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Preface

An ever-increasing number of diverse, real-life applications, ranging from mobile to
social media apps and surveillance systems, produce massive amounts of
spatio-temporal data representing trajectories of moving objects. The fusion of those
trajectories, commonly represented by timestamped location sequence data (e.g.
check-ins and GPS traces), with generally available and semantic-rich data resources
can result in an enriched set of more comprehensive and semantically significant
objects. The analysis of these sets, referred to as “semantic trajectories”, can unveil
solutions to traditional problems and unlock the challenges for the advent of novel
applications and application domains, such as transportation, security, health, envi-
ronment, and even policy modeling.

Despite the fact that the semantic trajectories concept is not new, we are now
witnessing an increasing complexity in the forms and heterogeneity of the enrichment
process producing new kinds of trajectory objects. These new objects call for novel
methods that can properly take into account the multiple semantic aspects defining this
new form of movement data. It is the very nature of the semantic trajectories that makes
this analysis challenging. For instance, the data sources and formats are largely
heterogeneous, placing hurdles in the fusion process; or their volumes are too large to
process them in conventional ways. In the other cases the state of the semantic tra-
jectories is updated at such a rapid pace, that it is very hard to explore them so as to get
an indication of their latent semantics, or even process them in a consistent way since
they cannot be stored. Another typical problem is with their unreliable and erroneous
nature, where signals are arriving in a mixed order, with gaps and even errors. Simi-
larly, the multiple aspects nature of semantic trajectories increases the difficulty of
trajectory pattern mining.

The MASTER 2019 workshop was held in Würzburg, Germany, on September 16,
2019, in conjunction with ECML/PKDD 2019. The format of the workshop included a
keynote speech and eight technical presentations. The workshop was attended by
around 20 people on average.

This year we received 12 manuscript for consideration, from authors based in 8
distinct countries, from Japan, to Europe, to Brazil, and Canada. After an accurate and
thorough single-blind review process with the help of the 22 members of the Program
Committee, we selected 8 full papers for presentation at the workshop. The review
process focused on the quality of the papers, their scientific novelty and applicability to
existing Semantic Trajectory Analysis problems and frameworks. The acceptance
of the papers was the result of the reviewers’ discussion and agreement. All the
high-quality papers were accepted, and the acceptance rate was 66.66%. The accepted
articles represent an interesting mix of techniques to solve recurrent as well as new
problems in the Semantic Trajectory domain, such as data represetnation models, data
management systems, machine learning approaches for anomaly detection, and com-
mon pathways identification.



The workshop program was completed by the invited talk entitled “Learning from
our movements – The mobility data analytics pipeline” by Prof. Yannis Theodoridis
from the University of Piraeus, Greece.

We would like to thank the MASTER 2019 Program Committee, whose members
made the workshop possible with their rigorous and timely review process. We would
also like to thank ECML/PKDD for selecting and hosting the workshop. Most
importantly we would like to thank the emerging community of the Semantic Tra-
jectories’ domain that attended the workshop from practically all around the world.

The workshop has been supported by the MASTER project (http://www.master-
project-h2020.eu), which has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-Curie grant
agreement No 777695.

October 2019 Konstantinos Tserpes
Chiara Renso
Stan Matwin
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Learning from Our Movements – The
Mobility Data Analytics Era

Yannis Theodoridis(B)

Data Science Laboratory, University of Piraeus, Piraeus, Greece
ytheod@unipi.gr

http://www.datastories.org/

Abstract. From the pioneering works on spatiotemporal databases back
in ‘90s to the era of Big Mobility Data Analytics nowadays, in this paper
we try to follow the thread of research objectives and initiatives in the
field. Initially, we provide a flashback to the 25 past years (though from
a personal, hence, biased point of view). Then, we discuss in brief the
challenges related to mobility data processing, management, analytics,
and visualization to be addressed in modern applications tracking pop-
ulations of moving objects in real time.

1 Introduction

Once upon a time, it was the ChoroChronos EU research project. The challenge
at that time (‘90s) was to bring spatial and temporal database aspects together
in a, then emerging, integrated spatio-termporal domain. As time was passing,
new challenges appeared and addressed by the researchers of the field: efficient
system architectures, knowledge discovery from mobility data, privacy aspects,
etc. Nowadays, in the era of Data Science and Big Data, mobility data analytics
aims at learning from objects’ movements, covering a range of methods and
solutions, from de-noising of location information and integrating with multiple

Fig. 1. Related research projects timeline (mid ‘90s - today).

c© The Author(s) 2020
K. Tserpes et al. (Eds.): MASTER 2019, LNAI 11889, pp. 1–5, 2020.
https://doi.org/10.1007/978-3-030-38081-6_1
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2 Y. Theodoridis

heterogeneous related sources to predictive analytics, offline and online. Figure 1
illustrates a timeline of related research projects covering the period from mid
‘90s until today1.

2 Flashback to the Past

Let’s catch the thread from the beginning. . . Back in ‘90s, research in spatial
and temporal databases, separately, resulted in pretty mature results to con-
tribute in real-world DBMSs. In the spatial database field, Oracle introduced
Spatial Data Option in 1996, OGC released its first specifications in 1997,
and PostGIS was launched in 2001. On the other hand, TSQL2 language spec-
ification was developed in 1993. The “marriage” of the two fields was led by
research projects in both US and Europe; focusing on the latter, the notable
ChoroChronos EU project (1996–2000) aimed at bringing together the two com-
munities and integrate their ideas in the so-called spatio-temporal databases,
where time would be considered a first-class citizen [2,4,5].

What followed was the focus of research in point objects due to the popularity
of related applications (tracking of moving objects via GPS technology), which
led to the “moving object trajectory” concept2 and, as expected, raised
challenges on knowledge discovery from this new type of data as well as on
personal data privacy. This brought the “dialogue” with other than database
management domains, including machine learning/data mining and data privacy
and security. For instance, the GeoPKDD (2005–2009), MODAP (2009–2012)
and MOVE (2009–2013) EU projects aimed at devising knowledge discovery
and (privacy-preserving) analysis methods for trajectories of moving
objects, bringing together ICT researchers and domain specialists [3,8]. The
advances in social networks and linked open data in ‘00s also resulted in the so-
called location-based social networking and relevant applications. Thus, a new
trajectory variation was born, the semantic trajectories [6], studied by e.g.
the SEEK EU project (2012–2015), the objective of which was to envisage a
new semantic enriched knowledge discovery process where the semantic aspect
(in the sense of the meaning of the movement) would be embedded in each step.

3 Nowadays - Mobility Data Analytics

Nowadays, one can find plenty of sensor data and open sources of related infor-
mation, mature Big Data technologies, plethora of Data Science methods and
tools. In this environment, a hot research topic is that of Mobility Data Ana-
lytics (MDA). The range of processes covered under this term includes data

1 Disclaimer: the flashback in past is biased since it only refers by name to projects
where the author has participated. The author’s intention is by no means to provide
an exhaustive survey of research activities related to the topic of the article.

2 According to DBLP (dblp.uni-trier.de), the first papers with this term in their title
appeared in 2000.

https://dblp.uni-trier.de
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acquisition and processing (typically from multiple and varying data sources),
data management (storage and indexing, as usually. . .), data mining, data pri-
vacy, data visualization and user interaction [7].

Fig. 2. The BDVA reference model (source: http://www.bdva.eu).

A typical MDA application tracks in real-time a population of humans /
vehicles / vessels / aircrafts and handles the resulted trajectories, enriched with
heterogeneous context, in order, for instance, to be able to assess traffic situation
or drivers’ behavior, forecast anticipated movements in short-term or schedule
traffic in long-term, react as soon as an “anomaly” is detected, and so on [9].
In this framework, challenges touch almost each architectural layer of an MDA
system, compatible with the EU BDVA reference model (illustrated in Fig. 2):

– data sources of interest include, on the one hand, streaming information,
such as the GPS signals transmitted by the objects themselves, the objects’
locations tracked by an external device (e.g. radar), and live weather infor-
mation, and, on the other hand, archive collections of census, meteorological,
etc. data; all of this information to be correctly and smoothly integrated;

– data processing requires cleansing (de-noising, smoothing) and semantic
enrichment of incoming data as already mentioned, segmentation into trajec-
tories that make sense (e.g. from/to predefined places of interest), and storage
in appropriate (relational or NoSQL) stores;

http://www.bdva.eu
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– data management includes efficient querying and retrieval, which assume
implementation of query algorithms and maintenance of indexing mechanisms
suitable for these purposes;

– data analytics requires both offline and online algorithms: cluster and fre-
quent pattern analysis for detecting typical movement patterns as well as
interesting outliers can run offline on the historical data whereas movement
prediction and anomaly detection over the incoming stream should run online;
in order for the online methods to be effective, they should take into con-
sideration the results of the offline methods (a now tracked object may be
considered to have anomalous behavior if it is quite dissimilar to past typical
patterns or quite similar to past outliers) and this makes things even more
challenging;

– data visualization and user interaction is an essential component in order
for the mobility analyst to get familiar with the data he/she is requested to
analyze and interact with the above methods and tools; visual analytics (VA)
is challenging, especially in mobility data [1].

This is, more or less, the context of a number of recent EU projects, includ-
ing datAcron (http://datacron-project.eu; 2016–2018), where the use cases
are on maritime and aviation, Track & Know (https://trackandknowproject.
eu; 2018–2020) on drivers in urban environment, and MASTER (http://www.
master-project-h2020.eu; 2018–2022) on land transportation, sea monitoring,
and tourism.

4 What’s Next

Fortunately, research is an everlasting story. So, what’s next? In the near future,
we expect to see advances, for instance, in self-organizing and self-cleansing
information integration tools (do we know what information is relevant to enrich
a location or assess its accuracy better than a crawler searching the Semantic
Web?), close to storage-less architectures following the IoT paradigm (if data
resides in its original source, what is the need to replicate it in our storage?
what if data is unaffordable huge and only meta-data as well as patterns are
stored locally?), and Explainable AI (why this and not that technique in order
to analyze location data? our right to explanation). We expect these and other
even more exciting research outcomes to appear in the years to come.
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Uncovering Hidden Concepts from AIS
Data: A Network Abstraction of

Maritime Traffic for Anomaly Detection
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Department of Informatics and Telematics, Harokopio University of Athens,
Athens, Greece
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Abstract. The compulsory use of Automatic Identification System
(AIS) for many vessel types, which has been enforced by naval regu-
lations, has opened new opportunities for maritime surveillance. AIS
transponders are rich sources of information that everyone can collect
using an RF receiver and provide real-time information about vessels’
position. Properly taking advantage of AIS data, can uncover potential
illegal behavior, offer real-time alerts and notify the authorities for any
kind of anomalous vessel behavior. In this article, we extend an existing
network abstraction of maritime traffic, that is based on nodes (called
way-points) that correspond to naval areas of long stays or major turns
for vessels (e.g. ports, capes, offshore platforms etc.) and edges (called
traversals) that correspond to the routes followed by vessels between two
consecutive way-points. The current work, focuses on the connections of
this network abstraction and enriches them with semantic information
about the different ways that vessels employ when traversing an edge.
For achieving this, it proposes an alternative of the popular density based
clustering algorithm DB-Scan, which modifies the proximity parameter
(i.e. epsilon) of the algorithm. The proposed alternative employs in tan-
dem the difference in (i) speed, (ii) course and (iii) position for defining
the distance between two consecutive vessel positions (two consecutive
AIS signals received from the same vessel). The results show that this
combination performs significantly better than using only the spatial dis-
tance and, more importantly, results in clusters that have very interesting
properties. The enriched network model can be processed and further
examined with data mining techniques, even in an unsupervised man-
ner, in order to identify anomalies in vessels’ trajectories. Experimental
results on a real dataset show the network’s potential for detecting tra-
jectory outliers and uncovering deviations on a vessel’s route.

Keywords: Trajectory analytics · AIS vessel monitoring · Anomaly
detection

c© The Author(s) 2020
K. Tserpes et al. (Eds.): MASTER 2019, LNAI 11889, pp. 6–20, 2020.
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1 Introduction

Today’s maritime surveillance systems are constantly flooded by data coming
from AIS transponders, which are embedded in vessels. The use of AIS transpon-
ders was made compulsory for all vessels over 300 Gross Tonnage and all passen-
ger vessels in 2002 by the Regulation 19 of SOLAS Chapter V1. However, even
smaller vessels, from yachts to fishing boats [1], are now using AIS to report their
positions to the nearby vessels, usually for safety purposes, making AIS the num-
ber one system for global vessel tracking. Each vessel transmits two kinds of AIS
data, dynamic and static. The former, periodically sends data regarding vessel’s
position, speed and heading. The transmission rate depends on the vessel’s speed
and becomes higher when the speed is greater. The latter, sends data, every six
minutes approximately, regarding vessel’s destination, type, size and draught of
its hull.

Due to the fact that AIS data are sent periodically with high transmission
rates, they are of utmost importance to the maritime authorities for vessel track-
ing purposes. Therefore, a system that takes advantage of such data and is able
to notify the authorities in real-time for any abnormal vessel behavior can be
valuable for the authorities. This work contributes directly towards anomaly
detection from AIS data. It builds upon our previous work in the field [2], which
defined a methodology for extracting a network abstraction of the maritime traf-
fic in an area. The input in that work was a lengthy log of AIS data collected
from vessels that sailed in that area and the output was a network representa-
tion model of the typical routes that the vessels have followed. In that network
representation, the nodes (also called way-points) are regions of special interest
for the routes of vessel and they usually correspond to ports, capes, offshore
platforms etc., where multiple vessels usually stop for short or longer periods,
or perform major changes in their direction. Similarly, the connections between
nodes represent the vessel movement from one way-point to another and thus,
a vessel trajectory is a traversal of the network, from a certain way-point to
a distant way-point. This traversal either follows the existing connections (and
the trajectory can be considered normal) or deviates and hops from one node
to another, not directly connected, node. The aggregated information from all
vessels that crossed a network connection are used to extract features for this
connection (a potential sub-trajectory for other vessels), such as the average,
minimum and maximum speed etc.

In this work, we take this simple aggregation one step ahead, and provide
a methodology that can be used to process this multi-vessel information in a
more proficient manner. The proposed method adds richer information to each
connection that have been traversed by multiple vessels. To extend the previously
proposed network abstraction we use a clustering algorithm, that manages to
identify different movement patterns for the same connection. This information
is then used as a reference in the analysis of a vessels’ journey and can allow to
identify routes that deviate from the previously extracted patterns. Furthermore,

1 http://solasv.mcga.gov.uk/regulations/regulation19.htm.

http://solasv.mcga.gov.uk/regulations/regulation19.htm
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it builds upon the semantic information of the edges of the network abstraction
and adds to these connections common patterns the vessels must follow in order
to travel between two way-points. Therefore, the common pathways and behavior
of the vessels in terms of space, speed and heading are integrated to the already
proposed network abstraction.

The main idea behind this work is that vessels of the same type (e.g., cargo
vessels) that travel towards the same destination, follow common routes that
pass through certain way-points and have similar moving patterns such as the
same speed or heading. The major contributions of this work are:

– A variation of the popular density based clustering algorithm (DBScan) that
takes into account the difference in speed and course as well as the spatial
distance of trajectory points and extracts common navigation behaviors.

– A framework for taking advantage of these common navigation behaviors,
by constructing movement models for different regions and vessel types and
using them to detect deviations from the models.

A framework like this, allows further analysis by using well-known network
analysis or data mining techniques enabling easier understanding of the maritime
traffic.

The rest of the paper is structured as follows. Section 2 summarizes the lit-
erature in the field of feature extraction from multiple trajectories and their use
for trajectory comparison. It focuses on works that summarize historical data
and build semantic models for an area. In Sect. 3, the proposed methodology of
enriching the network abstraction model is presented in detail and Sect. 4 dis-
cusses the preliminary results of our methodology in anomaly detection. Finally,
Sect. 5 concludes the paper by summarizing the presented methodology and high-
lighting the impact of this work in the domain of the maritime surveillance by
showing the possible use cases in the field of anomaly detection.

2 Related Work

In the context of the proposed work, traffic network abstraction and anomaly
detection is the main focus. As a network abstraction model, it is comparable
to methodologies that compress or summarize trajectories from historical AIS
data in order to improve maritime surveillance systems. As a methodology for
anomaly detection it is comparable to techniques that use historical AIS data to
detect abnormal or noteworthy patterns or events.

Several works on maritime surveillance have used grid partitioning of the
surveillance area into tiles or hexagons [3] for mapping vessel trajectories to poly-
lines or sequences of spatial indexes or key-points [4]. The proposed model is a
more coarse-grained representation than other trajectory simplification methods
that try to remove redundant AIS data, but still keeping a large amount of them.
Such methods apply to single vessel trajectories, whereas the proposed method
applies to multiple vessel trajectories in the same region. The proposed method-
ology results with a few key-points extracted from the set of trajectories – the
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way-points – and a set of edges between them, that contain statistics extracted
from the actual vessel trajectories, which are clustered by similarity. Section 3
shows that the edges connect way-points that are away from each other and
edges contain sufficient information about the vessels’ journeys between each
pair of way-points.

Many works the recent years try to build maritime traffic network represen-
tations from historical AIS data [5,6]. Arguedas et al. [5] propose a two-layer
network: (i) an external layer that uses way-points as nodes/vertices and routes
as edges/lines and (ii) an internal layer that consists of nodes or breakpoints
that represent vessels’ changes in behavior and edges or tracklets that represent
vessel trajectories. The former layer is a traffic network abstraction, while the
latter is a network that provides information about each vessel layer individu-
ally. While an edge in the first layer can a be a route from a port to another
port, an edge in the internal layer comprises all the simplified trajectories (using
Douglas-Peucker algorithm [7]) that sailed across this route.

The complexity of the internal layer raises scalability issues that can be seen
in the analysis of a real dataset. It is characteristic that the use of the 454 com-
plete port-to-port routes in the small area of the Baltic sea resulted in an internal
layer with 2, 095 tracklets. Our proposed model is similar to that of the external
layer of [5] but provides a much richer internal layer, that maintains statistical
information extracted from the trajectories of the sailing vessels. The resulting
model significantly reduces the total amount of data contributed originally by
the vessels, without loosing its descriptive power.

Since maritime traffic networks are able to provide compressed information
about vessel trajectories, their use seems to be essential for vessel motion anal-
ysis and abnormal behavior. The problem of anomaly detection in the maritime
domain [8] has been the focus of research for many years, although in the recent
years it started attracting more attention. From the early works on anomaly
detection from Holst et al. [9] and the later works of Varlamis et al. [10] and
Chatzikokolakis et al. [11] on the detection of search and rescue patterns, several
representation models and algorithms have been developed to increase maritime
situation awareness, identify potential illegal activities and detect anomalous
patterns in the vessels’ trajectories.

In [18], Pallota et al. propose a methodology for anomaly detection through
the use of a maritime traffic model. The model first extracts way-points or clus-
ters from vessel positions or ports and creates or updates the properties of the
vessels in the surveillance area. Way-points are extracted and route objects
are created by clustering the extracted vessel flows, using the DB-Scan algo-
rithm, which contain spatio-temporal and kinematic features. Probabilities are
extracted to classify a set of vessel positioning observations to a route, then using
the classified route a prediction is made for the future location. Finally, transition
probabilities are used to detect if a vessel’s behavior deviates from normality.
Authors in [12] compare two methodologies for anomaly detection which both
use the Gaussian Mixture Model (GMM) with a different algorithm for cluster-
ing. The first one uses the Expectation Maximization (EM) algorithm while the
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second one uses the greedy version of the EM algorithm. Both techniques con-
sider momentary states of the vessel motion. As an extension of the approach
proposed in [12], authors in [13] evaluate two models for detecting anomalies
and their ability to distinguish simulated trajectories from real ones, the GMM
and the Kernel Density Estimator (KDE). Results indicated that there is no
significant difference in the performance of these two models.

The proposed solution is expected to perform better than related frameworks
for anomaly detection from AIS data, which employ the position information of
the consecutive vessel signals that constitute its trajectory and use Euclidean or
other distance metrics in a two-dimensional space (i.e., latitude and longitude)
[14,15] or probabilistic approaches that partition space into tiles and estimate
the probability of vessels to appear in a certain sequence of tiles [13] ignoring
speed and direction. Even in approaches that use historical data to extract the
average speed [16] or direction of move in a certain area [18], or techniques such
as Piecewise Linear Segmentation (PLS) [17], speed and direction information
are used only for predicting future vessel position and the detection of deviation
always measures the spatial distance of the actual from the predicted position.
From our knowledge, this is the first approach that builds a composite model
of speed, direction and position for trajectories, which is then used to directly
detect deviations of any of the three features or any combination of them. It is
also expected to provide a richer model for the comparison of whole trajectories
or sub-trajectories than the techniques that employ equal length sub-trajectories,
or dynamic time warping and spatial distances to compare trajectories [19,20]
or techniques that combine spatial and temporal dimensions for indexing trajec-
tories [21].

3 The Proposed Approach

The proposed approach is applied to AIS data collected from multiple vessels of
the same type (e.g., cargo vessels) for a predefined period of time and a prede-
fined bounding box (e.g., geographic surveillance area of interest), but it is also
applicable to larger geographic areas, periods of time and more types of vessels.
Since, different types of vessels vary in size and shape, they may follow different
routes even if they want to reach the same destination. Furthermore, specific
vessel types such as cargo vessels might make much more intermediate stops
(e.g. in middle sea platforms) than others. Although, the network abstraction
model is the same for all types of vessels, the detailed information that it carries
may vary per vessel type. So, in the following we present the model and the way
its information is extracted but we demonstrate our approach on an AIS dataset
from cargo vessels only.

The main steps of our approach are illustrated in Fig. 1.

– In the route identification step, the way-points are extracted from multi-
vessel trajectory data, following a methodology proposed in [2] and sum-
marized in Sect. 3.1. Vessel trajectories are then expressed as sequences of
sub-trajectories that connect intermediate way-points.
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Fig. 1. The steps of the proposed approach

– The (sub-)trajectory clustering step is the main contribution of this work,
which introduces a novel use of the DB-Scan algorithm that takes into account
3 parameters to identify neighboring points. The methodology followed in this
step is explained in details in Sect. 3.2.

– In the network abstraction model enrichment step, several statistics are
extracted for each cluster. The statistics summarize the movement of mul-
tiple vessels along the network edge. The details of these statistics and their
extraction method is given in Sect. 3.3.

The final output model, comprises a set of way-points (vertices) dispersed
across the monitored region and several sub-trajectory clusters (edges) with
their statistics per cluster to represent the different ways of moving between two
way-points. This output can be used for many use cases in the field of anomaly
detection.

3.1 Route Identification

The first step of our methodology is the identification of way-points, which rep-
resent areas where many vessels have stopped (stop points) or did a major
directional change (turn points) in the past. As already demonstrated in [2],
way-points are created by clustering stop and turn points using a spatial density
clustering algorithm (i.e. DB-Scan). The resulting way-points are the nodes of
the network abstraction model, which contains information about way-points’
size and density (number of stop or turn points per area unit). The size and
density of way-points is strongly connected to the parameters of the DB-Scan
algorithm. In our working examples, we focus only on the bigger way-points (i.e.
those that contain more than 50 points). The idea behind this filtering is that
bigger and denser way-points would belong to the trajectories of more vessels.

In our prototype analysis, we focus only on the trajectories that have at
least 2 way-points, although the same methodology can be applied in all trajec-
tories and respectively to all the edges of the network. Using different selection
thresholds may result either in losing semantic information or in keeping too
much information and this is a subject of further experimentation. For example,
using higher thresholds (e.g. keeping even larger way-points only) will result in
a higher level of abstraction and will probably loose the fine grained details of



12 I. Kontopoulos et al.

multiple vessel patterns, whereas using lower thresholds will result in keeping
too much information and achieve low or no abstraction at all.

3.2 Trajectory Clustering

The second step refers to the clustering of the trajectories that have the same
origin and destination way-points. The typical algorithm for clustering the points
of one or more trajectories is DB-Scan [22], which is employed as a density-based
spatial clustering method. DB-Scan takes two parameters, epsilon which specifies
how close two points must be to be considered neighbors, and minPts which
specifies the number of neighbors a point must have to be included in a cluster.
Our proposed DB-Scan version uses 3 parameters to specify the proximity of
candidate vessel AIS signals (positions):

– s: absolute difference of the speed between two positions (speed-based)
– h: absolute difference of the course over ground between two positions

(heading-based)
– eps: harvesine distance between two positions (spatial-based)

(a) Typical DB-Scan implementation. (b) Modified DB-Scan.

Fig. 2. Comparison of DB-Scan implementations.

To the best of our knowledge, this DB-Scan variation has not been used
in the related literature. Therefore, each vessel position contains three types
of information: (i) the vessel speed at this position, (ii) the vessel course over
ground at this position, (iii) the latitude and longitude of the position. Also,
for a vessel position to be clustered together with another vessel position, the
absolute difference in their speed must be below a threshold s, the absolute
difference in their heading below a threshold h and the distance between them
must be below a threshold eps at the same time. This type of clustering groups



Uncovering Hidden Concepts from AIS Data 13

together trajectory points that have similar speed, heading and are close to each
other. An example of this type of clustering can be seen in Fig. 2 which compares
the two implementations of the DB-Scan algorithm. Figure 2a shows the typical
DB-Scan implementation, which creates a cluster if points are spatially close to
each other. On the other hand, Fig. 2b illustrates the modified DB-Scan for the
positions of moving objects, which considers two points (actually two vectors
with position, direction and speed) to be in the same neighborhood when the
vectors’ positions are spatially close to each other, but they also have similar
direction and speed. In the modified version blue arrows indicate noise vectors,
which are either away, or have different speed or have a different direction from
all their neighbouring vectors.

To have more accurate clustering results, we exclude positions that are
located inside the way-points. Since way-points are areas of interest through
which vessels frequently pass, it can be easily inferred that the way-points might
be ports, platforms, canals or waterways. Inside these way-points, vessels tend to
alter their speed or heading frequently, which may corrupt the clustering results.

Fig. 3. Example of the trajectory clustering.

Figure 3 illustrates the result of running the proposed trajectory clustering
method2 to all cargo vessels that sail in the east Mediterranean sea and are
headed to the port of Piraeus, Greece, using s = 3, h = 3, eps = 20 km and

2 DB-Scan parameters have been empirically determined.
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minPts = 10. We can see that trajectories with similar speed and heading
are placed in the same cluster, which resembles to the behavior of the basic
DBScan (e.g. the cluster formed in the Adriatic sea), whereas points of the same
trajectory may belong to different clusters, even though they are spatially close,
because of the differences in speed or heading (e.g. the clusters that are formed
near the port of Tripolis, Lybia, on the left part of Fig. 3).

3.3 Enriched Network Abstraction

The final step of the process is the enrichment of the network model with infor-
mation about the clusters of sub-trajectories in each network edge (or in selected
edges, e.g. the most frequently traversed). Since, we have created clusters of tra-
jectories (edges) between way-points, we can add information to these edges to
form a comprehensive network of the maritime traffic. To this end, for each clus-
ter or edge of the network we calculate the average travelling speed and heading
of the vessels. Moreover, the typical deviation of these values is also calculated.
Finally, the start point and the end point of the cluster are computed (beginning
and ending of the trajectories) along with the average temporal distance of each
cluster (average time taken to travel from the start of the cluster to the end of
it). Figure 4 illustrates a small snapshot of the network near Sicily, Italy. The
green shaded convex hulls represent way-points (vertices) and the green and yel-
low dots are the points that comprise the trajectory of a single vessel3. For the
(yellow) subtrajectory points that connect the two way-points of the figure, the
centroid of the respective cluster has a heading of 319.15 whereas the centroid
of the other (green) (subtrajectory) has a heading of 322.28.

