
����������
�������

Citation: Adelantado, F.;

Ammouriova, M.; Herrera, E.; Juan,

A.A.; Shinde, S.S.; Tarchi, D. Internet

of Vehicles and Real-Time

Optimization Algorithms: Concepts

for Vehicle Networking in Smart

Cities. Vehicles 2022, 4, 1223–1245.

https://doi.org/10.3390/

vehicles4040065

Academic Editors: Mihaiela Iliescu

and Mohammed Chadli

Received: 19 July 2022

Accepted: 1 November 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Internet of Vehicles and Real-Time Optimization Algorithms:
Concepts for Vehicle Networking in Smart Cities
Ferran Adelantado 1 , Majsa Ammouriova 1 , Erika Herrera 1 , Angel A. Juan 2 , Swapnil Sadashiv Shinde 3

and Daniele Tarchi 3,*

1 Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya,
08018 Barcelona, Spain

2 Department of Applied Statistics and Operations Research, Universitat Politècnica de València,
03801 Alcoy, Spain

3 Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”,
University of Bologna, 40126 Bologna, Italy

* Correspondence: daniele.tarchi@unibo.it

Abstract: Achieving sustainable freight transport and citizens’ mobility operations in modern cities
are becoming critical issues for many governments. By analyzing big data streams generated through
IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT
combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing
and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart
cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree.
Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times,
and evolving customers’ requirements and traffic status also have to be considered. This paper
discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking
scenarios, identifies the underlying optimization problems that need to be solved in real time, and
proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile
optimization and distributed machine learning are envisaged as the best candidate algorithms to
develop efficient transport and mobility systems.

Keywords: vehicle networking; Internet of Vehicles; IoT analytics; data analytics; agile optimization;
distributed machine learning; smart cities

1. Introduction

As technologies, such as Internet of Things (IoT), self-driving vehicles, and 5G com-
munications, are gaining momentum, transportation and mobility (T&M) operations in
smart cities enter a new era with the so-called Internet of Vehicles (IoV) [1,2]. The efficient
performance of IoV systems require online traffic data acquisition, ultra-broadband connec-
tions, alternative mobility modes, a sustainable use of energy, and low-latency optimization
algorithms capable of finding high-quality solutions to complex operational challenges
in real time (less than a second) [3]. In the context of smart cities, intelligent and sustain-
able vehicle networking (ISVN) constitutes a key development area that can significantly
contribute to social and economic progress [4].

In these smart cities, large quantities of data are gathered in real time via electronic
devices located inside vehicles and infrastructures (computer chips, sensors, traffic cameras,
drones, etc.), transmitted over the Internet, and analyzed through information and expert
systems [5]. The range of problems posed to manage the IoV, including the communica-
tions between nodes and the efficient processing of massive data, are vast. In addition, the
activation of proper nodes is to be decided in a manner to optimize network performance,
e.g., which radio side device to activate (Figure 1) [6]. In this context, we need a class of
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extremely fast, effective, and easily parallelizable optimization algorithms. These algo-
rithms will allow for a coordinated and effective use of electric, unmanned, and self-driving
vehicles in smart cities [7].

Agile optimization (AO) algorithms can be extremely fast in execution (thus allowing
for real-time decision making), perfectly parallelizable (so they can be effectively executed
on parallel threads), flexible (so they can be adapted to cope with different variants of rout-
ing and location problems, even those under dynamic or uncertain conditions), parameter-
less (they should not require time-consuming fine-tuning processes), on-line (they have to
be used iteratively as the data stream is updated), and still effective (they should be able to
provide high-quality solutions to complex decision-making problems) [8,9].

Another area gaining momentum in smart city scenarios is the implementation of
machine learning (ML) algorithms [10]. ML embraces a big family of different algorithms,
each one tailored to specific requirements, in terms of data availability, latency, dynamicity,
and so on. Recently, a novel paradigm in ML has been introduced, breaking from the
traditional centralized approach where a big resource-unlimited node is able to execute
an ML algorithm while a distributed scenario is exploited to implement distributed ma-
chine learning (DML) algorithms where multiple nodes interact among them to exchange
their knowledge, experience, and environmental data in order to implement a faster and
dynamic-aware approach [11]. This could be particularly interesting in the IoV scenario,
which is still relatively unexplored, mainly due to the several challenges introduced by
such a highly dynamic scenario.

Figure 1. Vehicular networking in a smart city.

The main contributions of this work are as follows:

1. We analyze the main challenges associated with IoV and vehicle networking scenarios.
2. We identify the associated optimization problems, some of which need to be solved in

real time.
3. We discuss how AO and DML approaches allow for the development of efficient

transport and mobility systems.
4. We provide some numerical evidence of the gains that can be obtained by employing

the aforementioned approaches.

As previously mentioned, IoV and smart city scenarios are characterized by a high
dynamicity and the generation of the significant amount of data required for their effective
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management [12]. This has required the introduction of optimization algorithms able to
deal with stringent latency, high density, and big data. With this in mind, in this paper,
we focus our attention on two main elements. On one side, AO, a novel concept that
arises from the optimization algorithm parallelization, which allows us to reduce the time
required to reach the problem solution. On the other side, there is recent momentum in ML
algorithms, mainly due to their ability to solve complex problems; however, when several
actors come into the system, traditional ML is unable to scale effectively—this is why we
discuss distributed machine learning, a novel concept where traditional ML is considered
to be distributed on several elements of the system.

This paper discusses, in detail, the challenges associated with IoV and how paral-
lelization in optimization algorithms allow for the re-optimization of systems in just a few
seconds. The rest of the paper is organized as follows: In Section 2, the main concepts
related to IoV scenario and use cases identified by the standardization organizations are
introduced. Section 3 reviews some related work on IoV, by focusing in particular on
the optimization problems. Section 4 describes in more detail how AO algorithms work.
Section 5 focuses on the DML algorithms and their application to IoV scenarios. Section 6
reviews some of the most popular vehicular networking models and provides a numerical
analysis of different applications of AO algorithms. Finally, Section 7 summarizes the main
contributions of the paper and provides future research lines.

