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ABSTRACT 

 
 
 
 

ANT COLONY OPTIMIZATION FOR 
THE SINGLE MODEL U-TYPE 

ASSEMBLY LINE BALANCING PROBLEM 
 

Arda Alp 
M.S. in Industrial Engineering 

Supervisor:  Prof. Dr. İhsan Sabuncuoğlu 
January, 2004 

 

  The assembly line is a production line in which units move continuously through a 

sequence of stations. The assembly line balancing problem is the allocation of tasks 

to an ordered sequence of stations subject to the precedence constraints with the 

objective of minimizing the number of stations. In a U-line the line is configured into 

a U-shape topology. 

  In this research, a new heuristic, Ant Colony Optimization (ACO) meta-heuristic, 

and its variants are proposed for the single model U-type assembly line balancing 

problem (UALBP). We develop a number of algorithms that can be grouped as:       

(i) direct methods, (ii) modified methods and (iii) methods in which ACO approach is 

augmented with some metaheuristic.  

  We also construct an extensive experimental study and compare the performance of 

the proposed algorithms against the procedures reported in the literature. 

 

Keywords: U-type assembly line balancing problem, Ant Colony Optimization meta-

heuristic. 
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ÖZET 
 
 
 
 

TEK MODELLİ U-TİPİ  
MONTAJ HATTI DENGELENMESİ PROBLEMİ İÇİN  

KARINCA KOLONİSİ OPTİMİZASYONU 
 

Arda Alp 
Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi:  Prof. Dr. İhsan Sabuncuoğlu 
Ocak, 2004 

 

  Montaj hattı ürünlerin sıralı olarak istasyonlardan geçtiği bir üretim hattıdır. Tek 

modelli montaj hattı dengelenmesi problemi istasyon sayısının en küçüklenmesi 

amacına yönelik olarak işlerin öncüllük kısıtı dikkate alınarak sıralı istasyonlara 

atanmasıdır. U-tipi hatta ise üretim hattı U şeklinde düzenlenmiştir. 

  Bu çalışmada yeni bir sezgisel olan Karınca Kolonisi Optimizasyonu (KKO) ve 

çeşitleri U-tipi montaj hattı dengelenmesi problemi için önerilmiştir. Geliştirilen 

algoritmalar üç grup altında incelenebilir: (i) direkt metodlar, (ii) modifiye edilmiş 

metodlar ve (iii) KKO yaklaşımının diğer bazı sezgisellerle beraber kullanıldığı 

metodlar. 

  Ayrıca kapsamlı bir deneysel çalışma yapılmış ve önerilen algoritmaların 

performansı literatürdeki diğer metodlarla karşılaştırılmıştır. 

 

Anahtar sözcükler: U-tipi montaj hattı dengelenmesi problemi, Karınca Kolonisi 

Optimizasyonu meta-sezgiseli. 

 

 

 
 

                   iv 



 
 
 

 

 

 

 

 

 

 

To my family, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                v 



 
 
 

 

 

 

 

Acknowledgement 
 

  I would like to express my deepest gratitude to my supervisor Prof. Dr. İhsan 

Sabuncuoğlu for his instructive comments in the supervision of the thesis and also for 

all the encouragement and trust during my graduate study. 

  I am also indebted to Prof. Dr. Erdal Erel for his invaluable guidance, 

recommendations and everlasting interest for this research and for my future work.  

  I would like to express my special thanks and gratitude to Asst. Prof. Dr. Mehmet 

Taner for showing keen interest to the subject matter, for his remarks, 

recommendations and accepting to read and review the thesis. 

  I am grateful to Asst. Prof. Bahar Yetiş Kara for her understanding and her 

recommedations and also to Asst. Prof. Oya Karaşan for her suggestions and her 

guidance. 

  I would like to express my deepest thanks to Banu Yüksel for all her encouragement 

and academic support. I would like to extend my sincere thanks to Savaş Çevik, Nur 

Beğen, Emrah Zarifoğlu and Pınar Tan. Their endless morale support and friendship 

during all my desperate times, makes me to face with all the troubles.  

  Finally, I would like to express my gratitude to my family for their love, 

understanding, suggestions and their endless support. I owe so much to my family. 

 

 
 

 
 

            vi 



 
 
 

 

 
 
 
Contents 
 
 

Abstract..............................................................................................................iii 

Özet .....................................................................................................................iv 

Acknowledgement.............................................................................................vi 

Contents ............................................................................................................vii 

List of Figures....................................................................................................xi 

List of Tables ...................................................................................................xiv 

1   Introduction...................................................................................................1 

2   Literature Survey........................................................................................10 

     2.1   Ant Colony Optimization Meta-Heuristic ...........................................10 

     2.2   U-Type Line Balancing ........................................................................21 

3   Ant Algorithms and Applications.............................................................28 

     3.1   Introduction...........................................................................................29 

     3.2   Biological Fundamentals ......................................................................30 

     3.3   The Ant Colony Optimization Approach.............................................35 

             3.3.1   Similarities and Difference with Real Ants ..............................36 

     3.4   The ACO Meta-heuristic ......................................................................38 

     3.5   Some Applications of ACO Algorithms ..............................................42 

 
 

            vii 



 
 
 

 

4   Proposed Approach: Ant Colony Optimization .....................................43 

     4.1   Overview of the Proposed Approaches................................................43 

              4.1.1   Motivation.................................................................................43 

              4.1.2   Fundamentals............................................................................44 

                         4.1.2.1   The Graph Representation of the Problem ................45 

                         4.1.2.2   The Autocatalytic Process..........................................46 

                         4.1.2.3   The Greedy Force.......................................................46 

                         4.1.2.4   The Constraint Satisfaction ........................................48 

              4.1.3   Generation of a Solution...........................................................49 

     4.2   Proposed Methods ................................................................................56 

             4.2.1   Ant System (AS)........................................................................56 

             4.2.2   Ant System with Elitist Strategy (ASelite) .................................61 

             4.2.3   Ant System with Ranking (ASrank)............................................62 

             4.2.4   Ant Colony System (ACS)........................................................63 

             4.2.5   Modified Ant Colony System (ACS) with Random Search ...68 

             4.2.6   A New Ant Colony Optimization (ACO) Method ..................76 

                        Version 1 ....................................................................................77 

                        Version 2 ....................................................................................83 

             4.2.7   Ant Colony System Augmented with Simulated Annealing      
                        (ACS with SA)...........................................................................86 
 
             4.2.8   Ant Colony System Augmented with Beam Search  
                        (ACS with BS) ...........................................................................86 
 

 

 
 

            viii 



 
 
 

 

5   Experimental Setting..................................................................................88 

     5.1   Experimental Setting for AS ................................................................94 

             5.1.1   Number of Ants .........................................................................94 

             5.1.2   Parameters Setting .....................................................................96 

     5.2   Experimental Setting for ASelite............................................................98 

             5.2.1   Number of Ants .........................................................................98 

             5.2.2   Parameters Setting ...................................................................100 

     5.3   Experimental Setting for ACS............................................................102 

             5.3.1   Number of Ants .......................................................................102 

             5.3.2   Parameters Setting ...................................................................104 

     5.4   Experimental Setting for Modified ACS with Random Search ........106 

     5.5   Experimental Setting for New ACO Approach, Version 1 ...............106 

             5.5.1   Number of Ants .......................................................................106 

             5.5.2   Parameters Setting ...................................................................108 

     5.6   Experimental Setting for New ACO Approach, Version 2 ...............113 

             5.6.1   Number of Ants .......................................................................113 

             5.6.2   Parameters Setting ...................................................................115 

6   Computational Results .............................................................................116 

     6.1   Computational Results for AS............................................................118 

     6.2   Computational Results for ASelite .......................................................123 

     6.3   Computational Results for ACS.........................................................128 

     6.4   Computational Results for Modified ACS with Random Search .....133 

 
 

            ix 



 
 
 

 

     6.5   Computational Results for New ACO Approach, Version 1 ............134 

     6.6   Computational Results for New ACO Approach, Version 2 ............141 

7   Conclusion .................................................................................................147 

Bibliography ...................................................................................................151 

Appendix .........................................................................................................159 

     A1   Appendix A.........................................................................................159 

     A2   Appendix B .........................................................................................163 

     A3   Appendix C .........................................................................................165 

     A4   Appendix D.........................................................................................168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

            x 



 
 
 

 

 

 

List of Figures 
 
 

1.1   U-shaped line with multi-function workers. ...............................................3 

1.2   Example of a precedence graph...................................................................5 

1.3    Solution of example problem for c=10.. ....................................................6 

3.1    Single Bridge Experiment.. ......................................................................31 

3.2    Double Bridge Experiment.......................................................................33 

3.3    A general description of ACO meta-heuristic. ........................................41 

4.1    Jackson problem with 11 tasks.................................................................47 

4.2    A flowchart of the proposed algorithm.. ..................................................50 

4.3    The task allocation for Jackson problem, c = 10. ....................................55 

4.4    Flowchart of Ant System..........................................................................60 

4.5.a  Optimal task allocation for the Jackson problem, c =10. 
          Location of tasks is not given.. ................................................................65 
 
4.5.b  Optimal task allocation for the Jackson problem, c =10.  
          Location of  tasks is given.. .....................................................................65 
 
4.6    Flowchart of Ant Colony System.............................................................67 

4.7    Scholl and Klein’s (1999) optimal task allocation for Gunther problem.70 

4.8    Two similar optimal allocation for Jackson problem, c =10...................73 

4.9.a  Trail accumulation for ACS,  
          α =1, β =1, ρ1 =ρ2 = 0.4, q0 =0.2, initial trail =1 .................................80 
 

 
 

            xi 



 
 
 

 

4.9.b Trail accumulation for the new method, 
         α =1, β =1, ρ1 = ρ2 =0.9, q0 =0.3, initial trail =1 ..................................80 
 
4.9.c Trail accumulation for the new method,  
         α =1, β =1, ρ1 = ρ2 =0.95, q0 =0.3, initial trail =1. ...............................80 
 
4.9.d Trail accumulation for the new method,  
         α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.3, initial trail =1. ...............................80 
 
4.9.e Trail accumulation for the new method,  
         α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.8, initial trail =1. ...............................80 
 
4.10  Scholl and Klein’s (1999) optimal task allocation for Buxey problem ..81 

5.1.a. Number of replications required to obtain the optimum number  
          of stations. Jackson  problem with 11 tasks, C=10.................................95 
 
5.1.b. Number of replications required to obtain the optimum number 
          of stations. Gunther problem with 35 tasks, C=54.. ...............................95 
 
5.1.c. Number of tours required to obtain the optimum number  
          of stations. Barthold problem   with 148 tasks, C=805.. ........................95 
 
5.2.a. Number of replications required to obtain the optimum number  
          of stations. Jackson  problem with 11 tasks, C=10.................................99 
 
5.2.b. Number of replications required to obtain the optimum number 
          of stations. Gunther problem with 35 tasks, C=54.. ...............................99 
 
5.2.c. Number of tours required to obtain the optimum number  
          of stations. Barthold problem   with 148 tasks, C=805.. ........................99 
 
5.3.a. Number of replications required to obtain the optimum number  
          of stations. Jackson  problem with 11 tasks, C=10...............................103 
 
5.3.b. Number of replications required to obtain the optimum number 
          of stations. Gunther problem with 35 tasks, C=54.. .............................103 
 
5.3.c. Number of tours required to obtain the optimum number  
          of stations. Barthold problem   with 148 tasks, C=805.. ......................103 
 
5.4.a. Number of replications required to obtain the optimum number  
          of stations. Jackson  problem with 11 tasks, C=10...............................107 
 

 
 

            xii 



 
 
 

 

5.4.b. Number of replications required to obtain the optimum number 
          of stations. Gunther problem with 35 tasks, C=54.. .............................107 
 
5.4.c. Number of tours required to obtain the optimum number  
          of stations. Barthold problem   with 148 tasks, C=805.. ......................107 
 
5.5.a. Number of replications required to obtain the optimum number  
          of stations. Jackson  problem with 11 tasks, C=10...............................114 
 
5.5.b. Number of replications required to obtain the optimum number 
          of stations. Gunther problem with 35 tasks, C=54.. .............................114 
 
5.5.c. Number of tours required to obtain the optimum number  
          of stations. Barthold problem   with 148 tasks, C=805.. ......................114 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

            xiii 



 
 
 

 

 

List of Tables 
 
 

2.1     List of applications of ACO algorithms to static combinatorial  
          optimization problems. ............................................................................19 
 
2.2     List of applications of ACO algorithms to dynamic combinatorial    
          optimization problems. ............................................................................20 
 
2.3     Summary of work done on the U-type assembly line problems.. ..........27 

4.1     Forward and backward positional weights for Jackson problem. ..........48 

4.2     Ranking of most possible location alternatives for each task  
          depending on T2 matrix. ..........................................................................71 
 
4.3     Ranking of most possible location alternatives for each task  
          depending on trail matrix.........................................................................82 
 
4.4      Ranking of most possible location alternatives for each task  
          depending on trail matrix.........................................................................85 
 
5.1     Fine tune-up of the parameters α, β, and ρ  for AS. ...............................97 

5.2     Fine tune-up of the parameters α, β, and ρ  for ASelite..........................101 

5.3     Fine tune-up of the parameters β, q0, ρ1 and ρ2  for ACS. ....................105 

5.4     Fine tune-up of parameters α, q0, ρ1 and ρ2   
          for New ACO Approach, Version 1......................................................110 
 
5.5     Fine tune-up of the parameters β, q0, ρ1 and ρ2   
          for New ACO Approach, Version 1......................................................111 
 
5.6     Fine tune-up of parameters α, β, q0, ρ1 and ρ2   
          for New ACO Approach, Version 1......................................................112 
 
6.1     Computational Results of Ant System. .................................................119 

6.2     Computational Results of ASelite. ..........................................................124 
 
 

            xiv 



 
 
 

 

6.3      Computational Results of ACS. ...........................................................129 

6.4      Computational Results of the New ACO Approach, Version 1..........136 

6.5      Computational Results of the New ACO Approach, Version 2..........143 

A.1.1  Trail matrix gathered for tour number 10. ...........................................159 

A.1.2  Trail matrix gathered for tour number 100. .........................................160 

A.1.3  Trail matrix gathered for tour number 500. .........................................161 

A.1.4  Trail matrix gathered for tour number 1000. .......................................162 

A.2.1  T2 matrix gathered for tour number 5000............................................163 

A.2.2  T2 matrix gathered for tour number 10000..........................................164 

A.3.1  Trail matrix gathered for tour number 100. .........................................165 

A.3.2  Trail matrix gathered for tour number 250. .........................................166 

A.3.3  Trail matrix gathered for tour number 1000. .......................................167 

A.4.1  Trail matrix gathered for tour number 100. .........................................168 

A.4.2  Trail matrix gathered for tour number 250. .........................................169 

A.4.3  Trail matrix gathered for tour number 1000. .......................................170 

 

 

 
 

            xv 



 1 

 

 

 

 

 

Chapter 1 
 
 
 

Introduction 
 
 

The assembly line is a production line in which the units move 

continuously through a sequence of stations where the assembly operation is 

performed. Typical examples of these assembly lines are car assembly, electronic 

appliances and computer assemblies. The first example of an assembly line is 

credited to Henry Ford who developed such a line and produced Ford automobiles 

in 1913. However after 1913, for over 40 years only trial-and-error methods were 

used for balancing lines. The first analytical statement of the assembly line 

balancing problem was made by Salveson and it was published in 1955 (Salveson, 

1955).  Many researchers became interested in assembly line balancing after the 

1950s. 

In todays business environment, demand for products fluctuates 

significantly, and is very difficult to forecast. It is especially difficult for the mass 

production line to quickly respond to the fluctuating demand. The design of such a 

line requires grouping of tasks into stations such that line efficiency is maximized. 

This problem is known as the simple assembly line balancing problem. 

Traditionally, these lines are arranged in a straight line. However, as a 

consequence of the just-in-time production principles, recently many lines are 
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being arranged in a U-line. Arranging the stations in a U-line has several 

advantages over the traditional configuration (Scholl and Klein, 1999). Demand 

fluctuations can be tackled easily by the U-line relative to the straight-line version 

due to increased search space. Thus, there are more possibilities for grouping 

tasks into stations on a U-line. 

As stated by Scholl and Klein (1999), the traditional type of ‘straight’ 

assembly lines have some problems. These are: monotone and boring type of 

work, low-level skilled, unmotivated operators, inflexibility of the production 

system concerning failures, the sensitivity to changing demand rates, and large 

inventories due to rigid output rates. In order to overcome these problems, many 

firms nowadays incorporate JIT principle and group technology into assembly line 

production, and these modern assembly lines are often organized as a ‘U-line’. 

The U-line balancing problem considered in this thesis is the U-shaped 

line with constant operation times, no waiting times, and no walking times. The 

objective is to find a proper allocation of tasks to the stations that require 

minimum number of stations. Every station processes only one item in a given 

cycle time. Cycle time is defined as the time interval between two successive 

outputs. The sum of all necessary operation and processing times are intended to 

be equal among the stations. This is a synchronous process of items flowing 

through the stations and no items exist between adjacent stations. This concept is 

called as a single-unit production and conveyance (“ikko-nagashi,” in Japanese).  

In (JIT) production system, this concept is applied to a production line 

with conveyors. U-lines are balanced again when production requirements change. 

This is much easier with U-lines than with traditional straight lines. This requires 

operators to be multi-skilled to operate several different machines or processes.  

To accomplish this goal with a low production cost, a U-shaped layout with multi-

function workers is used. As seen in Figure 1.1, this multi-function worker is 
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responsible from multiple tasks. In a U-shaped layout, stations are organized in 

such a way that the same worker can handle tasks, which are located both at the 

entrance side and at the exit side. First worker handles tasks both at the entrance 

and the exit. A new item can enter the system only after one product is completed. 

Thus work-in-process in the system stays constant in these systems. 

 

 

 

 

 

 

 

 

 

When compared with traditional layout, fewer workers are allocated to 

machines in the U-shaped layout. Thus this type of allocation is more effective 

when demand fluctuates since it is easier to reallocate workers in order to balance 

the cycle time of workers. This is the reason why U-shaped layout allows for 

adapting to the changes in the circumstances more easily than the traditional 

layout. Miltenburg and Wijngaard (1994) note advantages of U-lines over straight 

lines as follows: 

• Visibility and communication are improved because operators work close to 

each other.  

• Multiskilling allows more operators to understand the relationships between 

operations and participate in efforts to improve the process.  

Figure 1.1: U-shaped line with multi-function workers.   

Station 1 Station 2 Station  j+1 Station  J 
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• The output rate of a U-line can be adjusted by adding or removing workers. 

While, rebalancing on a traditional line is more difficult because of its low-

skilled operators. 

• The number of stations required on a U-line is less than or equal to that 

required on a traditional line. For a U-line there are more alternatives for 

grouping tasks. 
 

The line balancing problem in a U-shaped line is more complex than 

balancing a traditional straight line because there are more possibilities to group 

the tasks while moving forward, backward or simultaneously in both directions. 

Based on this fact, the number of stations required on a U-line is never more than 

that required on a traditional line. 

Scholl and Klein (1999) define the U-type assembly line balancing problem 

(UALBP) as an extension of the single assembly line balancing problem (SALBP) 

with respect to the precedence constraints. The authors describe three problem 

versions: 

• UALBP-1: Minimize the number m of stations, given the cycle time c. 

• UALBP-2: Minimize the cycle time c, given the number m of stations. 

• UALBP-E: Maximize the line efficiency E for c and m being variable. 

Most of the characteristics of SALBP defined by Baybars (1986) are also valid 

for UALBP. These are: 

• A single product is manufactured in large quantities. The task  j = 1,…, n takes 

deterministic operation times tj , and tsum denotes the sum of all operation 

times. 

• The tasks are partially ordered by precedence relations. These relations 

defined as precedence network with the tasks denoted by nodes and the 

precedence relations denoted by directed arcs. Therefore, for an arc (i, j), task i 

must be finished before task j can be started. In Figure 1.2, an example of a 
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precedence network is given. The task numbers are written on the nodes and 

the duration of operations are written as weight of nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Each task can only be assigned to only one station. Sk denotes the set of tasks 

assigned to station k = 1,…, m .  

• T(Sk) denotes the station time, the total operation time of tasks assigned to 

station k, and must not exceed the cycle time: 

 
( ) mkctST

kSj
jk ,...,1=≤= ∑

∈
        (1.1) 

In SALBP, all direct or indirect predecessors of task j, performed at station 

k, have to be assigned to one of the stations 1,…, k. A task and its indirect 

predecessors or successors can share the same station only if all intermediate tasks 

defined with this precedence relationship are also in the same station. For 

example, in Figure 1.2, task 3 and task 8 can only be at the same station if tasks 5 

and 6 are also assigned to the same station. 

In UALBP, each task and any of its predecessors and/or successors can 

share the same station but it must be satisfied that, all predecessors and/or 

successors of a task j, performed at station k, have to be assigned to one of the 

stations 1,…, k. (Miltenburg and Wijngaard, 1994). 

Figure 1.2: Example of a precedence graph. Scholl and Klein (1999) 
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Scholl and Klein (1999) state that the optimal line efficiency of a SALBP 

instance is a lower bound on the optimal line efficiency, E, of the corresponding 

UALBP instance due to above given relaxed precedence constraints. Thus a 

higher efficiency is possible with UALBP (Line efficiency directly related with 

smoothness of station utilization). The line efficiency is defined with the 

following formulation: 

 

100×
×

=
cm

tE sum %               (1.2) 

 

 

 

 

 

 

 

 

 

          

 

In Figure 1.3 the optimal solution of UALBP-1 for c = 10, with 6 stations 

is given. In station 3, S3 = {3, 9}, the tasks 3 and 9 are processed. A unit product 

crosses the station 3 from left to right (the task 3 is performed at that time) after its 

predecessors have been processed in station 1 and 2, respectively and returns to 

station 3 from right to left (the task 9 is performed at that time) after all the 

predecessors of task 9 have been processed in stations 1-6. Then the successors of 

task 9 are performed in stations 2 and 1, respectively. 

Figure 1.3: Solution of example problem for c=10. Scholl and Klein (1999) 
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When Scholl and Klein’s (1999) optimal solution of for SALBP-1           

(S1 = {1}, S2 = {2, 4}, S3 = {3, 5}, S4 = {6, 7}, S5 = {8, 10}, S6 = {9, 11}, S7 = {12}; 

is compared with the optimal solution of UALBP-1, it is seen that the line 

efficiency of the U-line is 100% (tsum = 60, 100
106

60
×

×
=E ) and the line 

efficiency of the straight line is 85.7% (tsum = 60, 100
107

60
×

×
=E ).  

 In order to find a simple lower bound on minimal number of stations for 

UALBP-1 and SALBP-1 Scholl and Klein (1999) define  ctLB sum /=  where 

 x  is the smallest integer larger than x. For the given example the LB is 6. 

 We consider the U-line balancing problem such that it is the U-shaped line 

with constant operation times, no waiting times, and no walking times. Our 

objective is to minimize the number of stations, given the cycle time c. This can 

be achieved by finding a proper allocation of tasks to the stations that require 

minimum number of stations.  

In this thesis, a new heuristic, an Ant Colony Optimization (ACO) meta-

heuristic, and its variants are proposed for the single model U-type assembly line 

balancing problem (UALBP). In fact, there are two ant algorithms proposed for 

the single assembly line balancing problem (Bautista and Pereira, 2002; 

McMullen and Tarasewich, 2003). However, this study is the first application of 

ACO meta-heuristic to U-shaped production lines. The work by McMullen and 

Tarasewich (2003) considers only six problems (ranging in size from 21 to 74 

tasks) and their objective function is different from our objective function. 

Bautista and Pereira (2002) consider the same objective function of minimizing 

the number of stations given a fixed cycle time, but this model is proposed for 

only the single assembly line balancing problem (SALBP). 

Even though several heuristics have been developed for SALBP (Erel and 

Sarin, 1998) for single model UALBP, there are only three heuristics in the 

literature. These are: Ranked Positional Weight Technique (RPWT)-based 
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heuristic (Miltenburg and Wijngaard, 1994), branch and bound based heuristic 

(Scholl and Klein, 1999) and simulated annealing based heuristic (Erel, 

Sabuncuoglu and Aksu, 2001). 

Since the first ant algorithm developed by Dorigo and colleagues (1991), 

several variants of the Ant System (AS) have also been proposed in the literature. 

In general, ACO is an umbrella term for a number of similar metaheuristics: Ant 

System (AS), Ant System with Elite Strategy (ASelite), Ant System with Ranking 

(ASrank), Ant Colony System (ACS), MAX-MIN Ant System (MMAS) are some of 

these meta-heuristics. 

In this research, we develop a number of algorithms that can be grouped 

as: (i) direct methods, (ii) modified methods and (iii) methods in which ACO 

approach is augmented with some metaheuristic. The first group includes 

algorithms such as AS, ASelite, ASrank, and ACS that is directly applied to UALBP. 

No modification is done in the structure of the algorithms. The second group 

includes new methods in which the structure of the algorithms in the first group is 

modified. The last group includes two specialized methods that ACO is 

augmented with simulated annealing (SA) and beam search (BS). 

AS is the first algorithm used to solve UALBP. Later, we apply ASelite, and 

ACS that perform better than AS. However, none of the algorithms give sufficient 

performance for UALBP. Structure of these algorithms, especially ASelite, ASrank, 

are not suitable for UALBP. 

Actually this is related with the topology of the cost function. Hertz and 

Widmer (2003) state that the topology of the cost function should not be too flat 

for the heuristics for searching the optimal solution. The cost function can be 

considered as an altitude with mountains, valleys and plateaus. If the cost function 

is too flat, it is difficult for the search algorithms to escape from the large plateaus 

to fall into the valleys. To tackle this problem Hertz and Widmer (2003) suggest 
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adding a component to the cost function to discriminate the solutions with the 

same original cost function value. 

The algorithms in the second group are modified from the first group of 

algorithms to tackle this problem. Their task selection and pheromone trail update 

mechanisms are totally modified and improved. In general, the performance of the 

second group is better than the first group.  

The third group includes algorithms in which ACO approach is augmented 

with a metaheuristic. One of them is a modified version of ACS augmented with 

SA and the other one is a modified version of ACS augmented with beam search 

(BS). ACS with SA performs poor in terms of computational time. Even for the 

small problems (Jackson with 11 elements) the computation time ranges between 

2.53 hours and 164.63 hours. Even though the structure of beam search is very 

suitable for ACS, its performance is poor in terms of computational time. It 

requires excessive amount of time to complete a single tour.  

 The rest of the thesis is as follows. The relevant literature on the U-type 

line-balancing problem and the ACO meta-heuristic are given in Chapter 2. 

Detailed information about the ACO meta-heuristic is given in Chapter 3. This is 

followed by the structure of the proposed approaches in Chapter 4. Experimental 

setting is explained in Chapter 5. Computational results are presented in Chapter 

6. Conclusions and future research directions are given in Chapter 7. 
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Chapter 2 
 
 
 

Literature Survey 
 
 
2.1 Ant Colony Optimization Meta-Heuristic 

Today, heuristics are widely used to solve real life problems. Especially, in 

the last three decades (Zanakis, Evans, Vazacopoulos, 1989), researchers have 

applied heuristics to produce near optimal solutions to their difficult optimization 

problems. 

Heuristics from nature take inspiration from biology, physics, and social 

systems. These heuristics utilize some analogies with natural or social systems 

and use these analogies to develop non-deterministic heuristic methods for NP-

hard combinatorial optimization problems (Glover and Greenberg, 1989; Reeves, 

1993). Most heuristic algorithms use a problem specific mechanism. Such a 

mechanism may employs a single agent or more agents (neurons, particles, 

chromosomes, ants, etc). This agent may operate for a certain number of repeated 

trials to construct a solution or to improve a given solution. In case of multiple 

agents, these agents operate with a mechanism of competition-cooperation. In 

fact, these agents work with a cooperation, however each agent aims to find the 

best solution and beat the other agents. Some of these algorithms are genetic 

algorithms (GA), evolution strategies (ES), simulated annealing (SA), tabu search 
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(TS), neural nets (NN), immune networks (IN), ant colony optimization 

algorithms (ACO) (Reeves, 1993; Colorni, Dorigo, Maffioli, Maniezzo, Righini 

and Trubian, 1996; Colorni, Dorigo and Maniezzo, 1992).  

The first ant algorithm is proposed by Colorni, Dorigo and Maniezzo 

(1991 and 1992) and it is named as Ant System (AS). It is a multi-agent approach, 

a class of distributed algorithms for combinatorial optimization. Like other ant 

type heuristics the main characteristics of this heuristic is simulating or imitating 

the behaviour of a group of ants. These ants work cooperatively by using simple 

communication to solve an optimization problem. First use of AS was to solve the 

well known Travelling Salesman Problem (TSP). Dorigo, Maniezzo and Colorni 

(1991a, 1991b) describe their methodology as a combination of distributed 

computation, positive feedback and constructive greedy heuristic. The authors 

apply their methodology to the classical TSP that the proposed system quickly 

provides very good solutions. Colorni, Dorigo and Maniezzo (1991 and 1992) 

state that this new approach can be used to solve any Combinatorial Optimization 

Problem (COP). The authors also state that a proper representation must be found 

as given below: (i) the problem (a graph representation which is suitable for a 

search by many simple agents); (ii) the autocatalytic process1; (iii) the heuristic 

rule that acts as a greedy force and allows a constructive definition of the solution, 

(iv) the constraint satisfaction method or tabu list. The authors apply AS to the 

problems such as Satisfiability (SAT), Quadratic Assignment (QAP) and Job-

Shop Scheduling (JSP) by using representation rules. 

Later, Dorigo, Maniezzo and Colorni (1996) apply AS to the classical 

TSP. They discuss the parameter selection process and compare AS with TS and 

SA on TSP. They also illustrate how the AS can be applied to other optimization 

problems (asymmetric TSP, QAP, JSP). Finally they discuss important 
                                                           
1 Due to Dorigo, an autocatalytic process (ex: positive feedback) is a process that reinforces itself 
and causes very rapid convergence. If no limitation is given, this leads to combinatorial explosion.  
Dorigo, M., Maniezzo, V., Colorni, A. (1996) 
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characteristics of proposed methodology in terms of global data structure, 

distributed communication and probabilistic transitions. The authors state its main 

characteristics as (i) positive feedback (that contributes AS to rapidly discover 

better solutions), (ii) distributed computation  (that provides AS to avoid early 

convergence), (iii) the use of constructive greedy heuristic (that helps AS to find 

acceptable solutions in the early stages). 

In a later study, Dorigo, Caro, and Gambardella (1999) provide an 

overview of the recent work on ant algorithms. They give detailed information 

about biological findings on real ant colonies and define the ants’ artificial 

counterpart the ACO meta-heuristic. The authors also list the applications to other 

combinatorial optimization problems (Table 2.1 and Table 2.2).  

AS is applied to small instances of TSP with up to 75 cities. In spite of 

encouraging results, in general AS can not compete with state-of-the-art 

algorithms designed for large TSP instances. However, it has stimulated further 

research on its different variants that these new algorithms produce much better 

results on different optimization problems. A considerable amount of research has 

focused on ACO algorithms. In general, ACO algorithms yield better performance 

than AS. For that reason, the ACO is usually proposed as a common, unifying 

framework for the existing applications and algorithmic variants (Dorigo and 

Stützle, 2000). Next we focus on the variants of ACO meta-heuristic.  

Several improvements and variants of the basic AS algorithm proposed in 

the literature. These improved versions have been mainly tested on the TSP. 

Indeed, these versions differ in how their search mechanism is controlled. 

Moreover, the best performing ACO algorithms for the TSP improve the solutions 

of ants using local search algorithms.  
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In their work; Gambardella and Dorigo (1995), Dorigo and Gambardella 

(1996) focus on some properties of Ant-Q (Ant-Q is an extension of AS and Q-

learning algorithm, a distributed approach based on reinforcement learning. It is 

the first and only application of a Q-learning technique to a COP), its sensitivity 

to parameters, and investigation of synergistic effects when more than a single ant 

is used. The number of agents used makes Ant-Q different from Q-learning. Ant-

Q uses a set of cooperating agents to explore the state space whereas Q-learning 

works with a single agent. The authors compare Ant-Q with AS, GA, evolutionary 

programming (EP) and SA, and they state that the covered set of problems are 

efficiently solved by Ant-Q. Moreover, Ant-Q outperforms AS and on the average 

Ant-Q is always very close to the optimal solution. Also in the comparison of 

average behaviour of Ant-Q with the following heuristic methods: Elastic Net 

(EN), SA, Self Organizing Map (SOM) and Farthest Insertion (FI), Ant-Q is 

almost always the best performing algorithm. 

In their paper, Gambardella and Dorigo (1996) represent Ant Colony 

System (ACS) as an extension of AS with Q-learning. ACS finds its ground in AS 

and Ant-Q. The authors state ACS as a revisited version of Ant-Q where a 

different way of updating ants’ experience is discussed. With this approach, it is 

aimed to improve the system performance in terms of speed and quality by using a 

different local updating policy. Results show that ACS finds good solutions to 

symmetric and asymmetric TSP. 

In another study, Dorigo and Gambardella (1997a, 1997b) work on Ant 

Colony System (ACS) and try to understand its operation. Their work includes 

detailed information on ACS. Their results indicate that ACS outperforms other 

nature-inspired algorithms such as simulated annealing (SA) and evolutionary 

computation (EC). They also compare ACS-3-opt (a version of ACS augmented 

with a local search procedure based on the 3-opt neighborhood) with some of the 
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best performing algorithms for symmetric and asymmetric TSP. The authors show 

that ACS is an interesting approach to parallel stochastic optimization of TSP. 

Also it looks like a very good constructive heuristic to provide a starting solution 

for the local optimizers. They also compare the performance of ACS with the 

performance of other naturally inspired meta-heuristics: SA, GA, NN, EC, EP, 

EN, SOM, FI, and some of their combinations.  

Botee and Bonabeau (1998) apply ACO to the TSP and use a GA in order 

to find the best set of parameters for ACO. They also analyze how the parameters 

scale with problem size and tour length. Botee and Bonabeau (1998) report that 

tuning the parameters of the ACO algorithms with an automated search results in 

better solutions and savings from the computation time. 

In another study, Stützle (1998) develop an ACO method, MAX-MIN Ant 

System, for the Flow Shop Problem (FSP). In their previous research, Stutzle and 

Hoos (1997) and Dorigo and Gambardella (1997) determine that a local search 

procedure can improve the solution of each ant. Stützle (1998) use a fast local 

search procedure and show that this approach yields high quality solutions to the 

FSPs in a short time. This approach performs better or at least comparable to other 

state-of-art algorithms proposed for the FSP. 

Bullnheimer, Kotsis, and Strauss (1998) find the structure of AS highly 

suitable for parallel implementation of the algorithm. They develop two 

parallelization strategies and analyze the factors that have influence on 

computational complexity. They also dwell upon the design parameters and 

compare the performance of their parallelization strategies.  

