

ANT COLONY OPTIMIZATION FOR

 THE SINGLE MODEL U-TYPE

ASSEMBLY LINE BALANCING PROBLEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Arda Alp
January, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. İhsan Sabuncuoğlu (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Mehmet Taner

 Approved for the Institute of Engineering and Sciences:

 Prof. Dr. Mehmet Baray

 Director of the Institute of Engineering and Science

 ii

ABSTRACT

ANT COLONY OPTIMIZATION FOR
THE SINGLE MODEL U-TYPE

ASSEMBLY LINE BALANCING PROBLEM

Arda Alp
M.S. in Industrial Engineering

Supervisor: Prof. Dr. İhsan Sabuncuoğlu
January, 2004

 The assembly line is a production line in which units move continuously through a

sequence of stations. The assembly line balancing problem is the allocation of tasks

to an ordered sequence of stations subject to the precedence constraints with the

objective of minimizing the number of stations. In a U-line the line is configured into

a U-shape topology.

 In this research, a new heuristic, Ant Colony Optimization (ACO) meta-heuristic,

and its variants are proposed for the single model U-type assembly line balancing

problem (UALBP). We develop a number of algorithms that can be grouped as:

(i) direct methods, (ii) modified methods and (iii) methods in which ACO approach is

augmented with some metaheuristic.

 We also construct an extensive experimental study and compare the performance of

the proposed algorithms against the procedures reported in the literature.

Keywords: U-type assembly line balancing problem, Ant Colony Optimization meta-

heuristic.

 iii

ÖZET

TEK MODELLİ U-TİPİ
MONTAJ HATTI DENGELENMESİ PROBLEMİ İÇİN

KARINCA KOLONİSİ OPTİMİZASYONU

Arda Alp
Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu
Ocak, 2004

 Montaj hattı ürünlerin sıralı olarak istasyonlardan geçtiği bir üretim hattıdır. Tek

modelli montaj hattı dengelenmesi problemi istasyon sayısının en küçüklenmesi

amacına yönelik olarak işlerin öncüllük kısıtı dikkate alınarak sıralı istasyonlara

atanmasıdır. U-tipi hatta ise üretim hattı U şeklinde düzenlenmiştir.

 Bu çalışmada yeni bir sezgisel olan Karınca Kolonisi Optimizasyonu (KKO) ve

çeşitleri U-tipi montaj hattı dengelenmesi problemi için önerilmiştir. Geliştirilen

algoritmalar üç grup altında incelenebilir: (i) direkt metodlar, (ii) modifiye edilmiş

metodlar ve (iii) KKO yaklaşımının diğer bazı sezgisellerle beraber kullanıldığı

metodlar.

 Ayrıca kapsamlı bir deneysel çalışma yapılmış ve önerilen algoritmaların

performansı literatürdeki diğer metodlarla karşılaştırılmıştır.

Anahtar sözcükler: U-tipi montaj hattı dengelenmesi problemi, Karınca Kolonisi

Optimizasyonu meta-sezgiseli.

 iv

To my family,

 v

Acknowledgement

 I would like to express my deepest gratitude to my supervisor Prof. Dr. İhsan

Sabuncuoğlu for his instructive comments in the supervision of the thesis and also for

all the encouragement and trust during my graduate study.

 I am also indebted to Prof. Dr. Erdal Erel for his invaluable guidance,

recommendations and everlasting interest for this research and for my future work.

 I would like to express my special thanks and gratitude to Asst. Prof. Dr. Mehmet

Taner for showing keen interest to the subject matter, for his remarks,

recommendations and accepting to read and review the thesis.

 I am grateful to Asst. Prof. Bahar Yetiş Kara for her understanding and her

recommedations and also to Asst. Prof. Oya Karaşan for her suggestions and her

guidance.

 I would like to express my deepest thanks to Banu Yüksel for all her encouragement

and academic support. I would like to extend my sincere thanks to Savaş Çevik, Nur

Beğen, Emrah Zarifoğlu and Pınar Tan. Their endless morale support and friendship

during all my desperate times, makes me to face with all the troubles.

 Finally, I would like to express my gratitude to my family for their love,

understanding, suggestions and their endless support. I owe so much to my family.

