
Statistics & Operations Research Transactions

SORT 35 (2) July-December 2011, 145-164

Statistics &
Operations Research

Transactions
c© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

Iterative beam search for simple assembly line

balancing with a fixed number of work stations

Christian Blum∗

Abstract

The simple assembly line balancing problem (SALBP) concerns the assignment of tasks with
pre-defined processing times to work stations that are arranged in a line. Hereby, precedence
constraints between the tasks must be respected. The optimization goal of the SALBP-2 variant
of the problem concerns the minimization of the so-called cycle time, that is, the time in which the
tasks of each work station must be completed. In this work we propose to tackle this problem with
an iterative search method based on beam search. The proposed algorithm is able to generate
optimal solutions, respectively the best upper bounds, for 283 out of 302 test cases. Moreover,
for 9 further test cases the algorithm is able to improve the currently best upper bounds. These
numbers indicate that the proposed iterative beam search algorithm is currently a state-of-the-art
method for the SALBP-2.

MSC2000 Classification: 90C27 (Combinatorial Optimization)

Keywords: Assembly line balancing, fixed number of work stations, beam search.

1. Introduction

The class of problems known as assembly line balancing problems (ALBPs) concerns

the optimization of processes related to the manufacturing of products via assembly

lines. Their importance in the industrial world is shown by the fact that much research

efforts have been dedicated to many different types of ALBPs during the past 50-60

years Gosh and Gagnon (1989), Salveson (1955). The specific problem considered in

this paper is the so-called simple assembly line balancing problem (SALBP) Scholl and

Becker (2006), a well-studied scientific test case. An assembly line is composed of a set

of work stations arranged in a line, and by a transport system which moves the product

to be manufactured along the line. The product is manufactured by executing a given

*Address for correspondence: ALBCOM Research Group. Universitat Politècnica de Catalunya. C/ Jordi Girona
1-3, Campus Nord, Omega 112. 08034 Barcelona (Spain). cblum@lsi.upc.edu.

Received: December 2010

Accepted: October 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Revistes Catalanes amb Accés Obert

https://core.ac.uk/display/39015656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

146 Iterative beam search for simple assembly line balancing with a fixed number of work stations

set of tasks. Each of these tasks has a pre-defined processing time. In order to obtain a

solution to a given SALBP instance, all tasks must be assigned to work stations subject

to precedence constraints between the tasks. In the context of the SALBP, all work

stations are considered to be of equal size. Moreover, the assembly line is assumed to

move at a constant speed. This implies a maximum of C time units – the so-called cycle

time – for processing the tasks assigned to each work station. The SALBP has been

tackled with several objective functions among which the following ones are the most

studied ones in the literature:

• Given a fixed cycle time C, the optimization goal consists in minimizing the

number of necessary work stations. This variant of the problem is refered to as

SALBP-1.

• Given a fixed number m of work stations, the goal is to minimize the cycle time C.

The literature knows this second problem variant as SALBP-2.

The feasibility problem SALBP-F arises when both a cycle time C and a number of

work stations m is given and the goal is to find a feasible solution respecting C and m.

In this work we will deal with the SALBP-2 variant of the problem.

For what concerns the comparison between SALBP-1 and SALBP-2, much of the

scientific work has been dedicated to the SALBP-1. However, also for the SALBP-

2 exists a considerable body of research papers. An excellent survey was provided

by Scholl and Becker (2006). Approaches for the SALBP-2 can basically be classified as

either iterative solution approaches or direct solution approaches. Iterative approaches

tackle the problem by iteratively solving a series of SALBP-F problems that are obtained

by fixing the cycle time. This process is started with a cycle time that is set to some

calculated upper bound. This cycle time is then decremented during the iterative process,

which stops as soon as no solution for the corresponding SALBP-F problem can be

found. In contrast to these indirect approaches, direct approaches intend to solve a given

SALBP-2 instance directly.

Heuristic as well as exact approaches have been devised for the SALBP-2. Among

the existing exact methods we find iterative approaches such as the ones proposed

in Hackman et al. (1989), Scholl (1999) but also direct approaches such as the ones

described in Klein and Scholl (1996), Scholl (1994). Moreover, the performance of dif-

ferent integer programming formulations of the SALBP-2 have been evaluated in Pastor

and Ferrer (2009), Pastor et al. (2007). The currently best-performing exact method is

SALOME-2 Klein and Scholl (1996), which is a branch & bound procedure making use

of a so-called local lower bound method (LLBM), a bidirectional branching strategy, and

several dominance and reduction rules. Surprisingly, exact methods outperform the ex-

isting heuristic and metaheuristic approaches for the SALBP-2. While 287 (out of 302)

existing problem instances were solved to optimality by exact approaches, the most suc-

cessful metaheuristic approach to date—a tabu search method proposed in Scholl and

Voss (1996) —was only able to find the best upper bounds with respect to 168 prob-

Christian Blum 147

lem instances. Note that SALOME-2 alone was able to solve 217 problem instances to

optimality. Apart from the above-mentioned tabu search, another tabu search proposal

can be found in Chiang (1998). Other metaheuristic approaches include evolutionary

algorithms Anderson and Ferris (1994), Nearchou (2007), Watanabe et al. (1995) and

simulated annealing Henrici (1994). Moreover, a two-phase heuristic based on linear

programming can be found in Ugurdag et al. (1997), whereas a heuristic based on Petri

nets was proposed in Kilincci (2010). Finally, an approach similar to the one proposed in

this paper has been presented in Blum and Miralles (2011) for a more general problem,

the assembly line worker assignment and balancing problem (ALWABP).

Contribution of this work. Subsequently we propose to tackle the SALBP-2 by means

of an iterative approach based on beam search, which is an incomplete variant of

branch & bound. The resulting iterative beam search algorithm is inspired by one of the

current state-of-the-art methods for the SALBP-1, namely Beam-ACO Blum (2008).

Beam-ACO is a hybrid approach that is obtained by combining the metaheuristic ant

colony optimization with beam search. In this work we propose to use the beam search

component of Beam-ACO in an iterative way for obtaining good SALBP-2 solutions.

Our computational results show indeed that the proposed algorithm is currently a state-

of-the-art method for the SALBP-2. It is able to generate optimal solutions, respectively

the best upper bounds, for 283 out of 302 test cases. Moreover, in further 9 cases the

algorithm is able to improve the currently best upper bounds.

Organization of the paper. In Section 2 we present a formal description of the tackled

problem. Furthermore, in Section 3 the proposed algorithm is described. Finally, in

Section 4 we present a detailed experimental evaluation and in Section 5 we conclude

our work and offer an outlook to future work.

2. The SALBP-2

The SALBP-2 can formally be described as follows. An instance (T ,G,m) consists of

three components. T = {1, . . . ,n} is a set of n tasks. Each task i ∈ T has a pre-defined

processing time ti > 0. Without losing generality, the processing times are henceforth

assumed to be integer values. Moreover, given is a precedence graph G = (T ,A), which

is a directed, acyclic graph with T as node set. Finally, m is the pre-defined number of

work stations which are ordered from 1 to m. An arc li, j ∈ A indicates that i ∈ T must be

processed before j ∈ T . Given a task j ∈ T , Pj ⊂ T denotes the set of tasks that must be

processed before j. A feasible solution is obtained by assigning each task to exactly one

work station such that the precedence constraints between the tasks are satisfied. The

objective function consists in minimizing the so-called cycle time. The SALBP-2 can

be expressed in the following way as an integer programming (IP) problem.

148 Iterative beam search for simple assembly line balancing with a fixed number of work stations

minz (1)

subject to: m

∑
s=1

xis = 1 ∀i ∈ T (2)

xis ≤
s

∑
s′=1

x js′ ∀i ∈ T ,s = 1, . . . ,m, j ∈ Pi (3)

∑
i∈T

tixis ≤ z s = 1, . . . ,m (4)

xis ∈ {0,1} ∀i ∈ T ,s = 1, . . . ,m (5)

z > 0 (6)

This IP model makes use of the following variables and constants: xis is a binary

variable which is set to 1 if and only if task i ∈ T is assigned to work station 1≤ s≤ m.