Later, Stützle and Dorigo (1999) give an overview of the ACO algorithms 

available for the TSP. They outline how ACO algorithms can be applied to that 

problem, present the available applications for the TSP, and briefly discuss local 

search applications to the TSP. Stützle and Dorigo (1999) work with MAX-MIN 
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Ant System (MMAS is one of the improved versions of AS). MMAS can find 

high quality solutions for all instances and it yields better average solutions than 

the iterated local search algorithm (ILS is one of the best algorithms for the TSP). 

Bullnheimer, Hartl and Strauss (1999) introduce a new rank based version 

of the AS, called as ASrank. The authors compare this new version with AS, ASelite, 

SA and GA on several TSP instances. Their results indicate that AS compete well 

with the two meta-heuristics and it outperforms the other methods for large 

problems in terms of average and especially the worst case behaviour.  

Besten, Stutzle and Dorigo (2000a, 2000b) present an application of the 

ACO metaheuristic to the single machine total weighted tardiness problem. The 

authors introduce a simple but very effective local search and combine it with the 

constructive phase of ACO. Thus they obtain a new ACO algorithm that uses a 

heterogeneous colony of ants. The authors state that this new algorithm is highly 

effective in finding the optimal or the best-known solutions on all instances of 

benchmark problems in ORLIB within reasonable computation times. 

In another study, Fenet and Hassas (2000) propose a new problem-solving 

framework, A.N.T. This method employs mobile reactive agents for distributed 

problem solving (on different machines) and remote control. This distributed 

mechanism leads to improvement in the complex collective behaviour based on 

local interactions of ants.  

In their overview Maniezzo and Carbonaro, (2001) compare the ACO 

approach with other metaheuristics (SA, TS, GA and GRASP) for COP. They 

focus on ANTS metaheuristic, which is an extension of AS. The ANTS tested on 

the quadratic assignment and frequency assignment problem (QAP and FAP, 

respectively). The results indicate that ANTS is the best performer among the 

algorithms, both considering the best and the average quality of the solutions 
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proposed for QAP. Also, ANTS is competitive with the best approaches 

developed for FAP.  

In another study, Gagné, Gravel and Price (2001) add a look-ahead 

mechanism to the ACO algorithm and test their method on an industrial 

scheduling problem. The look-ahead mechanism allows combining information 

on the expected decisions, which are beyond the immediate choice horizon. The 

results indicate that the look-ahead information improves the solution quality, but 

increases the computation time. 

Montgomery and Randall (2002) work on alternative pheromone 

representations for ACO. They propose three different alternatives for structuring 

and using pheromone. Their results on TSP indicate that memory requirements 

decrease but these alternatives are not as effective as ACO. Montgomery and 

Randall (2002) state that if pheromone representation matches closely with the 

problem representation, then better results are obtained.  

Blum and Samples (2002) deal with the FOP Shop scheduling problem 

(First Order Parallel Shop scheduling; a general scheduling problem including Job 

Shop scheduling, Open Shop scheduling and Mixed Shop scheduling). They 

compare different pheromone representations taken from the literature with a new 

pheromone representation for ACO to solve the FOP Shop scheduling problem. 

The new pheromone representation results in a clearly improved performance 

when compared to the known pheromone representations. 

In a recent work, Middendorf, Reischle and Schmeck (2002) propose multi 

colony ant algorithms (MCAA). In MCAA, several colonies of ants cooperatively 

work to find the better solutions for a given problem by exchanging information 

about good solutions at certain time steps. The authors state that if the amount of 

exchanged information is not too large, then MCAA can easily parallelized by 

placing colonies on different processors. The authors study the behavior of 
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MCAA by using different kinds of information exchange between the colonies; 

and they also compare the behavior of multi colony ant algorithms to a single 

colony ant algorithm. TSP and QAP are the test problems. The authors observe 

that for the TSP the multi colony approach with a moderate number of colonies is 

better than a single colony. For QAP, multi colony ant approach is not better but 

at least not much worse than having only one large colony. The important part is 

the exchange of information related with good solutions between the colonies. 

T’kindt, Monmarche, Tercinet and Laugt (2002) consider the 2-machine 

flowshop scheduling problem with the objective of minimizing the total 

completion time and the makespan criteria. The proposed method (SACO) is an 

ACO approach with additional feature of SA search and local search. Their results 

indicate that SACO heuristic is effective and yield better results when compared 

to existing heuristics. Especially for large problems (problems having more than 

200 jobs) the SACO is the most efficient heuristic. 

Bautisca and Pereira (2002) work on the simple assembly line balancing 

and generalized assembly line balancing problems and try to minimize the number 

of stations given a fixed cycle time. The problem is solved using the ACO 

metaheuristic with different features. In their research, the authors study several 

trail information management policies and trail information reading techniques. 

Also new ideas (solving the direct and reverse instance of a problem concurrently) 

and priority rules are used together. The authors state that after a long 

computation time the results obtained with proposed algorithms are better than the 

results obtained with the exact procedure and also these results are very close to 

the known problem bound. 

McMullen and Tarasewich (2003) present a heuristic, based on ant 

techniques. This heuristic uses concepts derived from ACO techniques. They state 

that their approach effectively address the assembly line balancing problem with 
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complicating factors (parallel workstations, stochastic task times, and mixed 

models). The assembly line layouts obtained by the proposed heuristic are used 

for simulated production runs in order to collect some output performance 

measures. These output performance measures are compared to output 

performance measures obtained from several other heuristics such as SA. The 

results indicate that their proposed approach is competitive with the other heuristic 

methods.  

Finally, Krishnaiyer and Cheraghi (2002) present an overview of ant 

algorithms in their paper and they propose a review of ant applications for real life 

problems faced in business and industrial environments. The applications of ACO 

algorithms to static and dynamic combinatorial optimization problems are given 

in Tables 2.1 and Table 2.2. 
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Table 2.1: List of applications of ACO algorithms to static combinatorial optimization problems.  
This table is adapted from Dorigo and Stützle (2000), Krishnan and Cheraghi (2002) 

 
Problem Name Authors Year Algorithm Name 
Traveling salesman 
 

Dorigo, Maniezzo & Colorni  
Gambardella & Dorigo  
Dorigo & Gambardella 
Dorigo & Gambardella  
Gambardella & Dorigo 
Stützle & Hoos  
Bullnheimer, Hartl & Strauss  
Bullnheimer, Kotsis & Strauss 
Botee & Bonabeau 
Stützle & Dorigo 
 
Cordon, et al. 
Middendorf , Reischle & 
Schmeck 
Montgomery & Randall 

1991 
1995 
1996 
1996 
1996 
1997 
1997 
1998 
1998 
1999 

 
2000 
2002 

 
2002 

AS 
Ant-Q 
Ant-Q 

ACS & ACS-3-opt 
ACS 

MMAS 
ASrank 

AS & Parallelization 
Evolving ACO 

AS, ACS, MMAS, ANTelite, 
ANTrank 
BWAS 

Multi Colony Ant Algorithms 
 

Alternative pheromone 
representations for ACS 

Quadratic assignment 
 

Maniezzo, Colorni & Dorigo  
Gambardella, Taillard & 
Dorigo  
Stützle & Hoos  
Maniezzo & Colorni  
Maniezzo 
Maniezzo & Carbonaro 
Middendorf , Reischle & 
Schmeck 

1994 
1997 

 
1998 
1998 
1998 
2001 
2002 

AS-QAP 
HAS-QAPa 

 
MMAS-QAP 

AS-QAPb 
ANTS-QAP 
ANTS-QAP 

Multi Colony Ant Algorithms 

Scheduling problems 
 

Colorni, Dorigo & Maniezzo 
Forsyth & Wren 
Stützle 
Bauer et al. 
den Besten, Stützle & Dorigo 
den Besten, Stützle & Dorigo 
Merkle, Middendorf & 
Schmeck 
Gagne, Gravel & Price 
Blum & Sampels 
T’kindt, Monmarche, Tercinet 
& Laugt 

1994 
1997 
1998 
1999 
1999 
2000 
2000 

 
2001 
2002 
2002 

AS-JSP 
AS 

AS-FSP 
ACS-SMTTP 

ACO-SMTWTP 
ACO-SMTWTP 

ACO-RCPS 
 

fACO 
ACO-FOP Shop 

ACO 

Vehicle routing 
 

Bullnheimer, Hartl & Strauss  
Gambardella, Taillard & 
Agazzi 

1997 
1999 

AS-VRP 
HAS-VRP 

Sequential ordering Gambardella & Dorigo 1997 HAS-SOP 
Graph coloring Costa & Hertz 1997 ANTCOL 
Shortest common  
supersequence 

Michel & Middendorf 1998 AS-SCS 

Frequency assignment Maniezzo & Carbonaro 
Maniezzo & Carbonaro 

1998 
2001 

ANTS-FAP 
ANTS-FAP 

Generalized 
assignment 

Ramalhinho Lourenço & Serra 1998 MMAS & GAP  

                                                           
a HAS-QAP is an ant algorithm but does not follow all the aspects of the ACO meta-heuristic. 
b This is version of the original AS-QAP. 
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Table 2.1: (Cont’d) 
 

Flow manufacturing Stützle 1998 ACO 
Multiple knapsack Leguizamon & Michalewicz 1999 AS-MKP 
Redundancy allocation Liang & Smith 1999 ACO-RAP 
Layout of facilities Bland  1999 AS (TS) 
Space-planning Bland  1999 ACO 
Constrain satisfaction Solnon 2000 Ant-P-solver 
Image segmentation - 
Pattern reorganization 

Ramos, & Almeida 2000 Cognitive map model 

Digital Art Tzafestas 2000 Painter Ants 
Numeric Optimization Monmarche, Venturini & 

Slimane 
2000 API 

Structural Design 
Problem 

Bland  2001 ACO 

Bioreactors 
Optimization 

Jayaraman, Kulkarni & Gupta 2001 ACO 

Pickup and delivery 
problems 

Doerner, Hartl, & Reimann 2001 ACO 

Full truck load 
transportation 
problems 

Doerner, Hartl, & Reimann 2001 ACO 

Bus stop allocation 
problem 

Jong & Wiering 2001 Multiple Ant Colony Systems 

Peer-to-peer (P2P) 
networks 

Baboglu, Meling, & 
Montresor 

2001 Anthill  

Shop floor routing Cicirello  2001 AC2 
Assembly Line 
Balancing 

Bautista & Pereira 
McMullen & Tarasewich 

2002 
2003 

ACO 
ANT1, ANT2, ANT3, ANT4 

Distributed Problem 
Solving 

Fenet & Hassas 2000 A.N.T. 

 
 
Table 2.2: List of applications of ACO algorithms to dynamic combinatorial optimization 
problems. This table is adapted from Dorigo and Stützle (2000), Krishnan and Cheraghi (2002) 
 
Problem Name Authors Year Algorithm Name 
Connection-oriented  
network routing 

Schoonderwoerd, Holland,  
   Bruten & Rothkrantz 
 
White, Pagurek & Oppacher  
Di Caro & Dorigo  
Bonabeau, Henaux, Guerin, 
Snyers,  Kuntz & Theraulaz 

1996 
 
 

1998 
1998 
1998 

ABC 
 
 

ASGA 
AntNet-FS 

ABC-smart ants 
 

Connection-less 
network routing 
 
 

Di Caro & Dorigo  
Subramanian, Druschel & 
Chen  
Heusse, Guerin, Snyers & 
Kuntz  
van der Put & Rothkrantz 

1997 
1997 

 
1998 

 
1998 

AntNet & AntNet-FA 
Regular ants 

 
CAF 

 
ABC-backward 

Optical networks 
routing 

Navarro Varela & Sinclair 1999 ACO-VWP 

Dynamic routing in 
telecommunication 
networks 

Zhou & Liu 1999 Intelligent Ant algorithm 



CHAPTER 2.  LITERATURE SURVEY 
 

 

21 

 

2.2 U-Type Line Balancing 
 

U- type line balancing (ULB) concept is a new and promising topic in the 

assembly line balancing literature. The literature in this area is accumulated since 

Monden (1993) first introduced the U-type configuration to the attention of the 

scientific community. Erel, Sabuncuoglu and Aksu (2001) classify the research 

into two categories: line balancing and production flow lines. The first group 

includes the studies for balancing the U-type assembly lines to minimize the 

number of stations for a given cycle time or minimize the cycle time for a given 

number of stations. The second group includes the studies to identify the 

importance of design factors, and their effects on the performance of U-type flow 

lines. Since this research focuses on the line balancing problem, we refer the 

reader to the following papers: Nakade et al. (1997), Nakade and Ohno (1997, 

1999, 2003),  Miltenburg (2000, 2001a, 2001b). 

The first study in this area is due to Miltenburg and Wijgaard (1994) who 

analyze the U-line line balancing problem and develop solution procedures. They 

also show how a solution method (developed for the traditional line-balancing 

problem) can be adopted to the U-line. They work on twelve well-known sets of 

line balancing problems taken from the literature. Each problem consists of a 

number of tasks, task completion times, precedence constraints, and a number of 

cycle times. Thus each cycle time corresponds to a new problem. (Indeed this data 

set consists of 61 problems). In order to obtain an optimal balance for the U-line 

and traditional line, Miltenburg and Wijgaard (1994) propose a dynamic 

programming (DP) formulation, and solve 21 relatively small problems (up to 11 

tasks). The authors also develop a heuristic which is based on maximum ranked 

positional weight heuristic (RPWT) for the large size problems. They also use 

standard version of this heuristic to obtain the optimal traditional line balances.  
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Later, Miltenburg and Sparling (1995) develop three exact algorithms for 

the ULB problem: a reaching dynamic programming algorithm, a breadth-first 

branch and bound algorithm, and a depth-first branch and bound algorithm. The 

authors solve 180 problem instances (up to 40 tasks). The computational 

experiments indicate that the breadth-first and depth-first B&B algorithms are 

more efficient than the DP approach.  

In another study, Urban (1998) develops an integer programming (IP) 

formulation to determine the optimal solution for ULB problem. Standard test 

problems of Miltenburg and Wijngaard (1994) are solved using this model. Urban 

(1998) considers only the “larger” problems (21 or more tasks). Problems of up to 

45 tasks can be solved using proposed model. 

To solve large size problems encountered in practice Scholl and Klein 

(1999) propose a new branch and bound procedure, ULINO, which is adapted 

from SALOME (previously developed algorithm for traditional straight line 

balancing problem). SALOME is chosen as the basis of the ULINO, because it 

has been shown to be very effective in several computational tests (Scholl and 

Klein, 1999). ULINO is a branch and bound procedure that performs a depth-first 

search by considering bounds and some dominance rules. Computational 

experiences with their method are presented for 256 instances (complete data set), 

problems with up to 297 tasks. The results indicate that the proposed method 

yields very good results for Type-1 problem, (UALBP-1; minimizing the number 

of stations given the cycle time) and Type-2 problem (UALBP-2; minimizing the 

cycle time given the number of stations) in limited computation time. For the most 

general problem type (UALBP-E; maximizing the line efficiency for variable 

cycle time and number of stations). Scholl and Klein (1999) suggest a further 

research to find more efficient solution procedures. 
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Erel, Sabuncuoglu and Aksu (2001) propose a simulated annealing (SA)-

based algorithm for the UALB problem. Their algorithm employs with an 

intelligent mechanism to search a large solution space effectively. The 

performance of the proposed method is tested on a large number of benchmark 

problems from the literature. Their computational results indicate that the 

proposed method is quite effective and its computational requirements are not as 

high as expected. The computational success of this SA-based heuristic can be 

attributed to the intelligent way of searching a larger search space.  

Miltenburg (2001) presents a detailed study on the theory and practice of 

U-shaped production lines. He gives the related history of U-shaped production 

lines, describes the JIT production environment, the layout and operation of the 

U-line in an JIT production environment. He also provides useful information for 

designers to design and manage the U-lines. 

Some researchers focus on the mixed-model U-line balancing. In recent 

years, manufacturers change their production lines from single product or batch 

production to mixed-model production lines. This is an expected reason related 

with their objective: implementing the just-in-time principles. Different products 

or models are produced on the same line in mixed-model production and 

manufacturers are able to respond their customers with a variety of products in a 

timely and cost-effective manner.  As Sparling and Miltenburg (1998) state, U-

lines are widely used for the mixed model production.  

Sparling and Miltenburg (1998) study on the mixed model production and 

the mixed-model U-line balancing (MMULB) problem. MMULB assigns the 

tasks required producing all models to a minimum number of stations on a U-

shaped line. They develop an approximate algorithm to solve the problem. Their 

algorithm transforms the multi-model problem into an `equivalent’ single-model 

problem and finds the optimal balance to this problem using a branch and bound 
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algorithm from the literature. The proposed algorithm is capable of solving the 

single-model problem with up to 25 tasks. 

Miltenburg (1998) work on the problem of balancing and rebalancing U-

line facilities. A U-line facility is defined as a unit that consists of numerous U-

lines connected by multi-line stations. The objective is to assign tasks to a 

minimum number of stations while satisfying cycle time, precedence, location, 

and station-type constraints when balancing such a facility. A secondary objective 

is to concentrate the idle time in a single station.  A reaching DP algorithm is 

proposed to determine optimal balances for the facilities with any number of U-

lines. Miltenburg state that this reaching DP algorithm is effective for balancing 

and rebalancing facilities with any number of U-lines, providing that individual 

U-lines do not have more than 22 tasks and do not have wide, sparse precedence 

graphs. 

Sparling (1998) also work on U-line facilities. He introduces the concept 

of a JIT production unit, where a number of U-lines produce and assemble parts 

for the same production line. Balancing a JIT production unit problem is 

considered as the N U-line balancing problem. For both cases (for the case where 

U-line locations are not fixed and for the fixed case) problems are modelled and 

heuristic algorithms are developed. This heuristic algorithm solves problems with 

up to nine individual U-lines that each of them having tasks up to 18. 

Kim et al. (2000) work on balancing and sequencing mixed-model U-lines 

with a co-evolutionary algorithm. They develop a new approach using an artificial 

intelligence search technique, called as cooperative co-evolutionary algorithm. It 

is possible to solve the line balancing and the model sequencing problems at the 

same time with this approach. In order to promote the population diversity and the 

search efficiency authors adopt some strategies (these strategies are localized 

evolution and steady-state reproduction) and develop some methods (selection of 
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environmental individuals and evaluation of fitness). They also provide efficient 

genetic representations and operator schemes. Based on the experimental results 

the authors indicate that the proposed algorithm is much better than the other two 

cooperative co-evolutionary algorithms and the traditional hierarchical approach. 

They also state that with a little modification, the proposed algorithm can be 

applied to many variants of the problem.  

Also some of the researches work on different but interested subjects to 

investigate some properties of the U-shaped production lines.  

Nakade and Ohno (1999) deal with a U-shaped production line with 

multiple-function workers. They consider an optimization problem of finding an 

allocation of workers to the production line. The objective is to maximize the 

overall cycle time under the minimum number of workers while satisfying the 

demand. 

Miltenburg (2000) investigates the effect of the U-shape of the line on the 

production line’s effectiveness when breakdowns occur. The author finds that the 

effectiveness of the U-line is greater than or equal to the effectiveness of the 

straight line when buffer inventories are located between stations. 

Miltenburg (2001) works on one-piece flow production system on U-

shaped production lines and examines the research literature on one-piece flow 

manufacturing. Miltenburg state that if implemented carefully, in a situation 

where it is appropriate impressive results are obtained. In this research the author 

dwells upon the decision rules that determine when one-piece flow is appropriate, 

and unique elements of this production system. Also he examines the 

mathematical models used to design one-piece flow system.  

Nakade and Ohno (2003) consider a U-shaped production line with 

multiple workers. Each worker is a multi-function worker and takes charge of 

multiple machines. They consider two types of allocations of workers to 
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machines; a separate allocation and a carousel allocation. By using these 

allocations they derive some upper and lower bounds for the expected overall 

cycle times in U-shaped production line and they propose an approximate 

expressions for the expected overall cycle times. The authors show that when the 

processing, operation, and walking times are constant, the overall cycle time in the 

carousel allocation is less than or equal to that in the separate allocation. In their 

numerical study Nakade and Ohno (2003) compare these allocations and they 

discuss the performance of their approximation.  

Summary of the work done on the U-line line balancing problem is given 

in Table 2.3. 
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Chapter 3 
 
 
 

Ant Algorithms and Applications 
 

This chapter focuses on pure ant algorithms. Most parts are writen with the 

guide of  Dorigo, Caro, and Gambardella’s (1999) paper (This paper overviews 

the recent work on ant algorithms, gives detailed information about the biological 

findings on the real ant colonies and defines ants’ artificial counterpart the ACO 

meta-heuristic. Their paper mainly focuses on the most important aspects of the 

ACO meta-heuristic. It is a very detailed study including every aspect of ant 

algorithms and can be stated as a sort of handbook).   
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3.1 Introduction 

Ant heuristics are proposed as a new approach to combinatorial 

optimization in the literature ( Dorigo, Maniezzo and Colorni, 1991a, 1996). Their 

main characteristics are: positive feedback (that helps to discover better solutions), 

distributed computation (that avoids early convergence), and the use of 

constructive greedy heuristic (that helps ants to find acceptable solutions in the 

early stages. 

This new heuristic attracts the attention of the scientific community 

because it is versatile (which is applicable to similar versions of the same 

problem), robust (with only minimal changes it can be applied to other 

combinatorial optimization problems), and a population based approach (which 

allows the exploitation of positive feedback as a search mechanism). This last 

property makes these systems suitable for parallel implementation. Detailed 

information on the parallelization strategies for the Ant System can be found in 

Bullnheimer,  Kotsis, and Strauss (1998). 

The first ant algorithm is developed by Dorigo and colleagues (Dorigo, 

Maniezzo, Colorni, 1991) to difficult combinatorial optimization problems, such 

as the travelling salesman problem (TSP) and the quadratic assignment problem 

(QAP). Since then many researchers work on ant-based algorithms to apply ant 

algorithms to various discrete optimization problems. These applications and 

other details of ant colony optimization algorithms (ACO) are summarized in 

Table 2.1 and Table 2.2. 
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3.2 Biological Fundamentals 
Similar to other nature based heuristics (such as genetic algorithms, 

evolution strategies, simulated annealing, tabu search, neural nets, immune 

networks) ant algorithms are ‘derived’ from nature and inspiration comes from the 

observation of real ant colonies. The behaviour of ants in the colony constitutes 

the main power of the ant algorithms. Members of the colony do not act selfishly, 

only by focusing on their individual needs. On the contrary, everyone acts 

cooperatively, as a whole in order to provide the survival of the colony. Ants have 

no chance to survive when they are alone but when they form a group, then they 

are more structural and their colonies can survive. This surviving mechanism and 

their foraging behaviour have captured the attention of many scientists. Foraging 

behaviour is an important and interesting behaviour. It is an ability to find the 

shortest paths between the food sources and their nest. 

On the way between the food source and the nest, ants deposit on the 

ground a substance called pheromone which forms a trail of pheromone. Ants 

have ability to detect (smell) the pheromone and chose their way according to 

their detection level. This means the probability of choosing one of the possible 

ways depends on the level of pheromone that is deposit on this way. By using this 

pheromone trails the ants find their way back to the nest or the food source and 

also other member of the colony detects the location of the food sources by 

following the trails of the previous ants. Many paths are available between the 

nest and the food source. When this pheromone trail following behaviour is 

exploited by ants then a group of ants are able to find the shortest path between 

the nest and the food source by following the previously laid pheromone trails of 

the individual ants.  

Deneubourg et al. (1990) study the ants’ foraging behaviour by using an 

interesting experiment, ‘the binary bridge experiment’. This experiment is done 
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under controlled conditions. As seen in Figure 3.1a, a double bridge in which each 

branch has the same length is put to separate the nest of a colony of ants and a 

food source. Then, the ants are left free to move between the nest and the food 

source. During the experiment the percentage of ants which choose one or the 

other of the two branches is observed over time. The result is given in Figure 3.1b. 

After an initial transition phase, ants tend to converge on the same path. It is stated 

that arising of some oscillations during the transition state is normal.  

 

  

  

 

 

 

 

 
Figure 3.1: Single Bridge Experiment. a)Experiment setup and b) Results for a typical single trial; 
showing the percentage of passages on each of the two branches per unit of time as a function of 
time. After an initial short transition phase, the upper branch becomes the most used. Deneubourg 
et al., (1990) 

 

In the first stage of the experiment the selection probability of any branch 

is equal to each other because initially no pheromone is left. During the transition 

phase some fluctuations occur because the amount of trail accumulated is not 

enough yet to direct the ants. After an initial transition phase the number of ants 

that randomly select one passage (let it be the upper passage) increases and  more 

pheromone accumulates on this passage over the other. As more pheromone 

accumulates for the upper passage then there is more chance for an ant to choose 

that way. This attitude continues as a vicious cycle. 

Dorigo, Caro, and Gambardella (1999) describe this phenomenon with a 

probabilistic model. The authors state that this model closely matches with the 
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experimental observation. The amount of pheromone on a branch is proportional 

to the number of ants that used that branch in the past and the pheromone 

evaporation is not taken into account. In this model, the probability of choosing a 

branch at a certain time depends on the total amount of pheromone accumulated 

on the branch. Thus the probability is proportional to the number of ants that used 

the branch until that time. Let Um and Lm be the numbers of ants that have used the 

upper and lower branch after m ants have crossed the bridge, with Um +Lm = m. 

The probability PU(m) which the (m+1)th ant chooses the upper branch is given as: 

 

h
m

h
m

h
m

U kLkU
kU

mP
)()(

)(
)(

+++
+

=     (3.1) 

and the probability PL(m) that ant chooses the lower branch is PL(m) = 1-PU(m). 

This form of the probability is obtained from experiments on trail-following. The 

parameters h and k allow the user to fit the model to experimental data. Then Um+1 

is updated as follows: Um+1 = Um +1, if ψ ≤ PU, Um+1 = Um otherwise, where ψ is a 

random variable uniformly distributed over the interval (0,1). Lm is also updated 

by the same way.  

Another experiment is done by preserving the same pheromone laying 

mechanism and using the bridge with branches of different lengths. Mostly the 

shortest branch is selected in this case. This result can be explained by the 

pheromone laying mechanism: the first group of ants on the way to the food 

source do not have chance to use the pheromone advantage and they choose the 

shortest way arbitrary. But on the way to the nest those ants that took the shortest 

branch will cause much pheromone to be accumulated on the short branch when 

compared with the long branch. For a same unit of time more ant pass through the 

short branch and cause more pheromone to be laid on the ground. This mechanism 

and the result of the double bridge experiment with branches of different length is 

given in Figure 3.2.  
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Figure 3.2: Double Bridge Experiment.  
a) Ants start exploiting the double bridge, b) As a result most of the ants choose the shortest path. 
c) Distribution of the percentage of ants that selected the shorter path. Goss et al. (1989) 

 

   Dorigo, Caro and Gambardella (1999) explain this process as a 

‘distributed optimization mechanism’. A single ant is capable of finding a path 

between the nest and the food source. Nevertheless, each single ant gives only a 

very small contribution. On the contrary, with the corporation of ants only a 

colony can present the “shortest path finding” behaviour. The ants perform this 

specific behaviour by using a simple form of indirect communication with the 

help of pheromone trails. This is known as stigmergy1.  

Grasse (1946) defines stigmergy as follows:  “stimulation of workers2 by 

the performance they have achieved.”  

Stigmergy is a different style of communication because the information 

released by the communicating ants is a physical substance. This released 

                                                           
1 Dorigo, Caro and Gambardella (1999) state that the term stigmergy not only used to explain the 
behavior of termite societies, the same term is also used to describe indirect communication 
mechanism observed in other social insects.  
 
2 There are castes is termite colonies and workers are one of the castes in these termite colonies. 
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information belonging to a specific path is locally attainable for only the ants 

which use that specific path or only the neighbourhood of that path.  

Dorigo, Caro and Gambardella (1999) state that if appropriate state 

variables are associated to problem states then the characteristics of stigmergy can 

easily be extended to the ants. In order to explain this statement, a comparison of 

real word with the imaginary model may be very helpful. The stigmergetic 

communication of real ants is accomplished by using the pheromone laid on 

ground. Similarly artificial agents update the proper pheromone variables that 

representing the problem states that they have visited. Artificial agents have only 

local access to these pheromone variables according to the stigmergetic 

communication model. 

Another important aspect of real ants’ behaviour is the coupling between 

the autocatalytic (positive feedback) mechanism and the implicit evaluation of 

solutions. The shorter paths (for artificial agents, the solutions with lower cost) 

will be completed earlier than the longer ones. As a result, more pheromone will 

be accumulated on these paths. This fact explains the ‘implicit evaluation of 

solutions’. Dorigo, Caro and Gambardella (1999) state that the implicit solution 

evaluation combined with the autocatalysis can be very effective. This is because 

of the chain effect that arises spontaneously. The shorter paths will receive 

pheromone quickly. As more pheromone is deposited on these paths, more ants 

chose these paths and so on. If properly used the autocatalysis is stated as a 

powerful mechanism for the population-based optimization algorithms. This 

mechanism gives extra importance to the best individuals and these individuals 

direct the search process. However, sometimes the misdirection of the search may 

be dangerous. A misdirected search may result with premature convergence 

(stagnation). Stagnation is a contingent situation in which some individuals that 

are not very good take over the population and they dominate the search process. 
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This situation prevents the further exploration of the search space. There are many 

reasons of stagnation. Not getting out of a local optima results in giving extra 

incorrect emphasis to this local solution and stagnation; or initial random 

fluctuations may cause a not very good individual to be selected more than the 

other individuals. Thus, this individual becomes much better than all others.  

 

3.3 The Ant Colony Optimization Approach 
In the ant colony optimization (ACO) meta-heuristic3 a group (colony) of 

agents cooperatively work to find good solutions to difficult optimization 

problems. Cooperation is the most important part of the ACO algorithms. All the 

computational resources are divided into many parts and allocated to simple 

agents. The only way to use that divided computational resource is the indirect 

communication caused by stigmergy. Thus, good solutions are exposed by the 

agents using this cooperative interaction.  

When the agents and the real ants are compared there are some similarities 

and dissimilarities. Mostly the agents are the abstraction of the real ants and they 

have most of the abilities of the real ones, like shortest path finding behaviour. 

However, they have some extra capabilities that the real ants do not have. These 

extra capabilities (The agents have some memory. They are not completely blind 

and they live in an environment where the time is discrete) are given to artificial 

ants in order to make them more efficient and effective. 

 

 

 

 
                                                           
3 Dorigo, Caro and Gambardella (1999) use ACO meta-heuristic to refer to the general procedure. 
The term ACO algorithm is used to refer any generic instance of ACO meta-heuristic. There are 
also some algorithms called as Ant algorithms that not necessarily follow all the aspects of the 
ACO meta-heuristic. So, all ACO algorithms are also ant algorithms, where as vice versa is not 
true.  
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3.3.1 Similarities and Difference with Real Ants 
Dorigo, Caro, and Gambardella (1999) state the ideas that are inspired 

from real ants as follows: 

  (i) Usage of a colony of communicating and cooperating individuals, 

  (ii) Usage of an artificial pheromone trail for the stigmergetic communication, 

  (iii) Usage of a sequence of local moves to find the shortest paths, 

  (iv) Usage of a local information for the stochastic decision policy. 

We explain these characteristics as follows.  

Colony of communicating and cooperating individuals: Like real ant 

colonies, the agents are part of a population, which they globally and 

asynchronously cooperate at the same time to find a better solution. Although a 

single ant can construct a feasible solution (and a single real ant can also find the 

path between nest and food source), better solutions are the result of the 

cooperation between each single individual. The power of this cooperation comes 

from their communication, namely the exploitation of the information that they 

read or write on the problem’s visited states.  

Pheromone trail and stigmergy: Similar to real ants pheromone laying 

attitude, the agents apply the same behaviour by changing some numeric values of 

the problem’s state that they have visited. With this information, previous ants’ 

performances are stored. This information will be ready for the new agents at the 

next stage for re-reading or for updating. This numeric information belonging to 

the problems state variables acts like artificial pheromone trail. Thus, 

communication among the ants can only be proved by this artificial pheromone 

trails and collective knowledge is evaluated and restructured by this way. This 

knowledge supplies information about the problem landscape. In fact, this 

knowledge acts like a function of whole history of the ant colony. Generally the 

updating mechanism for this information is not only obtained by the accumulation 
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of feedback coming from the ants but also there is an evaporation mechanism 

inspired from the nature. By evaporating some amount of the pheromone over 

time, the ant colony slowly forgets its history and this mechanism helps directing 

the search to new areas of the search space. Thus, stacking to a specific point or a 

neighbourhood of a point can be avoided by this way.  

Finding the solutions with minimum cost and local moves: The 

objective of real ants is to find the shortest path joining the nest to the food 

source. They accomplish this goal by moving on the ground from one point to 

another, namely they move from one adjacent area to another one. The agents also 

have a common objective. They try to find the solution with the minimum cost. 

The agents move through the ‘adjacent states’ of the problem. They start from an 

origin and move step by step to a destination point.  

Stochastic and myopic state transition policy: The agents construct their 

solutions by applying a probabilistic decision policy. The decision policy is used 

while moving from one state to another state. The local information gained from 

artificial pheromone trails obtains the primary information for this decision policy. 

There is no lookahead information to predict the future condition of the state 

(Although, simple forms of ACO algorithms do not use lookahead information, 

there are some researchers working on this topic and there exist a special version 

of ant algorithms using the lookahead mechanism). In fact, the transition 

probability is totally local. The policy is a function of both the a priori information 

represented by problem specifications and the local modifications in the artificial 

pheromone trails induced by previous ants.  
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Some characteristics of agents do not correspond with the characteristics of 

their counterpart, real ants. These are: 

• Agents do not move continuously. In fact, they move from one discrete state 

to another discrete state. So their environment is a discrete habitat. 

• Agents have a kind of memory that stores the information of the ant’s past 

actions. 

• Artificial pheromone is a function of the quality of the solution found.4 

• Agents’ pheromone laying mechanism is a little bit different from the real life. 

The timing in pheromone laying mechanism is problem dependent and 

generally does not correspond with real ants’ behaviour. In most of the ant 

algorithms the agents update the pheromone trails just after generating a 

solution. 

• Agents may have extra abilities and some special mechanisms can be applied 

like parallelization (or parallel implementation), local optimization, 

hybridization, lookahead, backtracking to improve the system effectiveness 

and efficiency.  

 
3.4 The ACO Meta-heuristic 

This section gives information about how the agents are used in an 

algorithmic framework so that the ACO algorithms can be applied to 

combinatorial optimization problems. 

In ACO algorithms a finite number of artificial ants cooperate and move in 

the search space to find the good solutions to the optimization problem under 

some predefined conditions. Each single ant constructs a full solution or only a 

part of it starting from a predefined initial state. This state is determined by taking 

problem specific conditions into consideration. As the ants move from one state to 

                                                           
4 Dorigo, Caro and Gambardella (1999) state that in real life some ants have a similar behaviour. 
They deposit more pheromone if they found richer food sources. 
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another they construct their own solution and also they gather some important 

knowledge about the problem characteristics and their own performance. They use 

this information to modify the problem-related variables (like trail values). All 

individual ants move alone by making random choices. Indeed, all ants operate 

collectively. This is not a direct communication between two or more ant. In fact, 

it is the common usage of this information, or more literally stigmergetic 

paradigm as explained before.  

