Mobile peer-to-peer networks has been an important area of research in the past

several years. Within the realm of Mobile P2P networks, there are several interesting

areas of research like content retrieval [29], data dissemination [127], aggregation [11],

routing [86, 82], security and privacy [109], [119] etc. In this section, we provide a

brief overview of important work related to the contributions of this work.

Query driven content retrieval is a problem that has received significant atten-

tion recently in the mobile P2P community. In [29], the authors present a content

retrieval scheme for mobile P2P networks. Their scheme reduces communication cost

and energy consumption using intelligent query routing. In the proposed method,

a node gathers information about the possible location of a required data from its

neighborhood. After evaluating the information obtained from neighbors, the node

finds out another node which has more likelihood of retrieving the content from its

neighborhood. This technique unlike ours does not address the issue of popularity of
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keywords and content In [58], a content retrieval scheme called Eureka is proposed.

The mobile nodes estimate the information density of data in neighboring nodes

and forwards the query towards the nodes with high density of requested data. A

similar approach is proposed in [137], where adaptive content synopses dissemina-

tion strategy is content retrieval for content retrieval in peer to peer environment.

They propose a bloom-filter based solution to dynamically update neighboring nodes

about the synopsis of the content possessed by its neighbors as nodes keep joining

and leaving the network. Both these techniques have high communication overhead

due to frequent updates needed for data density estimation and synopses sharing,

and also do not address popularity of content.

There have been recent efforts on data dissemination in vehicular networks,

which are in a broad sense mobile P2P networks. In [168], a vehicle assisted data

delivery approach is proposed to reduce delay in delivering the data. This technique

is purely for routing purposes and not for query processing. In [167], a popularity

aware content retrieval scheme in VANETs is proposed. The technique involves

identifying popular content and replicating them in a distributed fashion at nodes

in the network to increase availability. Our work addresses the problem of keyword

based popularity management at local nodes to minimize overhead and bandwidth.

To summarize, content retrieval in mobile P2P networks has been well studied.

The focus of this section is on provisioning adaptiveness to the retrieval process from

the perspective of minimizing search overhead without significant losses in accuracy,

and a keyword based popularity scheme. To the best of our knowledge, this work

is the first to study the applicability of modeling the content retrieval process as a

Logistic Function and exploit it to reduce search overhead. Our technique to address

popularity based on knowledge of prior searches at local node significantly minimizes

bandwidth and communication energy wastage, which are critical challenges in mo-

bile P2P systems. There are some open issues still left in our scheme. One such
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issue is how to derive the Logistic Function for all nodes in the entire network. The

training time to find optimal functions is a challenging problem that also takes a sig-

nificant amount of time, and we did not address it in this section. Also, a challenge

in Bloom Filters is that elements already hashed cannot be deleted easily. In our

scheme, this is important, because, we would ideally want to remove stale keywords

from the Chained Bloom Filter at each node. One approach we could use to address

this problem is to design Counting Bloom Filters in Tier 2, and appropriately chain

them to Popular files. Counting filters [14] basically provide a way to implement a

delete operation on a Bloom filter without recreating the filter afresh. In a counting

filter the array positions (buckets) are extended from being a single bit, to an n-bit

counter. In fact, regular Bloom filters can be considered as counting filters with a

bucket size of one bit. More details on Counting Filters can be found in [14]. We do

not specifically address this issue in this section, since we believe that it is orthogonal

(but still complementary) to the proposed research.

4.2. PROBLEM DEFINITION

In this section, we address the problem of content retrieval in distributed mobile

P2P networks, where the nodes are willing to share data among themselves in a query

driven manner. The queries we consider are keyword-based and user-generated.

Each user has a limited memory to store information, known as the local database

of the node of the user. The files in the database are stored against keyword-based

metadata which describes the content of the file briefly. We illustrate this further

using a simple example. Let us consider a mobile node whose database contains

the following files described using following keywords: i) Beatles Because Rock MP3,

ii) Chicago Downtown Parking Coupon July 5 2010 and iii) Bloomington Traffic

Congestion Prediction July 7 2010. A user-originated query submitted to the node

is: Chicago Downtown Average Weekday Traffic Congestion. Although the last two
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files have relevance to the query, the best matching file is not available in the local

node, but another node in the system has a file with exactly matching keywords to

the query. So when a user at a node submits a query, other non-local nodes might

have information more relevant to the query than what the local node contains. The

local node can access the best matching file by searching in the non-local nodes. We

soon present a more lucid example to describe the same.

Network Model: The mobile P2P network we consider in this work is one

where there are a number of nodes that are moving, and able to communicate using

wireless medium with each other in a local scope. The nodes can communicate with

each other using short range wireless communication standards like IEEE 802.11,

bluetooth etc. Peer nodes present within the range of communication of a node is

known as one-hop neighbors of the later. In mobile environment, set of neighbors

of a node changes over time. So connectivity between two nodes is also subject to

change over time. Other nodes in the network also have files which can match the

query asked. It can be noted that incoming queries from different users might have

different keywords with same semantic meaning. However, this work does not address

the details pertaining to the methods and challenges involving the same and assumes

that different keywords has different semantic meanings. Existing techniques [158],

[13] for semantic-aware content retrieval can be used to extend our work in this

context. Each node has a database of content (i.e., files) 2 that are meant to be

shared. Each content contains a list of metadata that describes the corresponding

content. An example of a database at a node is shown in Table 4.1. Users in the

system issue queries which comprise of a set of keywords. For each query issued,

the P2P network searches in the local vicinity of the requesting node (or user 3) to

retrieve content that accurately matches the query. In this work, we emphasize on

making the retrieval process adaptive via two critical ancillary goals:

2We use the term Content and File interchangeably in this section.
3We use the term node and user interchangeably in this section.
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Table 4.1. An Example of a Database at a Local Node
File 1 Beatles mp3 Rock English
File 2 Elvis Presley mp3 Summer Kisses English
- - - - -
- - - - -
- - - - -
File F Target Coupon Labor Day

• minimize search overhead during the search process as a function of past knowl-

edge of searches,

• retrieve relevant and popular content where the popularity is governed by prior

searches for queries for users with similar interests.

We propose a novel two tier architecture for efficient content retrieval in mobile

P2P networks. In this subsection, we first define the metrics used for quantifying

the performance of the proposed method.

Content Similarity Metrics: One of the critical issues in content retrieval is

how to determine the degree of similarity of between a query and a piece of content

(or file) in a node. Towards this premise, there are quite a few number of metrics

that have been addressed in literature. In this section, we provide a brief overview

of some well known metrics, their properties, and our metric of choice in this work.

Consider a query identified by q, and a file identified by f , both of which

have a set of keywords denoted as q̄ = (q1, q2, q3, . . . , qn) and f̄ = (f1, f2, f3, . . . , fn).

Denoting Sq,f as the degree of similarity between the Query q and File f , in the

Sorensen Similarity metric, we have

Sq,f =
|q̄ ∩ f̄ |
|q̄|+ |f̄ |

. (15)
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The Jaccard Coefficient extends the Sorensen similarity index by considering

the union of the terms between f and q to avoid counting the common terms between

them twice. It is defined as,

Jq,f =
|q̄ ∩ f̄ |
|q̄ ∪ f̄ |

. (16)

Another metric that is quite popular in data similarity comparison is the Cosine

Similarity Metric, which borrows from the Vector Space Model (VSM). Assuming

that there are D files in the database of a node and each file is tagged with upto

n keywords per file, we represent each file as a row in a D × n matrix. In this

manner, each file is projected as a binary vector in a n-dimensional vector space.

Any incoming query can also be treated as a vector in the space, and so the similarity

computation between the query and a file is determined by means of computing the

angle (θ) between the query vector and the file vector. More formally, for a query q

comprising of keywords −→q = (q1, q2, q3, . . . , qn), and a file f comprising of keywords

−→
f = (fj1, fj2, fj3, . . . , fjn), the similarity between q and f denoted as θq,f is given

by

θq,f = Cos−1(
−→q �

−→
f

|−→q | · |
−→
f |

) (17)

= Cos−1(

∑n
i=1 qifji√

(
∑n

i=1 q
2
i )×

√
(
∑n

i=1 f
2
ji)

).

Naturally, smaller the value of θq,f , more accurate is File f for Query q, and

vice versa.

While all the above metrics in a broad sense do capture the similarity between

a query and a file in terms of number of matches and lengths of the query and file, the
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Cosine Similarity is one that is quite popular for content similarity [53, 113, 68, 167].

The main reason for this is that since the Cosine Similarity index (interpreted as an

angle θ) is inspired from the well known Vector Space Model, the interpretation of

the similarity is very intuitive. A Query q and a File f that contains exactly the

same set of keywords yields a θq,f = 0◦, while θq,f = 90◦ when there are no matches

between q and f (i.e., orthogonal vectors). When there are partial matches between

q and f , the metric yields a intuitive value between 0◦ and 90◦. In this section, we

use the Cosine Similarity Metric as our baseline. Note however that the techniques

developed in this work are applicable to other similarity metrics as well.