 vi

Contents

Abstract..iii

Özet ...iv

Acknowledgement...vi

Contents ..vii

List of Figures..xi

List of Tables ...xiv

1 Introduction...1

2 Literature Survey..10

 2.1 Ant Colony Optimization Meta-Heuristic ...10

 2.2 U-Type Line Balancing ..21

3 Ant Algorithms and Applications...28

 3.1 Introduction...29

 3.2 Biological Fundamentals ..30

 3.3 The Ant Colony Optimization Approach...35

 3.3.1 Similarities and Difference with Real Ants36

 3.4 The ACO Meta-heuristic ..38

 3.5 Some Applications of ACO Algorithms ..42

 vii

4 Proposed Approach: Ant Colony Optimization43

 4.1 Overview of the Proposed Approaches..43

 4.1.1 Motivation...43

 4.1.2 Fundamentals..44

 4.1.2.1 The Graph Representation of the Problem45

 4.1.2.2 The Autocatalytic Process..46

 4.1.2.3 The Greedy Force...46

 4.1.2.4 The Constraint Satisfaction ..48

 4.1.3 Generation of a Solution...49

 4.2 Proposed Methods ..56

 4.2.1 Ant System (AS)..56

 4.2.2 Ant System with Elitist Strategy (ASelite)61

 4.2.3 Ant System with Ranking (ASrank)..62

 4.2.4 Ant Colony System (ACS)..63

 4.2.5 Modified Ant Colony System (ACS) with Random Search ...68

 4.2.6 A New Ant Colony Optimization (ACO) Method76

 Version 1 ..77

 Version 2 ..83

 4.2.7 Ant Colony System Augmented with Simulated Annealing
 (ACS with SA)...86

 4.2.8 Ant Colony System Augmented with Beam Search
 (ACS with BS) ...86

 viii

5 Experimental Setting..88

 5.1 Experimental Setting for AS ..94

 5.1.1 Number of Ants ...94

 5.1.2 Parameters Setting ...96

 5.2 Experimental Setting for ASelite..98

 5.2.1 Number of Ants ...98

 5.2.2 Parameters Setting ...100

 5.3 Experimental Setting for ACS..102

 5.3.1 Number of Ants ...102

 5.3.2 Parameters Setting ...104

 5.4 Experimental Setting for Modified ACS with Random Search106

 5.5 Experimental Setting for New ACO Approach, Version 1106

 5.5.1 Number of Ants ...106

 5.5.2 Parameters Setting ...108

 5.6 Experimental Setting for New ACO Approach, Version 2113

 5.6.1 Number of Ants ...113

 5.6.2 Parameters Setting ...115

6 Computational Results ...116

 6.1 Computational Results for AS..118

 6.2 Computational Results for ASelite ...123

 6.3 Computational Results for ACS...128

 6.4 Computational Results for Modified ACS with Random Search133

 ix

 6.5 Computational Results for New ACO Approach, Version 1134

 6.6 Computational Results for New ACO Approach, Version 2141

7 Conclusion ...147

Bibliography ...151

Appendix ...159

 A1 Appendix A...159

 A2 Appendix B ...163

 A3 Appendix C ...165

 A4 Appendix D...168

 x

List of Figures

1.1 U-shaped line with multi-function workers. ...3

1.2 Example of a precedence graph...5

1.3 Solution of example problem for c=10.. ..6

3.1 Single Bridge Experiment.. ..31

3.2 Double Bridge Experiment...33

3.3 A general description of ACO meta-heuristic. ..41

4.1 Jackson problem with 11 tasks...47

4.2 A flowchart of the proposed algorithm.. ..50

4.3 The task allocation for Jackson problem, c = 10.55

4.4 Flowchart of Ant System..60

4.5.a Optimal task allocation for the Jackson problem, c =10.
 Location of tasks is not given.. ..65

4.5.b Optimal task allocation for the Jackson problem, c =10.
 Location of tasks is given.. ...65

4.6 Flowchart of Ant Colony System...67

4.7 Scholl and Klein’s (1999) optimal task allocation for Gunther problem.70

4.8 Two similar optimal allocation for Jackson problem, c =10...................73

4.9.a Trail accumulation for ACS,
 α =1, β =1, ρ1 =ρ2 = 0.4, q0 =0.2, initial trail =180

 xi

4.9.b Trail accumulation for the new method,
 α =1, β =1, ρ1 = ρ2 =0.9, q0 =0.3, initial trail =180

4.9.c Trail accumulation for the new method,
 α =1, β =1, ρ1 = ρ2 =0.95, q0 =0.3, initial trail =1.80

4.9.d Trail accumulation for the new method,
 α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.3, initial trail =1.80

4.9.e Trail accumulation for the new method,
 α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.8, initial trail =1.80

4.10 Scholl and Klein’s (1999) optimal task allocation for Buxey problem ..81

5.1.a. Number of replications required to obtain the optimum number
 of stations. Jackson problem with 11 tasks, C=10.................................95

5.1.b. Number of replications required to obtain the optimum number
 of stations. Gunther problem with 35 tasks, C=54..95

5.1.c. Number of tours required to obtain the optimum number
 of stations. Barthold problem with 148 tasks, C=805..95

5.2.a. Number of replications required to obtain the optimum number
 of stations. Jackson problem with 11 tasks, C=10.................................99

5.2.b. Number of replications required to obtain the optimum number
 of stations. Gunther problem with 35 tasks, C=54..99

5.2.c. Number of tours required to obtain the optimum number
 of stations. Barthold problem with 148 tasks, C=805..99

5.3.a. Number of replications required to obtain the optimum number
 of stations. Jackson problem with 11 tasks, C=10...............................103

5.3.b. Number of replications required to obtain the optimum number
 of stations. Gunther problem with 35 tasks, C=54..103

5.3.c. Number of tours required to obtain the optimum number
 of stations. Barthold problem with 148 tasks, C=805..103

5.4.a. Number of replications required to obtain the optimum number
 of stations. Jackson problem with 11 tasks, C=10...............................107

 xii

5.4.b. Number of replications required to obtain the optimum number
 of stations. Gunther problem with 35 tasks, C=54..107

5.4.c. Number of tours required to obtain the optimum number
 of stations. Barthold problem with 148 tasks, C=805..107

5.5.a. Number of replications required to obtain the optimum number
 of stations. Jackson problem with 11 tasks, C=10...............................114

5.5.b. Number of replications required to obtain the optimum number
 of stations. Gunther problem with 35 tasks, C=54..114