The objective function (1) minimizes the cycle time z > 0.1 The constraints (2) ensure

that each task i ∈ T is assigned to a single work station 1 ≤ s ≤ m. Constraints (3)

reflect the precedence relationships between the tasks. More specifically, if task i ∈ T is

assigned to a work station 1≤ s≤ m, all tasks j ∈ Pi must be assigned to work stations

1 ≤ s′ ≤ m with s′ ≤ s. The constraints (4) ensure that the sum of the processing times

of the tasks assigned to a work station 1≤ s≤ m do not exceed the cycle time z.

Note that this model was chosen in order to present an easily understandable problem

description. An evaluation of alternative models can be found in Pastor and Ferrer

(2009), Pastor et al. (2007).

3. Iterative beam search

As mentioned in the introduction, the basic component of our algorithm for the SALBP-

2 consists of beam search (BS), which is an incomplete derivative of branch & bound.

BS was used for the first time in the context of speech recognition Lowerre (1976).

Concerning combinatorial optimization problems, BS has especially been used for

solving scheduling problems; see, for example, Ghirardi and Potts (2005), Ow and

Morton (1988), Sabuncuoglu and Bayiz (1999), Valente and Alves (2005). To date only

very few applications to other types of problems exist. Examples can be found in Akeba

et al. (2009), Blum et al. (2009), Lee and Woodruff (2004). In the following we briefly

describe how one of the standard variants of BS works. The crucial aspect of BS is

the parallel extension of partial solutions in several ways. At all times, the algorithm

keeps a set B of at most kbw partial solutions, where B is the so-called beam, and kbw is

known as the beam width. At each step, at most kext feasible extensions of each partial

solution in B are selected on the basis of greedy information. In general, this selection

1. Note that we refer to the variable cycle time of the IP model as z, while fixed cycle times are denoted by C.

Christian Blum 149

is done deterministically. At the end of each step, the algorithm creates a new beam B

by choosing up to kbw partial solutions from the set of selected feasible extensions. For

that purpose, BS algorithms determine – in the case of minimization – a lower bound

value for each extension. Only the maximally kbw best extensions – with respect to these

lower bound values – are included in B. Finally, if any complete solution was generated,

the algorithm returns the best of those. Note that the underlying constructive heuristic

that defines feasible extensions of partial solutions and the lower bound function for

evaluating partial solutions are crucial for the working of BS.

In the following, after describing the chosen solution representation, we first present

a description of the implementation of the BS component, before we describe the

algorithmic scheme in which this BS component is used.

3.1. Solution representation

The following solution representation is used by the proposed BS algorithm. A solution

S is an ordered list S= 〈S1, . . . ,Sm〉 of m sets of tasks, where Si denotes the set of tasks

that are assigned to the i-th work station. Abusing notation we henceforth call Si a work

station. Note that for a solution S to be valid the following conditions must be fulfilled:

1.
⋃m

i=1 Si = T = {1, . . . ,n} and Si∩Si′ = /0 for i = 1, . . . ,m and i′ = i+1, . . . ,m. That

is, each task is assigned to exactly one work station.

2. For each task j ∈ Si it is must hold that Pj ⊆
⋃i

k=1 Sk. This ensures that the

precedence constraints between the tasks are not violated.

In this context it is also convenient to introduce the concept of the reverse problem

instance. More specifically, the reverse problem instance (T ,Gr,m) with respect to an

original instance (T ,G,m) is obtained by inverting the direction of all arcs of G. It

is well-known from the literature Scholl and Becker (2006) that tackling the reverse

problem instance may lead an exact algorithm faster to an optimal solution, respectively,

may provide a better heuristic solution when tackled with the same heuristic as the

original problem instance. Moreover, a solution S
r to the reverse problem instance

(T ,Gr,m) can easily be converted into a solution S to the original problem instance

(T ,G,m) as follows:

Si := Sr
m−i+1 for i = 1, . . . ,m (7)

3.2. The beam search component

The BS component described in this section – see Algorithm 1 for the pseudo-code – is

the main component of the proposed algorithm for the SALBP-2. The algorithm requires

a problem instance (T ,G,m), a fixed cycle time C, a beam width kbw, and a maximal

150 Iterative beam search for simple assembly line balancing with a fixed number of work stations

Algorithm 1 Beam search

1: input: an instance (T ,G,m), a fixed cycle time C, a beam width kbw, and kext

2: d := 0

3: Initialization of an empty solution S

4: B := {S}

5: Bcompl := /0

6: while B 6= /0 do

7: Bext := /0

8: d := d +1

9: for all S ∈ B do

10: for i = 1, . . . ,kext do

11: S
′ := S {copy partial solution S into S

′}

12: S′d := ExtendPartialSolution(S′,d,C) {see Algorithm 2}

13: if solution S
′ is complete (that is, all tasks are assigned) then

14: Bcompl := Bcompl∪{S
′}

15: else

16: if d < m and S′d is different to the d-th work station of all other S ∈ Bext

then

17: Bext := Bext∪{S
′}

18: end if

19: end if

20: end for

21: end for

22: B←SelectSolutions(Bext, kbw)

23: end while

24: output: If Bcompl 6= /0 the output is TRUE, otherwise FALSE

number of extensions kext as input. Given a fixed cycle time C and m (the number of

work stations) BS tries to find at least one feasible solution. As mentioned before, the

crucial aspect of BS is the extension of partial solutions in several possible ways. At

each step the algorithm extends each partial solution from B in a limited number of

ways. More specifically, given a partial solution with d− 1 < m work stations already

filled, an extension is generated by assigning a set of so-far unassigned tasks to the next

work station Sd such that the given cycle time C is not surpassed and the precedence

constraints between the tasks are respected (see lines 11–12 of Algorithm 1). The

algorithm produces extensions in a (partially) probabilistic way rather than in the usual

deterministic manner.2 Each generated extension (partial solution) is either stored in

set Bcompl in case it is a complete solution, or in set Bext otherwise (see lines 13–19 of

2. This is done for avoiding a choice-without-replacement process for which all possible work station fillings
must be generated beforehand.

Christian Blum 151

Algorithm 1). However, a partial solution is only stored in set Bext if it uses at most m−1

work stations. Moreover, for a partial solution to be stored in set Bext it is required that

its d-th work station is different to the d-th work station of all partial solutions that

are already in Bext. This criterion can be seen as a computationally cheap, approximate

way of checking if two partial solutions are equal. On the downside, with this criterion

partial solutions might be excluded from further examination even though they do not

belong to Bext. Finally, BS creates a new beam B by selecting up to kbw solutions from

set Bext of further extensible partial solutions (see line 22 of Algorithm 1). This is done

in function SelectSolutions(Bext,kbw) on the basis of a lower bound function LB(·). In the

following we describe in detail the extension of partial solutions and the working of

function SelectSolutions(Bext,kbw).

Extending partial solutions. The generation of an extension of a partial solution S
′

with d−1 work stations already filled works as follows. Unassigned tasks are iteratively

assigned to work station S′d until the sum of their processing times is such that no other

task can be added to S′d without exceeding the given cycle time C. This procedure is

pseudo-coded in Algorithm 2. At each step, T ′ denotes the set of so-far unassigned

tasks that may be added to S′d without violating any constraints. The definition of this

set of available tasks is given in line 4, respectively 9, of Algorithm 2.