Under consideration of problem’s constraints, a desired solution is the one 

with the minimum cost. Although some of the ants may individually find poor 

solutions, better solutions (or the best) are obtained from a group of many 

alternative solutions as a result of the global cooperation of these individuals.  

Every ant constructs its solution by moving from one state to another 

adjacent state by applying a stochastic local search policy. Definition of the 

neighborhood, every ant’s memory, gathered pheromone trail information and 

problem-specific local information direct this search policy.  

Every ant’s own memory carries information about the history of that ant. 

This information is used to compute the value of the solutions, the contribution of 

each move generated by an ant and the most important one, to check the 

feasibility of the constructed solutions. By using ant’s memory and the related 

information about the local state, some moves that take the ant from a feasible 

solution to an infeasible one can be avoided.  

Both the knowledge of pheromone trails and the problem specific heuristic 

information constitute the public information. The pheromone information is a 

global and time dependent information that has an influence on ants’ decisions. It 

is a shared local long-term memory. The quantity and the frequency of pheromone 

depositing depend on the problem characteristic and the structure of the algorithm. 

Each ant can lay pheromone just after making a move (updating step-by-step) or 
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after constructing the whole solution (delayed updating). Also it is possible to use 

both of these policies at the same time. Generally the step-by-step updating and 

the delayed updating are stated as mutually exclusive. Generally the amount of 

pheromone deposed by an ant is proportional to the quality of the solution 

generated by this ant. Thus, the contribution of better moves to the global 

information will be higher than the contribution of the worse moves.  

By combining the trail information and heuristic values and also list of 

tabu moves, every ant constitutes its own decision table that directs its search. 

This decision table includes the probability of each possible move for each ant. 

Stochasticity in the decision mechanism and the evaporation of trail values 

prevents the ants converging to a same solution or a certain part of the solution 

space. Of course there is a balance between the exploitation of accumulated 

knowledge and the exploration of new points in the search space depending on 

how the stochasticity and the evaporation mechanisms are used. Also the ACO 

meta-heuristic can be used to combine the ants’ decision policy with some extra 

components. These components are optional and implementation dependent. For 

instance, one method may be the collecting of some extra information from a 

global perspective and using this information to deposit additional pheromone 

information. Other method may be the usage of a problem specific local 

optimization procedure. Main activities, the stochastic decision policy, the 

pheromone evaporation and also some extra components need well 

synchronization. 

In Figure 3.3, a general description of the ACO meta-heuristic is given as a 

pseudo-code. Some parts are optional like extra activities. Also, some parts and 

the sequence of some activities may differ depending on the problem type and 

implementation. 
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MAIN PROGRAM  ACO Meta-heuristic  
     BEGIN {For MAIN PROGRAM}       
         WHILE  (termination criteria is not satisfied) DO 
                BEGIN {For WHILE} 
           Initialize the system; 
                      Proceed ants and construct solutions; 
           Pheromone evaporation and update; 
           Extra activities; {This part is optional and implementation dependent} 
      END; {For WHILE} 
     END; {For MAIN PROGRAM} 
 
 
PROCEDURE Proceed ants and construct solutions  {Life cycle of an ant} 
   BEGIN {For PROCEDURE}       
        Create new ants; 
        Initialization of each ant;  
        Mem = Call the memory of each ant; 
            WHILE  (a complete solution is not reached for predefined number of ants) DO 
         BEGIN {For WHILE} 
                      Give initial position; 
                          NonTabu = Read the memory and determine non-tabu tasks; 

  Prob = Compute transition probabilities (Mem, NonTabu, Problem  
                                                                   Constraints); 

    Next = Determine where to move due to decision policy (Prob, Problem 
                                                                                                                      Constraints); 
               Move to next state (Next); 
           IF (step-by-step pheromone update policy is used) THEN 
                BEGIN {For IF} 
                       Update pheromone level on the visited arc; 
          Update ant’s memory; 
                END; {For IF} 
    Update other related values; 
         END; {For WHILE} 
   END; {For PROCEDURE} 

 
PROCEDURE Pheromone evaporation and update {Delayed pheromone update} 
   BEGIN {For PROCEDURE}       
        IF (delayed pheromone update policy is used) THEN 
  BEGIN {For IF} 
         Evaluate each ant’s solution; 
                  Update pheromone level on all visited arcs; 
             END; {For IF} 
   END; {For PROCEDURE} 

 
Figure 3.3: A general description of ACO meta-heuristic.  Comments, explanations are given in 
braces.  Necessary actions for related line and conditions for related IF THEN statements are given 
in parentheses. 
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3.5  Some Applications of ACO Algorithms 

In literature there are many successful ACO applications to different 

combinatorial optimization problems. Dorigo, Caro and Gambardella (1999) 

classify these applications into two groups: those applied to static combinatorial 

optimization problems and those applied to dynamic ones. 

In static problems the definition and the initial characteristics of the 

problem are given once and they do not change over time. Classic travelling 

salesman problem is a good example. The location of cities and their relative 

distances are given in the problem definition and they do not change during the 

solution process. Quadratic assignment problem (QAP), Job-shop scheduling 

problem (JSP), Vehicle routing problem (VRP), Shortest common supersequence 

problem (SCS), Graph coloring problem (GCP), Sequential ordering problem 

(SOP), are also some examples of the static problems. In the dynamic case, the 

problem is defined as a function of some quantities and the values of these 

quantities depend on the dynamics of the system. As the system changes overtime 

the algorithm must also adapt itself to this changing environment. Some of the 

examples of this type of problem are network routing, connection-oriented 

network routing, connection-less network routing.   

Once the mapping of problem (allows incremental construction of a 

solution), the structure of neighbourhood and the stochastic state transition rule is 

defined, then the ACO meta-heuristic can be applied directly to a static 

combinatorial optimization problem. Many early applications of the ACO 

algorithms in the literature are inspired by Ant System (AS) and most of these 

applications are the relatively direct application of AS to the problem. 

Applications of ACO to the dynamic combinatorial optimization problems 

and the related research on these applications are focused on the communications 

network.  Because the characteristics communications network match with the 

properties of ACO meta-heuristic. 
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Chapter 4 
 
 
 

Proposed Approach: Ant Colony 
Optimization 
 
 
4.1 Overview of the Proposed Approach 

In this chapter we present a new heuristic, an Ant Colony Optimization 

(ACO) meta-heuristic, and its variants to solve the U-type assembly line balancing 

problem (UALBP). The UALBP is defined in Chapter 1 and the literature survey 

on the U-lines and the ACO meta-heuristic is given in Chapter 2. Detailed 

information about the ACO meta-heuristic can be found in Chapter 3.  

Section 4.1 covers the fundamentals of ant type algorithms that do not 

change from one method to another. Section 4.2 gives detailed information about 

proposed methods. Especially the task selection rules and the pheromone trail 

update mechanisms will be explained in details. 

 
4.1.1 Motivation  

As stated in Chapter 2 there are some exact algorithms for the U-line 

problem even though these algorithms can handle only limited size problems. 

Both UALBP and SALBP are NP-hard problem (Baybars, 1986; Miltenburg and 
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Sparling, 1995; Miltenburg, 1998; Sparling and Miltenburg, 1998). Obviously 

large size realistic problems require heuristic approaches.  

Even though many heuristics have been developed for SALBP (Erel and 

Sarin, 1998), for the single model UALBP there are only three heuristics. These 

are: RPWT based heuristic (Miltenburg and Wijngaard, 1994), branch and bound 

based heuristic (Scholl and Klein, 1999) and SA based heuristic (Erel, 

Sabuncuoglu and Aksu, 2001). 

In this research, a new heuristic, Ant Colony Optimization (ACO) meta-

heuristic, and its variants are proposed for UALBP. There are two ant approaches 

proposed for SALBP (Bautista and Pereira, 2002; McMullen and Tarasewich, 

2003). However this study is the first application of ACO meta-heuristic to U-

shaped production lines. The work by McMullen and Tarasewich (2003) considers 

only six problems (ranging in size from 21 to 74 task) and their objective function 

is different from our objective function. Bautista and Pereira (2002) consider the 

same objective function, minimizing the number of stations given a fixed cycle 

time, but this model is proposed for only SALBP. 

Since the first ant algorithm developed by Dorigo and colleagues (1991), 

several variants of the AS have been proposed in the literature. In general, ACO is 

an umbrella term for a number of similar metaheuristics: Ant System (AS), Ant 

System with Elite Strategy (ASelite), Ant System with Ranking (ASrank), Ant 

Colony System (ACS), MAX-MIN Ant System (MMAS) are some of these meta-

heuristics. Details can be found in Table 2.1 and Table 2.2 (see also Chapter 3).  

 

4.1.2 Fundamentals 
Although there are some aspects that makes these variants of the ACO meta-

heuristics differ from each other, the fundamentals of ant type algorithms do not 

change from one method to another. These are as follows:  
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1. Problem Representation (UALBP must be represented as a graph that can be 

searched by many simple agents); 

2. Autocatalytic Feedback Process (it is necessary to find an efficient 

representation for artificial trail values); 

3. Solution Generator (heuristic also called as “greedy force”. It is very 

important to define a proper heuristic function for UALBP); 

4. Constraint Satisfaction (a proper tabu list that will satisfy the constraints of the 

problem consideration). 

Dorigo, Maniezzo, and Colorni (1991, 1996), state that the most difficult of 

these is to find an appropriate graph representation for the problem and the greedy 

force. These issues are discussed next.   

 

4.1.2.1 The graph representation of the problem 
For many real life problems, it is possible to describe the structure of the 

problem using a graph. The key feature of any ant type algorithm is the definition 

of the links between the elements of a solution (Montgomery and Randall,2002). 

For example, for the Travelling Salesman Problem (TSP) and the Vehicle Routing 

Problem (VRP), the key feature is the links between cities/customers respectively. 

For the Quadratic Assignment Problem (QAP), the links represent couplings of 

facilities and locations.  

 UALPB can be defined as a graph, where the nodes represent tasks, the 

arcs represent precedence relations between tasks and the operation times are 

given as node weights. The (i,j) arc between nodes i and j represents the 

precedence relations between task i and task j. This precedence graph forms a 

basis for construction of solutions and generation of tabu lists. 
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4.1.2.2 The autocatalytic process 
For the proposed algorithms, the collective behavior of the ants emerges as 

a form of autocatalytic process (the autocatalytic process is a process that 

reinforces itself) where more ants follow a trail, the trail becomes more attractive 

for being followed. Here, the amount of pheromone trail represents the 

attractiveness of assignment of a task to a specific station. It is a global piece of 

information. Thus, if a task is relatively assigned to a specific station many times, 

then it is more attractive to assign the same task to the same station next time. The 

process is thus characterized by a positive feedback loop, in which the probability 

of assigning a task to a specific station increases with the number of ants that 

previously assigned the same task to that station. If no control mechanism exists 

this situation misleads the ants and may cause a very rapid convergence. This is 

called stagnation (Dorigo, Maniezzo and Colorni 1991,1996). For detailed 

information see Chapter 2. 

 

4.1.2.3 The greedy force 

The greedy force is basically defined as the available heuristic value that 

gives a prior knowledge on attractiveness of a solution component. Thus a 

solution component with a high heuristic value is more desirable. In fact, the 

heuristic value represents a priori information about the problem instance 

definition or run-time information provided by a source different from the ants 

(Dorigo and Stützle, 2000). It is a local piece information. An ant algorithm only 

using the heuristic information in the task selection process (no contribution of 

trail value) is a stochastic greedy algorithm with multiple starting points. 

  We took inspiration from Miltenburg and Wijngaard’s (1994) task priority 

function, p(k) ( this function is also called U-line maximum ranked positional 

weight).  
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Following Miltenburg and Wijngaard‘s (1994) definition, let p
kU is given as the 

set of tasks which must precede task k, and s
kU  is given as the set of tasks which 

must succeed task k. Then at any instant, the set of assignable tasks given as 
s
k

p
k UjallorUiallkV ∈∈= |{ have already been assigned}. 

A forward/backward priority of a task is defined as a priority function, 

pf(k) / pb(k), and is called forward/backward U-line ranked positional weight. This 

priority function constitutes our heuristic value, and is defined for each task k as: 


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Thus, the priority of each task is either the time required to complete both 

that task and all the tasks that must succeed or precede it. In this way, for tasks 

whose successors/precedessors require a long time to complete are strongly 

forward/backward assignable and it is better to assign them as soon as possible.  

In order to illustrate the “forward” and “backward” positional weights, 

consider the well-known Jackson problem, with 11 tasks. Task numbers are 

written in nodes and duration of operations is written as weight of nodes. 

 

 

 

 

  

 

 

 

 

Figure 4.1: Jackson problem with 11 tasks 
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For task 1, the forward positional weight is the duration of task 1 and sum 

of task times of all the tasks that succeed it. 

P f(1) = t(1)+ t(2)+ t(5)+ t(3)+ t(4)+ t(6)+ t(7)+ t(8)+ t(9)+ t(10)+ t(11) = 46    

For task 1, the backward positional weight is the duration of task 1 and 

sum of task times of all the tasks that precede it. 

P b(1) =  t(1)  = 6 

For the Jackson problem, forward and backward positional weights are 

given in Table 4.1. 

Table 4.1: Forward and backward positional weights for Jackson problem. 
 
Task Number Forward positional weight Backward positional weight 

1 46 6 
2 19 8 
3 17 11 
4 19 13 
5 13 7 
6 17 10 
7 12 22 
8 15 16 
9 9 27 
10 9 21 
11 4 46 

 

We will explain allocation of tasks to the stations in Section 4.1.3. 

 

4.1.2.4 The constraint satisfaction  

Each ant has its own tabu list that stores the state of each task. During a 

tour, assigned tasks are marked as tabu and can not be assigned once more. The 

tabu list1 is used in order to determine feasible and assignable tasks to calculate 

the selection probabilities of each.  

 

 

 
                                                           
1 The term ‘tabu list’ is used to indicate a simple memory that contains the set of already assigned 
tasks, and has no relation with tabu search. 
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4.1.3 Generation of a solution 
Initially, very small amount of pheromone deposition for each task is 

given as an initial input to the system. Based on given constraints, precedence 

relations and limiting cycle time, the possible feasible solutions are constructed 

and a search list is created. This constitutes the initial solution phase of the 

solution system. Then, a number of ants move through the neighborhood of the 

solution in order to find the alternative solutions, hopefully an optimal solution. 

As they travel from one node to another feasible one, the memory is updated 

instantly or later depending on the quality of the solution.  This iterative process 

continues until the best solution is obtained or the respecified termination 

condition (either on the number of cycles or on the computation time of the 

problem) is satisfied. For our algorithms, the termination criterion is a limit on the 

number of tours (cycles). 

For each ant, completion of one tour (or one cycle) means that all nodes 

are visited and all tasks are allocated. During a tour for a graph with n nodes (i.e., 

a problem with n tasks), m ants find m solutions, each of them visiting n nodes 

(i.e., each of them allocating n tasks). Briefly, during a tour, m ants find m 

solutions each of them allocating n tasks, and a tour includes n iterations for each 

ant (During an iteration each ant allocates one task). Generalized flow chart of 

proposed methods is given in Figure 4.2. Next, we give a numerical example to 

better explain the main features of the ant algorithms.  
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Define problem in terms of a graph 

Identify all the links, and the 
limiting criteria 

Determine initial task for each ant 
using probability function 

Create neighbourhood or search 
solution space list for each ant 

Generate agents (artificial ants) 

For each ant construct a solution and 
evaluate the best possible solution 

from entire solution space 
 

(Tour of an ant) 

Is the terminating 
condition reached? Print the best solution 

Stop 
Assign the new best solution as the 

current solution 

Update the solution set and trail 
values based on the goodness of the 
solution and generate a new search 

Yes 

No 

Figure 4.2: A flowchart of the proposed algorithms. This flowchart is adapted from Krishnaiyer and 
Cheraghi’s (2002) generalized flow chart.  
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Numerical Example: 

For illustrative purposes, consider the Jackson problem with a cycle time 

of 10. The construction of a solution during one tour for a single ant is given 

below. General form of the probability function, probability of assignment of task 

i to station j, is defined as follows: 
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Here Tij represents the trail value of assigning task i to station  j and ηi 

represents the heuristic value called visibility. If a task is forward assignable, than 

its heuristic value is the forward positional weight of that task and if a task is 

backward assignable, then heuristic value is the backward positional weight of 

that task. Parameters α and β allow a user to control the relative importance of 

trail versus visibility. Time counter t represents the iteration number. So, the 

transition probability is a tradeoff between the visibility and the trail intensity. For 

simplicity, Tij , α and β are taken as 1. 

In tabu list; 0’s represent unavailable and unassigned tasks, -1’s represent 

assigned tasks, 1’s represent forward assignable tasks, and 2’s represent backward 

assignable tasks. 

Iteration 1: 

Station number: 1, Station time: 0 
Tabu list:   

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values 1 0 0 0 0 0 0 0 0 0 2 

Forward available and feasible tasks: 1 
Backward available and feasible tasks: 11  
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Random number, RN(0,1) = 0.040;  task 1 is forward assigned2. New station time 

is 6. 
 

Iteration 2: 

Station number: 1, Station time: 6 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 1 1 1 1 0 0 0 0 0 2 

Forward available and feasible tasks: 2, 5 
Backward available and feasible tasks: 11  
 

Here task 3 and 4 are also available for forward assignment but their task 

times are greater than the remaining idle time for station 1. Thus, they are not 

feasible tasks for iteration 2. 

244.0)2(1,2 =P , 166.0)2(1,5 =P , 590.0)2(1,11 =P  

Random number, RN(0,1) = 0.494; task 11 is backward assigned2. New station 

time is 10. 
 

Iteration 3: 

No available task exists for station 1, thus we open a new station. 

Station number: 2, Station time: 0 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 1 1 1 1 0 0 0 2 2 -1 

Forward available and feasible tasks: 2, 3, 4, 5 
Backward available and feasible tasks: 9, 10 

164.0)3(2,2 =P , 147.0)3(2,3 =P , 164.0)3(2,4 =P , 112.0)3(2,5 =P , 

232.0)3(2,9 =P , 181.0)3(2,10 =P  

                                                           
2 Task selection: (i) Choose a random number, RN(O,1). (ii) Start from the smallest task number. 
In a non-decreasing order of task numbers, add together the probability Pij(t) of all feasible and 
assignable tasks (one at a time). Stop immediately when the sum is greater than or equal to 
RN(O,1). The last individual added is the selected task for the assignment. 
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Random number, RN(0,1) = 0.637; task 9 is backward assigned. New station time 

is 5. 

Iteration 4: 

Station number: 2, Station time: 5 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 1 1 1 1 0 2 0 -1 2 -1 

Forward available and feasible tasks: 2, 3, 5 
Backward available and feasible tasks: 7, 10 

207.0)4(2,2 =P , 185.0)4(2,3 =P , 141.0)4(2,5 =P , 239.0)4(2,7 =P 228.0)4(2,10 =P  

Random number, RN(0,1) = 0.339;  task 3 is forward assigned. New station time 

is 10. 
 

Iteration 5: 

No available task exists for station 2, thus we open a new station. 

Station number: 3, Station time: 0 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 1 -1 1 1 0 2 0 -1 2 -1 

Forward available and feasible tasks: 2, 4, 5 
Backward available and feasible tasks: 7, 10 

202.0)5(3,2 =P , 202.0)5(3,4 =P , 138.0)5(3,5 =P , 234.0)5(3,7 =P , 223.0)5(3,10 =P  

Random number, RN(0,1) = 0.172;  task 2 is forward assigned. New station time 

is 2. 
 

Iteration 6: 

Station number: 3, Station time: 2 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 1 1 1 2 0 -1 2 -1 

Forward available and feasible tasks:  4, 5, 6 
Backward available and feasible tasks: 7, 10 

207.0)6(3,4 =P , 141.0)6(3,5 =P , 185.0)6(3,6 =P , 239.0)6(3,7 =P , 228.0)6(3,10 =P  
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Random number, RN(0,1) = 0.256;  task 5 is forward assigned. New station time 

is 3. 

Iteration 7: 

Station number: 3, Station time: 3 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 1 -1 1 2 0 -1 2 -1 

Forward available and feasible tasks:  4, 6 
Backward available and feasible tasks: 7, 10 

241.0)7(3,4 =P , 215.0)7(3,6 =P , 278.0)7(3,7 =P , 266.0)7(3,10 =P  

Random number, RN(0,1) = 0.891;  task 10 is backward assigned. New station 

time is 8. 
 

Iteration 8: 

Station number: 3, Station time: 8 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 1 -1 1 2 2 -1 -1 -1 

Forward available and feasible tasks: 6 
Backward available and feasible tasks: - 

1)8(3,6 =P  

Random number, RN(0,1) = 0.595; task 6 is forward assigned.  New station time 

is 10. 
 

Iteration 9: 

No available task exists for station 3, thus we open a new station. 

Station number: 4, Station time: 0 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 1 -1 -1 2 2 -1 -1 -1 

Forward available and feasible tasks: 4 
Backward available and feasible tasks: 7, 8 

333.0)9(4,4 =P , 386.0)9(4,7 =P , 281.0)9(4,8 =P  
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Random number, RN(0,1) = 0.194; task 4 is forward assigned. New station time  

is 7. 
 

Iteration 10: 

Station number: 4, Station time: 7 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 -1 -1 -1 2 2 -1 -1 -1 

Forward available and feasible tasks: - 
Backward available and feasible tasks: 7 

1)10(4,7 =P  

Random number, RN(0,1) = 0.076; task 7 is backward assigned. New station time 

is 10. 
 

Iteration 11: 

No available task exists for station 4, thus we open a new station. 

Station number: 5, Station time: 0 
Tabu list:  

Tasks 1 2 3 4 5 6 7 8 9 10 11 
Tabu values -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 

Forward available and feasible tasks: - 
Backward available and feasible tasks: 8 

1)11(5,8 =P  

Random number, RN(0,1) = 0.582; task 8 is backward assigned. New station time 

is 6. In Figure 4.3 the task allocation is given. 

 

 

 

 

 

 

 Figure 4.3: The task allocation for Jackson problem, c = 10. 
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4.2 Proposed Methods 
This section provides more detailed information on the proposed methods 

for UALBP. Especially the task selection rules and the pheromone trail update 

mechanisms will be explained in detail. We consider these methods in three 

groups: (i) directly applied methods, (ii) modified methods, and (iii) methods in 

which ACO approach is augmented with a metaheuristic. First group includes 

methods, AS, ASelite, ASrank, and ACS that is directly applied to UALBP. No 

modification is done in the structure of the algorithms. Second group includes the 

new methods that the structure of the algorithms is modified. Also, performance 

of the algorithms in this group is much better than that in the first group. Last 

group includes two specialized methods that the ACO approach is augmented 

with simulated annealing (SA) and beam search (BS). 

 

4.2.1 Ant System (AS) 

AS is the first example of an ACO heuristic in the literature and its 

importance resides in being the prototype of many ant algorithms. Therefore, we 

consider the AS as our starting point. Indeed, AS is a set of three algorithms 

called ant-cycle, ant-density, and ant-quantity (Dorigo, Maniezzo, Colorni, 1996). 

These three versions differ in the way that the trail is updated. 

While in ant-density and ant-quantity the ants update the trail directly just 

after they allocate a task to a station, in ant-cycle the trail update is done only 

once, after all ants finished a tour and construct a full solution (when all tasks are 

allocated to stations). The amount of pheromone deposited by each ant is set to be 

a function of its solution quality. For all methods the solution quality is 

represented by the number of stations. Ant-cycle is reported (Dorigo, Maniezzo, 

Colorni, 1996) to perform better than the other two variants and these two 
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algorithms are no longer studied. Thus, we only consider  ant-cycle. Generally 

ant-cycle is known as AS. 

In AS each ant starts a tour with an empty station. After the initialization 

phase of the system, depending on each ant’s memory, first available tasks are 

determined and then the tabu list is used to determine the feasible tasks. If there 

are available tasks but none of them are feasible, then a new station is opened. 

Starting from first task, an ant iteratively moves from task to task and allocates 

them to the stations. For  iteration t, ant k chooses a feasible task i to assigns to 

station  j with a probability given by: 
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where allowedk is the set of available and feasible tasks for ant k. This state 

transition rule is called as random-proportional rule. Parameter iη is the priory 

available heuristic information and in Equation 4.3 it is defined as the positional 

weight of task i (see section 4.1.2.2 and section 4.1.2.3). Parameters α and β 

determine the relative influence of the pheromone trail and the heuristic 

information. These parameters affect the behavior of the algorithm. If α = 0, the 

selection probabilities are proportional to [ ]βηi and tasks with high positional 

weight are more likely to be selected. In this case, AS corresponds to a stochastic 

greedy algorithm with multiple starts. If β = 0, only pheromone information 

affects the selection probabilities, and if no control mechanism exists, this 

situation misleads the ants. This may cause a very rapid convergence, leading to a 

stagnation situation (Dorigo, Maniezzo, Colorni, 1996). In this situation, all the 

ants follow the same path and construct the same solutions, which are strongly 

suboptimal (see Section 4.1.2.2 and Section 4.1.2.3). Thus, there is a trade-off 

between the trail intensity and the heuristic value.  
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After each ant has completed a tour, the solution construction ends. Next, 

the pheromone trails are updated by first lowering the trail values by a constant 

factor (pheromone evaporation) and then allowing each ant to deposit an amount 

of pheromone on the related trail value. For example, at time t if ant k allocates 

task 3 to station 5, then the related trail value for this solution component is 
)(5,3 tT k∆ . Trail values are updated as follows: 

 
( ) ( ) ),()(1)1(
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jitTtTtT m

k
k

ijijij ∀∆+−⋅−= ∑ =
ρ          (4.4) 

where m is the number of ants and ρ is the pheromone trail evaporation rate (0 < ρ 

< 1). Rate ρ enables the algorithm to forget the previously made bad selections. 

Thus, unlimited accumulation of the pheromone trails is avoided. The amount of 
pheromone trail, )(tTij represents the learned desirability of allocating task i to 

station j.  The trail values that are not updated will decrease exponentially with the 
number of tours. )(, tT k

ji∆ is the amount of pheromone deposit by ant k if task i is 

allocated to station j at tour t  and it is defined as: 
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



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otherwise

kantbyjstationtoallocatedisitaskif
tf

Q
tT kk

ij

0
)()(      (4.5) 

where f k(t) is the station number found by ant k and Q is a constant. )(, tT k
ji∆  

depends on how well the ant has performed. Equation 4.5 satisfies more 

pheromone to be deposit for better solutions (allocations with less number of 

stations). The tasks which are allocated to some specific stations by more ants and 

which are the part of a solution with less number of stations will receive more 

pheromone. Therefore, these tasks are more likely to be allocated to same stations 

in future tours of the algorithm. This choice helps to direct the search towards the 

better solutions.  

During tours, changing pheromone trail information reflects the experience 

acquired by ants.  
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The initial amount of pheromone )0(, jiT  is set to a very small positive 

constant value, τ0 and the total number of ants m, is set equal to the total number 

of tasks, n. Values of α, β, ρ and Q are found after fine-tuning of these 

parameters. Further information will be given in Chapter 5. Flowchart of the AS 

algorithm is given in Figure 4.4.  
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Figure 4.4: Flowchart of Ant System 

Th
is

 lo
op

 is
 re

pe
at

ed
 p

re
de

te
rm

in
ed

 n
um

be
r o

f t
im

es
 

Get Data 
-Get task times and precedence graph; 
-Update [Task Time Matrix];   [Precedence Matrix]; 

First Initialize 
-Initialize all related matrices and variables; 
  [Task Time Matrix] = 0;          [Precedence Matrix] = 0;   [Positional Weight Matrix] = 0;   
  [Trail Matrix] = τo

(*)                           [Probability Matrix] = 0;    [Tabu Matrix] = 0;  
  [Task Allocation Matrix] = 0;   [Ant Memory Matrix] = 0; 
  Best solution of the tour = 0;     Best solution found up to now = 0; 
  (*) τ0 : initial trail 

Proceed Ants (Solution Construction) 
-Repeat  (n) times;  (Until all task are allocated; or tabu list is full) 
     -For each ant; 
        -Determine available and feasible tasks; 
          -For each task calculate the probability of allocating that task to current station using 
           random-proportional rule (Equation 4.3) and Update [Probability Matrix]; 
        -Select a task and allocate it to current station; 
        -Update [Task Allocation Matrix], [Tabu Matrix] and [Ant Memory Matrix] 

Global Trail Update 
-For each entry of the [Trail Matrix];  ),();1()1()( jitTtT ijij ∀−⋅−= ρ  
-IF task i is allocated to station j by ant k THEN; 
       

)(
)(

tf
QtT k

k
ij =∆ ; 

),()()()(
1

jitTtTtT m

k
k

ijijij ∀∆+⋅= ∑ =
; 

ELSE; ),(0)()( jitTtT ijij ∀+⋅=  

Print Results 

      Calculate Positional Weights 
-Calculate forward and backward positional weights; 
-Update [Positional Weight Matrix]; 

Initialize 
-Initialize some of the matrices and variables; 
  [Probability Matrix] = 0;         [Tabu Matrix] = 0;  
  [Task Allocation Matrix] = 0;  [Ant Memory Matrix] = 0;   Best solution of the tour = 0; 

Calculate Station Number 
-For each ant calculate station number; 
- Calculate the best solution of the tour; 
- Update Best solution of the tour; 
- IF (Best solution of the tour) is better than (Best solution found up to now) THEN 

;
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4.2.2 Ant System with Elitist Strategy (ASelite) 
The idea of the elitist strategy is giving an extra emphasis to the best 

solution found after every tour (Bullnheimer, Hartl and Strauss, 1997). In the AS 

the trail values are updated based on the solution quality of all ants. The level of 

contribution depends on the solution quality. A shortcoming of this procedure is 

stated by Bullnheimer, Hartl and Strauss (1997) as follows: after a period if the 

overall solution quality rises and the difference between the solutions decrease, 

the effect of emphasizing better solutions will diminish. Thus the difference in 

trail values and also the selection probabilities decrease. Therefore, the 

exploitation of the solution space will not be as high as desired. One possible 

alternative to solve this problem is elitist strategy.  

After the trail values are updated, the best solution of the tour is treated as 

if a certain number of elite ants had found that solution. Because some parts of 

this solution may belong to the optimal solution. Thus the idea is to guide the 

search in succeeding tours. The trail updating mechanism is as follows:  
 
  ( ) ( ) ),()()(1)1( (*)

1
jitTtTtTtT ij

m

k
k

ijijij ∀∆+∆+−⋅−= ∑ =
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     (4.7) 

)((*) tTij∆ is the increase of trail level for allocation of task i to station j 

caused by the elite ants. σ is the number of elite ants and f (*)(t) is the station 

number of the best solution found. Bullnheimer, Hartl and Strauss’s (1997) 

experiment results for the TSP are very good when σ = α = β. Nevertheless 

ASelite does not give good results for UALBP. After a period, almost all ants find 

the best solution of the tour. Although the allocation of each ant is different from 
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each other, the station number of these different allocations is the same. Thus, the 

elitist strategy is applied for all of them and the extra emphasis is given for all of 

their solutions. This does not help with the distinction of the actual best solution.  

Actually this is related with the topology of the cost function. Hertz and 

Widmer (2003) state that the topology of the cost function should not be too flat 

for the heuristics to get the optimal point. The cost function can be considered as 

an altitude with mountains, valleys and plateaus. If the cost function is too flat, it 

is difficult for the search mechanism to escape from the large plateaus to fall into 

the valleys. To tackle this problem, Hertz and Widmer (2003) suggest adding a 

component to the cost function to discriminate the solutions with the same 

original cost function value. 

 

4.2.3 Ant System with Ranking (ASrank) 
The concept of ranking is similar to the elitist strategy. After all m ants 

generate a tour, these ants are sorted according to their solution quality. (f1 ≤ 

f2≤…≤fm). The contribution of an ant to the trail level update is weighted 

according to the rank of that ant (Bullnheimer, Hartl and Strauss,1997). Only w 

best ants are considered and this prevents the over-emphasis of the pheromone 

trails when there are too many ants.  

Based on computational results, Bullnheimer, Hartl and Strauss (1997) 

state that the exploitation as well as the exploration is considerably high and well 

balanced. Nevertheless ASrank is not proper for UALBP. In UALBP, after a period 

almost all ants find the best solution of the tour. Although the allocation of each 

ant is different from each other, the station number of these different allocations is 

the same. Therefore, when ants are sorted by their solution quality (the number of 

stations) most of them will have an equal rank and their contribution to the trail 
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level update will be equally weighted. There will be no distinction among the 

solutions and this will not help the exploitation of the better solutions. 

 

4.2.4 Ant Colony System (ACS) 
Ant Colony System is proposed by Dorigo and Gambardella (1997), 

Gambardella and Dorigo (1996) to improve the performance of the AS. ACS is 

based on an earlier algorithm proposed by the same authors, called Ant-Q.  

ACS differ from the AS in three main aspects: (i) ACS uses a more greedy 

action choice rule than that of AS, (ii) the global pheromone trail update rule is 

only applied for the global-best solution (after a tour), (iii) while the ants construct 

a solution, a local pheromone updating rule is applied (during a tour). In the 

following, these modifications will be explained in more detail. 

Tour Construction. In ACS the state transition rule is defined as follows: 

an ant allocates a task s to station j by applying the rule given in Equation (4.8) 
 

         
[ ] [ ]{ }
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

 ≤⋅

= ∈

)exp(

)(exp)(maxarg 0

lorationbiasedotherwiseS

loitationqqiftT
s uallowedu

uuj
βη

  (4.8) 

where q is a uniformly distributed random number in [0,1], q0 is a parameter     

(0≤ q0≤1), and S is a random variable selected according to the random-

proportional rule given in Equation (4.3). The state transition rule is the 

combination of Equations (4.3, 4.8) and called pseudo-random-proportional rule.  

This state transition rule favors allocations with a large amount of 

pheromone. Parameter q0 controls the relative importance of exploitation versus 

exploration. If q≤q0 then the best task is chosen and this selection is a kind of 

greedy behavior which favors the exploitation of the search space. Otherwise, a 

task is chosen according to Equation (4.3) and that favors the exploration of the 

search space.  
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Global Pheromone Trail Update. In ACS only the globally best ant is 

allowed to deposit pheromone. This ant is the one, which finds the best solution 

from the beginning. Dorigo and Gambardella (1997) state that the global updating 

rule together with the use of the pseudo-random-proportional rule makes the 

search more directed. The global updating is performed after all ants have 

constructed their solutions (when a tour is completed) according to Equation (4.9):  
 

  ( ) ( ) )(1)1( )(
11 tTtTtT gb

ijijij ∆⋅+−⋅−= ρρ          (4.9) 

where 
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0≤ρ1≤1 is pheromone evaporation parameter, and f(gb)(t) is the station number of 

the globally best solution. As in AS, the global updating favors the better 

solutions. However, this time only those trail values belonging to the globally best 

solution receive reinforcement. 