We would like to mention about two well-known metrics for content similarity

in the field of information retrieval and pattern recognition. Those are Precision

and recall. Precision is the fraction of retrieved instances that are relevant and is

represented by the number of relevant documents a search retrieves divided by the

total number of documents retrieved. Recall is the fraction of relevant instances that

are retrieved and represented by the number of relevant documents retrieved divided

by the total number of existing relevant documents that should have been retrieved.

From probabilistic point of view, precision is the probability that a randomly selected

retrieved document is relevant. Recall is the probability that a randomly selected

relevant document is retrieved in a search. Given the nature of services in mobile

P2P networks, we focus more on retrieving some relevant content with optimized

delay and search overhead than retrieving more number of relevant contents.

4.3. PROPOSED SOLUTION

In this section, we detail our multi-tiered architecture for adaptive content

retrieval in mobile P2P networks. Section 4.3.1 presents an overview of the proposed

architecture. In Section 4.3.2, we first detail the design of Tier 1 and then Tier 2,
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followed by a detailed theoretical analysis of the proposed protocols across several

metrics.

4.3.1. Overview. In the following, we give a overview of our proposed

multi-tier architecture for content retrieval in mobile P2P systems. The proposed

architecture is comprised of 2 tiers: Tier 1 for reducing search overhead during

searching for accurate content retrieval, and Tier 2 for efficiently retrieving popular

content in the system. Note that there are two situations under which a node (say

Node A for example) receives a query to process in mobile P2P networks. Either the

local user of Node A issues a query to that node, or the Node A receives a query from

a neighboring node. In either case, a node receiving a query first processes the query

in Tier 1, where the local database of the node is searched. The novelty of Tier 1

is in the deign of a technique and a search protocol that minimizes search overhead

as a function of knowledge of prior searches such that at a slight cost on accuracy,

a significant amount of search overhead can be saved during searching. The query

is then processed in Tier 2, where we design a Chained Bloom Filter technique to

efficiently store popular content based on processing queries for other nodes in the

system. We also design protocols in Tier 2 that efficiently store and retrieve popular

content stored in the Chained Bloom Filter for the queries issued. Results from both

tiers are subsequently returned to the node, which then forwards the results to the

upstream node or the local user depending on where the query came from.

4.3.2. Tier 1 - Reducing Search Overhead. Content in a mobile P2P

network is identified by a set of metadata provided by users that create and share

files. While some users can provide a large number of descriptors for content shared,

others may only provide a small number of descriptors. Since the amount and the

nature of metadata provided for each content varies from user to user, this negates

attempts to index the database. Consequently, for any Query q arriving at a node,

the worst case searching time is O(D) × t̄, where D denotes the number of entries
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in the database, and t̄ is the processing time to find the similarity between Query

q and a File f in the database. This clearly imposes a tremendous overhead for a

single query, and when one considers multiple queries, then the search overhead can

really impose a bottleneck in the system. Our motivation for Tier 1 is to reduce the

search space overhead with minimal impacts to accuracy of retrieved content as a

function of the system’s prior knowledge of query searches and also the user’s own

preferences on accuracy of retrieved content.

For any mobile P2P system, it is natural that as the system evolves, the amount

of content available at nodes increase. Due to the nature of P2P systems being

ad hoc, it is also natural that the descriptors in the metadata for each content

in the database also varies significantly. Orthogonally, the same can be said for

queries as well. While some users might be very specific about content desired,

others can be more general. The former case happens when the number of keywords

requested in the query is more, and the latter happens when number of keywords is

relatively smaller. Naturally, when query lengths are smaller, it possible to return

more accurate content, and when queries get longer, the possibility of finding highly

accurate content decreases. Formally, θ (our similarity metric) initially increases (i.e.,

accuracy decreases) for increasing query lengths due to a combination of decreased

keyword matches between queries and files, and increase in query lengths, as can be

seen in Equation 3. However, the growth in the increase of the θ metric becomes

progressively slower due to the Cos−1 function. Based on this intuition, we conjecture

that content retrieval in ad hoc environments like mobile P2P networks follows the

trend of a Logistic Curve in terms of Accuracy vs. Query Length.

It is straightforward to see that, when queries are more general, it is easier to

find matches compared to more specific queries. More formally, our design for Tier 1

is based on our conjecture that Content Retrieval in ad hoc environments like mobile
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P2P networks follows the trend of a Logistic Curve in terms of Accuracy vs. Query

Length. Our intuition for this trend is a follows.

When query lengths are smaller, the queries tend to be more general, and it is

hence possible to return more accurate content. When queries get longer, then they

tend to be more specific, which means that the possibility of finding highly accurate

content decreases. More formally θ (our similarity metric) initially increases (i.e.,

accuracy decreases) for increasing query lengths due to a combination of decreased

keyword matches between queries and files, and increase in query lengths, as can be

seen in Equation 18. However, the growth in the increase of the θ metric becomes

progressively slower due to the Cos−1 function.

We have conducted an extensive simulation study to further validate this con-

jecture, and results are shown in Table 4.2. In each of the cases shown, we conducted

simulations to obtain the best θ values for varying query lengths via an exhaustive

search of the database, and tried to fit a curve to the plot of θ vs. Query Length.

Note that in Table 4.2, D is the no. of files in the database; fl is the maximum range

of the no. of keywords in each file in the database; ql is the length of the query; and

RMSE is the root mean squared error between the θ (derived via simulations), and

the θ value obtained from the Logistic Function correspondingly shown in Table 4.2,

which was derived via symbolic regression techniques (a special variant of Genetic

Algorithms) to fit the curve. Each simulation was conducted 100 times and averaged

out for curve fitting. Note that the function L(x) in Table 4.2 is the standard Lo-

gistic Function L(x) = 1
1+e−x

. As, we can see the RMSE is quite low, demonstrating

that the Logistic Function complies to the trend of Accuracy (θ) vs. Query Length.

For ease of comprehension, we illustrate the trend of θ obtained via simulations for

the case when D = 10000 and fl is from 1 to 4 (first entry in Table 4.2), and the

Logistic function fitted for this case in Figure 4.1. As we can see the trend of the

Logistic Function holds for our results.
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To the best of our knowledge, this is the first work that identifies the logistic

trend in content retrieval in P2P based networks. In Tier 1, we exploit this trend

for saving overhead during content retrieval with minimal compromise to accuracy.

Each node first derives the Logistic Trend within its own database. The node can

do this via prior knowledge of searches, or derive an estimate via periodic random

sampling of the local database. We generalize Logistic Functions derived in Table

4.2 as LF (ql) = β × L(α × ql), where ql is the length of the incoming query. Once

each node derives, parameters α and β, for any incoming query, the node will first

determine the expected accuracy of search results for that length based on the length

of the query ql, and deriving LF (ql). We denote the Expected Value as θEql . The

node will then search the database to find a matching file, and it will stop searching
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Table 4.2. The Logistic Function for Various System Parameters
Database Logistic RMSE
Parameters Function

D = 10000 86.99× L(0.033ql) 4.33
fl from 1 to 4
D = 12000 86.37× L(0.042ql) 4.16
fl from 1 to 4
D = 10000 86.37× L(0.029ql) 4.57
fl from 1 to 6
D = 12000 86.38× L(0.03ql) 4.48
fl from 1 to 6

the database once a file is found that is less than or equal to the expected accuracy

derived from the Logistic Function for that node. Algorithm 3 illustrates the work-

flow of the search process in Tier 1.

Algorithm 3 Executed by any Node N in its Tier 1
1: Initialization Phase
2: Derive Logistic Function, β and α parameters
3: End Initialization Phase

4: At Run Time for Every Query q
5: Determine Query Length ql; Set θmin ← 0
6: Determine θEql ; Set fbest ← Null
7: for Every File f in Database do
8: Compute θq,f
9: if θq,f ≤ θmin then

10: θmin ← θq,f
11: fbest ← f
12: end if
13: if θq,f ≤ θEql then
14: Break
15: end if
16: end for
17: Return fbest

Discussions: A critical issue to observe in our Tier 1 design is the parameter

α in the Logistic Function which decides the growth of the function. When each

node sets its derived α parameter for a query, the node aims to return the expected

level of service to the user. However, users can also manipulate this parameter.



101

When users pro-actively set higher values of α, the growth of the Logistic Function

increases. This means that users for the same Query Length prefer a lower accurate

file (higher θ value), which may lead to more overhead savings. Contrary to the above

observation, it can be noted that users who set α to a lower value will expect more

accurate results (lower θ values) resulting in more overhead in the search process.

As we can see, the parameter α provides an added leverage for users to adaptively

choose the desired level of content accuracy at a cost of search latency trade-off. We

study this issue further using simulations in Section 4.5.

