
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Towards modular binding-time analysis for first-order Mercury

Vanhoof, Wim; Bruynooghe, Maurice

Published in:
WOID'99, Workshop on Optimization and Implementation of Declarative Programs (in connection with ICLP'99,
International Conference on Logic Programming)

DOI:
10.1016/S1571-0661(05)80639-5

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Vanhoof, W & Bruynooghe, M 1999, Towards modular binding-time analysis for first-order Mercury. in M
Leuschel (ed.), WOID'99, Workshop on Optimization and Implementation of Declarative Programs (in connection
with ICLP'99, International Conference on Logic Programming). Electronic Notes in Theoretical Computer
Science, no. 2, vol. 30, Elsevier BV, pp. 189-198, International Workshop on Implementation and Optimization of
Declarative Languages, Las Cruces, New Mexico (USA), 2/12/99. https://doi.org/10.1016/S1571-
0661(05)80639-5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Dec. 2021

https://doi.org/10.1016/S1571-0661(05)80639-5
https://researchportal.unamur.be/en/publications/towards-modular-bindingtime-analysis-for-firstorder-mercury(2b815b68-a1d8-4858-85bb-32292a4e5cb2).html
https://doi.org/10.1016/S1571-0661(05)80639-5
https://doi.org/10.1016/S1571-0661(05)80639-5

p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Towards Modular Binding�Time Analysis for
First�order Mercury

Wim Vanhoof � Maurice Bruynooghe �

Department of Computer Science�

K�U�Leuven� Belgium

Abstract

In this paper� we describe work in progress on binding�time analysis �BTA� for a

�rst�order subset of Mercury� BTA is the core part of any o��line specialisation

system� We formulate BTA by constraint normalisation� enabling the analysis to

be performed e�ciently and in a modular way�

� Introduction and Motivation

Recently� Mercury was introduced as a logic programming language� specif�

ically tuned towards the creation of large�scale� real�world applications ����

When writing large applications� the programmer usually is encouraged to

write general code� that can be used in a number of di�erent situations� and

to abstract� for example concrete data representations by hiding the repre�

sentation behind a number of procedure calls� To support the programmer

employing such software engineering capabilities� Mercury provides a system

of type�� mode� and determinism declarations and a �exible module system�

Employing abstraction and generality� however� imposes a penalty on the

e	ciency of the resulting program� due to the presence of e�g� extra proce�

dure calls and tests with
partially� known input� Program specialisation is

a source�to�source transformation� capable of removing precisely these kinds

of ine	ciencies from a program� by specialising general routines with respect

to the speci�c context they are used in� as such concretising the code and re�

moving layers of abstraction� Specialisation is achieved by performing� at

specialisation�time� those computations for which enough input is already

available ���

� Supported by a specialisation grant of the Flemish Insitute for the Promotion of Scienti�c�

Technological Research in Industry �IWT�
� Supported by �FWO Vlaanderen�

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Vanhoof and Bruynooghe

In the o��line approach to specialisation ��� the program that is to be spe�

cialised� say P � is �rst analysed by a so�called binding�time analysis
BTA��

Given P � an initial call and the instantiatedness of that call�s arguments
i�e� a