Algorithm 2 Function ExtendPartialSolution(S′,d,C) of Algorithm 1

1: input: A partial solution S
′, the index d of the work station to be filled, and the

cycle time C

2: S′d := /0

3: crem :=C

4: T ′ := {i ∈ T | i /∈
⋃d

r=1 S′r,Pi ⊆
⋃d

r=1 S′r, ti ≤ crem}

5: while T ′ 6= /0 do

6: j :=ChooseTask(T ′,C,crem)

7: crem := crem− t j

8: S′d := S′d ∪{ j}

9: T ′ := {i ∈ T | i /∈
⋃d

r=1 S′r,Pi ⊆
⋃d

r=1 S′r, ti ≤ crem}

10: end while

11: output: Filled work station S′d

It remains to describe the implementation of function ChooseTask(T ′,C,crem) of Algo-

rithm 2. For that purpose let us first define the following subset of T ′:

T sat := {i ∈ T ′ | ti = crem} (8)

This definition is such that T sat contains all tasks that saturate, in terms of processing

time, the d-th work station Sd . The choice of a task from T ′ is made on the basis of

152 Iterative beam search for simple assembly line balancing with a fixed number of work stations

greedy information, that is, on the basis of values ηi > 0 that are assigned to all tasks

i ∈ T ′ by a greedy function. The first action for choosing a task from T ′ consists in

flipping a coin for deciding if the choice is made deterministically, or probabilistically.

In case of a deterministic choice, there are two possibilities. First, if T sat 6= /0, the best

task from T sat is chosen, that is, the task with maximal greedy value among all tasks in

T sat. Otherwise, we choose the task with maximal greedy value from T ′. In case of a

probabilistic decision, a task from T ′ is chosen on the basis of the following probability

distribution:

p(i) :=
ηi

∑
j∈T ′
η j

,∀i ∈ T ′ (9)

For completing the description of function ChooseTask(T ′,C,crem), we must describe the

definition of the greedy values ηi, ∀i ∈ T . In a first step a term γi is defined as follows:

γi := κ1 ·
(ti

C

)

+κ2 ·

(

|Sucall

i |

max1≤ j≤n

∣

∣Sucall

j

∣

∣

)

,∀i ∈ T (10)

Hereby, Sucall

i denotes the set of all tasks that can be reached from i in precedence graph

G via a directed path. This definition combines two greedy function that are often used

in the context of assembly line balancing problems. The first one concerns the task

processing times and the second one concerns the size of Sucall

i . The influence of both

heuristics can be adjusted via the setting of weights κ1 and κ2. In order to be more

flexible we decided to allow for both weights a value from [−1,1]. This means that we

consider for each heuristic potentially also its negation. This is motivated by experience

from the field of scheduling, where some problem instances are more successfully

solved by doing exactly the opposite of what is suggested by certain greedy functions.

Given the γi-values, the greedy values ηi are then derived as follows:

ηi :=
γi−γmin +1

γmax

∀ i ∈ T , (11)

where γmin, respectively γmax, denote the minimum, respectively maximum, values of all

γi. Interestingly, for obtaining well-working greedy values, parameters κ1 and κ2 have

to be chosen in a problem-instance-dependent way. A study concerning the values of

parameters κ1 and κ2 is presented in Section 4.2.

The lower bound function. The new beam B is – at each step – chosen from Bext. This

choice is implemented by function SelectSolutions(Bext,kbw) of Algorithm 2. First, the

solutions in Bext are ranked with respect to increasing lower bound values LB(·). Then,

the min{kbw, |Bext|} highest ranked partial solutions from Bext are selected. Let us denote

Christian Blum 153

by T ⊆ T the set of tasks that have not yet been assigned to work stations in partial

solution S
′. Then:

LB(S′) =

⌈

∑i∈T ti

C

⌉

(12)

Note that this lower bound is inspired by splitting-based bounds for the one-dimensional

bin packing problem.

Algorithm 3 Iterative beam search (IBS) for the SALBP-2

1: input: an instance (T ,G,m)

2: C := DetermineStartingCycleTime()

3: C′ :=C

4: kbw := 5, kext := 2

5: success := FALSE

6: while not success do

7: success := BeamSearch((T ,G,m),C,kbw,kext) {original instance}

8: if not success then

9: success := BeamSearch((T ,Gr,m),C,kbw,kext) {reverse instance}

10: if not success then C :=C+1 end if

11: end if

12: end while

13: if C >C′ then

14: C :=C−1

15: stop := FALSE

16: while not stop do

17: success := FALSE

18: while time limit not reached and not success do

19: if within 5% of time limit then kbw := 10, kext := 5 else kbw := 150, kext := 20

end if

20: success := BeamSearch((T ,G,m),C,kbw,kext) {original instance}

21: if not success then

22: success := BeamSearch((T ,Gr,m),C,kbw,kext) {reverse instance}

23: end if

24: end while

25: if success then C :=C−1 else stop := TRUE end if

26: end while

27: C :=C+1

28: end if

29: output: cycle time C

154 Iterative beam search for simple assembly line balancing with a fixed number of work stations

3.3. The algorithmic scheme

The BS component outlined in the previous section is used by an iterative algorithmic

scheme that is presented in Algorithm 3. Henceforth this algorithmic scheme is labelled

iterated beam search (IBS). The first step consists in determining a starting cycle time

C, which is computed in funcion DetermineStartingCycleTime() of Algorithm 3 as

C := max

{

maxi∈T{ti},

⌈

∑i∈T ti

m

⌉}

. (13)

The algorithm works in two phases. In the first phase (see lines 4-12 of Algorithm 3)

the algorithm tries to quickly find a first cycle time C for which a valid solution can

be found. For this purpose BS is applied with the setting kbw = 5 and kext = 2. Note

that this setting was chosen after tuning by hand. Moreover, note that the first phase

only takes a fraction of a second of computation time. This holds for all instances

considered in Section 4. The second phase of the algorithm iteratively tries to find a

valid solution for the next smaller cycle time. In this phase, the algorithm disposes over

a certain time limit for each considered cycle time. Remember that the working of BS

is partially probabilistic. Therefore, BS can repeatedly be applied to the same instance

with potentially different outcomes. The first five percent of the above-mentioned time

limit are spent by BS applications that use the setting kbw := 10 and kext := 5. This is done

with the intention of not wasting too much computation time, if not necessary. However,

if BS is not able to solve the given cycle time with this setting, the remaining 95% of the

available time are spent by BS applications using the setting kbw := 150 and kext := 20.

With this setting BS is considerably slower. However, the probability of finding feasible

solutions is much higher than with the setting described before. The second phase of the

algorithm ends when the time limit has passed without having found a feasible solution

for the considered cycle time.

4. Experimental evaluation

IBS was implemented in ANSI C++, and GCC 3.4.0 was used for compiling the soft-

ware. Experimental results were obtained on a PC with an AMD64X2 4400 processor

and 4 Gb of memory. In the following we first describe the set of benchmark instances

that we used for the experimental evaluation. Subsequently we present a study concern-

ing some of the parameters of the proposed algorithm. Finally, the experimental results

are presented.

Christian Blum 155

4.1. Benchmark instances

We used the usual set of 302 benchmark instances from the literature. They can be ob-

tained – together with information about optimal solutions, respectively lower and up-

per bounds – from a website especially dedicated to all kind of assembly line balancing

problems maintained by Armin Scholl, http://www.assembly-line-balancing.de.

Each instance consists of a precedence graph G and a given number m of work stations.

The benchmark set is composed of two subsets of instances, henceforth called Dataset1

and Dataset2. Dataset1 consists of 128 instances based on 9 different precedence graphs

with a number of tasks between 29 to 111. Dataset2 is composed of 174 instances based

on 8 different precedence graphs with a number of tasks varying from 53 to 297.

