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a b s t r a c t

We introduce the concept of time mask, which is a type of temporal filter suitable for selection of
multiple disjoint time intervals in which some query conditions fulfil. Such a filter can be applied to time-
referenced objects, such as events and trajectories, for selecting those objects or segments of trajectories
that fit in one of the selected time intervals. The selected subsets of objects or segments are dynamically
summarized in various ways, and the summaries are represented visually on maps and/or other displays
to enable exploration. The time mask filtering can be especially helpful in analysis of disparate data
(e.g., event records, positions of moving objects, and time series of measurements), which may come
from different sources. To detect relationships between such data, the analyst may set query conditions
on the basis of one dataset and investigate the subsets of objects and values in the other datasets that
co-occurred in timewith these conditions.We describe the desired features of an interactive tool for time
mask filtering and present a possible implementation of such a tool. By example of analysing two real
world data collections related to aviation and maritime traffic, we show the way of using time masks in
combination with other types of filters and demonstrate the utility of the time mask filtering.

© 2017 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In interactive exploration of spatiotemporal data, such as data
describing spatial events or trajectories of moving objects, it is
often necessary to filter the data (Shneiderman, 1996), i.e., select
subsets of events, trajectories, or segments of trajectories based on
the spatial locations, time references, values of attributes, and/or
other conditions (Andrienko et al., 2013a). There are two common
approaches to temporal filtering. First, it can be done by selecting
a continuous time interval within the time range of the data.
This kind of filter adheres to the linear view of time, in which
time is treated as a continuous linearly ordered sequence of time
instants. Another possible view of time is cyclic, in which time is

* Corresponding author at: Fraunhofer Institute IAIS, Sankt Augustin, Germany.
E-mail address: gennady.andrinko@iais.fraunhofer.de (G. Andrienko).
Peer review under responsibility of Zhejiang University and Zhejiang

University Press.

considered as repetition of cycles, particularly, diurnal,weekly, and
annual (seasonal). Time-related data can be filtered according to
the positions of the time references within a time cycle. These two
types of filtering can be called linear and cyclic, respectively.

We introduce onemore type of temporal filtering, inwhich time
intervals are selected based on satisfaction of query conditions
formulated in terms of time-variant attributes. We call this type
of filtering time mask as it hides (i.e., removes from the consid-
eration) the time intervals in which the query conditions do not
hold. The remaining active (selected) time intervals may thus be
separated by temporal gaps. A timemask filter allows an analyst to
see when certain conditions are fulfilled and what else happened
during those times. Hence, it provides additional opportunities
for analysis with regard to the commonly used types of temporal
filtering. In particular, it may be very useful in joint analysis of
several time-referenced datasets for finding relationships between
different phenomena.

http://dx.doi.org/10.1016/j.visinf.2017.01.004
2468-502X/© 2017 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In this paper, we explain and demonstrate the possibilities
of using the time mask filter in analysis of spatiotemporal data.
We have implemented an interactive visual tool for setting and
applying time mask filters. This tool has been used for creating
the illustrations in this paper. However, the paper does not aim at
presenting this specific tool, which is merely one of many possible
implementations. The main goal is to show the analytical oppor-
tunities provided by the time mask filter as a generic technique,
irrespective of the possible implementations, and to explain the
specifics of dealing with the outcomes of filtering.

The filter, in general, can select data items from multiple dis-
joint and irregularly spaced time intervals of differing lengths. In
analysing large datasets covering long time periods, it is unfeasible
to consider each interval individually. The possibility of looking at
these intervals sequentially using animation is questionable due
to the irregularity of the intervals and the gaps between them.
The most reasonable way to deal with the selected data items is
to create and analyse various aggregates. Furthermore, these ag-
gregates should be dynamic: whenever the filter condition change,
the aggregates should be recreated by applying the aggregation
operations to the newly selected subset of data items.

Hence, the primary contribution of the paper is presentation of
the timemask filter as a generic analytical technique used together
with dynamic aggregation of filter-selected data. The use of the
time mask filter is demonstrated with two examples of analysing
complex real-world data related to the air and sea traffic. It is typ-
ical that analysis of complex data requires application of multiple
analytical techniques. In our example analyses, the timemask filter
is used in combination with other techniques, including several
types of filtering. The demonstration of the joint power of different
types of filters used in combination is another contribution of our
paper.

2. Related works

Our concept of time mask is similar to the concept of temporal
element in temporal databases, which is defined as a finite union
of n-dimensional time boxes (Jensen et al., 1992). Query languages
for temporal databases allow selection of time-referenced data
tuples the times in which belong to several disjoint time inter-
vals satisfying some query conditions (Gadia, 1988). However,
interactive tools enabling this kind of querying in the context
of visual data exploration have been missing so far, although a
variety of interactive querying and filtering techniques have been
developed since the pioneering work of Shneiderman (1994). The
book on visual analytics of movement (Andrienko et al., 2013a)
describes multiple filter types that are useful in exploration of
spatiotemporal data, in particular, movement data, and provides
examples of using different filters in combination. The filter types
include the linear temporal filter, several variants of spatial filters,
attribute-based filter, filter by direct selection, trajectory segment
filter, and cross-filtering between two datasets using references
from one of them to items in the other one. These types of filters
have been used in the data analyses described further on in this
paper.

Weaver (2010) discusses interactive cross-filtering across mul-
tiple coordinated displays by direct manipulation in the dis-
plays. Aigner et al. (2011) give a brief overview of a few types
of interactive filtering (a.k.a. querying) that can be used in vi-
sual analysis of time-referenced data. Apart from linear tem-
poral filtering and attribute-based querying, they mention Time
Searcher (Hochheiser and Shneiderman, 2004), a tool for interac-
tive selection of time series lines with particular shapes in a time
graph.

There are several literature examples of tools for cyclic temporal
filtering. The system described by Fredrikson et al. (1999) allows

the user to select days of the week. Harrower et al. (1999, 2000)
describe an interactive query device called ‘‘temporal brushing’’,
which can be used for choosing specific times of the day (e.g. 6
pm) and studying what happens at these times over many days
using display animation. A particular value of this tool is the possi-
bility to filter out diurnal fluctuations in spatiotemporal phenom-
ena (e.g. climate) and look for long-term trends. A sophisticated
temporal query tool called ‘‘time wheel’’ (Edsall and Peuquet,
1997) allows an analyst to select arbitrary combinations of months
within a year, days of months, and times of the day.

