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Towards Modular Binding�Time Analysis for
First�order Mercury

Wim Vanhoof � Maurice Bruynooghe �

Department of Computer Science�

K�U�Leuven� Belgium

Abstract

In this paper� we describe work in progress on binding�time analysis �BTA� for a

�rst�order subset of Mercury� BTA is the core part of any o��line specialisation

system� We formulate BTA by constraint normalisation� enabling the analysis to

be performed e�ciently and in a modular way�

� Introduction and Motivation

Recently� Mercury was introduced as a logic programming language� specif�

ically tuned towards the creation of large�scale� real�world applications ����

When writing large applications� the programmer usually is encouraged to

write general code� that can be used in a number of di�erent situations� and

to abstract� for example concrete data representations by hiding the repre�

sentation behind a number of procedure calls� To support the programmer

employing such software engineering capabilities� Mercury provides a system

of type�� mode� and determinism declarations and a �exible module system�

Employing abstraction and generality� however� imposes a penalty on the

e	ciency of the resulting program� due to the presence of e�g� extra proce�

dure calls and tests with 
partially� known input� Program specialisation is

a source�to�source transformation� capable of removing precisely these kinds

of ine	ciencies from a program� by specialising general routines with respect

to the speci�c context they are used in� as such concretising the code and re�

moving layers of abstraction� Specialisation is achieved by performing� at

specialisation�time� those computations for which enough input is already

available ���
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In the o��line approach to specialisation ��� the program that is to be spe�

cialised� say P � is �rst analysed by a so�called binding�time analysis 
BTA��

Given P � an initial call and the instantiatedness of that call�s arguments 
i�e� a

description of how much of their value is known at specialisation�time�� BTA

computes� for each program variable� its instantiatedness at specialisation�

time� Using this information� a number of instructions are generated� speci�

fying what goals should be reduced 
evaluated during specialisation� or resid�

ualised 
recorded in the residual program�� The actual specialisation is per�

formed afterwards� by simply following the instructions generated by BTA�

Binding�time analysis can straightforwardly be described as an application

of top�down� call dependent abstract interpretation� starting from the initial

call and binding�times for its arguments� the body of the called predicate is

analysed resulting in newly computed binding�times� When a predicate call is

encountered during analysis� a fresh such analysis is performed for the called

predicate using the binding�times from the call�

In recent work ���� we showed the applicability of BTA for Mercury and

described a BTA by abstract interpretation� However� such a call dependent

analysis imposes some problems when it is used for analysing a multi�module

program� In Mercury 
as in other languages�� a module M exports a number

of declarations 
e�g� types� predicates�� � � � that can be used 
imported� in

another module M �� These modules can be compiled separately� once M

is compiled� M � can be compiled over and over again� without the need to

recompile M � Consider a program P consisting of the modules M�� � � � �Mn�

The following issues rise when one wants to perform BTA for P using top�down

abstract interpretation�

� Since the analysis is performed top�down 
p�s body is analysed when a call

to p is encountered�� the complete source of M�� � � � �Mn must be available

to the analysis�

� A fresh data �ow analysis of the same predicate is performed every time a

call to this predicate 
with a di�erent call pattern� is encountered�

� If M is a module that is used in a number of di�erent programs� the called

predicates of M are re�analysed in every program M is used in�

In this work� we formulate a binding�time analysis for Mercury using a

framework of constraint normalisation� The main contributions of this work

are that the proposed BTA is capable of dealing with predicate modes other

than simply in and out 
a restriction present in ���� and the fact that a

large part of the present analysis is call�independent� allowing this part to be

performed in a modular way�

The remainder of the paper is organised as follows� in its main body 
Sec�

tion ��� we informally introduce some necessary concepts and notation� and

present how binding�time analysis can be performed in a three�stage process�

Section � concludes with some discussion and directions for future work�

�
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� Towards Modular Binding�Time Analysis

��� Mercury Preliminaries

Mercury is a statically typed logic language� in which the 
possibly poly�

morphic� type of every program variable is statically known� These types

are traditionally represented through �nite type graphs having two kinds of

nodes� a type is represented by a type node� having� for each of the functors

of its de�nition� a functor node which in turn has a number of type nodes as

children� one for each argument of the functor� Given a type graph for type t�

a type node t� in the graph can be uniquely de�ned by its type path� which is

a sequence over functor�integer pairs� describing the path in the graph from t

to t�� The set of all such type paths is denoted by TPath�

An instantiatedness graph is a type graph in which every type node is

labelled bound or free with the constraint that all descendants of a free node

must be free�

Example ��� Consider the following de�nition of a type list
T �� list�T�

���� �� � �T � list�T��� Figure  depicts the tree possible instantiated�

ness graphs of the underlying type graph for list
T ��

.