4.3.3. Tier 2 - Retrieving Popular Content. The motivation for our

Tier 2 design is popularity aware content retrieval. While Tier 1 focused on re-

trieval of accurate content with simultaneous overhead savings, these are not the

only considerations from the user side. In many P2P environments, a critical issue

is popularity. Some types of queries (i.e., keywords) may be quite popular among

users. Our goal in designing a content retrieval approach in mobile P2P networks is

two-folded: i) Improve accuracy of content retrieved for the popular queries, and ii)

Retrieve popular content in the database relevant to that query

The key principle behind our popularity scheme is to assign a metric, which we

refer to as Rank of each file in the database. Rank of a file is a function of how popular

the keywords in the file are in the network. Each node maintains the Rank for each

file in its database independently. As and when keywords are serviced by a node, they

are efficiently hashed into a novel Chained Bloom Filter (CBF), along with popular

files for these keywords. When new queries comes in with keywords, these keywords

are compared with those in the Chained Bloom Filter, and the corresponding popular

files are returned. We discuss the details of Tier 2 subsequently in this section.

Past access frequency of a keyword: The past access frequency captures the

popularity of a keyword in terms of the number of times the keyword has been

queried in the recent past. However, we claim that the popularity of a keyword
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varies with time in a mobile environment. In other words, some keywords may have

been historically popular, if they are not so popular in the recent past, it is unlikely

that current users are interested in those keywords. In this work, we not only give

importance to the number of times a keyword has been accessed, but also consider

how recently the particular keyword was requested. To incorporate the change in

popularity of a keyword, we use a damping factor for tuning keyword popularity, as

also used in [167]. The importance of a keyword in our scheme decreases over time

by a constant damping factor λ (0 < λ < 1). The past access frequency of every

keyword is computed at a regular time interval of 4t. So at a time tn the past access

frequency µn(k) of a keyword k is defined as:

µn(k) = λn−1N1(k) + λn−2N2(k) + . . . (18)

+λn−i+1Ni−1(k) +Nn(k),

where Ni(k) is the no. of times keyword k has been queried at the ith instance

within the past 4t time interval (1 ≤ i ≤ 4t).

Rank of a file: We now address the issue of popularity of a file over time in a

mobile environment. The objective of our Rank metric is to capture how popular a

file is on the basis of the number of times its keywords have been accessed in past.

In simple terms, a file, f , whose keywords have been queried more often recently

tends to be more popular to users who issue queries with keywords common to those

of f . In this context, a naive technique for rank computation of a file could be to

simply sum up the past access frequencies of all keywords in that file. However, the

downside is that this approach favors files with more keywords. As such, we compute

the rank of a file as the average value of the access frequencies of keywords in the

file. Note that the Rank computation is dynamic and is re-computed for each file in
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intervals of 4t. Formally, the Rank of a file f with z keywords {f1, f2, f3, . . . , fz} at

time instant n is given by,

Rankn(f) =

∑z
i=1 µn(fi)

z
, (19)

where µn(fi) is the past access frequency of keyword fi derived from Equation

19. Note that a high value of rank for a File f implies that the File f has atleast

one keyword that has been requested very often. This means that for a Query q that

comes in with keywords matching the keywords in File f , it is ideal to return File f

as a popular file for Query q.

Our Chained Bloom Filter Technique: We now present our Chained Bloom

Filter approach for storing and retrieving popular (highly ranked) content. Before

that, we give a brief overview of Bloom Filters. The Bloom Filter is a probabilistic

data structure to determine membership of an element in a set [16]. Very briefly,

an empty Bloom filter is a bit array of m bits, all set to 0. We also define k hash

functions, each of which maps any element in the set to one of the m array positions

with a uniform random distribution. To add an element in the filter, we feed it to

each of the k hash functions to get k array positions. We then set the bits at all these

positions to 1. To query for an element in the set, we feed it to each of the k hash

functions to then get k array positions. If any of the bits at these positions are 0, the

element is not in the set, since otherwise, all the bits would have been set to 1 when

it was inserted. If however all the bits are 1, then either the element is in the set,

or the bits have been set to 1 during the insertion of other elements. As such while

False Negatives are not possible during verification, False Positives are possible, the

rate of which can be controlled by the parameters m and k. In this work, we extend

the basic idea of Bloom Filters for our popular content retrieval technique in Tier 2,
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and term our approach as Chained Bloom Filters. There are two kinds of operations

involved in Tier 2:

• Updating the Chained Bloom Filter,

• Retrieving content from the Chained Bloom Filter

We first discuss method to update the filter. Whenever a query comes in with

keywords, then a node will hash the keywords into a regular Bloom Filter with k

hash functions and m bits. The node then computes the Rank for files that have

atleast one of the keywords in the query. The node determines the top x files in

terms of Rank, and inserts the ids of these x files in another array of m bits at the

same positions in the Bloom Filter that were set to 1. Note that each of these x files

are the ones containing atleast one keyword from the incoming query and having

highest ranks based on prior searches. The respective positions in both arrays are

linked to each other, leading to the term Chained Bloom Filter. Figure 4.2 illustrates

an example of a Chained Bloom Filter with 12 array bits, and the keyword hashes

and correspondingly top ranked files linked to each other. We consider the list of file

IDs chained against each bloom filter bit as a bucket for that bit position.

To summarize, our Chained Bloom Filter technique efficiently links prior key-

words searched at a local node with relevant popular content in that node for subse-

quent retrieval. We next present the details of our scheme, followed by an analysis

of the proposed scheme from the perspective of retaining popular files in the filter

and the probability of returning relevant files.

We now discuss how to search the Chained Bloom Filter. For a Query q arriving

in Tier 2 of a node, the node first checks if atleast one keyword in the Query q is

present in the Bloom Filter. If not, then the keywords were never serviced by the

node, and there is nothing to retrieve in Tier 2. Otherwise, for each position in the

bloom filter where the bit is set as 1 corresponding to every keyword’s hash, the
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Figure 4.2. A Snapshot of the Chained Bloom Filter

node retrieves the linked files linked in the corresponding bucket. The intersection,

I of all the buckets is then the popular file(s) corresponding to atleast one keyword

in the query (with high probability). I is returned to the node as result of the query.

Algorithm 4 Executed by any Node N in its Tier 2 for Retrieving Popular Content
1: Input: Query q with keywords {q1, q2, q3, . . . , qn}
2: Output: Set of Popular Files P̄ relevant to Query q

3: Set P̄ ← Null
4: Determine if all keywords in q are in the Bloom Filter
5: if None of keywords are present then
6: Break
7: end if
8: for Each Keyword found in Bloom Filter do
9: P̄ ← Intersection of all files chained to all corresponding 1 bit positions

10: end for
11: Return P̄

One issue of importance in the proposed scheme is memory limitation at a

node. With time, more and more queries arrive in the system, and more and more

keywords need to be hashed. More importantly, since the bucket chained to each

bit will also have memory limitations, and there will be a limit of the number of

file ids stored there. In our scheme, we ensure that when buckets are full, and files

have to be replaced to accommodate new queries, the newer files must have equal or
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higher rank than current files. Otherwise, they are deferred from being added to the

Chained Bloom Filter until their Rank becomes more than those currently in the

filter.

4.4. ANALYSIS

In this section, we conduct an analysis of our architecture and our popularity

aware content retrieval protocol from two perspectives: retaining popular files in the

filter, and the probability of returning relevant files. In the following, we denote

P (X) as the probability that Statement X is true. We also denote rf as the Rank

of file f . There are k hash functions used during hashing of a keyword in the Bloom

Filter. We denote N as the total number of files in the database, and c is the capacity

of each bucket, which is the number of file ids that can be stored in it.

P f ′

f : P f ′

f is the probability of a file f ′ is not present in the filter at a node when

File f is present, where Rank(f ′) < Rank(f). It is easy to see that P (f ′ is not in

Filter when f is in the filter) = P (keywords of f ′ is not hashed in same buckets as

keywords in f) × P (keywords of f ′ is hashed in buckets where all files are ranked

higher that rf
′).

In order to derive the worst case probability, we assume that all files have a

minimum of l keywords. We also assume that in total there are S files in the node’s

database whose ranks are higher than rank(f ′). We also assume that all l keywords

of a file can be hashed to k′ distinct buckets at the minimum.

As such, the probability that keywords of f ′ is not hashed in same buckets as

keywords in f is,

P1 =

(
m−k′
k′

)(
m
k′

) . (20)
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Similarly, the probability that keywords of f ′ is hashed in buckets where all

files are ranked higher that r′ is,

P2 =

(
S
c

)m−k′ −∑m−k′
i=1

∑m−k′
k′

j=1

((
S
j

)
×
(
m−k′
k+i

))j
(
N−1
c

)m−k′ −∑m−k′
i=1

∑m−k′
k′

j=1

((
N−1
j

)
×
(
m−k′
k+i

))j . (21)

Consequently, we have

P f ′

f = P1 × P2. (22)

Probability of returning files irrelevant files to a query using Algorithm 4: If

a query and a file have no keywords in common with each other, the file is called

irrelevant to the query. This could happen in Bloom Filter based designs due to the

inevitability of False Positives. We study this probability here.