Local Pheromone Trail Update. In ACS, additional to the global updating 

rule, the ants use a local update rule. That is just after they allocate task i to station 

j they change the related pheromone level by using Equation (4.11): 
 

  ( ) ( ) 022 1)1( τρρ ⋅+−⋅−= tTtT ijij      (4.11) 

where ρ2 ,0≤ρ2≤1, and τo is the initial pheromone level. The effect of the local 

updating is to make the desirability of tasks change dynamically. The local 

updating rule makes the already chosen task less desirable for the following ants. 

In this way, the exploration of unallocated tasks is increased and the ants make a 

better use of pheromone information. 

For UALBP, ACS performed better than AS, ASelite and yield better 

results. ACS is able to find the optimal solution for some small and medium size 

instances that AS and ASelite can not find the optimal solution. Nevertheless, 
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ACS’s performance is poor for some large size problems. ACS finds such 

allocations having one station more than the optimal allocation. Details are given 

in Chapter 5. When we study the behavior of ACS, our investigations make us 

focus on pheromone trail accumulation mechanism and the structure of the trail 

matrix. When the problem size increases, it gets difficult to find the proper task 

allocation that gives the optimal solution. While searching for the optimal 

allocation it is very hard to find the exact place of a task (that may lead to an 

optimal allocation) by using only a random selection mechanism. Therefore, to 

increase the probability of allocating a task to a correct place, the related 

pheromone level must be comparatively high. Also structure of the trail matrix 

must be suitable in order to allow this pheromone accumulation. Consider the 

Jackson problem given in Figure 4.5. The optimal task allocation is given in 

Figure 4.5.a and Figure 4.5.b with different representations. 

 

 

 

 

 

 

 

 

When the location information is not given, it is not clear where the tasks are 

located in a station and how they are allocated (forward or backward). Sometimes 

knowing only to which station a task is assigned will not be enough. Consider 

station 4 in Figure 4.5.a. We only know that tasks 4 and 7 are allocated to station 

4. However, the location information is unknown. With this information, it is 

possible to define three different feasible allocation alternatives:  

Figure 4.5.a: Optimal task allocation for the Jackson 
problem, c=10. Location of tasks is not given. 

Figure 4.5.b: Optimal task allocation for the Jackson 
problem, c=10. Location of tasks is given. 
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Alternative 1:   Station 4;    Alternative 2:   Station 4;    Alternative 3:   Station 4; 

  

 

 

However, only Alternative 1 is the part of the given optimal allocation. 

 In order to emphasize the location information, the structure of the trail 

representation is modified to consider the location values. With this new 
modification, for a given tour number t, )()( tT upperij represents the desirability of 

allocating task i to the upper part of station j; and )()( tT lowerij  represents the 

desirability of allocating task i to the lower part of station j. For station 4, only 

trail values T4,4(upper)(t) and T7,4(lower)(t) will receive reinforcement. However in the 

previous version of ACS, when T4,4(t) value is reinforced, at the same time 
T4,4(upper)(t) and T4,4(lower)(t) receive reinforcement (Note that, )(tTij = 

)()( tT upperij + )()( tT upperij ) but only the T4,4(lower)(t) characterizes the real situation. 

With this new pheromone structure, proposed algorithm performs better 

than the previous version. It is able to find the optimal allocations that the 

previous version could not find. For the problems that optimal solution is found, 

this modified version finds the optimal solution faster than the previous version. 

Flowchart of the ACS algorithm is given in Figure 4.6 (The pheromone 

structure modification is not included in the figure).  
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Figure 4.6: Flowchart of Ant Colony System 
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Get Data 
-Get task times and precedence graph; 
-Update [Task Time Matrix];   [Precedence Matrix]; 

First Initialize 
-Initialize all related matrices and variables; 
  [Task Time Matrix] = 0;          [Precedence Matrix] = 0;   [Positional Weight Matrix] = 0;   
  [Trail Matrix] = τo

(*)                           [Probability Matrix] = 0;    [Tabu Matrix] = 0;  
  [Task Allocation Matrix] = 0;   [Ant Memory Matrix] = 0; 
  Best solution of the tour = 0;     Best solution found up to now = 0; 
  (*) τ0 : initial trail 

Proceed Ants (Solution Construction) 
-Repeat  (n) times;  (Until all task are allocated; or tabu list is full) 
     -For each ant; 
        -Determine available and feasible tasks; 
        -For each task calculate the probability of allocating that task to current station using 
           random-proportional rule (Equation 4.3) and Update [Probability Matrix]; 
       -Select a task and allocate it to current station; 

Local Trail Update 
( ) ( ) 022 1)1( τρρ ⋅+−⋅−= tTtT ijij  

Global Trail Update 
-For each entry of the [Trail Matrix];  ),();()1()1()( )(

11 jitTtTtT gb
ijijij ∀∆⋅+−⋅−= ρρ  

-IF (i,j) is part of the global best solution THEN; 
       

)(
1)( )(

)(

tf
tT gb

gb
ij =∆ ; 

ELSE; ;0)()( =∆ tT gb
ij  

Print Results 

      Calculate Positional Weights 
-Calculate forward and backward positional weights; 
-Update [Positional Weight Matrix]; 

Initialize 
-Initialize some of the matrices and variables; 
  [Probability Matrix] = 0;         [Tabu Matrix] = 0;  
  [Task Allocation Matrix] = 0;  [Ant Memory Matrix] = 0;   Best solution of the tour = 0; 

Calculate Station Number 
-For each ant calculate station number; 
- Calculate the best solution of the tour; 
- Update Best solution of the tour; 
- IF (Best solution of the tour) is better than (Best solution found up to now) THEN 

;
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4.2.5 Modified Ant Colony System (ACS) with Random  
          Search 

With the new pheromone structure, ACS algorithm performs better than 

the previous versions. It is able to find the optimal allocations that the previous 

version could not find (Details are given in Chapter 6). This new pheromone 

structure allows the exploitation of some new and important information. This fact 

leads us to investigate the task allocations and accumulation of the trail values for 

problems that the optimal solution is not found. We focused on the two smallest 

size problems (Buxey with cycle time of 36, and Gunther with cycle time of 69) 

that AS, ASelite, and ACS could not find the optimal solution; none of the 

modifications and parameter fine-tuning succeed with these problems.  

In order to explain our modifications, consider Gunther problem with 35 

tasks and cycle time of 69. We run ACS algorithms for 1 replication until 1000 

tours have been completed and store the trail matrix data to investigate the 

accumulation of pheromone (Trail matrix for tour number 10, 100, 500, 1000 is 

given in Appendix A). After a short period, most of the entries of the trail matrix 

converge to zero and the remaining entries have a value, which is very close to 

zero. Somehow the valuable information intended to gain by pheromone 

accumulation is lost.  The difference between the very small values of trail matrix 

and the values of positional weight matrix is very high. Therefore, the influence of 

pheromone trail on the selection probabilities is very low. In this situation, most 

of the information for selection probabilities is coming from the heuristic value. 

The selection probabilities are mostly proportional to [ ]βηi and the tasks with high 

positional weight are more likely to be selected. In this case, algorithm behaves 

like a stochastic greedy algorithm. This also explains the fact that why small and 

medium size problems are easily solved with ACS. For most of these problems, 

the positional weight information is sufficient to search the solution space. 
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However for harder and larger size instances it is insufficient. Therefore, we need 

to magnify the effect of trail values and we need to satisfy the pheromone 

accumulation in an effective way. 

Modification Step 1.  Our first method is simple and works cooperatively 

with ACS. We use a secondary pheromone trail accumulation mechanism that 

directly collects the task allocation information. After all ants finished a tour and 

constructed a full solution (when all tasks are allocated to stations), a secondary 

trail update mechanism works in parallel with the global trail update. For each 

globally best ant k, if a task i is allocated to location j´(now each station is divided 

into two locations) this secondary trail update mechanism updates the related 

entry of a secondary trail matrix by adding only 1. We call this secondary trail 

matrix as T2, and it is updated as follows: 
 
  ∑ =

∀∆+=
m

k
k
ijijij jitTtTtT

1 ''' ),()(2)(2)(2       (4.12) 

where 




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otherwise
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tT k

ij 0
'1

)(2 ' (4.13) 

First we collect the T2 matrix for a single and very long replication. By 

letting the algorithm to work for a long replication, we give an opportunity for 

some critical entries of the T2 matrix to be emphasized more. In their experiments, 

Dorigo, Maniezzo, Colorni (1991, 1996) let the algorithm run until 2500 tours 

have been completed. Similarly, we have done two experiments: (i) the algorithm 

is allowed to run until 5000 tours have been completed, (ii) the algorithm is 

allowed to run until 10000 tours have been completed (the T2 matrix for tour 

number 5000 and 10000 is given in Appendix B).  

Scholl and Klein’s (1999) optimal task allocation for Gunther problem is 

given in Figure 4.7. In Table 4.2, we list the ranking of most possible location 

alternatives for each task depending on the T2 matrix.  
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Figure 4.7: Scholl and Klein’s (1999) optimal task allocation for Gunther problem 



CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION 

 

71 

 

 

 

 

 

   Table 4.2:  Ranking of most possible location alternatives for each task depending on T2 matrix 
 

Experiment with 5000 tours Experiment with 10000 tours  
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

1 1 3 5 7 13 1 3 5 7 13 
2 1 3 5 7 9 1 3 5 7 9 
3 3 5 7 1 9 3 5 7 1 9 
4 7 9 5 11 3 7 9 11 5 3 
5 3 1 5 7 9 3 1 5 7 9 
6 3 7 5 9 1 3 7 5 9 1 
7 3 7 5 9 1 3 7 5 9 1 
8 7 3 9 5 1 7 3 5 9 1 
9 9 11 7 5 13 7 11 9 5 3 

10 7 3 9 5 1 3 7 9 5 1 
11 14 10 12 8 5 12 14 10 8 7 
12 7 3 9 5 1 3 7 9 1 11 
13 10 8 14 12 6 12 10 6 14 7 
14 9 11 5 7 3 9 11 5 7 3 
15 11 13 9 7 5 11 13 9 7 5 
16 13 14 11 12 9 13 11 14 12 9 
17 1 3 5 7 9 3 1 5 7 9 
18 9 11 5 7 3 9 11 5 7 3 
19 11 9 13 7 5 11 13 9 7 5 
20 13 14 11 12 9 13 14 11 9 10 
21 12 14 10 13 11 14 12 10 13 11 
22 12 14 10 8 6 12 14 10 8 6 
23 10 12 8 6 14 12 10 6 8 14 
24 10 8 12 4 6 10 4 8 14 12 
25 10 8 6 12 4 10 8 6 12 4 
26 8 6 10 12 4 8 6 10 4 12 
27 4 8 6 10 12 4 8 6 20 14 
28 4 2 6 8 14 4 2 6 8 12 
29 2 4 6 8 10 2 4 6 8 10 
30 2 8 10 12 6 2 8 10 12 6 
31 2 6 8 10 12 2 6 8 10 4 
32 2 6 4 8 10 2 6 4 8 10 
33 2 4 6 8 10 2 6 4 8 10 
34 2 4 6 8 10 2 4 6 8 10 
35 2 4 6 8 10 2 4 6 8 10 

Total 
matching 14 10 3 5 2 14 8 5 3 3 

 

 

 

Alternatives 

Task 
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When we compare our alternatives with Scholl and Klein’s (1999) optimal 

task allocation, the results are very encouraging. In Table 4.2 shaded cells 

represents alternatives matching with Scholl and Klein’s (1999) optimal task 

allocation. For most of the tasks the first or the second alternative gives a 

matching. 

 

Modification Step 2. 

Observation 1. While collecting data for the T2 matrix we take a single 

long run. However, for a particular replication, consecutive tours are not 

independent form each other. Therefore the observations are neither independent 

nor identically distributed. There is a bias and we can not statistically trust our 

data. Thus we modify out method. In order to collect reliable data for the T2 

matrix we make 100 independent replications (runs) of length 100 tours and for 

each replication (run) different random numbers are used.  

Observation 2. Since there is no pheromone evaporation mechanism for 

the T2 matrix, algorithm does not forget the previously done bad selections and 

there is a risk of unlimited accumulation of the trail values. Therefore, during a 

single replication at time t, if there is an improvement and globally best solution is 

updated then all the entries of the T2 matrix is cleared and new update is done for 

only new globally best solution (Because we do not need pheromone 

accumulation for previous globally best solution any more). 

Observation 3. During a single replication some ants (assume k ants) can 

find the same globally best solution. When the T2 matrix is updated for each ant 

indeed it is updated k times only for the same single solution.  This causes over-

emphasis of that globally best solution. To handle this problem, during a single 

run, every solution must be kept in the memory, every new globally best solution 

must be compared with the previous globally best solutions and the T2 matrix 
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must be updated for only the new globally best solutions. Unfortunately it is a 

very hard job to keep every globally best solution in the memory. (Assume that 

every tour, k ants find a new solution. For a single replication of length m, there 

exist m x k solutions. Moreover each solution is an allocation matrix of n x 2n 

dimension; where n is the task number and 2n is the maximum limit allowed) 

 

Solution Labeling Mechanism.  We propose a very practical and effective 

solution labeling mechanism to overcome this memory problem. Each globally 

best solution is characterized with two labels and the algorithm uses these labels 

while checking if this solution is previously found or not. 

Consider two similar optimal allocation for the Jackson problem with 

cycle time of 10. Allocation A and Allocation B are given in Figure 4.8.  

 

 

 

 

 

 

 

 

Label 1 is calculated as follows:  
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Label 2 is calculated as follows:  
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Figure 4.8: Two similar optimal allocation for Jackson problem, c =10. 
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where, J’ is the total number of locations; I(j’) is the set of tasks allocated to 

location j’.  

 

For Allocation A; 

Label 1 = 1(1+2+6) + 3(5) + 4(11+9) + 5(4) + 6(7) + 7(3) + 8(10) + 9(8) = 339; 

Label 2 = 1(1⋅2⋅6) + 3(5) + 4(11⋅9) + 5(4) + 6(7) + 7(3) + 8(10) + 9(8) = 658. 

For Allocation B; 

Label 1 = 1(1+2+6) + 3(5) + 4(11+9) + 5(4) + 6(7) + 7(3) + 8(10) + 10(8) = 347; 

Label 2 = 1(1⋅2⋅6) + 3(5) + 4(11⋅9) + 5(4) + 6(7) + 7(3) + 8(10) + 10(8) = 666. 

 

Observation 4: There can be different allocations that their Label 1 values 

are equal.  

Proof:     Assume that for Allocation 1 tasks 7 and 5 are allocated to 

location n and for   Allocation 2 tasks 10 and 2 are allocated to location n. 

For Allocation 1, Label 1 = n(7+5) = 12n;  Allocation 2, Label 1 = n(10+2) = 12n 

For Allocation 1, Label 2 = n(7⋅5) = 35n;  Allocation 2, Label 2 = n(10⋅2) = 20n 

 

Observation 5: There can be different allocations that their Label 2 values 

are equal.  

Proof:      Assume that for Allocation 1 tasks 2 and 6 are allocated to 

location n and for  Allocation 2 tasks 3 and 4 are allocated to location n. 

For Allocation 1, Label 1 = n(2+6) = 8n;  Allocation 2, Label 1 = n(3+4) = 7n 

For Allocation 1, Label 2 = n(2⋅6) = 12n; Allocation 2, Label 2 = n(3⋅4) = 12n 

 

Observation 6: There can not be different allocations that their Label 1 and 

Label 2 values are equal.  
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Proof:    Let for Allocation 1 tasks x1 and y1 are allocated to location n and 

for Allocation 2 tasks x2 and y2 are allocated to location n. 

 

 

Assume that Allocation 1 and Allocation 2 are different and their Label 1 

and Label 2 values are equal. By using labeling definition we can write: 

(1)  n(x1 + y1)   =  n(x2 +  y2)  ; ( Equality of Label 1 values) 

(2)  n(x1 ⋅ y1) = n(x2  ⋅ y2)  ; (Equality of Label 2 values) 

By using  (2) we can write: (3) 
1

22
1 x

yxy ⋅
=   and  (4) 

2

11
2 x

yxy ⋅
=  ; 

By using (1);  x1 + y1 = x2  + y2     
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  )()( 122121 yxxyxx −=−        )()( 212211 xxxyxx −=−  

   x1 = x2   y1 = y2          x1 = x2   y1 = y2  

If x1 = x2  and y1 = y2  then Allocation 1 is equal to Allocation 2 and this 

contradicts with our assumption. So there can not be and different allocations that 

their Label 1 and Label 2 values are equal.    

 

Random Search with Multiple Starts. The T2 matrix is collected in an 

effective and statistically correct way after the modifications given in 

Observations 1-3. After gathering T2 matrix the ants are used to make a random 

search by only using the T2 matrix. This time algorithm is modified to use only 

the secondary trail matrix, T2. There is no primary trail update mechanism (no 
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local or global pheromone update) or pheromone evaporation. Indeed, tours are 

independent from each other. We can call this second stage as a pure random 

search with multiple starts.  

We test this method with medium size problems that AS, ASelite and ACS 

never find the optimal solution. These problems are Buxey with 29 tasks (C=36), 

Gunther with 35 tasks (C=69), Warnecke with 58 tasks (C=60, C=78, C=82, 

C=86, C=92, C=97, C=104, C=111), Lutz2 with 89 tasks (C=11, C=12, C=13, 

C=14, C=17). 

This random search method finds the optimal allocation for problems 

Buxey (C=36), Gunther (C=69), Warnecke (C=60, C=111). It is an important 

development that for the first time we are able to find the optimal solution for 

these problems. 

However, there is a disadvantage of this method. For large size problems it 

requires extensive amount of time to collect the T2 matrix. We test the random 

search method on large size problems but we can not find the optimum solution. 

Therefore, we need a more efficient mechanism to search the solution space.  

Our observations and investigations on the structure of the T2 matrix led 

us to develop the New Ant Colony Optimization method. 

 

4.2.6 A New Ant Colony Optimization (ACO) Method 
This new method takes inspiration from the ACS and the secondary trail 

accumulation mechanism proposed in the previous section. For ACS, after a short 

period most of the entries of the trail matrix converge to zero and the remaining 

entries have a value, which is very close to zero. Somehow the valuable 

information intended to gain by pheromone accumulation is lost. The secondary 

pheromone trail accumulation mechanism particularly overcomes this situation. 

However, this method is a two-stage method and it requires extensive amount of 
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time to collect the T2 matrix. Furthermore, only random search is not enough for 

the large size problems. Therefore, this new method is designed to overcome these 

problems.  

Version 1.   

Modification of Local Pheromone Update Mechanism. We modify the 

local pheromone update mechanism of ACS to prevent losing valuable 

information gained by the pheromone accumulation. The new local pheromone 

update mechanism is defined as follows:  
 

( ) ( ) 11)( 2 +−⋅= tTtT ijij ρ       (4.16) 

where ρ2 ,0≤ρ2≤1. Instead of adding a very small value ρ2⋅τo (Equation 4.11), we 

reinforce the trail matrix by adding up 1 as we did in the previous method while 

collecting the T2 matrix. Thus, emphasize of the related trail values will be more 

and their effect will be magnified by this way.  For the pheromone evaporation we 

use only ρ2 as a multiplier instead of (1-ρ2). 

Modification of Global Pheromone Update Mechanism. We modify the 

global pheromone update mechanism of ACS to increase the effect of better 

solution on trail reinforcement. The new global pheromone update mechanism is 

defined as follows:  
 

  ( ) ( ) )(1)1( )(
1 tTtTtT gb

ijijij ∆+−⋅−= ρ      (4.17) 

where   
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otherwise

solutionbestglobaltheofpartisjiif
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tT gbgb

ij

0

),(
)()( )()( (4.18) 

0≤ρ1≤1 is pheromone evaporation parameter, Optimal is the optimal station 

number of the considered problem, f(gb)(t) is the station number of the globally 

best solution and 
)()( tf

Optimal
gb  is a reward function that satisfies more reinforcement 

for the solutions which  have less station number (a solution with less station 
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number is more close to the optimal solution and the reward value will be more 

for this solution).  

Modification of Pseudo-Random-Proportional Rule.  When we investigate 

the Scholl and Klein’s  (1999) optimal task allocations we note that, the idle time 

of almost all stations is zero, namely it is not possible to allocate an another task 

to these stations. These stations are called full-loaded stations. This is a very 

interesting and important characteristic of the optimal solutions.  

We have to guide the search mechanism to obtain such kind of task 

selection and allocation, which gives a full-load. Duration of a task is the key 

point. Thus, the task selection process (state transition rule) must also consider the 

task times. On the other hand, it is an important decision to consider which tasks 

first; the tasks with low duration or high duration? 

Consider an empty station. At the beginning no task is allocated and the 

idle time is equal to the cycle time. Assume that first the tasks with low duration 

are allocated to that station. As the low duration tasks assigned, the remaining idle 

time decreases and only the tasks with high duration remain unassigned. Later on, 

there will be only limited idle time left which is not enough for the assignment of 

the remaining tasks with high duration. On the contrary, if the tasks with high 

duration are allocated to that station first, later the remaining tasks with low 

duration would not be a problem. It will be easy to allocate them to this station or 

to an another available station. Therefore, we modify the task selection 

mechanism (state transition rule) to emphasize the tasks with high duration. The 

new random-proportional rule is defined as follows: 
 

[ ] [ ] [ ]
[ ] [ ] [ ]( )


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     (4.19) 

where allowedk is the set of available and feasible tasks for ant k. 
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An ant allocates task s to station j by applying the rule given by Equation (4.20): 
 

[ ] [ ] [ ]{ }




 ≤⋅⋅

= ∈

otherwiseS

qqifttT
s uallowedu

uuuj 0)(maxarg ββη
       (4.20) 

where q is a uniformly distributed random number in [0,1], q0 is a parameter (0≤ 

q0≤1), and S is a random variable selected according to the new random-

proportional rule given in Equation (4.19).  

When we test the new method on medium and large size test problems 

(Buxey with 29 tasks, Gunther with 35 tasks and Mukherje with 94 tasks), we 

investigate that these modifications are effective and the trail values are 

accumulated in a consistent way. For illustrative purpose consider Buxey problem 

with cycle time of 36. In Figure 4.9, the trail accumulation for the ACS and the 

new method is given.  
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Figure 4.9.a: Trail accumulation for ACS, α =1, β =1, ρ1 = ρ2 = 0.4, q0 =0.2, initial trail =1 

Figure 4.9.c: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.95, q0 =0.3, initial trail =1 

Figure 4.9.d: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.3, initial trail =1 

Figure 4.9.e: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.8, initial trail =1 

Figure 4.9.b: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.9, q0 =0.3, initial trail =1 
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A little change in parameters ρ1, ρ2, and q0 effects the trail accumulation. 

Trail values are not too small as they were in ACS and they accumulate more 

consistently. Also, the test results of this new method on medium size and large 

size problems indicates that defining locations for each station is not necessary, 

namely when the stations are not divided into locations, the algorithm performs 

better and finds the optimal solutions faster. 

After a short period, the trail values are stabilized and the trail matrix 

reaches a steady-state. Short number of tours is necessary to emphasize the trail 

matrix. For test problems (Buxey with cycle time of 36, and Gunther with cycle 

time of 69) it is possible to find many matchings with Scholl and Klein’s (1999) 

optimal task allocation.  

Consider Buxey problem with 29 tasks and cycle time of 36. We have 

done three experiments; run the algorithm until 100, 250 and 1000 tours have 

been completed and store the trail matrices (The trail matrix for tour number 100, 

250, 1000 is given in Appendix C). 

Scholl and Klein’s (1999) optimal task allocation for Buxey problem is 

given in Figure 4.10. In Table 4.3 we list the ranking of most possible station 

alternatives for each task depending on the trail matrices.  

 

 

 

 

 

 

 

 

 

Figure 4.10: Scholl and Klein’s (1999) optimal task allocation for Buxey problem 
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Table 4.3: Ranking of most possible location alternatives for each task depending on trail matrix. 
 

Experiment with 100 tours Experiment with 250 tours Experiment with 1000 tours  
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

1 1 2 4 6 8 1 2 4 3 5 1 2 3 4 5 
2 2 1 9 8 7 2 1 8 4 5 2 1 4 8 5 
3 3 4 2 6 7 3 2 4 5 8 3 4 2 5 7 
4 3 4 6 7 8 3 4 5 6 8 3 4 5 6 7 
5 5 8 6 4 7 5 6 4 7 8 6 5 4 7 8 
6 3 2 9 8 1 3 2 4 1 9 3 2 1 4 5 
7 1 3 2 4 5 1 3 2 4 5 1 3 2 4 5 
8 8 6 9 7 5 6 7 8 9 5 6 7 8 9 5 
9 3 2 1 4 5 3 2 4 1 5 3 2 4 1 5 

10 4 5 6 3 2 5 4 6 3 7 5 4 6 7 8 
11 7 6 8 9 5 7 8 6 9 - 7 8 6 9 - 
12 4 8 6 3 5 4 5 3 8 6 4 6 5 8 7 
13 9 7 8 5 6 9 8 7 6 5 9 8 7 6 5 
14 4 5 7 8 6 7 6 5 8 9 7 6 8 9 5 
15 9 7 8 6 5 9 8 7 6 4 9 8 7 6 5 
16 7 8 6 9 5 8 9 6 7 5 9 8 6 7 5 
17 5 6 8 9 7 6 7 5 8 9 5 6 7 8 9 
18 5 6 7 8 9 5 6 8 7 9 6 5 8 7 9 
19 9 8 7 6 5 9 8 7 6 5 9 8 7 6 5 
20 5 4 8 9 6 5 4 6 8 7 5 4 6 7 8 
21 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 
22 4 5 7 6 8 4 5 6 7 3 4 5 6 3 7 
23 3 4 5 7 8 4 3 5 9 7 3 4 5 8 9 
24 1 2 3 9 5 1 3 2 4 9 1 2 3 4 9 
25 9 8 7 4 6 9 8 7 4 6 9 8 7 6 3 
26 2 4 3 5 6 2 3 4 5 6 2 3 4 5 6 
27 9 8 7 4 5 9 8 6 7 5 9 8 3 4 5 
28 2 1 3 4 9 2 1 3 4 9 2 1 3 4 9 
29 1 2 3 4 9 1 2 3 1 - 1 2 3 4 - 

Total 
matching 8 5 8 3 2 10 8 3 3 3 10 8 4 4 1 
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When we compare our alternatives with Scholl and Klein’s (1999) optimal 

task allocation, the results are encouraging. In Table 4.3 shaded cells represents 

the alternatives matching with Scholl and Klein’s (1999) optimal task allocation. 

For most of the tasks, the first or the second alternative gives a matching, however 

there are many instances that the third or the fourth alternative also gives a 

matching.  

This method is able to find optimal allocation for small, medium and large 

size problems that non-of the previous methods succeed. The performance of this 

method is very encouraging. However, for the two largest problems (Barthol2 

problem with 148 tasks, and Scholl problem with 297 tasks) we need 

improvement.  

 Version 2.   

Version 1 succeed almost all problems but it’s performance is insufficient 

for the two largest problems.  

Accumulation of the trail values is the reason of this situation. When the 

trail matrices are investigated (The trail matrices gathered for tour number 100, 

250, 1000 are given in Appendix C) most of the entities in a column are so close 

to each other, namely for a station the trail values of the task alternatives are very 

close to each other. Also, when the task alternatives are too many (when the 

problem size is very large) it is very hard to find the proper task allocation.  

Version 2 is the modified style of Version 1 joined up with a secondary 

global pheromone trail update mechanism and works as follows:  
 

( ) ( ) )()( tTtTtT loadfullgb
ijijij

−∆+=       (4.21) 
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After regular global pheromone update (as defined in Equation 4.17 and 

Equation 4.18), a secondary pheromone update is done for the globally best ants. 

The trail values of the tasks belonging to a full-loaded stations are reinforced with 

a very high number. Thus, after a very short time the trail values of these tasks 

will be distinguished easily. This situation can be easily observed for the trail 

matrices given in Appendix D.   

We consider Buxey problem with cycle time of 36. We have done three 

experiments and run the algorithm until 100, 250 and 1000 tours have been 

completed and store the trail matrices (Trail matrix for tour number 100, 250, 

1000 is given in Appendix D). Scholl and Klein’s (1999) optimal task allocation 

for Buxey problem is given in Figure 4.10.  In Table 4.4 we list the ranking of 

most possible station alternatives for each task depending on the trail matrices. 

For Version 2 matching rates of the first and the second alternatives are 

slightly higher than  Version 1. 

Version 2 succeeds for small, medium and large size problems and able to 

find the optimal allocation. Only there are a few instances that it finds such an 

allocation with one station more than the optimal. Versions 2 also solves the 

Barthol2 problem with 148 tasks optimally. Only the largest problem Scholl with 

297 tasks is a handicap and Version 2 finds such an allocation with one station 

more than optimal. 
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Table 4.4:  Ranking of most possible location alternatives for each task depending on trail matrix 
 

Experiment with 100 tours Experiment with 250 tours Experiment with 1000 tours  
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

1 1 - - - - 1 - - - - 1 - - - - 
2 1 - - - - 1 - - - - 1 - - - - 
3 3 5 2 8 4 3 4 8 - - 3 4 8 - - 
4 3 5 2 6 7 4 6 5 7 8 4 3 6 5 8 
5 6 7 5 9 8 4 6 5 8 7 6 5 4 7 9 
6 1 2 3 7 9 1 2 5 4 7 1 2 5 8 9 
7 1 3 7 5 6 1 5 4 7 3 1 5 7 4 3 
8 7 9 8 6 5 5 7 9 8 6 5 7 9 8 - 
9 1 4 3 7 6 1 4 5 6 13 1 5 6 7 4 

10 5 2 3 7 4 5 2 7 6 9 2 5 7 8 6 
11 7 8 10 - - 8 9 7 - - 8 9 - - - 
12 5 7 3 6 13 5 2 7 4 6 5 7 6 4 9 
13 7 6 8 9 5 4 7 6 9 8 6 4 8 7 9 
14 4 5 7 6 3 5 7 4 6 2 5 4 7 6 9 
15 6 7 8 9 - 5 8 9 7 - 9 7 8 6 - 
16 6 9 7 8 5 7 6 9 8 5 6 7 9 8 5 
17 5 7 6 9 8 6 8 7 9 - 6 7 9 8 - 
18 6 5 9 8 7 6 7 9 8 - 6 8 7 9 - 
19 7 6 5 9 8 7 6 5 9 8 7 6 8 9 5 
20 5 7 9 8 - 5 7 9 8 - 5 7 9 8 - 
21 5 8 7 6 9 5 7 9 6 8 5 6 8 7 9 
22 4 5 6 7 9 5 7 6 9 8 5 6 8 7 9 
23 4 9 5 7 - 9 4 6 - - 4 6 7 9 - 
24 2 3 4 9 - 2 3 4 9 - 2 3 9 7 - 
25 4 5 9 - - 3 2 9 7 - 3 9 8 - - 
26 2 3 4 5 7 2 5 4 6 3 2 4 3 8 5 
27 7 3 6 8 4 5 7 6 9 8 5 7 6 8 9 
28 4 3 5 - - 3 4 8 1 - 3 4 7 9 - 
29 2 3 - - - 2 8 3 - - 2 - - - - 

Total 
Matching 11 11 2 3 1 8 9 3 3 2 11 5 4 4 2 
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For Version 2 matching rates of the first and the second alternatives are 

slightly higher than Version 1. Especially matching rates of the trail matrix 

gathered for 100 tour is higher than Version 1. These high matching rates 

indicates that the trail reinforcement mechanism of Version 2 is effective and less 

number of tours are enough to collect the trail matrix.  

 

4.2.7 Ant Colony System Augmented with Simulated 
Annealing (ACS with SA) 

We propose a modified version of ACS augmented with SA in order to 

improve the performance of ants. We intend to use SA as a support mechanism 

that works cooperatively with each ant. When a tour is completed, namely after an 

ant constructs a full solution, SA based mechanism efforts to improve the ants 

solution with swap (swapping of two tasks located in different stations), insert 

(inserting a task to an another station), and repair (instead of rejecting infeasible 

alternatives and generating a new alternative, repairing module repairs infeasible 

alternatives and makes them feasible, thus computational effort is saved) modules.  

ACS with SA is only tested on very small size problems however it’s 

performance is poor. Even for the second smallest problem Jackson with 11 

elements, the computation time ranges between 2.53 hours and 164.63 hours. 

 

4.2.8 Ant Colony System Augmented with Beam Search 
(ACS with BS) 

A modified version of ACS augmented with beam search (BS) is proposed 

to direct the search in an intelligent way. As stated in Section 4.2.5 for ACS after 

a short period most of the entries of the trail matrix converge to zero and the 

remaining entries have a value, which is very close to zero. Somehow the valuable 

information intended to gain by the pheromone accumulation is lost.  The 
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difference between very small values of the trail matrix and the positional weight 

values is very high. In this situation most of the information for the selection 

probabilities is coming from the heuristic value. Thus, the selection probabilities 

are mostly proportional to [ ]βηi and the tasks with high positional weight are more 

likely to be selected. Another disturbing point is the structure of heuristic 

function. Heuristic function (positional weights) is static and it is not adapting 

itself (where as trail matrix does) as the search proceeds.  

Instead of using positional weights we propose beam search to calculate 

the value of the heuristic function. Consider an ant k; just before allocating a task 

to station j, for each task s (s∈alloweds) BS continues an imaginary allocation 

process. By using a very simple allocation mechanism, BS allocates the remaining 

tasks and calculates the station number of the imaginary allocation if that task s 

would have been selected for allocation. Instead of using positional weights, beam 

search supplies an estimate of the next move. Heuristic function values of the 

promising tasks will be higher than non-promising task. Therefore the selection 

probability of these promising tasks are expected to be high.  

ACS with BS is tested on small and medium size problems. Structure of 

the beam search is very suitable for ACO however the performance of the 

algorithm is poor in terms of computational time. It requires excessive amount of 

time to complete a single tour.  
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Chapter 5 
 
 
 

Experimental Setting 
 
 

 In this chapter, we present the parameters that we use in our numerical 

study and explain how we determine these parameters. 

Cycle time (C), task processing times (t) and number of tasks (n) are the 

inputs of the algorithm. The other parameters such as number of ants (m), α, β, ρ, 

ρ1, ρ2, Q, Q2, q0, τ0 are also used in the algorithm.  

 In the following section we briefly explain how to set up and fine tune 

these parameters for various versions of the proposed ant algorithms. 