2. The IoV Scenario and Use Cases

The Internet of Vehicles is envisaged as one of the most promising business areas in
the near future [13]. Consequently, the automotive industry has been driving an intense
research and development effort to identify business cases and technologies capable of
supporting the new use cases requirements, which cannot be fully met with existing
technologies. IoV is mainly characterized by the massive collection of data mainly provided
by in-vehicle and infrastructure sensors, transferred to the network or shared among
vehicles, and processed to feed intelligent algorithms to enhance network management and
orchestration [14]. For instance, it is estimated that each connected vehicle can generate
or consume more than 40 TB of data every eight hours [15], thus stretching the capacity
of the networks to the limit and requiring the processing of a vast amount of data, in
some cases in real time. Although this verticality has been gaining momentum during
the last decade and has attracted the interest of the research community, it still presents
technological challenges to be addressed. These challenges can be summarized as: (i) the
large scale and extremely dynamic scenarios resulting from a large number of vehicles
with high mobility; (ii) unstable connectivity caused by fast varying channel conditions;
(iii) limited and distributed computational capacity; (iv) the need to support services
with tight latency requirements or high data rate needs. Clearly, the aforementioned
technological challenges fall into two research areas. On the one hand, the communication
between nodes, which must be able to support high data rates, high reliability, and low
latency communications. These communications are usually known as Vehicle-to-Vehicle
(V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N), and Vehicle-to-Pedestrian (V2P)
communications or, in general, Vehicle-to-Everything (V2X) communications [16]. On the
other hand, the complexity, the scale, and the latency constraints of the problems call for
real time optimization solutions which, in turn, must be adapted to the particularities of
the network.

This work is aimed at discussing novel, efficient, and real time optimization ap-
proaches: AO and DML, both addressing the requirements of IoV. In order to set up the
framework of the optimization problems and solutions, this section briefly overviews the
communications technologies and the computational paradigm in IoV, and finally identifies
the use cases proposed by standardization organizations in collaboration with the industry.
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2.1. Communications and Computation

Standardization of vehicular communications took two different directions that still
remain nowadays—one of them led by IEEE, and the other one carried out in the framework
of 3GPP as a part of cellular technology [17]. Initially, the automotive industry, along with
IEEE, led the standardization of dedicated short range communications (DSCR) with
the development of IEEE 802.11p [18]. This standard is based on carrier sense multiple
access/collision avoidance (CSMA/CA) and incorporates additional features to handle
high mobility. However, and despite the new features adapted to vehicular scenarios,
the medium access is still contention-based. In order to improve its performance, a new
amendment has been developed as IEEE 802.11bd [19,20].

In parallel, and motivated by the importance of the automotive vertical, 3GPP incor-
porated the vehicular communications in Release 14, which has been enhanced since then
in the successive releases until Release 17 [21–23], frozen in 2022. This standard is usually
known in general as Cellular V2X (C-V2X), or LTE-V2X or 5G NR-V2X depending on the
release. Details on C-V2X can be found in outstanding works [20,24–26]. Focusing on the
3GPP standard, two links are defined: the link between the vehicle and the base station,
and the link between a vehicle and another vehicle or pedestrian, namely the sidelink. The
resources of the link between the vehicle and the base station are managed by the base
station, but for the sidelink, four different modes of operation are defined, two of them
where resources are allocated without the support of the network, and two more where
resources are granted by the network. The management of these resources is one of the key
open research challenges.

As stated above, the operation of V2X is intimately bound up with the exchange
and process of massive data, and therefore the computational paradigm is one of the key
aspects in IoV. In [27], the two main computational paradigms for IoV, which are cloud
computing and edge/fog computing, are identified and described. The main idea lying
behind these two paradigms is the existence of centralized network computing capacity,
able to aggregate data from different parts of the network, and edge computing capacity,
which reduces the communication latency between the vehicle and the computational node.
The centralization of computational capacity in the cloud benefits from cost-efficiency and
scalability. However, moving computational capacity towards the edge of the network,
enabled by technologies such as multi-access edge computing (MEC), allows instantiating
application servers in the edge [28]. The implementation of MEC in the IoV architecture is
also known as vehicular edge computing (VEC), and stands for a distributed computation
between the vehicles themselves and the edge servers [29]. Some of the current research
areas in VEC are the mobility management, since some computational tasks must be handed
over and migrated when vehicles move away; the loss of connectivity between the task
computing node (either a vehicle or an edge server) and the node that offloaded the task
computation; the problem of allocating computational resources to each task in the existing
nodes, either vehicles or servers [30]. In this context, optimization techniques must be
able to take into account the IoV communications and network architecture nature in a
convenient manner. Real time or near-real time approaches are required to keep the pace of
the scenario dynamics.

2.2. Use Cases

3GPP has defined six groups of requirements for V2X, five of them describing major
V2X scenarios and an additional one devoted to general aspects transversal to the five
major areas [22]. Different analysis of the use cases or slightly modified use cases can be
found [31–33]. Each of these areas is in turn divided into a set of use cases and scenarios [23].
The six areas are: (i) general requirements; (ii) vehicles platooning; (iii) advanced driving;
(iv) extended sensors; (v) remote driving; (vi) vehicle quality of service support. The first
area is devoted to general requirements such as location accuracy, the type of messages that
must be supported, or the connection density. As for the last area, i.e., vehicle quality of
service support, it defines the monitoring of the quality of service of V2X services as a key
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point in the management of the network and the services themselves. 3GPP defines this
last area to make sure that real time data on the current quality of service is available for
the network. In the following, the four remaining areas, from the second one to fourth one,
are described and discussed focusing on the role AO and DML can play. In the following,
the main VoI use cases are described as defined by 3GPP in [22,23].

2.2.1. Vehicles Platooning

Vehicle platooning is defined as the creation of groups of vehicles, one of them playing
the role of leader, which exchange sensors’ information to increase the driving efficiency,
reducing the inter-vehicle distance, reducing the fuel consumption, and allowing limited
automated driving. The main research challenges in this area reside in how messages are
disseminated within the members of the platoon and how the platoon leader/manager
communicates with the network. The platoon must support up to five vehicles and,
given that other V2X services can be run in the vehicles, 19 users can be using other V2X
applications in the platoon. The reliability of communications must be between 90% and
99.99%, depending on the degree of automation, and the maximum latency is 10–20 ms
upper bounded for platoon members’ cooperation.