Specific filters and interactive querying tools have been created
for trajectories of moving objects. Hurter et al. (2009) describe
unique interactive techniques allowing flexible selection and ex-
traction of subsets and parts of trajectories for separate explo-
ration. The techniques are applied to 2D projections of 3D aircraft
trajectories and allow the user to select trajectories based on the
flight altitude or the speed of the accent or descent.With Trajectory
Lenses (Krüger et al., 2013), the user can interactively select
trajectories based on trip origins, destinations, and/or traversed
areas. Multiple filters can be flexibly combined to create sophis-
ticated queries. For the resulting selections, various attributes are
represented in aggregated forms. Particularly, data are aggregated
over time at several temporal scales.

To visually represent results of interactive filtering in an ag-
gregated form, the concept of ‘‘dynamic aggregators’’ has been
proposed (Andrienko et al., 2008; Rinzivillo et al., 2008). A dynamic
aggregator is a special object having references to a number of
data records. It is able to check which records satisfy current filters
and to derive certain statistical summaries from these records.
The aggregators are responsible for the representation of the sum-
maries on visual displays and for updating the viewwhen the filters
change.

Generally, aggregation is a common technique used for visualiz-
ing large datasets (Fredrikson et al., 1999). Based on a hierarchical
organization of data in an OLAP (Online Analytical Processing)
database, the level of aggregation of visualized data can be dynam-
ically changed as the user zooms in or out in a data display (Stolte
et al., 2002, 2003). This dynamic behaviour is possible because all
meaningful data aggregates at different levels are pre-computed
and organized in special data structures called data cubes (Gray et
al., 1997). However, a full data cube is often too big to fit in themain
memory of a computer, while accessing it in an external database
may be prohibitive to various interactive operations, particularly,
brushing and linking amongmultiple coordinated views. Recently,
visualization researchers have been devising such representations
of very large datasets that can fit in the main memory to enable
effective visualizations and prompt responses to user’s interactive
operations. Liu et al. (2013) decompose a full data cube into
sub-cubes with at most four dimensions, which are sufficient for
supporting brushing and linking between any pair of one- or two-
dimensional binned plots (i.e., visual displays in which data are
aggregated into bins). Furthermore, the decomposed cubes are
further segmented into multivariate data tiles. The representation
scheme supports parallel processing in response to user’s queries.
Nanocubes (Lins et al., 2013) is a compact representation of a data
cube designed specifically for spatiotemporal data. The memory
is saved by maximizing shared links across the data structure.
Hashed cubes (Pahins et al., 2017) that appeared recently allow
even more compact representation and much simpler implemen-
tation. Gaussian Cubes (Wang et al., 2017) extend the idea of
data cubes even further: instead of counts and sums, the best
multivariate Gaussian models are pre-computed for data subsets.
This allows novel ways of visual exploration of large datasets,
e.g., with the use of the principal component analysis.

These and other methods for efficient representation and pro-
cessing of large data can be used in combination with time mask
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filtering, provided that the temporal resolution (i.e., the minimal
time step) of the time mask is not finer than the minimal level
of aggregation along the temporal dimension of the data. Thus, if
data are pre-aggregated with the minimal bin of one hour, it will
be impossible to compute an accurate result for a mask with the
resolution of minutes or seconds. Another consideration is that, in
the course of data analysis, the analystmaynot only look at existing
data but also derive from them new data. This is the case in our
example analysis scenarios. The data structures and aggregation
mechanismsmust be able to accommodate new data generated by
the analyst. Apart from these considerations, the use of the time
mask filter is in-dependent of the data aggregation technology and
data representation.

3. Introduction of the time mask tool

A timemask is a query that selects time intervals inwhich some
conditions are fulfilled. The conditions can be described in terms
of attributes whose values change over time. To understand what
conditions may be reasonable to set, the analyst may need to see a
visual representation of the temporal variation of the attribute val-
ues. Furthermore, after specifying one or more conditions, the an-
alyst needs a visual feedback showing the time intervals in which
these conditions are fulfilled. With regard to these requirements,
an interactive tool for specifying filter conditions and creating time
masks can be based on a display with one dimension representing
time. Along this dimension, the temporal variation of the values of
one or more attributes is shown. Apart from the attribute values,
the display can also visually represent the time mask, i.e., the
selected time intervals.

A possible implementation is demonstrated in Fig. 1. The hori-
zontal display dimension is used to represent time. The space along
the vertical dimension is divided into rows inwhich the value vari-
ations of different attributes are shown. Qualitative (categorical)
attributes can be represented by coloured segmented bars, as in
the upper two rows of the display in Fig. 1; the colours encode
different attribute values. Numeric attributes can be represented
by line graphs, as in the lower two rows of the example display.
The numeric values are mapped onto vertical positions within the
rows, and consecutive positions are connected by lines. The display
may include controls for temporal zooming, such as the slider bar
visible in the upper image in Fig. 1.

Obviously, the time series included in the display may come
from different and disparate datasets and data sources. Some time
series may be originally present in the data, e.g., weather observa-
tions or speed values of a moving object; others may be derived
from available time series or generated from other data types, for
example, time series of counts of events or moving objects.

Query conditions based on the represented time series can be
set through direct manipulation of the display. In our example
implementation, clicking on a segment of a bar representing a
qualitative attribute value. Initially all values are selected. When
the user clicks on a segment of a particular colour, all segments
having this colour become deselected. Accordingly, the time inter-
vals inwhich the attribute had the value represented by this colour
become also deselected. The second click on any segment with
this colour makes the value selected again. The selection status
of different values of qualitative attributes is represented by the
vertical width of the corresponding bar segments: the segments
representing deselected values are narrower than those represent-
ing selected values. An example can be seen in the lower image in
Fig. 1, in the second row.

For a numeric attribute, dragging the mouse vertically across
the line graph representing this attribute selects an interval within
the attribute value range. The starting and ending vertical positions
of the mouse cursor are mapped onto the corresponding attribute

values, which are taken as the interval boundaries. The selected
value interval is represented by background painting (light pink
in the lower image in Fig. 1). Through mouse-clicking on the
background, the user receives a popup window with interaction
controls allowing more precise specification of the interval. In
response to interval selection, all attribute values outside of this
interval become deselected, as well as the time intervals in which
these values are attained. Double-clicking on the strip representing
the query condition inverts this condition: the values inside the in-
tervals become deselected and the outside values become selected.
The selection of the time intervals is also inverted.