Fig. 4. Example of the edges of the network abstraction. (Color figure online)

3 For demonstration purposes, this cluster contains points from a single vessel’s tra-
jectory.
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4 Application to a Real Dataset

To examine the results of our enriched network model, a dataset provided by
MarineTraffic4 was used, containing 2.9 million AIS messages received from
1, 716 distinct “cargo” vessels sailing in the eastern half of the Mediterranean
Sea during August 2015. Since no information about the existence of anoma-
lous behaviors existed in this dataset, we employed unsupervised techniques to
detect potential anomalies or outliers. Although outliers can be detected, further
examination is required to understand the reason behind the unusual behavior
and the characteristics of the trajectories selected.

4.1 Network Creation from Real AIS Positions

The first step in building the enriched network abstraction is the creation of
the way-points (vertices of the network). The identification of the way-points is
a two-step process that requires to i) identify key-points in the trajectories of
the vessels and ii) spatially cluster together dense key-points. To identify the
key-points we used a speed threshold of 2 knots and a bearing rate threshold
of 0.1 degrees per minute, which resulted in several thousand low speed AIS
positions and turns in the trajectories of the surveillance area. To create the
clusters of key-points, we used the DB-Scan algorithm with a minimum number
of ten key-points (minPts = 10) within a radius of 2 km (eps = 2000), resulting
in 616 clusters.

The second step involves clustering of the trajectories with similar charac-
teristics. For this step, we grouped the trajectories per destination and applied
the proposed modified version of DB-Scan, which requires for 3 parameters to
be satisfied in order for a point to be considered a neighboring one (speed-based,
heading-based, spatial-based). For a point to be in the same cluster, its speed
must not differ more than 3 knots and its heading more than 3◦ within a 20 km
radius. Moreover, a minimum number of 10 points is required to form a cluster.

In the remainder of this section we demonstrate cases of vessels that had
unusual behavior in terms of the way they deviate from their route or in terms
of the way they suddenly change course to reach the same destination.

4.2 Detection of Outliers in the Trajectories

The lack of Maritime Situational Awareness (MSA) is a key factor in many inci-
dents that are due to crew fatigue, stress or even engine failures, despite the
major improvements in maritime safety. A sudden change in the course of a ves-
sel is considered a noteworthy or anomalous event for the maritime authorities
for several reasons, either due to human factors or technical ones. Several cases
have been recorded in the past, in which engines fail during a vessel’s voyage
and the vessel starts drifting away from its normal route. This type of devia-
tion in a vessel’s route could potentially lead to collisions with nearby vessels

4 https://www.marinetraffic.com/.

https://www.marinetraffic.com/
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or collisions with rocky islands, endangering multiple vessels in the vicinity or
the environment (e.g., oil spills). Such small deviations from the normal route
cannot be detected by algorithms that seek for major turns, and the same holds
for temporal decelerations or accelerations and algorithms that seek for sudden
stops. Similarly, when vessels are in distress due to piracy attacks or when they
take part in search and rescue operations and they perform manoeuvres, it is
not always feasible to detect such combined actions that include speed and route
change and deviation from the normal route. These types of behavior require an
immediate course of action by the authorities. The proposed network abstraction
model, with the information it carries on each edge concerning the clusters of
movement patterns (in terms of speed, course over ground and location) is able
to capture such cases that comprise small or larger deviations in the trajecto-
ries. A few outlier cases that have been detected (Fig. 5) on a real dataset are
presented in the following.

(a) Example of an unusual loop in a ves-
sel’s trajectory.

(b) Example of an unusual and steep devi-
ation of a vessel.

(c) A trajectory that does not follow the
usual maritime traffic has been detected.

(d) A trajectory that slowly deviates from
its course.

Fig. 5. Outliers detected by the proposed trajectory clustering.
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Figure 5a illustrates a vessel’s trajectory towards Naples, Italy. During its
voyage the vessel makes a small circle and then continues its journey as before.
Since its heading and speed changed dramatically the points in the circle (i.e.
white) are considered outliers. Figure 5b illustrates the maritime traffic from the
west to east, near Sicily, Italy. The trajectories from multiple vessels are grouped
in the same cluster, since they share the same course and speed values and are
drawn with the same colour (i.e. magenta). The centroid of this cluster has a
heading of 102.3◦ and a speed of 13.91 knots. However, the part of the trajectory
of a vessel that deviates from the normal route, starts heading to the north and
after a while follows the same direction as before is marked with blue and yellow
dots, since it moved to a different cluster. The blue cluster centroid has a heading
of 30.2◦ and a speed of 1.2 knots (with a standard deviation of 5.25), whereas
the respective centroid for the yellow cluster has a heading of 11.4◦ and a speed
of 1.2 knots (with a standard deviation of 2.75). The actual centroid values
clearly indicate an outlying behavior from a vessel that changed its route in
slow speed in an area where similar (i.e. cargo) vessels move in different speed
and direction. In a different case, Fig. 5c visualizes the maritime traffic of cargo
vessels in the Aegean sea, showing all the vessels heading to the port of Piraeus,
passing south of the island of Evia and near the island of Andros, Greece. There
are two distinct clusters in the plot: (i) a big one that contains the trajectory
of vessels traveling from the north-east Aegean sea, with a centroid of 227.3◦

(stdev = 21.32) and 13.1 knots (stdev = 2.49) and (ii) one that contains vessels
traveling from the north-west, with a centroid of 137.8◦ (stdev = 14.26) and 13.0
knots (stdev = 1.65). The two clusters eventually merge into one cluster when
the vessels pass south of Evia. Almost hidden among the two clusters is a third
smaller cluster (marked with purple points) which illustrates a large deviation of
a vessel that does not follow the patterns of all vessels with the same destination.
This last cluster has a centroid of 145.8◦ (stdev = 2) and 1.4 knots (stdev =
0.16). With the proposed clustering algorithm, this subtrajectory, which does
not contain any large and sudden course change or a stop has been identified as
an outlier. Finally, Fig. 5d shows the maritime traffic near the island of Lemnos,
Greece. From the plot it is obvious that while all vessels follow a specific route
(the same big cluster as in Fig. 5c), when they head towards the port of Piraeus,
using similar speed and heading values, there is one vessel that slowly deviates
(marked with blue colour) from the common route, for unknown reason. This
outlier has an average heading of 192.7◦ and 9.8 knots speed. The comparison
between the normal behavior (227.3◦, with stdev = 21.32 and 13.1 knots, with
stdev = 2.49) shows that this outlier moved much slower that all other cargo
vessels too.

All the cases presented above, are extracted from a dataset of 1,716 cargo
vessels, following a totally unsupervised method (clustering). As a consequence,
it provided us with useful feedback on the applicability of the proposed method
and on the type of deviations it can detect. However, the same methodology
can be used as a basis for a supervised (classification) technique that will detect
vessel deviations using pretrained cluster information.
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5 Conclusion and Future Steps

In this work, we proposed a clustering technique, which can be used to enrich
our previously proposed maritime traffic network [2] that can efficiently model
the behavior of vessels using only free and openly transmitted AIS data. The
modelling of the normal vessel behavior will allow us to further distinguish out-
liers in the trajectories that are of interest to the maritime authorities. In this
work, we showcased a few real world examples which our model managed to
accurately detect. Identifying specific cases of anomalous behavior [10,11,23,24]
will allow us to fine-tune, improve and exploit the proposed unsupervised tech-
nique as a basis for a supervised model for the detection of events of interest in
the maritime sector. As a future work, we intend to exploit the proposed network
abstraction in order to identify events of interest to the maritime authorities.
Besides the route deviation problem presented in the preliminary results, we are
interested in identifying several other anomalies related to the maritime domain
such as communication gaps, AIS spoofing and illegal activities, thus building
a unified framework for anomaly detection in real-time. The evaluation of the
future anomaly detection framework will take into account real-world incidents
and will measure the detection latency in real-time.
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Abstract. Unemployment rate is one of the most important macroeco-
nomic indicators. Central governments and market participants heavily
rely on the index to assess the economies. However, official statistics
of unemployment rate are released infrequently with substantial delay.
Prediction of official statistics of labor market will be helpful for these
authorities as well as private companies and even workers. In this paper,
we combine massive location data coming from smartphones and mixed
data sampling (MIDAS) techniques to predict current unemployment
rate in Japan. We found GPS data is very useful to predict the status of
labor markets.

Keywords: GPS data · MIDAS · Mixed data sampling · Location
data · Unemployment rate · Time series analysis · Macroeconomic
policy · Nowcasting · Forecasting

1 Introduction

Unemployment rate is widely considered as one of the most important macroe-
conomic indices. Most of the central governments put a very high priority on
employment since the unemployment causes many problems including poverty,
crimes and social instability. The importance of unemployment statistics is not
limited to public sector. Market participants assess the macroeconomic environ-
ment with unemployment rates. Ordinary employees also benefit from knowing
unemployment rates since they need to decide whether or not quit the current
job based on the labor market condition.

Besides its importance, the index has a serious problem. Official statistics
authorities such as the U.S. Bureau of Labor Statistics (BLS) and Eurostat
publish unemployment rates on monthly basis. We can not notice acute changes
in the labor market from the statistics. Furthermore, the statistics is usually
published around a month after the expiry of the month. The delay is caused by
the time spent on the distribution and collection of survey questionnaires, and
data processing. For prompt macroeconomic policy intervention and efficient
market functioning, important indices such as unemployment rates should be
reported as quick as possible. Catastrophic economic event such as financial crisis
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during 2007–2009 must be noticed by the government and important decision
makers in the private sector before it gets seriously worse.

The need for the correct knowledge of current economic status leads to a
large literature of nowcasting [1,2] and introduced to the real world. The FRB
of Atlanta has been continuously updating real-time estimates of GDP using
monthly economic statistics in their “GDPNow” website [3,4].

While the economic statistics rarely uses highly frequent data (e.g. hourly,
daily, or weekly), a massive volume of high frequency data have become available.
GPS log data is one instance. Many location-based apps such as maps, entertain-
ment, game, and fitness collect users’ geo-location information if the users give
permissions. These data are primarily utilized for improvement of user experi-
ence as well as advertising, recommendation and business intelligence. However,
we see fast-growing literature on statistical analysis using collected GPS logs in
a variety of areas including prediction of demographics and preference, detection
of home, mode detection, and population analysis to name a few [5–9].

Recently, “alternative data”, or non-traditional data has been embraced in
the non-academic area. In the financial industry, more and more market partici-
pants start using alternative data including geo-location data to make investment
decisions. [10] Investors such as hedge funds predict sales by location data. [11]
Rigorous consideration is needed in the field.

In this paper, we introduce GPS data to nowcasting literature and develop a
unique model predicting current unemployment rates with GPS log. Our evalu-
ation proves that GPS data has substantial predictive power for number of the
unemployed persons. In the following sections, we first briefly review literature
in Sect. 2, then explain our data in Sect. 3. Section 4 gives the detail of our model
and Sect. 5 evaluates it. Finally Sect. 6 concludes.

2 Related Works

To the best of our knowledge, this is the first attempt to forecast unemployment
rates with GPS data. Nowcasting of labor market statistics with alternative data
has been actively studied since Varian and Choi [12] suggested the potential pre-
dictive power of search query data. The earliest attempts to forecast unemploy-
ment rate with search query reveal the predictive power of query data for labor
market [13–15] and many studies follow (e.g. [16–18]). While most of the papers
utilize ARIMA-type models, Onorante and Koop [19] apply Dynamic Model
Selection/Averaging and Scott and Varian [20] develop the Bayesian structural
time series model.

The present work considers mixed data sampling (MIDAS) scenario pioneered
by Ghysels et al. [21] in which the high frequency data is used to forecast infre-
quent data.The idea of MIDAS is to represent frequent data in a parsimonious
way. A natural extension is a situation where high dimensional (large p) and high
frequency predictive variables are present in small sample (smaller N). Various
models combine feature selection techniques and MIDAS are proposed [22–24].
Recently Uematsu and Tanaka [25] showed a simple penalized regression without
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MIDAS technique performs well for GDP forecasting with high frequent data.
While these research focus on monthly official statistics as high frequent data
and quarterly data (usually GDP) as target. The present paper extends MIDAS
to much more high frequent alternative data.

Moreover, unlike existing models, our model is unique in its purely static
form, which reveals the predictive power of GPS itself.

3 Data

In this section, we explain the data for the target (unemployment rates) and the
predictor (GPS logs) in detail.

3.1 The Unemployment Rate

The unemployment rate is defined as “the number of unemployed persons as a
percentage of the total number of persons in the labour force” [26]. In mathe-
matical form,

u = y/l, (1)

where y and l denote the number of unemployed persons and labor force.
The number of unemployed persons and persons in the labor force are usu-

ally surveyed by the government on monthly basis. In Japan, monthly Labor
Force Survey takes the role. The survey collects information about labor sta-
tus of approximately 40,000 households during the last week of each month.
To estimate the number of unemployed persons, we take advantage of the fact
that they have strong incentives to go to public employment service offices. It is
mandatory for Japanese unemployed workers to visit one of public employment
services offices to become eligible for unemployment insurance benefits. Fur-
thermore, they have to visit the office at least once a month to maintain their
eligibility [27]. We can easily presume more visitors implies more unemployed
persons.

Once we get the number of unemployed persons, we need the number of labor
force to divide it. Unfortunately finding clues for the number of labor force from
the GPS data is not very easy. However, labor force is far less volatile and
thus the prediction error is relatively small. A simple ARIMA model produces
accurate predictions with the RMSE of 0.22 million and MAE of 0.18 million
when the mean of labor force is 66 million.

In short, we estimate seasonally-adjusted unemployment rate uSA
t as,

ûSA = ŷSA/l̂SA, (2)
ŷSA = ŷGPS/sU (3)

where sU is seasonality index for unemployed persons. In the following sections,
we first focus on the estimation of y rather than u. Resulting estimates of unem-
ployment rate is shown in Sect. 5.
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3.2 The GPS Data

Throughout this paper, we heavily rely on GPS logs from smartphones. Many
mobile apps collect users’ geographical location information to improve their
services when the users give permission. We use completely annonymized version
of GPS data taken from Jan 2016 to April 2019 (40 months). The data consists
of four columns: hashed id, latitude, longitude and timestamp. We count the
number of app users who possibly visit each employment service office daily
basis. The resulting data consists of N (the number of offices) × D (the number
of days) data points. We decide a person visits an employment service office when
one or more logs are found within specific areas covering each office (Fig. 1). Since
mobile phone determines its location based on the signals from GPS satellites,
the accuracy deteriorates during a user is inside buildings or surrounded tall
buildings due to the reflections of signals (multi-path). Furthermore, the logs are
recorded infrequently to reduce battery consumption. To circumvent risk that we
fail to count the person inside building due to the inaccuracy and infrequency of
the nature of GPS data, the areas need to have some buffer outside the building.

The areas are set based on the size of the offices. To get size of the buildings we
applied OpenCV [29] to map. The number of logs represent the number of visitors
who has installed and given permission to specific app(s). The numbers are
affected by whether the smartphone is turned on/off, whether the apps are turned
on or not, and whether GPS logs are accurate. Moreover, note that visitors are
not always unemployed persons. Visitors include consultants of the office, HR
staffs from companies and other related people. Nevertheless, the numbers are
expected to include some information about the number of unemployed. The
counts are normalized by dividing by the total number of the daily unique users
to mitigate the effect from the change in data volume.

Fig. 1. Image of GPS data and an employment service office. Logs (red points) found
in the green-colored area are counted. (Color figure online)

4 Nowcasting Model

In this section, we set up a nowcasting model and explain the estimation. Algo-
rithm 1 summarizes the whole procedure.
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Algorithm 1. Nowcasting of The Number of Unemployed Persons
Require: Daily GPS data {xH

n,1− 29
30

, xH
n,1− 28

30
, · · · , xH

n,t̄− d̄
30

}n∈{1,N}

Monthly data for the number of unemployed persons from official statistics {yt}t̄−lag
t=1

, lag = {1,2}
Set {φi}30

i=0 according to normalized beta distribution (k, α, β) = (1, 1.3, 1), where k
is normalization factor
for n = 1, · · · , N do

Impute {xH

n,t̄− d̄−1
30

, xH

n,t̄− d̄−2
30

, · · · , xH
n,t̄} with univariate ARIMA model

for t = 1, · · · , t̄ do

calculate xL
n,t =

d−1∑

i=0

φix
H
n,t−i/30.

end for
Discard {xL

n,t}t̄−lag
t=1 if corr({xL

n,t}t̄−lag
t=1 , {yt}t̄−lag

t=1 ) ≤ 0.3
end for
Learn f from (yt, {xL

n,t}n, zt)t≤t̄−lag

Forecast ŷt̄ = f(xL
n,t̄, zt̄)

4.1 The MIDAS Model

Since unemployment rates are monthly statistics, it is not straightforward to
develop a predictive model using daily data. As discussed in Sect. 2, such a
situation is called “mixed data sampling” or MIDAS in short. We employ a most
simple variant of MIDAS models, “bridge equation”. Ghysels and Marcellino
(2018) [30] provides detailed explanation on MIDAS models. Notations used
in this paper are based on the book. Suppose yt is a monthly (low frequency)
outcome variable to be predicted and xH

n,t−i/d is N daily (high frequency) feature
variables. The two variables themselves are not compatible with each other. We
need to “bridge” high frequency data xH

n,ts to low frequency xL
t . That is,

xL
n,t =

30∑

i=0

φix
H
n,t−i/30 (4)

where φis are positive scalars holds
30∑

i=0

φi = 1. Hereafter we assume every month

has 31 days regardless of the month. We pad zeros to the first d∗ days for months
with fewer than 31 days. For example, non-Olympic year February (28 days) goes
like (0, 0, 0, 1st day, · · · , 28th day). Then with a suitable machine learning model
f , one can forecast yt.

ŷt = f(xL
1,t, · · · , xL

N,t, zt), (5)

where zt includes month and year.

4.2 Estimation of Parameters

We have two sets of parameters to be estimated. One is a vector of φ which
transform daily data to monthly data. The other is parameters in the model
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f , which gives prediction of y from x. In MIDAS literature, weight vector φ is
chosen from several options. [21] Here we tried linear scheme φi = 1/31 and
normalized beta φi = beta(i/30,α,β)

30∑

i=0
beta(i/30,α,β)

where beta(x, α, β) = xα−1(1−x)β−1Γ(α+β)
Γ(α)Γβ .

We go with normalized beta as it outperforms linear scheme. β governs the
peak of the weights and α governs the slope of the weights (see Fig. 2). Since
official monthly labor survey collects data during the last week of the month, it
is reasonable to set β = 1. Finally α is chosen according to the resulting RMSE
and MAE by grid searching.1

For forecasting model f we need to consider that the number of employment
service offices (544) is much larger than the number of data points (40 months).
This means standard MIDAS regression is not applicable2. We pick up standard
Random Forest and L1-regularized least squares (LASSO). More flexible regres-
sion models such as SVM and neural nets are not suitable for our short time
series data. Furthermore, when evaluating the model, training data gets much
more shorter. Our model should not learn data from the future. We evaluate the
model on data from May 2018 to Apr 2019. It leaves only 28 months to learn
when evaluated at May 2018. Random forest out-perform LASSO for the most
of the cases, we go with random forest3.
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Fig. 2. Values of φ by parameters.

1 The weights are generated by R package midasr.
2 R package midasr does not have implementation for regularization.
3 We used R package ranger [28].
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4.3 Imputation of Missing Data

Since our goal is to nowcast unemployment rate as quick as possible, ideally
we want to estimate unemployment rate any day in month. Suppose we are on
June 28th 2019, the day official statistics for May is released (Fig. 3). One wants
to forecast unemployment rate for June 2019. This is called “one month ahead
prediction” since it predicts unemployment for one month ahead. Then we need
impute missing GPS data for three days (28th, 29th and 30th). We use standard
ARIMA models to impute missing GPS data. The models are run separately for
each office. Parameters are automatically selected by auto.arima of R package
forecast. At most five days imputation suffices for one month ahead prediction.

What if we want to conduct two month ahead prediction? If you are in
the middle of the month (e.g. July 15th) then you need to impute 16 days of
GPS logs. We check how the imputation affects prediction performance in the
experiment.

Alternatively, we can estimate model without imputation by using only avail-
able data. However, the number of available days of data changes day by day
and we need a lot of predictive models to be estimated (p. 462 in [30]). Here we
resort to one predictive model with imputation for simplicity.

Fig. 3. Publication schedule and Imputation

4.4 Feature Selection

As already discussed in Sect. 2, feature selection is another important task
here. Although random forest automatically selects informative feature variables,
heuristic feature selection will benefit. Since the number of visitors to each office
are expected to positively correlate with the number of unemployed persons,
offices with negative correlation should be dominated by noise. We first calcu-
late correlation of the data from each offices and official statistics for the number
of unemployed persons in training period. Then we discard data from the offices
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with correlation smaller than 0.3. This procedure, however, leaves more than a
hundred of offices.

5 Evaluation

In this section, we evaluate our predictive model by comparing baseline models.
We first examine model for the number of unemployed persons and then one
for unemployment rates. Throughout the section we utilize root of mean square
error (RMSE) and mean absolute error (MAE) of the model for 12 months of
rolling forecast. RMSE is defined as

RMSE =

⎛

⎝
Apr2019∑

t=May2018

(yt − Ê[yt|x̂L
t ])2

⎞

⎠
1/2

for GPS (6)

RMSE =

⎛

⎝
Apr2019∑

t=May2018

(yt − Ê[yt|yt−lag, . . . , y1])2

⎞

⎠
1/2

for ARIMA (7)

where yt denotes the ground truth taken from official statistics and lag indicate
the number of steps of the forecasts. Note that x̂L is estimated using information
available at t − lag. MAE is absolute error version of RMSE.

5.1 Nowcast for the Number of Unemployed Persons

Figure 4 shows one-month-ahead (ŷt|t−1) forecasts by our model (GPS) and
ARIMA model with ground truth. The specification of ARIMA model is cho-
sen by auto.arima. It takes seasonality into account. As we’ve already seen in
Sect. 3.2, forecasting before the end of the month needs some imputation. The
right panel shows forecast without missing data while the left shows forecast
with three days missing. Since there is a substantial delay in official statistics,
imputation is not necessary in the most of the cases.

In general, the GPS model (green solid line) well predicts true values (blue
dot-dashed) with several exceptions (May 2018, Jan 2019, and Mar 2019). One
of the stinking features of the GPS model is its smoothness of the prediction.
Compared to ARIMA (red dashed line), the predictions of the GPS model are far
less volatile. In particular, ARIMA tends to mimic the level of the last month
while the GPS model does not. This is reasonable because GPS model is a
simple static model and does NOT have an autoregressive characteristic. The
shape of the prediction by GPS model seems too smooth. It fails to predict
some dips in the ground truth. However, economists want to see the trend of the
economy rather than the short-term fluctuation. That’s why economists prefer
moving averaged indicators. GPS model accurately predict downward trend in
unemployment.

Figure 5 shows the two months ahead forecasts (yt|t−2). The right hand panel
shows the forecasts based on data with five days missing while the left miss
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Fig. 4. One month ahead forecast (yt|t−1) by proposed model (GPS), ARIMA model,
and ground truth (true)
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Fig. 5. Two month ahead forecast (yt|t−2) by proposed model (GPS), ARIMA model,
and ground truth (true)

fifteen days of GPS log. Compared with one month ahead forecasts, two months
ahead forecasts shows larger errors for several months (Feb 2019 and Oct 2018).
However, the results are much better than ARIMA model.

Table 1 summarizes the performance of the models. GPS models out-perform
ARIMA model both one month ahead and two months ahead forecasts. Also the
period of imputation seems not to affect the performance. Even model trained on
data with 15 days imputation outperform ARIMA model. Also, the accuracy is
almost same for one or two month ahead forecasts. The only difference between
one month ahead and two month ahead GPS models is that two month ahead
models do not learn data of just before the target month (i.e. yt−1). Learning
the last month of the target month might not be so important.
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Table 1. RMMSE and MAE of each models (million person). The parameters of
ARIMA model are automatically chosen according to BIC.

One month ahead forecast RMSE MAE Forecast available

GPS, no missing 0.083 0.067 26–31 days before

GPS, 3d missing 0.084 0.067 28–34 days before

ARIMA 0.102 0.086 28–34 days before

Two month ahead forecast RMSE MAE Forecast available

GPS, 5d missing 0.086 0.07 31–37 days before

GPS 10d missing 0.085 0.068 36–42 days before

GPS 15d missing 0.085 0.069 41–47 days before

ARIMA 0.101 0.083 56–64 days before

5.2 Forecasts for Unemployment Rates

Finally, we evaluate the predictive performance of our GPS model for unem-
ployment rates. Unfortunately, we do not have a good predictive model for labor
force. We resort to an ARIMA model for prediction of seasonaly-adjusted labor
force and estimate unemployment rate. That is,

ûSA,GPS−ARIMA =
ŷGPS/sU

l̂SA,ARIMA
, (8)

where sU is seasonality index. In Sect. 5.1, the GPS model has already beaten
ARIMA model. This time we deployed another baseline model: an ARIMA model
directly predicts seasonally adjusted unemployment rates. The results (Table 2)
show our GPS-ARIMA model is inferior to the ARIMA model for one month
prediction horizon (ût|t−1) but is competitive for two month prediction horizon
(ût|t−2). As shown in Fig. 6, the up-and-down of the ground truth is better
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Fig. 6. Forecasting of unemployment rates
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Table 2. Performance of predictive model for unemployment rates. RMSE/MAEs are
inflated by 1,000. For example, 1.0 of MAE implies 0.1% mean absolute error.

One month ahead RMSE × 1000 MAE × 1000

GPS, no missing 1.22 1.00

ARIMA 1.16 0.99

Two month ahead RMSE × 1000 MAE × 1000

GPS 10 days missing 1.25 1.02

GPS 15 days missing 1.22 0.97

ARIMA 1.19 1.05

predicted by ARIMA while the absolute values are better predicted by GPS-
ARIMA (e.g. Jul 2018, Nov 2018, Jan 2019).

The disappointing result is actually no surprise. The existing literature shows
that the predictive power of alternative data is sometimes weak. [16,19] Also,
the better predictive model for labor force could improve the results.

6 Conclusion

In this paper, we examined the usefulness of GPS log data for nowcasting for
unemployment rates. First we prove that model using GPS data without the
lagged dependent variable out-performs a standard ARIMA model for prediction
of the number of unemployed persons. Then we found that the a combination of
GPS and ARIMA model is only competitive for longer prediction horizon when
applied to unemployment rates. The predictive performance could be improved
by several ways. First, as described in Sect. 2, various modern techniques for
MIDAS and high dimensional data are available. Second, using GPS data as
an independent variable in an autoregressive model is another good candidate.
Third, more sophisticated treatment for GPS log is expected to improve the
quality of the data. Counting log is simple but the literature on GPS trajectories
suggests many other technique to improve accuracy. Nevertheless, we hope the
paper presents new idea for both nowcasting of economic statistics and utilization
of GPS data.
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Abstract. In this paper, we present a Big data framework for the pre-
diction of streaming trajectory data by exploiting mined patterns of tra-
jectories, allowing accurate long-term predictions with low latency. In
particular, to meet this goal we follow a two-step methodology. First,
we efficiently identify the hidden mobility patterns in an offline manner.
Subsequently, the trajectory prediction algorithm exploits these patterns
in order to prolong the temporal horizon of useful predictions. The exper-
imental study is based on real-world aviation and maritime datasets.

Keywords: Trajectory prediction · Trajectory clustering · Mobility
patterns · Big data

1 Introduction

Huge amounts of tracking data are being generated on a daily basis by GPS-
enabled devices which are stored for analytics purposes. These constitute a rich
source for inferring mobility patterns and characteristics, which, in turn, can
be valuable to a wide spectrum of novel applications and services, from mobile
social networking to aviation traffic monitoring. During the last years, such data
have attracted the interest of data scientists, both in industry and academia,
and are used to extract knowledge and useful features on what, how and for how
long the moving entities are conducting individual activities related to specific
circumstances. One of the most challenging tasks is to exploit these data by
means of identifying historical mobility patterns, which, in turn, can gauge the
procedure of discovering what the moving entities might do in the future. As a
consequence, predictive analytics over mobility data have become increasingly
important and are ubiquitous in many application fields [2,30,43].