The performances of the proposed algorithms are tested by using the 

benchmark problems available in the literature. In the U-type assembly line 

literature, there are a number of test problems used by several researchers (Scholl 

and Klein, 1999 classify these problems into three data sets: Talbot et al., 1986; 

Hoffmann, 1990, 1992; Scholl, 1993). These data sets are available at:   

   (i) http://www.assembly-line-balancing.de/ 

   (ii) http://www.wiwi.uni-jena.de/Entscheidung/alb/ 

   (iii) http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/  

 The first data set considers 64 instances with varying problem sizes 

ranging from 8 to 111 tasks. The second data set considers 50 instances with 

varying problem sizes ranging from 30 to 111 tasks. 13 of these instances are also 
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contained in Set 1. The last data set is relatively new and most complex data set 

such that it considers 168 instances with varying problem sizes ranging from 25 to 

297 tasks. 

 We use proposed algorithms (Ant System, Ant System with Elitist Strategy, 

Ant Colony System, New Ant Colony Optimization Approach; Version 1 and 

Version 2) to solve 190 instances from these data sets and compare the results 

with ULINO (Scholl and Klein, 1999) and simulated annealing based algorithm of 

Erel, Sabuncuoglu and Aksu (2001). The computational results of SA based 

algorithm are provided only for 190 problem instances. Therefore we restrict 

ourselves only to those problems instead of whole data set. These data sets that we 

consider are given as follows: 

Data Set 1:  

Bowman (8 tasks, C = 20);  

Mansoor (11 tasks, C = 48, 62, 94);  

Jackson (11 tasks, C = 7, 9, 10, 13, 14, 21);  

Mitchell (21 tasks, C = 14, 15, 21, 26, 35, 39);  

Arcus2 ( 111 tasks, C = 5755, 8847, 10027, 10743, 11378, 17067); 

Data Set 3: 

Roszieg (25 tasks, C =14, 16, 18, 21, 25, 32); 

Buxey (29 tasks, C = 27, 30, 33, 36, 41, 47, 54); 

Lutz1 (32 tasks, C = 1414, 1572, 1768, 2020, 2357, 2828); 

Gunther (35 tasks, C = 41, 44, 49, 54, 61, 69, 81); 

Hahn (53 tasks, C = 2004, 2338, 2806, 3507, 4676); 

Warnecke (58 tasks, C = 54, 56, 58, 60, 62, 65, 68, 71, 74, 78, 82, 86, 92, 97, 104,111); 

Wee-mag (75 tasks, C = 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 

45, 46, 47, 49, 50, 52, 54, 56); 

Lutz2 (89 tasks, C = 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21); 
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Lutz3 (89 tasks, C = 75, 79, 83, 87, 92, 97, 103, 110, 118, 127, 137, 150); 

Mukherje (94 tasks, C = 176, 183, 192, 201, 211, 222, 234, 248, 263, 281, 301, 324, 

351); 

Arcus2 (111 tasks, C = 5755, 8847, 10027, 10743, 11378, 17067); 

Barthold (148 tasks, C = 403, 434, 470, 513, 564, 626, 705, 805); 

Barthol2 (148 tasks, C = 84, 85, 87, 89, 91, 93, 95, 97, 99, 101, 104, 106, 109, 112, 

115, 118, 121, 125, 129, 133, 137, 142, 146, 152, 157, 163, 170) 

Scholl (297 tasks, C = 1394, 1422, 1452, 1483, 1515, 1548, 1584, 1620, 1659, 1699, 

1742, 1787, 1834, 1883, 1935, 1991, 2049, 2111, 2177, 2247, 2322, 2402, 2488, 2580, 

2680, 2787) 

Task Processing Time (t) is the duration to complete a task. In this 

research task processing times are assumed to be deterministic.  

Station Time (ST) is the sum of the processing times of tasks that are 

performed at the same station. The station time should not exceed the cycle time. 

Cycle Time (C) is the time interval between two successive outputs of a 

station. The cycle time of a worker is defined as the time interval between his 

consecutive arrivals at his first task, and consists of operation times, walking time 

between tasks which are located at the entrance side and at the exit side. In this 

research walking times are assumed to be zero. A new item can only enter a 

station only after a product is completed. Cycle time of a station is bounded by the 

maximum task time of the tasks allocated to that station and total duration of all 

tasks ( ;max
1

∑
=∈

≤≤
n

i
iiSi

tCt
k

Sk is the set of assigned to station k = 1,..,K). Also total 

operation time of tasks assigned to a station k, station  
 
time, should not exceed the cycle time ( KkCt

kSi
i ,..,1=≤∑

∈

). 
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 Scholl and Klein (1999) report the optimal station number for most of the 

problem instances, however some of them are given in the interval. A simple 

lower bound on the minimal number of stations is equal to 







= ∑

=

n

i
i CtLB

1
/ , 

where x is the smallest integer larger than x (Scholl and Klein, 1999; Erel, 

Sabuncuoglu and Aksu, 2001). Besides the simple lower bound LB, Scholl and 

Klein (1999) use three additional bound arguments. The upper bound on the 

minimal number of stations is proposed to be the required number of stations after 

all the tasks are assigned and a feasible solution is found. 

Number of Tasks (n) for each problem is given at Scholl and Klein’s web 

site. All related data (number of tasks, task processing times and precedence 

relations) is given as a compressed file. This data file can be downloaded from 

this web address (http://www.wiwi.uni-jena.de/Entscheidung/alb/albdata.zip). 

 Number of Ants (m): Each ant is a problem-solving agent. Cooperation 

between ants is one of the important characteristics of the ACO metaheuristics. In 

fact, although a single ant is capable of construct a solution, better solutions are 

found when a colony of ants are used. Good solutions are exposed when these 

agents interact with each other (by using trail values) and work in cooperation. 

Dorigo and Stütze (2000) suggest that ACO algorithms perform better when the 

number of ants is set to a value m > 1. Dorigo, Maniezzo and Colorni (1991, 

1996); Colorni, Dorigo and Maniezzo (1991, 1992) also suggest that the optimal 

number of ants should be taken close to the number of cities (m≈n) for TSP. Our 

test results support this fact. It is better to take number of ants m equal to number 

of tasks n. 

 We have carried out a set of experiments in order to test the effect of the 

number of ants on the performance of the proposed algorithm. A small size 

(Jackson with 11 tasks and cycle time of 10), a medium size (Gunther with 35 

tasks and cycle time of 54) and a large size problem (Barthold with 148 tasks and 
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cycle time of 805) are chosen as the test problems. The proposed algorithms 

perform better when the number of ants is taken equal to the number of tasks.  We 

evaluate the performance of proposed algorithms varying number m of ants from 

1 to 2n, given (100 replications • 100 ant tours) for Jackson and Gunther problem 

and (1 replications • 100 ant tours) for Barthold problem. The results are given in 

the Section 5.1. 

 Parameters α and β allow a user to control the relative importance of 

pheromone trail versus heuristic information (visibility). These parameters affect 

the behaviour of the algorithm. If α = 0, the selection probabilities are 

proportional to [ ]βηi and the tasks with high positional weight are more likely to 

be selected. In this case AS corresponds to a stochastic greedy algorithm with 

multiple starts. If β = 0, only the trail information effects the selection 

probabilities and if no control mechanism exists this situation misleads the ants. 

This may cause a very rapid convergence, leading to a stagnation situation 

(Dorigo, Maniezzo, Colorni, 1996). In this situation all the ants follow the same 

path and construct the same solutions; strongly suboptimal solutions (see also 

section 4.1.2.1 and section 4.1.2.2). Thus, there is a trade-off between the trail 

intensity and the heuristic value.  

 Parameters ρ, ρ1 and ρ2 are called as pheromone trail evaporation rate    

(0 < ρ, ρ1, ρ2 < 1). Evaporation enables the algorithm to forget the previously done 

bad selections and unlimited accumulation of the pheromone trails is avoided by 

this way. 

Parameter q0 is used in Ant Colony System, Modified Ant Colony System 

with Random Search, New Ant Colony Optimization Approach; Version 1 and 

Version 2. It controls the relative importance of exploitation versus exploration. If 

q≤q0 then the best task is chosen and this selection is a kind of greedy behaviour 

which favours the exploitation of the search space. Otherwise a task is chosen 
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according to random-proportional rule and that favours the exploration of the 

search space.  

 Parameter Q and Q2 are the constants related to the quantity of trail laid 

by ants. The amount of reinforcement that the related trail value receives is 

controlled by these parameters.  

 Parameter τ0 is the amount of pheromone reinforcement that the related 

trail values receives during the local pheromone update in Ant Colony System, 

Modified Ant Colony System with Random Search, New Ant Colony Optimization 

Approach; Version 1 and Version 2. 

We have done a second set of experiments in which we study the 

performance of the proposed algorithms with respect to α, β, ρ, ρ1, ρ2 and q0 

using the previous test problems. The number of ants m, is taken to be equal to the 

number of tasks n. We test several values for each parameter. The values being 

tested are: α ∈ {0, 1, 2, 5}, β ∈ {0, 1, 2, 5}, ρ (also ρ1 and ρ2) ∈ {0.1, 0.4, 0.7, 

0.9, 0.99} and q0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. A small size (Jackson with 11 tasks 

and cycle time of 10), a medium size (Gunther with 35 tasks and cycle time of 54) 

and a large size problem (Barthold with 148 tasks and cycle time of 805) are 

chosen as the test problems. We evaluate the performance of proposed algorithms 

given a (100 replications • 100 ant tours) for Jackson and Gunther problem and   

(1 replications • 100 ant tours) for Barthold problem.  

The results are given in Tables 5.1-5.6. In each cell the first element 

represents the results of Jackson problem, the second element represents the  

results of Gunther problem and the third element represents the results of Barthold 

problem. The results are reported like X(Y); where X represents the number of 

stations found after (Y) number of replications completed (tours for Barthold 

problem). When the optimal number of stations is obtained,  (Y) is not reported. 
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5.1 Experimental Setting for AS 
 

5.1.1 Number of Ants 
 The effect of the number of ants on the efficiency of the Ant System is 

given in Figure 5.1. The abscissa represents the total number of ants used in each 

set of replication and the ordinate represents the number of replications (tours for 

Barthold problem) required to obtain the optimum.  
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Figure 5.1.a: Number of replications required to obtain the optimum number of stations. Jackson      
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours). 

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N um be r o f a nts

N
um

be
r 

of
 r

ep
lic

at
io

ns

Unable to obtain the 
optimum 

Unable to obtain the 
optimum 

Figure 5.1.b: Number of replications required to obtain the optimum number of stations. Gunther        
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours). 
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Figure 5.1.c: Number of tours required to obtain the optimum number of stations. Barthold problem   
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours). 
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For Jackson problem, AS finds the optimal station number for any number 

of ants at the first replication. For Gunther problem, the optimum is obtained at 

replications 96 and 83 with 30 and 35 ants, respectively. For Barthold problem, 

the minimum number of tours to obtain the optimum is 1 with 150 ants. 

Depending on the results we take the number of ants equal to the number of tasks. 

 

5.1.2 Parameters Setting 
 The performance of AS with respect to the parameters α, β, and ρ is given 

in Table 5.1. We take the number of ants m, equal to the number of tasks n.         

The results indicate that the optimal solution is found at the first replication (tour 

for Barthold problem) when the parameters are taken as: α=2, β=2 and ρ=0.7. 

The shaded cell in Table 5.1 indicates the best set of these parameters. 
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Table 5.1: Fine tune-up of the parameters α, β, and ρ  for AS. 
 

ρ = 0.1 

            α 
     β 0 1 2 5 

0 5(1) / 9(23) / 7(15) 5(1) / 9(12) / 7(21) 5(1) / 10 / 7(33) 5(1) / 10 / 8 
1 5(1) / 9(12) / 7(1) 5(1) / 9(62) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(2) 
2 5(1) / 9(4) / 7(8) 5(1) / 9(57) / 7(10) 5(1) / 10 / 7(23) 5(1) / 10 / 8 
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(5) 5(1) / 10 / 8 

ρ = 0.4 

0 5(1) / 9(7) / 7(6) 5(1) / 10 / 7(18) 5(1) / 10 / 7(2) 5(1) / 10 / 8 
1 5(1) / 9(3) / 7(3) 5(1) / 9(29) / 7(4) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8 
2 5(1) / 9(48) / 7(3) 5(1) / 10 / 7(2) 5(1) / 10 / 7(4) 5(1) / 10 / 8 
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(6) 5(1) / 10 / 7(6) 5(1) / 9(75) / 7(3) 

ρ = 0.7 

0 5(1) / 9(3) / 7(11) 5(1) / 9(11) / 7(8) 5(1) / 10 / 7(23) 5(1) / 10 / 8 
1 5(1) / 9(18) / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 8 
2 5(1) / 9(30) / 7(4) 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 8 
5 5(1) / 10 / 7(6) 5(1) / 10 / 7(2) 5(1) / 9(8) / 7(5) 5(1) / 10 / 8 

ρ = 0.9 

0 5(1) / 9(5) / 7(1) 5(1) / 10 / 7(81) 5(1) / 9(9) / 8 5(1) / 9(1) / 8 
1 5(1) / 9(17) / 7(5) 5(1) / 10 / 7(2) 5(1) / 10 / 8 5(1) / 10 / 8 
2 5(1) / 9(14) / 7(9) 5(1) / 10 / 7(7) 5(1) / 10 / 7(1) 5(1) / 10 / 8 
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 7(5) 5(1) / 10 / 8 

ρ = 0.99 

0 5(1) / 9(26) / 7(9) 5(1) / 10 / 7(23) 5(1) / 10 / 8 5(1) / 10 / 8 
1 5(1) / 9(61) / 7(1) 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(47) / 7(2) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 8 
5 5(1) / 10 / 7(3) 5(1) / 10 / 7(1) 5(1) / 10 / 7(4) 5(1) / 10 / 7(2) 
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5.2 Experimental Setting for ASelite 
 

5.2.1 Number of Ants 
 The effect of the number of ants on the efficiency of the Ant System with 

elitist strategy is given in Figure 5.2. The abscissa represents the total number of 

ants used in each set of replication and the ordinate represents the number of 

replications (tours for Barthold problem) required to obtain the optimum. 

For Jackson problem, ASelite finds the optimal solution for any number of 

ants at the first replication. For Gunther problem, minimum number of 

replications to reach the optimum is 18 with 35 ants. For Barthold problem, the 

minimum number of tours to obtain the optimum is 4 with 150 ants. Fewer 

number of replications (tours for Barthold problem) are required to obtain the 

optimal station number, when the number of ants is nearly equal to the number of 

tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5. EXPERIMENTAL SETTING 
 

 

99 

 

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f ants

N
um

be
r 

of
 r

ep
lic

at
io

ns

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N um be r o f a nts

N
um

be
r 

of
 r

ep
lic

at
io

ns

Unable to obtain the 
optimum 

Unable to obtain 
the optimum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.a: Number of replications required to obtain the optimum number of stations. Jackson         
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours). 

Figure 5.2.b: Number of replications required to obtain the optimum number of stations. Gunther       
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours). 
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Figure 5.2.c: Number of tours required to obtain the optimum number of stations. Barthold problem   
with 148 tasks, C=805. The expeiment has been carried out for (1 replications • 100 ant tours). 
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5.2.2 Parameters Setting 
The performance of ASelite with respect to the parameters α, β, and ρ is 

given in Table 5.2. We take the number of ants m, equal to the number of tasks n. 

The results indicate that when the parameters are taken as α=2, β=1 and ρ=0.9 

the optimum solution is found at the first replication (tour for Barthold problem). 

In Table 5.2 the shaded cell indicates the best set of parameters. 
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Table 5.2: Fine tune-up of the parameters α, β, and ρ  for ASelite. 
 

ρ = 0.1 

            α 
     β 0 1 2 5 

0 5(1) / 9(13) / 7(52) 5(1) / 10 / 8 5(1) / 10 / 7(45) 5(1) / 10 / 8 
1 5(1) / 9(3) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(11) 5(1) / 10 / 8 
2 5(1) / 9(17) / 7(4) 5(1) / 10 / 7(3) 5(1) / 10 / 7(76) 5(1) / 10 / 8 
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(3) 

ρ = 0.4 

0 5(1) / 9(2) / 7(2) 5(1) / 10 / 7(49) 5(1) / 10 / 7(6) 5(1) / 9(50) / 8 
1 5(1) / 9(21) / 7(12) 5(1) / 10 / 7(1) 5(1) / 9(52) / 7(13) 5(1) / 9(1) / 8 
2 5(1) / 9(14) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 8 5(1) / 10 / 8 
5 5(1) / 10 / 7(5) 5(1) / 10 / 7(3) 5(1) / 10 / 7(2) 5(1) / 10 / 8 

ρ = 0.7 

0 5(1) / 9(9) / 7(7) 5(1) / 9(30) / 7(56) 5(1) / 9(1) / 8 5(1) / 9(1) / 8 
1 5(1) / 9(15) / 7(3) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 
2 5(1) / 9(28) / 7(2) 5(1) / 9(73) / 7(4) 5(1) / 9(1) / 7(6) 5(1) / 9(1) / 7(1) 
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(26) 

ρ = 0.9 

0 5(1) / 9(12) / 7(9) 5(1) / 10 / 7(58) 5(1) / 10 / 8 5(1) / 10 / 8 
1 5(1) / 9(4) / 7(11) 5(1) / 9(30) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 8 
2 5(1) / 9(75) / 7(2) 5(1) / 10 / 7(7) 5(1) / 10 / 8(1) 5(1) / 10 / 8 
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(3) 5(1) / 10 / 8 

ρ = 0.99 

0 5(1) / 9(54) / 7(22) 5(1) / 9(66) / 7(78) 5(1) / 10 / 7(12) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(7) 5(1) / 10 / 7(3) 5(1) / 10 / 7(21) 5(1) / 10 / 8 
2 5(1) / 9(6) / 7(3) 5(1) / 10 / 7(3) 5(1) / 10 / 8 5(1) / 10 / 8 
5 5(1) / 9(87) / 7(4) 5(1) / 10 / 7(3) 5(1) / 10 / 7(1) 5(1) / 10 / 8 
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5.3 Experimental Setting for ACS 
 

5.3.1 Number of Ants 
 The effect of the number of ants on the efficiency of the ACS is given in 

Figure 5.3. The abscissa represents the total number of ants used in each set of 

replication and the ordinate represents the number of replications (tours for 

Barthold problem) required to obtain the optimum.   

For Jackson problem, ACS finds the optimal station number for any 

number of ants at the first replication. For Gunther problem, the optimum is 

obtained with minimum number of replications when more than 25 ants are used. 

It is possible to obtain the optimum with minimum number of replications for 55, 

60, 65, 70 ants. However, using fewer ants (30 and 35 ants) reduces the 

computational effort. For Barthold problem, the optimum is obtained with 

minimum number of tours when more than 25 ants are used (In this experiment, it 

is not possible to test ACS with 165, 180 and 195 ants due to memory 

requirements). Fewer number of replications (tours for Barthold problem) are 

required to obtain the optimal station number, when the number of ants is nearly 

equal to the number of tasks. 
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Figure 5.3.b: Number of replications required to obtain the optimum number of stations. Gunther       
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours). 

Figure 5.3.c: Number of tours required to obtain the optimum number of stations. Barthold problem      
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours). 

Figure 5.3.a: Number of replications required to obtain the optimum number of stations. Jackson     
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours). 
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5.3.2 Parameters Setting 
The performance of ACS with respect to the parameters β, q0, ρ1 and ρ2 is 

given in Table 5.3. We take the number of ants m, equal to the number of tasks n. 

The results indicate that the optimal solution is found at the first replication (tour 

for Barthold problem) when the parameters are taken as: β= 1, q0= 0.2 and 

ρ1=ρ2= 0.4. The shaded cell in Table 5.3 indicates the best set of parameters. 
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Table 5.3: Fine tune-up of the parameters β, q0, ρ1 and ρ2  for ACS. 
 

ρ1 = ρ2= 0.1 
  q0   
β 0 0.2 0.4 0.6 0.8 1 
0 5(1) / 9(6) / 7(45) 5(1) / 9(26) / 7(1) 5(1) / 9(9) / 7(6) 5(1) / 9(37) / 7(11) 5(1) / 9(2) / 7(22) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(2) 5(1) / 9(12) / 7(6) 5(1) / 9(5) / 7(3) 5(1) / 9(36) / 7(5) 5(1) / 9(32) / 7(4) 5(1) / 10 / 8 
2 5(1) / 9(24) / 7(12) 5(1) / 9(26) / 7(2) 5(1) / 10 / 7(3) 5(1) / 9(46) / 7(3) 5(1) / 10 / 7(4) 5(1) / 10 / 8 
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(4) 5(1) / 10 / 7(6) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.4 

0 5(1) / 9(6) / 7(29) 5(1) / 9(1) / 7(49) 5(1) / 9(5) / 7(17) 5(1) / 9(2) / 7(49) 5(1) / 9(1) / 7(2) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(5) 5(1) / 9(1) / 7(28) 5(1) / 9(5) / 7(4) 5(1) / 10 / 8 
2 5(1) / 9(26) / 7(6) 5(1) / 9(7) / 7(4) 5(1) / 9(6) / 7(4) 5(1) / 9(2) / 7(2) 5(1) / 9(5) / 7(5) 5(1) / 10 / 8 
5 5(1) / 9(83) / 7(1) 5(1) / 9(23) / 7(2) 5(1) / 9(28) / 7(2) 5(1) / 10 / 7(4) 5(1) / 9(21) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.7 

0 5(1) / 9(2) / 7(11) 5(1) / 9(2) / 7(22) 5(1) / 9(3) / 7(16) 5(1) / 9(7) / 7(4) 5(1) / 9(1) / 7(4) 5(1) / 10 / 8 
1 5(1) / 9(2) / 7(6) 5(1) / 9(6) / 7(4) 5(1) / 9(1) / 7(9) 5(1) / 9(2) / 7(6) 5(1) / 9(1) / 7(4) 5(1) / 10 / 8 
2 5(1) / 9(5) / 7(5) 5(1) / 9(2) / 7(7) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(2) 5(1) / 9(7) / 7(1) 5(1) / 9(17) / 7(1) 5(1) / 10 / 7(1) 5(1) / 9(5) / 7(6) 5(1) / 10 / 8 

ρ1 = ρ2= 0.9 

0 5(1) / 9(1) / 7(2) 5(1) / 9(3) / 7(3) 5(1) / 9(2) / 7(89) 5(1) / 9(1) / 7(24) 5(1) / 9(17) / 7(25) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(4) 5(1) / 9(2) / 7(7) 5(1) / 9(1) / 7(4) 5(1) / 9(2) / 7(1) 5(1) / 9(15) / 7(3) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(10) 5(1) / 9(3) / 7(8) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(8) 5(1) / 9(13) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(2) / 7(3) 5(1) / 9(34) / 7(1) 5(1) / 9(24) / 7(2) 5(1) / 9(21) / 7(5) 5(1) / 9(22) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.99 

0 5(1) / 9(3) / 7(27) 5(1) / 9(6) / 7(3) 5(1) / 9(1) / 7(22) 5(1) / 9(1) / 7(26) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8 
1 5(1) / 9(5) / 7(1) 5(1) / 9(2) / 7(3) 5(1) / 9(3) / 7(1) 5(1) / 9(2) / 7(4) 5(1) / 9(2) / 7(3) 5(1) / 10 / 8 
2 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(6) / 7(2) 5(1) / 9(5) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(15) / 7(5) 5(1) / 9(15) / 7(4) 5(1) / 9(6) / 7(6) 5(1) / 9(26) / 7(2) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8 
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5.4 Experimental Setting for Modified ACS 
with Random Search 

 

 The Modified ACS with Random Search is an extension of ACS. Thus, the 

same parameter set is used in this algorithm and the number of ants is taken equal 

to the number of tasks. 

 
 
5.5 Experimental Setting for New ACO 
Approach, Version 1 

 
5.5.1 Number of Ants 
 The effect of the number of ants on the efficiency of the new ACO 

approach (Version 1) is given in Figure 5.4. The abscissa represents the total 

number of ants used in each set of replication and the ordinate represents the 

number of replications (tours for Barthold problem) required to obtain the 

optimum. 
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Figure 5.4.a: Number of replications required to obtain the optimum number of stations. Jackson  
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours). 

Figure 5.4.b: Number of replications required to obtain the optimum number of stations. Gunther       
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours). 

Figure 5.4.c: Number of tours required to obtain the optimum number of stations. Barthold problem         
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours). 
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For Jackson problem, Version 1 finds the optimal solution for any number 

of ants at the first replication. For Gunther problem, the optimum is obtained with 

minimum number of replications when more than 5 ants are used. For Barthold 

problem, Version 1 yields the optimum with less number of tours when more than 

45 ants are used. Version 1 finds the optimum at the first replication for 60, 105, 

120, 150, 165, 180 and 195 ants. Version 1 works efficiently when there is more 

ants. For Barthold problem, although the optimal is obtained at the first replication 

for 60, 105 and 120 ants, Version 1 finds the optimum at third replication with 

135 ants. Therefore it is more reliable to take the number of ants equal to the 

number of tasks. 

 

5.5.2 Parameters Setting 
The performance of Version 1 with respect to the parameters α, q0, ρ1 and 

ρ2 is given in Table 5.4. β is left constant and taken as 1. We take the number of 

ants m, equal to the number of tasks n. 

The results indicate that the optimal solution is found at the first 

replication (tour for Barthold problem) for various values of the parameters:        

α, q0, ρ1 and ρ2. The shaded cells in Table 5.4 indicate the best set of parameters. 

The performance of Version 1 with respect to β, q0, ρ1 and ρ2 is given in 

Table 5.5. α is left constant and taken as 1. We take the number of ants m, equal 

to the number of tasks n. 

Referring to the results given in Table 5.5, the optimal solution is found at 

the first replication  (tour for Barthold problem) for various values of the 

parameters: β, q0, ρ1 and ρ2. The shaded cells in Table 5.5 indicate the best set of 

parameters. 
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It is hard to determine a single set of parameters. Therefore, we have 

carried out another set of experiment on Buxey problem with 29 tasks and cycle 

time of 36, given  (100 replications • 100 ant tours). Keeping β as 1, we first 

analyze the performance of Version 1 with respect to α, q0, ρ1 and ρ2. Then 

keeping α as 1 we investigate the behaviour of Version 1 with respect to β, q0, ρ1 

and ρ2. 

Referring to the results given in Table 5.6, in each cell the first element 

represents the result of the first experiment and the second element represents the 

result of the second one. Note that the number of ants is set equal to the number of 

tasks. 
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Table 5.4: Fine tune-up of parameters α, q0, ρ1 and ρ2  for New ACO Approach, Version 1. 
 

ρ1 = ρ2= 0.1 
  q0   
α 0 0.2 0.4 0.6 0.8 1 
0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(3) / 7(1) 5(1) / 9(3) / 7(3) 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(7) / 7(3) 5(1) / 10 / 8 

ρ1 = ρ2= 0.4 

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(2) / 7(3) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(3) 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(2) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.7 

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(9) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(2) 5(1) / 9(5) / 7(11) 5(1) / 10 / 8 

ρ1 = ρ2= 0.9 

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(35) / 7(8) 5(1) / 9(7) / 7(12) 5(1) / 9(19) / 7(13) 5(1) / 10 / 7(4) 5(1) / 9(24) / 7(8) 5(1) / 10 / 8 

ρ1 = ρ2= 0.99 

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(2) / 7(6) 5(1) / 10 / 8 
2 5(1) / 9(4) / 7(5) 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(6) 5(1) / 9(14) / 7(5) 5(1) / 9(11) / 7(22) 5(1) / 10 / 8 
5 5(1) / 10 / 7(21) 5(1) / 10 / 8 5(1) / 10 / 7(1) 5(1) / 9(39) / 8 5(1) / 9(43) / 8 5(1) / 10 / 8 
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Table 5.5: Fine tune-up of the parameters β, q0, ρ1 and ρ2  for New ACO Approach, Version 1. 
 

ρ1 = ρ2= 0.1 
  q0   
β 0 0.2 0.4 0.6 0.8 1 
0 5(1) / 9(6) / 7(1) 5(1) / 9(16) / 7(1) 5(1) / 9(17) / 7(32) 5(1) / 9(4) / 7(20) 5(1) / 9(16) / 7(42) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.4 

0 5(1) / 9(6) / 7(6) 5(1) / 9(2) / 7(2) 5(1) / 9(5) / 7(5) 5(1) / 9(4) / 7(66) 5(1) / 9(94) / 7(14) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.7 

0 5(1) / 9(3) / 7(1) 5(1) / 9(5) / 7(2) 5(1) / 9(32) / 7(19) 5(1) / 9(13) / 7(31) 5(1) / 9(34) / 7(50) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(3) / 7(1) 5(1) / 9(9) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.9 

0 5(1) / 9(11) / 7(12) 5(1) / 9(6) / 7(24) 5(1) / 9(60) / 7(10) 5(1) / 9(6) / 7(39) 5(1) / 9(87) / 7(16) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(10) / 7(1) 5(1) / 10 / 8 

ρ1 = ρ2= 0.99 

0 5(1) / 9(29) / 7(81) 5(1) / 9(84) / 7(7) 5(1) / 9(35) / 7(19) 5(1) / 10 / 7(76) 5(1) / 10 / 7(66) 5(1) / 10 / 8 
1 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(5) 5(1) / 10 / 8 
2 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(10) 5(1) / 10 / 8 
5 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(3) 5(1) / 9(4) / 7(6) 5(1) / 10 / 8 
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Table 5.6: Fine tune-up of parameters α, β, q0, ρ1 and ρ2  for New ACO Approach, Version 1. 
 

ρ1 = ρ2= 0.1 
       q0    
α  orβ 0 0.2 0.4 0.6 0.8 1 

0 9(85) / 10  9(46) / 10 9(55) / 10 10 / 10 10 / 10 10 / 10 
1 10 / 10 9(22) / 10 10 / 10 10 / 10 10 / 10 10 / 10 
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 

ρ1 = ρ2= 0.4 

0 9(35) / 10  9(89) / 10 9(80) / 10 10 / 10 10 / 10 10 / 10 
1 10 / 9(69) 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 
5 9(29) / 10 10 / 9(77) 10 / 10 10 / 10 10 / 10 10 / 10 

ρ1 = ρ2= 0.7 

0 10 / 10  9(63) / 10 9(81) / 10 9(64) / 10 10 / 10 10 / 10 
1 10 / 10 9(54) / 10 10 / 10 10 / 10 10 / 10 10 / 10 
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 

ρ1 = ρ2= 0.9 

0 10 / 10  10 / 10 9(75) / 10 9(37) / 10 10 / 10 10 / 10 
1 10 / 10 9(5) / 10 9(76) / 10 10 / 10 10 / 10 10 / 10 
2 9(42) / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 

ρ1 = ρ2= 0.99 

0 10 / 9(38)   9(32) / 10 10 / 10 10 / 10 10 / 10 10 / 10 
1 9(98) / 10 9(42) / 9(43) 10 / 9(8) 10 / 10 10 / 10 10 / 10 
2 10 / 10 10 / 9(44) 10 / 10 10 / 10 10 / 10 10 / 10 
5 10 / 10 9(60) / 10 10 / 10 10 / 10 10 / 10 10 / 10 

 

 

 

 



CHAPTER 5. EXPERIMENTAL SETTING 
 

 

113 

 

In both of the experiments, Version 1 obtains the optimal solution with the 

minimum number of replications when the parameters are taken as: α=1, β=1, 

q0=0.2 and ρ1=ρ2=0.99. In the first experiment, Version 1 finds the optimal 

solution with the minimum number of replications for α=1, β=1, q0=0.2 and 

ρ1=ρ2=0.9. The shaded cells indicate the best set of parameters. Details are given 

at Chapter 6. 

 
5.6 Experimental Setting for New ACO 
Approach, Version 2 

 
5.6.1 Number of Ants 

The effect of the number of ants on the efficiency of the New ACO 

Approach (Version 2) is given in Figure 5.5. The abscissa represents the total 

number of ants used in each set of replication and the ordinate represents the 

number of replications (tours for Barthold problem) required to obtain the 

optimum. 
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Figure 5.5.a: Number of replications required to obtain the optimum number of stations. Jackson  
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours). 

Figure 5.5.b: Number of replications required to reach optimum number of stations. Gunther        
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours). 
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Figure 5.5.c: Number of tours required to reach optimum number of stations. Barthold problem 
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours). 
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The results indicate that for Jackson problem, Version 2 finds the optimal 

station number for any number of ants at the first replication. For Gunther 

problem, the optimum is obtained with the minimum number of replications when 

more than 1 ant is used. For Barthold problem, when more than 45 ants are used, 

Version 2 finds the optimum with less number of tours. At first tour, the optimum 

is reached for 60, 75, 90, 120, 135, 150 and 165 ants. After 165 ants, Version 1 

needs more that 1 tour to find the optimum. Therefore it is more reliable to take 

the number of ants equal to the number of tasks. 
 
5.6.2 Parameters Setting 
 Version 2 is an extension of Version 1. Therefore, the same parameter set 

is used for Version 2. However there are some problem instances that the 

performance of Version 2 is better when the parameter q0 is taken as 0.3 and 0.8. 

The details are given at Chapter 6. 
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Chapter 6 
 
 
 

Computational Results 
 

In this chapter we present the results of the proposed algorithms on several 

test problems. Recall that the algorithms under consideration are Ant System, Ant 

System with Elitist Strategy, Ant Colony System, Modified Ant Colony System with 

Random Search, New Ant Colony Optimization Approach; Version 1 and    

Version 2.  

 Two data sets are used. The first data set (Talbot et al., 1986) considers 64 

instances with varying problem sizes ranging from 8 to 111 tasks. The second data 

set (Scholl, 1993) is relatively new and most complex with 168 instances ranging 

from 25 to 297 tasks. 

 We run the proposed algorithms with 190 instances from these data sets 

and compare the results with those of ULINO (Scholl and Klein, 1999) and the 

simulated annealing based algorithm of Erel, Sabuncuoglu and Aksu (2001). The 

results indicate that ULINO finds the optimal solution for most of the instances. In 

some cases, results are given in the interval. A simple lower bound on the minimal 

number of stations is equal to 







= ∑

=

n

i
i CtLB

1

/ , where x is the smallest integer 

larger than x (Scholl and Klein, 1999; Erel, Sabuncuoglu and Aksu, 2001). 

Besides the simple lower bound LB, Scholl and Klein (1999) use three additional 

bound arguments. The upper bound on the minimal number of stations is 
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proposed to be the required number of stations after all the tasks are assigned to 

the stations.  

 Solutions for 15 out of 190 instances are given in intervals with a lower 

bound and an upper bound. The upper bound and the lower bound of the interval 

are explained above. SA could not find the optimal solution in 45 out of 187 

instances. SA finds optimal solution for only 127 instances. For 15 instances, 

solutions are given in intervals. ULINO finds the optimal solution for 169 out of 

190 instances. For 6 instances, ULINO could not find the optimum, but the result 

are given in intervals in this case.  

 In the following (Sections 6.1-6.6), we present the computational results. 