Besides the visual representation, the current query conditions
are also shown to the user in the text form at the bottom of the
display. The user can create composite queries involving two or
more attributes. In response, only those time intervals are selected
in which all query conditions are fulfilled. These time intervals are
visually represented by yellow background painting in the time
series display. Thus, the vertical yellow strips in the lower image
in Fig. 1 mark the time intervals in which two query conditions
are fulfilled. One condition selects one of two possible values of a
qualitative attribute, and the other condition selects an interval of
low values of a numeric attribute.

Hence, the tool presented in Fig. 1 satisfies the following re-
quirements: (1) represent the value variations of time-dependent
attributes that can be used for defining query conditions; (2) allow
interactive creation and modification of queries; (3) represent
current query conditions; (4) show which time intervals satisfy
these conditions.

A time mask filter is not created automatically as soon as the
user specifies a query but requires an explicit request (checking of a
checkbox). The user can choose an appropriate temporal resolution
(time step) of the time mask. The default resolution is one finest
time unit according to the precision of the time stamps in the time
series represented in the display. Thus, in the example in Fig. 1,
the time stamps are specified with the precision of milliseconds.
Hence, the default resolution of a time mask is one millisecond.
However, knowing that the actual temporal resolution of the data
under analysis is 200 ms, the user has changed the default resolu-
tion of the time mask to 200 ms.

To use a time mask as a filter, the user checks the checkbox
‘‘Propagate’’ (visible in the lower image of Fig. 1). The filter is
applied to time-referenced data in the following way. For data
representing events (i.e., objects having certain specified times of
existence), the filter selects only those events the existence times
ofwhich arewithin or overlapwith at least one of the selected time
intervals. For data representing trajectories ofmoving objects, only
those trajectory segments are selected that represent movements
during the selected time intervals.

Data subsets selected by a time mask filter can, in principle,
be visually represented by direct depiction of each selected item.
However, this approach is not scalable to the size of the data. In
practical applications dealing with large datasets, it is necessary
to apply various ways of data aggregation: temporal, spatial, and
categorical (Fredrikson et al., 1999). Multiple examples of ag-
gregation are provided later on in our paper. It is important that
the aggregation is not static but dynamically reacts to changes of
the time mask filter (as well as other filters), i.e., the aggregation
operations are re-applied to the selected data subsets when the
selection changes.

In analyses of complex data, it may be necessary to combine
several types of filters (Andrienko et al., 2013a). A time mask
filter can be combined with all other filter types, including lin-
ear and cyclic time filters. Furthermore, a time series display as
shown in Fig. 1) allows convenient specification of a linear time
filter by dragging the mouse horizontally, i.e., along the temporal
dimension of the display. In this way, the user can select a time
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Fig. 1. Top: a time series display with the temporal variation of the values of four time-dependent attributes shown along the horizontal dimension. The upper two rows
represent qualitative attributes, and the lower two rows represent numeric attributes. Bottom: the display represents the query conditions of a time mask filter. The time
intervals in which the conditions are fulfilled are shown using yellow background painting.

interval with interesting variation of attribute values for a detailed
inspection.

As mentioned in the introduction, time mask filtering may be
instrumental for detecting and exploring relationships between
several datasets. This kind of analysis is performed by applying
the following workflow. The analyst defines some conditions of
interest based on one dataset (it may also be two or more), creates
a time mask, propagates it to the other datasets, and examines the
features of the selected data subsets. Then, the analyst inverts the
time mask and investigates the features of the data which were
filtered out before. Significant differences between the features of
the data subsets selected by the initial time mask and its inverse
indicate the presence of relationships between the data used for
setting the query and the data towhich the timemaskwas applied.
Upon detecting such differences, the analyst investigates and ver-
ifies them, which may require the use of additional types of data
filtering. For comprehensiveness and validity of the conclusions,
there may be a need to iterate this workflow with setting different
conditions.

In the following section, we demonstrate examples of data
analysis in which the time mask filter is used in combination with
other kinds of filters and with dynamic aggregation of filtering
outcomes.

4. Example applications

4.1. DatAcron project

The EU-funded project datAcron (http://datacron-project.eu/)
aims at advancing the state of the art in methods and technologies
for management and analysis of very large amounts of spatiotem-
poral data, including ‘‘data-at-rest’’ (archived data collected in the
past) and ‘‘data-in-motion’’ (constantly arriving new data). The
application areas are air traffic management and maritime traffic

surveillance, where there is a need to improve both the overall
understanding of how the respective complex systems function
and the situational awareness and decision making in the day-to-
day operations. The vision of datAcron is to significantly advance
the capacities of systems and humans and thereby promote the
safety and effectiveness of critical operations for large numbers of
moving objects in large geographical areas. The project develops
technologies for management and processing of heterogeneous
multi-source data, methods for advanced analysis of these data
and prediction of situation development, and interactive visual
interfaces aiming to enhance the abilities of humans to explore
data and understand the complex phenomena reflected in the data.

4.2. Air traffic: seeking regularity in regulations

4.2.1. Introduction into the domain
In air traffic management, good planning of flights and related

activities has vital importance for airlines, air navigation service
providers (ANSPs), and airports. Air-lines define their flight plans in
coordination with ANSPs. Until the day of operation, adjustments
to the plans can be done for adapting to expected events and
weather conditions. Flight plans involve much uncertainty related
to the weather, overall traffic, and availability of navigation re-
sources. To account for possible delays, airlines usually add buffers
in their schedules, thus increasing further the unpredictability of
the day-to-day operations.

Based on the flight plans provided by the air-lines, the air traf-
fic flow and capacity management (ATFCM) system continuously
analyses the expected demands for the air navigation services
versus the available capacities of the air traffic control centres
(ATC). If the expected demand exceeds the capacity of an ATC,
the ATFCM issues a regulation, which may assign new departure
times to some of the flights that are going to cross the affected area
and have not yet departed. The new times usually imply delays of

http://datacron-project.eu/
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the departures and also increase the uncertainty, as a [−5, +10]
minutes tolerance window with respect to the assigned departure
time is allowed for organizing the departure sequence at the
airport.

Often decisions to balance demand and capacity have to be
taken two hours and more prior to the time of occurrence of the
predicted overload situation in order to ensure the needed effect
of these measures. Due to the uncertainty of the flight plans, the
estimation of the expected demand may also have low certainty.
For the sake of safety, the flow managers need to account for
the worst case among all possible, which may lead to introducing
unnecessary flight delays. Hence, the low predictability of the
actual flight implementation leads to losses of time, inefficient use
of resources, financial losses, and inconveniences for passengers.