2.2.2. Advanced Driving

The objective of advanced driving scenarios is providing the vehicles with the ability
to interact with each other aiming at safer traveling, collision avoidance, and improvement
of traffic efficiency. Differently from vehicle platooning, advanced driving assumes larger
inter-vehicle distances and lacks a leader vehicle. All vehicles interact to announce driving
maneuvers, such as slowing down, speeding up or lane changing, and exchanging relevant
data for cooperative perception. The required reliability of communications is set to 99.999%
for operations such as emergency trajectory alignment and 99.99% for most of the rest
critical operations. Depending on the scenario, the maximum latency ranges from 3 ms for
emergency alignment trajectory, to 10–15 ms for cooperative lane exchange, or 100 ms for
the rest of scenarios.

2.2.3. Extended Sensors

Extended sensors area encompasses the collection and exchange of data (e.g., video,
sensors, etc.) captured by any node in the scenario, including the network, vehicles, or
pedestrians, to improve the perception composited by each vehicle. Requirements in terms
of reliability and maximum latency are similar to the ones defined for advanced driving.

2.2.4. Remote Driving

This area sets the framework for UAVs and their remote operation. The area presents
major differences with the previous ones for multifarious factors. Raw and processed data
are gathered locally by the vehicle and are forwarded up to the cloud, where the remote
driving platform resides. That is, data are not exchanged with nearby vehicles, but merged
in the cloud with other vehicles, infrastructure data, etc., to enable their remote operation.
Other aspects such as the calculation of efficient routes can be included into this area.
The required reliability in the exchange of information between the vehicle and the V2X
application server is 99.999% and the maximum allowed end-to-end latency is estimated
around 5 ms.

3. Literature Review on IoV Analytics

The IoV field has been extensively studied in the literature. In this section, a review
of the state-of-the-art is presented from a double perspective. Firstly, research works are
grouped according to the topic under study, emphasizing the optimization framework
used in each one. Then, optimization frameworks are discussed, which constitutes the
second dimension and identifies the match between research challenges and optimization
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algorithms characteristics. The overview does not pretend to be exhaustive, but just to
point out recent works that showcase the current research interests in the field of IoV.

3.1. Main Research Problems

Given the importance of both computational and communications in IoV, one of
the main research topics addressed in the literature is the joint management of computa-
tional and communications resources, aiming at allowing a distributed and collaborative
processing environment as well as optimizing the communication infrastructure.

Due the limited computational capacity of vehicular nodes and the need for intensive
computation, computation offloading techniques have attracted the interest of the research
community [34]. Task offloading is defined as the transferring of computational tasks
from nodes with limited computational capacity—usually vehicles—to nodes with more
extensive computational capacity—e.g., RSUs or the cloud servers. Several works address
the task offloading problem from similar perspectives [35–40]. Liu et al. [35] propose a
reinforcement learning-based solution to distribute tasks among the available MECs. Specif-
ically, the policy gradient-based distributed computational offloading problem (PGDCO) is
proposed and takes into account the dependency between tasks, parallelizing in different
MEC servers, the execution of independent tasks, and serializing the computation of de-
pendent tasks. Similarly, in [36], the problem is addressed without taking into account the
tasks dependency, and a deep deterministic policy gradient solution is proposed. Zhang
et al. [37] introduce a scenario where an SDN controller manages a set of MEC servers,
each one allocated in an RSU. The distribution of tasks among MEC servers, along with the
management of resources such as power transmission, is modeled and solved with a two
level solution based on Q-learning and potential game theory. Further, by modeling the
task offloading problem with game theory, Wang et al. [38] set the framework of a problem
to decide whether a task is not offloaded and executed in the vehicle, or it is offloaded to
neighboring vehicles or edge servers of cloud servers. Prathiba et al. [39] propose a solution
based on stochastic network calculus to compute the delay upper bounds and a federated
Q-learning algorithm to distribute the tasks. Finally, Bozorgchenani et al. [40] propose a
network selection strategy for optimizing the computation offloading between vehicles
and RSUs, acting as VEC nodes. The problem has been solved resorting to both on-line and
off-policy algorithms by exploiting the multi-armed bandit theory.

As for the communication resource allocation problem, two outstanding surveys
have been published [41,42]. Focusing on the specific resources allocation problems, the
distribution of resources in sidelink communications operated in a distributed fashion—i.e.,
modes 2 and 4 of operation—is addressed in some works [43–45]. Thus, Yoon et al. [43] pose
a simulation based analysis of scheduling performance in mode 2 sidelink communication.
In particular, the work studies a scenario where part of the users have full-sensing capacity
and part of the users have limited sensing capacity. It is shown that defensive transmission
strategy employed by full-sensing users mitigates the packet delivery ratio degradation.
Instead, Yoon and Kim [44] propose a resources reservation for mode 2 aimed at efficient
allocation for aperiodic arrivals. Further, focused on the distributed reservation of resources
for sidelink communications, in this case in mode 4, Zang and Shikh-Bahaei [45] propose a
semi-persistent scheduling solution combining full-duplex transmission/reception and a
deep Q-learning algorithm. In [46,47], deep reinforcement learning solutions are proposed
for power and channel allocation. In particular, Kumar et al. [47] introduce a multi-agent
reinforcement learning solution to predict the position of the vehicles and allocate the
channels in a distributed manner. Conversely, stochastic geometry is used to analyze the
performance of distributed resources allocation in ultra-dense scenarios, such as traffic
jams, in [48].

The ‘softwarization’ of mobile networks has been one of the enablers of network slicing
as a way to provide services with the required quality of service. In this context, and given
the different requirements of V2X applications, as described in Section 2, network slicing
has also attracted the interest of academia and industry in the framework of IoV [49–52].
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Khan et al. [49] analyze how distributed remote radio heads and centralized baseband unit
controllers must be paired to guarantee the requirements of best-effort and ultra-reliable
low-latency communications slices in the IoV framework. The solution, based on genetic
algorithms, takes into account capacity and delay of the network. Okic et al. [50] propose
the deployment of an emergency network slice to prioritize critical mission operations. The
proposal is based on the popular deep recurrent neural network long-short term memory
(LSTM), known as an effective solution for the forecasting of time series, and characterize
how road events propagate over distant base stations. Nassar and Yilmaz [51], instead,
address a more classical network slicing problem in the edge of IoV, where a Q-learning
solution is proposed as the solution. Further, based on deep reinforcement learning, Yu
et al. [52] propose a soft actor-critic solution combined with an algorithm denoted as
alternative slicing ratio search (ASRS) to provide radio access network slices with the
required resources.