Let i be the number of keywords in a current Query qcur and ε (i ≥ ε) be

the maximum number of keywords matching in a cached query with the incoming

query. Let us consider Query qarb as the arbitrary cached query for which results

were returned in response to qcur, which is a False Positive. So the probability that

a keyword of qarb is also hashed to the same bits as query qcur is,

=
k

m
(m− i− 1)

(
k − 1

m− 1

)(
k − 2

m− 2

)
...

(
1

m− k + 1

)
(23)

= (n− i− 1)
k!

(m− k + 1)!
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For files associated to qarb to be returned, this process has to repeat atleast ε

times. So the probability becomes,

(
ki

εk

)[
(n− i− 1)

k!

(m− k + 1)!

]ε
(24)

So the probability of returning only irrelevant files is,

i−ε∑
j=i

(
ki

k(ε+ j)

)[
(n− i− 1)

k!

(m− k + 1)!

]ε+j
(25)

Note that in the above expression if ε = 0, it represents the case of false positive,

which means no relevant query has been cached yet, still the system returns some

irrelevant files. For ε > 0 it means that there are relevant files in the system, but

non-relevant files are returned instead.

4.5. PERFORMANCE EVALUATION

In this section, we present the simulation results for evaluating the performance

of our multi-tier architecture and protocols for content retrieval.

4.5.1. Simulation Setup. The simulations are run in a self-made C++

simulator. In the simulation setup, we consider 100 nodes following Random Way

Point Model in a 15 × 15 square unit area. Each node can store a number of files

with keyword descriptors. The size of each file is considered as a single memory

unit. Every node also maintains a CBF. Nodes generate queries containing keywords.

After a query is generated at a node, it is processed in both the tiers and forwarded

to intermediate nodes within 5 hops. We use flooding technique for forwarding of

queries to peer nodes and responses are returned using the already established path

while forwarding. Results returned are consolidated from multiple node searches.
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Default parameters are listed in Table 4.3, and every data point is collected after

taking an average from 50 runs of simulation to avoid any bias.

4.5.2. Performance Evaluation of Tier 1. In Figure 4.3 and Figure 4.4,

we study the performance of the search protocol in Tier 1 from the perspective of

search time overhead at a node, the similarity obtained in our proposed technique

and the error between our technique and exhaustive search. In all the figures, the

term PS stands for the Proposed Search Technique, while ES stands for the baseline

Exhaustive Search Technique.

Figure 4.3 first shows that with more files in the database, the search overhead

increases since more the no. of files more are the options for searching. Figure 4.3

also demonstrates that with increasing number of files in the database, our proposed

protocol for Tier 1 greatly reduces search time overhead at every node, compared

to exhaustive searches. As expected, with more no. of files in the database, the

proposed technique converges. This phenomenon can be explained from the fact

that with more files, the time taken to find expected similarity tends to grow very

slowly. Queries with longer keywords converge slightly faster, again due to the reason

that for longer queries highly accurate results are more difficult to find, and so the

expected value of similarity and search time converges. In Figure 4.4, we study how

much accuracy we are sacrificing in our motivation to save overhead. As we can

see, the worst case error between our technique and an exhaustive search is roughly

around 9 ◦, which is quite a small error specially considering the significant savings

in overhead.

4.5.3. Performance Evaluation of Tier 2. We discuss the performance

of Tier 2 from the perspective of the Chained Bloom Filter, in terms of retaining

popular content and number of False Positives.

In Figure 4.5, we study the miss rate as a function of query rank (where the rank

is based on popularity of the keywords in the query from Equation 5). The miss rate
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Table 4.3. Simulation Parameters and Values
Parameter Default Values

simulation time 120 units
simulation area 15× 15 sq. units
no. of nodes 100
communication range 1 unit
no. of files per node 1000− 2000
total no. of keywords 50
no. of keywords in file 2− 8
no. of keywords in query 2− 8
Wait time at a point 5− 15 units
no. of nodes querying at a time instant 1− 5
no. of bits in bloom filter 20
capacity of each bucket 10
no. of hash functions 3
damping factor (λ) 0.8
no. of top ranked files (x) 2
no. of hops searched 5 hops
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is the percentage of time a relevant file was not found in the Chained Bloom Filter.

As we can see, when queries contains more popular keywords (above 80 percentile),

the miss rate is quite low, and it increases when queries contain unpopular keywords.

This demonstrates the effectiveness of the proposed technique in retaining popular

files in the Chained Bloom Filter. In Figure 4.6, we study the orthogonal issue of

False Positives. Note that since False Positives are a problem with Bloom Filters,

we would like to see how the proposed scheme is affected by it. We study this in

Figure 4.6, where we plot the number of times an irrelevant file was returned from

proposed Chained Bloom Filter as a function of number of Bloom Filter bits. Note

that by irrelevant files, we mean files that did not contain any of the keywords in the

query. We see that as the number of bloom filter increases, the number of irrelevant

files returned goes down dramatically. This trend is significant considering that the
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number of files in the database was 2000, and even a small addition of bits can

significantly lower the False Positives as the database size increases.
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Figure 4.5. Miss Rate vs. Query Rank Percentile

4.5.4. Performance Evaluation of Tier 1 with Respect to Parameter

α. Finally, we study the impact of letting the user modify α to see how this

changes the search overhead. Recall from Section 4.3.2 that when the user sets α in

the Logistic Function to be a higher value than the default, the user prefers lower

accuracy files. The reverse is true when α is set to a lower value. As we can see, this

trend holds in Figures 4.7 and 4.8. When α is set low, the search overhead increases,

along with the accuracy, while when α increases the reverse happens. This trend

has important impacts particularly from the perspective of pricing and incentive
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management in P2P systems. As we can see, while increased search overhead does

bring in improved accuracy of search, the relationship is not linear. It can be noted

here that, the question now is whether the system should decide pricing mechanisms

based on accuracy or based on the overhead. How can the system resolve the trade-

off in designing optimal pricing and incentive management schemes by exploiting this

trend is part of future work. This problem is more challenging when users themselves

can change the parameter α.

4.6. FINAL REMARKS

In this section, we address the issue of content retrieval in mobile P2P networks

via a multi-tiered architecture and a suit of protocols. The quality of response

versus search latency trade-off under ad hoc node mobility is investigated in this

section. We first study the content retrieval process as a Logistic Function, and
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exploit this property for reducing search overhead with low impacts to accuracy. We

also show how the growth parameter α in the Logistic Function provides the user

with the ability to control the accuracy and overhead of search. We then design a

novel Chained Bloom Filter technique that enables each node to store and retrieve

popular keywords and content in a space and time efficient manner. We demonstrate

the performance of the proposed techniques via extensive analysis and simulations.
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5. LOCATION CLUSTERING BASED SYBIL ATTACK DETECTION
IN VEHICULAR AD HOC NETWORKS

Sybil attack is a threat wherein an attacker creates and uses multiple counter-

feit identities risking trust and functionality of a peer-to-peer system. Sybil attack

in Vehicular Ad hoc Networks (VANET) is an emergent threat to the services and

trust of the system. In the highly dynamic environment of a VANET, it is chal-

lenging to detect the nodes that are launching Sybil attack. This is because due

to mobility, an attacker can easily create and use multiple fake identities, and ex-

ploit node mobility to exit the location of the attack. Consequently, detecting the

presence of Sybil attack and identifying the Sybil nodes become a challenge consider-

ing the dynamic nature of vehicular networks, ephemeral neighborhood proximities

and ad hoc mobility. Existing techniques mostly use additional hardware or com-

plex cryptographic solutions for Sybil attack detection in VANETs. In this section,

we propose a fuzzy time-series technique to cluster mobile nodes’ locations based

on neighborhood proximity. Our method does not require any additional hardware

or infrastructural support for Sybil attack detection in VANETs. The underlying

principle behind our approach is as follows. As a Sybil node counterfeits multiple

identities and presents them to the system, those fake vehicles (represented by the

counterfeited identities) will generally be reported around the Sybil vehicle that uses

the identities leading these vehicles to violate normal dispersion dynamics. The pro-

posed technique leverages the dispersion of vehicle platoons over time in a network

and detects Sybil nodes as those which are located closely in a cluster as they move

for an unusually long time. Simulation results and analysis show that the approach

is able to identify Sybil nodes with very low false positive and false negative rates



117

even under varying intensity of attack. The work presented in this section has been

accepted for publication in proceedings of Vehicular 2013 as mentioned in [42].