5.5.c. Number of tours required to obtain the optimum number
 of stations. Barthold problem with 148 tasks, C=805..114

 xiii

List of Tables

2.1 List of applications of ACO algorithms to static combinatorial
 optimization problems. ..19

2.2 List of applications of ACO algorithms to dynamic combinatorial
 optimization problems. ..20

2.3 Summary of work done on the U-type assembly line problems..27

4.1 Forward and backward positional weights for Jackson problem.48

4.2 Ranking of most possible location alternatives for each task
 depending on T2 matrix. ..71

4.3 Ranking of most possible location alternatives for each task
 depending on trail matrix...82

4.4 Ranking of most possible location alternatives for each task
 depending on trail matrix...85

5.1 Fine tune-up of the parameters α, β, and ρ for AS.97

5.2 Fine tune-up of the parameters α, β, and ρ for ASelite..........................101

5.3 Fine tune-up of the parameters β, q0, ρ1 and ρ2 for ACS.105

5.4 Fine tune-up of parameters α, q0, ρ1 and ρ2
 for New ACO Approach, Version 1..110

5.5 Fine tune-up of the parameters β, q0, ρ1 and ρ2
 for New ACO Approach, Version 1..111

5.6 Fine tune-up of parameters α, β, q0, ρ1 and ρ2
 for New ACO Approach, Version 1..112

6.1 Computational Results of Ant System. ...119

6.2 Computational Results of ASelite. ..124

 xiv

6.3 Computational Results of ACS. ...129

6.4 Computational Results of the New ACO Approach, Version 1..........136

6.5 Computational Results of the New ACO Approach, Version 2..........143

A.1.1 Trail matrix gathered for tour number 10. ...159

A.1.2 Trail matrix gathered for tour number 100. ...160

A.1.3 Trail matrix gathered for tour number 500. ...161

A.1.4 Trail matrix gathered for tour number 1000.162

A.2.1 T2 matrix gathered for tour number 5000..163

A.2.2 T2 matrix gathered for tour number 10000..164

A.3.1 Trail matrix gathered for tour number 100. ...165

A.3.2 Trail matrix gathered for tour number 250. ...166

A.3.3 Trail matrix gathered for tour number 1000.167

A.4.1 Trail matrix gathered for tour number 100. ...168

A.4.2 Trail matrix gathered for tour number 250. ...169

A.4.3 Trail matrix gathered for tour number 1000.170

 xv

 1

Chapter 1

Introduction

The assembly line is a production line in which the units move

continuously through a sequence of stations where the assembly operation is

performed. Typical examples of these assembly lines are car assembly, electronic

appliances and computer assemblies. The first example of an assembly line is

credited to Henry Ford who developed such a line and produced Ford automobiles

in 1913. However after 1913, for over 40 years only trial-and-error methods were

used for balancing lines. The first analytical statement of the assembly line

balancing problem was made by Salveson and it was published in 1955 (Salveson,

1955). Many researchers became interested in assembly line balancing after the

1950s.

In todays business environment, demand for products fluctuates

significantly, and is very difficult to forecast. It is especially difficult for the mass

production line to quickly respond to the fluctuating demand. The design of such a

line requires grouping of tasks into stations such that line efficiency is maximized.

This problem is known as the simple assembly line balancing problem.

Traditionally, these lines are arranged in a straight line. However, as a

consequence of the just-in-time production principles, recently many lines are

CHAPTER 1. INTRODUCTION

2

being arranged in a U-line. Arranging the stations in a U-line has several

advantages over the traditional configuration (Scholl and Klein, 1999). Demand

fluctuations can be tackled easily by the U-line relative to the straight-line version

due to increased search space. Thus, there are more possibilities for grouping

tasks into stations on a U-line.

As stated by Scholl and Klein (1999), the traditional type of ‘straight’

assembly lines have some problems. These are: monotone and boring type of

work, low-level skilled, unmotivated operators, inflexibility of the production

system concerning failures, the sensitivity to changing demand rates, and large

inventories due to rigid output rates. In order to overcome these problems, many

firms nowadays incorporate JIT principle and group technology into assembly line

production, and these modern assembly lines are often organized as a ‘U-line’.

The U-line balancing problem considered in this thesis is the U-shaped

line with constant operation times, no waiting times, and no walking times. The

objective is to find a proper allocation of tasks to the stations that require

minimum number of stations. Every station processes only one item in a given

cycle time. Cycle time is defined as the time interval between two successive

outputs. The sum of all necessary operation and processing times are intended to

be equal among the stations. This is a synchronous process of items flowing

through the stations and no items exist between adjacent stations. This concept is

called as a single-unit production and conveyance (“ikko-nagashi,” in Japanese).

In (JIT) production system, this concept is applied to a production line

with conveyors. U-lines are balanced again when production requirements change.

This is much easier with U-lines than with traditional straight lines. This requires

operators to be multi-skilled to operate several different machines or processes.

To accomplish this goal with a low production cost, a U-shaped layout with multi-

function workers is used. As seen in Figure 1.1, this multi-function worker is

CHAPTER 1. INTRODUCTION

3

responsible from multiple tasks. In a U-shaped layout, stations are organized in

such a way that the same worker can handle tasks, which are located both at the

entrance side and at the exit side. First worker handles tasks both at the entrance

and the exit. A new item can enter the system only after one product is completed.

Thus work-in-process in the system stays constant in these systems.

When compared with traditional layout, fewer workers are allocated to

machines in the U-shaped layout. Thus this type of allocation is more effective

when demand fluctuates since it is easier to reallocate workers in order to balance

the cycle time of workers. This is the reason why U-shaped layout allows for

adapting to the changes in the circumstances more easily than the traditional

layout. Miltenburg and Wijngaard (1994) note advantages of U-lines over straight

lines as follows:

• Visibility and communication are improved because operators work close to

each other.