Apart from the excess of the demand over the capacity, there
may be other reasons for applying regulations, such as badweather
conditions, strikes, technical problems, etc. While in such cases
regulations may be unavoidable, it appears possible to reduce
the use of capacity-related regulations through better planning
of the flights and more accurate forecasting of the demands. To
understand how this can be achieved, it is necessary to analyse
historical data concerning regulations and their effects.

4.2.2. Data and exploratory task
In our example, we use two datasets describing (1) the flights

performed fully or partly in the air space of Spain during April 2016
and (2) the regulations that were issued during this period in ECAC
(European Civil Aviation Conference) area and affected some of
the flights. The data, which were generated by the Spanish ANSP
ENAIRE and EUROCONTROL as the network manager, were gath-
ered, prepared, and provided by CRIDA (www.crida.es)—Reference
Centre for Research, Development, and Innovation in ATM (air
traffic management).

The flight data include, for each flight, the flight identifier, the
codes of the departure and arrival air ports, and the estimated
and actual times of take-off (ETOT and ATOT) and arrival (ETA
and ATA). For the regulation-affected flights, the data additionally
include the calculates departure and arrival times (CTOT and CTA)
prescribed by the regulations, the count of the applied regulations,
the identifier of the most penalizing regulation, and the ATFM
delay, which is the difference in minutes between CTOT and ETOT.
The delay durations range in this dataset from 0 to 408 min, with
99% of them being in the range from 0 to 60 min. As ATOT may
differ from CTOT due to the aforementioned [−5, +10] minutes
tolerance window (in particular, ATOT may be earlier than CTOT),
the actual delay may differ from the ATFM delay. The flight dataset
describes 152,051 flights, of which 25,600 (16.8%) were regulated,
15,512 (10.2%) were assigned ATFM delays (CTOT–ETOT) of at least
1 min, and 15,103 of the latter flights (9.9% of all) were actually
delayed by at least 1min (ATOT–ETOT >= 1min). Our exploration
focuses on these actually delayed flights.

The regulation dataset describes 2704 regulations. For each
regulation, the data include the start and end times, the reference
location, the duration, in minutes, and the regulation reason code.
The reason codes that occurred in the dataset can be seen in the
leftmost column of the table in Fig. 2. For a small fraction of the
regulations, brief text descriptions are provided.

To see the frequency and severity of the regulations, due to the
different reasons, we aggregated the data of the delayed flights
based on the identifiers of themost penalizing regulations. In Fig. 2,
we see that the most frequent regulation reason is C (ATC capacity
deficit), which occurred 633 times, and it is also responsible for
themaximal number of delayed flights (6904) and the longest total
delay duration (112,168 min = 1869.47 h = 78 days). The other
reasons for the regulations that affected many flights and caused
much overall delaywere P (special event;most of these regulations

Fig. 2. Statistics of the flight regulations by the reasons.

were related to the implementation and use of ATM systems), I
(ATC industrial action, including strikes), W (bad weather condi-
tions), S (ATC staff deficit), O (other), and G (aerodrome capacity
deficit).

Our exploratory task is to understand the spatial and temporal
patterns in the creation of regulations, particularly those that are
caused by ATC capacity deficits. Knowing these patterns may be
instrumental formore reliable planning of flights andmanagement
operations and more accurate forecasting of resource demands.

Please note that the term ‘‘spatial pattern’’ may refer to the
locations of the regulation events (i.e., where the regulations were
issued) or to the locations (origins and destinations) of the affected
flights. The term ‘‘temporal pattern’’ may refer to the starting and
times of the regulations or to the times of the flights affected by
the regulations. For good understanding of the air traffic manage-
ment problems, it is necessary to study the spatial and temporal
distributions of both the regulation events and the affected flights.

4.2.3. Data exploration
The upper series of maps in Fig. 3 shows the spatial patterns

of the regulation events for the reason C (based on the locations
where the regulations were issued) while the lower series of maps
shows the spatial patterns of the delayed flight departures due to
these regulations (based on the locations of the airports in which
the flightswere delayed). In the upper row, the firstmap shows the
density of the regulation events while the second and third maps
show the densities weighted by the numbers of the delayed flights
and the delay durations, respectively. In the lower row, themap on
the left shows the density distribution of the delayed departures
and the map on the right shows the density weighted by the delay
durations. These and other density maps included in this section
have been produced by means of kernel density estimation with
the bandwidth (radius) of 150 km and a linear kernel (smoothing
function).

Fig. 4 shows a fragment of amap representing the spatial distri-
bution of the unregulated flights. The flights have been aggregated
by the origins and destinations. To reduce the display clutter,
especially in the areas of high density of airports, we applied the
space tessellationmethod that accounts for the spatial distribution
of a given set of point objects (Adrienko and Adrienko, 2011).
Based on the distribution of 841 airports, themethod produced 513
Voronoi polygons, some of which enclose groups of spatially close
airports.

http://www.crida.es
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Fig. 3. Upper row, from left to right: density of the regulation events caused by the ATC capacity deficit (reason code C), weighted density of the regulation events by the
number of delayed flights, and weighted density by the delay duration. Lower row: density of the delayed departures (left) and weighted density of the delayed departures
by the delay duration (right).

The pie charts in Fig. 4 show the numbers and proportions of the
flight departures (red segments) and arrivals (yellow segments)
in the areas resulting from the tessellation. Although the flight
origins and destinations are distributed worldwide, most of them
are within the territory shown in Fig. 4, as the dataset describes
the flights that used the airspace of Spain. The blue curved lines
represent aggregated movements (flows) between the areas; the
curvature increases in the direction towards the destination. The
linewidths encode the flight counts. To reduce the clutter, the flow
lines representing less than 100 flights are hidden. Both the pie
charts and flow lines show high symmetry of the movements be-
tween the areas: each area contains approximately equal numbers
of flight departures and arrivals, and the flow lines in two opposite
directions between any two areas have equal widths.

In Fig. 5, the same representation as in Fig. 4 is applied to the
6904 flights that were delayed due to the ATC capacity deficit.
The spatial pattern differs much from the one in Fig. 4. We ob-
serve high asymmetry between the numbers of the flight depar-
tures and arrivals as well as asymmetric flows between areas.
The pie charts show us that there were more delayed departures
due to the capacity deficits on the south and east of Spain as
well as on Canary Islands. The flow lines show that the largest
numbers of delayed flights happened on the connections from
Madrid, Seville/Malaga, and Barcelona to London and from London
to Madrid and Seville/Malaga.

