77,480 research outputs found

    Towards modular binding-time analysis for first-order Mercury

    Get PDF
    AbstractIn this paper, we describe work in progress on binding-time analysis (BTA) for a first-order subset of Mercury. BTA is the core part of any off-line specialisation system. We formulate BTA by constraint normalisation, enabling the analysis to be performed efficiently and in a modular way.The authors wish to thank Danny De Schreye and Karel De Vlaminck for their continuous interest in this work. They also wish to thank anonymous referees for valuable comments which helped to improve the current paper

    Mercury and selenium binding biomolecules in terrestrial mammals (Cervus elaphus and Sus scrofa) from a mercury exposed area

    Get PDF
    Acknowledgements The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PCC-05-004-2, PAI06-0094, PCI-08-0096, PEII09-0032-5329) and the Ministerio de Economía y Competitividad (CTQ2013-48411-P) for financial support. M.J. Patiño Ropero acknowledges the Junta de Comunidades de Castilla-La Mancha for her PhD. fellowship.Peer reviewedPostprin

    Copper Complexation by Dissolved Organic Matter in arid Soils: A Voltametric Study

    Get PDF
    A voltammetric method was used to estimate the complexing capacity of water extracts from both desert soils sampled at the root zone of creosote and salt cedar plants, and in soils from interspace or background regions where no vegetative influence was apparent. The copper complexing capacity of water extracts of these desert soils was influenced by contact time and pH. In soils from the root zones of creosote and salt cedar plant, copper complexation capacities at pH 8 were from 5 µM to 60 µM after five min contact periods, while 18 h contact periods yielded copper complexation capacities of 40 µM–80 µM. Soils with no vegetative influence had copper complexing capacities of less the 2 µM. The copper complexing capacities of these soils are well correlated with the concentration of organic carbon in the water extract (r2 = 0.86). The abundance of soluble organic matter in the root zone of desert shrubs has the potential to control the solution speciation of Cu2+. The formation of soluble complexes should also have an important influence on the plant uptake and transport of copper, as well as other heavy metals in the root zones of desert shrubs and beyond

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management : a critical review

    Get PDF
    Mercury (Hg) is a potentially harmful trace element in the environment and one of the World Health Organization's foremost chemicals of concern. The threat posed by Hg contaminated soils to humans is pervasive, with an estimated 86 Gg of anthropogenic Hg pollution accumulated in surface soils worldwide. This review critically examines both recent advances and remaining knowledge gaps with respect to cycling of mercury in the soil environment, to aid the assessment and management of risks caused by Hg contamination. Included in this review are factors affecting Hg release from soil to the atmosphere, including how rainfall events drive gaseous elemental mercury (GEM) flux from soils of low Hg content, and how ambient conditions such as atmospheric O3 concentration play a significant role. Mercury contaminated soils constitute complex systems where many interdependent factors, including the amount and composition of soil organic matter and clays, oxidized minerals (e.g. Fe oxides), reduced elements (e.g. S2−), as well as soil pH and redox conditions affect Hg forms and transformation. Speciation influences the extent and rate of Hg subsurface transportation, which has often been assumed insignificant. Nano-sized Hg particles as well as soluble Hg complexes play important roles in soil Hg mobility, availability, and methylation. Finally, implications for human health and suggested research directions are put forward, where there is significant potential to improve remedial actions by accounting for Hg speciation and transportation factors

    Improving PARMA Trailing

    Full text link
    Taylor introduced a variable binding scheme for logic variables in his PARMA system, that uses cycles of bindings rather than the linear chains of bindings used in the standard WAM representation. Both the HAL and dProlog languages make use of the PARMA representation in their Herbrand constraint solvers. Unfortunately, PARMA's trailing scheme is considerably more expensive in both time and space consumption. The aim of this paper is to present several techniques that lower the cost. First, we introduce a trailing analysis for HAL using the classic PARMA trailing scheme that detects and eliminates unnecessary trailings. The analysis, whose accuracy comes from HAL's determinism and mode declarations, has been integrated in the HAL compiler and is shown to produce space improvements as well as speed improvements. Second, we explain how to modify the classic PARMA trailing scheme to halve its trailing cost. This technique is illustrated and evaluated both in the context of dProlog and HAL. Finally, we explain the modifications needed by the trailing analysis in order to be combined with our modified PARMA trailing scheme. Empirical evidence shows that the combination is more effective than any of the techniques when used in isolation. To appear in Theory and Practice of Logic Programming.Comment: 36 pages, 7 figures, 8 table

    Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    Get PDF
    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC

    Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France

    Get PDF
    Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001–June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 lg m2 a1). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 lm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m2) showing that the residence time of Hg in this river is short
    corecore