The problem of predictive analytics over mobility data finds two broad cate-
gories of application scenarios. The first scenario involves cases where the mov-
ing entities are traced in real-time to produce analytics and compute short-term
c© The Author(s) 2020
K. Tserpes et al. (Eds.): MASTER 2019, LNAI 11889, pp. 34–49, 2020.
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predictions, which are time-critical and need immediate response. The predic-
tion includes either location- or trajectory-related tasks. Short-term location
and trajectory prediction facilitates the efficient planning, management, and
control procedures while assessing traffic conditions in the road, sea and air
transportation field. The latter can be extremely important in domains where
safety, credibility and cost are critical and a decision should be made by consid-
ering adversarial to the environment conditions to act immediately. The second
scenario involves cases where long-term predictions are important to identify
cases which exceed regular mobility patterns, detect outliers and determine a
position or a sequence of positions at a given time interval in the future. In this
case, although response time is not a critical factor, it is still crucial in order to
identify correlations between historical mobility patterns and patterns which are
expected to appear. Long-term location and trajectory prediction can assist to
achieve cost efficiency or, when contextual information is provided (e.g., weather
conditions), it can ensure public safety in different transportation modes (land,
sea, air).

As the maritime and the Air Traffic Management (ATM) domains have major
impact to the global economy, a constant need is to advance the capability of sys-
tems to improve safety and effectiveness of critical operations involving a large
number of moving entities in large geographical areas [22]. Towards this goal,
the exploitation of heterogeneous data sources, which offer vast quantities of
archival and high-rate streaming data, is crucial for increasing the computations
accuracy when analysing and predicting future states of moving entities. How-
ever, operational systems in these domains for predicting trajectories are still
limited mostly to a short-term look-ahead time frame, while facing increased
uncertainty and lack of accuracy.

Motivated by these challenges, we present a Big data solution for online
trajectory prediction by exploiting mined patterns of trajectories from historical
data sources. Our approach offers predictions such as ‘estimated flight of an
aircraft over the next 10 min’ or ‘predicted route of a vessel in the next hour’,
based on their current movement and historical motion patterns in the area.
The proposed framework incorporates several innovative modules, operating in
streaming mode over surveillance data, to deliver accurate long-term predictions
with low latency requirements. Incoming streams of moving objects’ positions
are cleansed, compressed, integrated and linked with archival and contextual
data by means of link discovery methods.

This paper includes three main contributions: (a) we devise a big-data
methodology/algorithm that solves the Future Location Prediction (FLP) prob-
lem in a effective and highly scalable way; (b) the design and implementation
of our algorithm on top of state-of-the-art Big data technologies (namely Spark
and Kafka); (c) extensive experimental study in large real datasets from the
maritime and aviation domains. To the best of our knowledge, in contrast to
related state-of-the-art systems [8,10] and research approaches [7], our approach
is unique as a Big data framework capable of providing long-term trajectory
predictions in an online fashion.
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This paper is organized as follows. Section 2 presents the related work from
the field of trajectory prediction and long-term future location prediction, espe-
cially from the maritime and aviation domains. Next, Sect. 3 describes the sys-
tem overview and architecture of the proposed approach, as well as how this
fits into the Big data scope. Section 4 presents the mobility pattern discovery
module, in the form of a novel and scalable subtrajectory clustering Big Data
solution, which is the first stage of this approach. Predictive models, which is
the second stage, are described in Sect. 4.2. The experimental study in Sect. 5
includes datasets from both the maritime and the aviation domain. Finally, the
conclusions and future aspects of this work are described briefly in Sect. 6.

2 Background

The trajectory of a moving object is defined as: < (p0, t0), (p1, t1), ..., (pi,
ti), ... >, where pi is the location of the object in d -dimensional space (typi-
cally, d = 2 or 3, for a movement in plane or volume, respectively) and ti is the
time this recording was made, with ti < ti+1 (i.e., the sequence is chronologically
ordered).

Having this at hand, two main prediction-related problems can be stated for
moving objects: Future Location Prediction (FLP) and Trajectory Prediction
(TP) [14]. In these definitions we adopt the following terminology: symbols p
and t refer to recorded or given locations and timestamps, respectively, whereas
symbols p* and t* refer to (future) predicted locations and timestamps, respec-
tively.

Problem Definition 1 Future Location Prediction (FLP): Given (a) the
incomplete trajectory < (p0, t0), (p1, t1), ..., (pi−1, ti−1) > of a moving object o,
consisting of its time-stamped locations recorded at past i time instances, and
(b) an integer value j ≥ 1, predict < (p∗

i , ti), ..., (p
∗
i+j−1, ti+j−1) >, i.e., the

objects’s anticipated locations at the following j time instances.

Problem Definition 2 Trajectory Prediction (TP): Given (a) the incomplete
trajectory < (p0, t0), (p1, t1), ..., (pi−1, ti−1) > of a moving object o consisting of
its time-stamped locations recorded at past i time instances and (b) a target
region R, predict < (p∗

i , ti), ..., (p
∗, t∗) >, where p∗ ∈ R, i.e., the object’s antici-

pated locations until it matches a point p∗ in R (note: p∗ may be never reached
exactly).

Using these two baseline definitions for the FLP and TP tasks, a wide variety
of algorithms can be employed to predict either sequences of future points (FLP)
or the evolution of entire trajectories (TP). In the context of this work, the
interest is focused specifically in TP or, complementary, to long-term FLP, i.e.,
with sufficiently large look-ahead time frames.

A typical example of a FLP method is presented in [38], where the authors
propose TPR*-tree (index-based), which derives from TPR-tree, and exploits the
characteristics of dynamic moving objects in order to retrieve only those which
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will meet specific spatial criteria within the given time interval, i.e., query win-
dow, in the future. Every moving object is represented by a Minimum Bounding
Rectangle (MBR) along with a Velocity Bounding Rectangle (VBR). The pro-
posed index integrates novel insertion and deletion algorithms to enhance per-
formance and supports predictive spatio-temporal queries by specifying a query
region qr and a future time interval qt and retrieving the set of objects that will
intersect qr at any timestamp t ∈ qt.

The previous method can be considered as a FLP-based approach, mostly
in the context of the long-term prediction. There is also a number of TP-based
approaches that address the prediction task in a similar way. In theory, every
FLP method can be transformed to a full TP model, given a specific granularity
upon which the same method is applied iteratively. The main difference with
‘pure’ TP methods is that in this case the prediction errors are accumulated with
each step (e.g. via multi-step Linear Regression) along the prediction track, thus
making the predicted points increasingly error-prone. In contrast, TP methods
forecast the complete trajectory as a whole, thus making each predicted point
equally error-prone. Regarding en route climb TP, one of the major aspects of
decision support tools for ATM, Coppenbarger [8] discusses the exploitation of
real-time aircraft data, such as aircraft state, aircraft performance, pilot intent
and atmospheric data for improving ground-based TP. The problem of climb
TP is also discussed by Thipphavong, Schultz et al. [39], as it constitutes a
very important challenge in ATM. In this work, an algorithm that dynamically
adjusts modeled aircraft weights is developed, exploiting the observed track data
to improve the accuracy of TP for climbing flights.

In the area of stochastic approaches, Ayhan and Samet [4] introduce
a novel stochastic approach to aircraft trajectory prediction problem, which
exploits aircraft trajectories, based on Hidden Markov Models (HMM), modeled
in space and time by using a set of spatio-temporal data 4-D cubes (latitude, lon-
gitude, altitude, time) enriched by weather parameters. Gong and McNally [16]
proposed a methodology for automated trajectory prediction analysis, specifi-
cally for splitting the process in separated stages according to the flight phases.
The purpose is to identify flights, as described by actual radar tracks, which
show unpredictable modifications of their aircraft intent and can be considered
outliers. In another work by Ayhan and Samet [5], the authors investigate the
applicability of the HMM for TP on only one phase of a flight, specifically the
climb after takeoff. Moreover, they address the problem of incorporating weather
conditions in their model, as they represent a major factor of uncertainty in all
TP applications.

Regression and clustering are also two main areas of interest when apply-
ing machine learning methods in TP. Neural Networks (NN) have been proposed
in various works as the core regression model for the task of TP. Le Fablec and
Alliot [12] have introduced NNs for the specific problem of predicting an aircraft
trajectory in the vertical plane, i.e., its altitude profile with the time. Cheng,
Taoya, et.al. [6] employ a data mining statistical approach on the radar tracks
of aircrafts to infer the future air traffic flows using Neural Networks (NN) and
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exploiting data grouped in seven ‘weekday’ categories for predicting the Esti-
mated Time of Arrival (ETA) at designated fixes and airports as output. Leege,
Paassen and Mulder [22] also address the specific TP task of predicting arrival
routes and times via Generalized Linear Models (GLM), merging together air
traffic following fixed arrival routes, meteorological data and two aircraft types.

In a very recent work of TP in aviation, Georgiou et al. [15] introduce flight
plans, localized weather and aircraft properties as trajectory annotations that
enable modelling in a space higher than the typical 4-D spatio-temporal. A multi-
stage hybrid approach is employed for a new variation of the core TP task, the so
called Future Semantic Trajectory Prediction (FSTP), including clustering the
enriched trajectory data using a semantic-aware similarity function as distance
metric. Subsequently, a separate predictive model is trained for each cluster,
using a non-uniform graph-based grid that is formed by the waypoints of each
flight plan. In practice, flight plans constitute a constrained-based training of
each predictive model, one for each waypoint, independently. Various types of
predictive models are tested, including HMM, linear regressors, regression trees
and feed-forward NNs. The results show very narrow confidence intervals for the
per-waypoint TP errors in HMM, while the more efficient linear and non-linear
regressors exhibit 3-D spatial accuracy much lower than the current state-of-
the-art, up to a factor of five compared to ‘blind’ TP for complete flights, in the
order of 2–3 km compared to the actual flight routes.

Concerning mobility pattern discovery, the aim is to identify several types
of collective behavior patterns among moving objects like the so-called flock
pattern [20,41] and the notion of moving clusters [19]. A number of research
efforts that emerged from the above ideas are the approaches of convoys [18,28],
platoons [23], swarms [24], gathering pattern [42] and traveling companion [37].
Trasarti et al. [40] introduced “individual mobility patterns” in order to extract
the most representative trips of a specific moving object, so that they can pre-
dict object’s future locations. However, all of the aforementioned approaches are
centralized and cannot scale to massive datasets. Towards this, the problem of
convoy discovery in a distributed environment by employing the MapReduce
programming model was studied both in [27]. An approach that defines a new
generalized mobility pattern which models various co-movement patterns in a
unified way and is deployed on a modern distributed platform (i.e., Apache
Spark) to tackle the scalability issue is presented in [13].

Another line of research, tries to discover groups of either entire or por-
tions of trajectories considering their routes. A typical strategy is to transform
trajectories to a multi-dimensional space and then apply well-known clustering
algorithms such as OPTICS [3] and DBSCAN [11]. Another approach is to define
an appropriate similarity function and embed it to an extensible clustering algo-
rithm [26]. Nevertheless, trajectory clustering is an “expensive” operation and
centralized solutions cannot scale to massive datasets. Furthermore, [34] pro-
poses a MapReduce approach that aims to identify frequent movement patterns
from the trajectories of moving objects. In [17] the authors tackle the problem
of parallel trajectory clustering by utilizing the MapReduce programming model
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and Hadoop. They adopt an iterative approach similar to k-Means in order to
identify a user-defined number of clusters, which leads to a large number of
MapReduce jobs.

However, discovering clusters of complete trajectories can overlook significant
patterns that might exist only for portions of their lifespan. To deal with this, the
authors of [21] propose TraClus, a partition-and-group framework for clustering
2-D moving objects which segments the trajectories based on their geometric
features, and then clusters them by ignoring the temporal dimension. A more
recent approach to the problem of subtrajectory clustering, is S2T-Clustering
[32], where the authors take into account the temporal dimension, and the seg-
mentation of a trajectory takes place whenever the density of its spatiotemporal
‘neighborhood’ changes significantly. The segmentation phase is followed by a
sampling phase, where the most representative subtrajectories are selected and
finally the clusters are built “around” these representatives. A similar approach
is adopted in [1], where the authors aim at identifying common portions between
trajectories, with respect to some constraints and/or objectives, by taking into
account the “neighborhood” of each trajectory. These common subtrajectories
are then clustered and each cluster is represented by a pathlet, which is a point
sequence that is not necessarily a subsequence of an actual trajectory. A different
approach is presented in QuT-Clustering [31] and [35], where the goal is, given
a temporal period of interest W , to efficiently retrieve already clustered subtra-
jectories, that temporally intersect W . To achieve this, a hierarchical structure,
called ReTraTree (Representative Trajectory Tree) that effectively indexes a
dataset for subtrajectory clustering purposes, is built and utilized.

The approach presented in this paper combines several aspects and ideas from
the methods cited above, in order to develop a highly adaptive, long-term, Big
data framework for FLP which is experimentally evaluated with datasets from
both the maritime and the aviation domain. More specifically, this two-stage
approach includes: (a) mobility pattern discovery from the historical movement
of the moving objects; and (b) employ optimal estimations of FLP in the sense
of maximum likelihood, as they are dictated by the identified patterns. Further-
more, some promising experimental results are presented for real datasets from
both domains, as well as performance indicators for deployment in a Big data
platform.

3 Overview of the Approach

In this section we describe the architecture of our proposed framework, which
follows a typical lambda architecture [25] that combine streaming and batch
layers to implement an end-to-end big data prediction solution. The proposed
framework, as depicted in Fig. 2, consists of two main modules, namely, Pattern
Extraction and Future Location Prediction (FLP). All modules are build on top
of big data engines, so that they can be scalable and offer low latency. Kafka
is used as an integration network for online toolboxes and a shared storage (i.e.
Apache Hadoop HDFS) is used in order to update existing patterns or add new
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ones. Subsequently, the FLP module can “read” these patterns and execute the
prediction pipeline.

At first, each moving object sends its location via traditional network proto-
cols and then a Kafka producer collects all positions and pushes them to a Kafka
topic. The Pattern Extraction module identifies “typical routes”, in an offline
manner. Finally, these “typical routes” are broadcast among all slaves and the
FLP module combines them with the live incoming stream of data in order to
predict the future location for each object (Fig. 1).

Fig. 1. Data workflow of the proposed framework

Fig. 2. Architecture of the proposed framework
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4 Methodology

4.1 Offline Step: Mobility Pattern Extraction Based on
Sub-trajectory Clustering

The goal of this module is to identify frequent patterns of movement that
will assist the FLP module to increase the accuracy of the predictions. The
research so far has focused mainly in methods that aim to identify specific col-
lective behavior patterns among moving objects, such as flocks, convoys and
swarms [44], or methods that try o identify patterns that are valid for the entire
lifespan of the moving objects [9,26]. However, discovering clusters of entire
trajectories can overlook significant patterns that might exist only for small
portions of their lifespan. Furthermore, most of the approaches either operate at
specific predefined temporal “snapshots” of the dataset and ignore the movement
between these “snapshots” and/or ignore the temporal dimension and perform
spatial-only clustering and/or assume that the length (number of samples) of
the trajectories and the sampling rate is fixed, which is unrealistic. Another
thing that should be taken into account when designing a prediction-oriented
trajectory clustering algorithm, is that the resulting clusters should have a small
extent in order for the predictions to be more accurate. Obviously, this, rules
out a large number of approaches that perform density-based clustering which
might lead to spatially extended clusters through expansion.

For the above reasons, the desired specifications that such a trajectory clus-
tering algorithm should hold, in order to be able to predict the movement of
future trajectories, are the following:

– Discovering of clusters of subtrajectories, instead of whole trajectories.
– Spatio-temporal clustering, instead of spatial only.
– Support of trajectories with variable sampling rate, length and with temporal

displacement.
– Distance-based clustering.

There have been some approaches to deal with the problem of subtrajectory
clustering in a centralized way [1,21,32], however, all the above subtrajectory
clustering approaches are centralized and do not scale with the size of today’s
trajectory data, thus calling for parallel and distributed algorithms. For this
reason, we utilize the work presented in [36], coined DSC, which introduces an
efficient and highly scalable approach to deal with the problem of Distributed
Subtrajectory Clustering, by means of MapReduce. More specifically, the authors
of [36] split the original problem to three sub-problems, namely Subtrajectory
Join, Trajectory Segmentation and Clustering and Outlier Detection, and deal
with each one in a distributed fashion by utilizing the MapReduce programming
model.

To elaborate more, the Subtrajectory Join step aims at retrieving for each tra-
jectory r ∈ D, all the moving objects, with their respective portion of movement,
that moved close enough in space and time with r, for at least some time dura-
tion. Subsequently, the Trajectory Segmentation step takes as input the result



42 P. Petrou et al.

of the Subtrajectory Join step, which is actually a trajectory and its neighboring
trajectories and targets at segmenting each trajectory r ∈ D into a set of sub-
trajectories in a neighbourhood-aware fashion, meaning that a trajectory will be
segmented whenever its neighbourhood changes significantly. Finally, the third
step takes as input the output of the first two steps and the goal is to create
clusters of similar subtrajectories and at the same time identify subtrajectories
that are significantly dissimilar from the others (outliers).

For more details about the algorithms involved in DSC and an extensive
experimental study, please refer to [36].

4.2 Online Step: On Long-Term Future Location Prediction

In this section, we describe how the FLP module takes advantage of an indi-
vidual’s typical movement (medoids from now on), based on the observation
that moving objects often follow the same route patterns. This observation fits
exactly in the maritime and aviation domain where vessels or airplanes have very
strict routes between ports and airports, either implied due to route optimiza-
tion (e.g. ship’s fuel consumption) or explicitly required as official regulation
(flight plans). The Future Location Prediction (FLP) module aims to make an
accurate estimation of the next movement of a moving object within a specific
look-ahead time frame.

Most approaches do not take advantage of any other historic data available,
either from the object itself or other “similar” objects moving within the same
area and context, making it susceptible to errors associated to noise, artifacts or
outliers in the input. This results in inaccurate predictions and only with a short
horizon (seconds or few minutes). A very different approach for the FLP problem
is making the associated predictive models less adaptive but more reliable, by
introducing specific “memory” based on historic data of an entire fleet of objects
relevant to the context at hand. On the other hand, this requires a combination
of historical and streaming data which is not a trivial task. A big challenge of
our proposed framework is how to handle thousands of records efficiently in the
context of online streaming data, join each object with the appropriate medoids
and finally do all the necessary model calculations to produce predictions for the
future locations of an object. In practice, several such medoids are pre-computed
and stored in an efficient way (partitioned by object identifier), so that they can
be retrieved on demand or even kept in-memory for several thousands of objects,
making long-term FLP feasible in a large scale. This task is addressed by employ-
ing a Big data engine that is designed to conduct fast joins between streaming
data and historical data. Spark module (SQL or Streaming) can efficient join
historical and streaming data. Either with map-side-join (a.k.a broadcast join)
or using Dataset (Spark structure) metadata to achieve extra optimizations. For
example if the medoids can be sent to all workers (broadcast) at the initial phase,
it is recommended to replicate medoids (create a local variable) in each worker
and for each object in Map-Reduce phase we select its medoids to perform pre-
diction. On the other hand, if the medoids’ size cannot stored in each workers’
memory, we partition the medoids by objects’ identifier in order to have quick
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access for a specific object and create spark distributed structures that can be
easily joined with Streaming data via Sparks SQL API.

Medoid matching: The first step tries to match the object’s recent history
with the medoids. More specifically, for all the medoids, we find the closest to the
object’s current trajectory. Algorithm1 uses a spatiotemporal similarity function
in order to find the best match. Prediction: The algorithm has already identified
the last point from the best-matched, according to the previous stage. Then, it
follows the medoid’s points one by one until it reaches the prediction horizon.

The FLP-L approach described in brief above is inherently intuitive and
self-explanatory. It relies on past routes of the same or similar objects in order
to forecast how a specific object will move while it is already residing on a
specific frequently-traversed route. The weighted similarity function between two
spatiotemporal points d(p, p′) =

√
w1 · (x − x′)2 + w1 · (y − y′)2 + w2 · (t − t′)2,

was proposed in [29] and in our algorithm weights ratio is estimated by mean
speed.

Algorithm 1 describes the prediction step in a more technical ςαυ. Actually,
these steps is the Spark’s map function after collecting streaming data in a
certain (user-defined time window).

Algorithm 1: FLP-L Algorithm
Input : current state (object’s recent history), object’s network, horizon,

distance threshold
Output: prediction path
min dist ← Double.MaxValue;
best match ← null;
foreach trajectory ∈ medoids do

traj medoid distance ← SpatioTemporal Distance(current state, trajectory);
if traj medoid distance <min dist AND traj medoid distance
<distance threshold then

best match ← trajectory;
min dist ← traj medoid distance;

end

end
if best match is not null then

while prediction path.getLast.getTimestamp <horizon AND
best match.hasNext do

prediction path.add(best match.next());
end

end
return prediction path;

The above algorithm could be implemented in Spark Map-Reduce API as
follows:
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1. Receiving and parsing messages from input Kafka topic (map)
2. Reduce by object identifier over a window period
3. Join objects streaming data with the proper medoids.
4. Map partition (process each object for the current window) in order to per-

form prediction.

Step 3 is required only for the Dataset Join, otherwise (broadcast join) step 3 is
performed inside step 4. Figure 3 illustrates an example of the FLP-L approach
over a flight between Madrid and Barcelona, where the red points are the actual
data and the blue points are the predictions.

Fig. 3. Madrid - Barcelona flight example of the FLP-L approach. In the frst figure
red points are real data and blue points are the predictions. In the second image red
lines are medoids, gray line is the current window of a flight and the blue line is the
predicted path (Color figure online)

5 Experimental Evaluation

5.1 Experimental Setup

In this section, we present the results of our experimental study. Our cluster
consists of 10 nodes (1 master, 9 workers) with 5 executor cores per worker
and 4 GB memory per worker. Input streams are provided by a Kafka topic
and FLP-L is implemented on top of Spark SQL Streaming engine and Apache
Yarn used as a resource manager. Spark SQL streaming tasks are processed
using a micro-batch processing engine, which processes data streams as a series
of small batch jobs thereby achieving low latency and exactly-once guarantees.
Spark-Kafka integration is provided by Spark, but Spark tuning depends on
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parallelism, namely data partitioning and park Streaming integration for Kafka
in our architecture provides simple parallelism and 1:1 correspondence between
Kafka partitions and Spark partitions. His means that if we want the higher
performance, we have to configure Spark to create the same partitions as Kafka
and Kafka to have as many partitions as possible. For example, if input Kafka
topic has 60 partitions, then the cluster must have at least 60 cores for the query
to make progress and achieve the best performance. In our experiments we used
one Kafka topic for each domain (aviation, maritime) with 60 partitions.

We conducted experiments against real datasets (IFS messages and AIS mes-
sages [33]). Table 1 summarizes some basic statistics about the input dataset.

Table 1. Dataset description

Aviation Maritime

Number of point 455000 16000000

Number of objects 680 flights 5055 MMSI

Spatial coverage Spain (Madrid - Barcelona flights) Brest area

Time span April 2016 (one week) 6 months

5.2 Results

Based on the optimal Spark/Kafka configuration described in Fig. 4, the total
delay originates almost entirely from the processing time, which asymptotically
stabilizes at around 5 s. This essentially translates to 60,000 Kafka messages
(points) per 10 s or 6,000 points/second, which corresponds to 8-min look-ahead
window. In other words, with an average sampling rate of 5 s for each moving
object, this system configuration of the FLP module can accommodate up to
30,000 moving objects with 5-s update and 8-min look-ahead predictions. It is
also important to notice that scheduling time in Fig. 4, which is related with
Spark-Kafka integration. Scheduling time with three workers overcome process-
ing time because there are not enough resources (cores) in the Spark cluster
in order to process input messages and Kafka input partitions. On the other
hand, with six workers and above scheduler has enough resources to assign the
planned tasks. This behaviour occurs because there are enough resources (cores)
for executing Spark Tasks. On the other hand, with three workers there are not
enough resources for the input messages for scheduling and the algorithm breaks.
As described above, in this option a FLP approach is employed for exploiting
the cluster medoids as “guidelines” for providing online predictions, e.g. as the
actual flight evolves in real time. The general clustering method in this case is
the same as described in Sect. 4. We use up to 14 clusters in order to perform
future location prediction. The FLP module, uses sliding windows of 2 min of
past positions in order to optimally match the most recent segment of the cur-
rent trajectory to one of the available medoids, using a custom spatio-temporal
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similarity function. Then, the best-matched medoid is used as the maximum-
likelihood trajectory evolution and the predicted positions are taken along its
path for a specific (user-defined) look-ahead step.

Figure 5 illustrates the histogram of the horizontal error, i.e., the distri-
bution of errors, for all the trajectories in the Aviation (Madrid/Barcelona)
and Maritime (Brest Area) dataset and with spatial-only comparison (point-
wise Euclidean distance). Specifically, they illustrate the boxplots of the per-
complete-trajectory mean error for multiple look-ahead steps (1, 2, 4, 8, 16,
32 min). Additionally, the notation of the boxplot provides hints of the underly-
ing error distributions, i.e., means, medians, upper/lower quartiles, non-outlier
ranges, etc. These verify that the prediction errors are indeed in accordance with
the expected shape of the distribution, i.e., a typical Extreme Value (EV) with
medium/low skewness (Gaussian-like) towards the lower limit and an asymp-
totically decreasing right tail, i.e., accumulate and expand exponentially as the
look-ahead span doubles.

Fig. 4. Performance metrics for 16 · 106 points, 6 · 103 points/second, batch interval
10 s, 9 workers and 60 partitions.

Fig. 5. Mean error for multiple look-ahead steps (1, 2, 4, 8, 16, 32 min), with custom
spatio-temporal similarity function and with 90%-threshold outliers removed.
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6 Conclusion

In this work, a novel approach was introduced for the long-term FLP problem
(FLP-L). Our approach is based on purely data-driven extraction of mobility
patterns, i.e. subtrajectory cluster medoids. This approach is generic enough to
be applicable to various domain, such as in the aviation and maritime domain. It
is important to emphasize that the proposed framework relies end-to-end in big
data technologies The experimental results included here are focused primarily
on the maritime domain, since the aviation is considered a more ‘constrained’
problem due to the fact that all flights are legally bounded to file and closely
follow specific flight plans, i.e., the ‘intended path’ is much more specific and
mandatory. Nevertheless, this framework is directly applicable and valid in the
aviation domain too, especially since the medoids discovery is based upon some
form of clustering to discover groups and common motion patterns, either with
or without considering flight plans as input in the predictive models. The accu-
racy in both domains, as well as the performance results, prove that it is a
very efficient and scalable Big data solution for real-world applications, easily
adaptable to various other domains.
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Abstract. In this paper, we propose a novel unified online group pattern
mining algorithm, EvolvingClusters, that aims to enrich geospatial data
through the mapping of their group behaviour. Specifically, Evolving-
Clusters is used to discover collective movement behaviour (like flocks
and convoys) by monitoring the activity of multiple clusters through
time and space. We evaluate the aforementioned algorithm using a real-
world marine traffic dataset consisting of vessels’ movement in Brest
Bay, France. Our study demonstrates the efficiency and effectiveness of
the proposed algorithm as well as its value towards a semantic enrich-
ment tool that can be used to observe and categorize the behaviour of
multiple moving objects in real time.