5.1. BACKGROUND AND RELATED WORK

Vehicular Ad hoc Network (VANET) is a type of ad hoc network that is

comprised of vehicles and road transportation infrastructure. The application of

VANETs in different emergency notification system, safety-related and infotainment

purposes have increased over past few years, leading it to become the backbone of In-

telligent Transport System (ITS) [160]. Alongside, new security threats in VANETs

have been investigated as well [79], [30], [43]. In this section a critical trust-based

service, namely detection of Sybil attack, has been addressed and a time-series clus-

tering based approach is proposed for detection of nodes that are launching this

attack in VANETs.

Sybil attack [38] is defined as a security threat in large scale peer-to-peer system

wherein a single malicious entity creates and uses multiple counterfeit identities over

time. In Sybil attack, a peer-to-peer reputation system is subverted via counterfeit

identities, hence compromising trust and functionality of the system. Sybil attack

can enable the attacker to control a large portion of the system. In VANETs, Sybil

attacks can affect services like emergency notification, route planning, congestion

avoidance, etc. and deteriorate the overall performance of the system. Existing

work present methods to detect the presence of Sybil attack in a network and localize

the nodes that are malicious with the help of additional hardware, infrastructural

support or complex cryptographic solutions. The techniques presented in this section

can detect the nodes which launched the attack using the basic mobility property of

nodes in a VANETs, that is, dispersion of vehicles over time.

While Sybil attacks have been addressed in social networks, Wireless Sensor

Networks and Mobile Ad Hoc Networks, solutions in these domains require long
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term observation, collaboration and verification which are not possible in ephemeral

networks like VANETs, where associations are short and unlikely to repeat. However,

there have been research for detection of Sybil attack and identification of Sybil nodes

in VANETs as well. In [15], a physical signal characteristics based technique was

discussed for Sybil node detection in VANETS. A pair of nodes could be distinguished

from each other using estimate of relative node localization that gives an indication

of the coherence of the received signal. A signal strength distribution based method

for detection and localization of Sybil nodes is proposed in [155] too. In [173], authors

propose to employ road-side boxes (RSBs) that issue temporally varying pseudonyms

to vehicles near their vicinity. A cryptographic solution to the problem of Sybil

attack detection is proposed in [132]. In [146], spatial and temporal correlation

between vehicles and RSBs is used to detect Sybil nodes, exploiting the fact that

two vehicles passing by multiple RSBs at exactly the same time is rare. In [61],

the authors presented a general approach to validate the VANET data, even in the

presence of a few Sybil nodes. Anomalies are detected by checking the validity of

the VANET data with respect to the VANET model and adversarial model. In [63],

a neighborhood grouping based distributed Sybil detection method is proposed. A

location-privacy aware trajectory tracking and authentication approach is used for

Sybil attack detection in [24]. RSUs participate in message based authentication in

this system. In [149], a dispersion based approach for Sybil detection in MANETs

is proposed.

Our Contributions - Existing techniques for Sybil detection in VANETs mostly

require additional hardware and overhead, but they do not use the availble network

physics, physical infrastructure information and statistics. The Sybil node detection

technique proposed in this section does not need any external support or complex al-

gorithms, but rather relies on leveraging a basic mobility feature of nodes in VANET

- the dispersion of vehicle platoons over time, or platoon dispersion [35]. Platoon
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dispersion indicates that in normal conditions, vehicles in proximity of each other

at a certain time are unlikely to sustain their proximity clustering over time, i.e.,

proximity clusters are ephemeral. Our proposed solution is based on this premise

and uses fuzzy time series clustering for detection of Sybil nodes. Fuzzy time series

clustering involves fuzzy clustering of time series data collected over time with even

or uneven sampling rate. In this work, Fuzzy Short Time Series (FSTS) clustering of

location traces of mobile nodes over a time period is used for Sybil attack detection.

The proposed technique is based on the FSTS algorithm presented in [118]. We

incorporate data preprocessing and feature extraction phases to make the algorithm

more efficient. We also perform theoretical analysis and simulations to derive thresh-

old parameters and demonstrate performance of the technique. We also take into

consideration various intensities of attack which the attacker can adopt by utilizing

only a part of its available counterfeit identities at a time. Such a variation in attack

model makes it all the more difficult to estimate consistent association of nodes with

one another. Clearly, this variation adds to the challenge of clustering nodes based

on location traces over time. Simulation results show that the proposed technique

succeeds in identifying most of the Sybil nodes over a period of time under such

conditions as well.

5.2. PROBLEM DEFINITION

The network model, attack model and the problem addressed are defined in

this section.

Network Model - The main components of the VANET are - vehicles, Road Side

Units (RSUs) and Certification Authority (CA). Vehicles are alternatively referred

to as “nodes” in this section. Nodes in VANETs are equipped with on board units

(OBUs) to communicate and compute messages. Nodes may also have sensors, nav-

igation device or GPS, computing devices, display units, etc. Each node is aware of



120

its own location and the map of the network area. Nodes usually communicate us-

ing short range wireless communication technology, such as Dedicated Short Range

Communication (DSRC), bluetooth, IEEE 802.11, etc. RSUs usually comprise of

cheap embedded devices including sensors, smart traffic controllers, etc. RSUs store

secure information such as its secure communication keys, traffic information, safety-

related information etc. An RSU can communicate with the nodes in the network

and other RSU’s. CA is a central authority which authenticates vehicles and RSUs

using the secure authentication infrastructure like public key infrastructure. Each

node is given a unique identity or ID by the CA. However, CA and cryptographic

algorithms that are generally used for secure communication in VANETs [135] do

not effect the proposed technique directly or indirectly.

Attack Model: A Sybil node is defined to be one which uses multiple counterfeit

identities to pretend to be some other node(s). As discussed in Section 5.1, the

benefits of the attacker in launching such attacks are multi-folded. A group of

malicious nodes can subvert the trust and reputation system of the network if they

conduct Sybil attack on the network for some time. Eventually this can deteriorate

the overall performance of the system. In our model, we consider that a malicious

vehicle, with original id V , has n different identities, Vn = V0, V1, ..., Vn−1. V can

determine the intensity of attack by choosing to use only a certain percentage of the

counterfeit identities at a time. Intuitively, using lesser number of ID’s at a time

will lower its chance of getting detected, but at the same time it will mitigate the

intensity of attack as well. In our model, V uses x% of these ids over a time duration

∆t where x ∈ [0, 100]. It is assumed that V randomly selects i different ids from

the set Vn such that x = 100i
n

and uses them to communicate for the next ∆t, and

then again repeats the same process. We assume that the vehicles follow predefined

speed limits on the roads.
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In the very dynamic environment of a VANET, it is challenging to identify a

Sybil node due to the high mobility and density of nodes. In other words, a node can

escape one part of the network and reach another part very fast. The large number

of nodes in a network makes it all the more difficult to identify malicious node(s).

These challenges warrant the need of a lightweight and efficient approach to detect

Sybil nodes in VANET. The objective of the work is to propose an efficient method

to detect Sybil nodes without using additional hardware or infrastructural support.

5.3. PROPOSED SOLUTION

In this section, a time-series clustering method called FSTS [118] is used to

detect Sybil nodes in VANETs under varying attack intensity. Time series clustering

helps to identify the nodes which are moving in proximity of each other over a time

period based on the location traces of the nodes. Because of the large number

and density of nodes in a typical VANET, it is likely that a node can be part of

multiple clusters at the same time, making fuzzy clustering algorithms suitable for

the scenario. In this section we first discuss the location data collection method,

followed by different steps of the proposed technique for Sybil node detection.

The key idea behind the proposed solution comes from a vehicular network

phenomenon called platoon dispersion [35] as mentioned in Section 5.1. A platoon is

a group of vehicles traveling together. If all vehicles in an existing platoon maintain

their speeds, a platoon will never break up. However, due to physical factors like

road friction, vehicle characteristics and signaling, along with human factors like

car following pattern, lane changes, fatigue, there is inherent randomness in driver

behavior, and platoons tend to disperse over time. Intuitively, longer the travel

time between points, greater is the dispersion, since there is more time for drivers

to deviate from current speeds. We use this idea to derive a threshold probability
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PTh of two vehicles being within a specified distance after a given time if their initial

locations were same.

By the virtue of platoon dispersion, different vehicles in a network are not likely

to traverse together for very long. Towards this end, the threshold duration for which

vehicles are likely to travel with each other can be estimated theoretically. If any

two or more vehicles cross this threshold, they are likely to be the same node faking

identities as different nodes. The clustered time series correspond to the identities

of the vehicles which are likely to be Sybil nodes.