• Multiskilling allows more operators to understand the relationships between

operations and participate in efforts to improve the process.

Figure 1.1: U-shaped line with multi-function workers.

Station 1 Station 2 Station j+1 Station J

CHAPTER 1. INTRODUCTION

4

• The output rate of a U-line can be adjusted by adding or removing workers.

While, rebalancing on a traditional line is more difficult because of its low-

skilled operators.

• The number of stations required on a U-line is less than or equal to that

required on a traditional line. For a U-line there are more alternatives for

grouping tasks.

The line balancing problem in a U-shaped line is more complex than

balancing a traditional straight line because there are more possibilities to group

the tasks while moving forward, backward or simultaneously in both directions.

Based on this fact, the number of stations required on a U-line is never more than

that required on a traditional line.

Scholl and Klein (1999) define the U-type assembly line balancing problem

(UALBP) as an extension of the single assembly line balancing problem (SALBP)

with respect to the precedence constraints. The authors describe three problem

versions:

• UALBP-1: Minimize the number m of stations, given the cycle time c.

• UALBP-2: Minimize the cycle time c, given the number m of stations.

• UALBP-E: Maximize the line efficiency E for c and m being variable.

Most of the characteristics of SALBP defined by Baybars (1986) are also valid

for UALBP. These are:

• A single product is manufactured in large quantities. The task j = 1,…, n takes

deterministic operation times tj , and tsum denotes the sum of all operation

times.

• The tasks are partially ordered by precedence relations. These relations

defined as precedence network with the tasks denoted by nodes and the

precedence relations denoted by directed arcs. Therefore, for an arc (i, j), task i

must be finished before task j can be started. In Figure 1.2, an example of a

CHAPTER 1. INTRODUCTION

5

precedence network is given. The task numbers are written on the nodes and

the duration of operations are written as weight of nodes.

• Each task can only be assigned to only one station. Sk denotes the set of tasks

assigned to station k = 1,…, m .

• T(Sk) denotes the station time, the total operation time of tasks assigned to

station k, and must not exceed the cycle time:

() mkctST

kSj
jk ,...,1=≤= ∑

∈
 (1.1)

In SALBP, all direct or indirect predecessors of task j, performed at station

k, have to be assigned to one of the stations 1,…, k. A task and its indirect

predecessors or successors can share the same station only if all intermediate tasks

defined with this precedence relationship are also in the same station. For

example, in Figure 1.2, task 3 and task 8 can only be at the same station if tasks 5

and 6 are also assigned to the same station.

In UALBP, each task and any of its predecessors and/or successors can

share the same station but it must be satisfied that, all predecessors and/or

successors of a task j, performed at station k, have to be assigned to one of the

stations 1,…, k. (Miltenburg and Wijngaard, 1994).

Figure 1.2: Example of a precedence graph. Scholl and Klein (1999)

CHAPTER 1. INTRODUCTION

6

Scholl and Klein (1999) state that the optimal line efficiency of a SALBP

instance is a lower bound on the optimal line efficiency, E, of the corresponding

UALBP instance due to above given relaxed precedence constraints. Thus a

higher efficiency is possible with UALBP (Line efficiency directly related with

smoothness of station utilization). The line efficiency is defined with the

following formulation:

100×
×

=
cm

tE sum % (1.2)

In Figure 1.3 the optimal solution of UALBP-1 for c = 10, with 6 stations

is given. In station 3, S3 = {3, 9}, the tasks 3 and 9 are processed. A unit product

crosses the station 3 from left to right (the task 3 is performed at that time) after its

predecessors have been processed in station 1 and 2, respectively and returns to

station 3 from right to left (the task 9 is performed at that time) after all the

predecessors of task 9 have been processed in stations 1-6. Then the successors of

task 9 are performed in stations 2 and 1, respectively.

Figure 1.3: Solution of example problem for c=10. Scholl and Klein (1999)

CHAPTER 1. INTRODUCTION

7

When Scholl and Klein’s (1999) optimal solution of for SALBP-1

(S1 = {1}, S2 = {2, 4}, S3 = {3, 5}, S4 = {6, 7}, S5 = {8, 10}, S6 = {9, 11}, S7 = {12};

is compared with the optimal solution of UALBP-1, it is seen that the line

efficiency of the U-line is 100% (tsum = 60, 100
106

60
×

×
=E) and the line

efficiency of the straight line is 85.7% (tsum = 60, 100
107

60
×

×
=E).

 In order to find a simple lower bound on minimal number of stations for

UALBP-1 and SALBP-1 Scholl and Klein (1999) define  ctLB sum /= where

 x is the smallest integer larger than x. For the given example the LB is 6.

 We consider the U-line balancing problem such that it is the U-shaped line

with constant operation times, no waiting times, and no walking times. Our

objective is to minimize the number of stations, given the cycle time c. This can

be achieved by finding a proper allocation of tasks to the stations that require

minimum number of stations.

In this thesis, a new heuristic, an Ant Colony Optimization (ACO) meta-

heuristic, and its variants are proposed for the single model U-type assembly line

balancing problem (UALBP). In fact, there are two ant algorithms proposed for

the single assembly line balancing problem (Bautista and Pereira, 2002;

McMullen and Tarasewich, 2003). However, this study is the first application of

ACO meta-heuristic to U-shaped production lines. The work by McMullen and

Tarasewich (2003) considers only six problems (ranging in size from 21 to 74

tasks) and their objective function is different from our objective function.