Keywords: Big data · Data analytics · Maritime Intelligence ·
Collective movement behaviour · Group patterns · Flocks · Convoys ·
Semantic enrichment

1 Introduction

Mobility Data Analytics [2,9,21] is an ever growing branch of the general spec-
trum of Data Analytics. GPS-enabled mobile phones, cars, airplanes, and vessels
are the most common data sources broadcasting volumes of location information.
Using them as-is (i.e., in their “raw” form), offer us limited usefulness; however,
with proper processing (cleansing, transformation, enrichment etc.) and analysis
(pattern discovery), the vast amount of available data can produce some very
interesting and insightful stories. The outcome of data analytics over mobility
data is of great interest to researchers and practitioners of the field.

More specifically, in the field of semantic enrichment, behavioural clustering
can provide a concise and meaningful base that can be of value to multiple
mining methodologies. Classification with the use of artificial neural networks for
example, is a process that requires vast amounts of data, computational resources
and time. Using a behavioural clustering technique like EvolvingClusters can be
very beneficial, especially with respect to time and resources, since the classifier
will be able to train on a smaller set of objects that belong to multiple different
c© The Author(s) 2020
K. Tserpes et al. (Eds.): MASTER 2019, LNAI 11889, pp. 50–65, 2020.
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clusters instead of the full dataset that might contain objects with a lot of
similarities.

This paper focuses on mobility data analytics over maritime traffic data. In
particular, our purpose is to evaluate group movement behaviour at sea (e.g.
flocks, convoys) over enriched trajectories of vessels.

The contributions of our work are summarized in the following lines:

– We enrich vessel movement data with annotations regarding their closeness
to ports, etc.

– We design and evaluate a unified group behaviour discovery algorithm able
to simulate existing pattern discovery methods, such as flocks and convoys.

– We evaluate the above over a large-volume real-world maritime trajectory
dataset [22].

Our paper is structured as follows: In Sect. 2, we present background knowl-
edge and related work. In Sect. 3, we provide our problem formulation and dis-
cuss what is special about maritime data. In Sect. 4, we present our Evolving
Clusters algorithm for unified group pattern mining. In Sect. 5, we discuss pre-
liminary experimental results. Section 6 concludes the paper, also giving hints
for future work.

2 Background Knowledge and Related Work

The field of trajectory data mining [27] is rich in methods capturing collective
movement of objects, i.e. sets of objects moving close to each other for a certain
time period.

Flocks [4,10,25] take into account the spatial proximity and the direction
of moving objects. For a flock pattern to be discovered, a minimal number of
trajectories that satisfy such constraints are required. Formally, a flock valid
during a time interval I, where I spans for at least k successive timepoints,
consists of at least m objects, such that for every timepoint in I, there is a
disk of radius r that contains all those entities. Technically, a flock discovery
algorithm is tuned by three parameters: k (the minimum number of successive
timepoints), m (the minimum number of neighboring objects), and r (the radius
that defines the neighborhood). Companion [24] and Gathering [26] are two flock
variations, focusing on online/streaming applications.

A convoy [12,13,20] is a group of objects consisting of at least m objects that
are density-connected with respect to a density-reachability distance threshold e,
during at least k consecutive timepoints. Specifically, assuming the partitioning
of the database of the objects’ locations with respect to a discretization of the
time dimension, a snapshot Si (i.e., the set of objects and their locations that
exist at time ti), is clustered using a typical density-based spatial clustering
algorithm like DBSCAN [7], to identify dense groups of objects in Si that are
close to each other and the density of the group meets the density constraints
of the clustering algorithm, i.e. the minimum number of objects in an object’s
neighborhood, MinPts, and the maximum distance for two objects to be directly
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density-reachable, e, according to DBSCAN’s parameters. Technically, a convoy
discovery algorithm is tuned by three parameters: k, m (as defined in flocks
above), and e. Compared to flocks, convoys actually differ in that the circular
neighborhood is replaced by the notion of density-connection. Convoy variations
include groups [17] and evolving groups [15].

A swarm [19] is a collection of moving objects with cardinality of at least
m, that are part of the same density-based cluster, defined by a reachability
distance threshold e, for at least k (not necessarily consecutive) timepoints.
Moreover, comparing the clusters themselves, the population is not required
to remain unchanged but at least one cluster containing all objects should be
discovered. Note that the trajectory of each object in-between these timepoints,
is not under any constraint. Technically, a swarm discovery algorithm is tuned
by the same three parameters, k, m, and e, as in the cases of moving clusters
and convoys above, with the main difference being that swarms do not require
the set of at least k timestamps to be consecutive.

Further related work includes the following. A moving cluster [14] is a
sequence of clusters c1, . . . , ck, such that for each timestamp ti, clusters ci and
ci+1 share a sufficient number of common objects. Intuitively, if the two spa-
tial clusters at two consecutive snapshots have a large percentage of common
objects then they are considered a moving cluster between these two times-
tamps. A moving micro cluster [18] is a group of objects that are not only close
to each other at the current time, but they are also expected to move together
in the near future; techniques for maintaining clusters of moving objects by
considering the clusters of the current and near-future positions are proposed
in [11]; [6] presents a taxonomy/classification of movement patterns along a set
of dimensions that reveal their behavior (and commonalities); [3] demonstrates
the shortcomings of the Jaccard (J) measure when it is used for assessing the sig-
nificance of co-occurrences among spatiotemporal instances with highly different
spatiotemporal evolution characteristics and presents two extended novel mea-
sures (J+ and J∗) that address the problems linked to the J measure; [5] studies
a regional semantic trajectory pattern mining problem, aiming at identifying all
the regional sequential patterns in semantic trajectories.

Most related to our work, [16] defines various mobility behaviors around the
idea of the flock pattern; in particular, the Relative Motion (REMO) model and
a respective language are proposed in order to express a number of collective
mobility patterns under a unified representation. [23] proposes, among others,
gpattern and crosspattern, two generic query operators implemented and vali-
dated in the Secondo MOD system [1], which express groups of moving objects
that follow similar motion and mutually interact together, respectively (mobil-
ity behaviors, such as flocking, convergence, and leadership can be simulated
through these operators).

With respect to related work, our method handles closeness of moving objects
in a unified way under a graph-based approach, being able to simulate the most
popular patterns (i.e. flocks and convoys) in an online mode.
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3 Problem Formulation

An informal group pattern definition could be: “a large enough amount of objects
moving along paths close to each other for a certain time”. These objects could
vary from animals (e.g. wolves, birds, lions, etc.) to human transportation means
(e.g. cars, airplanes and vessels). Discovering these patterns can give us an insight
regarding the behavior of these moving objects, for instance on hunting (wolves,
lions), migration (birds), traffic monitoring (cars) and fishing pressure (fishing
vessels). In this paper we aim at handling group pattern discovery in a uniform
way, where “closeness” is formulated in graph-based terminology.

3.1 Problem Definition

Definition 1. (Evolving Cluster). Given: a set T of moving objects, where the
trajectory of each object consists of r pairs (pi, ti), a minimum cardinality thresh-
old c, a maximum distance threshold θ, and a minimum time duration threshold
d, an Evolving Cluster 〈C, tstart, tend, tp〉 is a subset C ∈ T of the moving objects’
population, |C| ≥ c, which appeared at time point tstart and remained alive until
time point tend (with tend − tstart ≥ d) during the lifetime [tstart, tend] of which
the participating moving objects were spatially connected with respect to distance
θ and cluster type tp.

The term “spatially connected” is used on purpose in the above definition,
since the structure of our method accounts for a number of different clustering
methodologies. In this study, we use both spherical and density-based clustering
in order to mine flock and convoy-like patterns, respectively. In particular, for
each time point, let us consider the mapping of the points of the moving objects’
trajectories (that are active at that time point) in a connectivity graph G(V,E),
where vertex v ∈ V represents a point and edge e ∈ E represents a pair of
points if and only if their distance is less than the given threshold θ; Cliques
in this graph correspond to spherical-like clusters whereas Maximal Connected
Subgraphs (MCS) in this graph correspond to density-connected clusters. Cliques
(maximal connected subgraphs) that remain alive for an adequate period of time
are evolving clusters, according to the above definition, resembling flock (convoy,
respectively) patterns. (Please note that in the discussion that follows, when
we use the term Cliques we refer to maximal Cliques.) This concept is better
illustrated in Fig. 1.

According to Fig. 1, sets C1 = {a, b, c, d} and C2 = {a, b, c, d, e, f} form a
Clique and an MCS, that remain active for three time points t1, . . . , t3, while
C3 = {a, b, c} and C4 = {d, e, f} form a Clique and an MCS, that remain active
during all four time points t1, . . . , t4. Assuming thresholds e.g. c = 3 and d = 3,
we have discovered three Evolving Clusters, the spherical-like 〈C1, t1, t3, 1〉 and
〈C3, t1, t4, 1〉, and the density-connected 〈C2, t1, t3, 2〉 and 〈C4, t1, t4, 2〉, where
cluster type 1(2) corresponds to Clique (MCS, respectively). This example illus-
trates that two evolving clusters can be overlapping with respect to their popu-
lation.
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Fig. 1. An example of six objects moving at four consecutive time points and the
respective connectivity graphs.

3.2 What Is Special About Maritime Data

It is well known that sensor-based information is sensitive to errors due to device
malfunctioning. Therefore, a necessary step before performing data analytics
tasks is that of pre-processing. A necessary clarification is that since the vessels’
locations are recorded in angular (lat/lon) coordinates, we use the Haversine
formula as it takes in account the data points’ geodesic properties.

In general, pre-processing of GPS-based location data includes data cleans-
ing (noise elimination, location smoothing, etc.) as well as data transformation
tasks necessary for the analysis that will follow (fixed rate resampling, trajectory
segmentation, etc.) [21]. A typical data preprocessing workflow consists of the
following steps:

1. Data Cleansing:
a. Remove time-based duplicate records;
b. Remove position-based outliers (i.e. invalid speed, acceleration, etc.);

2. Data transformation
a. Create Trips from vessels’ locations;
b. (Optional) Perform fixed-rate resampling on Trips;

In particular for Step 2a and in order to organize vessels’ locations in trips,
a popular approach (in case the ports are given as points instead of polygons) is
to create a circle with radius ρ around each port’s location in order to approxi-
mate their geometry and then, detect port entry and exit points for each vessel
trajectory (Spatial-based Segmentation).

Then, for each produced segment, we may detect pairs of points with tem-
poral difference greater than a given threshold (Temporal-based Segmentation).
These pairs signify the transition from the current to the next Trip.

The segmentation due to the above steps, may result in a very low number of
points. Because they do not offer any significant information, we decide to filter
out these particular Trips (in particular, those consisting of less than 3 points).

Depending on their connection with ports, vessels’ trips can be classified in
4 classes:
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Fig. 2. A sample trajectory: (a) before; and (b) after trajectory segmentation
into trips.

– Class C1 — trips that start and end at a port;
– Class C2 — trips that start at a port and end at open sea;
– Class C3 — trips that start at open sea and end at a port;
– Class C4 — trips that start and end at open sea;

The aforementioned methodology is illustrated in Fig. 2, where the raw loca-
tion information is compared with a port’s location, hence a vessel trajectory is
segmented into trips of Class C1 (e.g. trip2 in Fig. 2(b), Class C2 (trip3), Class
C3 (trip1), and Class C4 (trip4).

Given that a vessel traffic dataset consists of GPS points that are sampled
whenever the captain of each vessel enables the AIS transmitter, it is obvious that
there is no form of consistency regarding the time intervals between points. For
example, it is easily observable that a vessel is highly likely to stop transmitting
for a considerable amount of time if that vessel is inactive, e.g being stationary
on a port. As a result, while also keeping in mind that several techniques used
for future location prediction as well as group pattern mining need or benefit
substantially by a stable rate of sampling and, by extension, a temporal align-
ment, a fixed-rate resampling technique [8] is used to achieve the consistency
needed; see Fig. 3 for an illustration of the above discussion.

4 The EvolvingClusters Algorithm

In this section we present an algorithm, called EvolvingClusters, in order to
detect and extract group patterns from raw GPS data points. This algorithm is
fully modular, mining clusters with respect to the spatial clustering restrictions
stated in the previous sections and then by applying the temporal restrictions,
can fetch different types of group patterns simultaneously (in our case, Cliques
and MCS ). Due to the fact that we only compare our pattern history with the
current time-slice, the algorithm can be connected to a data stream, thus having
an online nature.

Algorithm 1 presents the algorithm’s corpus. In particular it discovers evolv-
ing clusters in a trajectory dataset D, where moving objects’ locations arrive
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(a) (b)

Fig. 3. A sample vessel trip: (a) before; and (b) after resampling (with 1min. fixed
sampling rate).

Algorithm 1. EvolvingClusters. An online algorithm capable of
mining the Group Patterns as discussed in the previous subsections
Input: A Dataset D = {T1, T2, . . . , Tn} of Time-slices Ti consisting of objects’

timestamped locations (pj , ti), Distance Threshold θ, Time Threshold t,
Cardinality Threshold c

Output: A list of all the mined patterns MinedPatterns
1 ActivePatterns, ClosedPatterns ← []
2 for Time-slice T in D do
3 CCliques, CMCS ← GeospatialClustering(T, θ, c)
4 for CurrentClusters in {CCliques, CMCS} do
5 if ActivePatterns == ∅ then
6 ActivePatterns ← CurrentClusters
7 else if CurrentClusters == ∅ then
8 ClosedPatterns ← {ActivePattern ∈ ActivePatterns :

ActivePattern.end − ActivePattern.start ≥ t}
9 else

10 ActivePatterns, InactivePatterns ←
FindPatterns(CurrentClusters, ActivePatterns, θ)

11 ClosedPatterns ← {InactivePattern ∈ InactivePatterns :
InactivePattern.end − InactivePattern.start ≥ t}

12 end
13 output
14 {Pattern ∈ ActivePatterns : Pattern.end − Pattern.start ≥ t}
15 end

16 end

at predefined timepoints (e.g. every 60 sec.) or, in other words, at a fixed (and
aligned amongst all objects) sampling rate.

In the following paragraphs we provide a thorough explanation regarding its
operation. Algorithm 1 is responsible of using the results provided by Algorithm3
in a sequential manner. Essentially Algorithm1 uses the results of Algorithm 2
and decides if the available data in the form of ActivePatterns (patterns pre-
viously mined) and CurrentClusters (clusters formed based on the location
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of moving objects at the current time-slice) are eligible to be used as input
to Algorithm 3. If not (either set is empty), the algorithm either moves the
clusters currently active to the ActivePatterns set (if ActivePatterns = ∅) or
moves all the patterns that satisfy the thresholds given from ActivePatterns to
ClosedPatterns (if CurrentClusters = ∅).

Algorithm 2. Geospatial Clustering. Clusters GPS Points given
a Time-slice
Input: Time-slice T = {p1, p2, . . . , pn} of coordinate points, Distance

threshold θ, Cardinality threshold c
Output: Clusters of the Time-slice’s Points CCliques, CMCS

1 DistanceMatrix ← PairwiseDistance(T, metric = “Haversine Distance”)
2 Pairs ← {(pi, pj) : DistanceMatrix(pi, pj) < θ}
3 G ← Graph(edges = pairs)
4 CCliques ← {C ∈ G.Cliques() : |C| ≥ c}
5 CMCS ← {C ∈ G.MaximalConnectedSubgraphs() : |C| ≥ c}
6 return CCliques, CMCS

Algorithm 3 takes all the following cases into consideration: (for pattern Cti

at time ti and Cti+1 at time ti+1)

1. The patterns are identical (Cti = Cti+1)
2. The patterns have no common objects (Cti ∩ Cti+1 = ∅)
3. The pattern Cti is a subset of Cti+1 (Cti ⊂ Cti+1)
4. The pattern Cti+1 is a subset of Cti (Cti+1 ⊂ Cti)
5. The patterns contain some common objects (Cti ∩ Cti+1 	= ∅, Cti ∩ Cti+1 ⊂

Cti , Cti+1)

Therefore, the algorithm operates as follows:

– For every pair of consecutive (with respect to time) pattens, if the cardinality
of their intersection is greater than c, add it to the ActivePatterns set (lines:
4–7).

– For every pattern in Cti+1 , if the list of its intersections with all of the patterns
in Cti doesn’t contain the pattern, add it to the ActivePatterns set as a new
pattern (lines: 8–9).

– For every pattern in Cti , if it is not part of the ActivePatterns set, add it to
the InactivePatterns set (line: 11).

– Replace each group of duplicate patterns in the ActivePatterns set, with a
single record of each pattern and substitute its starting and ending times-
tamps with the oldest starting and newest ending timestamps available in
the duplicate group (lines: 12–17).

We observe that in all cases the pattern that ought to be maintained through
time is the intersection of Cti and Cti+1 . Cases 2 and 3 require some extra
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attention. Regarding case 2, the intersection is an empty set. As a result, Cti+1

should be maintained and added to the ActivePatterns set. Case 3 dictates
that both the new superset and the previous pattern should be maintained since
they both exist at the same time as part of Cti+1 .

Algorithm 3. FindPatterns. Compares the current with the closed
clusters in order to determine their evolution
Input: Consecutive datasets Dleft, Dright, Cardinality threshold c
Output: Mined patterns ActivePatterns, InactivePatterns

1 ActivePatterns ← []
2 for Pattern PR in Dright do
3 IntersectionList ← {}
4 for Pattern PL in Dleft do
5 if |PR ∩ PL|≥ c then
6 ActivePatterns.append([[PR ∩ PL, PL.start, PR.end]])

7 end
8 if IntersectionList = ∅ then
9 ActivePatterns ← PR

10 end
11 InactivePatterns ← {pattern ∈ PL : pattern /∈ ActivePatterns}
12 for Pattern Pactive in ActivePatterns do
13 DuplicatePatterns ← [patternA, patternB ∈ Pactive : (patternA =

patternB) ∧ (patternA �= patternB)]
14 if |DuplicatePatterns|�= 0 then
15 Pactive.start ← min(DuplicatePatterns.start)
16 Pactive.end ← max(DuplicatePatterns.end)

17 end
18 return ActivePatterns, InactivePatterns

Based on Fig. 1 the proposed algorithm for c = 3, t = 3 would mine the
patterns C1 = {a, b, c, d}, C2 = {a, b, c, d, e, f}, C3 = {a, b, c} and C4 = {d, e, f}
as follows:

– t1: Clique 〈C1, t1, t1, 1〉 and MCS 〈C2, t1, t1, 2〉 mined (Output: ∅);
– t2: Clique 〈C1, t1, t2, 1〉 and MCS 〈C2, t1, t2, 2〉 mined (Output: ∅);
– t3: Clique 〈C1, t1, t3, 1〉 and MCS 〈C2, t1, t3, 2〉 mined (Output: {C1, C2});
– t4: Clique 〈C3, t1, t4, 1〉 and MCS 〈C4, t1, t4, 2〉 mined (Output: {C3, C4}).

For timestamps t1 through t3, C1 and C2 are mined and maintained. During
timestamp t4, two new patterns are found (C3 and C4), however both new pat-
terns are present during t3 as subsets of C1 and C2 respectively. Thus they get
to keep the starting timestamp of their respective past supersets.

5 Experimental Study

In this section we prepare the dataset that the algorithm will be tested on and
present some preliminary results regarding its effectiveness.
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5.1 Dataset Preparation

In our study, we use a publicly available maritime dataset, called Heteroge-
neous Integrated Dataset for Maritime Intelligence, Surveillance, and Recon-
naissance [22], which contains information on maritime traffic in France. The
dataset ranges in time and space as follows:

– temporal range: October 1st, 2015 to March 31st, 2016 (6 months);
– spatial range: latitude in [45.00, 51.00], longitude in [-10.00, 0.00] (Celtic sea,

the Channel and Bay of Biscay).

Fig. 4. A snapshot from the Brest dataset: sample of AIS positions on March 1st, 2016
(blue dots) and ports of interest (red dots). (Color figure online)

A map visualization of (a part of) the dataset is illustrated in Fig. 4. The orig-
inal dataset contains three classes of information: vessel-dynamic (i.e., related to
the vessels’ movement), vessel-static (i.e., related to the vessels’ identity), and
geo-related data (locations of ports, environmental information, etc.). For the
purposes of our study, we exploit on the entire vessel-dynamic and vessel-static
information available while from the third class we are only interested in the
locations of ports, information which is essential for the analysis we design to
perform. In particular:

– The vessel-dynamic data contains approximately 19 million records. Each
record corresponds to an AIS signal and includes the vessel identity (mmsi),
its position (lon, lat), the timestamp this position was recorded (ts) as well as
other mobility-related information provided by vessel’s sensors (speed, course,
heading, etc.).
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– The vessel-static data contains information about vessel registration, such as
the vessel’s identity (mmsi), radio frequency (call sign), name, type, size, etc.

– The geo-related data we used in our study contains 222 records; each record
corresponds to a port along with its name and location (point geometry).

Due to step 2a (recall the preprocessing steps of Sect. 3.2), with port radius
set at 2 km (≈1.08 n.m.) and temporal threshold at 12 h, trajectory segmenta-
tion yields 9,545,789 data points organized in 24,159 trips from 3,279 vessels
(segments with very few data points - i.e. less than 3 - are discarded).

Table 1. Statistics of the dataset after the pre-processing step.

#Records Number of AIS Records 9,545,789

#Vessels Total number of vessels 3279

#Trips Total number of trips 24,159

#Trips Class C1 Total number of trips
that started and ended
at a port

11,690

#Trips Class C2 Total number of trips
that started at a port
and ended

2580

at open sea

#Trips Class C3 Total number of trips
that started at open sea
and ended at a port

1849

#Trips Class C4 Total number of trips
that started and ended
at open sea

8040

5.2 Preliminary Results

Having processed our dataset using the methodology presented in Sect. 3.2, we
tested our algorithm on a wide range of values for each parameter, namely:

– Cardinality Threshold (c): 3, 5, 8, 12. Default: 5 vessels
– Temporal Threshold (t): 15, 30, 45, 60. Default: 15 min
– Distance Threshold (θ): 0.25, 0.5, 0.75, 1, 1.25. Default: 1 nautical mile
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Figure 5 illustrates the average percentage of trip classes C1–C4 in the mined
group patterns (using the default parameters). In either pattern type, we observe
that C1 is the most dominant class (having more than 60% participation), which
is reasonable since the same participation appears – more or less – at trip level
(see Table 1). On the other hand, C4 presents an interesting behaviour: although
its percentage at trip level is about 30%, this percentage falls down to 13%
within cliques and 7.7% within MCSs. Comparing the two pattern types (cliques
and MCSs) with each other, we observe that cliques appear to be formed more
frequently than MCSs when we focus on C3 or C4 while the opposite is the case
when we focus on C1 or C2. These findings may trigger domain experts to take
a deeper look and reach insightful conclusions.

C1

64.1%

C2

8.1%

C3

14.9%
C4

13.0%

Cliques Trip Contribution

(a)

C1

72.5%

C2

9.3%
C3

10.5%

C4
7.7%

MCS Trip Contribution

(b)

Fig. 5. Trip contribution on mined (a) Cliques (b) MCS.

Figure 6 illustrates the change of average distance travelled (#group patterns,
respectively) with respect to one of the algorithm’s parameters, while the others
are fixed to their respective default values. It can be observed that as c increases,
both types of group patterns decline both in their respective average distance
travelled and their cardinality (Fig. 6a and b, respectively), while on the other
hand, as θ increases, the opposite can be seen (Fig. 6c and d, respectively).
Moreover, as t increases, we observe a steady rise in the average distance travelled
for both pattern types but at the cost of having fewer patterns (Fig. 6e and f,
respectively). Furthermore, it is shown that Cliques are quite sensitive with
respect to their thresholds while MCS as less sensitive, showing a more steady
growth/decline (Fig. 6b, d and f). Last but not least, as illustrated by Fig. 6a,
c and e, a linear-like correlation can be observed between the thresholds c, t, θ
and the average distance travelled.
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Fig. 6. Statistics on mined group patterns: cardinality, distance and temporal threshold
vs. (a, c, e) avg. distance travelled and (b, d, f) #group patterns.



Online Discovery of Group Patterns in Enriched Maritime Data 63

6 Conclusions and Future Work

In this paper, we proposed a unified online group pattern mining algorithm,
called EvolvingClusters, which is used to discover collective movement behaviour
(like flocks and convoys) by monitoring the activity of multiple clusters through
time and space. The algorithm is graph-based in the sense that it maintains
evolving Cliques and Maximal Connected Subgraphs (MCS), thus simulating
spherical and density-based evolving clusters. Our study on a large real-world
maritime traffic dataset demonstrates the efficiency and effectiveness of the pro-
posed algorithm. The results show that our method is capable of detecting a
large amount of group patterns in the given dataset. Thus, based on the poten-
tial applications, some of which were mentioned above, as well as the quality of
the results produced, we believe that EvolvingClusters can be a valuable tool for
researchers and practitioners alike.

In the near future we aim to test and evaluate EvolvingClusters against other
state-of-the-art techniques, using other types of mobility data, such as aviation
and public transportation data. Based on our assumptions, the algorithm should
function at the same quality level no matter the data type used, since its app-
roach does not make use of any other apriori form of knowledge like road grids or
hot-paths. Another set of experiments that we would like to conduct in the near
future is using data with different sampling rates as input for EvolvingClusters.
If the results appear to be in the same quality level with those produced from
a dataset with a much higher sampling rate as input, we would be certain that
the value of the algorithm is not tied to the sampling rate of the given data. Our
long-term plans involve around the creation of a framework that will use the
information that is mined using EvolvingClusters to classify moving objects into
different classes based on their behaviour. By extracting as much information
as possible from the available data and combining a well trained classifier with
a well defined set of groups with similar behaviour, we want to create a system
able to model and – if possible – predict a set of suspicious activities that might
consist a violation of law or a possible criminal activity.
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3. Aydin, B., Küçük, A., Angryk, R.A., Martens, P.C.: Measuring the significance of
spatiotemporal co-occurrences. ACM Trans. Spat. Algorithms Syst. 3(3), 9:1–9:35
(2017)



64 G. S. Theodoropoulos et al.
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Abstract. With the rapid advancements of sensor technologies and
mobile computing, Mobile Crowd-Sensing (MCS) has emerged as a new
paradigm to collect massive-scale rich trajectory data. Nomadic sensors
empower people and objects with the capability of reporting and shar-
ing observations on their state, their behavior and/or their surrounding
environments. Processing and analyzing this continuously growing data
raise several challenges due not only to their volume, their velocity, and
their complexity but also to the gap between raw data samples and the
desired application view in terms of correlation between observations and
in terms of granularity. In this paper, we put forward a proposal that
offers an abstract view of any spatio-temporal data series as well as their
manipulation. Our approach allows to support this high-level logical view
and provides efficient processing by mapping both the representation and
the manipulation to an internal physical model. We explore an imple-
mentation within a distributed framework and envision the adaptation
of data organization methods combining aggressive indexing and parti-
tioning over time and space. The mapping from the logical view and the
actual data storage will lead to revisiting the traditional database query
rewriting and optimization techniques. This proposal is a first step in the
objective of coping with the complexity, the imperfection of large data
sizes in the MCS context.