Different from the research problems discussed above, researchers have also been ac-
tive in the problem of user association and RSU distribution. Regarding the user association
problem, Wang et al. [53] develop a user association solution based on deep learning. In that
work, feature learning is used to learn the link quality, and the strategy learning—either
Q-learning or actor-critic—decides the association of each user. Moving a step forward,
Cesarano et al. [6] formulate the user association problem in vehicular networks as an
uncapacitated facility location problem (UFLP) for jointly solving the RSU-to-vehicle allo-
cation problem while managing the RSUs switch-on and -off processes. Differently from
traditional UFLP approaches, the authors propose a fast-heuristic approach based on a
dynamic multi-period time scale mapping. Alablani and Arafah [54] estimate the dwelling
time of vehicular nodes in each cell, and a handover procedure based on these estimates is
proposed. A problem slightly different is addressed in Roger et al. [55], where not only user
association is studied through a simulation-based analysis, but also the antenna selection
in the vehicle side.

The massive data exchanged in IoV brings the capacity of the network to the limit;
thus, risking the ability of the network of meeting the required quality of service. In this
context, edge caching has also been investigated [56–59]. Wang et al. [56], given the massive
amount of data to be shared among vehicles, propose caching the shareable content in
RSUs to reduce the V2N traffic. The problem is modeled as an integer nonlinear program
(INLP). Instead, Sanghvi et al. [58] present a reinforcement learning-based solution, namely
Res6Edge. Reinforcement learning is one of the most popular approaches to address the
content caching update. Further, heuristics have been proposed to solve the edge caching
problem. For instance, in [59] a caching solution aimed at the distribution of large size files.

The large dynamics of vehicular networks pose challenging requirements for routing
algorithms. Although routing has been extensively studied in the past, there are some
recent works proposing routing algorithms for IoV. The connectivity of vehicular ad hoc
networks has been analyzed though a stochastic geometry approach when the distribution
of vehicles is not uniform over the whole scenario in [60]. The impact of connectivity and
energy efficiency is pointed out. In [61], instead, a graph-theory-based routing algorithm is
presented. Results are promising, but the main drawback of the proposal has to do with
scalability of the problem and the required computational time. Meng et al. [62] propose an
algorithm to control the routing of an official business vehicle flow. The algorithm makes
use of data provided by the in-vehicle network environment. The authors make use of an
expert system, and employ the K-means clustering algorithm to process traffic flow data.
In the context of highly dynamic UAV networks, Arafat and Moh [63] analyze different
routing protocols considering factors such as network topology, UAV positions, hierarchies,
and uncertainty. Similarly, in the context of vehicular ad hoc networks, Nazib and Moh [64]
also analyze several routing protocols for UAVs. The interested reader could refer to [65]
for an overview of the different routing protocols considered to be used in IoV scenarios.

Other less popular research topics can be found in the literature. For instance, the
vehicle software over the air update is dealt in [66]. The objective of the problem is finding
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the minimum set of base stations from which software updates should be downloaded. To
do so, the authors perform traffic pattern analysis to predict the over the air update delay
by using a transfer learning approach, and then the K-means algorithm to cluster the base
stations. Another example is the service migration. The idea of micro-services instantiated
when and where needed becomes more challenging when the mobility of the scenario is
large. In [67], a Lyapunov optimization approach is proposed to select where services must
be instantiated, and how many instances of the service are required to guarantee the service
continuity. The prediction is performed with a recurrent neural network.

The mobility prediction has also been studied aiming at creating reliable mobility
models. In the framework of IoV, road safety has been addressed as a mobility prediction
problem in [68]. Specifically, LSTM is executed in the MEC to predict the trajectory of the
vehicles and assist road safety with proactive actions. Similarly, Gupta et al. [69] analyze
dangerous road locations and propose a multi-hop protocol to guarantee vehicles’ safety.
The proposal is modeled with a clustering approach.

Optimizing the traffic flow and corresponding congestion management is an important
aspect of modern vehicular networks. Here, we discuss some of the promising studies
from recent times that are analyzing the congestion problem. Dhanare et al. [70] have
analyzed various bio-inspired optimal routing algorithms for IoV scenarios from recent
studies. Comparisons are drawn based on the strengths, weaknesses, and various other
critical characteristics leading towards a potential combined model of a multi-modular bio-
inspired approach to IoV routing. In another case, Aung et al. [71] proposed a new vehicular
traffic congestion pricing system based upon reward/penalty policies. The system tends to
reward the good behavior of users through the proposed T-Coin being a virtual currency
and penalizing the users with bad behavior. The proposed virtual currency (T-Coin) can
also be used to manage road reservations. Aung et al. [72] have combined the IoV resources
with the virtual currency for creating a reward/penalty-based framework for optimizing the
traffic flow through congestion management. A hybrid optimization technique based upon
the modified ant colony and firefly optimization techniques is proposed in [73] for finding
the optimal path impacting the reduced traveling time. Zhou et al. [74] have effectively
utilized edge computing facilities for optimizing traffic management via adequate traffic
light control. In particular, a decentralized reinforcement learning (distributed deep Q-
learning) scheme is proposed for solving the problem at the edge.

3.2. Optimization Tools

As described in Section 3.1, the range of research issues in the field of IoV is vast
and is being actively researched. However, although there is consensus on the research
open issues, there is not actually an agreement on which optimization tools are the most
convenient ones to meet the requirements of IoV while, in parallel, fitting the network
architecture, characterized by distributed nodes, most of them with limited computing
capacity, and with large dynamics. Recently, artificial intelligence (AI) is gaining ground
as the key optimization tool for the challenges dealt in IoV [75]. Yet, the range of different
optimization possibilities goes far beyond AI. In the following, the main optimization
approaches mentioned in the previous section are listed and discussed.