description of how much of their value is known at specialisation�time�� BTA

computes� for each program variable� its instantiatedness at specialisation�

time� Using this information� a number of instructions are generated� speci�

fying what goals should be reduced
evaluated during specialisation� or resid�

ualised
recorded in the residual program�� The actual specialisation is per�

formed afterwards� by simply following the instructions generated by BTA�

Binding�time analysis can straightforwardly be described as an application

of top�down� call dependent abstract interpretation� starting from the initial

call and binding�times for its arguments� the body of the called predicate is

analysed resulting in newly computed binding�times� When a predicate call is

encountered during analysis� a fresh such analysis is performed for the called

predicate using the binding�times from the call�

In recent work ���� we showed the applicability of BTA for Mercury and

described a BTA by abstract interpretation� However� such a call dependent

analysis imposes some problems when it is used for analysing a multi�module

program� In Mercury
as in other languages�� a module M exports a number

of declarations
e�g� types� predicates�� � � � that can be used
imported� in

another module M �� These modules can be compiled separately� once M

is compiled� M � can be compiled over and over again� without the need to

recompile M � Consider a program P consisting of the modules M�� � � � �Mn�

The following issues rise when one wants to perform BTA for P using top�down

abstract interpretation�

� Since the analysis is performed top�down
p�s body is analysed when a call

to p is encountered�� the complete source of M�� � � � �Mn must be available

to the analysis�

� A fresh data �ow analysis of the same predicate is performed every time a

call to this predicate
with a di�erent call pattern� is encountered�

� If M is a module that is used in a number of di�erent programs� the called

predicates of M are re�analysed in every program M is used in�

In this work� we formulate a binding�time analysis for Mercury using a

framework of constraint normalisation� The main contributions of this work

are that the proposed BTA is capable of dealing with predicate modes other

than simply in and out
a restriction present in ���� and the fact that a

large part of the present analysis is call�independent� allowing this part to be

performed in a modular way�

The remainder of the paper is organised as follows� in its main body
Sec�

tion ��� we informally introduce some necessary concepts and notation� and

present how binding�time analysis can be performed in a three�stage process�

Section � concludes with some discussion and directions for future work�

�

Vanhoof and Bruynooghe

� Towards Modular Binding�Time Analysis

��� Mercury Preliminaries

Mercury is a statically typed logic language� in which the
possibly poly�

morphic� type of every program variable is statically known� These types

are traditionally represented through �nite type graphs having two kinds of

nodes� a type is represented by a type node� having� for each of the functors

of its de�nition� a functor node which in turn has a number of type nodes as

children� one for each argument of the functor� Given a type graph for type t�

a type node t� in the graph can be uniquely de�ned by its type path� which is

a sequence over functor�integer pairs� describing the path in the graph from t

to t�� The set of all such type paths is denoted by TPath�

An instantiatedness graph is a type graph in which every type node is

labelled bound or free with the constraint that all descendants of a free node

must be free�

Example ��� Consider the following de�nition of a type list
T �� list�T�

���� �� � �T � list�T��� Figure depicts the tree possible instantiated�

ness graphs of the underlying type graph for list
T ��

.

bound

bound .
bound

free

free

.free

list(T)
[]

T

./2

τil 1

list(T)
[]

T

./2
list(T)

[]

T

./2

τil 2 3
τil

Fig� 	� Instantiatedness graphs for list�T �

In order to compare instantiatedness graphs� we introduce the boolean

domain B �
fbound� freeg� �� on which the order free � bound is imposed�

Instantiatedness graphs are traditionally used in Mercury to de�ne the mode

of a predicate� for each argument� the programmer de�nes a mapping from

an initial instantiatedness graph
describing this argument�s instantiation at

predicate entry� to a �nal instantiatedness graph
describing its instantiation

at predicate exit��

Example ��� Consider the following predicate de�nition for append� where

we use the abbreviations free for a type graph in which all nodes are labelled

free� and ground for type graph in which all nodes are labelled bound�

	� pred append�list�T�		ground �� ground

list�T�		ground �� ground

list�T�		free �� ground��

The de�nition says that the three arguments of append are of type list� and

that the �rst two will be completely ground at procedure entry
input�� but the

�

Vanhoof and Bruynooghe

third will be free at procedure entry and ground at procedure exit
output��

In the remainder of this paper� we consider Mercury modules that are in

superhomogeneous form ���� Such a module consists of a number of procedure

de�nitions� a procedure being a predicate with precisely one mode declara�

tion� The de�nition of a procedure is given by a single clause� the arguments

in the head of the clause and in predicate calls in the body are distinct vari�

ables� explicit uni�cations are generated for these variables in the body goal�

and complex uni�cations are broken down into several simpler ones� A goal

Goal� is either an atom or a number of goals connected by conjunction�

disjunction� if then else or not� An atom
Atom� is either a procedure call

PCall� or a uni�cation
Unif�� A uni�cation is either of the form X � Y or

X � f
Y�� � � � � Yn� where X�Y� Y�� � � � � Yn are variables
Var� and f a functor�

Consider for example the de�nition of append in superhomogeneous form� �

append
X�Y�Z��� X � ��� Z �� Y �

X � �E j Es�� append
Es� Y�R�� Z � �EjR��

For a moduleM � ProcM denotesM �s set of procedures� Every subgoal in such

a procedure is uniquely identi�ed by a program point� Put di�erently� a pro�

gram point is associated with every atom and not�� conjunction�� disjunction�

and if�then�else symbol� The set of all such program points is denoted by PP �

For analysis purposes� we consider for a goal G� its associated set of ex�

ecution paths� EP
G�� An execution path is a sequence of program points

identifying the atoms in G that can be encountered during a non�failing eval�

uation of G� Sequences are denoted by ha�� � � � � ani and for two sequences

e� and e�� e� � e� denotes their concatenation� For a goal G� EP
G� can be

formally de�ned by�

De�nition ��� EP
A� � hppi for A � Atom identi�ed by pp � PP � For

G�G�� G�� G� � Goal� EP
G�� G�� �
S
e� � e� for all e� � EP
G�� and

e� � EP
G��� EP
not G� � EP
G�� EP
G��G�� � EP
G�� � EP
G��� and

EP
if G� then G� else G�� �
S

e� � e�� �

S

e� � e�� for all e� � EP
G��� e� �

EP
G�� and e� � EP
G���

The append procedure given before contains two execution paths� one for

each branch of the disjunction� We use fg to denote the �rst branch� f�g to

denote the second one�

We consider procedures that are mode correct when evaluated from left

to right ���� In order to check mode correctness� the compiler performs a

mode analysis� For each procedure� the data �ow in the procedure is recorded�

starting from the initial instantiatedness graphs of the procedure�s arguments�

the analysis determines the exact atoms
s� where each node of a variable�s

� In Mercury	 uni�cations are directed �the direction being given by the mode function I

� see further� and can be expressed as test� assignment� construction� and deconstruction

In this paper	 however	 we made this information explicit by using �	 �	 �� and �� for

respectively deconstruction	 construction	 test and assignment

�

Vanhoof and Bruynooghe

value
corresponding to a type node in the variable�s type graph� gets bound

to a functor� An important observation is that each such node gets bound in

maximally one atom in every execution path of the procedure�s body goal� The

result of mode analysis can be described by a function I � ProcM�PP�Var ��

�
TPath

where I
p� pp� V � � f��� � � � � �ng denotes the set of nodes of V �s value

that get bound to a functor in the atom identi�ed by pp in p�s body�

��� Call�independent Data �ow Analysis

The instantiatedness graphs used by the mode analysis� denote the instantiat�

edness of their associated variables at run�time� when the program is executed

with complete input� During binding�time analysis� we are interested in an�

other kind of instantiatedness graphs� namely instantiatedness graphs that

describe instantiatedness of their associated variables at specialisation�time�

i�e� when the program is run with incomplete input� We will refer to such an

instantiatedness graph as the binding�time of a variable� A call pattern for a

procedure p�n is a sequence of n binding�times� that describe the instantiat�

edness of p�s arguments at procedure entry during specialisation� The set of

all call patterns is denoted by Callp�

Example ��� Reconsider Figure � where �il�� �il�� �il� now denote possible

binding�times for a variable of type list
T � and the de�nition of append
Ex�

ample ����� Although append�s mode declaration says that the �rst two ar�

guments of append should be completely ground at procedure call� a possible

call pattern for append is h�il�� �il�� freei denoting a call to append during

specialisation with the �rst two arguments only partially known� here bound

to a list skeleton�

Instead of computing a single binding�time for each program variable
cor�

responding to a monovariant binding�time analysis�� we compute di�erent

binding�times for a variable X in a procedure p� depending on�

� the call pattern p is called with� This comprises a polyvariant BTA� a

number of di�erent binding�times for the same variable inside a procedure

p are computed� one for each call pattern the procedure is called with during

analysis�

� the execution path in p� instead of associating a binding�time to a variable

X� we associate a binding�time to an occurrence of X on an execution path

in p� allowing X to have a di�erent binding�time on di�erent execution

paths in p�

The set of binding�times associated to a variable X de�ned in a procedure

p can thus be represented by a function X � EP
G� � TPath � Callp �� B�

If h��� � � � � �ni denotes a call pattern for p and � is a node in X�s type graph�

then for an execution path e � EP
G�� X
e� �� h��� � � � � �ni� � bound denotes

that the node � of X gets bound on execution path e in G when p is called

with h��� � � � � �ni� Note that the exact atom in which � is bound is given by

�

Vanhoof and Bruynooghe

the mode function I�

In order to be useful for program specialisation� the computed binding�

times should form a congruent division ��� for our BTA� this means that any

node in a computed binding�time that depends
through data �ow� on another

node that is characterised as free� should itself be characterised as free� To

be as precise as possible� the computed binding�times should incorporate as

much static nodes as possible� without violating the congruence requirement�

Binding�times are thus computed by examining the data �ow inside a proce�

dure� starting from the input nodes from the procedure�s call pattern� Instead

of performing a data �ow analysis pure�sang over the domain of binding�times

requiring a reanalysis of the same procedure for every new encountered call

pattern� as in ����� we divide the BTA in three phases�

i� Each procedure p�n is analysed only once� during this analysis� the data

�ow between the variables of p is made explicit� resulting in a number

of symbolic constraints on the binding�times to be created� ensuring that

the congruence requirement is satis�ed� The binding�times participating

in these constraints are regarded as parametrised w�r�t� p�s call pattern�

Consider for example the deconstruction X � �EjEs� on execution path

f�g in the append example from before� Since the data �ows from X into

E and Es� the congruence requirement requires the following constraints

on possible binding�times for E�

E
f�g� hi� 	 X
f�g� h
�j�� �i�

Es
f�g� hi� 	 X
f�g� hi�

E
s

f�g� h
�j�� �i� 	 X
f�g� h
�j�� �i�

The �rst of these constraints� for example� states that under any call

pattern� the label of the only node of E�s binding�time
i�e� the root

node hi� on execution path e should be at least as dynamic as the node

identi�ed by h
�j�� �i in X�s binding�time on e�

ii� The constraints created in
i� typically include a lot of local dependencies�

that can be resolved while remaining parametric w�r�t� p�s call pattern�

This phase is called constraint reduction� Consider� for example� the

following two constraints
the �rst one generated from the atom Z �

�EjR� in the same append example� the second one is taken from
i���

Z
f�g� h
�j�� �i� 	 E
f�g� hi�

E
f�g� hi� 	 X
f�g� h
�j�� �i�

The �rst of these constraints can be reduced
by unfolding it w�r�t� the

second� to

Z
f�g� h
�j�� �i� 	 X
f�g� h
�j�� �i�

The binding�time nodes on both right�hand sides now denote input nodes

from the call pattern of the append procedure
since all nodes of X�s type

�

Vanhoof and Bruynooghe

graph are input to append�� meaning that they cannot be further reduced�

since no actual call pattern is known�

iii� Given a call pattern for a procedure p� the constraints associated to p

can be evaluated w�r�t� this call pattern� Since after constraint reduc�

tion� these constraints do not contain local dependencies between them�

evaluation can be performed quit e	ciently� resulting in concrete binding�

times for the involved variables�

In order to give a formal de�nition of the constraints generated for the

atoms in a procedure� we introduce the following short�hand notation� For a

set of execution paths S� X�
S
��� � � � � �n� denotes

S
e�S X
e� �� h��� � � � � �ni�

De�nition ��� For a procedure p
F�� � � � � Fn� �
G in ProcM � we de�ne its

associated set of constraints� Cp �
S
CA� for each atom A of G� where CA is

created in the following way� let S � EP
G� be the set of execution paths

containing the atom A� If A is of the form�

� X � Y � CA �
fY�

S
F�� � � � � Fn� 	 X�
S
F�� � � � � Fn� j �� � I