Keywords: Spatio-temporal data modeling · Mobile crowd-sensing ·
Query processing

1 Introduction

The recent advances in sensing technologies and mobile computing have paved
the way for the emergence of the Mobile Crowd-Sensing (MCS) [15,17] con-
cept, leading to a continuous generation of large volume of rich trajectory data.
More and more people rely on mobile devices (e.g., smartphone, tablets ...) and
wearable sensors to share observations on their state, their behavior and/or
their surrounding environments such as noise level, temperature or pollution
conditions.
c© The Author(s) 2020
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The growing scale of sensed data (Volume) coupled with real time sensor
observations (Velocity) requires an effective model and efficient processing of
complex spatio-temporal queries. In the past, processing large-scale data or high
velocity data has been a bottleneck. Recently, big data analytics systems are
becoming a de facto standard in massive data handling. While such systems
fit well the large scale nature of sensed data, several issues related to the gap
between raw data samples and the desired application view in term of correlation
between observations occurring in different locations, or between different peri-
ods of time and spatial/temporal granularity (Variety) are still open. The hetero-
geneity and the diversity of sensor handsets from different manufacturers (with
different sensitivities, time resolutions, and noise immunity) necessitate both an
abstract data model, and an efficient implementation and analytics mechanisms.
Currently, existing approaches mainly address historical spatio-temporal data to
deal with the volumetry aspect [14,16,29] or stream time series to deal with con-
tinuous queries [3,11,25]. While these systems are efficient for batch or stream
time series, there is a lack of a unified approach that combines batch and stream
processing and tackles the unique characteristics of spatial mobile sensing data
streams modeling and processing. In this paper, we present a prospective data
model and a query processing module for sensed data streams. Our approach
offers a high-level logical view of Spatio-Temporal Data Series (STDS) as well
as an internal physical model that combines aggressive indexing and partitioning
over time and space to dissolve the heterogeneity and the variety of data. We
introduce an incremental query processing approach within a distributed frame-
work to take into account the real-time processing of continuous queries, the
large volume, and the high velocity of data. Our contributions are as follows:

– A high level logical view of STDS and a multi-granular physical data model
that combines temporal and spatial partitioning.

– An extension of a unified distributed framework for big stored and stream
data.

– A query optimizer within an incremental query processing model that offers
a set of customized transformations rules for the optimization of spatio-
temporal queries.

The rest of this paper is organized as follows. Section 2 discusses the major
challenges related to big sensor data. Section 3 presents the related work while
Sect. 4 provides an overview of our system architecture. In Sect. 5, we explain the
details of the data model. The query processing workflow is presented in Sect. 6,
and Sect. 7summarizes the paper and provides some directions for future works.

2 Challenges of STDS Management

Data measured by mobile sensors can be represented by multivariate time series
with a focus on the spatial dimension in addition to the temporal one. Such
trajectory data denote the paths traced by sensors moving in space over time.
Besides measuring the series of geographical positions over time, trajectory data
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may also contain additional time-dependent variables such as the measurements
of surrounding air pollution of the moving object. This large volume of data
exhibits a number of challenging characteristics:

Spatial and Temporal Autocorrelation. From the modeling view, a dis-
tinctive aspect of such data series is the spatial autocorrelation, meaning that
close objects tend to be more similar than distant objects. The same holds for
consecutive observations on the same device. As a result, collected data from
moving objects cannot be modeled as independent data, and specific algorithms
taking into account the correlation between observations occurring in different
locations, or between different periods of time need to be considered.

Data Heterogeneity. A notable characteristic is the heterogeneity in space
and time. The strength of MCS relies on the usage of different types of sensors
designed by different manufacturers that may vary in their sensitivity, sampling
frequency, and noise immunity. The data collected from all sensing object should
be merged, which could lead to measurements at irregular time intervals and
missing data problems. We could observe timestamps that are closely spaced or
too sparse in different cases. In fact, some sensors may be offline for hours or stay
idle when the device is static (some sensors use the accelerometer to control the
sampling rate), they can switch to a burst mode in some situations (increasing
the sample frequency more than the normal rate) or stop transmitting the data
if the variation is less than a predefined threshold, we could also get different
sensor position resolutions. Such heterogeneous data sources should be taken into
account in the model, and a harmonized view on the data is highly desirable in
order to facilitate their processing and analytics.

Multi-Granularity. Besides, one of the most fundamental characteristics of
mobile sensor data is the diversity of their granularity, both under the temporal
and spatial dimensions. The temporal domain is typically represented at differ-
ent time granularities. The spatial entity can be represented using a hierarchical
representation that describes the subdivision of the spatial domain into different
regions or cells. Combining multiple datasets with several granularities or chang-
ing the granularity of a dataset are important analysis tasks that we intend to
deal with. Thus, we need to define a multi-granularity framework that takes into
account the definition of the spatial and temporal granularities.

Data Volume. Huge amounts of data are being collected continuously from
ubiquitous sensor-enhanced mobile devices (as many as the number of equipped
holders) in different geographical areas. This requires leveraging big data pro-
cessing techniques (e.g., Hadoop or Spark) to achieve in-depth understanding,
and provide useful information.

Data Velocity. New rows in STDS are typically inserted in recent time intervals
as appended rows. Thus, it is necessary to maintain efficient storage structures
to handle the velocity of newly arriving data. The commonly used technique in
online systems is to consider recent data as more relevant and flush old data.
The limitation of such an approach is that some historical data is deleted, as a
result, it misses the opportunity to process such data.
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Continuous Queries. Due to the continuous processing of sensor data, spatio-
temporal queries should be evaluated continuously, which necessitates an incre-
mental processing paradigm. Traditional approaches for processing spatio-
temporal data rely on historical data. While analyzing such archived data is
important, it lacks the real-time processing of continuous queries. We need a
platform that integrates a range of big data technologies to combine the pro-
cessing of historical and real-time data. A new system architecture that handles
massive volume of spatio-temporal data, covers the unique characteristics of
sensor data and integrates batch and dynamic processing is necessary.

3 Related Work

Nowadays, sensor data processing can be oriented towards two perspectives:
either an offline approach for querying historical data or an online approach for
real time queries.

3.1 Offline Processing of STDS

Considerable research efforts have been devoted to offline management and anal-
ysis of big trajectory data (multi-dimensional time series) [12,13,27,34]. These
works are characterized by a complete storage of large historical data. Such data
is used for offline analysis and knowledge discovery. Depending on the applica-
tion type and the queries, the system tries to optimize query processing over the
entire data. The key idea is to use a partitioning mechanism and distribute query
processing among multiple nodes using distributed systems, such as Hadoop or
Spark. Most of current works are oriented towards exploiting spatial indexes to
design efficient methods for optimized query processing while preserving spa-
tial locality. The objective is to tune the system and optimize spatio-temporal
queries by making the best use of existing spatial and temporal indexes. There
are three approaches for indexing trajectory data. The first approach is to con-
sider the time dimension as the first dimension besides the spatial location. It
divides the time dimension into multiple intervals and builds a spatial index
(e.g., R-tree) for the trajectories in each time interval [2], or partitions spatial
data within each time interval into spatial chunks and loads only relevant chunks
for processing [29]. The second approach is to avoid discrimination between the
spatial and the temporal dimensions using 3D space-filling curves techniques as
proposed in Geomesa [16]. This approach allows to map spatio-temporal points
into a single dimension and ensure data locality. It is efficient for queries that
combine both temporal and spatial criteria. This category includes also the vari-
ations and extensions of R-trees: 3D R-tree, TB-tree, STR-tree [24]. The third
approach is to alternate time and space. For example, T-PARINET [26] is based
on a combination of spatial partitioning and B+-tree local indexes. Except T-
PARINET, the aim of such systems is indexing large historical trajectory data.
Therefore, they remain limited when it comes to the support of real time appli-
cation which central goal is to minimize update costs and to support continuous
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queries. Moreover, they do not encompass other dimensions than space and time,
as required in MCS context.

Another related area of research is distributed time series management sys-
tems, a survey on existing systems can be found in [19]. Flint [14] is a time
series library for Apache Spark, it proposes interesting features for time series
manipulation (temporal join, aggregation, moving average ...). It builds a time
series aware data structure (TimeSeriesRDD) that allows to associate a time
range to each partition and preserves the temporal order of data. Flint does not
consider the spatial dimension and the real time nature of queries. It also lacks
optimization techniques for temporal queries. However, in real life applications,
data collected from sensors is represented by multi-dimensional time series where
one dimension corresponds to the spatial location traversed by moving objects
over time. TimeScaleDB [29] extends PostgreSQL query planner, data model,
and execution engine to support SQL queries on time series data. Internally, it
splits tables into chunks, each chunk corresponds to a specific time interval and
a region of the partition key’s space (using hashing). The created partitions are
disjoint, which allows the query planner to select only required chunks to resolve
a query. While apt at scaling SQL queries on large volume of data, this system is
not designed for real time operations, as it lacks the ability to handle continuous
queries and stream processing.

3.2 Online Processing of STDS

There are several commercial solutions for stream processing such as Samza
[25], Flink [11], Spark Structured Streaming [3,32], Storm [30]. While these sys-
tems generally support high ingestion rate and continuous queries, they are not
designed for spatial time series. Academic architectures [1,21,31] were proposed
in the literature focusing on streaming data and ignoring historical data. The
PLACE [22] server is a data stream management system that supports contin-
uous query processing of spatio-temporal streams. It employs an incremental
evaluation paradigm that allows to continuously update the query answer and
proposes high-level algorithms for continuous spatio-temporal queries. Zhang
et al. [33] extends Apache Storm to process data streams for moving objects, they
employ a distributed spatial index to process continuous queries (e.g., contin-
uous kNN). SCUBA [23] allows continuous spatio-temporal queries on moving
objects. It proposes clustering techniques to group moving objects and queries
into moving clusters based on common spatio-temporal properties to optimize
query execution. However, the massive volume of historical trajectory data have
exceeded the capacities of such streaming architectures. Management and index-
ing aspects of large volume of data were not their main concern. Batch processing
is still needed for data analysis on historical data. Besides, for some queries, all
the data is necessary to ensure a more accurate query result. As a result, a com-
mon strategy is to use a hybrid architecture that combines stream and batch
processing.
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3.3 Unified Approach for STDS Management

The growing volume of spatial data series and the rapid increase of the veloc-
ity of sensor data streams accelerate the need for a big data architecture that
offers continuous processing of data streams. With the emergence of the volume
and the velocity issues, Marz introduced the Lambda architecture [21] to handle
query processing in a scalable and a fault-tolerant way. It is composed of three
layers: the batch layer, serving layer, and speed layer. The batch layer is respon-
sible for processing historical data for batch analysis. The speed layer focuses on
analyzing incoming streaming data in near real-time and the serving layer aims
at merging the results from the previous two layers. This architecture allows
to handle large-scale data and integrate batch and real-time processing within a
single framework. While the Lambda architecture achieves its goal, it comes with
high complexity and redundancy. Kreps [20] discussed the disadvantages of the
Lambda architecture and presented a new approach for real time data processing
named the Kappa architecture. This architecture favors simplicity by merging the
batch and streaming layers and avoiding data replication. Inspired by the Kappa
architecture, Spark Structured Streaming [3] is a streaming computation system
that combines batch and stream processing using the same code. Based on the
Lambda architecture, PlanetSense [28] is a generic platform for gathering geospa-
tial intelligence from real time data (e.g., social media, passive and participatory
sensing). It combines the power of archived data and the dynamics of real time
data for spatio-temporal analytics. However, such an architecture inherits the
limits of the Lambda architecture, as it needs to implement the transformation
logic twice, once in the batch system and once in the stream processing system.
In contrast to our proposal, PlanetSense does not propose to manipulate tem-
poral operations specific to time series and lacks a representative data model for
time series data taking into account the heterogeneity of data.

4 System Overview

Figure 1 describes our vision of a unified framework for processing batch and
streaming STDS.

Data Sources. There are two types of data ingestion in the system. The first
is batch data ingestion (finite datasets) that consists of loading a previously
acquired data (e.g., loading the data from a previous campaign as a cold start
of the data store). The second type corresponds to streaming data (infinite
datasets) collected from current campaigns. Notice that we archive the acquired
data for further batch analysis, when needed.

Core Engine. The main data processing is performed within the core engine.
It contains three components: the query parser, the optimizer and the indexing
component (as detailed hereafter). Internally, we rely on existing distributed and
streaming engines to generate parallel dataflows. Our target is not a pure stream-
ing framework that requires hard real-time handling. Therefore, we have chosen
Spark Structured Streaming as a back-end and exploit the parallel receivers of
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Fig. 1. System architecture

Spark Streaming to collect data from different data sources. Our queries are
processed using the Spark’s micro-batch model, which processes data streams as
a series of small batch jobs.

Query Parser. The query parser is responsible for checking and validating the
query syntax. It translates an algebraic expression into a set of transformations
on Spark Streaming DataFrame, such as selection, projection, temporal join, shift,
aggregation to convert values to coarser or finer granularity. These operators form
an algebra, as an extension of the relational algebra to account for the semantic
of STDS (see Sect. 5 for more details). Subsequently, we propose to extend the
Spark Streaming DataFrame API to support spatio-temporal operations.

Query Processing. Our query optimizer creates a series of incremental exe-
cution plans from a streaming logical plan. The idea is to inject appropriate
optimization rules to obtain optimized execution plans. Rule-based optimization
in our context exploits spatial indexing and time slicing to access the smallest
possible number of partitions, avoiding cartesian product (in case of temporal or
spatial joins) or performing selection on required time intervals as early as possi-
ble ... Indeed, our query optimizer injects optimization rules to avoid scanning all
the data series and eliminates records that do not contribute to the query result.
Our query processing module uses the Spark streaming DataFrames/Datasets
API to combine batch and stream processing. This data structure allows to rep-
resent bounded data as well as streaming data. The advantage is that we can
apply the same operations on static and streaming DataFrames.

Indexing. We integrate the concept of indexing to achieve better query perfor-
mances. We employ time slicing to divide the input data into multiple slices that
are distributed on their time granularity. Data within each slice is further divided
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into sub-slices based on spatial indexing techniques. The key idea is to consider
the temporal dimension first, which is important for time series analysis. Details
about our physical model are presented in Sect. 5.3.

Data Storage. In order to provide accurate and real-time analysis, we maintain
different data storage for raw data and query (continuous) results. Raw data
refers to incoming stream time series data persisted for batch analysis using
Parquet format. New streaming data are maintained in memory until it exceeds
a memory threshold (specified by the user). Once the threshold is reached, it
is flushed to a separate data storage. This is done periodically using an append
mode to the DataFrame. Doing so, data are blocked in output files which size is
controlled, avoiding the inefficient multiplicity of small files resulting from the
default mode.

5 Data Model

As a running example, we consider a database derived from Polluscope1. A cohort
of volunteers is collecting sensory data each in a different STDS, possibly at
different granularities. For instance, GPS data are acquired at a higher frequency
than air pollutants such as PM2.5 and NO2.

5.1 Preliminaries

The notion of granularities has been deeply studied in the literature, Bettini
et al. [4–6] define the temporal granularity as a partition of the time domain.

Definition 1 (Temporal Granularity). Formally, a temporal granularity gT is a
function from an ordered set IT to the power set of the temporal domain T such
that:

∀i, j, k ∈ IT , (i < k < j ∧ gT (i) �= ∅ ∧ gT (j) �= ∅ =⇒ gT (k) �= ∅)

∀i, j ∈ IT , (i < j =⇒ ∀x ∈ gT (i) ∀y ∈ gT (j) x < y)

Typical examples of temporal granularities are days, weeks, months. gT (i) are
called temporal granules of the granularity gT . The first condition states that
the subset of the set that maps to non-empty subsets of the time domain is
contiguous. The second condition states that granules do not overlap and that
their order is the same as their time domain order. Besides, Camossi et al. [10]
define the spatial granularity as a mapping from an index set to subsets of the
spatial domain (i.e. a set of 2−dimensional points).

Definition 2 (Spatial Granularity). Formally, a spatial granularity gS is a func-
tion from an ordered set IS to the power set of the spatial domain S such that:

∀i, j ∈ IS , (i �= j ∧ gS(i) �= ∅ ∧ gS(j) �= ∅ =⇒ intersects(gS(i), gS(j) �= ∅)
1 A French project to build a participative observatory for the surveillance of individ-

ual exposure to air pollution and health effects. ANR-15-CE22-0018 Grant. http://
polluscope.uvsq.fr.

http://polluscope.uvsq.fr
http://polluscope.uvsq.fr
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Typical examples of spatial granularities are pixels of different sizes, or a
spatial hierarchy such as administrative subdivisions of a country. gS(i) are called
spatial granules of the granularity gS .

5.2 Logical Data Model

Definition 3 (Time Series). We define a time series as an infinite sequence of
values where a value is a couple (t, v) where t ∈ T is a timestamp (at a given
granularity) from a time domain T with discrete time units in increasing order
and v is a vector (v1, ..., vn) where each value is a measurement or scalar value,
v is an n-tuple of a fixed size.
The left side Fig. 2 shows an example of a time series that records the time t and
the corresponding values (e.g., PM2.5, PM10, NO2) captured in a vector v.

Definition 4 (Spatio-Temporal Data Series). We define a Spatio-Temporal
Data Series (STDS) as a time series where the location (e.g., latitude and lon-
gitude) belongs to the vector v.

Definition 5 (Empty Value). The empty value (denoted ‘!’) means that there
exist no value. As a time series R is an infinite sequence of vectors, ∀v ∈
R, time(v) ∈ T . If v is not defined at a given time, then v = !.

Definition 6 (Unknown Value). The unknown value (denoted ‘?’) means that
the value is undefined. It is equivalent to the NULL value in the relational model.

Using our model, a time series constitutes a linear space vector (a collection
of vectors). This mathematical structure allows us to apply basic vector space
operations (plus, minus, scale). Thus, time series could be added (denoted +),
multiplied (denoted ∗) by numbers (scalar) or even combined linearly in expres-
sions such as TS1+s∗TS2 (s being a real). Our model includes also an extension
of the relational algebra operators to the support of time series. To this end, we
revisit the operators such as temporal selection, projection, join, union, inter-
section, aggregation as follows.

Definition 7 (Temporal Selection). The temporal selection applied to a time
series is a time series where we replace the original value with an empty value
(!) if the predicate is not satisfied. Denoting (t, v) the entry t of vector v of the
processed time series:

TSelpred(R) = {(t, v) | (t, v) ∈ R ∧ pred(v)} ∪ {(t, !) | (t, v) ∈ R∧ !pred(v)}
Example: Selection of air pollutants exceeding a certain threshold (e.g., 50).

TSelvi>50(R)

Definition 8 (Window Selection). We define a window selection operator as a
transformation that selects values satisfying a temporal predicate w. Formally:

WSelw(R) = {(t, v) | (t, v) ∈ R ∧ overlaps(t, w)}
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Example: Selection of air pollutants during a specific time period.

WSel[01/06/2019,15/06/2019](R)

Definition 9 (Temporal Projection). We define a temporal projection operator
as a transformation that applies a function to each value of the time series it is
applied on. Formally:

TProjf (R) = {(t, (v1, ...vk)) | (t, v) ∈ R ∧ vi = f(v) for i ∈ {j1, j2, ..., jk}}
Where f is a linear function that preserves vector addition and scalar multipli-
cation.
Example: Projection and multiplication of PM10 values by 2.

TProjv2∗2(R)

TProjv2∗2(R)
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Fig. 2. Selection and Projection with Examples

Definition 10 (Shift). We define a shift operator as a transformation that
applies a shift (future or past) to each timestamp of the time series. Formally:

Shiftδ(R) = {(t′, v) | (t, v) ∈ R ∧ t′ = t + δ}
Example: Shift the environmental time series by 1 day in order to compare the
exposure to pollutants between two consecutive days.

Shift1day(R)

Definition 11 (Temporal Intersection, Difference & Union). We define an
adaptation of the relational intersection, difference and outer union as follows:

S1∩S2 = {(t, v) | (t1, v1) ∈ S1∧(t2, v2) ∈ S2∧t = intersects(t1, t2)∧v = v1 = v2}
S1 − S2 = {(t, v) | (t, v) ∈ S1 ∧ (t, v) /∈ (S1 ∩ S2)}

S1 ∪ S2 = {(t, v) | (t, v) ∈ (S1 − S2) ∨ (t, v) ∈ (S2 − S1) ∨ (t, v) ∈ (S1 ∩ S2)}
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Definition 12 (Temporal Aggregation). Let R be a time series with a timestamp
attribute t, f be an aggregation function (e.g., sum, count, avg) that takes a set
of values as an argument and applies an aggregation. We define a set GT that
contains all granules τ of granularity gT such that GT (R) = {τ |τ ∈ cast(t, gT )∧
t ∈ R}. Each element of GT defines a partition S(τ,R) of R such that:

S(τ,R) = {v | (t, v) ∈ R ∧ overlaps(time(v), τ)} (2)

The temporal aggregation is defined as:

TAgg(gT ,f)(R) = {(τ, f(S(τ,R))) | τ ∈ GT (R)}
The set GT (e.g., GT = {March,April, June, July}) ranges over the gran-

ules of a granularity gT (e.g., months). S(τ,R) collects all the values v ∈ R
such that time(v) is overlapping τ . A result tuple is then produced by extending
τ with the result of the aggregate function f that is computed over each element
of S(τ,R). Example: Compute the monthly average of all air pollutants.

TAgg(months,avg)(R)

Definition 13 Window Aggregation. This operator allows to partition and
aggregate values over time, based on a moving window w. We define a set
WT (R) = {τ1, τ2, τ3, ..., τq} that contains the collection of time intervals dividing
the time horizon tI of R into sub-intervalls of the size of the window w such that
tI =

⋃q
i=1 τi. Each element of WT define a partition S(τ,R) as defined in Eq. 2.

Thus, we define the window aggregation as:

WAgg(w,f)(R) = {(τ, f(S(τ,R))) | τ ∈ WT (R)}
Example: Compute the average over a half an hour moving window of a specific
air pollutant.

WAgg(30min,avg)(R)

Definition 14 (Temporal Join). The temporal join between two time series R
and S allows to append each row in R with the row in S at the same time values.
Formally:

TJoin(R,S) = {(t, v) | (t1, v1) ∈ R ∧ (t2, v2) ∈ S ∧ v = v1 ⊕ v2
∧t = intersects(t1, t2) ∧ t �= ∅}

Example: Match the environmental time series (R) with the GPS data (L).

TJoin(R,L)

Definition 15 (Shift Temporal Join). The future (past) temporal join between
two time series R and S allows to append each row in R with the closest future
row in S at or after (before) a time interval δ. It is a redefinition of the temporal
join and the shift operators. Formally:

TJoinδ(R,S) = {(t, v) | (t1, v1) ∈ R ∧ (t2, v2) ∈ S ∧ v = v1 ⊕ v2
∧t = intersects(t1 + δ, t2) ∧ t �= ∅}
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Example: Match the environmental time series (R) with the shifted humidity (H)
which variation may impact the values in R after 3mn.

TJoin3mn(R,H)

Definition 16 (Spatial Aggregation). We define the spatial counterpart of GT

denoted GS such that GS(R) = {s|s ∈ cast(location(t), gS) ∧ t ∈ R} where gS is
a spatial granularity and location(t) gives the spatial element of a timestamp t
∈ R. Each element of GS defines a subset of values as follows:

SgS
(s,R) = {v | (t, v) ∈ R ∧ overlaps(location(t), s)}

Similar to the temporal aggregation, the spatial aggregation is defined by the
following expression:

SAgg(gS ,f)(R) = {(s, f(SgS
(s,R))) | s ∈ GS(R)}

Example: For each country, compute the highest value of a specific air pollutant.

SAgg(countries,max)(R)

We could also propose other operators such as a split operator which subdi-
vides a single time series into multiple segments, or a clustering that partitions
a time series according to consecutive similar values, or spatio-temporal join by
adding a spatial predicate.

5.3 Physical Data Model

Physically, an infinite sequence of values cannot be stored. As in [18], at storage
level, we propose a discrete model of time series data to implement the infinite
sequence as in the logical (abstract) model. We physically encode time series data
as a set of sequences with specific metadata. As streaming time series enters our
framework, each timestamp is represented by a positive integer named Epoch and
a granularity. The granularity is chosen based on the original precision of data
(e.g., 2019/06 corresponds to a one-month granularity). To reduce the storage
overhead, for each sequence of a time series, we only store an array of values
omitting the actual timestamp. In fact, we associate a start Epoch value s, and
a granularity g as metadata. Then the timestamp of the ith values of the array
can be recovered by the simple formula s+ i ∗ g. If the analysis needs to operate
over raw time format, then we use the metadata to calculate the row number of
the corresponding values. Our model allows to manage missing data, for example,
if there is no value between two sequences, at the storage level nothing is stored,
at the logical level, it is represented by an empty value denoted as ‘!’.

To summarize the first phase of our proposed physical model, time series data
is organized as sequences of lists where each list is represented by a granularity.
This allows to structure data in a temporal hierarchy where each granularity is
represented as a level in the hierarchy. In order to speed-up the access and the
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filtering on time series, and in particular to STDS data, we propose a model that
alternates temporal and spatial indexing. We envision a two-level partitioning
scheme, where the first level follows a global index, and the second depends on
a second index. At the lowest level, the data will be further divided into even
smaller spatial sub-partitions called buckets. For instance, the first level can
leverage a spatial index while the second follows a temporal partition, and the
buckets could be based on the order of spatial filling curves. The way the spatial
and temporal dimensions will be alternated is not yet decided and may require
fine tuning to adapt to the data and the query profile. For query processing,
our system will only scan the content of the spatial bucket (e.g., /sid=20) that
can be accessed from the temporal partition (e.g., /ts.parquet/nump=10) that
contains a range of Epoch indices. This physical organization is inspired by the
physical optimization employed for large volume of astronomical data proposed
in [7,9]. It has proved its efficiency, as it processes the query in a way that
makes it efficient to retrieve the contents of required spatial buckets, obviate
scanning irrelevant partitions and allow fast aggregation queries for granularity
conversions. We use an append save-mode to load additional data while avoiding
to overwrite existing data. Data is archived in time-ordered partitions. New
incoming time series naturally arrives time-ordered, this allows new data to be
appended to existing partitions rather than having to re-sort data into previously
stored partitions.

6 Query Processing

Spark Structured Streaming is based on the Spark Catalyst extensible opti-
mizer [3] which allows adding new optimization techniques. Our knowledge of
the Spark Catalyst optimizer helped us in designing a new query processing
model for STDS. Figure 3 represents our query processing workflow that con-
sists of three major steps: Extended Analysis, Incrementalization and Extended
logical-physical optimizations. The input is an algebraic expression that is trans-
lated into a set of transformations on Spark Streaming DataFrames by the query
parser. This allows to leverage the optimizations offered by the Catalyst opti-
mizer and to inject new optimization techniques.

Query Parser Logical Plan
Optimized 
Physical 

Plan
Incremental 

Logical Plans

Algebraic 
expression

Extended 
Analysis

Incrementalization Logical and Physical 
Optimization

Fig. 3. Query processing workflow
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Extended Analysis. The Extended Analysis extends the Spark Structured
Streaming analysis to resolve spatio-temporal operations. It validates the query
and resolves the attributes and data types. We intend to extend the catalyst
optimizer to inject resolution rules in order to transform an impossible-to-solve
plan into an analyzed logical plan.

Incrementalization. The next step is to use the Spark Structured Stream-
ing incrementalization technique that allows to continuously update results in
response to new data. The main idea is to only report the changes in the query
result since the last trigger. This ensures a fast query evaluation because we limit
the amount of data to get the query result. We rely on the concept of incremental
algorithms to transform queries into trees of traditional logical operators (e.g.,
join, filter ...).

Extended Logical and Physical Optimizations. The objective of this step
is to exploit logical optimization to transform the logical plan into an optimized
logical-physical plan using indexing and partitioning. It allows to solve the fil-
tering phase of some proposed queries by either transforming the temporal join
query into an equi-join or by filtering the relevant partitions required by spatial
or temporal ranges... Our query processing module applies multiple optimization
rules to map a query plan to a semantically equivalent plan. Some examples of
optimization rules that could be included:

– Temporal Partition Pruning. It consists in determining the temporal par-
titions that need to be scanned, and hence the epoch indices that can be
pruned, to get the query result. Such a rule could be applied for selection
queries and allows to access relevant values using their rows number.

– Spatial Index PushDown. This optimization allows to inject new filters in the
query plan to eliminate loading spatial objects that do not contribute to the
query result. This ensures that such filters are applied at the low level rather
than dealing with the entire temporal partition.

– Avoiding Cartesian Product. Temporal join queries can be conceptually for-
mulated as cartesian products. A possible optimization is to replace this prod-
uct by an equi-join on Epoch indices. The trick is to take inspiration from our
spatial join algorithm [8] by shifting all objects of a reference dataset on the
fly and transforming the start epoch values. Then, a simple equi-join query
on epoch indices becomes sufficient to generate candidate results.

7 Conclusion

In this paper, we presented a unified framework for mobile sensing big stored
and stream data. Our framework extends Spark Structured Streaming with the
adaptation of data organization and the injection of various optimization rules
to optimize processing of stream and historical data series. We also presented
a logical data model for STDS and a multi-granular internal data model to
take into account the heterogeneity of data. We presented the key query pro-
cessing workflow of our framework to support incremental algorithms and logi-
cal/physical optimizations. Currently, we are working on an integrated prototype
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within Spark and Catalyst to support an important application branch of MCS
which is air quality sensing where air pollution is monitored using multi-sensor
devices within the Polluscope project. To deal with the heterogeneity of data, we
are currently working on the integration of spatial and temporal disaggregation
techniques using ancillary data. These techniques allow a high-resolution and
unified output in both the temporal and spatial dimensions.
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1 Introduction

In this paper, we present early results from an ongoing international research
project in which mobility data researchers and fishery ecologists collaborate
closely. In our project, we explore a unique, high-value dataset that results
from the fusion of three data sources: trajectories from fishing vessels, the cor-
responding fish catch reports (i.e., the quantity and type of fish caught), and
relevant environmental data. The goal of this project is to predict the future
Catch Per Unit Effort (CPUE) from the past data. CPUE is an indicator of fish-
ing resources exploitation that allows for assessing the pressure of these activities
at the ecosystem level. Intuitively, a decrease of CPUE indicates a situation of
over-exploitation, a steady CPUE value points out a sustainable exploitation of
the fishery resources and an increase of its value corresponds to a healthy and
growing population. CPUE is therefore a key indicator for fisheries management
since it could help to define the sustainability of the fishing activities in the area
of interest: an accurate forecast of CPUE could help decision makers to obtain
a sustainable fishing business by adapting the fisheries management plans on
the basis of the forecast results. Here we discuss and present early results from
the use of Machine Learning techniques to predict the CPUE in the Northern
Adriatic Sea.

We believe this research demonstrates the opportunities provided by mobility
data analysis to gain insights and evidence that can guide fisheries management
decisions. Such decisions will have significant environmental and economic con-
sequences at the regional, national, and eventually global level. Our results are
preliminary, both in the temporal data horizon that we are able to explore,
and in the broader set of techniques that could be employed on this task. It is
likely that other centers of intense fishing activities are in possession of similar
data and could use the methods similar to the ones proposed here in their local
context.

The Northern Adriatic Sea area, on which our work is based, needs tools and
models that can assist fisheries management at the macro scale. This area, known
for its very high productivity, is recognized to be one of the most exploited area of
the Mediterranean Sea, causing an over-exploitation of the fish resources. In this
context, the development of effective fishery management plans is needed to make
fishing activities sustainable and ensure a productive and healthy ecosystem.
Currently, different management measures are used in the Northern Adriatic
Sea (e.g., the permanent ban of trawling activities within 3 nm of the coast,
the seasonal biological rest period for trawlers). In this context, forecasting the
fishing activities and their catches in space and time represents a step forward
to assess the efficiency of these measures and develop new ones.

Recently, several works report the use of mobility-tracking technologies, such
as Automatic Identification System (AIS) to monitor fishing activities. In its
inception, AIS was primarily designed as a navigational aid to avoid vessel col-
lisions, but nowadays it has become - often due to its open nature - the primary
source of data about fishing-related activities. In our setting, we have access to
terrestrial AIS data, i.e., AIS data sent by ships and received by ground stations
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on the Italian coast of Northern Adriatic. Vessels transmit their position at a
variable rate, from 2 s up to two minutes. We use AIS data to reconstruct, in
time and space, the fishing trajectories. The latter have been enriched with the
available environmental data, such as daily surface temperature, chlorophyll-a,
and wave height. A further valuable piece of information available for this work
is the landing reports of the Chioggia’s fishing market, which is the primary
market of the Northern Adriatic basin.

The two main research questions that guide this work are: (i) How can we
improve our knowledge of the spatio-temporal aspects of the fishing activities
in the Northern Adriatic Sea?; and (ii) How can we predict the CPUE for next
year?

Data fusion, management, and Machine Learning techniques from the mobil-
ity data analysis are applicable to provide evidence-based answers to these ques-
tions. In this paper, we focus on the use of semantic trajectories of fishing vessels
and predictive modeling using spatio-temporal Machine Learning techniques,
and we address mainly the last of the above questions.

The contributions of this work are the proposal of a framework that: (i)
integrates the heterogeneous data sources; (ii) extracts knowledge from the inte-
grated data using semantic trajectory modeling; and (iii) applies Machine Learn-
ing (e.g., Random Forest) to learn from those semantic trajectories a model for
forecasting the CPUE.

This paper is structured as follows: Sect. 2 describes the related work in
the literature concerning semantic trajectories and fishing activities forecast.
Section 3 illustrates the architecture of the developed system and describes in
details the data sources, how the raw data have been fused and incorporated
in a semantic model, and the model developed for prediction analysis. Section 4
reports the predictive model results and Sect. 5 draws some concluding remarks
and illustrates possible future developments.

2 Related Works

In this section, we discuss related works regarding (i) sea data fusion and seman-
tic trajectories, which is the concept used for enriching complex objects like fish-
ing ships with relevant information; and (ii) fishing activities forecast, which is
the final goal of our predictive model.

2.1 Data Fusion of Sea Data and Semantic Trajectories

Combining the AIS, trading transactions, and environmental variables from the
vessels into a single representation is challenging. Several strategies were pro-
posed to deal with the fusion of heterogeneous ocean data properly. For exam-
ple, the paper [18] shows a platform in the maritime vessel traffic domain for
discovering real-time traffic alerts by querying and reasoning across numerous
streams (e.g., AIS, weather, ice, etc.). The authors use semantic web technologies
to integrate heterogeneous data sources. In [6], the authors propose a model for
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integration and analysis of data for vessel movement in a real-time maritime sit-
uation awareness system, also using semantic web techniques and tools. Unlike
the previous methods, we model our trajectory data with a semantic model.
By considering data sources such as AIS, environmental variables, and landing
reports, the trajectory of every fishing vessel becomes a complex object with
several data dimensions that are contextual to the movement.

Several semantic models for trajectory data have been proposed, such as the
stops and moves [17], CONSTANT [2], and recently MASTER [13]. This last
model is more flexible and expressive since it allows for enriching trajectories
with complex objects and it provides not only a conceptual model but also a
logical schema in the Resource Description Framework (RDF) and a triplestore
based on NoSQL databases for maintaining RDF data.

By following the MASTER semantic model, the trajectory of fishing vessels
can be represented as a multiple aspect trajectory. The AIS data constitute the
sequence of spatio-temporal points. Moreover, the MASTER model introduces
the concept of aspect which consists of “a real-world fact that is relevant for the
trajectory data analysis” [13]. It distinguishes between volatile aspects—which
are usually associated with the trajectory points, since they vary during the
object movement—and long term aspects—which do not change during an entire
trajectory, and hence they are related to the whole trajectory. For instance, for
vessel trajectories, the speed is a volatile aspect, whereas the fishing gear type
is a long term aspect.

2.2 Fishing Activities Forecast

The literature on fishing activities forecast is vast and can be analyzed in sev-
eral ways. From the fishing management perspective, works like [16] propose
a seasonal forecast system that combines environmental and fish habitat data
(collected by fish tagging) to predict tuna distribution. In [15], the authors,
integrate satellite data and statistical models output to investigate the relation-
ship between sea surface temperature and chlorophyll-a concentration, and also
define simple methods to forecast potential fishing grounds. The work of [9]
tries to forecast 1-month catches considering only the anchovy catches in pre-
vious months as inputs. Similarly, to [15,16], we use environmental data (e.g.,
chlorophyll-a and sea surface temperature). Also similarly to [9] we use fish catch
information to predict future catches. Unlike all of them, we use wave height as
an environmental variable in our model.

From a perspective that considers the geolocation technology used to
track ships, some works use Vessel Monitoring System (VMS) [12,19], satel-
lite images [15] or AIS [10,20,22]. Most of these works focus on training models
to forecast when a vessel is performing a fishing activity or not. Different types
of fishing ships (e.g., long-liners, purse-seiners, etc.) have different types of move-
ment patterns. Predicting these patterns depends on the training data given to
the machine learning model [19,20], or the domain specialist ability to create
rules that reflect these patterns [14]. In this work, we use domain knowledge
from specialists to determine the activity of vessels (e.g., fishing or not) on their
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Fig. 1. An overview of all the steps of the framework for predicting fishing catches.

trajectory segments. Based on the knowledge of ranges of fishing speed for differ-
ent types of fishing gears (e.g., trawlers, long-liners, etc.), we encode the specific
rules to detect vessel activities. By exploiting this information, we can compute
in a very accurate way the area swept by vessels while fishing, thus allowing for a
more realistic estimate of fishing effort and CPUE. To the best of our knowledge,
no work in the literature uses a combination of AIS, fishing catch reports, and
environmental variables to forecast CPUE.

3 A Framework for Predicting CPUE

In this section, we present the bird’s eyes view of the architecture of the system
we have developed. We then discuss the individual data sources—AIS data, catch
data (landing reports), environmental data—(Sect. 3.1), and the spatio-temporal
mapping of data as well as the fusion of the individual sources (Sect. 3.2). The
section is rounded up with a brief discussion of the Machine learning method we
have selected to build the prediction model (Sect. 3.3). Schematics of the system
is shown in Fig. 1.
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3.1 Data Sources

Automatic Identification System (AIS). AIS raw data, provided by the
Italian Coast Guard, were obtained for the trawl fishing vessels operating in the
Northern Adriatic Sea from January 2015 until December 2016. A total of 70
(2015) and 77 (2016) trawlers, with a length overall above 15 m and belonging
to the Chioggia navy, were taken into consideration in this study: in particular,
small and large bottom otter trawl (SOTB and LOTB), Rapido, one specific kind
of beam trawl (RAP), and midwater pair trawl (PTM). The identification of the
vessels was performed by matching the data present in the AIS (MMSI code,
vessel name and the call sign) with the ones of the European Fleet Register,
which supplies specific information on the vessels (i.e., primary and secondary
gear, length overall, gross tonnage, etc.). All the data given by the AIS (i.e.,
data position, speed, time, MMSI) were used to identify the fishing tracks and
analyze the fishing activities (fishing, not fishing).

Daily Landing Reports. Landing dataset was obtained from the Chioggia’s
Fish Market, whose harbor hosts one of the main fishery fleets of the Adriatic
Sea. This dataset consists of daily landings (catch amounts in kilogram) for
104 commercial species caught during the biennium 2015–2016 in the Northern
Adriatic Sea. The records pertain to 82 fishing vessels, and a total of 17921
fishing trips over the two years.

A graph of total monthly landings for the two years with the contribution
of the five most harvested species is shown in Fig. 2. Seasonality of the data is
evident by visual comparison of the annual trends. The graph shows zero landing
in August for both years, which reflects the fishing ban. It is also visible from
the graph that 2015 landing amounts were higher than 2016 for almost all the
months.

Fig. 2. Chioggia’s total monthly landing and species contribution in 2015–16

Environmental Data. We considered the following environmental information
in order to enrich the trajectories of the fishing vessels:
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– Sea Surface Temperature (in kelvin) [7]
– Sea Daily Chlorophyll-a Concentration (in mg/m3) [7]
– Spectral significant wave height (in meters) [7]

The sea surface temperature and the chlorophyll-a influence the species dis-
tribution, while the wave height affects the fishermen behavior. Hence, adding
such semantic information could be relevant for a more accurate prediction of
the CPUE indicator. Moreover, the utilization of the sea surface temperature
can be helpful to evaluate the effect of climate changes on fishing activities, a
hot topic to be considered.

3.2 Data Fusion and Semantic Modeling

Activity Labeling and Trip Detection from AIS Data. Trajectories have
been reconstructed by linear interpolation of the raw AIS data. While performing
the reconstruction, all implausible points have been discarded. In particular, all
the movements that were not physically feasible concerning a maximum possible
boat speed were removed.

A trajectory is therefore defined as a sequence of segments, and it is enriched
with the following data: MMSI (boat identifier), departure time of the trip (exit
from harbour area), departure port, position of the segment with respect to the
ports areas, average speed, activity of the boat within the segment and fishing
gear (this can be obtained through the MMSI).

The activity attribute is an integer value distinguishing among the following
situations: (0): in port ; (1): exiting from; (2): entering to port ; (3): fishing ; (4):
navigation. The in port, exiting from port and entering to port situations can be
deduced from the position of the extremes of the segment w.r.t. the port area. In
case none of the previous situations occurs, the fishing or navigation activities
are established on the basis of the average speed of the boat. More precisely, if
the average speed is in the range of the fishing speed of the equipped gear, the
boat is assumed to be in a fishing phase; otherwise, it is assumed to be in a
navigation phase.

This trajectory can be modeled as a multiple aspect trajectory, following
MASTER model [13]. Indeed, as minimum granularity to attach semantic infor-
mation, we do not consider a single spatio-temporal point, but we annotate
segments since we want to highlight the presence of homogeneous trajectory
portions, which are the appropriate granularity level for our analyses. Hence the
pieces of information we listed above can be classified as

– long-term aspects: MMSI, departure time of the trip, departure port and the
gear used for fishing because they do not change during the entire trajectory;

– volatile aspects: average speed and activity of the boat since they frequently
vary during the object movement and they can be associated with a segment.

By using the MASTER model we are able to represent different aspects of our
trajectories in a uniform and simple way. Moreover, this representation allows
us to perform complex queries merging together spatial, temporal and semantic
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features. In the rest of the paper, we denote with T the resulting set of multiple
aspect trajectories.

The Spatial Grid. Some of the concepts described later in this section (i.e.,
fishing effort and CPUE) are defined over an area. In order to calculate those
values, the area under study is partitioned into a square grid with 5 × 5 km cell
size. Fishing effort and CPUE are then calculated over the individual grid cells.
In addition, the grid is used in the calculation of weighted catch distribution
(described later), and as the data format for prediction modeling (Sect. 3.3).

Calculation of Fishing Effort over Grid Cells. After reconstructing the
trajectories, we proceed with the computation of the fishing effort, an essential
indicator for monitoring the fishing pressure on an area of interest over time.
As mentioned above, we partition the Northern Adriatic Sea into a regular grid.
The fishing effort for a cell during a fixed period of time is defined as the ratio
between the area of the cell “swept” by vessels while fishing during the given
time period and the total area of the cell itself. The swept area depends on the
employed gear which can be recovered from a specific dataset where each vessel,
identified by its MMSI, is associated with its gear.

In the following we will denote by c a generic cell in the area of interest, by
p a time period (could be day, month, etc.) and by g a gear (small and large
bottom otter trawl, Rapido and midwater pair trawl).

Definition 1. Let c be a cell, p a time period and g a gear. The fishing effort
wrt the gear g in the cell c during the time period p is defined as follows:

fe(c, p, g) =
(Σtr∈T,gear(tr)=glen(tr, c, p)) ∗ gear width(g)

area(c)
(1)

where

– T is the set of multiple aspect trajectories;
– len(tr, c, p) returns the sum of the lengths of the fishing segments of trajectory

tr falling in cell c during time period p;
– gear width(g) is the width of the net of gear g;
– area(c) is the total area of the cell c.

It is worth noting that we can obtain the total fishing effort in a cell c during
a time period p by summing up the fishing effort for each gear. Indeed, for our
analyses in Sect. 4 we will use the fishing effort for a particular gear, i.e., Rapido.

Thanks to the reconstruction and the semantic enrichment of trajectories we
can compute the lengths of the fishing segments falling in each cell. This allows
a more accurate and realistic estimate of the swept area and therefore of the
fishing effort.
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Assigning Landing Reports to Trips. The landing dataset provided by
the Chioggia’s fish market contains information about each trading transaction,
including the landing date, MMSI of the seller, the species, and the quantity of
fish. We have to associate each fish market transaction with a trajectory of the
vessel having the specified MMSI. To accomplish this task, for each transaction,
we select the vessel trip with the most recent arrival in the port (before 4 PM of
the landing date). Such a trip has to respect some constraints: it has to last at
least 1 h, and have a minimum length of 2 km, from which, at least 100 m have
to be classified as fishing. Arrivals after 4 PM are associated with transactions
occurring the next day. Assignment of the quantity (weight) of the fish to a
vessel is called a catch.

Catches Distribution over Trips. The association of fish catches with tra-
jectories allows us to add a further volatile aspect to our multiple aspect trajec-
tories. In fact, we can distribute the fish associated with a trajectory along with
its fishing segments. In particular, we can employ two different techniques:

– uniform distribution, or
– weighted distribution.

In the first case, for each trading transaction, the amount of fish is uniformly
distributed along with the fishing segments of the corresponding trip. Each fish-
ing segment of the trajectory is associated with a portion of the total amount of
fish, proportional to its length.

Of course, the assumption of uniform catch distribution is a simplification of
reality. As an improvement, a weighted distribution of catches is also considered.
The idea behind this approach is that the areas where more vessels are fishing,
during a given time period, are more likely to have higher catch rates. A prelim-
inary method based on this idea is implemented as follows. First, the number
of distinct vessels that were detected fishing in each grid cell in a time period
is computed. Then the amounts of catch over each segment, derived using the
uniform distribution, is weighted by the vessel counts in the cell containing the
segment. The weights are normalized by the sum of vessel counts in cells that
cover all the fishing segments in a trip, so they add up to 1.

Based on this piece of information, we can compute the quantity of fish
caught in each cell during a period of time by boats having a particular gear g.

Definition 2. Let c be a cell, p a time period and g a gear, the fish catch wrt
to the gear g in cell c during the time period p is defined as follows:

catch(c, p, g) = Σtr∈T,gear(tr)=gquantity(tr, c, p) (2)

where

– T is the set of multiple aspect trajectories;
– quantity(tr, c, p) returns the sum of the fish quantities in kilograms associated

with the fishing segments of trajectory tr falling in cell c during period p.
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Catch Per Unit Effort (CPUE). Catch per unit effort (CPUE) is an indica-
tor of the species abundance in the assessment of fishery resources. This index
represents a valid method to evaluate the population trends where, a decrease
of CPUE indicates a situation of over-exploitation, a steady CPUE value points
out sustainable exploitation of the fishery resources, and an increase of its value
corresponds to a healthy and growing population.

Definition 3. Let c be a cell, p a time period and g a gear, the catch-per-unit-
effort (CPUE) wrt to the gear g in cell c during the time period p is defined as
follows:

cpue(c, p, g) =
catch(c, p, g)

fe(c, p, g)
(3)

CPUE is, therefore, a key indicator for fisheries management since it gives
information on the sustainability of the fishing activities in the area of interest.
As a consequence, an accurate forecast of CPUE could help decision makers to
maintain a sustainable fishing business by adapting the fisheries management
plans based on its forecasted values.

3.3 Predictive Modeling

The objective of the modeling procedure described in this section is the predic-
tion of average monthly CPUE values for individual grid cells. First, we describe
the modeling data, which consists of daily values for the model attributes
(or variables) per grid cell. Then, we follow with a brief background on the cho-
sen machine learning method—Random Forest (RF). Finally, we explain how
we adjust the temporal granularity to obtain the desired monthly output from
the model, which is built using the daily model attributes.

Modeling Data. Modeling data maps the data onto a spatio-temporal grid,
producing records (or instances) each of which corresponds to a date, and a
spatial grid cell (grid described in Sect. 3.2). Each record is comprised of the
response attribute—CPUE—and a set of predictive attributes, all pertaining to
the same date and grid cell. The predictive attributes are as follows.

– Environmental attributes (described in Sect. 3.1): daily chlorophyll-a concen-
tration, daily sea surface temperature, and daily spectral wave height; each
attribute re-sampled over the grid cells.

– Temporal attributes that preserve seasonality: month of year (1–12), day of
year (1–365), week of year (1–53), seasons (four quarters starting in January).

– Spatial attributes: latitude and longitude of the grid cell centres.

CPUE is calculated using fishing effort, which in turn, depends on the type
of fishing gear. Among the four fishing gears described in Sect. 3.1, Rapido has
the largest share in the dataset with 48% of the records. For this reason, we have
limited our presentation in this paper to the model trained and tested on data
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for the vessels with the Rapido gear. Also, in this study, CPUE is calculated
based on the total catch amounts for all species in the landing dataset.

As described in Sect. 3.2, CPUE is defined on grid cells with some fishing
activity in a given period. Consequently, for a given day, the dataset only includes
the fished grid cells. It follows that the size of the modeling dataset is obtained
by

∑
d |C|d where |C|d is the number of fished cells on date d. Size of the dataset

for Rapido vessels amounts to 51262 records over the two year period.

Machine Learning Method. The task of prediction modeling of CPUE
presents a regression problem. RF [5] was chosen as the regression method due to
the following considerations. It does not require any assumption about the dis-
tribution of the model attributes. It can take numeric and categorical attributes,
and it does not require scaling of the attributes. Moreover, RF does not result in
instability of output values when presented with predictive attributes with values
outside the range of the training data. Besides RFs, we have experimented with
several other regression methods, e.g. linear regression with LASSO and with
the Support Vector Machines. RF, however, outperformed the other methods.

RF is an ensemble learning method based on decision trees, introduced by
Breiman. Ensemble leaning methods can improve accuracy, and reduce bias and
variance by combining outputs of many base learners [8]. In the case of regres-
sion RF, numerous regression decision trees are trained, and the model output
is obtained by averaging the outputs of the individual trees. RF uses bootstrap
aggregating (Bagging) to construct individual trees that are trained indepen-
dent of each other. Bagging is an ensemble learning method that trains its base
learners on bootstrap samples—samples that are randomly drawn with replace-
ment from a dataset of same size [4]. RF introduces further randomization in the
construction of the trees by taking a random subset of the predictive attributes
at each node, and selecting one from the random subset to split on.

Adjusting Temporal Granularity. Even though the prediction of average
monthly CPUE is the main interest of this study, the predictive environmental
attributes (e.g. wave height and water surface temperature) affect the fishing
activity on a daily basis. Therefore, aggregating such attributes on a monthly
basis prior to modeling would result in losing the information pertaining to the
daily cause and effects of those attributes. To preserve that information, first
the RF regression method is performed using the daily training data consisting
of the 2015 dataset, which produces daily predictions for individual grid cells for
the year 2016. Then, monthly predictions for each cell is calculated by averaging
the daily predictions for the respective cell over the month. Averaging is used
to aggregate the predicted CPUE values, as opposed to summation, because
predicted CPUE values are ratios and do not produce a meaningful sum.

The resulting average monthly predictions for individual cells are considered
to be the model output. Evaluation of the model is then done against similarly
calculated monthly CPUE averages per grid cell, using the actual 2016 data.
Equation (4) shows the calculation of actual and predicted average CPUE for a



94 P. Adibi et al.

given cell c over a given period p (e.g. month)1, respectively denoted by yc,p and
ŷc,p,

yc,p =
1

|Dc,p|
∑

d∈Dc,p

cpue(c, d) and ŷc,p =
1

|Dc,p|
∑

d∈Dc,p

ĉpue(c, d) (4)

where Dc,p indicates the set of all days d in period p for which cell c has a CPUE
value. cpue(c, d) and ĉpue(c, d) are respectively the actual and predicted daily
CPUE values for cell c on day d.

4 Experiments and Results

Two models are built and evaluated in this experiment: one for CPUE values
calculated using the uniform catch distribution, and one for the weighted distri-
bution. The distinction between the two distributions is described in Sect. 3.2.
The models are trained on year 2015 (training data), then prediction and evalu-
ation are done for year 2016 (test data) of the two year dataset. The reason for
splitting the data by year for training and testing is the highly seasonal nature
of the data set, as described in Sect. 3.1.

Baseline Model. The baseline, which is used as the benchmark to compare
with our RF model, is to simply use the last observed value as the forecast
(prediction)—known as näıve forecasting. This baseline is chosen rather than
results from other regression models, because it is a standard practice in fore-
cast modeling [11], and it provides a consistent baseline that is independent of
the choice of the regression model. In particular, for this experiment, the baseline
average monthly prediction of CPUE for a given cell in 2016 is the respective
average monthly CPUE for that cell from 2015. Equation (5) illustrates the base-
line prediction

ŷ∗
c,p = yc,p↓1 (5)

where yc,p↓1 is the actual value for cell c at the same period moved one year
backward. For instance, if p = June2016 then p ↓ 1 = June2015 .

Evaluation Metrics. The metrics used for evaluation are as follows.

– Mean Absolute Error (MAE) is calculated for each period p (i.e. month) as
the mean of absolute errors of the predicted average CPUE for all cells in
that period. MAE for period p is shown in Eq. (6)

MAEp =
1

|Cp|
∑

c∈Cp

|ŷc,p − yc,p| (6)

1 As pointed out in Sect. 3.3 we consider CPUE only for the gear Rapido. Hence,
instead of writing cpue(c, p,Rapido), we simply use cpue(c, p), omitting the gear
name.
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where Cp denotes the set of all cells with a CPUE value in period p; and
ŷc,p and yc,p are respectively predicted and actual CPUE values for cell c and
period p. MAE for the baseline prediction is calculated similarly and it is
denoted by MAE∗.

– Normalized Mean Absolute Error (nMAE) is calculated for each period as
the MAE for that period divided by the mean of the actual CPUE for that
period. nMAE for period p is shown in Eq. (7).

nMAEp =
MAEp

μp
; μp =

1
|Cp|

∑

c∈Cp

yc,p (7)

– Relative Absolute Error (RAE) is a measure of model performance relative to
the baseline model; it is calculated as the ratio of model MAE to the baseline
MAE∗ for a given period [1], as shown in Eq. (8).

RAEp =
MAEp

MAE∗
p

(8)

Model evaluation metrics for uniform and weighted catch distributions are
shown in Table 1. Since interpreting MAE requires information about the mag-
nitude of CPUE, mean of CPUE for each period is also included. Due to the
variation of CPUE means, MAEs for different periods cannot be directly com-
pared. nMAE allows for direct comparison of the model performance for differ-
ent periods, since it is normalized by the period mean. Similarly, RAE allows
for comparison of model performance against the baseline for different periods.
If RAE equals 1, the model is performing as well as the baseline for that period.
RAE of less than 1 indicates that the model performs better than the baseline,
and vice versa.

Fig. 3. CPUE over grid cells for January. Actual values for 2015 are the baseline for
Jan. 2016 (left). Actual values for Jan. 2016 (middle) are used in the evaluation of
values predicted by our model for Jan. 2016 (right).
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Results and Discussion. The RAE values in Table 1 are less than 1 for every
period, indicating that the RF model consistently performs better than the base-
line. RAE on the last row for both models show a 13% improvement compared
to baseline for the average results over all months. This naive model performance
is largely due to the limited temporal extent of the data as described below, and
also because the model is unaware of the spatial and temporal autocorrelation
in the data. Incorporating the autocorrelations into the model is a subject for
future work.

Table 1. Model evaluation metrics for monthly CPUE

Month MAE CPUE mean nMAE RAE

(2016) RF baseline (actual) RF baseline

Uniform catch 1 2065.28 2473.68 2423.60 0.85 1.02 0.83

distribution 2 1758.83 2473.26 1728.77 1.02 1.43 0.71

3 812.98 881.96 983.87 0.83 0.90 0.92

4 622.05 663.76 732.72 0.85 0.91 0.94

5 862.11 948.41 936.90 0.92 1.01 0.91

6 675.91 886.13 815.72 0.83 1.09 0.76

7 2333.37 2377.42 2419.54 0.96 0.98 0.98

8† na na na na na na

9 3078.92 3168.13 3379.25 0.91 0.94 0.97

10 1430.51 1705.33 1733.98 0.82 0.98 0.84

11 2101.59 2295.61 2372.60 0.89 0.97 0.92

12 1113.45 1213.80 1237.16 0.90 0.98 0.92

All 1490.18 1707.45 1658.45 0.90 1.03 0.87

Weighted catch 1 1947.78 2188.87 2193.30 0.89 1.00 0.89

distribution 2 1474.28 1963.45 1593.04 0.93 1.23 0.75

3 658.65 740.02 782.88 0.84 0.95 0.89

4 441.24 486.75 529.31 0.83 0.92 0.91

5 580.32 643.32 641.55 0.90 1.00 0.90

6 436.84 637.21 542.09 0.81 1.18 0.69

7 1474.76 1491.21 1523.94 0.97 0.98 0.99

8† na na na na na na

9 2239.63 2336.55 2461.78 0.91 0.95 0.96

10 1124.27 1242.47 1312.44 0.86 0.95 0.90

11 1297.63 1660.43 1526.47 0.85 1.09 0.78

12 778.46 876.93 868.05 0.90 1.01 0.89

All 1116.69 1290.72 1254.27 0.89 1.03 0.87

† No data available due to the fishing ban.
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Figure 3 shows the baseline, actual, and predicted monthly CPUE for Jan-
uary. Presence of a grid cell on the map indicates that fishing activity occurred
at least once during the whole month, and vice versa. Comparing the actual
data for 2015 and 2016 in the figure, it is obvious that the fished area in January
of 2016 is much larger than 2015. Since the model only uses the 2015 data for
making predictions for 2016, it has no information about the areas that were
not fished in that period of 2015. This presents a limitation which is imposed on
the model due to the temporal restriction of the data. In other words, the model
performance can be improved by having data for a longer period of time.

5 Conclusion and Future Work

In this paper, we explored a spatio-temporal dataset resulting from the fusion of
the trajectories of the fishing vessels of the Northern Adriatic sea for 2015 and
2016, the landing report of the primary fish market of the area, and relevant envi-
ronmental data. The landing reports represent quite a unique semantic feature
to be associated with the fishing trajectory. Also, the utilization of environ-
mental attributes influencing the species distribution (sea surface temperature,
chlorophyll-a) and the fishermen behaviors (wave heights), represent an addi-
tional key element. Moreover, the utilization of the sea surface temperature can
be helpful to evaluate the effect of climate changes on the fishing activities, a
current and heavy issue needed to be addressed.

We applied to the dataset the Random Forest Machine Learning method,
with the goal of predicting the CPUE indicator that could be helpful to
improve the fisheries management plans for sustainable exploitation of the fishing
resources. The forecast results—surpassing the baseline prediction by approxi-
mately 13%—indicate the value of the use of Machine Learning for this task,
while clearly leaving a lot of room for improvement. Firstly, the task itself is
difficult, and clearly a number of variables not currently captured—both envi-
ronmental and latent (e.g., economic) factors, as well as fishermen behavior—
influence the capabilities of the prediction model. On the one hand, this is due
to the short temporal horizon of the landing and AIS data: two years, one for
training and the other one for testing, are not sufficient. We expect that with
access to 2017 data, the results will improve. On the other hand, other prediction
techniques, such as the use of lag variables [21], or an alternative approach using
modern time series prediction, should be exploited as we continue the project.

In data modeling, more sophisticated methods of catch distribution into grid
cells, such as habitat selection [3], need to be looked at. A combination of both
data modeling and machine learning extensions to this early research could also
help to overcome the difficulties deriving from the short time period.
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Abstract. Taxi is a convenient means of transportation worldwide.
Accurately predicting the taxi-demand is crucial for taxi-companies to
effectively allocate their fleet to taxi-stands and reduce the waiting time
for passengers thus increasing their overall satisfaction and customer
retention. Nowadays precise information about taxi-rides is available and
can be used to infer the taxi-passenger demand across different locations
and time-points. In this paper, we propose an approach for predicting the
pick-demand of a given taxi-stand, that takes into account not only the
demand-history of the particular stand but it also considers information
from neighboring stands. Our model is an LSTM neural network aug-
mented with information from the spatial neighborhood of the stands.
Experiments with two versions of the taxi demand dataset from the city
of Porto, Portugal show that our approach can provide better predictions
comparing to approaches that do not exploit the neighborhood.

Keywords: Taxi-passenger demand · Time series prediction · LSTM ·
k-nearest neighbors · Deep learning · Neural networks

1 Introduction

Advances in sensor and wireless communication contribute to the development of
intelligent transportation systems, which lead to the transformation of transporta-
tion domain. Taxi networks are the important means of transportation providing
the convenient and direct services for passengers. Currently, many taxi vehicles
are equipped with Global Positioning System (GPS) and wireless communication
features that can generate a new source of rich spatial temporal information.

Intelligent online systems that plays a crucial role for real time taxi ser-
vices scheduling, taxi sharing, fuel-saving routing, time-saving route finding are
already developed to improve taxi service reliability [19]. Improving levels of pas-
senger satisfaction and maximal profit for taxi providers are the main targets
of taxi companies. Balancing the relationship between the passenger demand
and the number of running taxi vehicles is the most efficient way to maximize
the profit for taxi providers [19]. Knowledge on time and places that is emerged
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the passenger demand can be an advantage for drivers even when there is no
economic availability. The information regarding passenger demand is very use-
ful for drivers in making decision moving to pick up passengers in a particular
region in the city. GPS historical data are the main variable used in prediction
models because it can reveal hidden mobility patterns.

Many researchers were attracted by the mobility data and proposed differ-
ent approaches for taxi-passenger demand prediction. Among the investigated
models are linear regression, ARIMA, feed-forward neural networks and more
recently, deep neural networks. Most of these approaches focus exclusively on the
information of the stand to predict passenger demand in the future. In this paper,
we also exploit information from neighboring stands in an attempt to enrich the
information provided to the model, in our case an LSTM neural network. Data
augmentation [26] is a popular technique especially for data-insensive models
like Deep Neural Networks (DNNs); for example, the improved performance on
ImageNet [3] was also attributed to image augmentation using different domain-
specific augmentation techniques like image reflection, translation, cropping and
changing the color palette. Unnikrishnan et al. [25] introduce an entity-centric
stream classification approach that exploits the observation history of the par-
ticular entity and of entities similar to it. Similar entities are defined on the basis
of static entity characteristics like gender and birthdate in case of patient data
or product properties in case of product reviews. Our neighborhood-selection
idea is similar as we also rely on the spatial neighborhood of the taxi stands
rather than their demand histories. As our experiments with data from the taxi
network in the city of Porto, Portugal spanning a period of one year show, such
an augmentation is beneficial for the predictive performance of the model.

The rest of the paper is organized as follows: Sect. 2 overviews the related
work. Our neighborhood-augmented LSTM approach is presented in Sect. 3. A
detailed experimental evaluation is provided in Sect. 4. Finally, conclusions and
outlook are summarized in Sect. 5.

2 Related Work
There is a large body of work on traffic-related data, from trajectory querying, to
hotspot detection, clustering, trajectory prediction [1] etc. Hereafter, we focus
mainly on existing works using taxi-data and related mainly to our demand
prediction problem.

A taxi-sharing framework is proposed in [7] that returns the top-k taxi rec-
ommendations for a passenger request. They select the top–k candidate taxis
for a specific location by considering its neighbors on the traffic network. For
their experiments, they have used the New York city taxi dataset. Luca et al.
[6] proposes a method to find the Nash equilibrium in a taxi sharing fare in case
there are many passengers sharing one taxi in order to save money. For their
experiments, they also use the New York city dataset.

The problem of taxi-passenger demand prediction has attracted the atten-
tion of many researchers recently and as result, several approaches have been
proposed. Most of these approaches rely on well-known prediction models from
the time-series forecasting domain [15]. Kaltenbrunner et al. [11] introduced an
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auto-regressive moving average (ARMA) model approach to forecast the num-
ber of bicycles at a station from Barcelona’s bicycle network in order to increase
the stations spatial deployment. Min and Wynter [17] applied another popu-
lar time-series prediction model, ARIMA (Auto-Regressive Integrated Moving
Average) to predict the speed and volume of traffic in a road network. Luis
et al. [18,19] introduce an ensemble of experts to predict taxi demand, where
each expert is specialized to a particular trend. In particular, their ensemble
consists of a Time-Varying Poisson model, a Weighted Time-Varying Poisson
model and a ARIMA model. The experiments were conducted on the Porto taxi
dataset. Su et al. [27] predicts taxi-passenger demand in urban areas in Hong
Kong using multiple features such as the number of vacant taxi on the roads, the
waiting time, passenger demand, taxi fare as the input for a feed-forward neural
network. Recently, TONG, Yongxin et al. [24] presented a multi-dimensional lin-
ear regression model to predict the taxi demand in Beijing and Hangzhou, China.
Their multi-dimensional representation consists of temporal features, spatial fea-
tures, meteorological features, and the combination of these features. Yao et al.
[28] proposed a deep learning framework to model both spatial and temporal
relations by using two neural network model CNN and LSTM to predict taxi
demand in Guangzhou, China.

Contrary to most of the existing works that rely exclusively on taxi-stand’s
own demand history we enrich the data representation of each stand using infor-
mation from neighboring stands. Our intuition is that the demand of a taxi-stand
might be indicative of the demand of some nearby stand as well. Such an aug-
mentation is especially beneficial for data intensive models, our base model is an
LSTM deep neural network model, in order to reduce over-fitting and eventually,
generalization performance.

3 Neighborhood-Augmented Taxi Demand Prediction

3.1 Problem Definition

Let S = {s1, s2, .., sN} be the set of predefined N taxi-stands in a city. Consider
Xs = {Xs,0,Xs,1, ..,Xs,t} to be a discrete time series (based on an aggregation
period of P -minutes) that models the taxi-demand for stand s, that is, the
number of pick-ups for each aggregation period P at s. We refer to this time
series as the demand history of stand s. Our goal is to build a model which
predicts the demand Xs,t+1 for the next time point t + 1 at taxi-stand s.

Traditional approaches rely solely on the demand history of the stand Xs for
the prediction (we use suchmethods as baselines for our comparison, c.f., Sect. 4.3).
In this work we propose to augment the stand’s demand history Xs with informa-
tion from its neighborhood. The intuition behind this augmentation process is that
nearby taxi-standsmight display similar demands.Our dataset seems to justify our
intuition: In Fig. 1 we show the spatial proximity of the different taxi-stands (left)
vs their demand proximity (right). The demand proximity is evaluated using Pear-
son correlation and for efficiency reasons, only part of the history demand. Due to
space, we show here only the information for the first 20 taxi-stands (IDs 1–20),
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As we can see, when the pairwise spatial distances are high, an opposite trend is
observed in the demand history correlation values. This can be observed for a vari-
ety of taxi-stands, for example, 4, 5 and 8.

Fig. 1. Spatial proximity (left) vs pickup demand correlation (right) between taxi-
stands (based on dataset D1).

Based on this motivation, we present hereafter the neighborhood-augmented
LSTM model for predicting taxi-passenger demand of a taxi-stand.

3.2 Neighborhood-Augmented LSTM Model

Our model is an extension of the well known Long Short-Term Memory (LSTM)
networks [8], a special kind of a recurrent neural network (RNN). A common
LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The cell remembers values over arbitrary time intervals and the three
gates regulate the flow of information into and out of the cell. There are several
architectures of LSTM units. An LSTM cell takes an input and stores it for some
period of time. Because the derivative of the identity function is constant, when
an LSTM network is trained with back propagation through time, the gradient
does not vanish. The activation function of the LSTM gates is often the logistic
function. Intuitively, the input gate controls the extent to which a new value
flows into the cell, the forget gate controls the extent to which a value remains
in the cell and the output gate controls the extent to which the value in the cell is
used to compute the output activation of the LSTM unit. There are connections
into and out of the LSTM gates, a few of which are recurrent. The weights of
these connections, which need to be learned during training, determine how the
gates operate.

In our approach, we train an LSTM model for each taxi-stand s using not
only its primary demand history Xs but also demand history information from
its k-nearest neighbors. That is, the input to the LSTM is a (k + 1) dimensional
vector, X ′

s. The actual demand values (ground truth) comes from taxi-stand s
and therefore the goal is to fit the neighborhood-augmented LSTM model for
predicting the demand values of taxi-stand s.
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input : Taxi demand dataset; k-number of neighbors
output: Prediction model Ms for taxi-stand s

1 //Data augmentation
2 Xs: the demand history of taxi-stand s up to time t
3 X ′

s ← Xs //extended representation
4 {Neighborss}: the set of k nearest taxi-stands to s
5 for i ← 1 to |{Neighborss}| do
6 Xi: the demand history of taxi-stand i
7 X ′

s ← Extend(X ′
s, Xi)

8 end
9 Normalize features

10 //Train on the augmented data
11 Ms ← LSTM(X ′

s)
Algorithm 1: Neighborhood-augmented LSTM model training

The pseudo code of the algorithm is shown in Algorithm 1. Each taxi -stand
has it own LSTM model for training.

In the above algorithm, the normalization step aims to normalize all features
in the [0–1] range. This is an important step for LSTM convergence [13]. In
particular, we use min-max normalization.

The structure of our LSTM network is shown in Fig. 2 and explained here-
after. In this model, time series of stand X with its k − neighbors are used as
the input of the first LSTM layer, followed by a hidden layer before a dropout
unit. Predicted time series Y is the result of our model. The tuning of the
hyper-parameters is discussed in detail in Sect. 4.4 but the selected values are
mentioned here as well:

1. Input (X ′
s, the extended description of stand s; look back value = 5 (see

Sect. 4.4.))
2. LSTM (N=200, optimizer = ‘Adamax’, Activation function = ‘tanh’, loss=

‘mean squared error’, batch size = 100 (see Sect. 4.4.))
3. Full connected LSTM (N=200, Activation function =‘tanh’)
4. Dropout = 0.7 (see Sect. 4.4.)
5. Dense (Activation function = ‘tanh’)

Fig. 2. The architecture of the neighborhood-augmented LSTM.
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4 Experimental Evaluation

We evaluate our approach on the publicly available dataset on taxi-demand from
Porto, Portugal (Sect. 4.1). The experimental setup and evaluation criteria are
discussed in Sect. 4.2. The goal of our experiments is to evaluate the impact of the
neighborhood-based augmentation on prediction quality (Sect. 4.5) as well as to
study how the “quality” of the neighborhood as evaluated by the average distance
of neighboring stands from the reference stand affects the predictions (Sect. 4.6).

Our LSTM approach was implemented using Keras and Tensorflow, whereas
for the other approaches we use the available implementations in Python.1.

4.1 Dataset

We use the dataset from [19] that contains information on taxi trips organized by
a taxi company in the city of Porto in Portugal and was part of the ECML 2015
challenge2. The dataset spans over a period of one year (from July 2013 to June
2014) and contains 1.710.670 records. Each record corresponds to a completed
taxi trip, described in terms of 9 features: (1) TRIP ID: a unique identifier for
each trip; (2) CALL TYPE: the way to use the taxi service and contain one of
three possible values: A (the trip is assigned from the call central), B (the trip
is departed from a specific stand) or C (passengers are pickup from a random
street); (3) ORIGIN CALL; (4) ORIGIN STAND: a unique identifier for the
taxi-stand; (5) TAXI ID; (6) TIMESTAMP: Unix Timestamp (in seconds); (7)
DAYTYPE: the daytype of the trip’s start (holiday or any other special day);
(8) MISSING DATA; (9) POLYLINE: the trajectory of trip. In addition, the
dataset also provides the information of all 63 taxi-stands with their name and
GPS coordinates.

Figure 3 depicts the spatial distribution of the taxi-stands in Porto, each
stand is assigned a unique ID from 1 to 63. As one can see, the stands are not
randomly distributed rather their spatial density reflects the demand with most
stands located close to the city center. Moreover, we can see that despite the
aforementioned mandatory regulation there are trips that do not start at the
location of the taxi-stand. The intensity of the color in Fig. 3 shows the density
of the starting points; in many cases taxi-stands have the highest local density
but not all trips start at some taxi-stand.

We preprocess the data as follows: Firstly, we sort all records by timestamp
in ascending order. We remove features MISSING DATA and POLYLINE and
we add two new features: LATITUDE and LONGITUDE extracted from the
POLYLINE attribute and describing the coordinates of the starting trip location.
After, we remove instances that have no both taxi-stand ID starting location.
This results in a clean dataset of 1.706.572 completed taxi trips. Contrary to
previous work [18,19], we create two versions of the dataset for the experiments.

1 The code is available at: https://github.com/quytai3985/PortoTaxiPrediction.
2 https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data.

https://github.com/quytai3985/PortoTaxiPrediction
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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Fig. 3. Spatial distribution of the taxi-stands. Numbers 1–63 indicate the IDs of the
stands.

The first dataset (D1) has only the taxi trips with CALL TYPE equal to ‘B’, i.e.,
all trips that are departing from some taxi-stand. This dataset contains 817.861
instances and can be used for building a prediction model that can forecast the
short term demand for specific taxi-stands.

However, as already mentioned not all trips start from a taxi-stand (i.e.,
the initial location does not match the location of some taxi-stand). Due to
the amount of these trips (888.711 trips, 52.07% of the overall dataset), this
information cannot be easily omitted, rather these trips might play an important
role for the predictions and one needs to consider them for the forecasting.
Therefore, in the second version (D2), we use all records of the clean dataset. For
the trips that do not start from a taxi-stand (i.e., those with a CALL TYPE
equal to ‘A’ or ‘C’), we assign them to their closest taxi-stand based on distance
between the starting location of the trip and the location of the taxi-stand.
Intuitively, we consider the taxi-stand as covering some region in the city with
the its coordination being the center of this region.

The distribution of the trips on the different taxi-stands for the (D1), (D2)
datasets is shown in Figs. 4 and 5, respectively. For each dataset, we also display
the mean and median demand values. It is easy to observe that there are a large
number of taxi demand in several stands. For example, the most popular stand is
stand 15, which corresponds to the main train station. The top 10 most crowded
stands in D1 account for approximately 46.5% of the total 817.861 passenger
demand. In dataset D2, that proportion is around 36.3% of 1.7M pickups. A
closer look at the top 10 stands via Google Maps reveals that they are all close
to the main train station and the city center with many historical sites, shops
and hotels.
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Fig. 4. Pickup distribution per taxi-stand on D1.

Fig. 5. Pickup distribution per taxi-stand on D2.

4.2 Experimental Setup and Evaluation Measures

We set the aggregation period at 30 min based on the average waiting time at
a taxi-stand as in [19]. We generate the demand history at each taxi-stand by
aggregating the number of pick ups every 30 min.

Demand history examples are presented in Fig. 6 for taxi-stands 1 and its
spatial neighbor - taxi-stand 49 during one week (from 01 Jul 2013 to 07 Jun
2013). Similarly, Fig. 7 describes the demand history of taxi-stand 15 and its
spatial neighbor, taxi-stand 61. In both figures, we use D1 as the data source. As
we can see, the pickup demand series are different and depended on the location
of the taxi-stand. For example, taxi-stand 1 is located far from the city center
(around 5 km) whereas taxi-stand 15 is close to the main train station. As a
result, the demand on stand 15 is much higher with over 83.000 yearly pickups
whereas the demand for taxi-stand 1 is only 4.500. Similarly, the taxi demand
on stand 61 (close to stand 15) is around 17.000 pickups whereas the demand for
taxi-stand 49 (close to stand 1) is only 8.000. Except for the differences in the
amplitude of the demand, we can also see differences w.r.t. the temporality of the
demand. For example, both stands 15 and 61 have around-the-clock demand, but
this is not the case for stands 1 and 49. This behavior comprises our motivation
behind the proposed neighborhood-augmented demand prediction model.

In time series prediction, the measurement symmetric Mean Absolute Per-
centage Error (sMAPE) [16] is more meaningful than other measurement, such
as MSE, RMSE. One reason is the proportion values are more comprehensive
than squared errors [21]. As a consequence, in our experiment, we evaluate the
prediction quality of the models for each taxi-stand by comparing the forecast
values with the original ones using sMAPE. However, we still report our results
on MSE measurement as a reference one. In particular, let the true demand
for a taxi-stand s be: Xs = {Xs,0,Xs,1, ..,Xs,t} and the predicted demand:
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Fig. 6. Pickup demand history for nearby taxi-stands 1 and 49.

X̂s = {X̂s,0, X̂s,1, .., X̂s,t}. Then sMAPEs is given by:

sMAPEs =
100%

t

t∑

i=1

| Xs,i − X̂s,i |
(Xs,i + X̂s,i)/2

(1)

In Eq. 1, sMAPE values fluctuate between −200% and 200% [16]. Flores [5]
claims that a percentage error between 0% and 100% is much easier to interpret,
therefore we omit factor 2 in the denominator. Furthermore, due to possible
prediction of negative demand values, we use absolute values in the denominator
of Eq. 1. Additionally, Eq. 1 can result in a high error if the real demand is 0
and the predicted one is non-zero; in such a case, the error would be 100%. To
deal with this issue, we use Laplace correction [10] by adding a constant c to the
denominator. Finally, the modified sMAPEs that is used for our evaluation is
given by:

sMAPEs =
100%

t

t∑

i=1

| Xs,i − X̂s,i |
| Xs,i | + | X̂s,i | + c

(2)

The constant c is user-defined. In our experiments, we use the corrected sMAPE
version (Eq. 2) with c = 1. The aforementioned formulas refer to the error at
each stand, we aggregate the error over all taxi-stands as follows:

sMAPE =
∑N

i=1 sMAPEi

N
(3)

where N is the number of taxi-stands.

4.3 Baselines and Method Parameter Settings

We compare our approach against well-known prediction methods, described
hereafter together with their parameter tuning.
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Fig. 7. Pickup demand history for nearby taxi-stands 15 and 61.

Simple Moving Average: A simple moving average (SMA) [9] is an arithmetic
moving average calculated by averaging the observed values of a time series in
the calculation period. Given a calculation period of q timepoints, the prediction
Xs,t+1 for the next time point t + 1 is given by:

Xs,t+1 =
1

q + 1

q∑

j=0

Xs,t−j (4)

The number of periods q should be set; when q = 0 this is simply the value
of the last observation. For our experiments, we choose q = 20 using grid search.
We set the range of q from 2 to 24 (equals to 1–12 h) with step 1. The selection of
q was based on taxi-stand 1 and dataset D1. Taxi-stand 1 is chosen as the repre-
sentative stand for tuning as its location is far from the places that concentrate
a huge amount of vehicles, such as the main station or city center. Moreover, in
our experiments the performance of the different models on this taxi-stand was
close to the average values.

Linear Regression: In a linear regression model [22] the future value of a
variable is assumed to be a linear function of its past q values, where q defines
the amount of past values contributing to the computation.

Xs,t+1 = β0 + β1Xs,t−1 + β2Xs,t−2 + .. + βqXs,t−q (5)

For our experiments, we choose q = 15 using grid search, similarly to param-
eter selection for SMA. We apply q = 15 for all 63 different models/taxi-stands.
However, the parameter β0 is adapted to each taxi-stand using grid search with
β0 in the range 10−16 to 106 and step 100.

Random Forest Regression: Random forest [14] is an ensemble technique
averaging the forecasting of a large number of decorrelated decision trees. Ran-
dom forests are built on two main ideas - bagging to build each tree on a different
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bootstrap sample of the training data, and random feature selection to decorre-
late the trees. During the forecasting for time point t+1, each tree Bj (j = 1..m)
provides a prediction Xs,t+1,j . The final prediction of the random forest is the
majority vote of the m trees.

For the experiments, we set the number of trees m per taxi-stand using grid
search in the range 10 − 800 and step 40.

XGBoost Regression: XGBoost [2] is an implementation of gradient boosting
decision trees designed for efficiency. For the experiment, we use grid search to
select the number of trees of the ensemble (in the range 40 to 600 trees with
step 40) as well as the maximum tree depth (in the range 1 to 4 with step 1).
Parameter selection is done per taxi-stand.

4.4 LSTM Parameter Settings

The number of neighbors k is selected by grid search based on the representative
taxi-stand 1; the result is a value of k = 15. A similar process is followed for the
rest of the parameters, i.e., they were set using grid search over the data from the
representative stand 1. In particular, the look back value parameter is select from a
range of 2 to 24 (corresponding to 1 to 12 h in the history) with step 1. The best look
back value = 5 is chosen as it raises best value of sMAPE. AdamMax and tanh
are selected for the gradient descent optimization algorithm and activation func-
tion, respectively as they cause the best sMAPE values compared to other func-
tions. Additionally, a list of possible candidates (10, 15,20,25,50,100,200,500 1000)
is investigated to find the optimal epoch and batch size number. The best results
were obtained with epoch=25 and batch size = 100. Furthermore, the range from
10 to 300 with step 10 and the range from 1 to 4 with step 1 were explored to find
the best number neurons per layer and the number of hidden layers, respectively.
According to the results, we construct our model with 1 hidden layer and N = 200
neurons. Besides, to prevent our LSTM model from overfitting we use the dropout
technique that randomly drop units (along with their connections) from the neural
network during training in order to avoid co-adapting too much [23]. The dropout
rate was set to 0.7, base on our experiments with a range of dropout values fro 0.1
to 0.9 with step 0.1.

4.5 Taxi-Demand Prediction Quality Results

Table 1 summarizes the prediction quality of the different models for dataset D1,
containing trips starting from an actual taxi-stand. In this table, neighborhood-
augmented LSTM is experimented with k = 15. Table 2 summarizes the results
for dataset D2., containing all trips from the cleaned dataset and after mapping
the trips that do not start from a stand to their closest stand. k = 25 is the
number of neighbors used in Neighborhood-augmented LSTM architecture.

As we can see, our approach, Neighborhood-augmented LSTM, results in
the smallest sMAPE errors, followed by vanilla LSTM. Moreover, the LSTM
models outperform traditional prediction models with linear regression models
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Table 1. Prediction quality of the different models on D1.

Model Training Testing

sMAPE (%) MSE sMAPE (%) MSE

Simple moving average 23.34 1.721

Linear regression 24.37 1.61 24.52 1.765

Random forest regression 16.83 0.383 24.25 1.660

XGBoost regression 23.90 1.391 23.91 1.585

LSTM 18.37 1.659 18.54 1.839

Neighborhood-augmented LSTM 17.32 1.465 17.63 1.682

Table 2. Prediction quality of the different models on D2

Model Training Testing

sMAPE (%) MSE sMAPE (%) MSE

Simple Moving Average 30.33 5.369

Linear Regression 30.78 4.206 31.23 5.988

Random Forest Regression 18.49 0.715 31.03 5.503

XGBoost Regression 30.466 3.605 30.51 5.449

LSTM 27.03 4.16 27.22 6.660

Neighborhood-augmented LSTM 25.88 3.84 26.07 6.444

performing worse in both datasets. The improvement rates are higher for dataset
D1 comparing to dataset D2. A possible reason is the assignment of the trips to
their closest taxi-stands, a process that might have introduced errors. We plan to
investigate alternative assignments in our future work, for example some weight
decay approach based on the distance of the pick-up from its closest taxi-stand
or soft assignments to multiply nearby taxi-stands.

A closer look at the performance of our approach vs the original demand
for the different taxi-stands is presented in Figs. 8 and 9 for datasets D1, D2,
respectively. As we can see, two different patterns of performance are shown.
In dataset D1, the performance of the model has large variation, probably due
to the large deviation of pickups among taxi-stand. The picture is different in
dataset D2, where the actual number of pickups appears more balanced across
the taxi-stands.

The variation in the performance of the different prediction models over the
different taxi-stands is demonstrated more clearly in Fig. 10, where each boxplot
corresponds to one prediction method and summarizes the sMAPE error over
all stands. As we can see, there is large variation in D1 for all methods. More-
over, traditional approaches like MSA, LR, RF and XGBoost display skewed
performance whereas the LSTM approaches are symmetric so the error over
the different stands follows a normal distribution. Interestingly, and despite the
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lower performance of the methods on dataset D2 comparing to D1, the spread
of the error across the taxi-stands is very small for all methods, although there
exist outliers. In case of LSTM-based models, most of the outliers correpond to
stands with better predictions (lower sMAPE). Another interesting observation
is that the model performs best when the number of pickups is close to average
demand. As an extreme case, the most popular stand, stand 15 corresponding
to the main train station, has the highest error on both datasets D1 and D2. A
possible explanation is that such a stand is very difficult to model with a single
model and one might need to consider different models for different contexts
(e.g. season based, weekdays vs weekends etc). We leave this as our future work.

Fig. 8. Real demand vs neighborhood-augmented LSTM error across different taxi-
stands for dataset D1.

Fig. 9. Real demand vs neighborhood-augmented LSTM error across different taxi-
stands for dataset D2.

4.6 Impact of Neighborhood

Our augmentation approach is based on the number of neighbors k parameter.
We evaluate the impact of k on the predictive performance within a range of
k from 1 to 61 and step 4. The results for both datasets D1 and D2 are shown
in Figs. 11 and 12, respectively. The effect of k is more pronounced when testing
with dataset D1. On dataset D1, when k is greater than 15 or the average distance
from a specific taxi-stand to its neighbors is farther than 1 km, the performance
of LSTM has a light fluctuation. While these values in dataset D2 are 25 and
approximately 1.7 km, respectively. This shows that the proximity taxi-stands
have a great influence on the prediction ability of the model. This is understand-
able because passengers in remote locations will be difficult to access the current
pick-up stand for a short time.
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Fig. 10. Comparing error distributions for different prediction methods for dataset D1

(left) and D2 (right).

Fig. 11. Evaluating the impact of neighborhood on the predictive performance of
neighborhood-augmented LSTM model on: D1

Fig. 12. Evaluating the impact of neighborhood on the predictive performance of
neighborhood-augmented LSTM model on: D2

5 Conclusions and Outlook

In this paper we propose a neighborhood-augmented LSTM model for predict-
ing the pick-demand of a given taxi-stand. Our experiments show that such an
augmentation benefits the predictive performance of the model comparing to an
LSTM approach that exploits strictly the demand history of the taxi-stand as
well as to traditional prediction methods like SMA and regression.

There are several extension possibilities. In this work, we have considered
a global neighborhood threshold k for all taxi-stands. However a more careful
selection of the neighborhood and eventually a stand-tuned k would be more
appropriate in order to account for different demand densities and taxi-stand
densities in the city. Such a tuning could also take into account the data sparsity
in the taxi-stand and grow the neighborhood progressively in order to cope with
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the high demand of data-intensive models like LSTM neural networks and their
potential overtfitting. Another direction is to extend our approach by includ-
ing other sources of information regarding the mobility demand in a city, for
example, points of interest, event mentions from social networks [4], traffic pat-
terns [20] as well as weather conditions [12].

Acknowledgement. The work was inspired by the German Research Foundation
(DFG) project OS-CAR (Opinion Stream Classification with Ensembles and Active
leaRners) for which the last two authors are Principal Investigators.
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Abstract. Current location-aware systems rely increasingly on location
prediction techniques in order to provide their services in a timely fash-
ion. At the same time, it has been shown that the use of additional
context information, that is, elevating the degree of semantic enrichment
of movement data, can lead to significant better results both in analyzing
as well as in modeling human trajectories and predicting upon them. In
this work, we propose a Multi-Channel Convolutional Neural Network
(CNN) based approach for capturing all the available context dimen-
sions in our semantic trajectory dataset aiming at achieving a higher
prediction accuracy compared to a vanilla locations-only Single-Channel
CNN. Moreover, we investigate whether and to what degree time, activ-
ity, companionship and the user’s emotional state have an impact on
the predictive performance of our multi-dimensional CNN. We evaluate
our model using a real-world dataset and compare it among others to
a probabilistic Markov Chain model and a vanilla CNN at two seman-
tic representation levels. It can be shown that especially for higher level
representations, the present approach is able to outperform the baseline
models achieving an overall higher accuracy and F1-Score.

Keywords: Semantic locations and trajectories · Location prediction ·
Purpose of visit · Human activities · Emotional states · Context
awareness · Multi-channel convolutional neural networks

1 Introduction

The market of context-aware, and especially, location-aware computing and ser-
vices (see Location-Based Services (LBS)) has gained enormously in importance
over the past few decades. In their attempt to provide timely solutions to their
users, LBS providers rely more and more on location prediction methods, a
fact that additionally strengthened the demand for accurate location prediction
algorithms.
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Typical location prediction models are usually merely data driven and depend
therefore heavily on the size and the quality of the available training datasets.
However, recent research has shown that the use of additional semantic informa-
tion can help overcome, at least to some extent, the aforementioned dependencies
and can therefore lead to an overall better predictive performance (see Sect. 2).
That is, in the case of modeling and learning human movement patterns, mod-
els are usually fed and trained with the users’ plain GPS location trajectories.
Further context information, such as the location type and the user’s activity,
may be however used to enrich these semantically and generate so-called seman-
tic trajectories (see Sect. 3). This type of extensive input helps the model dive
even deeper into the users’s movement behaviour and can lead to more accurate
predictions.

Common approaches used to model and predict human movement include
probabilistic methods, such as Markov Chains [?] [9], Dynamic Bayes Networks
[8], Hidden Markov Models [26,31] and Artificial Neural Networks (ANNs). In
the latter case, recurrent neural network architectures (RNNs) have generally
proved to perform above the average when it comes to learning sequences and
for this reason these are commonly found in the location prediction domain as
well. Especially memory-based neural network types, like the Long Short-Term
Memory network (LSTM), are capable of achieving high prediction rates and
tend to outperform the competition [16,28].

While recurrent network types are the preferred choice when it comes to
modeling 1-dim movement patterns, recent work shows some promising results
on the part of Convolutional Neural Networks (CNNs) [17,25], a model normally
used in the 2-dim image classification and object recognition domain. It seems
that the locally focused nature of the kernel-based convolution process enables
the CNN model to successfully capture existing dependencies between current
and future locations found in the data. The presented study builds upon this
work and aims at investigating the use of a multi-channel CNN based approach
with regard to modeling multi-dimensional semantically enriched location data
and predicting the next semantic location of the user. In particular, our seman-
tic trajectories consist of the following feature dimensions: semantic location
type, time, human activity, emotional state and companionship. Moreover, this
work further explores the impact of the degree of semantic enrichment, that is,
whether and to what extent each of the aforementioned dimensions influences
the predictive performance of our model. We evaluated our approach using a
real-world dataset, which we collected from 21 users by conducting a 2-months
long user study. In addition, we selected a 1. Order Markov Chain model and a
vanilla CNN to be our baseline.

This paper is structured as follows. Section 2 provides a short overview over
some of the most related work in the semantic trajectories and location prediction
domain. Next, Sect. 3 describes the notion of semantic trajectories and semantic
locations with respect to this work. Section 4 goes briefly through the theory
behind Convolutional Neural Networks and discusses in detail the proposed
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approach, while Sect. 5 provides the respective evaluation outcomes. Finally,
Sect. 6 summarizes the evaluation results and draws some final conclusions.

2 Related Work

There exist many different ways of viewing movement data. Within the scope of
mining and analyzing movement patterns, Spaccapietra et al. introduced with
[29] one of the first works that make the importance of viewing trajectories of
moving objects in a conceptual manner clear. In their work, they highlighted
the fact that describing certain aspects of the movement’s context by adding
semantic information into the available trajectories can significantly support the
analysis of the respective movement patterns, as well as the querying process
among them. Alvarez et al. came to the same conclusion as they suggested the
use of a similar semantic enrichment model to generate semantic trajectories
for the same reasons [1]. The added value of working on semantically enriched
trajectory data in comparison to working on raw data with regard to mining
patterns and supporting decision processes has been underpinned by Elragal
et al. as well [7]. Bogorny et al.’s work also focuses in mining trajectory patterns
and introduced in [2] a sophisticated model, which in contrast to former models is
capable of handling complex queries over semantic trajectories, while providing
different semantic granularities at the same time. Finally, Karatzoglou et al.
showed in [20] that considering multiple context dimensions results in generating
more accurate synthetic semantic trajectories.

Due to the aforementioned benefits that accrue from semantic enrichment,
a number of location prediction papers have recently emerged presenting algo-
rithms that rely on the notion of semantic trajectories. Ying et al. for instance
were one of the first to build upon semantic trajectories generated from the users’
raw GPS recordings in order to enhance their location prediction framework [32]
with promising results. Some years later, they extended their model by taking,
apart from geographic and semantic patterns, temporal patterns into account as
well [33].

Karatzoglou et al.’s work explores a big variety of models with respect to
modeling human semantic trajectories and predicting the user’s next semantic
location. In [12] and in [18] they evaluate a multi-dimensional Markov Chain
model with respect to predicting among activity-enriched semantic trajectories
and show that it is able to outperform Ying et al.’s framework in terms of
accuracy. With regard to recall however, they could identify certain limitations
on behalf of the model due to its adverse dependency on the small size and the
sparsity of the available training dataset. They attempt to solve this issue by
combining the probabilistic Markov Chain model with Matrix Factorization in
[11], where they were able to raise the recall scores.

In [13,16,17,19], Karatzoglou et al. investigate the performance of Artificial
Neural Networks using the probabilistic Markov model as baseline. In addition,
they explore the role of the semantic granularity of the considered trajectories in
the overall performance of the networks. They show that the higher the seman-
tic level is, the better the modeling quality of the networks. While the findings
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in [16] comply with the results of related work showing that Long Short-Term
Memory networks are generally able to outperform the vanilla Recurrent (RNN)
and the Feed-Forward model, [19] indicates no great advantages towards the
attention-based application of Sequence to Sequence learning (Seq2Seq) com-
pared to the standard single-input-single-output LSTM model of [16], a fact
that may primarily explained by the limited size of the training dataset. Yao
et al. propose in [30] a similar to [16] LSTM-based recurrent approach for pre-
dicting next semantic locations using an additional embedding input layer, the
benefits of which have been also recently shown by Gao et al. in [10]. Other than
in [16] and following a similar direction to the approach proposed in the present
paper, Yao et al. used beyond location and time the content of the checkins
of the users to enrich the users’ semantic trajectories, which describe in a way
their activity that we’re considering in this work as well (among other). How-
ever, in contrast to the Reality Mining dataset [6] used in Karatzoglou et al.’s
work, they evaluate their approach on rather long-term dependencies using a
Foursquare and a Twitter dataset. In [13], Karatzoglou et al. take a look at a
gradient-free optimization method for finding the optimal hyperparameter set of
a LSTM model based on an evolutionary algorithm. Their work provides some
first preliminary results indicating among others the temporal efficiency on part
of the genetic, population-based optimization method, provided the fact that
sufficient computational power is available.

The most striking findings come rather from [17], where a Convolutional
Neural Network based approach in combination with an embedding layer as its
input is capable of achieving higher prediction scores than the FFNN, the RNN
and the LSTM. To our knowledge this represents the only work that explores
the use of CNNs with respect to modeling and predicting upon 1-dim semantic
trajectories. The closest work to [17] would be the work of Lv et al. in [25],
which evaluates the use of a CNN for modeling and predicting large-scale taxi
trajectories. Other than in [17] and the present paper, Lv et al. work with raw
GPS data without using any semantic information and map past trajectory
data onto 2-dim images before feeding them into the CNN model, transforming
in this way the trajectory modelling task into an image classification task. In
the present paper, following the example of [17], we skip this kind of 1-dim to
2-dim intermediate transformation step and apply our CNN model on the 1-
dim semantic trajectory as it is. As in [17], we build our approach upon similar
CNN-based work on 1-dim data, work, that comes mostly from the Natural
Language Processing (NLP) domain, such as the framework described in [4] and
the multi-channel CNN model of [22].

3 Semantic Trajectories

The term trajectory refers to a sequence of consecutive location points traversed
by a moving object within a certain time interval. Equation 1 describes a typical
GPS trajectory with each location point being represented by a tuple containing
its coordinates (longi, lati) and the corresponding point of time ti at which this
was visited.
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TrajGPS = (long1, lat1, t1), (long2, lat2, t2), ..., (longi, lati, tI), (1)

As already mentioned in Sect. 2, in order to better understand the moving
behaviour of moving objects and create more accurate models, Spaccapietra
et al. [29] and Alvares et al. [1] went beyond this kind of numerical sequences
by adding a semantic view upon them and introduced the so-called semantic
trajectories. Starting initially with the simple notion of “stops” and “moves”, a
(human) semantic trajectory can nowadays be defined generally as a sequence
of semantically significant locations (semantic locations, e.g., “home”, “burger
joint”, etc.) as follows:

TrajSem = (SemLoc1, t1), (SemLoc2, t2), . . . , (SemLoci, ti) (2)

A significant location in this case is usually defined by a location within a
certain radius (e.g., 200 m) where a user stays longer than a pre-defined temporal
threshold, e.g. 20 min (see [?]). Some researchers add further thresholds, like the
loss of the GPS signal due to entering into a building, the GPS recording stop
[3] or the popularity, in order to extract the most significant common or public
locations [32]. In this work, we evaluate our method using a dataset in which
the users annotated their longest visits (>15 min) by themselves (see Sect. 5).

Depending on the number of the considered semantic features, a semantic
trajectory can have multiple dimensions. Thus, we could say that the number
of dimensions expresses the degree of semantic enrichment of the respective
semantic trajectory. In this work, we follow the concept of the Location-Specific
Cognitive Frames introduced by Karatzoglou et al. in [14,15] and we consider
each stop at a semantic location to be a tuple encapsulating the current loca-
tion type, the current time, the current activity, as well as the user’s current
emotional state and whether he is alone or not (companionship). Beyond that,
locations can be described differently depending on the semantic representation
level, e.g., “restaurant” → “fast food restaurant” → “burger joint”. In this work,
we evaluate the modeling performance of a CNN at two different semantic levels.
That is, we evaluate two different models, one that is trained for handling and
predicting low level trajectories and one for handling higher level ones.

4 Multi-channel Convolutional Neural Networks
on Semantic Trajectories

This section consists of two parts. The first part gives a brief insight into the
theory behind Convolutional Neural Networks and goes briefly through some of
the most common CNN steps and layers using the example of image classifica-
tion. Then, the second and last part describes in detail the architecture of the
multi-channel CNN model proposed in this paper for handling multi-dimensional
semantic trajectories.
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Convolutional Neural Networks (CNN) constitute the state of the art choice
in the image classification and object recognition domain [24]. However, this
doesn’t mean that it is the only domain in which we can apply them expecting
reasonable results as we saw in Sect. 2 and can also be seen in [23]. Figure 1
illustrates a typical CNN pipeline used for classifying images.

Fig. 1. Typical CNN architecture for the image classification task (source: [27]).

A typical CNN consists of many different layers starting usually with the
(first) convolutional layer. This layer is responsible for convolving the input
image and generating the so-called feature maps. This is done by sliding a group
of small-sized filters (also called kernels) with each containing a certain number
of learnable weights over the input image and performing element-wise multipli-
cation at each possible position. The generated feature map from each kernel is
a new layer and contains the findings of the particular kernel in the input image,
ideally with respect to a specific and distinguished single feature. The number
of kernels defines the number of the generated feature maps (so-called depth
of the convolutional layer) and represents a CNN hyperparameter which needs
to be selected appropriately based on the available data and task. In the next
step, this resulting group of layers undergoes a so-called pooling process. Pooling
refers to a downsampling operation, in which sets of elements in the feature maps
are combined and reduced to a single value based on some criterion (e.g., take
the maximum value: max pooling) or on some type of calculation (e.g., take the
average over all values: average pooling). The two aforementioned layers can be
repeated multiple times using different kernels of different size and depth. This
supports the successive extraction of higher level features and represents one of
the strengths of CNNs. Finally, the last pooled layer can be flattened into a single
vector containing all its weights and connected to a fully connected layer, which
is further connected to the output layer that contains a field for every possible
class and provides us with the classification estimation for the given input.

The multi-channel approach introduced in this paper builds upon the afore-
mentioned typical CNN architecture and extends it by adding a further embed-
ding layer into the model and by raising the number of channels matching
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Fig. 2. Multi-channel CNN for modeling multi-dimensional semantic trajectories.

the degree of semantic enrichment of our data (see Sect. 3). Figure 2 illustrates
the architecture of our approach. Our framework takes as input a part of a
semantic trajectory, which is in our case a sequence of tuples in the form of
(locationtype, purposeofvisit, time, emotionalstate, companionship) according
to a predefined temporal horizon tn that determines how far backwards in the
movement history of the user should the model consider for providing an esti-
mation about her next semantic location. In a first step, every single feature
type is encoded as a one-hot vector. The additional embedding layer between
the one-hot encoded input and the convolutional layer maps the sparse asym-
metrical one-hot encoded binary vectors into dense vector representations in a
continuous vector space. This fact contributes to a more efficient training and
helps improving the prediction accuracy while keeping the model consistent at
the same time. The number of dimensions of the vector space is selected based
on the properties of the available data, e.g., the number of unique classes of the
corresponding feature. In our case, each semantic feature is encoded separately,
and therefore the generated vectors may have different number of dimensions.

Raising the number of channels according to the semantic enrichment degree
of our trajectories represents an intuitive way of viewing upon them. Each chan-
nel handles solely the corresponding semantic dimension. For example the first
channel is responsible for the location type, the second channel for the purpose
of visiting that location (activity), the third one for covering temporal informa-
tion and so on. At the end, all channels are merged into a single representation,
flattened and forwarded to the output layer in order to provide a final prediction
about the next semantic location of the user. It should be noted here that the
kernels’ depth should match the channel dimension (5 in our case).
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Our CNN has one convolutional, one pooling, a flattening, a fully connected
and a Softmax output layer. A deeper architecture, that is, adding more layers
led in most of the cases to overfitting and reduced the overall performance of
our model due to the small size of our dataset compared to the higher param-
eter number. Other than the CNN model in Fig. 1, our model executes a 1-dim
convolution operation instead of the typical 2-dim operation conducted in the
image classification task. Each kernel convolves each semantic dimension in one
direction only, namely according the chronological order found in the input tuple
sequence which is fed into the model. Thus, the width of each kernel covers the
whole row of the CNN input matrices while its height can vary, constituting a
further hyperparameter of our model. A higher height indicates a kernel, able to
observe a higher number of consecutive locations at the same time, a fact that
can be useful when aiming at capturing long-term dependencies in our data, and
vice versa.

5 Evaluation

In this section, we evaluate a multi-user version of our approach, which is trained
on location data coming from multiple users. For this purpose, we first concate-
nated the trajectories of all users to a single trajectory, ordered by the user
ID. Then, we randomly split the resulting trajectory into a training and a test
dataset with a ratio of 80% to 20% while maintaining the user order at the same
time (i.e., without breaking a user’s trajectory into 2 parts). All in all, we ran-
domly split the data 3 times and the findings in this section refer to the average
over these 3 runs.

In order to evaluate our approach, we conducted a 8-week long user study
tracking 21 users via a tracking and annotation app. The participants of the
study were asked to semantically label each significant stop (location type) dur-
ing their movement, as well as to note the purpose of visiting the certain location
(e.g., activity), their companion (if any) and their emotional state by selecting
among the following states: happy, hungry, neutral, sleepy, energetic, frustrated,
stressed, bored, adventurous, ill, sad, angry and shocked. At the end of the
study we end up with approximately 1400 annotated locations covering around
70 unique location types, 53 unique activities, and all 13 emotional states. A
thorough description of the user study can be found in [21].

In order to take time into account, we defined 24×7 = 168 hourly slots, which
similar to the other input signals were one-hot encoded first and transformed into
an embedding vector in a next step. However, our evaluation results showed that
taking time into account had a severe negative impact on the prediction outcome
of our model. We saw a similar behaviour in the work of Karatzoglou et al. in [16]
and in [18]. This can be mainly attributed to the small size of our dataset which
makes it extremely hard for the model to find temporal patterns in this 168-slot
temporal granularity. The use of wider time slots, e.g., the use of just daily slots,
couldn’t yield significantly higher scores either, due to the fact that our 8-week
long evaluation dataset contains solely 8 recordings from each day, that is, there
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exist solely 8 unique Mondays, 8 unique Tuesdays, etc. For this reason, and
due to space reasons, this evaluation section neglects to refer thoroughly to the
individual results with respect to time. In addition, our users provided very little
information regarding their type of companionship (e.g., relative, friend, etc.).
Solely the fact whether a user was alone or not can be reliably extracted from our
dataset. Therefore, instead of handling the companionship in a separate channel,
we integrated the particular information into the emotional state one-hot vector
by extending it to a further dimension (‘0’, when the user is alone and ‘1’ when he
is not). Finally and as already mentioned previously in this work, we evaluated
our approach at two semantic representation levels, which will be referred to
as low and high level, with the latter being more abstract and subsuming the
first one. In order to generate these two layers, we built a corresponding location
taxonomy based on the Foursquare venue categorization1. Lastly, a Grid Search
helped us to determine the following optimal hyperparameter configuration for
our model listed in Table 1.

Table 1. Optimal hyperparameter set determined via Grid Search.

Kernel

size

Number

of kernels

Embedding

dimension

Dropout

probability

Batch

size

Learning

rate

Number

of epochs

Sequence

length

Pooling

size

6 64 100 0.6 16 0.001 100 10 2

Fig. 3. Accuracy and F1-Scores at the higher semantic representation level.

Figure 3 compares the result from 5 different models at the higher repre-
sentation level, a standard 1-channel CNN (Location) that takes just the cur-
rent semantic location as input, a 2-channel CNN that considers the location

1 https://developer.foursquare.com/docs/resources/categories.

https://developer.foursquare.com/docs/resources/categories
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Fig. 4. Accuracy and F1-Scores at the lower semantic representation level.

Fig. 5. Training accuracy and loss curves at the higher representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

type and the purpose of visit (Location&Purpose), a 2-channel CNN that con-
siders the location type and the emotional state as well as the companion-
ship status of the user (Location&Companion&Mood), a 3-channel CNN that
takes location type, purpose of visit, emotional state and companionship (Loca-
tion&Purposes&Companion&Mood) into account, and a probabilistic Markov
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Fig. 6. Training accuracy and loss curves at the lower representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

Chain model of 1. order that serves as our reference. It can be seen that all
the CNN-based approaches are able to outperform the Markov model both in
terms of accuracy and F1-Score. What also stands out in the same figure is
that the 2-channel CNN approach that considers the activity of the user (pur-
pose of visit) can clearly outperform the competition. However, this doesn’t hold
for the other 2-channel CNN model. On the contrary, it seems that taking the
user’s emotional state into account affects negatively the predictive performance.
Apparently, our model wasn’t able to establish an association between the users’
movement behaviour and their mood, a fact that could be partly attributed once
again to the small size of our dataset. The more “sophisticated” 3-channel CNN
achieves a similar accuracy to the standard CNN, but a lower F1-Score and
therefore can’t really compete with the Locations&Purposes model. Its results
are likely to be related to the aforementioned negative impact of the emotional
state when this is taken explicitly into account.

Figure 4 presents the results for the lower semantic representation level. It
is apparent that all models perform worse than in the higher level shown in
Fig. 3. This can be mainly attributed to the fact that the lower semantic repre-
sentation carries a higher number of unique classes to predict, which makes the
learning process of the models much harder. At the same time, another possible
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Fig. 7. Training F1-Score and loss curves at the higher representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

explanation for this might be the fact that human movement shows stronger reg-
ularities at rather higher levels, e.g., a user may often visit a food location after
going to gym, regardless whether this location is an Italian or a Greek restau-
rant, a pizza house or a burger joint. Similar to the high level case, the CNN
models outperform in most of the cases the probabilistic baseline. However, this
time, other than at the higher level, it seems that the additional channels result
in a deterioration of our prediction models. The more channels, the worse the
predictive behaviour seems to become. In general, due to the small size of our
dataset and its imbalance, all of our models had to deal with massive overfitting
issues. Adding a dropout layer while making our model simpler by reducing the
size of our layers could improve significantly our models, but only to a certain
extent.

Figures 5, 6, 7 and 8 illustrate the training behaviour of our 4 CNN mod-
els. We can see that the greater the number of channels and thus, the greater
the semantic enrichment degree of the trajectory, the faster and smoother the
training of the CNN model becomes. Taking additional context dimensions into
account seems to contribute to shorter convergence times and results in a more
efficient training. The 3-channel CNN is characterized by the shortest conver-
gence, while the vanilla 1-channel CNN straggles with the loss reduction along
the whole training process to the 100th epoch. The benefits of the multiple chan-
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Fig. 8. Training F1-Score and loss curves at the lower representation level. (a):
Location, (b): Location&Companion&Mood, (c): Location&Purposes, (d): Loca-
tion&Purposes&Companion&Mood.

nel approach can be more clearly seen during the harder learning task, namely
at the lower semantic representation level (see Fig. 6). However, on the other
hand, this comes with a certain overfitting effect, as mentioned previously, that
grows with the number of the CNN input channels.

The models presented in this work use 1-dim fixed-sized kernels of size 6.
This number was determined by applying a Grid Search. The problem when
using fixed-sized kernels is that these are able to capture only data dependencies
of a certain length. Varied-sized kernels as in the work of Kim et al. in [22] could
help overcome this issue and capture the individual properties of each semantic
dimension in our data.

6 Conclusion

In this work, we explore the performance of a Multi-Channel Convolutional Neu-
ral Network (CNN) based approach with respect to its capability of modeling
semantic trajectories at different semantic representation levels and predicting
the next semantic location of a user. Moreover, we investigate whether and to
what extend the degree of semantic enrichment, that is, the number of the con-
text feature dimensions considered in the semantic trajectories, affects the pre-
dictive performance of our model. We considered 5 different semantic enrichment
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dimensions for our trajectories, the location type, the purpose of visit (e.g., activ-
ity), the time, the user’s mental and emotional state, and his companionship.
We evaluated our model using a 8-week long real-world dataset from 21 users
and compared it to a vanilla Single-Channel CNN and a probabilistic Markov
Chain model that served among other as our baseline. We could show that
raising the semantic enrichment degree of our trajectory data while increasing
the corresponding number of channels at the same time can indeed lead to an
improvement in terms of prediction accuracy and F1-Score. This could be partic-
ularly seen when we attempted to model and predict upon semantic trajectories
at a higher representation level. Furthermore, the results of this work indicate
a strong correlation between the degree of semantic enrichment, the number of
CNN channels and the training behaviour, with our multi-channel based app-
roach being characterized by generally much smoother and faster converging
learning curves. However, our evaluation also identified some limitations leaning
mostly on certain overfitting effects, which could be mainly attributed to data-
specific properties, such as the small size of our dataset and its imbalance. This
is also the reason why a certain uncertainty about the generalizability and the
representativity of the findings in this work arises. Nevertheless, the presented
study still establishes a solid basis for further work and investigations. In our
future work, we plan to further explore the use of CNNs in the semantic location
prediction scenario. In particular, we plan to investigate the use of varied-sized
kernels and depthwise separable convolution layers aiming at improving both
the predictive performance as well as the computational efficiency of our model.
Furthermore, we would like to experiment with further types of context infor-
mation, such as the personality of the user, the weather and the transportation
mode; features, that have led to promising results in existing studies. However,
the gathering of context information and especially of personal information has
become increasingly difficult in recent years, among others, due to stricter data
privacy regulations. One solution for overcoming this issue would be to rely on
privacy preserving methods such as the semantic obfuscation techniques of [5].
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