1,386 research outputs found

    Big Data Geospatial Processing for Massive Aerial LiDAR Datasets

    Get PDF
    [Abstract] For years, Light Detection and Ranging (LiDAR) technology has been considered as a challenge when it comes to developing efficient software to handle the extremely large volumes of data this surveying method is able to collect. In contexts such as this, big data technologies have been providing powerful solutions for distributed storage and computing. In this work, a big data approach on geospatial processing for massive aerial LiDAR point clouds is presented. By using Cassandra and Spark, our proposal is intended to support the execution of any kind of heavy time-consuming process; nonetheless, as an initial case of study, we have focused on fast ground-only rasters obtention to generate digital terrain models (DTMs) from massive LiDAR datasets. Filtered clouds obtained from the isolated processing of adjacent zones may exhibit errors located on the boundaries of the zones in the form of misclassified points. Usually, this type of error is corrected through manual or semi-automatic procedures. In this work, we also present an automated strategy for correcting errors of this type, improving the quality of the classification process and the DTMs obtained while minimizing user intervention. The autonomous nature of all computing stages, along with the low processing times achieved, opens the possibility of considering the system as a highly scalable service-oriented solution for on-demand DTM generation or any other geospatial process. Said solution would be a highly useful and unique service for many users in the LiDAR field, and one which could get near to real-time processing with appropriate computational resources.Xunta de Galicia; ED431C 2017/04Consolidation Programme of Competitive Research Units; R2016/037Xunta de Galicia; ED431G/01Ministerio de Economía y Competitividad; TIN2016-75845-

    Cybergis-enabled remote sensing data analytics for deep learning of landscape patterns and dynamics

    Get PDF
    Mapping landscape patterns and dynamics is essential to various scientific domains and many practical applications. The availability of large-scale and high-resolution light detection and ranging (LiDAR) remote sensing data provides tremendous opportunities to unveil complex landscape patterns and better understand landscape dynamics from a 3D perspective. LiDAR data have been applied to diverse remote sensing applications where large-scale landscape mapping is among the most important topics. While researchers have used LiDAR for understanding landscape patterns and dynamics in many fields, to fully reap the benefits and potential of LiDAR is increasingly dependent on advanced cyberGIS and deep learning approaches. In this context, the central goal of this dissertation is to develop a suite of innovative cyberGIS-enabled deep-learning frameworks for combining LiDAR and optical remote sensing data to analyze landscape patterns and dynamics with four interrelated studies. The first study demonstrates a high-accuracy land-cover mapping method by integrating 3D information from LiDAR with multi-temporal remote sensing data using a 3D deep-learning model. The second study combines a point-based classification algorithm and an object-oriented change detection strategy for urban building change detection using deep learning. The third study develops a deep learning model for accurate hydrological streamline detection using LiDAR, which has paved a new way of harnessing LiDAR data to map landscape patterns and dynamics at unprecedented computational and spatiotemporal scales. The fourth study resolves computational challenges in handling remote sensing big data and deep learning of landscape feature extraction and classification through a cutting-edge cyberGIS approach

    Open software and standards in the realm of laser scanning technology

    Get PDF
    Abstract This review aims at introducing laser scanning technology and providing an overview of the contribution of open source projects for supporting the utilization and analysis of laser scanning data. Lidar technology is pushing to new frontiers in mapping and surveying topographic data. The open source community has supported this by providing libraries, standards, interfaces, modules all the way to full software. Such open solutions provide scientists and end-users valuable tools to access and work with lidar data, fostering new cutting-edge investigation and improvements of existing methods. The first part of this work provides an introduction on laser scanning principles, with references for further reading. It is followed by sections respectively reporting on open standards and formats for lidar data, tools and finally web-based solutions for accessing lidar data. It is not intended to provide a thorough review of state of the art regarding lidar technology itself, but to provide an overview of the open source toolkits available to the community to access, visualize, edit and process point clouds. A range of open source features for lidar data access and analysis is provided, providing an overview of what can be done with alternatives to commercial end-to-end solutions. Data standards and formats are also discussed, showing what are the challenges for storing and accessing massive point clouds. The desiderata are to provide scientists that have not yet worked with lidar data an overview of how this technology works and what open source tools can be a valid solution for their needs in analysing such data. Researchers that are already involved with lidar data will hopefully get ideas on integrating and improving their workflow through open source solutions

    Developing an interoperable cloud-based visualization workflow for 3D archaeological heritage data. The Palenque 3D Archaeological Atlas

    Get PDF
    In archaeology, 3D data has become ubiquitous, as researchers routinely capture high resolution photogrammetry and LiDAR models and engage in laborious 3D analysis and reconstruction projects at every scale: artifacts, buildings, and entire sites. The raw data and processed 3D models are rarely shared as their computational dependencies leave them unusable by other scholars. In this paper we outline a novel approach for cloud-based collaboration, visualization, analysis, contextualization, and archiving of multi-modal giga-resolution archaeological heritage 3D data. The Palenque 3D Archaeological Atlas builds on an open source WebGL systems that efficiently interlink, merge, present, and contextualize the Big Data collected at the ancient Maya city of Palenque, Mexico, allowing researchers and stakeholders to visualize, access, share, measure, compare, annotate, and repurpose massive complex archaeological datasets from their web-browsers

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Big archaeology:Horizons and blindspots

    Get PDF

    StudMap 3.0 : an interoperable web-based platform for geospatial data offers in academic life

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesGeographic Information Systems has now entered the realm of web and yields for feasible solutions to balance the technology offers with the users’ needs to share, access and explore the massive amounts of geodata available. Challenges occur when moving forward from old 2D platforms towards innovative and integrated webGIS systems that align functionality with the necessity to grant a complete understanding of the surrounding reality. 3D space responds to this but, however, stands only at the beginning of its era and cannot yet reach the development of 2D web integration. Research is now aiming at possible webGIS solutions to adapt to the special structure imposed by 3D data. In this context, this thesis focuses on designing an architecture for 2D and 3D geospatial data integration on a student-oriented web platform. This concept was further delivered and validated through a real case scenario – Studmap 3.0, a webGIS platform to serve the students of the University of Muenster in their academical life. The portal currently grants availability of geospatial data and web services of regional interest in a smart GIS environment that allows access and comparison of official services with own data. The implementation of Studmap 3.0 aided in the continuous improvement of the proposed architecture model and developed under a design science research cycle that reached its end once the final approval of its users was attained via a usability evaluation. Final strengths and drawbacks of the proposed architecture were ultimately identified together with an expert usability evaluation and a lab-based usability test of the resulting portal interface suitability for academic use. The results fall under the acceptable range with an 83.75 score for the System Usability Scale standardized questions when addressed to experts and a score of 83.87 when addressed to students. For the open-ended questions, the interface received an overall positive critique. A summary of future participants’ opinion on the benefits, drawbacks and proposed improvements was also delivered. Peers interested in similar concepts can use both this model and its final remarks as a reference for their work

    A Tutorial on Geographic Information Systems: A Ten-year Update

    Get PDF
    This tutorial provides a foundation on geographic information systems (GIS) as they relate to and are part of the IS body of knowledge. The tutorial serves as a ten-year update on an earlier CAIS tutorial (Pick, 2004). During the decade, GIS has expanded with wider and deeper range of applications in government and industry, widespread consumer use, and an emerging importance in business schools and for IS. In this paper, we provide background information on the key ideas and concepts of GIS, spatial analysis, and latest trends and on the status and opportunities for incorporating GIS, spatial analysis, and locational decision making into IS research and in teaching in business and IS curricula
    corecore