5.3.1. Location Data Collection by Peer Nodes. Standard DSRC

communication allows vehicles to update its location and other physical parameters

using periodic messages at a short, regular interval (usually 20 ms). However, in the

scenario considered, any node can be a malicious Sybil node and it can also falsify its

own location information to avoid detection. So location data of vehicles over time

is collected through peer vehicles through via messages or report. In our method,

we take into consideration this scenario and involve all peer nodes for location data

collection to avoid any possible manipulation by malicious nodes. All nodes send

report messages to the base station on a periodic basis in a fixed time interval. The

purpose of reports is to inform the base station about the nodes which Vx has heard

communicating in the last time interval. Because only a part of the nodes could be

malicious, this collaborative process of reporting assures that the real location of a

node is reported. For instance, if node Vx receives message from a node Vy at time

t when Vx was at location l, it will incorporate this information in its next report to

the base station. The location data of Vy collected by peers over time is represented

in form of a time series LVy = lVy(0), lVy(1), ..., lVy(t). It can be noted that the RSUs

deployed along the road serve as local base stations that can execute the clustering

algorithm and collaborate with each other as needed too. If the communication range

of a nodes is R meter, Vy was within a circle with radius R meter from LVy . Hence
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the location estimation of Vy at time t has error limit ε which is upper-bounded by

πR2. If more than one node reports about the location of Vy at t, the error, decreases.

5.3.2. Preprocessing Collected Data. After base station collects the

location data from nodes in the network, all the following steps are executed by the

base station for detection of Sybil nodes. Clustering algorithms are usually used for

evenly distributed sampling for time-series, or can handle unevenly sampled data to

some extant. But handling the ad hoc nature of data in VANET, specially when

the Sybil node uses only a part of it’s Sybil ID’s at a time, becomes an orthogonal

challenge. In simulation based experimentations it is feasible to collect data with

regular sampling rates, but it is unlikely to do so in practical scenario. For instance,

locations of Vx can be reported by peer nodes time instants t0, t1, t5, t9, t10 and t20

whereas locations of Vy can be reported by peer nodes time instants t0, t1, t2, t3, t9,

t11, t12 and t15. Clustering of these two time series becomes due to the irregularity of

sampling rate and size. In this section, the effect of linear interpolation in time series

clustering of data is studied. Subsequently in Section 5.3.4, a prediction technique is

proposed to estimate locations of vehicles when no report is obtained. Although the

time-series clustering algorithm used in this section supports clustering of unevenly

sampled time-series data, preprocessing of collected data is done for better results.

Linear Interpolation - Referring back to Section 5.3.1, the time series data for Vy

can be represented as, LVy = lVy(0), lVy(1), ..., lVy(t), where, lVy(i) = (xVy(i), yVy(i)).

The linear interpolation between points (xVy(i), yVy(i)) and (xVy(j), yVy(j))∀(i, j) and

(j − i) > 1, can be given by,

y = yVy(i) + (x− xVy(i))
yVy(j)− yVy(i)
xVy(j)− xVy(i)

(26)
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The data points between lVy(i) and lVy(j) can be constructed on the line rep-

resented by Equation 26 at regular distances ∆d =
||(lVy (i),lVy (j))||

p−1 , where (j − i) = p

and ||.|| refer to Euclidean distance.

5.3.3. Estimation of Number of Sybil Nodes. Association rule mining

is used as feature extraction step in this work, in order to have an idea about how

many Sybil nodes are likely to be present in a part of network. Association Rule

Learning mines relation between multiple attributes of an entity based on their

frequency of co-occurrence in a dataset [5]. Let I = i1; i2; i3, ...., ir be a set of r binary

attributes called items. Let τ = τ1, τ2, τ3, ...., τs be a set of s transactions called a

database. Each transaction in τ contains a subset of the items in I. The problem

here is to identify association rules in the database, which is an implication of the

form X =⇒ Y , where X, Y ∈ I and X
⋂
Y = ∅. Reverting back to Sybil detection,

consider a Vehicle Vx that has communicated with peers over time. The dataset τx

of Vx is a row of transactions with each time-stamped row consisting of vehicle ids

with which Vx has communicated at that time. Recall from platoon dispersion that a

group of vehicles is highly unlikely to be consistently associated geographically (i.e.,

as a platoon) over a long time period. When a consistent association of two or more

vehicles is seen, those vehicles can be suspected to be Sybil. Using this technique,

different peer nodes in a network can predict how many Sybil nodes are likely to be

present in its vicinity and report to the base station. Also, the base station itself can

use this technique to estimate which nodes could possibly be Sybil. However, it is

not possible to draw a conclusion from their analysis when the Sybil node uses only

a part of forged identities over time and changes them over next time period. This

step is only useful for the base station to predict expected number of clusters, wij,

which is an input to the clustering algorithm as discussed in Section 5.4.1.

5.3.4. Fuzzy Time Series Clustering. The basic principle behind short

time series based fuzzy clustering is derived from [118]. It can be noted that the
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proposed short time series based piecewise slope distance clustering seems intuitively

appropriate for the application considered in this section. The type of location

data obtained from vehicles in a VANET can be enormous in size, but the Sybil

detection technique deals with data over a comparatively shorter period of time.

However, there are several differences in the two approaches. Firstly, in our work, two

dimensional location data is considered for clustering over time. So the time series

data considered is three dimensional unlike the two dimensional clustering performed

in [118]. Besides, this technique is further extended in Section 5.3.4 to leverage the

advantages of estimation techniques in the domain of time series clustering.

Fuzzy short time series (FSTS) technique proposed in [118] is a variation of

fuzzy C-means clustering for time series data. The basic idea is to perform a slope

distance computation of time series which can be used for clustering the time series in

FSTS method. In this work, the distance considered includes the three dimensional

data (x and y coordinates of location and time) obtained from VANETs. For time

series of vehicle lVx = lVx(0), lVx(1), ..., lVx(tn), the linear function between LVx(t) two

consecutive time instants tk and t(k + 1) are defined as,

LVx(t) = mk(t) + bk, (27)

where tk < t < tk+1, and

mk =
||lVx(k + 1)− lVx(k)||

t(k + 1)− tk
, (28)

bk =
t(k + 1)lVx(k + 1)− tklVx(k)

t(k + 1)− tk
(29)
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Equation set above results in a set of equations as both x and y coordinate as

separately considered for difference in Equation 29. The short time-series distance

between time series vector of vehicle Vx and prototype vector Vy is computed as

below -

d2STS(Vx, Vy) =
nt−1∑
k=0

Vy(k + 1)− Vy(k)

tk+1 − tk

− Vx(k + 1)− Vx(k)

(tk+1 − tk)2
. (30)

Rest of the FSTS algorithm is similar to fuzzy C-means algorithm . The cost

function is defined as,

J(Vx, Vy, u) =

nk∑
i=1

nv∑
i=1

uwijd
2(Vx(j), Vy(i)), (31)

where nk is the number of clusters, nv is the number of vehicles and w is the

weight factor. All these values are user-defined. The value of u determines the

membership value of the element in the cluster. Updating of the partition matrix is

done in the same way as described in [118], where uwij is updated as,

uwij =
1∑nk

q=1 (dSTSij/dSTSqj)
1

w−1

(32)

Further details of this algorithm can be found in [118].

5.3.5. Derivation of PTh. In this section, the objective is to derive PTh,

the probability of two vehicles traveling in each other’s vicinity so that the expected

time of observation for Sybil node detection can be estimated. Towards this end,
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first theoretical analysis is performed to determine PTh and then the outcome is

tested using simulation studies.

Let us consider that two vehicles are moving on a straight road. They are

initially (time t = 0) at a distance d0 apart. In a time interval δt, the vehicles can

move any distance within a range ofDH andDL on the road. The range is represented

as Drange. At every time instance the vehicles update their velocities based on past

velocities and thus the distances to be covered (denoted by D1 and D2) in next time

interval, δt. D1 and D2 are chosen from Drange using uniform distribution. Our

initial objective is to figure out the probability that the two vehicles are within a

distance α of each other after a time interval nδt.

As mentioned above, we assume uniform distribution for D1 and D2. For

simplicity of computation, we assume d0 = 0 throughout this derivation. Now,

using normal approximation of uniform distribution, if D1 ∼ Unif(DH , DL) and

D2 ∼ Unif(DH , DL), then∑n
i=1D1i ∼ N(n(DL+DH)

2
, n(DH−DL)

2

12
) and

∑n
i=1D2i ∼ N(n(DL+DH)

2
, n(DH−DL)

2

12
).

So, (
∑n

i=1D1i −
∑n

i=1D2i) ∼ N(0, 2n(DH−DL)
2

12
).

Now, the probability that the condition |
∑n

i=1D1i−
∑n

i=1D2i| ≤ α holds true

can be written as

P (|
n∑
i=1

D1i −
n∑
i=1

D2i|) (33)

= P (−α ≤
n∑
i=1

D1i −
n∑
i=1

D2i ≤ α)

= P (
−α− 0√
2n(DH−DL)2

12

≤ Z ≤ α− 0√
2n(DH−DL)2

12

)

[where Z =
n∑
i=1

D1i −
n∑
i=1

D2i]
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= P (−z ≤ Z ≤ z) (34)

[where z =
α√

2n(DH−DL)2
12

]

Using standard normal distribution of Z, i.e., Φ(Z), it is evident that, Φ(Z) =

P (Z ≤ z). So our probability expression, (in equation 34) = 2 Φ(Z)-1.

