18 research outputs found

    Big Data Management and Analytics for Mobility Forecasting in datAcron

    Get PDF
    The exploitation of heterogeneous data sources offering very large historical and streaming data is important to increasing the accuracy of operations when analysing and predicting future states of moving entities (planes, vessels, etc.). This article presents the overall goals and big data challenges addressed by datAcron on big data analytics for time-critical mobility forecasting

    MARITIME DATA INTEGRATION AND ANALYSIS: RECENT PROGRESS AND RESEARCH CHALLENGES

    Get PDF
    The correlated exploitation of heterogeneous data sources offering very large historical as well as streaming data is important to increasing the accuracy of computations when analysing and predicting future states of moving entities. This is particularly critical in the maritime domain, where online tracking, early recognition of events, and real-time forecast of anticipated trajectories of vessels are crucial to safety and operations at sea. The objective of this paper is to review current research challenges and trends tied to the integration, management, analysis, and visualization of objects moving at sea as well as a few suggestions for a successful development of maritime forecasting and decision-support systems. Document type: Articl

    MARITIME DATA INTEGRATION AND ANALYSIS: RECENT PROGRESS AND RESEARCH CHALLENGES

    Get PDF
    The correlated exploitation of heterogeneous data sources offering very large historical as well as streaming data is important to increasing the accuracy of computations when analysing and predicting future states of moving entities. This is particularly critical in the maritime domain, where online tracking, early recognition of events, and real-time forecast of anticipated trajectories of vessels are crucial to safety and operations at sea. The objective of this paper is to review current research challenges and trends tied to the integration, management, analysis, and visualization of objects moving at sea as well as a few suggestions for a successful development of maritime forecasting and decision-support systems. Document type: Articl

    Composite event recognition for maritime monitoring

    Get PDF
    Τα συστήματα θαλάσσιας επιτήρησης υποστηρίζουν την ασφαλέστερη ναυτιλία, καθώς επιτρέπουν την ανίχνευση σε πραγματικό χρόνο, επικίνδυνες, ύποπτες και παράνομες δραστηριοτήτες σκαφών. Η πρόθεση αυτής της πτυχιακής είναι η ανάπτυξη μίας αρχιτεκτονικής συστημάτων εστιασμένη στην θαλάσσια επιτήρηση, καθώς και ενός συνόλου “μοτίβων”, ικανά να εφράσουν αποτελεσματικά ναυτιλιακές δραστηριότητες και συμβάντα. Σε αυτή την δουλεία χρησιμοποιούμε ως μήχανη αναγνωρίσης γεγονότων τον Λογισμό Γεγονότων Πραγματικού Χρόνου, μία σύγχρονη υλοποιήση σε γλώσσα Λογικού Προγραμματισμού, του Λογισμού Γεγονότων, καθώς επίσης ένα εργαλείο συμπίεσης τροχιών και ένα εργαλείο ευρέσης χωρικών σχέσεων. Για να βελτιώσουμε περαιτέρω την απόδοση της μηχανής αναγνωρίσης γεγονότων, δημιουργήσαμε ένα γενικό μηχανισμό δυναμικής θεμελίωσης ο οποίος φαίνεται να είναι αποτελεσματικός στα ναυτιλιακά δεδομένα. Επιπλεόν, μέσω της συνεργάσιας μας με τους ειδικούς του δημιουργήσαμε ένα σύνολο από μοτιβά ναυτιλιακής δραστηριότητας, τα οποία και χρησιμοποιούμε στην πειραματική ανάλυση του συστήματος. Για την αξιολόγηση της προτεινόμενης αρχιτεκτονικής εστιάζουμε σε απόδοση και σε ακρίβεια, χρησιμοποιώντας δύο μορφές ροών πραγματικών δεδομένων πλοιών.Maritime monitoring systems support safe shipping as they allow for the real-time detection of dangerous, suspicious and illegal vessel activities. The intent of this thesis was the development of a composite event recognition engine for maritime monitoring and the construction of a set of patterns expressing effectively maritime activities in the Event Calculus. In this work, we use the Run-Time Event Calculus, a modern Prolog implementation of the Event Calculus along with tools allowing the compression of data streams, and the spatio-temporal link discovery. Additionally, to further improve the performance of recognition engine we extended the Run-Time Event Calculus with a dynamic grounding mechanism. Moreover, to increase the accuracy of the proposed system, we have been collaborating with domain experts in order to construct effective patterns of maritime activity. We evaluated our system in terms of predictive accuracy and efficiency using real kinematic vessel data

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification

    Near Real-time S-AIS: Recent Developments and Implementation Possibilities for Global Maritime Stakeholders

    Get PDF
    The Automatic identification System (AIS) has been mainly designed to improve safety and efficiency of navigation, environmental protection, coastal traffic monitoring simplifying identification and communication. Additionally, historical AIS data have been used in many other areas of maritime safety, economic and environmental research. The probability of the detection of terrestrial AIS signals from space was presented in 2003, following the advancements in micro satellite technology. Through constant development, research and cooperation between governmental and private sectors, Satellite AIS (S-AIS) has been continuously evolving. Advancements in signal and data processing techniques have resulted in an improved detection over vast areas outside of terrestrial range. Some of the challenges of S-AIS technology include satellite revisit times, message collision and ship detection probability. Data processing latency and lacking the continuous real-time coverage made it less reliable for end user in certain aspects of monitoring and data analysis. Recent developments and improvements by leading S-AIS service providers have reduced latency issues. Complementing with terrestrial AIS and other technologies, near real-time S-AIS can further enhance all areas of the global maritime monitoring domain with emerging possibilities for maritime industry
    corecore