Bautista and Pereira (2002) consider the same objective function of minimizing

the number of stations given a fixed cycle time, but this model is proposed for

only the single assembly line balancing problem (SALBP).

Even though several heuristics have been developed for SALBP (Erel and

Sarin, 1998) for single model UALBP, there are only three heuristics in the

literature. These are: Ranked Positional Weight Technique (RPWT)-based

CHAPTER 1. INTRODUCTION

8

heuristic (Miltenburg and Wijngaard, 1994), branch and bound based heuristic

(Scholl and Klein, 1999) and simulated annealing based heuristic (Erel,

Sabuncuoglu and Aksu, 2001).

Since the first ant algorithm developed by Dorigo and colleagues (1991),

several variants of the Ant System (AS) have also been proposed in the literature.

In general, ACO is an umbrella term for a number of similar metaheuristics: Ant

System (AS), Ant System with Elite Strategy (ASelite), Ant System with Ranking

(ASrank), Ant Colony System (ACS), MAX-MIN Ant System (MMAS) are some of

these meta-heuristics.

In this research, we develop a number of algorithms that can be grouped

as: (i) direct methods, (ii) modified methods and (iii) methods in which ACO

approach is augmented with some metaheuristic. The first group includes

algorithms such as AS, ASelite, ASrank, and ACS that is directly applied to UALBP.

No modification is done in the structure of the algorithms. The second group

includes new methods in which the structure of the algorithms in the first group is

modified. The last group includes two specialized methods that ACO is

augmented with simulated annealing (SA) and beam search (BS).

AS is the first algorithm used to solve UALBP. Later, we apply ASelite, and

ACS that perform better than AS. However, none of the algorithms give sufficient

performance for UALBP. Structure of these algorithms, especially ASelite, ASrank,

are not suitable for UALBP.

Actually this is related with the topology of the cost function. Hertz and

Widmer (2003) state that the topology of the cost function should not be too flat

for the heuristics for searching the optimal solution. The cost function can be

considered as an altitude with mountains, valleys and plateaus. If the cost function

is too flat, it is difficult for the search algorithms to escape from the large plateaus

to fall into the valleys. To tackle this problem Hertz and Widmer (2003) suggest

CHAPTER 1. INTRODUCTION

9

adding a component to the cost function to discriminate the solutions with the

same original cost function value.

The algorithms in the second group are modified from the first group of

algorithms to tackle this problem. Their task selection and pheromone trail update

mechanisms are totally modified and improved. In general, the performance of the

second group is better than the first group.

The third group includes algorithms in which ACO approach is augmented

with a metaheuristic. One of them is a modified version of ACS augmented with

SA and the other one is a modified version of ACS augmented with beam search

(BS). ACS with SA performs poor in terms of computational time. Even for the

small problems (Jackson with 11 elements) the computation time ranges between

2.53 hours and 164.63 hours. Even though the structure of beam search is very

suitable for ACS, its performance is poor in terms of computational time. It

requires excessive amount of time to complete a single tour.

 The rest of the thesis is as follows. The relevant literature on the U-type

line-balancing problem and the ACO meta-heuristic are given in Chapter 2.

Detailed information about the ACO meta-heuristic is given in Chapter 3. This is

followed by the structure of the proposed approaches in Chapter 4. Experimental

setting is explained in Chapter 5. Computational results are presented in Chapter

6. Conclusions and future research directions are given in Chapter 7.

 10

Chapter 2

Literature Survey

2.1 Ant Colony Optimization Meta-Heuristic

Today, heuristics are widely used to solve real life problems. Especially, in

the last three decades (Zanakis, Evans, Vazacopoulos, 1989), researchers have

applied heuristics to produce near optimal solutions to their difficult optimization

problems.

Heuristics from nature take inspiration from biology, physics, and social

systems. These heuristics utilize some analogies with natural or social systems

and use these analogies to develop non-deterministic heuristic methods for NP-

hard combinatorial optimization problems (Glover and Greenberg, 1989; Reeves,

1993). Most heuristic algorithms use a problem specific mechanism. Such a

mechanism may employs a single agent or more agents (neurons, particles,

chromosomes, ants, etc). This agent may operate for a certain number of repeated

trials to construct a solution or to improve a given solution. In case of multiple

agents, these agents operate with a mechanism of competition-cooperation. In

fact, these agents work with a cooperation, however each agent aims to find the

best solution and beat the other agents. Some of these algorithms are genetic

algorithms (GA), evolution strategies (ES), simulated annealing (SA), tabu search

CHAPTER 2. LITERATURE SURVEY

11

(TS), neural nets (NN), immune networks (IN), ant colony optimization

algorithms (ACO) (Reeves, 1993; Colorni, Dorigo, Maffioli, Maniezzo, Righini

and Trubian, 1996; Colorni, Dorigo and Maniezzo, 1992).

The first ant algorithm is proposed by Colorni, Dorigo and Maniezzo

(1991 and 1992) and it is named as Ant System (AS). It is a multi-agent approach,

a class of distributed algorithms for combinatorial optimization. Like other ant

type heuristics the main characteristics of this heuristic is simulating or imitating

the behaviour of a group of ants. These ants work cooperatively by using simple

communication to solve an optimization problem. First use of AS was to solve the

well known Travelling Salesman Problem (TSP). Dorigo, Maniezzo and Colorni

(1991a, 1991b) describe their methodology as a combination of distributed

computation, positive feedback and constructive greedy heuristic. The authors

apply their methodology to the classical TSP that the proposed system quickly

provides very good solutions. Colorni, Dorigo and Maniezzo (1991 and 1992)

state that this new approach can be used to solve any Combinatorial Optimization

Problem (COP). The authors also state that a proper representation must be found

as given below: (i) the problem (a graph representation which is suitable for a

search by many simple agents); (ii) the autocatalytic process1; (iii) the heuristic

rule that acts as a greedy force and allows a constructive definition of the solution,

(iv) the constraint satisfaction method or tabu list. The authors apply AS to the

problems such as Satisfiability (SAT), Quadratic Assignment (QAP) and Job-

Shop Scheduling (JSP) by using representation rules.