Using the standard normal CDF table, the probability for different values of DH , DL,

n and α can be found out. From this derivation, it is straight forward to derive the

expected time, texp, that two vehicles will take to reach a threshold probability Pth

that they are traveling in each other’s vicinity. It can be noted that in real life, based

on several physical and human factors, any other distribution other than uniform

distribution can be used to model vehicle’s distance traveled over a time period.

However, similar derivation can be done using other probability distributions too.

A theoretical probability of two nodes moving within a given distance over a

time period can be obtained by plugging in values of different input parameters into

the expression derived above. In Figure 5.1, probability values derived through theo-

retical analysis and simulation results are plotted against different values of α where

DH = 50 m, DL = 0 m, n = 10, δt = 1s. This figure shows a case where simulation

data is plotted along with theoretical results to show that the results match closely.

Thus from this derivation, for a given time period, the probability of two vehicles

being in a same cluster (or within a given distance) for a given time period can

be obtained. For different experiments performed with different values of network

parameters (like DH , DL etc.), we derived the probability threshold for which two

nodes can be in a cluster for a given time duration. If the output of FSTS algorithm

yielded a higher cluster membership than the probability threshold derived, the node

in the cluster are detected as Sybil nodes. Derivation of threshold parameter through
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this process helped us differentiate among nodes traveling together for long time and

malicious Sybil nodes.
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Figure 5.1. Determination of Input Parameters where DH = 50 m, DL = 0 m, n =
10, δt = 1 s

5.4. PERFORMANCE EVALUATION

In this section, the performance of the proposed technique is presented and

analyzed.

5.4.1. Experimental Setup. SUMO (Simulator of Urban Mobility) was

used to generate mobility traces of nodes and this data was used as input to the

network. The simulation was conducted on a real city road network imported from
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Open Street Map. A C++ simulator is developed to emulate the vehicular network

where the nodes move following the mobility traces from SUMO, thereby mimick-

ing real traffic patterns. The final clustering experiments are done using the C++

simulator. By default, there were 100 vehicles with an average speed of 50mph, and

sources and destinations were randomly chosen for each vehicle. Unless mentioned,

there were 10 Sybil nodes among them, and each had 10 identities. Each vehicle was

assumed to report it’s location once every second, and the transmission range was

assumed to be 250 meter. The simulation was run for 1000 seconds and the default

clustering distance was 400 m. All simulations were conducted 10 times and results

were averaged.

Different sets of experiments were run in different phases. First the collected

time-series data is preprocessed using linear interpolation using Matlab and then

association rule mining is used for feature extraction phase estimating expected

number of clusters in the data using Weka. For the first phase of the study with

association rule mining, each Sybil node used all its counterfeit identities during

query response. Later the cases were studied when only a smaller percentage of

identities are used by a node during a time period.

Apriori algorithm implemented in WEKA (Waikato Environment for Knowl-

edge Analysis) tool was used as a feature extraction technique to identify abnormally

repeating associations in the dataset of each vehicle independently as it completes

its run. The success rate was 100% in Sybil vehicle detection without false positives.

However when the percentage of ID’s used by the Sybil node varied, only 60% of

the Sybil nodes were detected and equal number non-Sybil nodes were detected as

Sybil nodes. It means that the false positive and true positive rates were equal,

which is not a desired performance. Clearly there is need of further analysis which

is conducted subsequently. However, several association rule experiments help get

an feel or estimate of how many clusters to look for and the probable number of
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Sybil nodes in a set of nodes. For instance, in the case mentioned above, the results

of feature extraction show that there are likely to be 12 clusters. In reality, there

were 10 clusters that had Sybil nodes in them in that case. So in our experiment,

we put the input number of clusters between 9 and 15, getting the best results when

the number of clusters was 10. It can be noted that usually all clustering algorithm

(including FSTS) require preprocessing and feature extraction of data or some sort

of prior knowledge to estimate number of clusters. However, the results from associ-

ation rule mining are not conclusive, warranting further experiments using the FSTS

technique to determine the Sybil nodes from past location traces.

5.4.2. Clustering of Data. Recall from Section 5.3.5, theoretical analysis

can be used to derive PTh for different input parameters and the output can be

used to determine whether the concerned nodes are Sybil or not based on their

cluster membership values determined using FSTS. In the clustering process, firstly

the binary connection metric is clustered using the FSTS algorithm. Figure 5.2

shows the detected number of false positives and false negatives averaged over 10

runs of simulation each. The X axis represents the percentage of available fake IDs

that a Sybil node is using at a time instant. If all of the available IDs are used for

transmission at every time instant, the false positive and false negative rates are both

zero, indicating that all the Sybil nodes are identified. However, as the percentage

decreases, both false positives and false negatives increase, although a major part of

the Sybil nodes are detected over time. This figure demonstrates the effectiveness of

the proposed technique in detecting Sybil nodes in VANETs.

Figure 5.3 plots the time required to reach 100% true positive rate (that is,

detects all Sybil nodes) for varying percentage of ID’s used by the Sybil nodes at a

time instant. With increasing percentage of ID’s used, the detection is faster. But
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as very less percentage of ID’s are used by a Sybil node at a time instant, it still

reaches 100% true positive rate in longer time.

5.5. FINAL REMARKS

This section proposes a technique for Sybil attack detection in VANETs, based

on fuzzy time series clustering. The method leverages the principle of dispersion

of vehicles in a VANET and detects the nodes clustered with each other for longer

than expected. Theoretical analysis has been conducted to derive input parameter

to the algorithm and simulation results are presented to evaluate performance of

the proposed method. The proposed method has achieved very low false positive
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and false negative rates even when the Sybil nodes use a small percentage of the

counterfeit identities at a time instant.
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6. SUMMARY OF THE DISSERTATION

In this dissertation, we have investigated four research problems in the realm

of Location Based Services in Wireless ad hoc networks. Broadly speaking, the re-

search directions we have taken span the four dimensions of privacy, security, trust

and performance enhancement. Towards this end, we have addressed the follow-

ing problems in specific: i) providing Location privacy in wireless sensor networks;

ii) providing end-to-end secure communications in wireless sensor networks; iii) en-

hancing content retrieval in mobile ad hoc networks and iv) defending against Sybil

attacks in vehicular networks. We believe that with the wide spread demands for

improved location based services, our work in this dissertation provides important

contributions in this area.

Firstly, we address the issue of providing location privacy in wireless sensor net-

works. We define a practical wireless sensor network problem wherein an adversary

that is not cooperating with the wireless sensor network attempts to surreptitiously

discover locations of sensors in the network. The adversary (or localizer) leverages

from analyzing raw wireless signals emanated by the sensors. Our objective in this

chapter is to formally define and analyze this attack model and subsequently pre-

serve location privacy of the sensor nodes under such attack. Although localization

in wireless sensor networks is a widely researched topic, not many work address lo-

calization in scenarios where the nodes do not cooperate with the entity attempting

to localize sensors. In this dissertation, we first propose a new method for localiza-

tion of sensors in a non-cooperative environment by a mobile localizer, wherein the

localizer receives no cooperation from the sensor nodes that constitute the sensor

network. The localizer localizes the sensors using physical properties of the sen-

sor communication messages: Angle of Arrival (AoA) and Received Signal Strength
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Indicator (RSSI). Using the proposed method, the localizer can determine the pres-

ence of sensor node at a certain location with some error margin. This work shows

how an external entity can invade in the location privacy of sensors in a network

without being localized by the sensors. We call this kind of attack as adversarial

localization. In other words, adversarial localization refers to passive attacks where

an adversary attempts to disclose physical locations of sensors in the network by

physically moving in the network while eavesdropping on communication messages

exchanged by sensors. Our next contribution towards location privacy in wireless

sensor networks is in designing a novel solution for defending against adversarial

localization using a location privacy preserving tracking algorithm. The principle of

the proposed approach is to allow sensors intelligently predict their own importance

in light of two conflicting goals they have - preserving location privacy and tracking

the adversary. The proposed algorithms ensures high degree of adversary localiza-

tion, while also protecting location privacy of many sensors. Theoretical analysis

and extensive simulations are conducted to demonstrate the performance of both

the attack and defense models.