bound

bound .
bound

free

free

.free

list(T)
[]

T

./2

τil 1

list(T)
[]

T

./2
list(T)

[]

T

./2

τil 2 3
τil

Fig� 	� Instantiatedness graphs for list�T �

In order to compare instantiatedness graphs� we introduce the boolean

domain B � 
fbound� freeg� �� on which the order free � bound is imposed�

Instantiatedness graphs are traditionally used in Mercury to de�ne the mode

of a predicate� for each argument� the programmer de�nes a mapping from

an initial instantiatedness graph 
describing this argument�s instantiation at

predicate entry� to a �nal instantiatedness graph 
describing its instantiation

at predicate exit��

Example ��� Consider the following predicate de�nition for append� where

we use the abbreviations free for a type graph in which all nodes are labelled

free� and ground for type graph in which all nodes are labelled bound�

	� pred append�list�T�		ground �� ground


list�T�		ground �� ground


list�T�		free �� ground��

The de�nition says that the three arguments of append are of type list� and

that the �rst two will be completely ground at procedure entry 
input�� but the

�
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third will be free at procedure entry and ground at procedure exit 
output��

In the remainder of this paper� we consider Mercury modules that are in

superhomogeneous form ���� Such a module consists of a number of procedure

de�nitions� a procedure being a predicate with precisely one mode declara�

tion� The de�nition of a procedure is given by a single clause� the arguments

in the head of the clause and in predicate calls in the body are distinct vari�

ables� explicit uni�cations are generated for these variables in the body goal�

and complex uni�cations are broken down into several simpler ones� A goal


Goal� is either an atom or a number of goals connected by conjunction�

disjunction� if then else or not� An atom 
Atom� is either a procedure call


PCall� or a uni�cation 
Unif�� A uni�cation is either of the form X � Y or

X � f
Y�� � � � � Yn� where X�Y� Y�� � � � � Yn are variables 
Var� and f a functor�

Consider for example the de�nition of append in superhomogeneous form� �

append
X�Y�Z��� X � ��� Z �� Y �

X � �E j Es�� append
Es� Y�R�� Z � �EjR��

For a moduleM � ProcM denotesM �s set of procedures� Every subgoal in such

a procedure is uniquely identi�ed by a program point� Put di�erently� a pro�

gram point is associated with every atom and not�� conjunction�� disjunction�

and if�then�else symbol� The set of all such program points is denoted by PP �

For analysis purposes� we consider for a goal G� its associated set of ex�

ecution paths� EP 
G�� An execution path is a sequence of program points

identifying the atoms in G that can be encountered during a non�failing eval�

uation of G� Sequences are denoted by ha�� � � � � ani and for two sequences

e� and e�� e� � e� denotes their concatenation� For a goal G� EP 
G� can be

formally de�ned by�

De�nition ��� EP 
A� � hppi for A � Atom identi�ed by pp � PP � For

G�G�� G�� G� � Goal� EP 
G�� G�� �
S
e� � e� for all e� � EP 
G�� and

e� � EP 
G��� EP 
not G� � EP 
G�� EP 
G��G�� � EP 
G�� � EP 
G��� and

EP 
if G� then G� else G�� �
S

e� � e�� �

S

e� � e�� for all e� � EP 
G��� e� �

EP 
G�� and e� � EP 
G���

The append procedure given before contains two execution paths� one for

each branch of the disjunction� We use fg to denote the �rst branch� f�g to

denote the second one�

We consider procedures that are mode correct when evaluated from left

to right ���� In order to check mode correctness� the compiler performs a

mode analysis� For each procedure� the data �ow in the procedure is recorded�

starting from the initial instantiatedness graphs of the procedure�s arguments�

the analysis determines the exact atoms
s� where each node of a variable�s

� In Mercury	 uni�cations are directed �the direction being given by the mode function I

� see further� and can be expressed as test� assignment� construction� and deconstruction