AI has emerged as a promising approach to face IoV. As discussed previously, both
supervised and unsupervised machine learning are proposed in two different directions.
On the one hand, unsupervised learning is mainly used for clustering vehicles or base
stations. Conversely, recurrent neural networks, such as LSTM, are becoming popular
as supervised machine learning solutions able to forecast time series [76–78]. The main
drawback of these approaches in IoV is two-fold. First, the amount of data and time
required to train the network can be an obstacle in some scenarios, particularly when
some aspects of the scenario vary. For instance, the installation of an additional RSU, the
blockage of some streets, etc. Secondly, machine learning approaches do not perform
properly when unexpected events occur. If low probability but critical events are not
identified and conveniently processed in the training phase, the performance of the solution



Vehicles 2022, 4 1231

is degraded. In parallel, (deep) reinforcement learning has also undergone a considerable
boom as a model-free approach to solve optimal control problems in IoV [74,79]. Although
reinforcement learning is appropriate for IoV problems, it suffers from slightly different
drawbacks from supervised/unsupervised learning. In this case, reinforcement learning is
able to adapt to changes that occur in the environment, though at the expense of extended
convergence time, which may degrade the performance if changes are frequent. However,
recently a new ML training paradigm in the form of DML has emerged as a promising
technique, especially in the case of latency-critical vehicular networking scenarios. Various
DML techniques such as federated learning (FL) [80], decentralized learning (DL) [11], and
collaborative learning (CL) [81] have shown great promises in terms of reduced training
costs and frequent/online ML model updates for reducing the model drift, allowing their
use in dynamic scenarios.

Game theory is also a popular approach to deal with IoV optimization problems [82].
It is a particularly appropriate framework for decision making when there is a clear interde-
pendence between the decisions of the different ‘players’ involved. However, game theory
can present scalability issues and it assumes that all users have knowledge on their own
pay-off functions, which is not always the case.

The optimization framework can rely on a model. This is the case of approaches such
as stochastic geometry, graph theory, integer programming, or Lyapunov optimization.
In all these cases, the need of an accurate model limits the actual real life application.
Moreover, in integer programming and graph theory, scalability must be carefully analyzed
when the expected number of vehicles is large.

Table 1 summarizes the main challenges identified in the literature on IoV analytics,
as well as the methodologies usually employed to cope with each of them.

Table 1. Main challenges and methodologies employed.

Challenge Methodology References

Clustering vehicles/base stations Unsupervised learning Song et al. [83]

Time series forecasting Recurrent neural networks Hewamalage et al. [84]

Optimal control problems Reinforcement learning Zhou et al. [74]

Latency-critical vehicular networking Distributed machine learning Muscinelli et al. [11]

IoV optimization problems Game theory Sun et al. [82]

IoV optimization problems Integer programming Salahuddin et al. [85],
Ning et al. [86]

4. Agile Optimization Algorithms

Different optimization algorithms could be used to optimize problems, such as exact
algorithms that find the optimal solution to a problem. However, these algorithms are
limited to small-size problems. For larger instances of problems and NP-hard problems,
different heuristics are recommended. These heuristics construct solutions in an iterative
and greedy procedure. A candidate for a solution is selected from a list of candidates at each
iteration. The list of candidates is sorted according to pre-defined criteria, such as costs or
traveled distance. In the end, a solution is constructed that is typically promising. Examples
of these heuristics can be found in different variants of the vehicle routing problem [87] and
the traveling salesman problem [88]. Local searches and perturbation movements could be
adapted to improve the solutions constructed by the heuristics.

These heuristics are deterministic. Thus, the same solution is constructed at each
execution. Different solutions could be found by selecting candidates according to a non-
uniform distribution. This approach introduces a biased randomized behavior [89]. In this
approach, more promising candidates obtain a higher probability of being selected while
constructing a solution. These promising candidates are found at the top of the sorted
candidate list.
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Assigning non-uniform probabilities to the lists of candidates plays a role in keeping
the heuristic logic [90]. A theoretical probability distribution could be used to assign the
non-uniform distribution of solution candidates. These theoretical distributions help to
minimize the computation time required compared to defining an empirical distribution.
Examples of these distributions are the geometric distribution and the decreasing triangular
distribution. These distributions have few parameters and are easy to implement using
analytical expressions. The geometric distribution has a single parameter p. Figures 2 and 3
show the probability distribution of a geometric distribution with different p values. It
can be noticed that the most promising candidate obtains the highest selection probability
that equals the value of the parameter p. The other candidates obtain a lower probability
depending on p. For example, The fourth candidate in the list has a selection probability
of 0.1 compared to the probability of around 0.07 under the parameters values 0.2 and
0.5, respectively. On the one hand, the probability distribution of small parameter values
(p → 0) approaches a uniform distribution, and many elements in the list are assigned a
selection probability. On the other hand, larger parameter values p → 1 assign considerable
different probabilities to the top elements in the candidate list, and the probabilities are
more likely to represent the greedy behavior of the heuristic. The geometric distribution
has been successfully utilized to introduce the biased randomized behavior in heuristics
used to solve problems in mobile cloud computing [91] and food logistics [92].

Figure 2. Biased random sampling of elements from a list using a geometric with p = 0.2.

Figure 3. Biased random sampling of elements from a list using a geometric with p = 0.5.

As a result, many executions of the biased randomized heuristic result in different
solutions; these executions could be performed in a parallel or serial manner. In each
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execution, a solution is constructed according to the heuristic logic, and the solutions
form biased randomized variations of the greedy solution. At least one of these solutions
might outperform the greedy solution constructed by the heuristic [90]. In addition, these
solutions help to explore the search space of the problem being solved. Thus, the biased
randomized heuristic is a candidate to be integrated into a multi-start framework [93] or
used in parallel programming. In the multi-start framework, the heuristic constructs a
solution at each new start (iteration). The best solution to the problem being solved is
defined by comparing constructed solutions with the so-far best-found solution.