The two-dimensional time histogram in Fig. 6 shows the tem-
poral distribution of the flight departures delayed for the reason

Fig. 4. Aggregated unregulated flights. The pies show the numbers and proportions
of the flight starts and ends, and the curved flow lines show aggregated moves
between the flight origins and destinations.

C over the days (rows) and day hours (columns). To obtain this
aggregation, each delayed departure was treated as an event that
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Fig. 5. Aggregated flights delayed due to ATC capacity deficits. The visual encoding
is the same as in Fig. 4.

existed during the interval [ETOT, ATOT], i.e., from the estimated
to the actual time of the take-off. We see that the delays were
not uniformly distributed over the days, but there were several
days with much higher numbers of delayed flights than in the
other days. The highest numbers were attained on April 9 and 16
(both were Saturdays), April 10 (Sunday), and a few other days.
There is no periodic pattern regarding the weekly time cycle. It is
reasonable to consider separately the times with extremely many
delayed flights and those with smaller numbers.

The upper part of Fig. 7 shows a fragment of a time series display
representing the counts of the delayed flights for the reason C by
10-minutes time intervals. To aggregate the flights by the time
intervals, we treated each delayed flight as an event that existed
during the time interval [ETOT, ATA], i.e., from the estimated time
of the take-off to the actual time of the arrival. For each 10-minutes
interval, the delayed flights that existed during this interval were
counted. The counts range from0 to299; 3350out of 4391 intervals
had at least one delayed flight. Among these intervals, the first
quartile, median, and third quartile of the delayed flight counts
are 5, 20, and 52, respectively. In the lower part of Fig. 7, we have
applied a query condition that selects the time periods when the
numbers of the delayed flights exceeded the third quartile. The
filter selects 833 10-minutes intervals,which aremarked by yellow
background painting.

To see the spatial patterns of the flight delays in these intervals,
wepropagate the timemask filter from the time series display to all
time-referenced datasets. The application of the timemask filter to
the set of delayed flights selects those flights that were conducted
during the selected time intervals. This triggers reaggregation of
the flights by the origin and destination areas. Only the selected
flights are aggregated. As a result, we can observe the spatial distri-
bution of the delayed flights at the times of extremelymany delays
(Fig. 8, top). For comparison, the lower map in Fig. 8 shows the
distribution of the delayed flights at the times when the number
of delays was from 1 to 20, which is the median. Please note that
the pie charts and flow lines are scaled differently in eachmap, the
scales being adjusted to the respective value ranges.

We see that the spatial pattern of the delayed flights at the
times of high numbers of delays (Fig. 8, top) is similar to the overall
spatial pattern for thewhole time (Fig. 5),whichmaymean that the
overall pattern ismuch affected by the times of the extreme delays.
The spatial pattern for the times with the low numbers of delayed

Fig. 6. The distribution of the flight departures delayed for the reason C (ATC
capacity) by the days (rows of the matrix) and day hours (columns). The counts of
the delayed departures are represented by the proportional sizes of the rectangles
in the matrix cells.

flights (Fig. 8, bottom) is notably different. A possible reason for
the differences is that flight regulations emerge in different areas
during the times with low and high delays.

To check this, we look at the weighted densities of the regu-
lation events with the reason code Cat the times of low (Fig. 9,
left) and high (Fig. 9, right) numbers of flight delays. The densities
are weighted by the numbers of the affected flights. We see that
there are two hotspots of the regulations that existed during both
subsets of the time intervals. They are located in France around
Paris and Nantes. At the times of high numbers of flight delays,
three additional hotspots existed along thewestern coast of France.

Now we want to compare the sets of the flights delayed by the
regulations created on the west of France and around Paris and
Nantes. We do this by means of cross-filtering between the set of
regulations and the set of ATFM delayed flights. We use spatial
filtering to select the regulations created on the west of France
and apply cross-filtering to select the flights delayed by these
regulations. We have previously removed the time mask filter to
see the whole subset of the flights delayed by the regulations in
the selected area. After the cross-filter has been applied to the set
of flights, the selected subset of flights has been dynamically re-
aggregated. The result of the flight selection and aggregation is
shown on the left of Fig. 10. We see that the regulations created
on the west of France are responsible most of all for delaying the
flights between the UK, on one side, and Spain and Portugal, on
the other side. The flights from the UK are affected more than the
opposite flights.

In a similar way, we select the flights delayed by the regula-
tions created in the areas around Paris and Nantes (Fig. 10, right).
These regulations delaymost of all the flights between London and
Barcelona, the flights from Madrid and the area of Alicante and
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Fig. 7. Top: the counts of the flights delayed for the reason C by 10-minutes time intervals are represented in a time series display. Bottom: the appearance of the display
after setting a query that selects the time intervals with 53 or more delayed flights.

Murcia to the UK, as well as the flights between the Netherlands,
Belgium, and Germany, on one side, and Spain and Portugal, on the
other side. It is interesting that the flights from the UK to Spain
are affected notably more by the regulations issued on the west of
France (Fig. 10, left) whereas the flights from Spain to the UK are
affected slightlymore by the regulations issued in the areas of Paris
and Nantes (Fig. 10, right).

To compare the temporal patterns of the delays due to the
regulations in the areas of Paris–Nantes and west coast of France,
we create time series of the counts of the flights delayed by these
two groups of regulations and put them in the time series display
(Fig. 11, the second and third rows from the top). For completeness,
we also create a time series for the remaining delayed flights (the
fourth row in Fig. 11). By comparing the former two time series,
we see that in the period from April 4 to April 17 peaks in both
time series emerged very frequently and nearly simultaneously,
with a few exceptions. After April 17, there were almost no peaks
of delayed flights due to regulations at the west coast of France.
There were peaks due to regulations around Paris–Nantes, but
theywere fewer andmostly smaller than before. To find a probable
reason for the high number and frequency of the ATC capacity-
related regulations issued on the territory of France from April 4
to April 17, we look at the spatial and temporal distributions of
the regulations due to other reasons, specifically, P (special event),
I (industrial action), W (bad weather), and S (ATC staffing issues).
We find that the regulations for the reason S are neither temporally
nor spatially related to the regulations in France in the time period
of interest. Some of the regulations with the reason code ‘‘I’’ hap-
pened on April 9 and 10 due to a strike in Italy. Experts believe that
these regulations might have had a network effect: the limitations
in the Italian air space could increase the demands for the ATC
services elsewhere, in particular, in the space of France. This could
trigger further regulations due to the ATC capacity deficits and thus
be responsible for the very high numbers of flight delays on April 9
and 10 (see Fig. 6). However, there was also a strike in France from
April 27 to 29 that had no observable effects on ‘‘C’’ regulations.