In this paper	 however	 we made this information explicit by using �	 �	 �� and �� for

respectively deconstruction	 construction	 test and assignment


�
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value 
corresponding to a type node in the variable�s type graph� gets bound

to a functor� An important observation is that each such node gets bound in

maximally one atom in every execution path of the procedure�s body goal� The

result of mode analysis can be described by a function I � ProcM�PP�Var ��

�
TPath

where I
p� pp� V � � f��� � � � � �ng denotes the set of nodes of V �s value

that get bound to a functor in the atom identi�ed by pp in p�s body�

��� Call�independent Data �ow Analysis

The instantiatedness graphs used by the mode analysis� denote the instantiat�

edness of their associated variables at run�time� when the program is executed

with complete input� During binding�time analysis� we are interested in an�

other kind of instantiatedness graphs� namely instantiatedness graphs that

describe instantiatedness of their associated variables at specialisation�time�

i�e� when the program is run with incomplete input� We will refer to such an

instantiatedness graph as the binding�time of a variable� A call pattern for a

procedure p�n is a sequence of n binding�times� that describe the instantiat�

edness of p�s arguments at procedure entry during specialisation� The set of

all call patterns is denoted by Callp�

Example ��� Reconsider Figure � where �il�� �il�� �il� now denote possible

binding�times for a variable of type list
T � and the de�nition of append 
Ex�

ample ����� Although append�s mode declaration says that the �rst two ar�

guments of append should be completely ground at procedure call� a possible

call pattern for append is h�il�� �il�� freei denoting a call to append during

specialisation with the �rst two arguments only partially known� here bound

to a list skeleton�

Instead of computing a single binding�time for each program variable 
cor�

responding to a monovariant binding�time analysis�� we compute di�erent

binding�times for a variable X in a procedure p� depending on�

� the call pattern p is called with� This comprises a polyvariant BTA� a

number of di�erent binding�times for the same variable inside a procedure

p are computed� one for each call pattern the procedure is called with during

analysis�

� the execution path in p� instead of associating a binding�time to a variable

X� we associate a binding�time to an occurrence of X on an execution path

in p� allowing X to have a di�erent binding�time on di�erent execution

paths in p�

The set of binding�times associated to a variable X de�ned in a procedure

p can thus be represented by a function X � EP 
G� � TPath � Callp �� B�

If h��� � � � � �ni denotes a call pattern for p and � is a node in X�s type graph�

then for an execution path e � EP 
G�� X
e� �� h��� � � � � �ni� � bound denotes

that the node � of X gets bound on execution path e in G when p is called

with h��� � � � � �ni� Note that the exact atom in which � is bound is given by

�
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the mode function I�

In order to be useful for program specialisation� the computed binding�

times should form a congruent division ��� for our BTA� this means that any

node in a computed binding�time that depends 
through data �ow� on another

node that is characterised as free� should itself be characterised as free� To

be as precise as possible� the computed binding�times should incorporate as

much static nodes as possible� without violating the congruence requirement�

Binding�times are thus computed by examining the data �ow inside a proce�

dure� starting from the input nodes from the procedure�s call pattern� Instead

of performing a data �ow analysis pure�sang over the domain of binding�times


requiring a reanalysis of the same procedure for every new encountered call

pattern� as in ����� we divide the BTA in three phases�


i� Each procedure p�n is analysed only once� during this analysis� the data

�ow between the variables of p is made explicit� resulting in a number

of symbolic constraints on the binding�times to be created� ensuring that

the congruence requirement is satis�ed� The binding�times participating

in these constraints are regarded as parametrised w�r�t� p�s call pattern�

Consider for example the deconstruction X � �EjEs� on execution path

f�g in the append example from before� Since the data �ows from X into

E and Es� the congruence requirement requires the following constraints

on possible binding�times for E�

E
f�g� hi� 	 X
f�g� h
�j�� �i�

Es
f�g� hi� 	 X
f�g� hi�

E
s

f�g� h
�j�� �i� 	 X
f�g� h
�j�� �i�

The �rst of these constraints� for example� states that under any call

pattern� the label of the only node of E�s binding�time 
i�e� the root

node hi� on execution path e should be at least as dynamic as the node

identi�ed by h
�j�� �i in X�s binding�time on e�


ii� The constraints created in 
i� typically include a lot of local dependencies�

that can be resolved while remaining parametric w�r�t� p�s call pattern�

This phase is called constraint reduction� Consider� for example� the

following two constraints 
the �rst one generated from the atom Z �

�EjR� in the same append example� the second one is taken from 
i���

Z
f�g� h
�j�� �i� 	 E
f�g� hi�

E
f�g� hi� 	 X
f�g� h
�j�� �i�

The �rst of these constraints can be reduced 
by unfolding it w�r�t� the

second� to

Z
f�g� h
�j�� �i� 	 X
f�g� h
�j�� �i�

The binding�time nodes on both right�hand sides now denote input nodes

from the call pattern of the append procedure 
since all nodes of X�s type

�
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graph are input to append�� meaning that they cannot be further reduced�

since no actual call pattern is known�


iii� Given a call pattern for a procedure p� the constraints associated to p

can be evaluated w�r�t� this call pattern� Since after constraint reduc�

tion� these constraints do not contain local dependencies between them�

evaluation can be performed quit e	ciently� resulting in concrete binding�

times for the involved variables�

In order to give a formal de�nition of the constraints generated for the

atoms in a procedure� we introduce the following short�hand notation� For a

set of execution paths S� X�
S
��� � � � � �n� denotes

S
e�S X
e� �� h��� � � � � �ni�

De�nition ��� For a procedure p
F�� � � � � Fn� � 
G in ProcM � we de�ne its

associated set of constraints� Cp �
S
CA� for each atom A of G� where CA is

created in the following way� let S � EP 
G� be the set of execution paths

containing the atom A� If A is of the form�

� X � Y � CA �
fY�

S
F�� � � � � Fn� 	 X�
S
F�� � � � � Fn� j �� � I
p�A� Y �g�

fX�
S
F�� � � � � Fn� 	 Y�

S
F�� � � � � Fn� j �� � I
p�A�X�g

� X � f
Y�� � � � � Yn��

CA �

S
ifYi

�
S
F�� � � � � Fn� 	 X

hf�ii��
S 
F�� � � � � Fn� j �� � I
p�A� Yi�g�

S
ifX

hf�ii��
S 
F�� � � � � Fn� 	 Yi

�
S
F�� � � � � Fn� j �hf�ii � � � I
p�A�X�g

� q
X�� � � � �Xk� with q
L�� � � � � Lk� � 
Gq � ProcM �S
ifXi

�
S
F�� � � � � Fn� 	 Li

�
EP �Gq�


X�S
F�� � � � � Fn�� � � � �XkS
F�� � � � � Fn�� j
�� � I
p�A�Xi�g

In case of a uni�cation� the created constraints express that� if there is data

�ow for a node � of X to a node � of Y � then if � is free then the binding�time

of node � should also be free� In case of a procedure call to q with actual

arguments X�� � � �Xk 
being variables of p�� then the binding�times for the

output nodes � of these variables should be free if the corresponding nodes of

q�s formal arguments are free when these are evaluated with a call pattern

consisting of the binding�times of X�� � � �Xn�

Example ��� For the append procedure� the set Cappend is as follows�

Z
hi

f�g
X�Y�Z� 	 Y
hi

f�g
X�Y�Z�

Z
h���i

f�g 
X�Y�Z� 	 Y
h���i

f�g 
X�Y�Z�

E
hi

f�g
X�Y�Z� 	 X
h���i

f�g 
X�Y�Z�

Es

hi

f�g
X�Y�Z� 	 X
hi

f�g
X�Y�Z�

R
hi

f�g
X�Y�Z� 	 Z
hi

f���g
Xf�g
X�Y�Z��Yf�g
X�Y�Z��Zf�g
X�Y�Z��

R
h���i

f�g 
X�Y�Z� 	 Z
h���i

f���g
Xf�g
X�Y�Z��Yf�g
X�Y�Z��Zf�g
X�Y�Z��

Z
h���i

f�g

X�Y�Z� 	 E

hi

f�g

X�Y�Z�

�
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Z
hi
f�g
X�Y�Z� 	 R

hi
f�g
X�Y�Z�

Given the binding�times for an initial procedure call� the result of BTA for
a module M is the least solution 
in the sense that as few nodes as possible
have a value free� to the constraint system CM � where CM � �Cp for each
p � ProcM � For a set of constraints C� C denotes the set consisting of the
reduced constraints of C� Of course� reduction is required to preserve the least
solution�

Strategy

A number of additional constraints are created that link the binding�time of a
variable�s node to the reducibility at specialisation�time of the atom in which
it is bound� when an atom is residualised� the nodes of its arguments that are
bound by this atom should be made free � re�ecting their state of instantiation
at specialisation�time� Likewise� the decisions when to reduce or residualise an
atom 
depending on the binding�times of the nodes that are input to the atom
and the latter�s place in the control �ow� can also be expressed by additional
constraints� In the remainder of this paper� we assume Cp to include these
constraints�

Binding�time Analysis of a Multi�module Program

Given a module M that does not import anything� CM can be computed
straightforwardly� In case M imports from M�� � � � �Mn� CM can be computed
given only CM�

� � � � � CMn
� in order to normalise the constraints of M � the

normalised constraints from M�� � � � �Mn can be used without the need to
reanalyse or renormalise the constraints of these modules� As such� the call�
independent data �ow analysis can be performed bottom�up in a modular way�
without the need to reanalyse a module when it is imported in a module to
be analysed�

��� From Binding�times to Annotations

One way of representing the results obtained by BTA consists of annotating
the original source program by instructions� specifying what goals are to be
reduced at specialisation�time and what goals should be residualised� Anno�
tation is a call�dependent process� given a call to p
F�� � � � � Fn� � 
G with call
pattern ��� � � � � �n� Cp is evaluated w�r�t� ��� � � � � �n to obtain binding�times
for every variable in G� These binding�times are used to annotate each atom
in G as either reducible or non�reducible� If during annotating G� a call to
q with call pattern ��� � � � � �k is marked as reducible 
denoting it should be
unfolded during specialisation�� an annotated version of q must be created
w�r�t� ��� � � � � �n�

Example ��	 With the possible instantiatedness graphs for list
T � as de�
picted in Figure � there are � possible call patterns for append� From these�

�
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only � are really interesting� hfree� free� freei�h�il�� �il�� freei and h�il�� �il�� freei�
We show two possible annotated versions of append� for the call pattern

h�il� � �il�� freei� denoting that the two input arguments of append are bound to

a list skeleton� and for hfree� free� freei� denoting that the two input arguments

are unknown� In the annotated versions� underlined variables denote vari�

ables that are free at specialisation�time� not�underlined variables are bound


at least to an outermost functor� at specialisation time� Atoms annotated

with the superscript s denote they can be evaluated at specialisation time�

� append with call pattern h�il�� �il�� freei�

append
X�Y�Z��� X �s
��� Z �� Y �

X �s
�E j Es�� append
Es� Y�R�

s
� Z � �EjR��

� append with call pattern hfree� free� freei�

append
X�Y �Z��� X � ��� Z �� Y �

X � �E jEs�� append
Es� Y �R�� Z � �EjR��

In principle� also the annotation phase can be made modular� Since the


�nite� type graphs and modes for all arguments of a procedure p are known�

all possible call patterns for p can be enumerated� Cp can be evaluated w�r�t�

these call patterns and for those patterns for which a call to p can be made

reducible� an annotated version of p can be created� For a procedure p� let Ap

denote the set of all such annotated versions of p� If a call to p w�r�t ��� � � � � �n

is encountered� Cp is evaluated and if the call is annotated reducible� it is

renamed to the right version in Ap� For a multi module program M�� � � � �Mn�


CM�
�AM�

�� � � � � 
CMn
�AMn

� can be computed in a modular� bottom�up fash�

ion� where AM �
S
Ap�p � ProcM �

In practice� a time�space tradeo� needs to be considered� for some predi�

cates p� the set Ap may contain a considerable number of annotated versions


depending on the number of p�s arguments and their possible binding�times�

� some of which may never be needed� In that case� a combined approach

may be feasible� a subset of Ap is generated in a call�independent way 
for

�frequently occurring� call patterns�� which is gradually extended when calls

occur for which no annotated version is yet available� In such situations�

however� the de�nition of p must be available� sacrifying a purely modular

annotation phase�

� Discussion

We have discussed how both the computation of binding�times and the anno�

tation of a Mercury source program can be achieved in a call�independent way�

This enables BTA to be performed one module at a time� and e	ciently� since

the hard part of the data�ow analysis 
constraint normalisation� needs only

to be performed once for each module� As such� our analysis tries to overcome

the problems with a call�dependent analysis sketched in the introduction�
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The described BTA by constraint normalisation was implemented 
at the

moment for one module and for predicates having in�out modes only�� Topics

of ongoing research include extending the analysis to deal with higher�order

constructs� extending the implementation to deal with modules and Mercury�s

full mode system� experimenting with di�erent specialisation strategies and

performing some benchmarks on small and larger programs�
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