Running parallel executions of the biased randomized heuristic is illustrated in
Figure 4. Computer threads could be utilized; thus, each thread executes one run of
the biased randomized heuristic with a different seed of the random number generator
and resulting in forming an ‘embarrassingly parallel’ algorithm [94]. Embarrassingly par-
allel algorithms might be executed by parallel processing architectures [95]; moreover
the recently introduced MEC and VEC paradigms inherently consider the possibility of
parallelizing the task execution. Hence, the VN environment results to be in a suitable
candidate for the execution of AO. Each execution of the heuristic constructs a solution
within a short time (an instantaneous solution). The greedy procedure of the heuristic
constructs the reference solution (baseline in Figure 4), and the solutions resulting from the
biased randomized heuristic execution vary corresponding to the baseline. One of these
solutions might outperform the baseline. In addition, the executions might be carried out
by multi-core processors or graphical processing units (GPUs) [96]. The GPU consists of
multiple low-energy cores and has advancements in performance and energy efficiency
relative to traditional processors. These architectures are suitable for running embarrass-
ingly parallel algorithms. In addition, one core in a multi-processor can execute several
threads at once. Multi-processor units could be found in small chips [97], enabling different
applications in smart cities to solve raised problems in real-time.

Figure 4. Illustrating the concept of AO.
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The illustration shown in Figure 4 demonstrates an AO algorithm, in which a solution
to an optimization problem could be found in a reasonable short wall-clock time. In this
context, AO refers to the parallel execution of a biased randomized heuristic. Thus, AO
algorithms are characterized as (i) easily parallelizable, (ii) fastly executed, (iii) easily tuned
(few or no parameter is needed), (iv) flexible in solving different problems, and (v) allowing
re-optimization of solved problems. Many hundreds of biased randomized heuristics are
run concurrently, and many solutions are constructed and evaluated during the same wall-
clock time. In smart cities, unmanned aerial vehicles or self-driving vehicles might benefit
from AO, from embarrassingly parallel algorithms on a multi-processor in a single chip.

5. Distributed Machine Learning Algorithms

While traditional ML approaches have demonstrated their limits when applied to
dynamic and variable environments, such as the IoV scenario, a new class of algorithm has
been recently introduced allowing to cast for their usage in dynamic scenarios.

They are usually referred as distributed machine learning (DML) algorithms. While
the concept is quite broad, they mostly refer to a new class of algorithms able to gain from
the presence of multiple nodes that do not only act as input/output for the optimization
tool while they are active parts of the optimization process. In such a distributed system,
the different nodes composing the system are able to run a fraction of an ML algorithm,
enabling them to work closer to the data production/sensing so as to enable a closer
interaction with data and a more reactive approach with respect to them.

While DL refers to a general view, in the following, we focus more on some specific
distributed implementations, known as decentralized learning, collaborative learning,
and federated learning, and how they can be usefully considered for the IoV use-cases
optimization.

5.1. Centralized Learning

In centralized ML, more commonly referred to as ML, the idea is that there is a central
unit, characterized by a high-performance processing unit, a GPU or an ML dedicated
processing unit, capable of running ML specific algorithms. Such processing unit takes
input data from the nodes for training, elaborating, and exploiting the ML algorithm to be
used. The ML algorithm could be any supervised, unsupervised, or reinforcement learning,
where different approaches are used for elaborating the optimal strategy. For any additional
information, the reader could refer to [10].

5.2. Decentralized Learning

In decentralized learning, or DL, the main idea is that multiple learning agents are
distributed within the scenario. Such distributed agents can interact, or not, among them
by creating different types of distribution. DL approaches have been recently developed,
gaining from the introduction of novel communication paradigms, as those defined in
5G, B5G, and forthcoming 6G systems [11]. At the same time, the use of a distributed
approach can solve several issues arising from the centralized implementations. Wireless
and intermittent connections, energy issues, and privacy concerns raise the necessity of
developing algorithms that should not rely on the presence of a centralized node, but can
still work independently or in a decentralized fashion.

As an example, Xu et al. [98] propose the use of an MEC infrastructure to deploy
several deep learning agents. Each of the agents is capable of training a deep neural network
for image processing. However, to avoid a very long convergence time, several agents can
collaborate among them by elaborating a subset of the image so that the distributed fashion
is able to completely train the network exploiting the parallelism. The output of the training
can then be used for IoV applications. Dong et al. [99] propose instead to deploy a system
of distributed deep learning agents in an IoV scenario. Those nodes can interact among
them by exchanging data and parameters so as to create a DL approach. However, due
to the intermittent nature of the vehicular environment, a proper node selection could be
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performed. In the paper, a proper policy is developed allowing to select which of the nodes
should collaborate in order to respect proper timeliness requirements. Zhou et al. [74]
propose instead a multi-layer hierarchical DL scenario. By exploiting the presence of
different nodes (i.e., vehicles, VEC and cloud) able to execute reinforcement learning
algorithms, the authors propose to exploit them for collecting data from the lower layer and
send the outcome of the RL algorithm to the upper layer to create scenario-wide learning.
The main challenges reside here in the connection among nodes, which is supposed to be
implemented through proper V2X communication technologies. Ma et al. [100] propose
to map a DL algorithm on a platoon on vehicle where the different nodes train the same
model and exchange the parameters. Moreover, depending on the processing capability
and availability of the different vehicles, proper scheduling is performed allowing us to
optimize the distribution mechanism.

5.3. Collaborative Learning

While DL refers to a general approach where multiple agents works in parallel sharing,
broadly speaking, in the ML effort, whether it is for training or testing, collaborative
learning can be considered as a specific type of decentralized learning where multiple
agents collaborate to implement an ML algorithm. This is a very efficient way to implement
a DML algorithm in an IoV scenario since V2X connection can be used. Let us focus indeed
on a scenario where multiple vehicles travel around; thanks to proper V2V connections,
they can exchange ML data, allowing a tighter interconnection among vehicles.

Balkus et al. [81] survey on the importance of collaborative learning techniques in IoV
scenario exploiting 5G communication systems. In particular, they focus on the importance
of this approach when dealing with autonomous driving use cases. Five main questions
are solved in the paper regarding the implementation of an autonomous driving system,
that are: (1) How can autonomous vehicles (AVs) effectively use wireless communications
for transmitting data on the road? (2) How can AVs manage the shared data? (3) How can
shared data be used for improving AVs environment perception? (4) How can shared data
be used to drive more safely and efficiently? (5) How can shared data privacy be protected
and cyberattacks prevented? The authors have shown how vehicles can collaborate for
improving the machine learning process aiming at better complying with environmental
perception and data fusion. When information is exchanged through different vehicles, the
environment is better understood and AV can move around relying with a higher safety
and collision avoidance behavior as well as employing collaborative traffic analysis.