Later, Dorigo, Maniezzo and Colorni (1996) apply AS to the classical

TSP. They discuss the parameter selection process and compare AS with TS and

SA on TSP. They also illustrate how the AS can be applied to other optimization

problems (asymmetric TSP, QAP, JSP). Finally they discuss important

1 Due to Dorigo, an autocatalytic process (ex: positive feedback) is a process that reinforces itself
and causes very rapid convergence. If no limitation is given, this leads to combinatorial explosion.
Dorigo, M., Maniezzo, V., Colorni, A. (1996)

CHAPTER 2. LITERATURE SURVEY

12

characteristics of proposed methodology in terms of global data structure,

distributed communication and probabilistic transitions. The authors state its main

characteristics as (i) positive feedback (that contributes AS to rapidly discover

better solutions), (ii) distributed computation (that provides AS to avoid early

convergence), (iii) the use of constructive greedy heuristic (that helps AS to find

acceptable solutions in the early stages).

In a later study, Dorigo, Caro, and Gambardella (1999) provide an

overview of the recent work on ant algorithms. They give detailed information

about biological findings on real ant colonies and define the ants’ artificial

counterpart the ACO meta-heuristic. The authors also list the applications to other

combinatorial optimization problems (Table 2.1 and Table 2.2).

AS is applied to small instances of TSP with up to 75 cities. In spite of

encouraging results, in general AS can not compete with state-of-the-art

algorithms designed for large TSP instances. However, it has stimulated further

research on its different variants that these new algorithms produce much better

results on different optimization problems. A considerable amount of research has

focused on ACO algorithms. In general, ACO algorithms yield better performance

than AS. For that reason, the ACO is usually proposed as a common, unifying

framework for the existing applications and algorithmic variants (Dorigo and

Stützle, 2000). Next we focus on the variants of ACO meta-heuristic.

Several improvements and variants of the basic AS algorithm proposed in

the literature. These improved versions have been mainly tested on the TSP.

Indeed, these versions differ in how their search mechanism is controlled.

Moreover, the best performing ACO algorithms for the TSP improve the solutions

of ants using local search algorithms.

CHAPTER 2. LITERATURE SURVEY

13

In their work; Gambardella and Dorigo (1995), Dorigo and Gambardella

(1996) focus on some properties of Ant-Q (Ant-Q is an extension of AS and Q-

learning algorithm, a distributed approach based on reinforcement learning. It is

the first and only application of a Q-learning technique to a COP), its sensitivity

to parameters, and investigation of synergistic effects when more than a single ant

is used. The number of agents used makes Ant-Q different from Q-learning. Ant-

Q uses a set of cooperating agents to explore the state space whereas Q-learning

works with a single agent. The authors compare Ant-Q with AS, GA, evolutionary

programming (EP) and SA, and they state that the covered set of problems are

efficiently solved by Ant-Q. Moreover, Ant-Q outperforms AS and on the average

Ant-Q is always very close to the optimal solution. Also in the comparison of

average behaviour of Ant-Q with the following heuristic methods: Elastic Net

(EN), SA, Self Organizing Map (SOM) and Farthest Insertion (FI), Ant-Q is

almost always the best performing algorithm.

In their paper, Gambardella and Dorigo (1996) represent Ant Colony

System (ACS) as an extension of AS with Q-learning. ACS finds its ground in AS

and Ant-Q. The authors state ACS as a revisited version of Ant-Q where a

different way of updating ants’ experience is discussed. With this approach, it is

aimed to improve the system performance in terms of speed and quality by using a

different local updating policy. Results show that ACS finds good solutions to

symmetric and asymmetric TSP.

In another study, Dorigo and Gambardella (1997a, 1997b) work on Ant

Colony System (ACS) and try to understand its operation. Their work includes

detailed information on ACS. Their results indicate that ACS outperforms other

nature-inspired algorithms such as simulated annealing (SA) and evolutionary

computation (EC). They also compare ACS-3-opt (a version of ACS augmented

with a local search procedure based on the 3-opt neighborhood) with some of the

CHAPTER 2. LITERATURE SURVEY

14

best performing algorithms for symmetric and asymmetric TSP. The authors show

that ACS is an interesting approach to parallel stochastic optimization of TSP.

Also it looks like a very good constructive heuristic to provide a starting solution

for the local optimizers. They also compare the performance of ACS with the

performance of other naturally inspired meta-heuristics: SA, GA, NN, EC, EP,

EN, SOM, FI, and some of their combinations.

Botee and Bonabeau (1998) apply ACO to the TSP and use a GA in order

to find the best set of parameters for ACO. They also analyze how the parameters

scale with problem size and tour length. Botee and Bonabeau (1998) report that

tuning the parameters of the ACO algorithms with an automated search results in

better solutions and savings from the computation time.