The results are given in Tables 6.1-6.5. Each table has 3 parts. In the first part, the 

information about the problem (problem name, number of tasks, cycle time and 

total task time) is given. In the second part, the results of SA, ULINO, proposed 

ant algorithm and the optimal solution are reported. For the proposed ant 

algorithm, the computation time is given in milliseconds. We run the algorithm 

until (100 replications × 100 ant tours) have been completed. However, for some 

problem instances more ant tours are required. Details about these instances are 

given in Tables 6.4 and 6.5. In the third part of the table, the difference between 

the results of the ant algorithm, SA and ULINO and the optimal solution are 

reported. In each table, the light shaded cells represent the problem instances that 

result greater than the optimal and the dark shaded cells represents the instances 

that the result is given in interval.  

The computational requirements are not high for any of the proposed 

algorithms. The algorithms are written in Borland Delphi 6.0. The average 

computational time for an experiment requires a few seconds on an AMD Athlon 

XP 2000+, 266 Mhz machine with 256 MB RAM (333MHZ).  
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6.1 Computational Results for AS 
 

In the proposed AS, we take the number of ants m, equal to the number of 

tasks n. The parameters are selected as follows: α=2, β=2, ρ=0.7, initial trail=1, 

Q=1. The computational results of Ant System are given in Table 6.1. 

Recall that, in 15 instances the number of stations is given in intervals. 

Referring to Table 6.1, AS could not find the optimal solution in 103 out of 190 

instances. In fact, in 97 out of 103 instances AS yields the solution with one 

station more than the optimal, in 4 out of 103 instances AS finds two stations 

more than the optimal, and in 2 out of 103 instances AS yields three stations more 

than the optimal. For the remaining 72 instances AS finds the optimal station 

number. 

 In 5 instances AS performs better than SA and finds the optimal solution. 

However, in 63 instances SA performs better than AS and finds the optimal 

solution. There is only one instance that none of them can find the optimum. In 

that instance AS finds 1 station less than SA. 

 In 6 instances ULINO could not find the optimum and the solutions are 

given in intervals whereas AS finds the upper bound in 5 of these instances. 

However, SA finds the optimum in 5 of these instances. In 97 problem instances 

ULINO performs better than AS and finds the optimum. 

 We generally observe that AS can solve small and medium size problems 

(8-32 tasks). However AS displays generally a poor performance for the large size 

problems (53, 58, 89, 94, 148 and 297 tasks). 
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Table 6.1: Computational Results of Ant System 
 

 Problem Task 
Num 

Cycle 
Time 

Total 
Time ULINO SA AS Optimal CPU 

milisec 
Opt-    
AS 

Opt-
ULINO 

Opt-    
SA 

1 Bowman 8 20 75 4 5 4 4 160 0 0 -1 
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0 
3   62  3 3 3 3 50 0 0 0 
4   94  2 2 2 2 0 0 0 0 
5 Jackson 11 7 46 7 7 7 7 380 0 0 0 
6   9  6 6 6 6 0 0 0 0 
7   10  5 5 5 5 0 0 0 0 
8   13  4 4 4 4 0 0 0 0 
9   14  4 4 4 4 0 0 0 0 

10   21  3 3 3 3 0 0 0 0 
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0 
12   15  8 8 8 8 0 0 0 0 
13   21  5 5 5 5 0 0 0 0 
14   26  5 - 5 5 0 0 0 - 
15   35  3 - 3 3 0 0 0 - 
16   39  3 - 3 3 0 0 0 - 
17 Roszieg 25 14 125 9 9 9 9 1100 0 0 0 
18   16  8 8 8 8 0 0 0 0 
19   18  7 7 7 7 0 0 0 0 
20   21  6 6 6 6 0 0 0 0 
21   25  5 5 5 5 0 0 0 0 
22   32  4 4 4 4 50 0 0 0 
23 Buxey 29 27 324 13 13 13 13 0 0 0 0 
24   30  11 11 11 11 19010 0 0 0 
25   33  10 10 11 10 0 -1 0 0 
26   36  9 9 10 9 0 -1 0 0 
27   41  8 8 8 8 60 0 0 0 
28   47  7 7 7 7 0 0 0 0 
29   54  6 7 6 6 1430 0 0 -1 
30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0 
31   1572  10 10 10 10 0 0 0 0 
32   1768  9 9 9 9 0 0 0 0 
33   2020  8 8 8 8 0 0 0 0 
34   2357  7 7 7 7 50 0 0 0 
35   2828  6 6 6 6 0 0 0 0 
36 Gunther 35 41 483 12 13 13 12 50 -1 0 -1 
37   44  12 12 12 12 0 0 0 0 
38   49  10 11 11 10 0 -1 0 -1 
39   54  9 9 10 9 50 -1 0 0 
40   61  8 9 8 8 9720 0 0 -1 
41   69  7 8 8 7 0 -1 0 -1 
42   81  6 7 6 6 0 0 0 -1 
43 Hahn 53 2004 14026 8 8 8 8 50 0 0 0 
44   2338  7 7 7 7 50 0 0 0 
45   2806  5 6 6 5 0 -1 0 -1 
46   3507  5 5 5 5 0 0 0 0 
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Table 6.1: (Cont’d) 
 

47   4676  3 4 3 3 5930 0 0 -1 
48 Warnecke 58 54 1548 30, 31 31 32 30, 31 50    
49   56  29 29 30 29 8790 -1 0 0 
50   58  28 29 29 28 0 -1 0 -1 
51   60  27 27 28 27 0 -1 0 0 
52   62  26, 27 27 27 26, 27 45970    
53   65  24, 25 25 26 24, 25 60    
54   68  23, 24 24 25 23, 24 50    
55   71  22, 23 23 24 22, 23 0    
56   74  21, 22 22 22 21, 22 64200    
57   78  20 21 21 20 60 -1 0 -1 
58   82  19, 20 20 20 19, 20 110    
59   86  18 19 19 18 50 -1 0 -1 
60   92  17 17 18 17 0 -1 0 0 
61   97  16 17 17 16 0 -1 0 -1 
62   104  15 15 16 15 0 -1 0 0 
63   111  14 14 15 14 50 -1 0 0 
64 Wee-mag 75 28 1499 63 63 63 63 60 0 0 0 
65   29  63 63 63 63 50 0 0 0 
66   30  62 62 62 62 170 0 0 0 
67   31  62 62 62 62 60 0 0 0 
68   32  61 61 61 61 60 0 0 0 
69   33  61 61 61 61 60 0 0 0 
70   34  61 61 61 61 50 0 0 0 
71   35  60 60 60 60 110 0 0 0 
72   36  60 60 60 60 50 0 0 0 
73   37  60 60 60 60 60 0 0 0 
74   38  60 60 60 60 60 0 0 0 
75   39  60 60 60 60 60 0 0 0 
76   40  60 60 60 60 50 0 0 0 
77   41  59 59 59 59 60 0 0 0 
78   42  55 55 55 55 50 0 0 0 
79   43  50 50 50 50 50 0 0 0 
80   45  38 38 38 38 11090 0 0 0 
81   46  34 34 34 34 75520 0 0 0 
82   47  32, 33 33 33 32, 33 60    
83   49  31, 32 32 32 31, 32 50    
84   50  31, 32 32 32 31, 32 60    
85   52  31 31 31 31 110 0 0 0 
86   54  31 31 31 31 60 0 0 0 
87   56  30 30 30 30 50 0 0 0 
88 Lutz2 89 11 485 45 49 48 45 50 -3 0 -4 
89   12  41 44 44 41 220 -3 0 -3 
90   13  38 40 40 38 390 -2 0 -2 
91   14  35 36 37 35 50 -2 0 -1 
92   15  33 34 34 33 160 -1 0 -1 
93   16  31 31 32 31 50 -1 0 0 
94   17  29 29 30 29 110 -1 0 0 
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Table 6.1: (Cont’d) 
 

95   18  27 28 28 27 50 -1 0 -1 
96   19  26 26 26 26 940 0 0 0 
97   20  25 25 25 25 60 0 0 0 
98   21  24 24 24 24 50 0 0 0 
99 Lutz3 89 75 1644 22 23 23 22 50 -1 0 -1 

100   79  21 22 22 21 50 -1 0 -1 
101   83  20 21 21 20 60 -1 0 -1 
102   87  19 20 20 19 60 -1 0 -1 
103   92  18 19 19 18 50 -1 0 -1 
104   97  17 18 18 17 60 -1 0 -1 
105   103  16 17 17 16 60 -1 0 -1 
106   110  15 15 16 15 50 -1 0 0 
107   118  14 14 15 14 60 -1 0 0 
108   127  13 14 14 13 60 -1 0 -1 
109   137  12 13 13 12 60 -1 0 -1 
110   150  11 12 12 11 50 -1 0 -1 
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110    
112   183  23 24 24 23 60 -1 0 -1 
113   192  22 23 23 22 50 -1 0 -1 
114   201  21 22 22 21 50 -1 0 -1 
115   211  20 21 21 20 110 -1 0 -1 
116   222  19 20 20 19 110 -1 0 -1 
117   234  18 19 19 18 110 -1 0 -1 
118   248  17 18 18 17 60 -1 0 -1 
119   263  16 17 17 16 110 -1 0 -1 
120   281  15 16 16 15 110 -1 0 -1 
121   301  14 15 15 14 110 -1 0 -1 
122   324  13 14 14 13 110 -1 0 -1 
123   351  12 13 13 12 110 -1 0 -1 
124 Arcus2 111 5755 150399 27 27 27 27 110 0 0 0 
125   8847  17, 18 18 18 17, 18 160    
126   10027  15, 16 16 16 15, 16 160    
127   10743  14, 15 15 15 14, 15 170    
128   11378  14 14 14 14 170 0 0 0 
129   17067  9 9 9 9 170 0 0 0 
130 Barthold 148 403 5634 14 14 15 14 440 -1 0 0 
131   434  13 13 14 13 490 -1 0 0 
132   470  12 12 13 12 440 -1 0 0 
133   513  11 11 11 11 61350 0 0 0 
134   564  10 10 10 10 1590 0 0 0 
135   626  9 9 9 9 128690 0 0 0 
136   705  8 8 8 8 440 0 0 0 
137   805  7 7 7 7 1040 0 0 0 
138 Barthol2 148 84 4234 51 51 52 51 132650 -1 0 0 
139   85  50, 51 50 52 50 380 -2  0 
140   87  49 49 51 49 390 -2 0 0 
141   89  48, 49 48 49 48 380 -1  0 
142   91  47 47 48 47 3300 -1 0 0 
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Table 6.1: (Cont’d) 
 

143   93  46, 47 46 47 46 380 -1  0 
144   95  45 45 46 45 390 -1 0 0 
145   97  44, 45 44 45 44 3290 -1  0 
146   99  43 43 44 43 2090 -1 0 0 
147   101  42 42 43 42 440 -1 0 0 
148   104  41 41 42 41 380 -1 0 0 
149   106  40 40 41 40 390 -1 0 0 
150   109  39 39 40 39 380 -1 0 0 
151   112  38 38 39 38 440 -1 0 0 
152   115  37 37 38 37 390 -1 0 0 
153   118  36 36 37 36 380 -1 0 0 
154   121  35 35 36 35 440 -1 0 0 
155   125  34 34 35 34 380 -1 0 0 
156   129  33 33 34 33 440 -1 0 0 
157   133  32 32 33 32 390 -1 0 0 
158   137  31 31 32 31 440 -1 0 0 
159   142  30 30 31 30 380 -1 0 0 
160   146  29 29 30 29 440 -1 0 0 
161   152  28 28 29 28 440 -1 0 0 
162   157  27 27 28 27 390 -1 0 0 
163   163  26 26 27 26 430 -1 0 0 
164   170  25 25 26 25 440 -1 0 0 
165 Scholl 297 1394 69655 50, 51 50 51 50 720 -1  0 
166   1422  49, 50 50 50 49, 50 710    
167   1452  48 48 49 48 660 -1 0 0 
168   1483  47 47 48 47 710 -1 0 0 
169   1515  46, 47 47 47 46 720 -1  -1 
170   1548  45 46 46 45 710 -1 0 -1 
171   1584  44 44 45 44 660 -1 0 0 
172   1620  43 44 44 43 720 -1 0 -1 
173   1659  42 43 43 42 710 -1 0 -1 
174   1699  41 41 42 41 710 -1 0 0 
175   1742  40 40 41 40 720 -1 0 0 
176   1787  39 39 40 39 710 -1 0 0 
177   1834  38 38 39 38 720 -1 0 0 
178   1883  37 37 38 37 710 -1 0 0 
179   1935  36 36 37 36 710 -1 0 0 
180   1991  35 35 36 35 720 -1 0 0 
181   2049  34 34 35 34 710 -1 0 0 
182   2111  33 33 34 33 720 -1 0 0 
183   2177  32 32 33 32 710 -1 0 0 
184   2247  31 31 32 31 710 -1 0 0 
185   2322  30 30 31 30 720 -1 0 0 
186   2402  29 29 30 29 710 -1 0 0 
187   2488  28 28 29 28 720 -1 0 0 
188   2580  27 27 28 27 710 -1 0 0 
189   2680  26 26 27 26 710 -1 0 0 
190   2787  25 25 26 25 720 -1 0 0 
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6.2 Computational Results for ASelite 
 

For ASelite, we take the number of ants m, equal  to the number of tasks n. 

The parameters are selected as follows: α=2, β=1, ρ=0.9, initial trail=1, Q=1. 

The computational results of ASelite are given in Table 6.2. 

 Referring to Table 6.2, ASelite could not find the optimal solution in 94 out 

of 190 problem instances. In fact, in 90 out of 94 instances, ASelite finds the 

solution with one station more than the optimal and ASelite finds two stations more 

than the optimal in 4 of 94 instances. For the remaining 81 instances, ASelite finds 

the optimal station number. Recall that, in 15 instances the number of stations is 

given in intervals. 

 In 9 instances ASelite performs better than SA finding the optimal solution. 

However, in 59 instances SA performs better finding the optimal solution. There 

are 3 instances that none of them find the optimal. In 2 of these instances ASelite 

finds 1 station less than SA and in the other instance ASelite finds 2 stations less 

than SA. 

 In 6 instances ULINO could not find the optimum where as ASelite finds 

the upper bound in 5 of these instances. However SA finds optimum in 5 of these 

instances. In 88 problem instances, ULINO performs better than ASelite and finds 

the optimum. We also observe that ASelite’s can solve small and medium size 

problems (8-45 tasks). Also, ASelite performs well for some large size problems 

(53, some instances of 58 tasks, 111 and 148 tasks). However, its performance is 

poor for most large size problems (some instances of 58 tasks, 89, 94, 148 and 

297 tasks).  

 In conclusion, ASelite performs slightly better than AS that ASelite finds the 

optimal solution in 9 instances more than AS . 
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Table 6.2: Computational Results of ASelite 
 

 Problem Task 
Num 

Cycle 
Time 

Total 
Time ULINO SA ASelite Optimal CPU 

milisec 
Opt-    
ASelite 

Opt-
ULINO 

Opt-    
SA 

1 Bowman 8 20 75 4 5 4 4 60 0 0 -1 
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0 
3   62  3 3 3 3 50 0 0 0 
4   94  2 2 2 2 0 0 0 0 
5 Jackson 11 7 46 7 7 7 7 50 0 0 0 
6   9  6 6 6 6 0 0 0 0 
7   10  5 5 5 5 0 0 0 0 
8   13  4 4 4 4 0 0 0 0 
9   14  4 4 4 4 0 0 0 0 

10   21  3 3 3 3 0 0 0 0 
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0 
12   15  8 8 8 8 0 0 0 0 
13   21  5 5 5 5 0 0 0 0 
14   26  5 - 5 5 0 0 0 - 
15   35  3 - 3 3 0 0 0 - 
16   39  3 - 3 3 0 0 0 - 
17 Roszieg 25 14 125 9 9 9 9 3410 0 0 0 
18   16  8 8 8 8 0 0 0 0 
19   18  7 7 7 7 220 0 0 0 
20   21  6 6 6 6 0 0 0 0 
21   25  5 5 5 5 0 0 0 0 
22   32  4 4 4 4 0 0 0 0 
23 Buxey 29 27 324 13 13 13 13 0 0 0 0 
24   30  11 11 11 11 15320 0 0 0 
25   33  10 10 11 10 0 -1 0 0 
26   36  9 9 10 9 0 -1 0 0 
27   41  8 8 8 8 0 0 0 0 
28   47  7 7 7 7 0 0 0 0 
29   54  6 7 6 6 440 0 0 -1 
30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0 
31   1572  10 10 10 10 0 0 0 0 
32   1768  9 9 9 9 0 0 0 0 
33   2020  8 8 8 8 0 0 0 0 
34   2357  7 7 7 7 0 0 0 0 
35   2828  6 6 6 6 50 0 0 0 
36 Gunther 35 41 483 12 13 12 12 8790 0 0 -1 
37   44  12 12 12 12 0 0 0 0 
38   49  10 11 10 10 40480 0 0 -1 
39   54  9 9 9 9 3350 0 0 0 
40   61  8 9 8 8 7470 0 0 -1 
41   69  7 8 8 7 0 -1 0 -1 
42   81  6 7 6 6 0 0 0 -1 
43 Hahn 53 2004 14026 8 8 8 8 60 0 0 0 
44   2338  7 7 7 7 0 0 0 0 
45   2806  5 6 5 5 36030 0 0 -1 
46   3507  5 5 5 5 0 0 0 0 
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Table 6.2: (Cont’d) 
 

47   4676  3 4 3 3 7470 0 0 -1 
48 Warnecke 58 54 1548 30, 31 31 31 30, 31 229090    
49   56  29 29 30 29 4230 -1 0 0 
50   58  28 29 28 28 218000 0 0 -1 
51   60  27 27 28 27 110 -1 0 0 
52   62  26, 27 27 27 26, 27 8460    
53   65  24, 25 25 26 24, 25 170    
54   68  23, 24 24 24 23, 24 19880    
55   71  22, 23 23 23 22, 23 32290    
56   74  21, 22 22 22 21, 22 0    
57   78  20 21 21 20 160 -1 0 -1 
58   82  19, 20 20 20 19, 20 110    
59   86  18 19 19 18 60 -1 0 -1 
60   92  17 17 18 17 0 -1 0 0 
61   97  16 17 17 16 50 -1 0 -1 
62   104  15 15 16 15 0 -1 0 0 
63   111  14 14 15 14 60 -1 0 0 
64 Wee-mag 75 28 1499 63 63 63 63 50 0 0 0 
65   29  63 63 63 63 60 0 0 0 
66   30  62 62 62 62 100 0 0 0 
67   31  62 62 62 62 60 0 0 0 
68   32  61 61 61 61 50 0 0 0 
69   33  61 61 61 61 60 0 0 0 
70   34  61 61 61 61 50 0 0 0 
71   35  60 60 60 60 60 0 0 0 
72   36  60 60 60 60 50 0 0 0 
73   37  60 60 60 60 60 0 0 0 
74   38  60 60 60 60 110 0 0 0 
75   39  60 60 60 60 50 0 0 0 
76   40  60 60 60 60 60 0 0 0 
77   41  59 59 59 59 50 0 0 0 
78   42  55 55 55 55 60 0 0 0 
79   43  50 50 50 50 50 0 0 0 
80   45  38 38 38 38 60 0 0 0 
81   46  34 34 34 34 432320 0 0 0 
82   47  32, 33 33 33 32, 33 50    
83   49  31, 32 32 32 31, 32 60    
84   50  31, 32 32 32 31, 32 110    
85   52  31 31 31 31 50 0 0 0 
86   54  31 31 31 31 60 0 0 0 
87   56  30 30 30 30 50 0 0 0 
88 Lutz2 89 11 485 45 49 47 45 85740 -2 0 -4 
89   12  41 44 43 41 166260 -2 0 -3 
90   13  38 40 39 38 81290 -1 0 -2 
91   14  35 36 36 35 11540 -1 0 -1 
92   15  33 34 33 33 380 0 0 -1 
93   16  31 31 31 31 64760 0 0 0 
94   17  29 29 29 29 119960 0 0 0 
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Table 6.2: (Cont’d) 
 

95   18  27 28 28 27 60 -1 0 -1 
96   19  26 26 26 26 44920 0 0 0 
97   20  25 25 25 25 60 0 0 0 
98   21  24 24 24 24 50 0 0 0 
99 Lutz3 89 75 1644 22 23 23 22 60 -1 0 -1 

100   79  21 22 22 21 50 -1 0 -1 
101   83  20 21 21 20 60 -1 0 -1 
102   87  19 20 20 19 50 -1 0 -1 
103   92  18 19 19 18 110 -1 0 -1 
104   97  17 18 18 17 60 -1 0 -1 
105   103  16 17 17 16 50 -1 0 -1 
106   110  15 15 16 15 60 -1 0 0 
107   118  14 14 15 14 50 -1 0 0 
108   127  13 14 14 13 60 -1 0 -1 
109   137  12 13 13 12 50 -1 0 -1 
110   150  11 12 12 11 110 -1 0 -1 
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 60    
112   183  23 24 24 23 110 -1 0 -1 
113   192  22 23 23 22 110 -1 0 -1 
114   201  21 22 22 21 50 -1 0 -1 
115   211  20 21 21 20 110 -1 0 -1 
116   222  19 20 20 19 110 -1 0 -1 
117   234  18 19 19 18 60 -1 0 -1 
118   248  17 18 18 17 110 -1 0 -1 
119   263  16 17 17 16 110 -1 0 -1 
120   281  15 16 16 15 50 -1 0 -1 
121   301  14 15 15 14 110 -1 0 -1 
122   324  13 14 14 13 110 -1 0 -1 
123   351  12 13 13 12 110 -1 0 -1 
124 Arcus2 111 5755 150399 27 27 27 27 170 0 0 0 
125   8847  17, 18 18 18 17, 18 110    
126   10027  15, 16 16 16 15, 16 160    
127   10743  14, 15 15 15 14, 15 110    
128   11378  14 14 14 14 170 0 0 0 
129   17067  9 9 9 9 160 0 0 0 
130 Barthold 148 403 5634 14 14 15 14 390 -1 0 0 
131   434  13 13 14 13 60250 -1 0 0 
132   470  12 12 12 12 56850 0 0 0 
133   513  11 11 11 11 990 0 0 0 
134   564  10 10 10 10 440 0 0 0 
135   626  9 9 9 9 75800 0 0 0 
136   705  8 8 8 8 440 0 0 0 
137   805  7 7 7 7 2080 0 0 0 
138 Barthol2 148 84 4234 51 51 52 51 139900 -1 0 0 
139   85  50, 51 50 52 50 380 -2  0 
140   87  49 49 51 49 330 -2 0 0 
141   89  48, 49 48 49 48 279850 -1  0 
142   91  47 47 48 47 70520 -1 0 0 
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Table 6.2: (Cont’d) 
 

143   93  46, 47 46 47 46 380 -1  0 
144   95  45 45 46 45 200320 -1 0 0 
145   97  44, 45 44 45 44 131650 -1  0 
146   99  43 43 44 43 3790 -1 0 0 
147   101  42 42 43 42 6540 -1 0 0 
148   104  41 41 42 41 380 -1 0 0 
149   106  40 40 41 40 390 -1 0 0 
150   109  39 39 40 39 380 -1 0 0 
151   112  38 38 39 38 390 -1 0 0 
152   115  37 37 38 37 380 -1 0 0 
153   118  36 36 37 36 390 -1 0 0 
154   121  35 35 36 35 380 -1 0 0 
155   125  34 34 35 34 390 -1 0 0 
156   129  33 33 34 33 380 -1 0 0 
157   133  32 32 33 32 380 -1 0 0 
158   137  31 31 32 31 440 -1 0 0 
159   142  30 30 31 30 390 -1 0 0 
160   146  29 29 30 29 380 -1 0 0 
161   152  28 28 29 28 390 -1 0 0 
162   157  27 27 28 27 440 -1 0 0 
163   163  26 26 27 26 380 -1 0 0 
164   170  25 25 26 25 390 -1 0 0 
165 Scholl 297 1394 69655 50, 51 50 51 50 710 -1  0 
166   1422  49, 50 50 50 49, 50 720    
167   1452  48 48 49 48 650 -1 0 0 
168   1483  47 47 48 47 720 -1 0 0 
169   1515  46, 47 47 47 46 660 -1  -1 
170   1548  45 46 46 45 710 -1 0 -1 
171   1584  44 44 45 44 660 -1 0 0 
172   1620  43 44 44 43 720 -1 0 -1 
173   1659  42 43 43 42 650 -1 0 -1 
174   1699  41 41 42 41 720 -1 0 0 
175   1742  40 40 41 40 660 -1 0 0 
176   1787  39 39 40 39 710 -1 0 0 
177   1834  38 38 39 38 720 -1 0 0 
178   1883  37 37 38 37 650 -1 0 0 
179   1935  36 36 37 36 720 -1 0 0 
180   1991  35 35 36 35 710 -1 0 0 
181   2049  34 34 35 34 660 -1 0 0 
182   2111  33 33 34 33 720 -1 0 0 
183   2177  32 32 33 32 710 -1 0 0 
184   2247  31 31 32 31 660 -1 0 0 
185   2322  30 30 31 30 710 -1 0 0 
186   2402  29 29 30 29 720 -1 0 0 
187   2488  28 28 29 28 710 -1 0 0 
188   2580  27 27 28 27 660 -1 0 0 
189   2680  26 26 27 26 710 -1 0 0 
190   2787  25 25 26 25 720 -1 0 0 
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6.3 Computational Results for ACS 
 

In ACS, we take the number of ants m, equal to the number of tasks n. The 

parameters are selected as follows: β=1, ρ1=ρ2=0.4, q0=0.2, τ0=0.0028, initial 

trail=1. The computational results of ACS are given in Table 6.3. 

In 15 instances, the solution is given in intervals. Referring to Table 6.3, 

ACS yields the optimal solution in 81 problem instances. However, ACS can not 

find the optimal solution for 94 instances. In fact, in 90 out of 94 instances, ACS 

finds a solution with one station more than the optimum and two stations more 

than the optimal for the remaining 4 instances. 

In 9 instances, ACS performs better than SA finding the optimal solution. 

In 58 instances, SA performs better finding the optimal solution. There are 3 

instances that none of them find the optimal solution. In fact, in 2 of these 

instances, ACS finds 1 station less than SA and in the remaining instance ACS 

finds 2 stations less than SA. 

In 6 instances ULINO could not find the optimum whereas ACS finds the 

upper bound in 5 of these instances. However, SA finds the optimum in 5 of these 

instances. In 88 problem instances ULINO performs better than ACS. 

We also note that ACS performs well up to 53 tasks. It yields the optimal 

solution for 75 and 111 task problems. Its performance is poor for large size 

problems (58, 89, 94, 148 and 297 tasks).  

In conclusion, the performance of ASelite and ACS are the same and both 

of them solve 81 problem instances optimally. 
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Table 6.3: Computational Results of ACS 
 

 Problem Task 
Num 

Cycle 
Time 

Total 
Time ULINO SA ACS Optimal CPU 

milisec 
Opt-    
ACS 

Opt-
ULINO 

Opt-    
SA 

1 Bowman 8 20 75 4 5 4 4 0 0 0 -1 
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0 
3   62  3 3 3 3 0 0 0 0 
4   94  2 2 2 2 0 0 0 0 
5 Jackson 11 7 46 7 7 7 7 0 0 0 0 
6   9  6 6 6 6 0 0 0 0 
7   10  5 5 5 5 0 0 0 0 
8   13  4 4 4 4 0 0 0 0 
9   14  4 4 4 4 0 0 0 0 

10   21  3 3 3 3 0 0 0 0 
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0 
12   15  8 8 8 8 0 0 0 0 
13   21  5 5 5 5 0 0 0 0 
14   26  5 - 5 5 0 0 0 - 
15   35  3 - 3 3 0 0 0 - 
16   39  3 - 3 3 0 0 0 - 
17 Roszieg 25 14 125 9 9 9 9 50 0 0 0 
18   16  8 8 8 8 0 0 0 0 
19   18  7 7 7 7 0 0 0 0 
20   21  6 6 6 6 0 0 0 0 
21   25  5 5 5 5 0 0 0 0 
22   32  4 4 4 4 0 0 0 0 
23 Buxey 29 27 324 13 13 13 13 0 0 0 0 
24   30  11 11 11 11 2030 0 0 0 
25   33  10 10 10 10 7190 0 0 0 
26   36  9 9 10 9 50 -1 0 0 
27   41  8 8 8 8 0 0 0 0 
28   47  7 7 7 7 0 0 0 0 
29   54  6 7 6 6 930 0 0 -1 
30 Lutz1 32 1414 14140 11 11 11 11 60 0 0 0 
31   1572  10 10 10 10 0 0 0 0 
32   1768  9 9 9 9 50 0 0 0 
33   2020  8 8 8 8 0 0 0 0 
34   2357  7 7 7 7 0 0 0 0 
35   2828  6 6 6 6 0 0 0 0 
36 Gunther 35 41 483 12 13 12 12 4280 0 0 -1 
37   44  12 12 12 12 0 0 0 0 
38   49  10 11 10 10 1260 0 0 -1 
39   54  9 9 9 9 870 0 0 0 
40   61  8 9 8 8 490 0 0 -1 
41   69  7 8 7 7 19110 0 0 -1 
42   81  6 7 6 6 0 0 0 -1 
43 Hahn 53 2004 14026 8 8 8 8 60 0 0 0 
44   2338  7 7 7 7 0 0 0 0 
45   2806  5 6 6 5 50 -1 0 -1 
46   3507  5 5 5 5 0 0 0 0 
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Table 6.3: (Cont’d) 
 

47   4676  3 4 3 3 110 0 0 -1 
48 Warnecke 58 54 1548 30, 31 31 31 30, 31 3350    
49   56  29 29 30 29 110 -1 0 0 
50   58  28 29 29 28 50 -1 0 -1 
51   60  27 27 28 27 380 -1 0 0 
52   62  26, 27 27 27 26, 27 2690    
53   65  24, 25 25 26 24, 25 110    
54   68  23, 24 24 24 23, 24 15550    
55   71  22, 23 23 23 22, 23 7030    
56   74  21, 22 22 22 21, 22 15210    
57   78  20 21 21 20 60 -1 0 -1 
58   82  19, 20 20 20 19, 20 0    
59   86  18 19 19 18 50 -1 0 -1 
60   92  17 17 18 17 0 -1 0 0 
61   97  16 17 17 16 60 -1 0 -1 
62   104  15 15 16 15 0 -1 0 0 
63   111  14 14 15 14 50 -1 0 0 
64 Wee-mag 75 28 1499 63 63 63 63 110 0 0 0 
65   29  63 63 63 63 50 0 0 0 
66   30  62 62 62 62 60 0 0 0 
67   31  62 62 62 62 50 0 0 0 
68   32  61 61 61 61 110 0 0 0 
69   33  61 61 61 61 60 0 0 0 
70   34  61 61 61 61 50 0 0 0 
71   35  60 60 60 60 110 0 0 0 
72   36  60 60 60 60 60 0 0 0 
73   37  60 60 60 60 50 0 0 0 
74   38  60 60 60 60 60 0 0 0 
75   39  60 60 60 60 110 0 0 0 
76   40  60 60 60 60 50 0 0 0 
77   41  59 59 59 59 60 0 0 0 
78   42  55 55 55 55 50 0 0 0 
79   43  50 50 50 50 60 0 0 0 
80   45  38 38 38 38 9880 0 0 0 
81   46  34 34 35 34 110 -1 0 0 
82   47  32, 33 33 33 32, 33 170    
83   49  31, 32 32 32 31, 32 110    
84   50  31, 32 32 32 31, 32 50    
85   52  31 31 31 31 50 0 0 0 
86   54  31 31 31 31 110 0 0 0 
87   56  30 30 30 30 60 0 0 0 
88 Lutz2 89 11 485 45 49 47 45 39380 -2 0 -4 
89   12  41 44 43 41 19060 -2 0 -3 
90   13  38 40 39 38 8630 -1 0 -2 
91   14  35 36 36 35 1210 -1 0 -1 
92   15  33 34 33 33 28890 0 0 -1 
93   16  31 31 31 31 9180 0 0 0 
94   17  29 29 29 29 24380 0 0 0 
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Table 6.3: (Cont’d) 
 

95   18  27 28 28 27 210 -1 0 -1 
96   19  26 26 26 26 16370 0 0 0 
97   20  25 25 25 25 610 0 0 0 
98   21  24 24 24 24 110 0 0 0 
99 Lutz3 89 75 1644 22 23 23 22 110 -1 0 -1 

100   79  21 22 22 21 60 -1 0 -1 
101   83  20 21 21 20 50 -1 0 -1 
102   87  19 20 20 19 110 -1 0 -1 
103   92  18 19 19 18 60 -1 0 -1 
104   97  17 18 18 17 110 -1 0 -1 
105   103  16 17 17 16 50 -1 0 -1 
106   110  15 15 16 15 60 -1 0 0 
107   118  14 14 15 14 110 -1 0 0 
108   127  13 14 14 13 50 -1 0 -1 
109   137  12 13 13 12 110 -1 0 -1 
110   150  11 12 12 11 60 -1 0 -1 
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110    
112   183  23 24 24 23 50 -1 0 -1 
113   192  22 23 23 22 110 -1 0 -1 
114   201  21 22 22 21 110 -1 0 -1 
115   211  20 21 21 20 110 -1 0 -1 
116   222  19 20 20 19 110 -1 0 -1 
117   234  18 19 19 18 110 -1 0 -1 
118   248  17 18 18 17 110 -1 0 -1 
119   263  16 17 17 16 110 -1 0 -1 
120   281  15 16 16 15 110 -1 0 -1 
121   301  14 15 15 14 110 -1 0 -1 
122   324  13 14 14 13 110 -1 0 -1 
123   351  12 13 13 12 110 -1 0 -1 
124 Arcus2 111 5755 150399 27 27 27 27 440 0 0 0 
125   8847  17, 18 18 18 17, 18 170    
126   10027  15, 16 16 16 15, 16 160    
127   10743  14, 15 15 15 14, 15 170    
128   11378  14 14 14 14 160 0 0 0 
129   17067  9 9 9 9 170 0 0 0 
130 Barthold 148 403 5634 14 14 15 14 500 -1 0 0 
131   434  13 13 13 13 5220 0 0 0 
132   470  12 12 12 12 4500 0 0 0 
133   513  11 11 11 11 3190 0 0 0 
134   564  10 10 10 10 7910 0 0 0 
135   626  9 9 9 9 21750 0 0 0 
136   705  8 8 8 8 1870 0 0 0 
137   805  7 7 7 7 5100 0 0 0 
138 Barthol2 148 84 4234 51 51 52 51 2150 -1 0 0 
139   85  50, 51 50 52 50 430 -2  0 
140   87  49 49 51 49 440 -2 0 0 
141   89  48, 49 48 49 48 6920 -1  0 
142   91  47 47 48 47 1210 -1 0 0 
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Table 6.3: (Cont’d) 
 

143   93  46, 47 46 47 46 500 -1  0 
144   95  45 45 46 45 440 -1 0 0 
145   97  44, 45 44 45 44 31580 -1  0 
146   99  43 43 44 43 10710 -1 0 0 
147   101  42 42 43 42 23340 -1 0 0 
148   104  41 41 42 41 500 -1 0 0 
149   106  40 40 41 40 1970 -1 0 0 
150   109  39 39 40 39 440 -1 0 0 
151   112  38 38 39 38 440 -1 0 0 
152   115  37 37 38 37 500 -1 0 0 
153   118  36 36 37 36 440 -1 0 0 
154   121  35 35 36 35 490 -1 0 0 
155   125  34 34 35 34 440 -1 0 0 
156   129  33 33 34 33 500 -1 0 0 
157   133  32 32 33 32 430 -1 0 0 
158   137  31 31 32 31 500 -1 0 0 
159   142  30 30 31 30 440 -1 0 0 
160   146  29 29 30 29 490 -1 0 0 
161   152  28 28 29 28 440 -1 0 0 
162   157  27 27 28 27 500 -1 0 0 
163   163  26 26 27 26 490 -1 0 0 
164   170  25 25 26 25 440 -1 0 0 
165 Scholl 297 1394 69655 50, 51 50 51 50 270 -1  0 
166   1422  49, 50 50 50 49, 50 110    
167   1452  48 48 49 48 110 -1 0 0 
168   1483  47 47 48 47 60 -1 0 0 
169   1515  46, 47 47 47 46 110 -1  -1 
170   1548  45 46 46 45 110 -1 0 -1 
171   1584  44 44 45 44 110 -1 0 0 
172   1620  43 44 44 43 110 -1 0 -1 
173   1659  42 43 43 42 50 -1 0 -1 
174   1699  41 41 42 41 110 -1 0 0 
175   1742  40 40 41 40 110 -1 0 0 
176   1787  39 39 40 39 110 -1 0 0 
177   1834  38 38 39 38 50 -1 0 0 
178   1883  37 37 38 37 110 -1 0 0 
179   1935  36 36 37 36 110 -1 0 0 
180   1991  35 35 36 35 110 -1 0 0 
181   2049  34 34 35 34 110 -1 0 0 
182   2111  33 33 34 33 60 -1 0 0 
183   2177  32 32 33 32 110 -1 0 0 
184   2247  31 31 32 31 110 -1 0 0 
185   2322  30 30 31 30 110 -1 0 0 
186   2402  29 29 30 29 50 -1 0 0 
187   2488  28 28 29 28 110 -1 0 0 
188   2580  27 27 28 27 110 -1 0 0 
189   2680  26 26 27 26 110 -1 0 0 
190   2787  25 25 26 25 110 -1 0 0 
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6.4 Computational Results for Modified ACS 
with Random Search 
 

Modified ACS with random search is a two-phase approach and it requires 

excessive amount of time to collect data for the T2 matrix. For that reason, we test 

this approach with some medium and large size problems that AS, ASelite and 

ACS could not yield the optimal solution. These problems are Buxey with 29 

tasks (C=36), Gunther with 35 tasks (C=69), Warnecke with 58 tasks (C=60, 

C=78, C=82, C=86, C=92, C=97, C=104, C=111), Lutz2 with 89 tasks (C=11, 

C=12, C=13, C=14, C=17). 