4.2. A study of parameters κ1κ1κ1 and κ2κ2κ2

During preliminar experiments we realized that parameters kbw and kext have a rather low

impact on the final results of IBS. In other words it is easy to find a reasonable setting

for these parameters quite quickly. Their setting dynamically changes during a run of

the algorithm as specified in Section 3.3. On the contrary, parameters κ1 and κ2 (see

Eq. 10) have a rather high impact on the algorithms’ performance. Remember that κ1 is

the weight of the greedy function concerning the task processing times, while κ2 is the

weight of the greedy function concerning the number of tasks that have to be processed

after the task under consideration. As mentioned before, for both parameters we allowed

values from [−1,1]. Instead of trying to find a good parameter setting for each single in-

stance, we decided for a process aimed at identifying a single setting of κ1 and κ2 for

all instances concerning the same precedence graph. For that purpose we applied a spe-

cific version of IBS for all combinations of κ1,κ2 ∈ {−1.0,−0.9, . . . ,0.0, . . . ,0.9,1.0}

to all 302 instances. This makes a total of 441 different settings for each instance. The

specific version of IBS that we apply in the following differs from IBS as outlined in

Algorithm 3 in that lines 14-24 are replaced by a single, deterministic, application of

beam search with kbw = 150 and kext = 20. This was done for the purpose of saving com-

putation time. Based on the obtained results we chose the settings presented in Table 1

Table 1: Values of parameters κ1 and κ2 for the final experiments.

Graph κ1 κ2 Graph κ1 κ2

Arcus1 0.0 1.0 Lutz2 −0.1 0.9
Arcus2 −0.5 0.9 Lutz3 0.0 1.0
Barthol2 0.0 1.0 Mukherje 0.0 1.0

Barthold 0.0 1.0 Sawyer 0.0 1.0

Buxey 0.0 1.0 Scholl 0.0 1.0

Gunther −0.4 0.8 Tonge −0.1 0.2

Hahn 0.0 1.0 Warnecke 0.0 1.0
Kilbridge 0.0 1.0 Wee−Mag 0.0 1.0

Lutz1 −0.1 0.9

156 Iterative beam search for simple assembly line balancing with a fixed number of work stations

(a) Buxey, = 7m (b) Tonge, = 16m

(c) Arcus1, = 12m (d) Scholl, = 38m

(e) Lutz1, = 9m (f) Lutz1, = 10m

Figure 1: Results presented in graphical form for six representative instances. The y-axis ranges over the

values of κ1, while the x-axis ranges over the values of κ2. The gray levels of the squares indicate the

quality of the algorithm when run with the corresponding setting: the lighter a square is painted, the better

is the parameter setting.

for the different precedence graphs. It is interesting to note that, apart from a few

exceptions, the greedy heuristic based on task processing times does not seem necessary

for obtaining good results.

In Figure 1 a representative sample of the results is provided in graphical form. The

y-axis of the presented graphics varies over the different values of κ1, while the x-axis

Christian Blum 157

ranges over the allowed values of κ2. Note that each graphic consists of 441 squares

representing the 441 different combinations of values for κ1 and κ2. The gray level in

which each square is painted indicates the quality of the algorithm when run with the

corresponding parameter setting. In particular, black color denotes the worst setting,

whereas white color indicates the best algorithm setting. In some cases such as (Buxey,

m = 7) and (Tonge, m = 16), as shown in Figures 1(a) and 1(b), there is a wide range

of good settings, which are basically all those with κ1 ≤ 0. In other examples such

as (Arcus1, m = 12) and (Scholl, m = 38) it is strictly required to set κ1 to 0 and κ2

to a positive value for obtaining good solutions; see Figures 1(c) and 1(d). Finally, the

graphics shown in Figures 1(e) and 1(f) indicate that even for the same precedence graph

a good parameter setting might depend strongly on the number of work stations.

Table 2: Differences in algorithm performance when considering the best

and the worst parameter setting.

Instance Best setting Worst setting Difference (%)

(Buxey, m = 7) 00047 00052 10.64

(Tonge, m = 16) 00222 00265 19.37

(Arcus1, m = 12) 12599 13767 09.27

(Scholl, m = 38) 01857 02031 09.37

(Lutz1, m = 9) 01637 01801 10.02

(Lutz1, m = 10) 01525 01619 06.16

It is also interesting to quantify the differences in algorithm performance for different

parameter settings. Table 2 shows for the six cases presented in Figure 1 the result of

the algorithm with the best setting (column Best setting), the result of the algorithm

with the worst setting (column Worst setting), and the difference (in percent) between

these two settings. The results in Table 2 show that there are considerable differences

in performance between the best and the worst algorithm setting. This underlines the

importance of finding opportune values for κ1 and κ2.

4.3. Results

Algorithm IBS was applied 20 times to all 302 instances. Herefore we used a compu-

tation time limit of 180 seconds for each cycle time, that is, IBS was given maximally

180 seconds for finding a feasible solution for a given cycle time. In case of success, the

algorithm has again 180 seconds for the next smaller cycle time, etc. Detailed results of

IBS for all 302 instances are given in Tables 7 and 8 that are to be found in Appendix A.

The data are, in both tables, presented as follows. The first two columns provide the

name of the precedence graph and the number of work stations (m). The third column

(labelled bub) provides the values of the optimal solutions in case they are known. If

they are unknown the column reports the currently best upper bound. In case a value is

not proved to be optimal it is overlined. More in detail, in 15 out of 302 cases optimality

158 Iterative beam search for simple assembly line balancing with a fixed number of work stations

has not been proved yet. The remaining five columns are reserved for the results of IBS.

The first of these five columns contains the value of the best solution found by IBS over

20 runs. In case this value is presented with a gray background, a new best upper bound

has been found. On the other side, if this value is marked by an asterisk, the obtained

result does not reach the value of the best upper bound. In all other cases the values

correspond to the values of the best upper bounds. The second column provides the

average over 20 runs, while the third column contains the corresponding standard devi-

ation. The fourth column gives the average time (in seconds) at which the best solution

of a run was found, averaged over 20 runs. The fifth column provides the corresponding

standard deviation. From the results presented in Tables 7 and 8 (see Appendix A) we

can observe that IBS obtains optimal solutions, respectively best upper bounds, in 276

out of 302 cases. Moreover, new best upper bounds are obtained in 6 cases. This is re-

markable as – despite a considerable amount of ongoing research – in the last 14 years

no improved solutions have been reported. Only in 20 cases (all concerning precedence

graphs Arcus1, Arcus2, Scholl, and Warnecke) our algorithm was not able to find the

best solutions known. However, in most of these cases the deviation from the best upper

bound is no more than one unit of cycle time.

In addition to Tables 7 and 8 the results of IBS are presented in a summarized way

in Table 3, in comparison to three other algorithms. TABUSEARCH Scholl and Voss

(1996), even though already published in 1996, still counts as the current state-of-the-

art heuristic method for SALBP-2. DE RKS is the best version of a differential evolu-

tion (DE) algorithm proposed in Nearchou (2007), and PNA-FOR is a Petri net-based

heuristic published in Kilincci (2010). The last two methods are, to our knowledge, the

most recently published heuristic methods for SALBP-2. Three measures are used in

Table 3 for the comparison of IBS with these three algorithms. The row labelled #opt

provides the number of best upper bounds found by each method (over 302). More-

over, the row labelled mrd (%) gives the mean relative deviation (in percent) of the

results obtained by the four algorithms from the best-known upper bounds for all 302

instances. Finally, row time contains the average computation time of the algorithms

for all 302 instances. Concerning the quality of the results, we can conclude that IBS

clearly outperforms its competitors. For the correct interpretation of the computation

times it has to be taken into account that the four algorithms were executed on com-

puters with very different processor speeds. While TABUSEARCH was executed on a

80486 DX2-66 processor, PNA-FOR was run on an Athlon XP 2000+ processor with

Table 3: Results of IBS in comparison to the best (TABUSEARCH), respectively most recent

(DE RKS and PNA-FOR), methods from the literature.

DE RKS PNA-FOR TABUSEARCH Iterative Beam Search (IBS)

#opt n/g 039.00 168.00 282.0000

mrd (%) 02.64 002.73 000.40 000.0029

time (s) 10.74 407.28 084.90 031.61

Note: n/g means not given

Christian Blum 159

1.67 GHz, and DE RKS was run on a Pentium IV processor with 1.7 GHz. This means

that TABUSEARCH was run by far on the slowest machine, IBS by far on the fastest

machine, and PNA-FOR and DE RKS on comparable machines. Given the computation

times in Table 3 we can savely conclude that TABUSEARCH is the fastest algorithm, and

PNA-FOR is the slowest one. However, note that assembly line balancing is, in most

cases, not a time-critical application. In other words, for most practical purposes it does

not matter if an algorithm takes 1 minute or 6 hours of computation time.

In the following we present the results of IBS in comparison to DE RKS and PNA-

FOR in the same way as done in Nearchou (2007) and Kilincci (2010). In these works,

results were presented as averages over instances based on the same precedence graph,

and also averaged over Dataset1 and Dataset2. The quality of the results is given in terms

of the mean relative deviation (in percent) from the best-known upper bounds. Tables 4

and 5 clearly show that IBS is largely superior to both competitor algorithms.

Table 4: Results of IBS in comparison to DE RKS and PNA-FOR for the 128 instances

of Dataset1 (averaged over precedence graphs)

Graph DE RKS PNA-FOR Iterative Beam Search (IBS)

mrd (%) time (s) mrd (%) mrd (%) time (s)

Buxey 1.16 0.80 3.07 0.0 0.06

Sawyer 2.27 1.64 4.00 0.0 0.14

Lutz1 0.32 0.88 4.09 0.0 0.55

Gunther 0.14 1.08 1.27 0.0 0.02

Kilbridge 0.66 1.43 2.19 0.0 0.0067

Tonge 1.88 3.71 2.53 0.0 7.73

Arcus1 0.99 5.29 2.47 0.0287 152.34

Lutz2 3.08 1.00 2.99 0.0 0.035

Arcus2 4.96 19.02 2.06 0.0066 135.83

Average: 1.72 3.87 2.57 0.0058 51.76

Table 5: Results of IBS in comparison to DE RKS and PNA-FOR for the 174 instances

of Dataset2 (averaged over precedence graphs).

Graph DE RKS PNA-FOR Iterative Beam Search (IBS)

mrd (%) time (s) mrd (%) mrd (%) time (s)

Hahn 0.0 1.00 2.52 0.0 0.065

Warnecke 3.74 3.53 5.57 0.0579 1.54

Wee-Mag 1.23 3.68 1.56 0.0 0.65

Lutz3 1.68 5.62 2.59 0.0 0.61

Mukherje n/a n/a 1.04 0.0 2.52

Barthold 0.26 19.47 1.02 0.0 0.079

Barthol2 6.85 33.08 3.97 0.0 0.96

Scholl 9.51 43.95 3.21 0.0028 98.69

Average: 3.32 15.79 2.85 0.00071 16.79

160 Iterative beam search for simple assembly line balancing with a fixed number of work stations

Table 6: Results of a high-performance version of IBS.

Graph m Result Graph m Result

Arcus1 (83) 8 9554 Arcus2 (111) 23 6560

11 7085∗ 24 6282

12 6412 25 6101

17 4527∗ 26 5855

18 4323∗ Scholl (297) 31 2247

19 4071∗ 36 1936∗

20 3886∗ 42 1660∗

Arcus2 (111) 14 10747 46 1515

15 10035 47 1484∗

16 9413∗ 49 1423

17 8857∗ Warnecke (58) 25 64

18 8377 Wee-Mag (75) 18 87

19 7922 19 85

20 7524 23 67

21 7187 27 65

22 6856 28 64

4.4. Results of a high-performance version

In an attempt to further improve on the results of our algorithm we decided to apply a

high-performance version of IBS to all problem instances for which the optimal solution

is unknown and, additionally, to all instances where IBS – with the settings as outlined

in the previous section – was not able to find the best known upper bounds. This high-

performance version is obtained as follows. First, 1800 seconds are used as a time limit

for each cycle time. Second, in line 17 of Algorithm 3 only 1% of the time limit is

used (instead of 5%). Third, for each application of beam search in lines 18 and 20 of

Algorithm 3 the beam width kbw is randomly chosen from [150,250] and the number

of extensions is randomly chosen from [20,40]. Moreover, with a probability of 0.5

the heuristic information is – for each application of beam search – calculated using the

weight values as outlined in Table 1. Otherwise, the weight values are chosen randomly

from [−1,1]. With these modifications we applied IBS exactly once to all the instances

of Table 6. The results of the algorithm are given in column Result: In case the result

value is presented with a gray background, a new best upper bound has been found. On

the other hand, if this value is marked by an asterisk, the obtained result is inferior to

the value of the best known upper bound. Indeed, the number of instances for which the

best-known upper bound can not be found before is reduced from 20 to 10 instances.

Moreover, the algorithm is now able to find new best-known upper bounds in 9 (instead

of only 6) cases. Summarizing, this amounts to 283 best-known upper bounds found and

9 new best upper bounds obtained. In one case, (Scholl, m = 49), the new upper bound

is provenly optimal, as its value coincides with the best known lower bound.

Christian Blum 161

5. Conclusions and future work

In this work we have proposed an iterative beam search algorithm for the simple

assembly line balancing problem with a fixed number of work stations, SALBP-2. The

experimental evalution of the algorithm has shown that it is currently a state-of-the-art

method for this problem. Appart from producing optimal solutions, respectively best

upper bounds, for 283 out of 302 test cases, our algorithm generated new best-known

upper bounds in further 9 test cases. Encouraged by the results for the SALBP-1 variant

of the problem – as published in Blum (2008) – and the results obtained in this paper

for the SALBP-2 we intent to apply similar algorithms based on beam search to other

assembly line balancing problems.

Acknowledgements

This work was supported by grant TIN2007-66523 (FORMALISM) of the Spanish

government. Moreover, Christian Blum acknowledges support from the Ramón y Cajal

program of the Spanish Ministry of Science and Innovation.

Many thanks go to Armin Scholl for verifying the new best-known solutions found

by the algorithm proposed in this work. Finally, we would also like to express our thanks

to Cristóbal Miralles who was involved as a co-author of a similar work for the more

general assembly line worker assignment and balancing problem.

References

H. Akeba, M. Hifib and R. MHallah (2009). A beam search algorithm for the circular packing problem.

Computers & Operations Research, 36(5), 1513–1528.

E. J. Anderson and M. C. Ferris (1994). Genetic algorithms for combinatorial optimization: The assembly

line balancing problem. ORSA Journal on Computing, 6, 161–173.

C. Blum (2008). Beam-ACO for simple assembly line balancing. INFORMS Journal on Computing, 20(4),

618–627.

C. Blum and C. Miralles (2011). On solving the assembly line worker assignment and balancing problem

via beam search. Computers & Operations Research, 38(1), 328–339.

C. Blum, M. J. Blesa and M. López Ibáñez (2009). Beam search for the longest common subsequence prob-

lem. Computers & Operations Research, 36(12), 3178–3186.

W.-C. Chiang (1998). The application of a tabu search metaheuristic to the assembly line balancing

problem. Annals of Operations Research, 77, 209–227.

M. Ghirardi and C. N. Potts (2005). Makespan minimization for scheduling unrelated parallel machines: A

recovering beam search approach. European Journal of Operational Research, 165(2), 457–467.

S. Gosh and R. J. Gagnon (1989). A comprehensive literature review and analysis of the design, balancing

and scheduling of assembly systems. International Journal of Production Research, 27, 637–670.

S. T. Hackman, M. J. Magazine and T. S. Wee (1989). Fast, effective algorithms for simple assembly line

balancing problems. Operations Research, 37, 916–924.

162 Iterative beam search for simple assembly line balancing with a fixed number of work stations

A. Henrici (1994). A comparison between simulated annealing and tabu search with an example from the

production planning. In H. Dyckhoff et al., editor, Operations Research Proceedings, 498–503.

Springer Verlag, Berlin, Germany.

O. Kilincci (2010). A Petri net-based heuristic for simply assembly line balancing problem of type 2.

International Journal of Advanced Manufacturing Technology, 46, 329–338.

R. Klein and A. Scholl (1996). Maximizing the production rate in simple assembly line balancing – A

branch and bound procedure. European Journal of Operational Research, 91, 367–385.

G.-C. Lee and D. L. Woodruff (2004). Beam search for peak alignment of NMR signals. Analytica Chimica

Acta, 513(2), 413–416.

B. Lowerre (1976). The Harpy Speech Recognition System. PhD thesis, Carnegie Mellon University.

A. C. Nearchou (2007). Balancing large assembly lines by a new heuristic based on differential evolution.

International Journal of Advanced Manufacturing Technology, 34, 1016–1029.

P. S. Ow and T. E. Morton (1988). Filtered beam search in scheduling. International Journal of Production

Research, 26, 297–307.

R. Pastor and L. Ferrer (2009). An improved mathematical program to solve the simple assembly line

balancing problem. International Journal of Production Research, 47(11), 2943–2959.

R. Pastor, L. Ferrer and A. Garcı́a (2007). Evaluating optimization models to solve SALBP. In O. Gervasi

and M. L. Gavrilova, editors, Proceedings of ICCSA 2007 – International Conference on Computa-

tional Science and Its Applications, volume 4705 of Lecture Notes in Computer Science, 791–803.

Springer Verlag, Berlin, Germany.

I. Sabuncuoglu and M. Bayiz (1999). Job shop scheduling with beam search. European Journal of Opera-

tional Research, 118, 390–412.

M. E. Salveson (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6, 18–25.

A. Scholl (1994). Ein B&B-Verfahren zur Abstimmung von Einprodukt-Fließbändern bei gegebener Sta-

tionsanzahl. In H. Dyckhoff et al., editor, Operations Research Proceedings, 175–181. Springer Ver-

lag, Berlin, Germany.

A. Scholl (1999). Balancing and sequencing assembly lines. Physica Verlag, Heidelberg, Germany, 2nd

edition edition.

A. Scholl and C. Becker (2006). State-of-the-art exact and heuristic solution procedures for simple assem-

bly line balancing. European Journal of Operational Research, 168(3), 666–693.

A. Scholl and S. Voss (1996). Simple assembly line balancing – Heuristic approaches. Journal of Heuris-

tics, 2, 217–244.

H. F. Ugurdag, R. Rachamadugu and C. A. Papachristou (1997). Designing paced assembly lines with fixed

number of stations. European Journal of Operational Research, 102, 488–501.

J. M. S. Valente and R. A. F. S. Alves (2005). Filtered and recovering beam search algorithms for the early/

tardy scheduling problem with no idle time. Computers & Industrial Engineering, 48(2), 363–375.

T. Watanabe, Y. Hashimoto, L. Nishikawa and H. Tokumaru (1995). Line balancing using a genetic evolu-

tion model. Control Engineering Practice, 3, 69–76.

Christian Blum 163

Appendix A

Table 7: Detailed results of IBS for 302 test instances (Part A).

Graph m bub Iterative Beam Search (IBS) Graph m bub Iterative Beam Search (IBS)

best avg std time (s) std best avg std time (s) std

Arcus1 (83) 3 25236 25236 25236.00 (0.00) 0.56 (0.29) Barthold (148) 9 626 626 626.00 (0.00) 0.13 (0.03)

4 18927 18927 18927.00 (0.00) 6.16 (3.92) 10 564 564 564.00 (0.00) 0.10 (0.02)

5 15142 15142 15142.00 (0.00) 80.08 (16.69) 11 513 513 513.00 (0.00) 0.09 (0.00)

6 12620 12620 12620.00 (0.00) 15.52 (5.76) 12 470 470 470.00 (0.00) 0.09 (0.00)

7 10826 10826 10826.00 (0.00) 59.80 (19.89) 13 434 434 434.00 (0.00) 0.16 (0.02)

8 9554 ∗9555 9555.55 (0.51) 120.54 (63.16) 14 403 403 403.00 (0.00) 0.14 (0.01)

9 8499 8499 8500.70 (0.80) 130.73 (117.23) 15 383 383 383.00 (0.00) 0.05 (0.00)

10 7580 7580 7580.95 (0.60) 311.89 (109.87) Buxey (29) 7 47 47 47.00 (0.00) 0.46 (0.51)

11 7084 ∗7086 7086.70 (0.47) 71.13 (52.77) 8 41 41 41.00 (0.00) 0.00 (0.00)

12 6412 ∗6413 6414.10 (0.72) 362.32 (66.26) 9 37 37 37.00 (0.00) 0.01 (0.00)

13 5864 5864 5864.00 (0.00) 129.18 (12.99) 10 34 34 34.00 (0.00) 0.00 (0.00)

14 5441 5441 5441.00 (0.00) 2.02 (0.41) 11 32 32 32.00 (0.00) 0.00 (0.00)

15 5104 5104 5104.45 (0.60) 222.29 (73.92) 12 28 28 28.00 (0.00) 0.01 (0.00)

16 4850 4850 4850.00 (0.00) 33.84 (9.59) 13 27 27 27.00 (0.00) 0.01 (0.00)

17 4516 ∗4524 4526.20 (0.89) 282.49 (100.96) 14 25 25 25.00 (0.00) 0.00 (0.00)

18 4317 ∗4322 4323.20 (0.77) 291.73 (111.23) Gunther (35) 6 84 84 84.00 (0.00) 0.00 (0.00)

19 4068 ∗4073 4074.80 (1.01) 326.78 (125.49) 7 72 72 72.00 (0.00) 0.03 (0.00)

20 3882 ∗3886 3889.25 (2.05) 594.21 (204.09) 8 63 63 63.00 (0.00) 0.01 (0.00)

21 3691 3691 3691.00 (0.00) 5.58 (0.81) 9 54 54 54.00 (0.00) 0.05 (0.04)

22 3691 3691 3691.00 (0.00) 0.02 (0.00) 10 50 50 50.00 (0.00) 0.01 (0.00)

Arcus2 (111) 3 50133 50133 50133.00 (0.00) 0.09 (0.03) 11 48 48 48.00 (0.00) 0.00 (0.00)

4 37600 37600 37600.00 (0.00) 0.41 (0.02) 12 44 44 44.00 (0.00) 0.01 (0.00)

5 30080 30080 30080.00 (0.00) 0.43 (0.22) 13 42 42 42.00 (0.00) 0.01 (0.00)

6 25067 25067 25067.00 (0.00) 1.13 (0.59) 14 40 40 40.00 (0.00) 0.02 (0.00)

7 21486 21486 21486.00 (0.00) 1.76 (1.04) 15 40 40 40.00 (0.00) 0.01 (0.00)

8 18800 18800 18800.00 (0.00) 11.36 (2.86) Hahn (53) 3 4787 4787 4787.00 (0.00) 0.00 (0.00)

9 16711 16711 16711.00 (0.00) 28.03 (12.51) 4 3677 3677 3677.00 (0.00) 0.08 (0.01)

10 15040 15040 15040.00 (0.00) 38.67 (15.08) 5 2823 2823 2823.00 (0.00) 0.01 (0.00)

11 13673 13673 13673.00 (0.00) 49.47 (12.83) 6 2400 2400 2400.00 (0.00) 0.05 (0.01)

12 12534 12534 12534.00 (0.00) 43.34 (15.17) 7 2336 2336 2336.00 (0.00) 0.29 (0.01)

13 11570 11570 11570.00 (0.00) 32.60 (14.63) 8 1907 1907 1907.00 (0.00) 0.09 (0.03)

14 10747 ∗10748 10748.00 (0.00) 62.69 (16.17) 9 1827 1827 1827.00 (0.00) 0.00 (0.00)

15 10035 ∗10036 10036.40 (0.50) 112.54 (63.37) 10 1775 1775 1775.00 (0.00) 0.00 (0.00)

16 9412 ∗9416 9416.60 (0.68) 290.35 (90.83) Kilbridge (45) 3 184 184 184.00 (0.00) 0.00 (0.00)

17 8855 ∗8864 8864.90 (0.31) 87.41 (52.86) 4 138 138 138.00 (0.00) 0.01 (0.00)

18 8377 8377 8377.00 (0.00) 8.11 (1.00) 5 111 111 111.00 (0.00) 0.00 (0.00)

19 7928 7924 7925.60 (0.60) 205.09 (76.12) 6 92 92 92.00 (0.00) 0.00 (0.00)

20 7526 7524 7524.40 (0.50) 159.72 (57.92) 7 79 79 79.00 (0.00) 0.01 (0.00)

21 7188 ∗7192 7193.40 (0.82) 318.78 (89.64) 8 69 69 69.00 (0.00) 0.01 (0.00)

22 6859 6858 6858.20 (0.41) 226.94 (75.52) 9 62 62 62.00 (0.00) 0.01 (0.00)

23 6561 6560 6563.10 (1.45) 428.68 (168.53) 10 56 56 56.00 (0.00) 0.01 (0.00)

24 6289 6284 6285.65 (1.46) 311.77 (144.55) 11 55 55 55.00 (0.00) 0.01 (0.00)

25 6106 ∗6112 6114.15 (0.99) 305.50 (90.99) Lutz1 (32) 8 1860 1860 1860.00 (0.00) 0.14 (0.00)

26 5856 ∗5858 5860.45 (1.76) 661.48 (192.47) 9 1638 1638 1638.00 (0.00) 2.41 (0.34)

27 5689 5689 5689.00 (0.00) 9.29 (0.17) 10 1526 1526 1526.00 (0.00) 0.18 (0.01)

Barthol2 (148) 27 157 157 157.00 (0.00) 0.31 (0.03) 11 1400 1400 1400.00 (0.00) 0.01 (0.00)

28 152 152 152.00 (0.00) 0.44 (0.07) 12 1400 1400 1400.00 (0.00) 0.00 (0.00)

29 146 146 146.00 (0.00) 0.80 (0.32) Lutz2 (89) 9 54 54 54.00 (0.00) 0.02 (0.01)

30 142 142 142.00 (0.00) 0.15 (0.03) 10 49 49 49.00 (0.00) 0.03 (0.00)

31 137 137 137.00 (0.00) 0.67 (0.09) 11 45 45 45.00 (0.00) 0.04 (0.00)

32 133 133 133.00 (0.00) 0.57 (0.07) 12 41 41 41.00 (0.00) 0.03 (0.00)

33 129 129 129.00 (0.00) 0.52 (0.06) 13 38 38 38.00 (0.00) 0.03 (0.00)

34 125 125 125.00 (0.00) 0.47 (0.05) 14 35 35 35.00 (0.00) 0.03 (0.00)

35 121 121 121.00 (0.00) 0.94 (0.15) 15 33 33 33.00 (0.00) 0.03 (0.00)

36 118 118 118.00 (0.00) 0.87 (0.11) 16 31 31 31.00 (0.00) 0.02 (0.00)

37 115 115 115.00 (0.00) 0.92 (0.19) 17 29 29 29.00 (0.00) 0.04 (0.00)

38 112 112 112.00 (0.00) 0.76 (0.06) 18 28 28 28.00 (0.00) 0.04 (0.00)

39 109 109 109.00 (0.00) 0.70 (0.13) 19 26 26 26.00 (0.00) 0.04 (0.01)

40 106 106 106.00 (0.00) 0.91 (0.32) 20 25 25 25.00 (0.00) 0.04 (0.00)

41 104 104 104.00 (0.00) 0.72 (0.05) 21 24 24 24.00 (0.00) 0.02 (0.00)

42 101 101 101.00 (0.00) 2.77 (5.43) 22 23 23 23.00 (0.00) 0.04 (0.00)

43 99 99 99.00 (0.00) 0.84 (0.23) 23 22 22 22.00 (0.00) 0.05 (0.00)

44 97 97 97.00 (0.00) 0.59 (0.15) 24 21 21 21.00 (0.00) 0.05 (0.00)

45 95 95 95.00 (0.00) 0.76 (0.25) 25 20 20 20.00 (0.00) 0.02 (0.00)

46 93 93 93.00 (0.00) 0.68 (0.29) 26 19 19 19.00 (0.00) 0.05 (0.02)

47 91 91 91.00 (0.00) 0.67 (0.15) 27 19 19 19.00 (0.00) 0.03 (0.00)

48 89 89 89.00 (0.00) 1.17 (0.47) 28 18 18 18.00 (0.00) 0.05 (0.00)

49 87 87 87.00 (0.00) 0.83 (0.26) Lutz3 (89) 3 548 548 548.00 (0.00) 0.01 (0.00)

50 85 85 85.90 (0.31) 3.28 (10.33) 4 411 411 411.00 (0.00) 0.03 (0.00)

51 84 84 84.00 (0.00) 2.60 (2.09) 5 329 329 329.00 (0.00) 0.01 (0.00)

Barthold (148) 3 1878 1878 1878.00 (0.00) 0.01 (0.00) 6 275 275 275.00 (0.00) 0.01 (0.00)

4 1409 1409 1409.00 (0.00) 0.02 (0.00) 7 236 236 236.00 (0.00) 0.02 (0.00)

5 1127 1127 1127.00 (0.00) 0.02 (0.00) 8 207 207 207.00 (0.00) 0.04 (0.00)

6 939 939 939.00 (0.00) 0.06 (0.01) 9 184 184 184.00 (0.00) 5.54 (4.14)

7 805 805 805.00 (0.00) 0.11 (0.00) 10 165 165 165.00 (0.00) 0.09 (0.01)

8 705 705 705.00 (0.00) 0.04 (0.01) 11 151 151 151.00 (0.00) 0.06 (0.00)

164 Iterative beam search for simple assembly line balancing with a fixed number of work stations

Appendix A

Table 8: Detailed results of IBS for 302 test instances (Part B).

Graph m bub Iterative Beam Search (IBS) Graph m bub Iterative Beam Search (IBS)

best avg std time (s) std best avg std time (s) std

Lutz3 (89) 12 138 138 138.00 (0.00) 0.02 (0.00) Tonge (70) 6 585 585 585.00 (0.00) 0.03 (0.02)

13 128 128 128.00 (0.00) 0.05 (0.03) 7 502 502 502.00 (0.00) 0.06 (0.01)

14 118 118 118.00 (0.00) 0.67 (0.52) 8 439 439 439.00 (0.00) 0.04 (0.01)

15 110 110 110.00 (0.00) 0.80 (0.66) 9 391 391 391.00 (0.00) 0.05 (0.00)

16 105 105 105.00 (0.00) 0.34 (0.30) 10 352 352 352.00 (0.00) 0.06 (0.01)

17 98 98 98.00 (0.00) 0.19 (0.05) 11 320 320 320.00 (0.00) 0.06 (0.02)

18 93 93 93.00 (0.00) 0.16 (0.05) 12 294 294 294.00 (0.00) 0.09 (0.01)

19 89 89 89.00 (0.00) 0.05 (0.03) 13 271 271 271.00 (0.00) 0.06 (0.01)

20 85 85 85.00 (0.00) 0.14 (0.05) 14 251 251 251.80 (0.41) 20.25 (45.26)

21 80 80 80.00 (0.00) 0.11 (0.02) 15 235 235 235.00 (0.00) 0.35 (0.16)

22 76 76 76.00 (0.00) 4.20 (3.30) 16 221 221 221.00 (0.00) 0.97 (0.93)

23 74 74 74.00 (0.00) 0.29 (0.18) 17 208 208 208.00 (0.00) 1.02 (0.95)

Mukherje (94) 3 1403 1403 1403.00 (0.00) 0.01 (0.00) 18 196 196 196.15 (0.37) 46.76 (39.05)

4 1052 1052 1052.00 (0.00) 0.10 (0.00) 19 186 186 186.35 (0.49) 87.09 (64.62)

5 844 844 844.00 (0.00) 0.02 (0.00) 20 177 177 177.90 (0.31) 9.46 (39.39)

6 704 704 704.00 (0.00) 0.02 (0.00) 21 170 170 170.00 (0.00) 8.71 (9.43)

7 621 621 621.00 (0.00) 0.12 (0.00) 22 162 162 162.00 (0.00) 2.52 (2.45)

8 532 532 532.00 (0.00) 0.09 (0.01) 23 156 156 156.00 (0.00) 0.11 (0.04)

9 471 471 471.00 (0.00) 0.09 (0.01) 24 156 156 156.00 (0.00) 0.02 (0.00)

10 424 424 424.00 (0.00) 0.02 (0.00) 25 156 156 156.00 (0.00) 0.02 (0.00)

11 391 391 391.00 (0.00) 0.10 (0.01) Warnecke (58) 3 516 516 516.00 (0.00) 0.02 (0.00)

12 358 358 358.00 (0.00) 0.05 (0.01) 4 387 387 387.00 (0.00) 0.08 (0.08)

13 325 325 325.00 (0.00) 0.17 (0.06) 5 310 310 310.00 (0.00) 0.03 (0.00)

14 311 311 311.00 (0.00) 0.08 (0.01) 6 258 258 258.00 (0.00) 0.10 (0.06)

15 288 288 288.00 (0.00) 0.09 (0.02) 7 222 222 222.00 (0.00) 0.03 (0.00)

16 268 268 268.00 (0.00) 0.20 (0.02) 8 194 194 194.00 (0.00) 0.05 (0.01)

17 251 251 251.00 (0.00) 0.45 (0.05) 9 172 172 172.00 (0.00) 2.40 (2.28)

18 239 239 239.00 (0.00) 0.24 (0.02) 10 155 155 155.00 (0.00) 0.05 (0.01)

19 226 226 226.00 (0.00) 0.03 (0.01) 11 142 142 142.00 (0.00) 0.04 (0.00)

20 220 220 220.05 (0.22) 57.07 (43.23) 12 130 130 130.00 (0.00) 0.07 (0.01)

21 208 208 208.00 (0.00) 0.12 (0.00) 13 120 120 120.00 (0.00) 0.08 (0.01)

22 200 200 200.00 (0.00) 0.13 (0.06) 14 111 111 111.00 (0.00) 0.29 (0.24)

23 189 189 189.00 (0.00) 0.12 (0.02) 15 104 104 104.00 (0.00) 0.27 (0.13)

24 179 179 179.00 (0.00) 0.48 (0.41) 16 98 98 98.00 (0.00) 0.08 (0.01)

25 172 172 172.00 (0.00) 0.43 (0.18) 17 92 92 92.00 (0.00) 0.26 (0.14)

26 171 171 171.00 (0.00) 0.27 (0.03) 18 87 87 87.00 (0.00) 0.27 (0.14)

Sawyer (30) 7 47 47 47.00 (0.00) 0.14 (0.11) 19 84 84 84.00 (0.00) 0.10 (0.06)

8 41 41 41.00 (0.00) 0.06 (0.03) 20 79 79 79.00 (0.00) 0.13 (0.03)

9 37 37 37.00 (0.00) 0.03 (0.01) 21 76 76 76.00 (0.00) 0.08 (0.04)

10 34 34 34.00 (0.00) 0.02 (0.00) 22 73 73 73.00 (0.00) 0.53 (0.36)

11 31 31 31.00 (0.00) 0.82 (0.85) 23 69 69 69.00 (0.00) 18.10 (21.25)

12 28 28 28.00 (0.00) 0.03 (0.01) 24 66 66 66.90 (0.31) 2.88 (9.10)

13 26 26 26.00 (0.00) 0.02 (0.00) 25 64 ∗65 65.00 (0.00) 12.30 (11.87)

14 25 25 25.00 (0.00) 0.02 (0.00) 26 64 64 64.00 (0.00) 0.05 (0.01)

Scholl (297) 25 2787 2787 2787.00 (0.00) 37.11 (6.11) 27 60 60 60.00 (0.00) 1.61 (0.73)

26 2680 2680 2680.00 (0.00) 32.56 (4.71) 28 59 59 59.00 (0.00) 0.16 (0.06)

27 2580 2580 2580.00 (0.00) 58.06 (8.65) 29 56 56 56.00 (0.00) 1.43 (1.15)

28 2488 2488 2488.00 (0.00) 53.78 (12.43) Wee-Mag (75) 3 500 500 500.00 (0.00) 0.01 (0.00)

29 2402 2402 2402.00 (0.00) 45.57 (9.93) 4 375 375 375.00 (0.00) 0.03 (0.00)

30 2322 2322 2322.30 (0.47) 96.86 (53.36) 5 300 300 300.00 (0.00) 0.02 (0.00)

31 2247 ∗2248 2248.00 (0.00) 51.23 (4.32) 6 250 250 250.00 (0.00) 0.03 (0.00)

32 2177 2177 2177.50 (0.51) 91.50 (63.17) 7 215 215 215.00 (0.00) 0.01 (0.00)

33 2111 2111 2111.80 (0.41) 57.19 (39.95) 8 188 188 188.00 (0.00) 0.04 (0.01)

34 2049 2049 2049.20 (0.41) 117.47 (53.03) 9 167 167 167.00 (0.00) 0.01 (0.00)

35 1991 1991 1991.00 (0.00) 95.54 (17.19) 10 150 150 150.00 (0.00) 0.08 (0.02)

36 1935 ∗1936 1936.00 (0.00) 61.22 (8.78) 11 137 137 137.00 (0.00) 0.06 (0.01)

37 1883 1883 1883.05 (0.22) 140.57 (34.46) 12 125 125 125.00 (0.00) 0.10 (0.02)

38 1834 1834 1834.00 (0.00) 125.92 (34.53) 13 116 116 116.00 (0.00) 0.02 (0.00)

39 1787 1787 1787.35 (0.49) 192.12 (55.85) 14 108 108 108.00 (0.00) 0.54 (0.60)

40 1742 1742 1742.00 (0.00) 153.02 (29.66) 15 100 100 100.00 (0.00) 0.24 (0.19)

41 1700 1700 1700.00 (0.00) 81.51 (18.06) 16 94 94 94.00 (0.00) 0.05 (0.01)

42 1659 ∗1660 1660.00 (0.00) 146.58 (32.11) 17 89 89 89.00 (0.00) 0.42 (0.28)

43 1621 1621 1621.00 (0.00) 149.08 (21.75) 18 87 87 87.00 (0.00) 0.07 (0.01)

44 1584 1584 1584.15 (0.37) 127.52 (54.06) 19 85 85 85.00 (0.00) 0.08 (0.02)

45 1549 1549 1549.00 (0.00) 150.65 (32.59) 20 77 77 77.00 (0.00) 0.13 (0.04)

46 1515 ∗1516 1516.00 (0.00) 121.28 (20.06) 21 72 72 72.00 (0.00) 0.08 (0.01)

47 1483 ∗1484 1484.00 (0.00) 165.44 (28.64) 22 69 69 69.00 (0.00) 0.06 (0.01)

48 1452 1452 1452.70 (0.47) 151.98 (60.76) 23 67 67 67.00 (0.00) 4.34 (3.58)

49 1427 1424 1424.00 (0.00) 113.46 (22.47) 24 66 66 66.00 (0.00) 0.25 (0.14)

50 1394 1394 1394.85 (0.37) 143.63 (53.48) 25 65 65 65.00 (0.00) 11.36 (26.58)

51 1386 1386 1386.00 (0.00) 2.23 (0.09) 26 65 65 65.00 (0.00) 0.05 (0.01)

52 1386 1386 1386.00 (0.00) 0.17 (0.01) 27 65 65 65.00 (0.00) 0.02 (0.00)

Tonge (70) 3 1170 1170 1170.00 (0.00) 0.01 (0.00) 28 64 64 64.00 (0.00) 0.02 (0.00)

4 878 878 878.00 (0.00) 0.02 (0.00) 29 63 63 63.00 (0.00) 0.02 (0.00)

5 702 702 702.00 (0.00) 0.05 (0.02) 30 56 56 56.00 (0.00) 0.07 (0.00)