Kumar et al. [101] introduced, for the first time, the possibility of collaboration among
different sources for better estimating the best route to be taken by vehicles in an urban
scenario. In particular, through the presence of different learning automata, the information
coming from different sensors is collaboratively used to find the best route. A similar
scenario is also considered by Wu et al. [102], where the best route selection problem is
solved. Here, instead, the use of an edge computing layer is considered. Through a strict
collaboration between vehicles, edge nodes, and cloud computing nodes, a collaborative
learning solution is proposed.

5.4. Federated Learning

While collaborative learning mainly relies on the exchange of information among
vehicles and their co-located learning agent, in federated learning (FL), the approach is a bit
different. Indeed, the exchange of data among nodes could impact the learning convergence
a lot, since a large amount of data should be transferred. Despite the fact that new 5G
technologies allow high data rate transfer, collaborative learning still need to transfer huge
amounts of data. In FL, instead, the idea is that of exploiting, in a more inherent way, the
ML algorithm’s parameters. In that context, the simplest FL scenario is defined through the
presence of a central unit aiming at only merging the ML parameters, where the ML agents
are implemented in a distributed fashion. Such unit, which can be RSUs or vehicles, should
execute a partial training process on their own data, while the partial model is uploaded to
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the central node. After having merged all the nodes, the central node sends the general ML
model parameters back to the agents. The process is repeated several times up to achieving
convergence.

Such an approach is convenient in a distributed scenario, such as IoV, where multiple
nodes can parallelize the ML algorithm execution, while the global model is evaluated
at a central point. In addition, since only the model parameters are exchanged, privacy
concerns are avoided, where only the ML parameters are exchanged among nodes.

The importance of using FL in IoV scenarios is evident by looking at several papers
recently published on FL application to the vehicular environment. In particular, for a
better understanding of the main solutions and challenges, the interested reader could
refer to [103–105]. More recently, FL has been further extended with more challenging IoV
scenarios. As an example, Zhou et al. [106] extend the traditional two-layers model to a
three-layer model, where vehicles, RSUs, and the cloud interact to create a hierarchical
FL structure. In particular, the RSUs perform an intermediate aggregation to limit the
burden on the cloud when several updates are sent simultaneously. Liang et al. [107],
propose to use a semi-synchronous approach to limit the detrimental effect of dynamicity
in the vehicular scenario. In this approach, only a subset of the nodes update the model
depending on their characteristics, while others can update the model while the aggregation
is performed. In this way, the convergence speed would be much higher while most of
the parameters coming from the vehicles are considered. The use of edge computing
is also considered by Li et al. [108], where a four-layers infrastructure is supposed to
be implemented. The intermediate MEC layer is deployed for computation offloading
operations, while it is proposed to be used also for implementing the FL process. Bao
et al. [109] propose an algorithm for selecting the nodes that should participate in the FL
process. An edge-computing-based joint client selection and networking scheme for IoV is
proposed by assigning some vehicles as edge vehicles, employing a distributed approach,
and using vehicles as FL clients to conduct the training of local models, which learns
optimal behaviors based on the interaction with environments. Sun et al. [110] instead
consider the FL for solving the scheduling problem when trying balance the computation
load among different nodes. Thanks to FL, the process can be more effectively balanced
considering also the user mobility and their constraints. Saputra et al. [111] propose an
economic framework for improving the advantages from the internet service provider
point of view in helping the vehicles. This is achieved through the use of an FL platform
that is able to select the best vehicles to be part of the FL process. Shinde et al. [112] propose
instead a different approach that considers the possibility of jointly exploiting the VEC
nodes for both FL and offloading process. To this aim, a proper trade-off between the two
processes should be considered to allow the FL to properly converge while the proper
amount of data are offloaded.

Phung et al. [113] propose to use a fog computing platform as an intermediate layer
between the vehicles and the cloud. Originally proposed for deploying different services to
the users, such an infrastructure is demonstrated to be also useful for the FL process, which
is here considered as a task to be executed over the fog infrastructure. A similar approach is
considered by Hammoud et al. [114], where a technique for creating stable fog federations
of nodes is considered, allowing a more stable FL training phase. This is applied to an IoV
scenario where the mobility of the nodes could negatively impact on the federated agent
deployment if not correctly considered.

As mentioned, another advantage when using FL is related to the possibility of pre-
serving the secrecy of the data. This is exploited by Zhao et al. [115], where a social
IoV environment is considered. The users exchange their data for improving the system
efficiency, while at the same time their secrecy is preserved thanks to the FL process. An in-
trusion detection system fer vehicular environments is instead considered by Liu et al. [116].
In particular, federated learning and blockchain technologies are jointly used with this
aim, where the secrecy of data exchange for the FL training is enforced by the blockchain
technology.
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Pokhrel and Choi [117], instead consider the impact of FL on the network architec-
ture. To this aim, we propose to use a specific TCP implementation for compelling with
detrimental effect of mobility and long distance transmission in an IoV FL scenario.

5.5. Distributed Learning for ISVN

With these previous studies, it is inherently clear that distributed learning can play a
huge role in enabling ISVN. Various distributed learning frameworks can perform efficient
learning operations with the help of distributed vehicular data. In the case of latency-
critical vehicular scenarios, it is important to perform ML training operations with limited
resources. A pretrained ML model can often become outdated over time, incurring the
issues such as model drift. Work performed in [112] highlights the importance of perform-
ing the continuous model training operations with new vehicular data. In particular, the
authors have proposed the optimization approach for joint computation offloading and
the FL training process. The trade-off between the FL training iterations vs. offloading
performance is well explored. Additionally, vehicular mobility being one of the bottlenecks
during vehicular processing operations is also taken into account. Such studies can surely
motivate the vehicular community for adapting the online distributed learning operations
by taking into account the resource constraints. Optimizing the distributed learning process
based on the local vehicular environment can be a key idea for enabling the ISVN.

Additionally, hierarchical learning approaches such as distributed FL process can
also be useful while diving into the upcoming 6G world and corresponding intelligent
vehicular services [118]. In such cases, the averaging process of FL can be distributed over
multiple computing platforms/layers enabling the possibility of a large number of users
to participate in the learning process with limited resource requirements and link failure
probabilities.