p�A� Y �g�

fX�
S
F�� � � � � Fn� 	 Y�

S
F�� � � � � Fn� j �� � I
p�A�X�g

� X � f
Y�� � � � � Yn��

CA �

S
ifYi

�
S
F�� � � � � Fn� 	 X

hf�ii��
S
F�� � � � � Fn� j �� � I
p�A� Yi�g�

S
ifX

hf�ii��
S
F�� � � � � Fn� 	 Yi

�
S
F�� � � � � Fn� j �hf�ii � � � I
p�A�X�g

� q
X�� � � � �Xk� with q
L�� � � � � Lk� �
Gq � ProcM �S
ifXi

�
S
F�� � � � � Fn� 	 Li

�
EP �Gq�

X�S
F�� � � � � Fn�� � � � �XkS
F�� � � � � Fn�� j
�� � I
p�A�Xi�g

In case of a uni�cation� the created constraints express that� if there is data

�ow for a node � of X to a node � of Y � then if � is free then the binding�time

of node � should also be free� In case of a procedure call to q with actual

arguments X�� � � �Xk
being variables of p�� then the binding�times for the

output nodes � of these variables should be free if the corresponding nodes of

q�s formal arguments are free when these are evaluated with a call pattern

consisting of the binding�times of X�� � � �Xn�

Example ��� For the append procedure� the set Cappend is as follows�

Z
hi

f�g
X�Y�Z� 	 Y
hi

f�g
X�Y�Z�

Z
h���i

f�g
X�Y�Z� 	 Y
h���i

f�g
X�Y�Z�

E
hi

f�g
X�Y�Z� 	 X
h���i

f�g
X�Y�Z�

Es

hi

f�g
X�Y�Z� 	 X
hi

f�g
X�Y�Z�

R
hi

f�g
X�Y�Z� 	 Z
hi

f���g
Xf�g
X�Y�Z��Yf�g
X�Y�Z��Zf�g
X�Y�Z��

R
h���i

f�g
X�Y�Z� 	 Z
h���i

f���g
Xf�g
X�Y�Z��Yf�g
X�Y�Z��Zf�g
X�Y�Z��

Z
h���i

f�g

X�Y�Z� 	 E

hi

f�g

X�Y�Z�

�

Vanhoof and Bruynooghe

Z
hi
f�g
X�Y�Z� 	 R

hi
f�g
X�Y�Z�

Given the binding�times for an initial procedure call� the result of BTA for
a module M is the least solution
in the sense that as few nodes as possible
have a value free� to the constraint system CM � where CM � �Cp for each
p � ProcM � For a set of constraints C� C denotes the set consisting of the
reduced constraints of C� Of course� reduction is required to preserve the least
solution�

Strategy

A number of additional constraints are created that link the binding�time of a
variable�s node to the reducibility at specialisation�time of the atom in which
it is bound� when an atom is residualised� the nodes of its arguments that are
bound by this atom should be made free � re�ecting their state of instantiation
at specialisation�time� Likewise� the decisions when to reduce or residualise an
atom
depending on the binding�times of the nodes that are input to the atom
and the latter�s place in the control �ow� can also be expressed by additional
constraints� In the remainder of this paper� we assume Cp to include these
constraints�

Binding�time Analysis of a Multi�module Program

Given a module M that does not import anything� CM can be computed
straightforwardly� In case M imports from M�� � � � �Mn� CM can be computed
given only CM�

� � � � � CMn
� in order to normalise the constraints of M � the

normalised constraints from M�� � � � �Mn can be used without the need to
reanalyse or renormalise the constraints of these modules� As such� the call�
independent data �ow analysis can be performed bottom�up in a modular way�
without the need to reanalyse a module when it is imported in a module to
be analysed�

��� From Binding�times to Annotations

One way of representing the results obtained by BTA consists of annotating
the original source program by instructions� specifying what goals are to be
reduced at specialisation�time and what goals should be residualised� Anno�
tation is a call�dependent process� given a call to p
F�� � � � � Fn� �
G with call
pattern ��� � � � � �n� Cp is evaluated w�r�t� ��� � � � � �n to obtain binding�times
for every variable in G� These binding�times are used to annotate each atom
in G as either reducible or non�reducible� If during annotating G� a call to
q with call pattern ��� � � � � �k is marked as reducible
denoting it should be
unfolded during specialisation�� an annotated version of q must be created
w�r�t� ��� � � � � �n�

Example ��	 With the possible instantiatedness graphs for list
T � as de�
picted in Figure � there are � possible call patterns for append� From these�

�

Vanhoof and Bruynooghe

only � are really interesting� hfree� free� freei�h�il�� �il�� freei and h�il�� �il�� freei�
We show two possible annotated versions of append� for the call pattern

h�il� � �il�� freei� denoting that the two input arguments of append are bound to

a list skeleton� and for hfree� free� freei� denoting that the two input arguments

are unknown� In the annotated versions� underlined variables denote vari�

ables that are free at specialisation�time� not�underlined variables are bound

at least to an outermost functor� at specialisation time� Atoms annotated

with the superscript s denote they can be evaluated at specialisation time�

� append with call pattern h�il�� �il�� freei�

append
X�Y�Z��� X �s
��� Z �� Y �

X �s
�E j Es�� append
Es� Y�R�

s
� Z � �EjR��

� append with call pattern hfree� free� freei�

append
X�Y �Z��� X � ��� Z �� Y �

X � �E jEs�� append
Es� Y �R�� Z � �EjR��

In principle� also the annotation phase can be made modular� Since the

�nite� type graphs and modes for all arguments of a procedure p are known�

all possible call patterns for p can be enumerated� Cp can be evaluated w�r�t�

these call patterns and for those patterns for which a call to p can be made

reducible� an annotated version of p can be created� For a procedure p� let Ap

denote the set of all such annotated versions of p� If a call to p w�r�t ��� � � � � �n

is encountered� Cp is evaluated and if the call is annotated reducible� it is

renamed to the right version in Ap� For a multi module program M�� � � � �Mn�

CM�
�AM�

�� � � � �
CMn
�AMn

� can be computed in a modular� bottom�up fash�

ion� where AM �
S
Ap�p � ProcM �

In practice� a time�space tradeo� needs to be considered� for some predi�

cates p� the set Ap may contain a considerable number of annotated versions

depending on the number of p�s arguments and their possible binding�times�

� some of which may never be needed� In that case� a combined approach

may be feasible� a subset of Ap is generated in a call�independent way
for

�frequently occurring� call patterns�� which is gradually extended when calls

occur for which no annotated version is yet available� In such situations�

however� the de�nition of p must be available� sacrifying a purely modular

annotation phase�

� Discussion

We have discussed how both the computation of binding�times and the anno�

tation of a Mercury source program can be achieved in a call�independent way�

This enables BTA to be performed one module at a time� and e	ciently� since

the hard part of the data�ow analysis
constraint normalisation� needs only

to be performed once for each module� As such� our analysis tries to overcome

the problems with a call�dependent analysis sketched in the introduction�

�

Vanhoof and Bruynooghe

The described BTA by constraint normalisation was implemented
at the

moment for one module and for predicates having in�out modes only�� Topics

of ongoing research include extending the analysis to deal with higher�order

constructs� extending the implementation to deal with modules and Mercury�s

full mode system� experimenting with di�erent specialisation strategies and

performing some benchmarks on small and larger programs�

Acknowledgments

The authors wish to thank Danny De Schreye and Karel De Vlaminck for their

continuous interest in this work� They also wish to thank anonymous referees

for valuable comments which helped to improve the current paper�

References

	� N� D� Jones� C� K� Gomard� and P� Sestoft� Partial Evaluation and Automatic

Program Generation� Prentice Hall� 	���

�� Zoltan Somogyi� Fergus Henderson� and Thomas Conway� The execution
algorithm of Mercury� an e�cient purely declarative logic programming language�
Journal of Logic Programming� ���	���	����� October�November 	����

� W� Vanhoof and M� Bruynooghe� Binding�time analysis for mercury� In D� De
Schreye� editor� ��th International Conference on Logic Programming� MIT
Press� 	���� To Appear�

�

