6,361 research outputs found

    Predictive Maintenance on the Machining Process and Machine Tool

    Get PDF
    This paper presents the process required to implement a data driven Predictive Maintenance (PdM) not only in the machine decision making, but also in data acquisition and processing. A short review of the different approaches and techniques in maintenance is given. The main contribution of this paper is a solution for the predictive maintenance problem in a real machining process. Several steps are needed to reach the solution, which are carefully explained. The obtained results show that the Preventive Maintenance (PM), which was carried out in a real machining process, could be changed into a PdM approach. A decision making application was developed to provide a visual analysis of the Remaining Useful Life (RUL) of the machining tool. This work is a proof of concept of the methodology presented in one process, but replicable for most of the process for serial productions of pieces

    Technological evolution in machining processes with CNC machines in the context of the concept of Industry 4.0

    Get PDF
    Dissertação de mestrado em Industrial EngineeringThe work related to the project of this dissertation will consist of an analysis of the technological evolution of the machining processes with CNC (Computer Numerical Control) machines regarding the new concept of Industry 4.0. The concept fits into the current transformation process for the fourth industrial revolution, such as integrated Cyber-Physical Systems (CPS) within the manufacturing processes using the Internet of Things (IoT) in industrial processes. Faced with technological advances, the processes of Industrial Engineering in machining using CNC machines must undergo adaptations, aiming at substantial increases in the operational effectiveness. Thus, an approach will be made to understand how current processes can adapt to the concept under study when analyzing the evolution of the machining tools for CNC machines in the face of new processes. A thorough study will be done to adapt the methodology of Industry 4.0 applying it to the machining processes in CNC Machines. Thereby, a proposal for future applications will be given on the topics studied. The methodology will be based entirely on a documental analysis research strategy. The virtual technology in machining tools is still a subject in development, being one of the main factors to be understood in this dissertation. In this study, it will be possible to analyze the main factors that can influence directly or indirectly the production processes of a factory with CNC machines. It will be explored and studied the types of machining processes for CNC machines and the types of machining tools developed with virtual technology. When we are talking about virtual technology, we are usually addressing the need for software. In CNC machining operations, there is a CAM (Computer Aided Manufacturing) software that performs machining simulations for CNC machines. Thus, a study and analysis of a production system involving a CAM software, a tool with virtual technology and CNC machines will be done to verify how this set can work encompassed and what changes this production model introduces. In the sequence of this study, an idea of a new production system will be proposed, allowing for a better understanding of the possibilities for application of new approaches in the future.O trabalho relacionado ao projeto desta dissertação de mestrado consistirá de uma análise da evolução tecnológica dos processos de usinagem com as máquinas CNC (Comando Numérico Computacional) em relação ao novo conceito da Indústria 4.0. O conceito se enquadra no atual processo de transformação da quarta revolução industrial, com os Sistemas Ciber-Físicos integrados (CPS) dentro dos processos de fabricação que utilizam a Internet das Coisas (IoT) em processos industriais. Diante dos avanços tecnológicos, os processos de Engenharia Industrial em usinagem utilizando máquinas CNC devem sofrer adaptações, visando um aumento substancial na eficácia operacional. Assim, uma abordagem será feita para entender como os processos atuais podem se adaptar ao conceito em estudo, visando também uma análise da evolução das ferramentas de usinagem para máquinas CNC em face de novos processos. Um estudo minucioso será feito para adaptar a metodologia da Indústria 4.0, aplicando-a aos processos de usinagem em máquinas CNC. Com isso, algumas proposta para aplicações futuras serão apresentadas para os tópicos estudados. A metodologia será totalmente baseada em uma estratégia de investigação documental. A tecnologia virtual em ferramentas de usinagem ainda é um assunto em desenvolvimento, sendo um dos principais fatores a serem compreendidos na realização deste trabalho. Neste estudo, será possível analisar os principais fatores que podem influenciar direta ou indiretamente nos processos de produção de uma fábrica com máquinas CNC. Serão explorados e estudados os tipos de processos de usinagem para máquinas CNC e os tipos de ferramentas de usinagem desenvolvidas com tecnologia virtual. Quando abordamos o assunto sobre tecnologia virtual, geralmente estamos a lidar com a necessidade de um software. Nas operações de usinagem CNC, existe um software CAM (Manufatura Assistida por Computador) que realiza simulações de usinagem para máquinas CNC. Assim, um estudo e análise do sistema de produção envolvendo um software CAM, uma ferramenta com tecnologia virtual e máquinas CNC será feito para verificar como este conjunto pode trabalhar englobado e quais as mudanças para esse modelo de produção. Na sequência dessa análise, será proposta uma ideia de um novo sistema de produção, que permite uma melhor compreensão das possibilidades de aplicação no futuro das novas abordagens

    application of process parameters in planning and technological documentation cnc machine tools and cmms programming perspective

    Get PDF
    Abstract This article focuses on the role and application of process parameters in technological process planning (TPP) and technological documentation (TD). The challenges and complexity involved in computer numerical control (CNC) machine tools and coordinate measuring machines (CMMs) programming have been taken into consideration with reference to the TD. The article presents the use of different programming platforms and implementation of them in technological process planning. The subtractive manufacturing and related measurements that are required during the TPP and TD phase have been taken into consideration. The findings and suggestions enable planners to incorporate the existing programming platforms and tools in the TPP and TD

    Development of working procedures of a 5 Axis CNC milling machine

    Get PDF
    Dissertação de mestrado em Mechanical EngineeringThe work developed and presented on this dissertation tends to the installation and configurations of a 5-axis CNC machine with the creation of working procedures intended to build a stable workflow that can be employed by any individual expected to use the machine. Being a large field within mechanical engineering as well as being involved in a large selection of different industrial sectors, the concept of 5-axis machining will be explored to develop knowledge in terms of CAM programming and manipulation/optimization of toolpaths. The importance/functioning of the transmission of information both from post-processor to the controller and from the controller to the actual machine is also a critical point in this work as they are directly related to the quality of the parts produced. To accomplish this, the theoretical knowledge foundations regarding CNC machining work were researched, studied, and explained. Furthermore, the machine model in question (HY-6040 5-axis CNC Router) was meticulously analysed regarding to the machines structure, post-processor, and controller. Upon assembling all this information, and through the production of some test parts, a permanent manufacture workflow for different machining approaches was established and described.O trabalho desenvolvido e apresentado nesta dissertação tende à instalação e configuração de uma máquina CNC de 5-eixos, com a criação de procedimentos de trabalho destinados a criar um fluxo de trabalho estável que possa ser empregue por qualquer individuo que pretenda utilizar a máquina. Sendo um grande campo dentro da engenharia mecânica e estando também envolvido numa grande seleção de diferentes setores industriais, o conceito de maquinagem em 5-eixos será explorado com a finalidade de desenvolver conhecimentos a nível de programação CAM e manipulação/otimização de trajetórias de corte. A importância/funcionamento da transmissão de informação quer do pôs-processador para o controlador, quer do controlador para a máquina constituem também um ponto critico neste trabalho já que estão diretamente relacionados com a qualidade das peças produzidas. Para a realização de tal, foram pesquisados, estudados e explicados os fundamentos do conhecimento teórico relativamente ao trabalho de maquinagem CNC. Para além disso, o modelo da máquina em questão (HY-6040 5-axis CNC Router) foi meticulosamente analisado quanto à estrutura da máquina, pós-processador e controlador. Após reunir toda esta informação, e través da produção de peças teste, foi estabelecido um fluxo de trabalho de manufatura (CAD/CAM/Maquinagem) para diferentes abordagens de maquinagem

    Reverse engineering : an evaluation of contact technology and application in manufacturing systems

    Get PDF
    There are many instances where one-of-a-kind parts, such as prototypes or custom-built parts, need to be reproduced. When a Computer Aided Design (CAD) of an existing part is not available, reverse engineering is involved in recreation of such part. Currently, geometric measurements from the surface of a prototype are extracted manually and sent to a CAD system. It is typically time consuming, tedious, and potentially a source of error. This study outlines a methodology, for the development of a CAD model, rapid prototype, and subsequently manufacturing of the part. The method developed uses a contact technique to extract 2-D or 3-D data from the surface of parts using a coordinate measurement machine. Procedures for processing the data into a polygon mesh representation and orthographic projections are detailed. CAD solid modelling to Computer Aided Manufacturing (CAM), which is an important step in manufacturing industries are described by CNC code generations and use of ethernet to send the machine code file to the CNC machine tool on the shopfloor

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    An Early Warning Monitoring System for CNC Spindle Bearing Failure

    Get PDF
    Equipment employed in a manufacturing environment must be able to operate as long as possible having as little downtime as possible. Therefore, maintenance is crucial in order to allow for the equipment to perform its designated tasks without failure, especially on critical systems. In a CNC machine, if the spindle fails, the machine is useless. Having the ability to detect spindle degradation to the point where a replacement spindle installation can be planned, via condition monitoring, is invaluable to a manufacturer who utilizes these types of machines. An early warning monitoring system for CNC spindle bearing failure has been developed to be utilized directly on a CNC machine\u27s controller employing an open architecture structure. The main system uses an ultrasonic sensor as its primary sensing component and provides a singular value as to the spindle condition. The system allows for both real time data recording as well as provides a trending history for the machine. Additionally, the system allows for the data to be seen remotely via the internet. Accessory devices can be added to perform an in-depth bearing failure analysis. The total system (including accessories) costs just under $2,400, allowing for a very effective system at a very low price. A few thousand dollars towards a predictive and preventive maintenance monitoring solution can prevent tens-of-thousands of dollars in lost production and unnecessary maintenance costs if the system is utilized as intended. System performance was tested to investigate sensor measurement applicability. Spindle speed was found to have an effect on the sensor\u27s output, however excessive vibration did not. Therefore, the same spindle speed must be used each time a measurement is taken. Measurements while the machine is cutting can be performed, however, a test mode is recommended for the most accurate results. The amount of variation for an in-process reading was found to be lower for a harder material (ie: steel vs. aluminum), for the same spindle speed and depth of cut. The system was tested to see if it could detect the various stages of bearing failure. It was unable to detect a plastic/resin bearing cage degradation failure until it was too late as the failure was too quiet to detect
    corecore