Integrating the meta-learning approaches in the traditional distributed learning pro-
cess can also be one area to explore, especially for the ISVN case. Different meta-learning
approaches can effectively reduce the training resource requirements and create high-
quality ML models by exploring previous learning experiences.

Thus adapting the distributed learning process based upon the limited vehicular
resources, and vehicular mobility, considering the multilayered edge computing platforms
(i.e., joint terrestrial and non-terrestrial networks) for distributing the training process,
integrating the advanced learning techniques such as meta-learning into traditional learning
approaches are some of the major future directions that can be useful for enabling the ISVN
in coming days.

The following Table 2 compares the different learning approaches in terms of their
typical characteristics, especially for the vehicular user (VU) case.

Table 2. Distributed ML models and corresponding characteristics.

Characteristics Centralized Learning Decentralized Learning Collaborative Learning Federated Learning

Learning Entity Centralized Server Distributed
Servers/Devices

Distributed Servers
and/or devices On Device (VUs)

Scalability Low High High Very High

Energy Cost (VU Side) Low High High High

Latency High Low Low Medium

VUs Sensitive Data
Privacy Medium Limited Limited High

Pros

Training Fairly Complex
ML models (i.e., DNN
with limited number of
layers)

Training Complex ML
Models

Training Models with
Limited Complexity

Training Models with
Limited Complexity

Main Challenges over
ISVN

High Resource
Requirements, larger
training cost/latency

High resource
Requirements,
Server/Device Selection

VUs mobility,
Server/Device Selection
with Proper Data

VUs mobility, Proper
Device/Server Selection,
Model Accuracy
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6. Computational Results using AO Algorithms in ISVN

The development of AO algorithms was motivated by the need to address real-life
optimization problems characterized by high dynamism. AO algorithms combine heuristic,
biased-randomization techniques, and parallel computing to deal with the dynamic part
of the problem. These algorithms belong to the field of parallelized heuristics, and can
be used to generate efficient solutions to large-scale combinatorial optimization problems
in real time. In the T&M field, these dynamic elements can be, for example, changing
demands or travel times. In real life, we face a huge variety of optimization problems,
including vehicle routing problems (VRP) [119], facility location problems (FLP) [7], arc
routing problems (ARP) [120], team orienteering problems (TOP) [121], etc. Typically, the
goal of each problem is to maximize the total reward or to minimize the total cost associated
with the activity. Figure 5 presents an illustrative example of the structure of each of these
main optimization problems. For example, the objective function in an VRP is usually
to minimize the total cost, which is the sum of fixed plus variable cost. In the TOP, the
objective is to maximize the rewards collected by vehicles when visiting customers. Many
of the problems that arise in real-life T&M are dynamic in nature. These challenges make
the problem troublesome.

Figure 5. Illustrative examples of the main addressed problems with AO in L&T.

Figure 6 shows a cross-problem analysis of the performance of AO algorithms when
compared with the best-known solution (BKS), which might require minutes or even hours
of computation, and the solution provided by a greedy heuristic—which, as the AO, usually
requires less than a second of computation. The problems analyzed are: the uncapaci-
tated facility location problem in an Internet of Vehicles context (UFLP-IoV) [7], the team
orienteering problem (TOP) [122], the permutation flow-shop problem with deadlines
and payoffs (PFSP-DP) [123], the vehicle routing problem (VRP) [90], the basic permu-
tation flow-shop problem (PFSP) [90], the basic uncapacitated facility location problem
(UFLP) [124], and the arc routing problem (ARP) [125].
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Figure 6. A comparison of AO performance for different research topics.

Notice that, while the greedy heuristic typically offers solutions with a gap between
2% and 8% with respect to the BKS, the AO algorithm is capable of generating solutions
with a gap lower than 2% in most cases. This is a noticeable result if we take into account
that these gaps are obtained in wall-clock times below one second.

7. Conclusions and Future Research

In this paper, we have reviewed IoV concepts and discussed the need for AO and
DML algorithms to address vehicle networking problems in smart cities. IoV is becoming
a predominant research topic due to the emergency of self-driving vehicles and the expo-
nential development experimented in IoT and communication technologies, including 5G
and newer developments. At the same time, this technology not only opens a wide range
of possibilities in the field of urban transportation and mobility, but it also raises a series
of optimization problems which are large-scale and NP-hard. In addition, these problems
need to be solved in real-time. Moreover, and due to the dynamism of the traffic in any
major city, the models need to be re-optimized every few minutes, which calls for the need
of AO and DML algorithms.

Hence, the paper has reviewed the state-of-the-art in IoV main uses, putting special
emphasis in protocol requirements and vehicle routing operational challenges. Further, the
most frequent optimization tools employed so far to deal with these operational challenges
have been discussed. AO algorithms have been introduced next as a combination of
constructive heuristics, biased randomization techniques, and parallel computing. Some
computational results, gathered from previously published articles, contribute to illustrate
the potential of AO algorithms in terms of computing time and quality performance. These
results cover some of the main optimization models in the literature of vehicle routing,
including: vehicle routing problems, arc routing problems, team orienteering problems,
and facility location problems. Distributed/decentralized training algorithms for ML
models are discussed in detail. In particular, techniques such as collaborative and federated
learning being promising solution methods for IoV problems are presented along with the
important benefits and past studies.

Despite AO and DML approaches can be extremely useful to address vehicle network-
ing problems in smart cities, their practical implementation is not trivial since it requires
from the availability of reliable and valuable data on the status of the city transport and
mobility systems. In addition, even when we consider AO and DML to be two of the
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most relevant methodologies in the context of IoV, the number of challenges related to
ISVN is huge, and no single approach can solve all of them. Finally, IoV scenarios might
vary depending on each city, and further analytical studies might be required in order to
quantify the potential benefits that could be obtained with the proposed methodologies.

Some future work lines are described next: (i) the design of distributed AO algorithms
that can run inside each vehicle instead of in a centralized computer system, and the
development of the associated communication protocols in order to guarantee a fluent
coordination among the vehicles; (ii) the use of edge computing as an intermediate solution
that provides better response times than a centralized approach while, at the same time,
facilitates coordination of vehicles at a local scale; (iii) the exploration of other optimiza-
tion and machine learning methodologies that can constitute an alternative to the use of
constructive heuristics and biased randomization techniques.
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