The time series for the regulations due to bad weather (shown
in the lowest row of the display in Fig. 11) has three peaks in the
middle (April 16–17), when therewere also peaks of the delays due
to ‘‘C’’ regulations in France (rows 2 and 3). By direct manipulation
in the display (mouse dragging), we select the time range of each of
the weather-related peaks and observe the weighted density dis-
tributions of the respective regulations. The first peak corresponds
to regulations around Barcelona and Lisbon and on Canary Islands,
and the second and third peakswere due to badweather on Canary
Islands. As we know from Fig. 10, many flights to and from these
areas cross the air space of France. It is probable that delays of some
of these flights due to bad weather could increase the demand for

the ATC services in the air space of France at later times, which
might trigger ‘‘C’’ regulations. However, this kind of explanation is
not applicable to the peaks of the delays due to ‘‘C’’ regulations in
France that happened on April 14 and 15.

The spatial distribution of the regulations for the reason P
(Fig. 12) perfectly matches the hotspots of the ‘‘C’’ regulations visi-
ble on the right of Fig. 9, but we see in Fig. 11 (the second row from
the bottom) thatmost of the flight delays due to the ‘‘P’’ regulations
happened from April 1 to April 4, i.e., before the period of the
severe regulations in France (rows 2 and 3 from top). Nevertheless,
there may be a relation. All ‘‘P’’ regulations in the time from April
1 to April 4 happened in France. The explanations available for
many of them tell us that they were caused by implementation of
ATC systems. It might happen that the systems did not function
perfectly in the initial period after the implementation, which
might have caused severe regulations in the air space of France.

We have seen so far that most of the peaks of the flight delays
due to the ATC capacity deficits (row 1 of the time series display
in Fig. 11) were caused by regulations in Paris–Nantes (row 2)
and western France (row 3); however, some of the peaks emerged
when the regulations in these areas were small. We create a time
mask filter (Fig. 11) to look at the spatial patterns of the regulations
and delayed flights at the times of these peaks. Being propagated to
all datasets, the filter selects the regulations and the delayed flights
that existed during these times. Themapon the left of Fig. 13 shows
the density of the ‘‘C’’ regulations weighted by the number of the
affected flights. The main hotspot is around Barcelona; there are
also lesser hotspots around Lisbon and on Canary Islands. The map
on the right of Fig. 13 shows the aggregated delayed flights. These
are mostly flights from Spain and Canary Islands to central Europe
and from the UK to Canary Islands.

The visual representation of the timemask filter (Fig. 11) shows
us that there were three major periods satisfying the query con-
ditions. By sequentially selecting each of these periods in the time
series display, we find out thatmost regulations on April 3 were on
Balearic Islands, and the affected flights were from there to central
Europe. On April 23, regulations emerged around Lisbon and on
Canary Islands and affected many incoming and outgoing flights.
On April 30, severe regulations near Barcelona and on Canary
Islands delayed many flights to and from these areas.

So, we have found that, apart from France, there are a few
other areas of frequent regulations due to ATC capacity deficits:
Barcelona, Lisbon, Canary Islands, and Balearic Islands. For each of
them, we create a time series of the delayed flights and examine it
for the presence of temporal regularity. We find a periodic pattern
in the time series for Canary Islands, where peaks of different
magnitudes emerged on April 9, 16, 23, and 30 (Saturdays). For
Barcelona, there were peaks on April 1, 8, 15, 22, and 29 (Fridays)
and a couple of peaks in other days. For the other two areas, no
temporal regularity was detected.
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Fig. 8. The spatial distributions of the delayed flights at the times of extremely high
numbers of delays (top) and at the times with low numbers of delays (bottom).

4.2.4. Conclusion
The goal of our exploration was to detect regular patterns

and/or dependencies in flight regulations that could suggest pos-
sible directions for improving the flow management. We found
that, in general, there is no temporal regularity in the emergence
of regulations, except for a few areas. We also found that themajor
bottlenecks throughout the whole studied period were the areas
around Paris and Nantes, where severe regulations emerged very
frequently. The high frequency and severity of the regulations in
these areas and on the western coast of France in the beginning of
April can, possibly, be attributed to the adaptation period after the
implementation of a new ATC system. There is also some evidence
that the emergence of ATC capacity deficits and respective regu-
lations could sometimes be provoked by regulations due to other
reasons, such as strikes and bad weather. However, the frequency

of the regulations in the Paris and Nantes areas cannot be fully ex-
plained by these effects. Hence, there areas require improvements
in flight planning and flow management above all others.

4.3. Maritime navigation: abnormal events

4.3.1. Introduction into the domain
Safety and security are constant concerns of maritime nav-

igation, especially when considering the continuous growth of
maritime traffic around theworld and persistent decrease of crews
onboard. This favoured the development of automated monitor-
ing systems such as AIS (Automatic Identification System), which
provides real-time positioning of a vessel to other vessels and to
shore stations located in its radio range. The InternationalMaritime
Organization requires AIS transmitters to be installed aboard in-
ternational voyaging ships with gross tonnage of 300 or more and
all passenger ships regardless of the size. Apart from the positions,
an AIS device also transmits navigation data such as ship identi-
fication, course, heading, speed, next port more and all passenger
ships regardless of the of call, destination, and expected time of
arrival. There are also other systems used for sea trafficmonitoring.
However, the availability of this information does not by itself
ensure the safety of the maritime traffic. Officers on the watch
and monitoring authorities require the development of decision-
aid solutions that will take advantage of these communication sys-
tems (Claramunt et al., 2007). Particularly, detection and analysis
of anomalous events occurring size in movement of vessels is a
crucial asset for improving the security of vessel traffic (Devogele
et al., 2013). The range of possible events of interest is very large:
from collision at sea to unreported and unregulated fishing and
illicit activities.

In our paper, we focus on events of near-location (small dis-
tance between two vessels that can bring to collisions) and high
sinuosity (curvy movement) patterns occurring when vessels are
manoeuvring, but the approach can be straightforwardly extended
to other kinds of anomalous events.

4.3.2. Data and exploratory task
The data consist of 5244 vessel trajectories reconstructed from

AISmessages obtained in the bay of Brest in France (Fig. 14) during
the time period from the 11th of February till 21st of December,
2009; however, the data are not available for all days. Our analysis
focuses on the trajectories of those vessels that moved through the
strait (1.8 km length) either into or out of the bay (Fig. 14, bottom).
We have selected 2411 such trajectories by means of spatial filter-
ing. The task is to detect near-location and high sinuosity events
and investigate the conditions when these events occur using the
proposed time mask filter.