Modified ACS finds the optimal allocation for only three of these fifteen 

problem instances, Buxey (C=36), Gunther (C=69), and Warnecke (C=60, 

C=111). However, it is an important development that for the first time we find 

the optimal allocation for these problems. 

Our observations on the structure of the T2 matrix led us to develop the  

New ACO Approach (Version 1 and Version 2). 

 

 

 
 
 
 
 
 
 
 



CHAPTER 6. COMPUTATIONAL RESULTS 
 

 

134 

 

6.5 Computational Results for New ACO 
Approach, Version 1 
 

In the New ACO Approach, Version 1 we take the number of ants m, equal  

to the number of tasks n. The parameters are selected as follows: α=1, β=1, 

q0=0.2, ρ1=ρ2=0.9, τ0=1, initial trail=1, Q=1. For some problems ρ1 and ρ2 are 

taken as 0.99; q0
 is taken as 0.3. The computational results of Version 1 are given 

in Table 6.4. 

Referring to Table 6.4, the performance of Version 1 is highly satisfying 

when compared with the previous algorithms.  In 108 out of 190 instances, 

Version 1 finds the optimum solution. Recall that, in 15 instances optimal 

solutions are given in intervals. In the remaining 67 instances Version 1 can not 

find the optimum.  

 In 25 instances Version 1 performs better than SA finding the optimal 

solution. However, in 47 instances SA performs better than Version 1 finding the 

optimal solution. Generally in 16 out of 18 problems the performance of Version 1 

is better. Somehow, only in the two largest problems SA beats Version 1.  

There are 2 instances that none of them can find the optimal solution. In 

fact, in 1 of these instances Version 1 finds 3 stations less than SA and in the other 

instance Version 1 finds 2 stations less than SA. Also, there is one instance that 

Version 1 finds the optimal solution with 2 stations less than SA. 

 In 6 instances ULINO could not find the optimum whereas Version1 finds 

the upper bound in 5 of these instances. However, SA finds the optimal solution in 

5 of these instances. In 61 problem instances ULINO performs better than  

Version 1 and finds the optimal solution.  

 For some problem instances, we observe that Version 1 can find the 

optimal solution with the parameters different from the parameters stated in 
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Section 5.5.2. Some problems need more ant tours to find the optimal solution. 

Also for some problems when the parameter q0 is taken as 0.3, Version 1 obtains 

better results than when q0=0.2. Also setting the parameters ρ1 and ρ2 equal to 

0.99 yields better results instead of taking ρ1 and ρ2 equal to 0.9. These 

observations are also pointed out in Table 6.4. 
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Table 6.4: Computational Results of the New ACO Approach, Version 1. 
 

 
 Problem Task 

Num 
Cycle 
Time 

Total 
Time ULINO SA Ver. 1 Optimal CPU 

milisec 
Opt-    

Ver. 1 
Opt-

ULINO 
Opt-    
SA 

 1 Bowman 8 20 75 4 5 4 4 0 0 0 -1 
 2 Mansoor 11 48 185 4 4 4 4 0 0 0 0 
 3   62  3 3 3 3 0 0 0 0 
 4   94  2 2 2 2 0 0 0 0 
 5 Jackson 11 7 46 7 7 7 7 0 0 0 0 
 6   9  6 6 6 6 0 0 0 0 
 7   10  5 5 5 5 0 0 0 0 
 8   13  4 4 4 4 0 0 0 0 
 9   14  4 4 4 4 0 0 0 0 
 10   21  3 3 3 3 0 0 0 0 
 11 Mitchell 21 14 105 8 8 8 8 0 0 0 0 
 12   15  8 8 8 8 0 0 0 0 
 13   21  5 5 5 5 0 0 0 0 
 14   26  5 - 5 5 0 0 0 - 
 15   35  3 - 3 3 0 0 0 - 
 16   39  3 - 3 3 0 0 0 - 
 17 Roszieg 25 14 125 9 9 9 9 0 0 0 0 
 18   16  8 8 8 8 0 0 0 0 
 19   18  7 7 7 7 0 0 0 0 
 20   21  6 6 6 6 0 0 0 0 
 21   25  5 5 5 5 0 0 0 0 
 22   32  4 4 4 4 0 0 0 0 
 23 Buxey 29 27 324 13 13 13 13 0 0 0 0 
 24   30  11 11 11 11 50 0 0 0 
 25   33  10 10 10 10 60 0 0 0 
 26   36  9 9 9 9 9010 0 0 0 
 27   41  8 8 8 8 0 0 0 0 
 28   47  7 7 7 7 0 0 0 0 
 29   54  6 7 6 6 0 0 0 -1 
 30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0 
 31   1572  10 10 10 10 0 0 0 0 
 32   1768  9 9 9 9 0 0 0 0 
 33   2020  8 8 8 8 0 0 0 0 
 34   2357  7 7 7 7 60 0 0 0 
 35   2828  6 6 6 6 0 0 0 0 
 36 Gunther 35 41 483 12 13 12 12 60 0 0 -1 
 37   44  12 12 12 12 0 0 0 0 
 38   49  10 11 10 10 330 0 0 -1 
 39   54  9 9 9 9 50 0 0 0 
 40   61  8 9 8 8 0 0 0 -1 
 41   69  7 8 7 7 0 0 0 -1 
 42   81  6 7 6 6 0 0 0 -1 
 43 Hahn 53 2004 14026 8 8 8 8 0 0 0 0 
 44   2338  7 7 7 7 0 0 0 0 
 45   2806  5 6 5 5 30810 0 0 -1 
 46   3507  5 5 5 5 0 0 0 0 
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Table 6.4: (Cont’d) 
 

 47   4676  3 4 3 3 710 0 0 -1 
 48 Warnecke 58 54 1548 30, 31 31 31 30, 31 110    
 49   56  29 29 29 29 4940 0 0 0 
 50   58  28 29 28 28 5660 0 0 -1 
 51   60  27 27 27 27 440 0 0 0 
 52   62  26, 27 27 27 26, 27 60    
 53   65  24, 25 25 25 24, 25 5600    
 54   68  23, 24 24 24 23, 24 0    
 55   71  22, 23 23 23 22, 23 0    
 56   74  21, 22 22 22 21, 22 50    
 57   78  20 21 21 20 0 -1 0 -1 
 58   82  19, 20 20 20 19, 20 0    
 59   86  18 19 19 18 0 -1 0 -1 

(1)1 60   92  17 17 17 17 6760 0 0 0 
 61   97  16 17 17 16 60 -1 0 -1 

(1) 62   104  15 15 15 15 15110 0 0 0 
 63   111  14 14 15 14 60 -1 0 0 
 64 Wee-mag 75 28 1499 63 63 63 63 60 0 0 0 
 65   29  63 63 63 63 50 0 0 0 
 66   30  62 62 62 62 0 0 0 0 
 67   31  62 62 62 62 60 0 0 0 
 68   32  61 61 61 61 50 0 0 0 
 69   33  61 61 61 61 0 0 0 0 
 70   34  61 61 61 61 60 0 0 0 
 71   35  60 60 60 60 50 0 0 0 
 72   36  60 60 60 60 0 0 0 0 
 73   37  60 60 60 60 60 0 0 0 
 74   38  60 60 60 60 50 0 0 0 
 75   39  60 60 60 60 60 0 0 0 
 76   40  60 60 60 60 0 0 0 0 
 77   41  59 59 59 59 50 0 0 0 
 78   42  55 55 55 55 60 0 0 0 
 79   43  50 50 50 50 0 0 0 0 
 80   45  38 38 38 38 160 0 0 0 
 81   46  34 34 34 34 220 0 0 0 
 82   47  32, 33 33 33 32, 33 50    
 83   49  31, 32 32 32 31, 32 60    
 84   50  31, 32 32 32 31, 32 0    
 85   52  31 31 31 31 50 0 0 0 
 86   54  31 31 31 31 60 0 0 0 
 87   56  30 30 30 30 50 0 0 0 
 88 Lutz2 89 11 485 45 49 46 45 6590 -1 0 -4 
 89   12  41 44 42 41 3020 -1 0 -3 

(2)2 90   13  38 40 38 38 165440 0 0 -2 
 91   14  35 36 36 35 720 -1 0 -1 

                                                           
(1) For these instances the algorithm is run until 1000 ant tours have been completed. In these 
experiments qo is taken as 0.3. 
(2) For these instances the algorithm is run until 250 ant tours have been completed. 
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Table 6.4: (Cont’d) 
 

 92   15  33 34 33 33 170 0 0 -1 
 93   16  31 31 31 31 720 0 0 0 
 94   17  29 29 29 29 50 0 0 0 

(2) 95   18  27 28 27 27 166370 0 0 -1 
 96   19  26 26 26 26 50 0 0 0 
 97   20  25 25 25 25 60 0 0 0 
 98   21  24 24 24 24 50 0 0 0 
 99 Lutz3 89 75 1644 22 23 23 22 60 -1 0 -1 
 100   79  21 22 22 21 50 -1 0 -1 

(3)3 101   83  20 21 20 20 12250 0 0 -1 
(3) 102   87  19 20 19 19 63110 0 0 -1 
(3) 103   92  18 19 18 18 770 0 0 -1 
(3) 104   97  17 18 17 17 159120 0 0 -1 
(3) 105   103  16 17 16 16 69590 0 0 -1 
(3) 106   110  15 15 15 15 20320 0 0 0 
(3) 107   118  14 14 14 14 1210 0 0 0 
(3) 108   127  13 14 13 13 3400 0 0 -1 
(3) 109   137  12 13 12 12 55690 0 0 -1 
(3) 110   150  11 12 11 11 170 0 0 -1 

 111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110    
 112   183  23 24 24 23 110 -1 0 -1 
 113   192  22 23 23 22 110 -1 0 -1 
 114   201  21 22 22 21 60 -1 0 -1 
 115   211  20 21 21 20 110 -1 0 -1 
 116   222  19 20 20 19 110 -1 0 -1 
 117   234  18 19 19 18 50 -1 0 -1 
 118   248  17 18 18 17 110 -1 0 -1 
 119   263  16 17 17 16 110 -1 0 -1 

(4)4 120   281  15 16 15 15 497510 0 0 -1 
(4) 121   301  14 15 14 14 290450 0 0 -1 
(4) 122   324  13 14 13 13 492580 0 0 -1 
(4) 123   351  12 13 12 12 35200 0 0 -1 

 124 Arcus2 111 5755 150399 27 27 27 27 170 0 0 0 
 125   8847  17, 18 18 18 17, 18 160    
 126   10027  15, 16 16 16 15, 16 110    
 127   10743  14, 15 15 15 14, 15 160    
 128   11378  14 14 14 14 160 0 0 0 
 129   17067  9 9 9 9 110 0 0 0 
 130 Barthold 148 403 5634 14 14 14 14 2190 0 0 0 
 131   434  13 13 13 13 660 0 0 0 
 132   470  12 12 12 12 1760 0 0 0 
 133   513  11 11 11 11 270 0 0 0 
 134   564  10 10 10 10 330 0 0 0 
 135   626  9 9 9 9 48610 0 0 0 

                                                           
(3) For these instances the algorithm is run until 250 ant tours have been completed. In these 
experiments qo is taken as 0.3. 
(4) For these instances the algorithm is run until 1000 ant tours have been completed. In these 
experiments qo is taken as 0.3; ρ1 and ρ2 are taken as 0.99. 
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Table 6.4: (Cont’d) 
 

 136   705  8 8 8 8 330 0 0 0 
 137   805  7 7 7 7 280 0 0 0 
 138 Barthol2 148 84 4234 51 51 52 51 280 -1 0 0 
 139   85  50, 51 50 51 50 14550 -1  0 
 140   87  49 49 50 49 330 -1 0 0 
 141   89  48, 49 48 49 48 280 -1  0 
 142   91  47 47 48 47 270 -1 0 0 
 143   93  46, 47 46 47 46 280 -1  0 
 144   95  45 45 46 45 330 -1 0 0 
 145   97  44, 45 44 45 44 270 -1  0 
 146   99  43 43 44 43 270 -1 0 0 
 147   101  42 42 43 42 330 -1 0 0 
 148   104  41 41 42 41 280 -1 0 0 
 149   106  40 40 41 40 270 -1 0 0 
 150   109  39 39 40 39 330 -1 0 0 
 151   112  38 38 39 38 280 -1 0 0 
 152   115  37 37 38 37 270 -1 0 0 
 153   118  36 36 37 36 330 -1 0 0 
 154   121  35 35 36 35 280 -1 0 0 
 155   125  34 34 35 34 270 -1 0 0 
 156   129  33 33 34 33 330 -1 0 0 
 157   133  32 32 33 32 270 -1 0 0 
 158   137  31 31 32 31 280 -1 0 0 
 159   142  30 30 31 30 330 -1 0 0 
 160   146  29 29 30 29 270 -1 0 0 
 161   152  28 28 28 28 118420 0 0 0 
 162   157  27 27 28 27 280 -1 0 0 
 163   163  26 26 27 26 330 -1 0 0 
 164   170  25 25 25 25 163900 0 0 0 
 165 Scholl 297 1394 69655 50, 51 50 51 50 720 -1  0 
 166   1422  49, 50 50 50 49, 50 710    
 167   1452  48 48 49 48 720 -1 0 0 
 168   1483  47 47 48 47 710 -1 0 0 
 169   1515  46, 47 47 47 46 710 -1  -1 
 170   1548  45 46 46 45 720 -1 0 -1 
 171   1584  44 44 45 44 710 -1 0 0 
 172   1620  43 44 44 43 720 -1 0 -1 
 173   1659  42 43 43 42 710 -1 0 -1 
 174   1699  41 41 42 41 710 -1 0 0 
 175   1742  40 40 41 40 720 -1 0 0 
 176   1787  39 39 40 39 710 -1 0 0 
 177   1834  38 38 39 38 720 -1 0 0 
 178   1883  37 37 38 37 710 -1 0 0 
 179   1935  36 36 37 36 720 -1 0 0 
 180   1991  35 35 36 35 710 -1 0 0 
 181   2049  34 34 35 34 710 -1 0 0 
 182   2111  33 33 34 33 660 -1 0 0 
 183   2177  32 32 33 32 720 -1 0 0 
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Table 6.4: (Cont’d) 
 

 184   2247  31 31 32 31 710 -1 0 0 
 185   2322  30 30 31 30 710 -1 0 0 
 186   2402  29 29 30 29 720 -1 0 0 
 187   2488  28 28 29 28 710 -1 0 0 
 188   2580  27 27 28 27 720 -1 0 0 
 189   2680  26 26 27 26 710 -1 0 0 
 190   2787  25 25 26 25 710 -1 0 0 
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6.6 Computational Results for New ACO 
Approach, Version 2 
 

In the New ACO Approach, Version 2 we take the number of ants m, equal 

to one fourth of the number of tasks (n/4). Version 2 is an extension of Version 1. 

Therefore, the same parameter set is used for Version 2. However, Version 2 can 

not find optimal solution in most of the problem instances with the following 

parameters: α=1, β=1, q0=0.2, ρ1=ρ2=0.9, τ0=1, initial trail=1, Q=1. Therefore, 

for Version 2 the new parameters are selected as follows: α=1, β=1, q0=0.8, 

ρ1=ρ2=0.99, τ0=1, initial trail=1, Q1=1 and Q2=100. We run the algorithm, 

Version 2 until 250 ant tours have been completed. The computational results of 

Version 2 are given in Table 6.5. 

Referring to Table 6.5, in most of the problem instances the performance 

of Version 2 is much better than the previous algorithms. In 144 out of 190 

instances Version 2 finds the optimal solution. Only in 31 instances Version 2 

performs poor.  

 Version 2 performs better than SA in 39 instances finding the optimal 

solution. In fact, there are three instances that SA finds 4 stations more, 3 stations 

more and 2 stations more in each. In 25 instances SA performs better than Version 

2 finding the optimal solution.  

 In 6 instances ULINO could not find the optimum whereas Version 2 finds 

the upper bound in 3 of these 6 instances and the optimum in 3 out of these 6 

instances. In 28 instances ULINO performs better than Version 2.  

 We also note that, one advantage of Version 2 is that it can find the 

optimal solution with a fewer number of ants. Recall that, in 190 problem 

instances number of ants m, is taken to be equal to one fourth of the number of 

task (n/4), whereas we take the number of ants equal to the number of tasks in the 
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previous algorithms. This fact indicates that Version 2 is powerful and the trail 

update mechanism can be effective when the number of ants is equal to only n/4. 
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Table 6.5: Computational Results of the New ACO Approach, Version 2. 
 

 
 Problem Task 

Num 
Cycle 
Time 

Total 
Time ULINO SA Ver. 2 Optimal CPU 

milisec 
Opt-    

Ver. 2 
Opt-

ULINO 
Opt-    
SA 

 1 Bowman 8 20 75 4 5 4 4 110 0 0 -1 
 2 Mansoor 11 48 185 4 4 4 4 0 0 0 0 
 3   62  3 3 3 3 0 0 0 0 
 4   94  2 2 2 2 0 0 0 0 
 5 Jackson 11 7 46 7 7 7 7 110 0 0 0 
 6   9  6 6 6 6 0 0 0 0 
 7   10  5 5 5 5 0 0 0 0 
 8   13  4 4 4 4 0 0 0 0 
 9   14  4 4 4 4 0 0 0 0 
 10   21  3 3 3 3 0 0 0 0 
 11 Mitchell 21 14 105 8 8 8 8 0 0 0 0 
 12   15  8 8 8 8 0 0 0 0 
 13   21  5 5 5 5 60 0 0 0 
 14   26  5 - 5 5 0 0 0 - 
 15   35  3 - 3 3 0 0 0 - 
 16   39  3 - 3 3 0 0 0 - 
 17 Roszieg 25 14 125 9 9 9 9 60 0 0 0 
 18   16  8 8 8 8 0 0 0 0 
 19   18  7 7 7 7 0 0 0 0 
 20   21  6 6 6 6 0 0 0 0 
 21   25  5 5 5 5 0 0 0 0 
 22   32  4 4 4 4 0 0 0 0 
 23 Buxey 29 27 324 13 13 13 13 0 0 0 0 
 24   30  11 11 11 11 380 0 0 0 
 25   33  10 10 10 10 0 0 0 0 
 26   36  9 9 9 9 990 0 0 0 

(1)5 27   41  8 8 8 8 0 0 0 0 
 28   47  7 7 7 7 0 0 0 0 
 29   54  6 7 6 6 440 0 0 -1 
 30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0 
 31   1572  10 10 10 10 0 0 0 0 
 32   1768  9 9 9 9 0 0 0 0 
 33   2020  8 8 8 8 0 0 0 0 
 34   2357  7 7 7 7 0 0 0 0 
 35   2828  6 6 6 6 0 0 0 0 
 36 Gunther 35 41 483 12 13 12 12 440 0 0 -1 
 37   44  12 12 12 12 0 0 0 0 
 38   49  10 11 10 10 5990 0 0 -1 
 39   54  9 9 9 9 0 0 0 0 
 40   61  8 9 8 8 0 0 0 -1 
 41   69  7 8 7 7 0 0 0 -1 
 42   81  6 7 6 6 0 0 0 -1 
 43 Hahn 53 2004 14026 8 8 8 8 0 0 0 0 
 44   2338  7 7 7 7 0 0 0 0 

                                                           
(1) In these problems q0 is taken as 0.3. 
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Table 6.5: (Cont’d) 
 

(1) 45   2806  5 6 5 5 12090 0 0 -1 
 46   3507  5 5 5 5 0 0 0 0 
 47   4676  3 4 3 3 2310 0 0 -1 
 48 Warnecke 58 54 1548 30, 31 31 31 30, 31 220    
 49   56  29 29 29 29 18350 0 0 0 
 50   58  28 29 28 28 5220 0 0 -1 
 51   60  27 27 27 27 7630 0 0 0 
 52   62  26, 27 27 27 26, 27 0    
 53   65  24, 25 25 25 24, 25 6210    
 54   68  23, 24 24 24 23, 24 0    
 55   71  22, 23 23 23 22, 23 0    
 56   74  21, 22 22 22 21, 22 0    

(1) 57   78  20 21 20 20 80520 0 0 -1 
 58   82  19, 20 20 20 19, 20 0    
 59   86  18 19 19 18 0 -1 0 -1 
 60   92  17 17 17 17 2420 0 0 0 
 61   97  16 17 16 16 1430 0 0 -1 
 62   104  15 15 15 15 440 0 0 0 
 63   111  14 14 14 14 3570 0 0 0 
 64 Wee-mag 75 28 1499 63 63 63 63 50 0 0 0 
 65   29  63 63 63 63 0 0 0 0 
 66   30  62 62 62 62 110 0 0 0 
 67   31  62 62 62 62 60 0 0 0 
 68   32  61 61 61 61 0 0 0 0 
 69   33  61 61 61 61 0 0 0 0 
 70   34  61 61 61 61 0 0 0 0 
 71   35  60 60 60 60 0 0 0 0 
 72   36  60 60 60 60 50 0 0 0 
 73   37  60 60 60 60 0 0 0 0 
 74   38  60 60 60 60 0 0 0 0 
 75   39  60 60 60 60 0 0 0 0 
 76   40  60 60 60 60 0 0 0 0 
 77   41  59 59 59 59 60 0 0 0 
 78   42  55 55 55 55 0 0 0 0 
 79   43  50 50 50 50 0 0 0 0 
 80   45  38 38 38 38 0 0 0 0 
 81   46  34 34 34 34 0 0 0 0 
 82   47  32, 33 33 32 32, 33 82770    
 83   49  31, 32 32 32 31, 32 0    
 84   50  31, 32 32 32 31, 32 50    
 85   52  31 31 31 31 60 0 0 0 
 86   54  31 31 31 31 0 0 0 0 
 87   56  30 30 30 30 0 0 0 0 
 88 Lutz2 89 11 485 45 49 45 45 47010 0 0 -4 
 89   12  41 44 41 41 94970 0 0 -3 
 90   13  38 40 38 38 52120 0 0 -2 
 91   14  35 36 35 35 7140 0 0 -1 
 92   15  33 34 33 33 0 0 0 -1 
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Table 6.5: (Cont’d) 
 

 93   16  31 31 31 31 170 0 0 0 
 94   17  29 29 29 29 0 0 0 0 
 95   18  27 28 27 27 880 0 0 -1 
 96   19  26 26 26 26 50 0 0 0 
 97   20  25 25 25 25 0 0 0 0 
 98   21  24 24 24 24 0 0 0 0 
 99 Lutz3 89 75 1644 22 23 22 22 96620 0 0 -1 
 100   79  21 22 21 21 32680 0 0 -1 
 101   83  20 21 20 20 0 0 0 -1 
 102   87  19 20 19 19 930 0 0 -1 
 103   92  18 19 18 18 50 0 0 -1 
 104   97  17 18 17 17 57240 0 0 -1 
 105   103  16 17 16 16 3240 0 0 -1 
 106   110  15 15 15 15 2030 0 0 0 
 107   118  14 14 14 14 770 0 0 0 
 108   127  13 14 13 13 160 0 0 -1 
 109   137  12 13 12 12 8080 0 0 -1 
 110   150  11 12 11 11 50 0 0 -1 
 111 Mukherje 94 176 4208 24, 25 25 24 24, 25 24390    
 112   183  23 24 24 23 0 -1 0 -1 
 113   192  22 23 22 22 2200 0 0 -1 
 114   201  21 22 21 21 8730 0 0 -1 
 115   211  20 21 20 20 930 0 0 -1 
 116   222  19 20 19 19 19610 0 0 -1 
 117   234  18 19 18 18 32960 0 0 -1 
 118   248  17 18 17 17 20760 0 0 -1 
 119   263  16 17 16 16 32680 0 0 -1 
 120   281  15 16 15 15 3020 0 0 -1 
 121   301  14 15 14 14 1040 0 0 -1 
 122   324  13 14 13 13 8190 0 0 -1 
 123   351  12 13 12 12 270 0 0 -1 
 124 Arcus2 111 5755 150399 27 27 27 27 60 0 0 0 
 125   8847  17, 18 18 18 17, 18 0    
 126   10027  15, 16 16 16 15, 16 50    
 127   10743  14, 15 15 15 14, 15 60    
 128   11378  14 14 14 14 0 0 0 0 
 129   17067  9 9 9 9 50 0 0 0 
 130 Barthold 148 403 5634 14 14 14 14 550 0 0 0 
 131   434  13 13 13 13 710 0 0 0 
 132   470  12 12 12 12 60 0 0 0 
 133   513  11 11 11 11 50 0 0 0 
 134   564  10 10 10 10 110 0 0 0 
 135   626  9 9 9 9 2150 0 0 0 
 136   705  8 8 8 8 50 0 0 0 
 137   805  7 7 7 7 110 0 0 0 
 138 Barthol2 148 84 4234 51 51 51 51 23130 0 0 0 
 139   85  50, 51 50 51 50 2030 -1  0 
 140   87  49 49 50 49 60 -1 0 0 
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Table 6.5: (Cont’d) 
 

 141   89  48, 49 48 48 48 26750 0  0 
 142   91  47 47 47 47 127320 0 0 0 
 143   93  46, 47 46 46 46 10720 0  0 
 144   95  45 45 45 45 15660 0 0 0 
 145   97  44, 45 44 44 44 19170 0  0 
 146   99  43 43 43 43 13840 0 0 0 
 147   101  42 42 43 42 50 -1 0 0 
 148   104  41 41 41 41 4060 0 0 0 
 149   106  40 40 40 40 43280 0 0 0 
 150   109  39 39 39 39 9780 0 0 0 
 151   112  38 38 38 38 15810 0 0 0 
 152   115  37 37 37 37 5110 0 0 0 
 153   118  36 36 36 36 68940 0 0 0 
 154   121  35 35 36 35 110 -1 0 0 
 155   125  34 34 34 34 6750 0 0 0 
 156   129  33 33 33 33 17740 0 0 0 
 157   133  32 32 32 32 4500 0 0 0 
 158   137  31 31 31 31 21860 0 0 0 
 159   142  30 30 30 30 7200 0 0 0 
 160   146  29 29 29 29 99250 0 0 0 
 161   152  28 28 28 28 6980 0 0 0 
 162   157  27 27 27 27 30040 0 0 0 
 163   163  26 26 26 26 4060 0 0 0 
 164   170  25 25 25 25 6860 0 0 0 
 165 Scholl 297 1394 69655 50, 51 50 51 50 770 -1  0 
 166   1422  49, 50 50 50 49, 50 770    
 167   1452  48 48 49 48 710 -1 0 0 
 168   1483  47 47 48 47 720 -1 0 0 
 169   1515  46, 47 47 47 46 770 -1  -1 
 170   1548  45 46 46 45 710 -1 0 -1 
 171   1584  44 44 45 44 710 -1 0 0 
 172   1620  43 44 44 43 770 -1 0 -1 
 173   1659  42 43 43 42 720 -1 0 -1 
 174   1699  41 41 42 41 710 -1 0 0 
 175   1742  40 40 41 40 770 -1 0 0 
 176   1787  39 39 40 39 710 -1 0 0 
 177   1834  38 38 39 38 720 -1 0 0 
 178   1883  37 37 38 37 770 -1 0 0 
 179   1935  36 36 37 36 710 -1 0 0 
 180   1991  35 35 36 35 770 -1 0 0 
 181   2049  34 34 35 34 710 -1 0 0 
 182   2111  33 33 34 33 720 -1 0 0 
 183   2177  32 32 33 32 770 -1 0 0 
 184   2247  31 31 32 31 710 -1 0 0 
 185   2322  30 30 31 30 770 -1 0 0 
 186   2402  29 29 30 29 710 -1 0 0 
 187   2488  28 28 29 28 720 -1 0 0 
 188   2580  27 27 28 27 770 -1 0 0 
 189   2680  26 26 27 26 710 -1 0 0 
 190   2787  25 25 26 25 770 -1 0 0 
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Chapter 7 
 
 
 

Conclusion 
 

 

In this thesis, we study single model U-type assembly line balancing 

problem (UALBP). We consider a U-shaped line with constant operation times, 

no waiting times, and no walking times. Our objective is to minimize the number 

of stations, given the cycle time, C. This is achieved by finding a proper allocation 

of tasks to the stations.  

We propose a new heuristic (Ant Colony Optimization (ACO) meta-

heuristic) and its variants for the single model U-type assembly line balancing 

problem (UALBP). Although there are two ant algorithm developed for the single 

assembly line balancing problem (Bautista and Pereira, 2002; McMullen and 

Tarasewich, 2003) to the best of our knowledge, this study is the first application 

of the ACO meta-heuristic to U-shaped production lines.  

Even though several heuristics have been developed for SALBP (Erel and 

Sarin, 1998) for the single model UALBP, we could find only three heuristics in 

the literature. These are: RPWT based heuristic (Miltenburg and Wijngaard, 

1994), branch and bound based heuristic (Scholl and Klein, 1999) and simulated 

annealing based heuristic (Erel, Sabuncuoglu and Aksu, 2001). 
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Proposed methods for UALBP are considered in three groups: (i) directly 

methods, (ii) modified methods, and (iii) methods in which ACO approach is 

augmented with some metaheuristic. The first group includes algorithms such as 

AS, ASelite, ASrank, and ACS that is directly applied to UALBP. No modification is 

done in the structure of the algorithms. The second group includes new 

approaches that the structure of the algorithms is modified. Also, performance of 

the algorithms in this group is much better than the first group. The last group 

includes two specialized approaches that ACO is augmented with simulated 

annealing (SA) and beam search (BS). 

The performance of the proposed algorithms is tested by using benchmark 

problems available in the literature. We use proposed algorithms  (Ant System, Ant 

System with Elitist Strategy, Ant Colony System, New Ant Colony Optimization 

Approach; Version 1 and Version 2) to solve 190 instances from these data sets 

and compare the results with those from ULINO (Scholl and Klein, 1999) and the 

simulated annealing based algorithm proposed by Erel, Sabuncuoglu and Aksu 

(2001). 

The computational requirements are not high for any of the proposed 

algoritms. The algorithms are coded in Borland Delphi 6.0. The average 

computational time for an experiment requires a few seconds on an AMD Athlon 

XP 2000+, 266 Mhz machine with 256 MB RAM (333MHZ). 

AS is the first algorithm used to solve UALBP. Later we apply ASelite, ACS 

and the performance of these algorithms is better than AS. In these methods, some 

deficiencies of AS are improved. However, none of the algorithms give sufficient 

performance for UALBP. Structure of these algorithms, especially ASelite, ASrank, 

is not suitable for UALBP. 

Actually, this is related with the topology of the cost function. Hertz and 

Widmer (2003) state that the topology of the cost function should not be too flat 
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for the heuristics to get the optimal solution. The cost function can be considered 

as an altitude with mountains, valleys and plateaus. If the cost function is too flat, 

it is difficult for the search algoritm to escape from the large plateaus to fall into 

the valleys. To tackle this problem Hertz and Widmer (2003) suggest adding a 

component to the cost function to discriminate the solutions with the same 

original cost function value. 

The second group methods are modified from the first group to tackle this 

problem. Their task selection and pheromone trail update mechanisms are totally 

improved. In general, their performance is better than that of the first group.  

The third group includes algorithms in which ACO is augmented with a 

metaheuristic. One of them is a modified version of ACS augmented with SA and 

the other one is a modified version of ACS augmented with beam search (BS). 

ACS with SA performs poor in terms of computational time. Even for the second 

smallest problem Jackson with 11 elements, computation time ranges between 

2.53 hours and 164.63 hours. The structure of the beam search is very suitable for 

ACS however the performance of the algorithm was poor in terms of 

computational time. It requires excessive amount of time to complete a single 

tour.  

 We can list the following directions for further research:  

(i) The proposed algorithms can be applied to different U-line configurations such 

as, stochastic assembly line balancing problems, mixed model assembly systems, 

etc.  

 It is possible to extend the proposed algorithms for more complex U-lines 

such as: multi-lines in a single U, double-dependent U-lines, embedded U-lines, 

and multi-U-line facility.  