We next investigate the problem of secure end-to-end communication in ran-

domly deployed wireless sensor networks, where one of the most fundamental chal-

lenges stems from lack of control where sensors are located in the network post

deployment, especially under larger scale deployments. As a consequence, pre-

establishing neighbor proximity information is not feasible, and so pre-fixing pairwise

keys between sensors is not possible either. Beyond this challenge to securing commu-

nications in wireless sensor networks, energy limitations of sensor nodes clearly imply

that complex cryptographic operations like public key based schemes are harder to

implement in wireless sensor networks. Finally, while existing work focuses primarily

on securing node-to-node communications, the issues of end-to-end secure commu-

nications (i.e., between a node to base station) is mostly ignored considering the
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significant location disparities between nodes and the base station in large scale

sensor networks. In this dissertation, we propose an algorithm for end-to-end se-

cure communication taking into consideration the issues originating from random

deployment of sensors. We introduce a new principle called differentiated key pre-

distribution wherein different number of secure communication keys are deployed to

different sensor nodes. The links associated with nodes with higher number of keys

have enhanced security and are called high resilience links which are subsequently

used in routing secure messages between nodes and the base station. Subsequently,

we couple the secure communication algorithm with data-centric and location-centric

routing algorithms.

The next part of this dissertation focuses on quality versus latency in content

retrieval in mobile ad hoc networks, from the perspective of improving performance

of content retrieval. In mobile ad hoc networks, the rapidly changing location of

nodes leads to the challenge in addressing a fundamental trade-off between accurate

searches for queries and associated latencies. When a query is issued by a user

in a mobile ad hoc environment, peer nodes can often provide a better quality of

response compared to the local node. Hence in content retrieval applications, usually

queries are forwarded to peer nodes for content retrieval. In this scenario, the core

challenge comes from returning requested content to the node that requested it,

as nodes change their locations rapidly over time. A fast response retrieving the

relevant content can serve as a feasible solution to this problem as the response can

reach the requester before it moves far away. Hence optimizing search latency is

a critical factor while designing peer-to-peer based content retrieval algorithm in

mobile ad hoc networks. However, there is a clear trade-off between accuracy of

response and search latency wherein longer searches are usually expected to yield

more accurate responses to queries. Towards this end, we perform a detailed study

on the quality or accuracy of responses versus search latency and show that there
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is a distinct relationship between these two parameters in mobile ad hoc networks.

Our investigation reveals that content retrieval in mobile ad hoc networks follows

the trend of a logistic curve in terms of accuracy of response versus length of query.

Simulation results proves our initial conjecture to be valid. We use this result to train

our peer-to-peer search algorithm so that it learns the expected accuracy of response

based on length of query. Thus the peer-to-peer search algorithm that we design

optimizes search latency in mobile ad hoc environment while yielding high accuracy.

It can be noted that accuracy or relevance of response is defined in terms of the

match or similarity that a retrieved content has with the query. The entire content

retrieval framework is encapsulated in a two-tiered architecture. The first tier deals

with optimized peer-to-peer search and routing of contents. We use flooding based

technique for query and response routing among peer nodes. The second tier entails

another contribution of our research: searching the local database for relevant and

popular contents based on past similar queries. We propose a chained bloom filter

based technique for fast retrieval of popular contents that are relevant to the current

query in the local node database. The chained bloom filter links queries searched

previously at a local node with relevant popular content present in that node for

subsequent retrieval. When a new query comes in the local node, the chained bloom

filter can be searched in order to retrieve highly popular relevant contents that have

been retrieved in past. We describe different operations available on the chained

bloom filter, such as insertion, search and update.

The final contribution of this dissertation is in providing a trust based service,

that is, Sybil attack detection in vehicular ad hoc networks by designing a location

clustering based algorithm for anomaly detection. Vehicular ad hoc networks an

emerging class of network systems, where vehicles traveling on roads communicate

with peers and selected infrastructures to enhance quality of driving experience via
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improved congestion avoidance, route planning, real-time accident warning, commer-

cial information disseminations etc. With such applications, the issue of trust among

nodes becomes paramount. In other words, unless vehicles can trust information from

their peers, such services will have limited utility. In this dissertation, we investigate

solutions to one of the most practical and potent attacks in the realm of trust in

vehicular networks, namely Sybil attack. In simple terms, a Sybil attack is one where

an attacker creates and uses multiple counterfeit identities risking trust and repu-

tation of a peer-to-peer system. The fundamental reason for the potency of Sybil

attack in vehicular networks stems from the fact that due to mobility, an attacker

can easily create and use multiple fake identities, and exploit node mobility to exit

the location of the attack. Consequently, detecting the presence of Sybil attack and

identifying the Sybil nodes become a challenge considering the dynamic nature of ve-

hicular networks, ephemeral neighborhood proximities and ad hoc mobility. Existing

techniques for detection of Sybil attack primarily use additional hardware or complex

cryptographic solutions, which are quite cumbersome to deploy. In this dissertation,

we propose a location based clustering of nodes using fuzzy time-series clustering

based approach that does not require any additional hardware or infrastructural

support for Sybil attack detection in VANETs. The proposed technique introduces

a novel paradigm wherein dispersion of vehicle platoons over time in a network is

leveraged to detect Sybil attack. Such dispersion is well studied in transportation

engineering using a theory called Platoon Dispersion, that models vehicle locations

in the form of neighborhood proximities over time and space as vehicles travel. The

underlying principle behind our approach is that fake vehicles (represented by the

counterfeited identities) will generally cluster around the Sybil vehicle that uses the

identities leading these vehicles to violate normal road dispersion dynamics. In our

protocol, we leverage clustering techniques to detect abnormal clusters (i.e., pla-

toons). Abnormal clusters are indicative of multiple vehicles traveling closely for an
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unusually long time without following the normal principle of dispersion platoons,

which is indicative of Sybil attack. To the best of our knowledge, this is the first

application of a well established theory in transportation engineering to address a

trust problem in vehicular networks.
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7. CONCLUSIONS

In light of all the findings and contributions of this dissertation, we would

like to conclude that we have shown the performances of few important application

among versatile range of location based services in various wireless ad hoc networks

from the perspective of several network parameters and scenarios. As a part of our

study in location privacy in wireless sensor networks, we first introduce a grid-based

non-cooperative localization method. This method can be used to locate sensors

deployed in a network without any assistance or input from the sensor network with

very high efficiency and accuracy. Then we propose a novel location based defense

mechanism for this attack that allows the sensor network to track the adversarial

localizer while preserving high degree of location privacy. In the next part of the

dissertation, we investigate security issues in wireless networks through studying

secure end-to-end communication in randomly deployed wireless sensor networks.

We propose differentiated key pre-distribution and demonstrate the efficiency of our

secure communication algorithm when location-centric and data-centric routing are

performed. Next part of this dissertation presents our research in the arena of mobile

ad hoc networks. We design a novel multi-tiered solution to address quality versus

latency issues for content retrieval in mobile environment. This architecture provides

a solution for location-centric query and response routing in content retrieval in peer

to peer based mobile environment without compromising quality of response. The

last part of this dissertation is on a popular trust-based service in vehicular ad hoc

networks, namely, detection of Sybil attack. Detection of Sybil nodes in the highly

dynamic environment of vehicular networks is a critical problem towards preventing

performance and reputation system from subverting. As the final research contribu-

tion of this dissertation, we propose location clustering based technique for detection
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of Sybil attack in vehicular ad hoc leveraging vehicle platoon dispersions which to

the best of our knowledge is the first attempt to apply transportation engineering

theory into the computer science perspective of vehicular ad hoc networks.

There are a number of open research issues to investigate in location based

services in wireless ad hoc networks. We identify some below here that we think

are particularly timely. With the widespread acceptance of wireless sensor networks

for many military and civilian applications, there are many researchers investigat-

ing and designing sensor services via the cloud. Naturally, when information from

sensors (which is location specific in many cases) is integrated via a cloud, there are

many emerging trust and security issues to consider. For instance, i) How can we

guarantee that sensor information comes from a location where a user wants it to

come from; ii) When information propagates via a mixture of wireless and wired in-

frastructures, how to guarantee security, trust and privacy of information are critical

emerging issues here. In the realm of mobile ad hoc networks, there is an emerging

paradigm of delay tolerant networking and routing among social (typically) mobile

groups. How to exploit location information (based on past and future predictions)

to improve routing, caching and replication performance, along with how to design

new services like content sharing and emergency information propagation (for in-

stance in a campus environment) when there are randomly moving mobile users are

practical open problems in mobile ad hoc networks. With the dramatic increases

in vehicular communication technologies, there are many open issues in the realm

of routing protocols, improved reliability of wireless communications, design of new

services to enhance driver experience etc. Furthermore, since vehicular networks

integrate cyber, physical and (at times) control components, they are also instances

of cyber physical systems. In vehicular networks though, mobility and consequent

dynamics in node locations impose new challenges in analyzing and designing tech-

nologies and services for such networks. We believe these challenges also provide
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new opportunities to integrate diverse theories and disciplines (like we did in this

dissertation), and we also believe that such integration among Computer Scientists,

Transportation Engineers and Social/ Economic Scientists will be the norm of the

near future.
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