4.3.3. Data exploration
For detecting near-location events, different approaches have

been developed so far (Fujii et al., 1970; Pedersen, 1995). Our ap-
proach is based on a search of a spatiotemporal nearest neighbour
for each point in the trajectory of each vessel: given the position p
of the vessel at moment t, the tool determines the positions of all
other vessels within the time interval [t − ∆t, t + ∆t], measures
the distances from p to all these positions, and takes the minimum
of the distances. Here, ∆t is a temporal tolerance threshold that
compensates for possible differences in the time references of the
position records in different trajectories; we set it to 30 s. Then,
we apply interactive techniques for extracting spatial events from
trajectories (Andrienko et al., 2013b) to extract those trajectory
segments where the distance to the nearest neighbour is under 25
m (these temporal and spatial thresholds were approved by the
domain experts as being relatively representative of near-location
events). These extracted segments are treated as near-location
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Fig. 9. Weighted (by the number of delayed flights) densities of the regulation eventswith the reason code C (ATC capacity) at the times of low (left) and high (right) numbers
of flight delays.

Fig. 10. Spatial patterns of the flights delayed by the regulations issued on the west of France (left) and around Paris and Nantes (right).

events. We have extracted 2579 such events that occurred in 578
trajectories. A density map of the extracted events is shown in
Fig. 15, left. The density maps in this example are built with the
kernel radius of 300 m. Some of the events occurred outside of
the main traffic lanes. We are primarily concerned with the events
that happened within the traffic lanes because they are potentially
more dangerous to the navigation. We apply spatial filtering to
select these events, which gives us 2105 events originating from
447 trajectories (Fig. 15, right).

To understand the circumstances of the occurrence of the near-
location events, we want to compare the traffic patterns at the
times when these events happened and in the remaining time. We
create a time series of the event count by hourly time intervals
and put it in a time series display. The length of the time series
is 7482 h, according to the duration of the whole time span of the

data. Please note that only 1860 hourly intervals within this time
span contain data about vessel positions. Thus, the first row in the
display in Fig. 16 shows the time series of the vessel counts by the
hourly intervals. Large gaps in the temporal coverage of the data
are clearly seen.

The second row of the display shows the time series of the
counts of the near-location events.We interactively select the time
intervals containing at least one near-location event. Our query
selects 248 hourly intervals, in which the event counts range from
2 to 71.

We propagate the time mask filter resulting from the query to
all time-referenced datasets. The filter selects 615 vessel trajec-
tories that existed during the selected time intervals when near-
location events occurred. A densitymap of the selected trajectories
is shown on the left of Fig. 17. We observe a high density of
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Fig. 11. The time series display shows, from top to bottom, the counts of flights delayed due to (1) all regulations with the reason C (ATC capacity), (2) those issued around
Paris and Nantes, (3) those issued on the west of France, (4) the remaining ‘‘C" regulations, (5) the regulations for the reason P (special event), and (6) the regulations for
the reason W (bad weather). A time mask filter selects the times when many flights were delayed due to reason C while the numbers of such regulations in the areas Paris
C Nantes and western France were low.

Fig. 12. Spatial pattern of the regulations with the reason code P (special event,
including ATC system implementation).

trajectories that switched from one traffic lane to another. When
we invert the timemask filter, i.e., select the time intervalswithout
near-location events, we see a notably different spatial density
pattern (Fig. 17, right): the two lanes are quite well separated; the
density of the trajectories that switch the lanes is relatively low.
The inverse time mask filter has selected 2238 trajectories.

To obtain numeric characteristics of the movements between
and within the lanes, we create (by drawing on the map) four

polygonal areas (Fig. 18), two per lane, in the eastern and western
parts of the lane. Then we aggregate the trajectories into flows
between these areas. From the whole set of 12 links between the
areas, we select the four links going across the lanes from west
to east and from east to west and investigate the flows on these
links at the times of occurrence of the near-location events and
in the remaining time. This is done using the time mask filter
described earlier. The flows are dynamically recomputed and the
map is updated when the filter changes.

The flowmap on the left of Fig. 18 corresponds to the timemask
selecting the time intervals with the near-location events. When
the mask is inverted, the map looks as is shown on the right of
Fig. 18. At the times of the near-location events (left) 134 vessels
moving westwards switched from the southern to the northern
traffic lane. The remaining flows between the lanes were much
lower. Thus, there were only 31 moves on the opposite link and 57
and 58moves on the other two links. The flows at the timeswith no
near-location events (Fig. 18, right) were much more symmetric.
There were 277 moves from the southwest to the northeast and
256 oppositemoves; 170 and 183 shipsmoved from the northwest
to the southeast and in the opposite direction. The comparison of
the two spatial patterns suggests that near-location events occur
when unusually many vessels move from the eastern part of the
Brest harbour to the west using the northern traffic lane. As it has
been explained by the domain experts, it often happens that mul-
tiple ships, especially fishing ships, leave the harbour together. The
occurrence of near-location events may increase at these times.

The safety requirements and navigation constraints (sea cur-
rents and depth in the strait) impose straight movement of vessels
along the traffic lanes. To verify this behaviour, we compute for
each trajectory position the sinuosity of the path starting from
this position and including the positions attained within the next
5 min, where the sinuosity of a path is defined as the ratio of the
path length to the distance between the first and last positions. For
straightmovement, the sinuosity is close to 1.We extract events of
curved movement where the sinuosity was more than 2 (Fig. 19);
these will be henceforth called ‘sinuosity events’. As with the near-
location events, we are primarily concerned with the sinuosity
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Fig. 13. Spatial patterns of the ‘‘C’’ regulations and respective delayed flights at the times selected by the time mask shown in Fig. 11.

Fig. 14. The bay of Brest with the densities of all vessel trajectories (top) and the
trajectories going through the strait (bottom).

events that occurred within the main traffic lanes and therefore
apply spatial filtering to select these events. 403 sinuosity events

from 204 trajectories occurred in or near the major traffic lanes,
this being a bad news for traffic safety. Using the time mask filter,
we find out that 290 out of these 403 events (72%) happened
during the times of the occurrence of the near-location events.
Moreover, these 290 sinuosity events happened in 166 trajectories,
of which 165 had also near-location events. Hence, there is a
clear relationship between the near-location and sinuosity events.
Evidently, movement with high sinuosity happens when vessels
deviate from their course in order to avoid collisions with other
vessels, as required by maritime navigation rules.

In Fig. 20, we have applied the filter of trajectory segments
to select the parts of the trajectories were the distances to the
nearest vessels were under 100 m. For these trajectory parts, we
have built a weighted density surface using the sinuosity values
as the weights. This means that trajectory segments contribute to
the calculated densities proportionally to their sinuosity values.
We see that the highest density of sinuous movements is reached
inside the strait, mostly in the northern traffic lane, and between
the strait and the harbour in the southern lane. We also observe a
spot of relatively high density at the harbour in the northern lane (a
port entrance of 300 m width creates a bottleneck favouring near-
location events and collision-avoiding manoeuvres). Judging from
the spatial configuration of the dense area, this can be attributed
to vessels that were sailing from the western part of the harbour
andheading to the southern traffic lane. Evidently, sinuosity events
occurred at the location where the flows coming from the western
and eastern parts of the harbour conjoin. Also, relatively high
sinuosity was reached at the intersection of the two traffic lanes.

Hence, we can conclude that the anomalous events can be
attributed to intersecting traffic flows at the times of increased
amounts of outgoing traffic from the Brest harbour.

4.3.4. Conclusion
Having a large temporally extended set of trajectories, we

were interested in detecting and analysing events of anomalous
movement that may be potentially dangerous to the safety of sea
traffic, aswell as in identifying commonnavigation behaviours.We
considered events of two types: vessels coming too close to one
another (near-locations) and sinuous movements in the areas of
major traffic flows. We have gained the following findings:
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Fig. 15. The density of the extracted near-location events (left: all events; right: the events that occurred in the main traffic lanes).

Fig. 16. A time series display shows the counts of the vessels (upper row) and the near-location events (lower row) by 1-hour time steps. A query selects the intervals
containing at least one event.

Fig. 17. The density of the trajectories in the times of occurrence of near-location events (left) and in the remaining times (right).

Fig. 18. Aggregated movements between the two traffic lanes at the times of occurrence of the near-location events (left) and in the remaining time (right).
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Fig. 19. Trajectory segments corresponding to curvy movement.

Fig. 20. Weighted density of the trajectory segments where the distances to the
nearest vessels are below 100 m. The sinuosity values are used as the weights.

• The near-location events most often occurred at the times
when the outgoing traffic from the Brest harbour exceeded
the incoming traffic.

• Amajor part of the near-location events happened to vessels
that moved out of the harbour in the southern traffic lane
and then switched to the northern lane before entering the
strait, this reflecting some navigation routes predefined in
the area.

• The sinuosity events are closely related to the near-location
events.

• Both types of anomalous events are related to intersecting
traffic flows between the harbour and the strait and, possi-
bly, narrow space and high traffic density in-side the strait,
where the vessels need to go in two parallel lanes.

5. Discussion

The two examples of non-trivial analysis scenarios show the
possible purposes and ways of using time masks. Generally, the
time mask filtering is useful in analysing temporal and spatiotem-
poral phenomena with the aim to uncover relationships between
different phenomena or different aspects of a phenomenon. The
essence of the approach is to determine the time intervals when
some of the aspects have particular states or behaviours and
comparatively investigate the states and behaviours of the other
aspects during these intervals and in the remaining times. Signifi-
cant differences may indicate the existence of relationships, which
may need to be verified by detailed examination with the use of

other types of filtering. For example, in the aviation use case, the
comparison between the times of high and low severity of flight
delays (Fig. 9) suggested us the necessity of separate consider-
ation of different areas in space where the regulations causing
the delays come from. This required the use of spatial filtering
and cross-filtering between the set of regulations and the set of
regulated flights. In the maritime use case, the detection of the
relationship between the occurrence of near-location events and
particular traffic conditions (Fig. 17) motivated us to use spatial
filtering for detailed inspection of the crossing flows and trajectory
segment filtering for detecting other anomalous events that could
potentially occur due to these traffic conditions.

For a comprehensive exploration into possibly existing relation-
ships between phenomena or aspects, a single application of a time
mask filter and its inverse with a subsequent comparative analysis
of the resultsmay be insufficient, and itmay be necessary to iterate
this workflow with setting different filter conditions.

When large amounts of data are analysed, an appropriateway to
present the results of filtering and other operations to the analyst
is by applying aggregation. In our analysis scenarios, we applied
temporal aggregation by days and hours, continuous spatial ag-
gregation producing fields of density and weighted density, and
discrete spatial aggregation by a chosen set of places and pair
wise links between the places. The aggregation was dynamically
reapplied to the results of data filtering after each change of the
filters. Such a dynamic behaviour is only partly good for support-
ing exploratory activities: on the one hand, it gives immediate
feedback to user’s interactive operations, but, on the other hand,
it complicates comparative analyses between results of different
filtering operations. Since the use of time masks in data analysis
essentially requires making such comparisons, it is desirable to
support this by appropriate tools that go beyond making and
juxtaposing screenshots. Thus, it could be convenient to use two
ormore workspaces each dealing with its own set of filters applied
to the same data. The comparison of filtering results between the
workspaces could be further supported by generation of difference
views representing the differences visually. This kind of support is
missing yet in our prototype system.

The time mask technique can be further developed to enable
detection and exploration of temporally lagged relationships. For
such an investigation, the analyst should be able to select the time
intervals that precede or follow the intervals in which specified
conditions fulfilled. For example, in our aviation use case, it might
be relevant to consider specifically the times preceding thepeaks in
the flight delays due to ATC capacity deficits or the times after the
delays due to badweather conditions. The investigation of these in-
tervals would promote our reasoning concerning the relationships
between different types of regulations. In the future, we plan to
enhance our interactive time mask tool with these possibilities.

6. Conclusion

The query languages of temporal data based enable queries that
select time-referenced data from several disjoint time intervals
satisfying specified conditions. However, interactive tools enabling
this kind of querying in the context of visual exploration and anal-
ysis were lacking so far. To fill this gap, we proposed the concept of
interactive time mask filter, described a possible implementation,
and showed how this kind of filtering can be used in analysing
spatiotemporal data, which may be heterogeneous (e.g., events,
trajectories, and time series, both numeric and qualitative) and
come from different sources. The time mask filtering enables de-
tection of relationships between these diverse data and between
the phenomena they reflect. It needs to be used in combination
with other types of filtering and with dynamic aggregation of the
data coming out of the filters. We demonstrated the analytical
power of such a combination of tools by examples of non-trivial
exploration of complex data.
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