In another study, Stützle (1998) develop an ACO method, MAX-MIN Ant

System, for the Flow Shop Problem (FSP). In their previous research, Stutzle and

Hoos (1997) and Dorigo and Gambardella (1997) determine that a local search

procedure can improve the solution of each ant. Stützle (1998) use a fast local

search procedure and show that this approach yields high quality solutions to the

FSPs in a short time. This approach performs better or at least comparable to other

state-of-art algorithms proposed for the FSP.

Bullnheimer, Kotsis, and Strauss (1998) find the structure of AS highly

suitable for parallel implementation of the algorithm. They develop two

parallelization strategies and analyze the factors that have influence on

computational complexity. They also dwell upon the design parameters and

compare the performance of their parallelization strategies.

Later, Stützle and Dorigo (1999) give an overview of the ACO algorithms

available for the TSP. They outline how ACO algorithms can be applied to that

problem, present the available applications for the TSP, and briefly discuss local

search applications to the TSP. Stützle and Dorigo (1999) work with MAX-MIN

CHAPTER 2. LITERATURE SURVEY

15

Ant System (MMAS is one of the improved versions of AS). MMAS can find

high quality solutions for all instances and it yields better average solutions than

the iterated local search algorithm (ILS is one of the best algorithms for the TSP).

Bullnheimer, Hartl and Strauss (1999) introduce a new rank based version

of the AS, called as ASrank. The authors compare this new version with AS, ASelite,

SA and GA on several TSP instances. Their results indicate that AS compete well

with the two meta-heuristics and it outperforms the other methods for large

problems in terms of average and especially the worst case behaviour.

Besten, Stutzle and Dorigo (2000a, 2000b) present an application of the

ACO metaheuristic to the single machine total weighted tardiness problem. The

authors introduce a simple but very effective local search and combine it with the

constructive phase of ACO. Thus they obtain a new ACO algorithm that uses a

heterogeneous colony of ants. The authors state that this new algorithm is highly

effective in finding the optimal or the best-known solutions on all instances of

benchmark problems in ORLIB within reasonable computation times.

In another study, Fenet and Hassas (2000) propose a new problem-solving

framework, A.N.T. This method employs mobile reactive agents for distributed

problem solving (on different machines) and remote control. This distributed

mechanism leads to improvement in the complex collective behaviour based on

local interactions of ants.

In their overview Maniezzo and Carbonaro, (2001) compare the ACO

approach with other metaheuristics (SA, TS, GA and GRASP) for COP. They

focus on ANTS metaheuristic, which is an extension of AS. The ANTS tested on

the quadratic assignment and frequency assignment problem (QAP and FAP,

respectively). The results indicate that ANTS is the best performer among the

algorithms, both considering the best and the average quality of the solutions

CHAPTER 2. LITERATURE SURVEY

16

proposed for QAP. Also, ANTS is competitive with the best approaches

developed for FAP.

In another study, Gagné, Gravel and Price (2001) add a look-ahead

mechanism to the ACO algorithm and test their method on an industrial

scheduling problem. The look-ahead mechanism allows combining information

on the expected decisions, which are beyond the immediate choice horizon. The

results indicate that the look-ahead information improves the solution quality, but

increases the computation time.

Montgomery and Randall (2002) work on alternative pheromone

representations for ACO. They propose three different alternatives for structuring

and using pheromone. Their results on TSP indicate that memory requirements

decrease but these alternatives are not as effective as ACO. Montgomery and

Randall (2002) state that if pheromone representation matches closely with the

problem representation, then better results are obtained.

Blum and Samples (2002) deal with the FOP Shop scheduling problem

(First Order Parallel Shop scheduling; a general scheduling problem including Job

Shop scheduling, Open Shop scheduling and Mixed Shop scheduling). They

compare different pheromone representations taken from the literature with a new

pheromone representation for ACO to solve the FOP Shop scheduling problem.

The new pheromone representation results in a clearly improved performance

when compared to the known pheromone representations.

In a recent work, Middendorf, Reischle and Schmeck (2002) propose multi

colony ant algorithms (MCAA). In MCAA, several colonies of ants cooperatively

work to find the better solutions for a given problem by exchanging information

about good solutions at certain time steps. The authors state that if the amount of

exchanged information is not too large, then MCAA can easily parallelized by

placing colonies on different processors. The authors study the behavior of

CHAPTER 2. LITERATURE SURVEY

17

MCAA by using different kinds of information exchange between the colonies;

and they also compare the behavior of multi colony ant algorithms to a single

colony ant algorithm. TSP and QAP are the test problems. The authors observe

that for the TSP the multi colony approach with a moderate number of colonies is

better than a single colony. For QAP, multi colony ant approach is not better but

at least not much worse than having only one large colony. The important part is

the exchange of information related with good solutions between the colonies.

T’kindt, Monmarche, Tercinet and Laugt (2002) consider the 2-machine

flowshop scheduling problem with the objective of minimizing the total

completion time and the makespan criteria. The proposed method (SACO) is an

ACO approach with additional feature of SA search and local search. Their results

indicate that SACO heuristic is effective and yield better results when compared

to existing heuristics. Especially for large problems (problems having more than

200 jobs) the SACO is the most efficient heuristic.

Bautisca and Pereira (2002) work on the simple assembly line balancing

and generalized assembly line balancing problems and try to minimize the number

of stations given a fixed cycle time. The problem is solved using the ACO

metaheuristic with different features. In their research, the authors study several

trail information management policies and trail information reading techniques.