 It is more realistic to consider a mixed-model U-line (a mixed-model 

production line is a line where different products are produced) instead of a single 
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model U-line. Because in todays business environment, many firms produce 

different kinds of products in order to satisfy the customer’s needs. 

(ii) It would be interesting to augment the new Ant Colony Optimization (ACO) 

approach (Version 1 and Version 2) with a metaheuristic. However this 

augmentation must be done in an efficient way to prove the fast search of the 

search space. 

(iii) A meta-heuristic can be used to find the best set of the parameters. When 

there are many parameters it will be tedious to fine tune these parameters by using 

an experimental design. In such cases, it may be more intelligent to use a meta-

heuristic to find the best values for these parameters. Botee and Bonabeau (1998) 

use a genetic algorithm to select some of the parameters of the ACO algorithm. 

For our proposed algorithms, it is possible to use a genetic algorithm or an another 

meta-heuristic too. 

(iv) The new Ant Colony Optimization (ACO) approach (Version 1 and     

Version 2) can be effectively used to solve Type II problems (the minimization of 

cycle time, given the number of stations). In that case, we would have to re-

balance an existing line with a particular number of stations. 
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Table A.1.1: Trail matrix gathered for tour number 10 

A.1 APPENDIX A 

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 

 
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.65  0.01  0.40  0.01  0.45  0.01  0.08  0.01  0.06  0.01  0.01  0.01  0.01  0.01 
0.50  0.01  0.55  0.01  0.22  0.02  0.26  0.01  0.11  0.01  0.04  0.01  0.01  0.01 
0.36  0.01  0.50  0.01  0.23  0.02  0.26  0.02  0.26  0.01  0.05  0.01  0.02  0.02 
0.09  0.01  0.27  0.01  0.22  0.03  0.17  0.03  0.31  0.05  0.21  0.08  0.12  0.03 
0.41  0.01  0.45  0.01  0.40  0.01  0.30  0.01  0.07  0.01  0.01  0.01  0.01  0.01 
0.26  0.01  0.36  0.01  0.27  0.01  0.26  0.01  0.26  0.01  0.16  0.01  0.11  0.01 
0.26  0.01  0.36  0.01  0.27  0.01  0.22  0.01  0.31  0.01  0.16  0.01  0.12  0.02 
0.22  0.01  0.31  0.01  0.27  0.01  0.22  0.00  0.31  0.09  0.17  0.03  0.11  0.04 
0.01  0.01  0.05  0.01  0.21  0.04  0.22  0.08  0.35  0.08  0.22  0.13  0.11  0.09 
0.23  0.01  0.26  0.01  0.31  0.01  0.31  0.01  0.26  0.01  0.18  0.01  0.11  0.01 
0.01  0.01  0.09  0.09  0.10  0.09  0.11  0.07  0.14  0.13  0.11  0.26  0.17  0.26 
0.18  0.01  0.31  0.01  0.21  0.01  0.41  0.01  0.26  0.01  0.15  0.01  0.13  0.01 
0.01  0.01  0.00  0.21  0.05  0.08  0.03  0.22  0.17  0.26  0.01  0.21  0.06  0.18 
0.01  0.01  0.23  0.01  0.36  0.01  0.21  0.01  0.26  0.01  0.26  0.02  0.21  0.09 
0.01  0.01  0.07  0.01  0.21  0.01  0.14  0.01  0.31  0.03  0.41  0.06  0.26  0.14 
0.01  0.01  0.01  0.01  0.09  0.01  0.14  0.04  0.12  0.08  0.18  0.21  0.31  0.26 
1.45  0.01  0.19  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
0.01  0.01  0.17  0.01  0.36  0.01  0.27  0.01  0.31  0.01  0.21  0.05  0.31  0.08 
0.01  0.01  0.03  0.01  0.17  0.01  0.21  0.01  0.36  0.02  0.31  0.04  0.21  0.21 
0.01  0.01  0.01  0.01  0.02  0.01  0.12  0.07  0.12  0.06  0.26  0.22  0.36  0.26 
0.01  0.01  0.01  0.01  0.01  0.11  0.01  0.12  0.01  0.31  0.07  0.31  0.35  0.23 
0.01  0.01  0.01  0.01  0.01  0.16  0.01  0.12  0.01  0.40  0.05  0.36  0.26  0.26 
0.01  0.01  0.01  0.01  0.01  0.26  0.01  0.31  0.01  0.31  0.01  0.23  0.06  0.31 
0.01  0.01  0.01  0.13  0.01  0.30  0.01  0.31  0.01  0.31  0.01  0.27  0.01  0.31 
0.01  0.01  0.01  0.21  0.01  0.36  0.01  0.36  0.01  0.18  0.04  0.40  0.11  0.08 
0.01  0.01  0.01  0.21  0.01  0.45  0.01  0.27  0.01  0.31  0.00  0.31  0.09  0.08 
0.01  0.01  0.01  0.55  0.01  0.27  0.01  0.31  0.01  0.26  0.01  0.17  0.01  0.15 
0.01  0.55  0.01  0.60  0.01  0.26  0.01  0.18  0.01  0.09  0.01  0.04  0.01  0.06 
0.01  1.30  0.01  0.31  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
0.01  0.40  0.01  0.17  0.01  0.26  0.01  0.26  0.01  0.19  0.02  0.26  0.07  0.02 
0.01  0.40  0.01  0.21  0.01  0.31  0.01  0.22  0.01  0.22  0.01  0.17  0.01  0.12 
0.01  0.40  0.01  0.36  0.01  0.31  0.01  0.31  0.01  0.14  0.01  0.12  0.01  0.11 
0.01  0.40  0.01  0.36  0.01  0.31  0.01  0.31  0.01  0.14  0.01  0.16  0.01  0.01 
0.01  1.30  0.01  0.31  0.01  0.04  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
0.01  1.35  0.01  0.27  0.01  0.02  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 

 

Location 
Task 

Station 
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Table A.1.2: Trail matrix gathered for tour number 100 

A.1 APPENDIX A (Cont’d) 
 

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 
 
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.75  0.00  0.45  0.00  0.31  0.00  0.17  0.00  0.00  0.00  0.00  0.00  0.05  0.00 
0.55  0.00  0.50  0.00  0.36  0.00  0.22  0.00  0.06  0.00  0.06  0.00  0.00  0.05 
0.40  0.00  0.45  0.00  0.22  0.00  0.45  0.00  0.17  0.00  0.06  0.05  0.03  0.00 
0.00  0.00  0.17  0.00  0.36  0.00  0.26  0.00  0.26  0.00  0.31  0.07  0.23  0.09 
0.45  0.00  0.50  0.00  0.40  0.00  0.27  0.00  0.08  0.00  0.00  0.00  0.06  0.00 
0.26  0.00  0.45  0.00  0.31  0.00  0.27  0.00  0.22  0.00  0.12  0.00  0.05  0.00 
0.26  0.00  0.41  0.00  0.36  0.00  0.24  0.00  0.23  0.00  0.16  0.00  0.02  0.05 
0.26  0.00  0.31  0.00  0.26  0.00  0.36  0.00  0.20  0.16  0.15  0.04  0.07  0.11 
0.00  0.00  0.26  0.00  0.17  0.00  0.22  0.13  0.26  0.07  0.13  0.16  0.19  0.22 
0.31  0.00  0.26  0.00  0.22  0.00  0.40  0.00  0.23  0.00  0.18  0.00  0.07  0.00 
0.00  0.00  0.00  0.00  0.09  0.14  0.13  0.19  0.08  0.26  0.13  0.18  0.10  0.31 
0.22  0.00  0.27  0.00  0.31  0.00  0.22  0.00  0.26  0.00  0.26  0.00  0.21  0.00 
0.00  0.00  0.00  0.00  0.12  0.18  0.01  0.31  0.16  0.26  0.08  0.17  0.07  0.23 
0.00  0.00  0.20  0.00  0.41  0.00  0.31  0.00  0.27  0.00  0.22  0.06  0.16  0.06 
0.00  0.00  0.00  0.00  0.18  0.00  0.27  0.00  0.36  0.00  0.41  0.06  0.14  0.16 
0.00  0.00  0.00  0.00  0.00  0.00  0.17  0.00  0.17  0.14  0.31  0.26  0.31  0.22 
1.30  0.00  0.35  0.00  0.05  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.00  0.23  0.00  0.26  0.00  0.26  0.00  0.31  0.00  0.26  0.09  0.31  0.02 
0.00  0.00  0.00  0.00  0.18  0.00  0.21  0.00  0.31  0.04  0.31  0.09  0.40  0.12 
0.00  0.00  0.00  0.00  0.00  0.00  0.10  0.00  0.13  0.13  0.31  0.22  0.31  0.22 
0.00  0.00  0.00  0.00  0.00  0.17  0.00  0.17  0.08  0.27  0.11  0.27  0.35  0.36 
0.00  0.00  0.00  0.00  0.00  0.26  0.00  0.18  0.00  0.31  0.14  0.23  0.21  0.36 
0.00  0.00  0.00  0.00  0.00  0.27  0.00  0.22  0.00  0.36  0.00  0.36  0.18  0.22 
0.00  0.00  0.00  0.45  0.00  0.14  0.00  0.36  0.00  0.31  0.00  0.22  0.12  0.08 
0.00  0.00  0.00  0.08  0.00  0.31  0.00  0.45  0.08  0.50  0.06  0.22  0.12  0.05 
0.00  0.00  0.00  0.08  0.00  0.50  0.00  0.41  0.04  0.36  0.06  0.22  0.12  0.07 
0.00  0.00  0.00  0.50  0.00  0.36  0.00  0.41  0.00  0.26  0.00  0.08  0.08  0.12 
0.00  0.45  0.00  0.65  0.00  0.41  0.00  0.14  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.25  0.00  0.45  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.50  0.00  0.10  0.00  0.21  0.00  0.24  0.00  0.40  0.04  0.22  0.12  0.01 
0.00  0.50  0.00  0.17  0.00  0.36  0.00  0.27  0.00  0.26  0.02  0.13  0.06  0.12 
0.00  0.50  0.00  0.35  0.00  0.36  0.00  0.22  0.00  0.22  0.02  0.07  0.02  0.12 
0.00  0.50  0.00  0.41  0.00  0.31  0.00  0.26  0.00  0.18  0.00  0.13  0.00  0.00 
0.00  1.30  0.00  0.31  0.00  0.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.40  0.00  0.31  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 

Location 
Task 

Station 
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Table A.1.3: Trail matrix gathered for tour number 500 

 
A.1 APPENDIX A (Cont’d) 

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 

  
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.60  0.00  0.45  0.00  0.50  0.00  0.17  0.00  0.00  0.00  0.00  0.00  0.02  0.00 
0.46  0.00  0.50  0.00  0.45  0.00  0.31  0.00  0.08  0.02  0.02  0.00  0.00  0.00 
0.27  0.00  0.55  0.00  0.31  0.00  0.31  0.00  0.26  0.02  0.09  0.00  0.01  0.00 
0.00  0.00  0.36  0.00  0.13  0.00  0.26  0.00  0.26  0.07  0.27  0.06  0.22  0.12 
0.32  0.00  0.50  0.00  0.50  0.00  0.31  0.00  0.13  0.00  0.00  0.00  0.02  0.00 
0.20  0.00  0.31  0.00  0.40  0.00  0.31  0.00  0.22  0.00  0.21  0.00  0.11  0.00 
0.20  0.00  0.31  0.00  0.40  0.00  0.31  0.00  0.23  0.00  0.21  0.00  0.10  0.06 
0.20  0.00  0.31  0.00  0.22  0.00  0.31  0.03  0.31  0.12  0.21  0.04  0.16  0.00 
0.00  0.00  0.15  0.00  0.18  0.00  0.31  0.08  0.14  0.13  0.19  0.12  0.17  0.21 
0.26  0.00  0.31  0.00  0.31  0.00  0.31  0.00  0.27  0.00  0.26  0.00  0.10  0.00 
0.00  0.00  0.00  0.00  0.14  0.17  0.03  0.22  0.10  0.22  0.00  0.22  0.26  0.14 
0.22  0.00  0.31  0.00  0.17  0.00  0.36  0.00  0.41  0.00  0.31  0.00  0.00  0.00 
0.00  0.00  0.00  0.00  0.13  0.19  0.09  0.26  0.18  0.26  0.17  0.23  0.01  0.13 
0.00  0.00  0.22  0.00  0.26  0.00  0.27  0.00  0.27  0.00  0.45  0.06  0.23  0.07 
0.00  0.00  0.00  0.00  0.18  0.00  0.26  0.00  0.18  0.00  0.41  0.06  0.26  0.18 
0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.13  0.12  0.26  0.27  0.31  0.35 
1.50  0.00  0.23  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.00  0.23  0.00  0.26  0.00  0.22  0.00  0.41  0.00  0.40  0.00  0.15  0.13 
0.00  0.00  0.00  0.00  0.22  0.00  0.31  0.00  0.22  0.00  0.22  0.08  0.31  0.18 
0.00  0.00  0.00  0.00  0.00  0.00  0.14  0.00  0.21  0.22  0.22  0.22  0.31  0.22 
0.00  0.00  0.00  0.00  0.00  0.14  0.00  0.22  0.11  0.50  0.22  0.17  0.18  0.27 
0.00  0.00  0.00  0.00  0.00  0.26  0.00  0.26  0.00  0.36  0.21  0.26  0.23  0.17 
0.00  0.00  0.00  0.00  0.00  0.31  0.00  0.36  0.00  0.31  0.11  0.23  0.14  0.22 
0.00  0.00  0.00  0.45  0.00  0.22  0.00  0.31  0.00  0.17  0.00  0.22  0.17  0.21 
0.00  0.00  0.00  0.21  0.00  0.31  0.00  0.40  0.11  0.32  0.17  0.14  0.04  0.07 
0.00  0.00  0.00  0.21  0.00  0.50  0.00  0.36  0.06  0.23  0.17  0.12  0.11  0.12 
0.00  0.00  0.00  0.65  0.00  0.36  0.00  0.26  0.00  0.18  0.00  0.08  0.13  0.13 
0.00  0.55  0.00  0.60  0.00  0.26  0.00  0.17  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.25  0.00  0.45  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.55  0.00  0.13  0.00  0.16  0.00  0.36  0.05  0.36  0.08  0.17  0.06  0.03 
0.00  0.55  0.00  0.17  0.00  0.40  0.00  0.27  0.00  0.22  0.09  0.12  0.02  0.05 
0.00  0.55  0.00  0.36  0.00  0.31  0.00  0.26  0.00  0.22  0.09  0.06  0.00  0.05 
0.00  0.55  0.00  0.36  0.00  0.36  0.00  0.22  0.00  0.22  0.00  0.00  0.00  0.10 
0.00  1.60  0.00  0.14  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.35  0.00  0.36  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 

Location 
Task 

Station 
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Table A.1.4: Trail matrix gathered for tour number 1000 

 
A.1 APPENDIX A (Cont’d) 

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 

  
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

0.65  0.00  0.55  0.00  0.31  0.00  0.17  0.00  0.00  0.00  0.00  0.00  0.06  0.00 
0.45  0.00  0.70  0.00  0.25  0.00  0.18  0.00  0.16  0.00  0.03  0.00  0.06  0.00 
0.22  0.00  0.45  0.00  0.41  0.00  0.31  0.00  0.15  0.00  0.21  0.00  0.03  0.06 
0.00  0.00  0.21  0.00  0.26  0.00  0.19  0.00  0.31  0.00  0.13  0.03  0.26  0.22 
0.45  0.00  0.60  0.00  0.28  0.00  0.31  0.00  0.09  0.00  0.00  0.00  0.02  0.06 
0.21  0.00  0.50  0.00  0.26  0.00  0.41  0.00  0.18  0.00  0.14  0.06  0.07  0.00 
0.21  0.00  0.50  0.00  0.22  0.00  0.41  0.00  0.22  0.00  0.14  0.06  0.09  0.05 
0.17  0.00  0.40  0.00  0.31  0.00  0.22  0.05  0.31  0.07  0.16  0.06  0.13  0.06 
0.00  0.00  0.12  0.00  0.21  0.00  0.31  0.09  0.18  0.08  0.26  0.09  0.18  0.14 
0.26  0.00  0.40  0.00  0.26  0.00  0.36  0.00  0.31  0.00  0.15  0.00  0.00  0.00 
0.00  0.00  0.00  0.00  0.08  0.13  0.21  0.23  0.09  0.26  0.16  0.17  0.09  0.22 
0.22  0.00  0.26  0.00  0.35  0.00  0.27  0.00  0.31  0.00  0.18  0.00  0.00  0.00 
0.00  0.00  0.00  0.00  0.00  0.26  0.11  0.18  0.06  0.26  0.00  0.26  0.15  0.36 
0.00  0.00  0.31  0.00  0.36  0.00  0.22  0.00  0.45  0.00  0.31  0.06  0.07  0.10 
0.00  0.00  0.00  0.00  0.26  0.00  0.22  0.00  0.26  0.00  0.40  0.08  0.41  0.08 
0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.22  0.00  0.31  0.22  0.26  0.31 
1.55  0.00  0.18  0.00  0.01  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.00  0.22  0.00  0.50  0.00  0.17  0.00  0.36  0.06  0.31  0.05  0.04  0.17 
0.00  0.00  0.00  0.00  0.31  0.00  0.22  0.00  0.31  0.06  0.36  0.09  0.22  0.17 
0.00  0.00  0.00  0.00  0.00  0.00  0.12  0.00  0.21  0.17  0.31  0.26  0.31  0.22 
0.00  0.00  0.00  0.00  0.00  0.02  0.00  0.26  0.04  0.31  0.35  0.45  0.22  0.15 
0.00  0.00  0.00  0.00  0.00  0.10  0.00  0.26  0.00  0.40  0.17  0.36  0.26  0.23 
0.00  0.00  0.00  0.00  0.00  0.31  0.00  0.31  0.00  0.36  0.06  0.31  0.26  0.13 
0.00  0.00  0.00  0.18  0.00  0.36  0.00  0.31  0.00  0.36  0.00  0.22  0.21  0.09 
0.00  0.00  0.00  0.36  0.00  0.20  0.00  0.22  0.04  0.28  0.21  0.35  0.06  0.12 
0.00  0.00  0.00  0.36  0.00  0.36  0.00  0.20  0.00  0.27  0.13  0.31  0.07  0.06 
0.00  0.00  0.00  0.50  0.00  0.32  0.00  0.36  0.00  0.22  0.00  0.08  0.11  0.12 
0.00  0.55  0.00  0.50  0.00  0.31  0.00  0.21  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.30  0.00  0.41  0.00  0.02  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  0.50  0.00  0.16  0.00  0.31  0.00  0.19  0.00  0.22  0.10  0.26  0.01  0.07 
0.00  0.50  0.00  0.22  0.00  0.36  0.00  0.22  0.00  0.14  0.07  0.26  0.02  0.08 
0.00  0.50  0.00  0.41  0.00  0.27  0.00  0.26  0.00  0.17  0.07  0.12  0.00  0.06 
0.00  0.50  0.00  0.41  0.00  0.27  0.00  0.31  0.00  0.21  0.00  0.00  0.00  0.08 
0.00  1.45  0.00  0.26  0.00  0.00  0.00  0.01  0.00  0.00  0.00  0.00  0.00  0.00 
0.00  1.40  0.00  0.31  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 

Location 
Task 

Station 
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Table A.2.1: T2 matrix gathered for tour number 5000 

 
A.2 APPENDIX B  

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 

  
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

4106   0       2711    0        2263   0        825     0        3         0        3        0         45      0  
3007   0       2978    0        2370   1        1267   0        239     3        33      5         50      3  
1572   0       2828    0        2202   2        1948   2        957     5        320    10       61      34  
 7        0       1256    0        1359   3        1488   3        1410   47      1335  81       1216  369  
2592   0       2780    0        2443   0        1746   0        315     0        26      0         3        36  
1238   0       2350    0        1868   0        2054   0        1593   0        672    37       49      5  
1206   0       2239    0        1846   0        1932   0        1731   0        803    37       63      32  
1128   0       1761    0        1723   8        1801   85      1731   154    978    115     268   96  
0         0       917      0        1000   13      1044   288    1196   516    1113  608     943   848  
1400   0       1764    0        1497   0        1847   0        1657   0        1097  0         194   5  
0         0       5          53       617    226    455     1161  375     1331  556    1163   530   1431  
1461   0       1748    0         1475  0        1799   0        1713   0        1037  0         342   0  
0         0       2          838     219    1003  508     1115  358     1270  448    1089   376   1104  
0         0       1356    0         1761  0        1609   0        2177   2        1881  90       494   376  
0         0       6          0         1197  0        1272   0        1696   4        2078  114     1985 666  
0         0       0          0         16      0        635     2        981     26      1436  1269   1676 1572  
7963   0       1838    0         109    0        36       0        5         0        3        0         2       0  
0         0       1396    0         1773  0        1578   1        2177   59      1832  144     550   286  
0         0       15        0         1204  0        1313   1        1744   82      1956  221     1725 776  
0         0       0          0         19      0        616     15      1043   706    1393  1152   1711 1319  
0         0       0          0         0       582     9         776    290     1588  806    1876   1287 1863  
0         0       0          0         0       947     2         1021  11       1716  630    1947   954   1779  
0         0       0          0         0       1474   0         1484  2         1930  8        1887   657   1435  
0         0       0          1356   0       1312   0         1666  0         1851  1        1644   128   1289  
0         0       0          892     0       1665   7         2199  245     2263  357    1230   259   456  
0         0       0          892     0       2373   1         2453  133     1897  263    1017   164   479  
0         0       0          3101   0       1960   0         2132  0         1275  1        661     104   626  
0         2884 0          3873   0       1835   0         978    0         32      0        7         0       315  
0         8001 0          1916   0       34       0         4        0         1        0        0         0       0  
0         2966 0          541     0       966     2        1662   60       1523  155    1035   280   350  
0         2966 0          718     0       1774   1         1565   0        1177  95      851     108   461  
0         2966 0          1672   0       1973   1         1318   0        982    71      627     59     271  
0         2966 0          1940   0       1913   0         1332   0        1079  0        508     0       106  
0         8170 0          1681   0       80       0         19       0        6        0        0         0       0  
0         7982 0          1921   0       40       0         12       0        1        0        0         0       0 

 

Location 
Task 

Station 
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Table A.2.2: T2 matrix gathered for tour number 10000 

 
A.2 APPENDIX B (Cont’d) 

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028. 

(Optimal station number is 7. The trail values are considered only for 7 stations) 

  
 

 1 2 3 4 5 6 7 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

139811  0      94356     0      71442     0       25039     0          4         0          7          0        744       0  
102231  0      101452   0      81750     2       36735    59      7084     317     1077     71       642     246  
55477    0      94467     0      76505     3       62303   110    29996    366     8933    147     2226    640  
11          0      43575     0      46457     8       53880   447    48564    971     47217 5372  33832 11714  
89111    0      94391     0      81735     0       53637     0      10496     0         1050     4        447     635  
43749    0      78736     0      62966     0       68191     0      50634     0       22954   618     1292    144  
42710    0      75098     0      61644     0       65516     0      55200     0       26655   622     1367    888  
39462    0      59128     0      58848     3       59518   848    57827  2973    34189  3528    9225   2307  
0            0      30978     0      33928    15      43448  3269   42505  13156  42631 26041 28529 24231  
48134    0      60723     0      49557     0       60316     0      55088     0       36674     0       1119    380  
0            0          9        89     18524 13560   23289  40242 11112  41403 20533 44195 17282  43144  
47917    0      60963     0      49944     0       60531     0      55371     0       37351     0       1265    19  
0            0         11      408    14840 39726   22658  41835   7482  44443 14708 45244 15720  37864  
0            0      47428     0      61394     0       51026     1      72532     1       64154 3308  10660  12933  
0            0          2         0      40844     0       46285     1      56681    12      71747 4816  59098  25407  
0            0          0         0          5         0        5702     20     39708   235    53020 48339 60570  51357  
264875  0      62022     0      3575       0         869       0        268       0         96        0         5          0  
0            0      47099     0      61692     0       51130     0      73345  1178   63813  2308  11468  10992  
0            0          2         0      40814     0       45913     0      56826  2032   72246  3356  61244  21846  
0            0          0         0         10        0        1713      3      41199  25037 52891  1462  61486  59408  
0            0          0         0         0     15012       17    30264   7103   54017 36375 63152 36919  63845  
0            0          0         0         0     29239        0     36452     49     56077 26395 68685 29064  58038  
0            0          0         0         0     49605        0     49589       0     64258  4469  65614 23152  42337  
0            0          0     59691     0     32524        0     55950       0     61622   200   52577 13370  31418  
0            0          0     37361     0     47945        5     72964    6269  76065  19943 40457 9377   11964  
0            0          0     37361     0     72901        0     79872     869   64771  14079 32114 10781  9266  
0            0          0     97522     0     64805        0     79937       0     37653    17    16229 11110  19684  
0          93719    0     127142   0     62533        0     36778       0        14        0        65        0          0  
0          266352  0     63928     0     1134          0       290         0         9         0         3         0          0  
0          98186    0     19407     0     30424       12    57280     348   51702  12421 30696  7947  10533  
0          98186    0     24543     0     57997        0     54405       1     38054   6025  24485  4787  12537  
0          98186    0     54115     0     65582        0     50221       1     24939   5850  15569  1405  15474  
0          98186    0     62813     0     62860        0     48962       0     35766     0       734       0      20079  
0          270575  0     57761     0      2564         0       650         0       165       0         1         0          0  
0          262345  0     67179     0      1571         0       588         0        27        0         2         0          4  

 

Location 
Task 

Station 
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Table A.3.1: Trail matrix gathered for tour number 100 

 
A.3 APPENDIX C  

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   182         167          54         153          60         104           53          77           30       
   164         190           7           17            2            13           25          67           82       
     2           161         175        164          73         145         117         102          79       
     0           107         172        166         123        149         142         132         119      
     0             1             7          153         168        155         144         162         144      
   104         172         177         87           88           91           39         108         115      
   174         161         173        127         113          60           36          20            71      
     0             0             0            0           126        166         161         174         162      
   153         170         175        150         109        102           42          37           74       
    17          119         144        165         164        145         148         109         117      
     0             0             0            0             2          174         179         148         140      
     0            56         153         168         151        154            7          160         116      
     0             0             0           29          139        124         167         162         167      
     0            19         115         160         158        153         157         153         137      
     0             0             2            3             6          154         167         161         178      
     0             0             0            0           129        165         169         168         160      
     0             0             0            0           176        173         129         148         143      
     0             0             0            2           177        166         162         154         118      
     0             0             0            0            23         133         158         167         177      
     0             0             0          179         180          47           45         140         113      
     0             0           74          177         172        147         145         101          74       
     0             0          111         180         167        131         132          94           86       
     0             0          184         177         115           1            73          22            7        
   182         174        168           9            29            0             4            1            34       
     0             0           18          116          44          92          123         150         171      
     0           177        159         159         158         80           64            59           73      
     0            10           61         124         122         84          138         152         172      
   172         180        168         127           1            3             2             7            15       
   192         162          40           6             0            0             0             0              1 

 
 
 
 
 
 
 
 

 Station 
Task 
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Table A.3.2: Trail matrix gathered for tour number 250 

 
A.3 APPENDIX C (Cont’d) 
 

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   184       166         142         145           78          52            70          34            17      
   166       190           5             47           45           0             20         114             0      
     2         166         175         166         153           0             64         121           55      
     0         109         173         166         157         148           98         132         106      
     0           0             4           153         172         168         144         141         139      
   147       164         174         147           99          94          105         122         116      
   174       161         173         142         128          62            45          74            47      
     0           0             0             0           115         172         168         166         164      
   146       171         175         156         129         101           65          82            70      
    35        127         142         157         167         155         142         140         136      
     0           0             0             0              0          162         181         170         146      
     1         118         154         165         159         148         146         150         126      
     0           0             0             24         130         158         164         164         170      
     0          19         125          145         157         158         158         154         154      
     0           0             0             54           52         149         163         166         177      
     0           0             0             0           112         161         161         172         169      
     0           0             0            25          163         175         166         150         147      
     0           0             0             0           172         171         155         162         144      
     0           0             0             1             73         140         149         165         177      
     0           0             0           172         181         145         118         122         104      
     0           0           90           178         172         155         136         123           75      
     0           0          123          183         167         144         126         115           90      
     0          11         180          181         146            5            32          27            53      
   178       174        174           72             2             0             0             0            22      
     2          50         106          118         103         117         126         143         169      
     7         179        169          157         144          97            81           86          65       
     0          76         119          121         121         128         126         144         168      
   173       178        171          122            1             5             6             5           14       
   192       164         58             1              0             0             0             0             0 

 
 
 
 
 
 
 

 Station 
Task 
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Table A.3.3: Trail matrix gathered for tour number 1000 

 
A.3 APPENDIX C (Cont’d) 
 

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   183         170         146        139          86           51           51           54          23       
   167         189            0         112          47           28           44           55          36       
     0           162         176        169        153           81           93           66          70       
     0           109         172        169        159         149         116         113          97       
     0              0            81        146        171         174         144         139         127      
   150         167         173        145        126         119         101           99          80       
   173         163         170        144        136           82           72           76           31      
     0              0             0          52         104         174         171         165         157      
   143         169         173        159        138         108           87           83           62      
    28          121         140        156        168         154         146         142         135      
     0              0             0           0             0          162         180         173         143      
     0           127         147        161        155         157         148         152         132      
     0              0           11          70         118         157         164         165         171      
     0             14         109        144        154         156         163         155         155      
     0              0            0           26           94         131         159         168         180      
     0              0            0            4          109         163         160         171         171      
     0              0            0           39         171         170         163         156         147      
     0              0            0           53         166         171         160         165         148      
     0              0            0            0            93         138         151         163         177      
     0              0            0         173         181         143         117         117         101      
     0              0         109        176         176         153         141         120           76      
     0              0         131        179         173         144         126         122           89      
     0              2         182        180         144           0             0             69           33      
   180         173        171          78           0             0             0              3            26      
     0             92        119        114           0           122         124         141         167      
     2           179        168        156         142         104           96          70            59      
     0              0         128        128         127         114         123         144         172      
   171         181        170        122           0             10           2            16            22      
   192         165          61           9            0              0            0             0              0 

 
 
 
 
 
 
 

 Station 
Task 
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Table A.4.1: Trail matrix gathered for tour number 100 

 
A.4 APPENDIX D  

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   904           0            0             0             0             0             0             0            0      
   904           0            2             0             0             0             0             0            0      
     0           74          257         25          175            0             0           53            0      
     0          159         352         65          167          75           69           22            2      
     0             0            0           12            80        300           82           35          57      
   639        389        164            0            10            0         118             0          10      
   441           0         141            1            59          17           68           11            2      
     0             0            0             0             2             5         262             9          10      
   441            2        177        422            20          42           68             2          37      
     0           396       207          50          461            4         145           29          32      
     0             0            0             0             0             0           75           56          10      
     0             0           85          13          294          50         266             1           8      
     0             0            0             0            10          38           89           17          11      
     0             1           37        361          169          66           72             6           9      
     0             0            0             0             0           98           71           60           9      
     0             0            0             0             1          241         10             8          15      
     0             0            0             0          342          29          32             9          16      
     0             0            0             0          168         267           5           10          16      
     0             0            0             0            23          49         208           7           13      
     0             0            0             0          542           0          102           3             8      
     0             0            0             8          221          60         141         156         18      
     0             0            0         474          259        105           28           0           21      
     0             0            0         667           10            0             9            0           14      
     0           601        423          4             0             0             0            0            1      
     0              0           0          59            47            0             0            6           16      
     0           589        381       245           19          10           17            0            0      
     0              0         116         14           11          90          335          22           9      
     0              0         125       345           22            0             0            0            0      
     0           784        154          0             0             0             0            0            0 

 
 
 
 
 
 
 
 

 Station 
Task 
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Table A.4.2: Trail matrix gathered for tour number 250 

 
 
 
 
 
A.4 APPENDIX D (Cont’d) 

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   904               0                0                0                0                0                 0                0                0      
   904               0                0                0                0                0                 0                0                0      
     0                 0              842            147              0                0                 0               89               0      
     0                 0                4              416             86             152             41                5                3      
     0                 0                0              374           115             237             17               29               8      
   627            291               0              104           171                0              24                1                1      
   442               0                4              233           267                0              12                0                0      
     0                 0                0                1             414                4            198                7              11      
   442               0                1              230           222             106              5                 9              13      
     0              358               2               39            394              64            148              29              47      
     0                0                 0                0                0                0                9               28              10      
     0              174               1              148           498              85            156                6                9      
     0                0                 0              383              0             134            153              14             34      
     0               21                1              161            461             73            230                9                8      
     0                0                 0                0              178              0                1               29              11      
     0                0                 0                0                6               93            117             10               11      
     0                0                 0                0                0              245            12              16                9      
     0                0                 0                0                0              206            30              10              23      
     0                0                 0                0              106            115          197              27              75      
     0                0                 0                0             510               0            157                8              37      
     0                0                 0                0             410              97           207              73            162      
     0                0                 0                0             461              55           183              11              16      
     0                0                 0               60               0               43              0                0               92      
     0              716             307             16               0                0               0                0                2      
     0               87              677              0                0                0               2                0                5      
     0              708              15            164             202             29              3                1                0      
     0                0                0                2               254             86            169             21              41      
     0                0              842             18                0                0                1              11                0      
     0              907              1                0                 0                0                0              12                0 
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Table A.4.3: Trail matrix gathered for tour number 1000 

A.4 APPENDIX D (Cont’d) 

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30. 

(Optimal station number is 9. The trail values are considered only for 9 stations) 

  
 

 
1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

   936               0                0                 0                0                0                0                0                 0      
   936               0                0                 0                0                0                0                0                 0      
     0                 0              634             212              0                0                0              111               0      
     0                 0              101             187             78              84                9              16                3      
     0                 0                0               105            125           328              53                1                9      
   598            473               0                0               134              0                0               11                1      
   515               0                9                56             405              0               85                0                0      
     0                 0                0                0               329              0            182               19              35      
   515               0                1               50              389            126             65                1              38      
     0               473              3               63              284             70           197              166             55      
     0                 0                0                0                0                 0                0               30              10      
     0                 0                0               81              420            94            139               28              38      
     0                 0                0               64                5              65               24              61              17      
     0                 0                1              175             205            87            162                9               49      
     0                 0                0                0                 0                7              24                8               42      
     0                 0                0                0                 7             231             35              14               16      
     0                 0                0                0                 0             115             36              11               12      
     0                 0                0                0                 0             241             16              35                9      
     0                 0                0                0                 3              40             52               32              23      
     0                 0                0                0               494              0             69                5               11      
     0                 0                0                0               442            92             18              34                6      
     0                 0                0                0               463           107            16              27                5      
     0                 0                0               50                0                9               8                0                7      
     0               643            294              0                 0                0               1                0                3      
     0                0               459              0                 0                0               0                1                8      
     0              643             141            159               6                6               5              17                1      
     0                0                0                15              349            93            141              45              23      
     0                0               564              7                 0                0                3                0               1      
     0              936               0                0                 0                0                0                0               0 
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