1,025 research outputs found

    Iterative Beam Search for Simple Assembly Line Balancing with a Fixed Number of Work Stations

    Get PDF
    The simple assembly line balancing problem (SALBP) concerns the assignment of tasks with pre-defined processing times to work stations that are arranged in a line. Hereby, precedence constraints between the tasks must be respected. The optimization goal of the SALBP-2 version of the problem concerns the minimization of the so-called cycle time, that is, the time in which the tasks of each work station must be completed. In this work we propose to tackle this problem with an iterative search method based on beam search. The proposed algorithm is able to obtain optimal, respectively best-known, solutions in 283 out of 302 test cases. Moreover, for 9 further test cases the algorithm is able to produce new best-known solutions. These numbers indicate that the proposed iterative beam search algorithm is currently a state-of-the-art method for the SALBP-2

    Heuristics and Lower Bounds for the Simple Assembly Line Balancing Problem Type 1: Overview, Computational Tests and Improvements

    Get PDF
    Assigning tasks to work stations is an essential problem which needs to be addressed in an assembly line design. The most basic model is called simple assembly line balancing problem type 1 (SALBP-1). We provide a survey on 12 heuristics and 9 lower bounds for this model and test them on a traditional and a lately-published benchmark dataset. The present paper focuses on algorithms published before 2011. We improve an already existing dynamic programming and a tabu search approach significantly. These two are also identified as the most effective heuristics; each with advantages for certain problem characteristics. Additionally we show that lower bounds for SALBP-1 can be distinctly sharpened when merging them and applying problem reduction techniques

    Line balancing using metaheuristic methods in BMW South Africa

    Get PDF
    This study documents a project to investigate the possibility of achieving savings in BMW South Africa’s Rosslyn assembly plant through the use of metaheuristics to optimise line balancing methods. Through this project, a customised Ant Colony Optimisation algorithm was developed for the optimisation of the frontend assembly line in this plant. This algorithm is one which was designed to take into account many of the constraints which are found in an automotive manufacturing environment such as work areas, shared processes and sequence constraints. Through the use of the algorithm, a solution was developed which shows improvements to the line balancing in the area. These improvements show a 17% reduction in labour costs in the area, an improvement of 13.12% in the area’s average work loading and an increase in the average work stability of 17.81%. Additionally, improvements were found which would allow this algorithm to be used in other lines in the assembly plant for further savings and improvements.MT 201

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    Type-E Parallel Two-Sided Assembly Line Balancing Problem: Mathematical Model and Ant Colony Optimisation based Approach with Optimised Parameters

    Get PDF
    Copyright © 2015 Elsevier. This is a PDF file of an unedited manuscript that has been accepted for publication in Computers and Industrial Engineering (doi:10.1016/j.cie.2014.12.037). The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.There are many factors which affect the performance of a complex production system. Efficiency of an assembly line is one of the most important of these factors since assembly lines are generally constructed as the last stage of an entire production system. Parallel two-sided assembly line system is a new research domain in academia though these lines have been utilised to produce large sized products such as automobiles, trucks, and buses in industry for many years. Parallel two-sided assembly lines carry practical advantages of both parallel assembly lines and two-sided assembly lines. The main purpose of this paper is to introduce type-E parallel two-sided assembly line balancing problem for the first time in the literature and to propose a new ant colony optimisation based approach for solving the problem. Different from the existing studies on parallel assembly line balancing problems in the literature, this paper aims to minimise two conflicting objectives, namely cycle time and number of workstations at the same time and proposes a mathematical model for the formal description of the problem. To the best of our knowledge, this is the first study which addresses both conflicting objectives on a parallel two-sided assembly line configuration. The developed ant colony optimisation algorithm is illustrated with an example to explain its procedures. An experimental design is also conducted to calibrate the parameters of the proposed algorithm using response surface methodology. Results obtained from the performed computational study indicate that minimising cycle time as well as number of workstations help increase system efficiency. It is also observed that the proposed algorithm finds promising results for the studied cases of type-E parallel two-sided assembly line balancing problem when the results are compared with those obtained from other three well-known heuristics

    Ant colony optimization for the single model U-type assembly line balancing problem

    Get PDF
    Cataloged from PDF version of article.The assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is the allocation of tasks to an ordered sequence of stations subject to the precedence constraints with the objective of minimizing the number of stations. In a U-line the line is configured into a U-shape topology. In this research, a new heuristic, Ant Colony Optimization (ACO) meta-heuristic, and its variants are proposed for the single model U-type assembly line balancing problem (UALBP). We develop a number of algorithms that can be grouped as: (i) direct methods, (ii) modified methods and (iii) methods in which ACO approach is augmented with some metaheuristic. We also construct an extensive experimental study and compare the performance of the proposed algorithms against the procedures reported in the literature.Alp, ArdaM.S

    Matheuristics: using mathematics for heuristic design

    Get PDF
    Matheuristics are heuristic algorithms based on mathematical tools such as the ones provided by mathematical programming, that are structurally general enough to be applied to different problems with little adaptations to their abstract structure. The result can be metaheuristic hybrids having components derived from the mathematical model of the problems of interest, but the mathematical techniques themselves can define general heuristic solution frameworks. In this paper, we focus our attention on mathematical programming and its contributions to developing effective heuristics. We briefly describe the mathematical tools available and then some matheuristic approaches, reporting some representative examples from the literature. We also take the opportunity to provide some ideas for possible future development
    • …
    corecore