Also new ideas (solving the direct and reverse instance of a problem concurrently)

and priority rules are used together. The authors state that after a long

computation time the results obtained with proposed algorithms are better than the

results obtained with the exact procedure and also these results are very close to

the known problem bound.

McMullen and Tarasewich (2003) present a heuristic, based on ant

techniques. This heuristic uses concepts derived from ACO techniques. They state

that their approach effectively address the assembly line balancing problem with

CHAPTER 2. LITERATURE SURVEY

18

complicating factors (parallel workstations, stochastic task times, and mixed

models). The assembly line layouts obtained by the proposed heuristic are used

for simulated production runs in order to collect some output performance

measures. These output performance measures are compared to output

performance measures obtained from several other heuristics such as SA. The

results indicate that their proposed approach is competitive with the other heuristic

methods.

Finally, Krishnaiyer and Cheraghi (2002) present an overview of ant

algorithms in their paper and they propose a review of ant applications for real life

problems faced in business and industrial environments. The applications of ACO

algorithms to static and dynamic combinatorial optimization problems are given

in Tables 2.1 and Table 2.2.

CHAPTER 2. LITERATURE SURVEY

19

Table 2.1: List of applications of ACO algorithms to static combinatorial optimization problems.
This table is adapted from Dorigo and Stützle (2000), Krishnan and Cheraghi (2002)

Problem Name Authors Year Algorithm Name
Traveling salesman

Dorigo, Maniezzo & Colorni
Gambardella & Dorigo
Dorigo & Gambardella
Dorigo & Gambardella
Gambardella & Dorigo
Stützle & Hoos
Bullnheimer, Hartl & Strauss
Bullnheimer, Kotsis & Strauss
Botee & Bonabeau
Stützle & Dorigo

Cordon, et al.
Middendorf , Reischle &
Schmeck
Montgomery & Randall

1991
1995
1996
1996
1996
1997
1997
1998
1998
1999

2000
2002

2002

AS
Ant-Q
Ant-Q

ACS & ACS-3-opt
ACS

MMAS
ASrank

AS & Parallelization
Evolving ACO

AS, ACS, MMAS, ANTelite,
ANTrank
BWAS

Multi Colony Ant Algorithms

Alternative pheromone
representations for ACS

Quadratic assignment

Maniezzo, Colorni & Dorigo
Gambardella, Taillard &
Dorigo
Stützle & Hoos
Maniezzo & Colorni
Maniezzo
Maniezzo & Carbonaro
Middendorf , Reischle &
Schmeck

1994
1997

1998
1998
1998
2001
2002

AS-QAP
HAS-QAPa

MMAS-QAP

AS-QAPb
ANTS-QAP
ANTS-QAP

Multi Colony Ant Algorithms

Scheduling problems

Colorni, Dorigo & Maniezzo
Forsyth & Wren
Stützle
Bauer et al.
den Besten, Stützle & Dorigo
den Besten, Stützle & Dorigo
Merkle, Middendorf &
Schmeck
Gagne, Gravel & Price
Blum & Sampels
T’kindt, Monmarche, Tercinet
& Laugt

1994
1997
1998
1999
1999
2000
2000

2001
2002
2002

AS-JSP
AS

AS-FSP
ACS-SMTTP

ACO-SMTWTP
ACO-SMTWTP

ACO-RCPS

fACO
ACO-FOP Shop

ACO

Vehicle routing

Bullnheimer, Hartl & Strauss
Gambardella, Taillard &
Agazzi

1997
1999

AS-VRP
HAS-VRP

Sequential ordering Gambardella & Dorigo 1997 HAS-SOP
Graph coloring Costa & Hertz 1997 ANTCOL
Shortest common
supersequence

Michel & Middendorf 1998 AS-SCS

Frequency assignment Maniezzo & Carbonaro
Maniezzo & Carbonaro

1998
2001

ANTS-FAP
ANTS-FAP

Generalized
assignment

Ramalhinho Lourenço & Serra 1998 MMAS & GAP

a HAS-QAP is an ant algorithm but does not follow all the aspects of the ACO meta-heuristic.
b This is version of the original AS-QAP.

CHAPTER 2. LITERATURE SURVEY

20

Table 2.1: (Cont’d)

Flow manufacturing Stützle 1998 ACO
Multiple knapsack Leguizamon & Michalewicz 1999 AS-MKP
Redundancy allocation Liang & Smith 1999 ACO-RAP
Layout of facilities Bland 1999 AS (TS)
Space-planning Bland 1999 ACO
Constrain satisfaction Solnon 2000 Ant-P-solver
Image segmentation -
Pattern reorganization

Ramos, & Almeida 2000 Cognitive map model

Digital Art Tzafestas 2000 Painter Ants
Numeric Optimization Monmarche, Venturini &

Slimane
2000 API

Structural Design
Problem

Bland 2001 ACO

Bioreactors
Optimization

Jayaraman, Kulkarni & Gupta 2001 ACO

Pickup and delivery
problems

Doerner, Hartl, & Reimann 2001 ACO

Full truck load
transportation
problems

Doerner, Hartl, & Reimann 2001 ACO

Bus stop allocation
problem

Jong & Wiering 2001 Multiple Ant Colony Systems

Peer-to-peer (P2P)
networks

Baboglu, Meling, &
Montresor

2001 Anthill

Shop floor routing Cicirello 2001 AC2
Assembly Line
Balancing

Bautista & Pereira
McMullen & Tarasewich

2002
2003

ACO
ANT1, ANT2, ANT3, ANT4

Distributed Problem
Solving

Fenet & Hassas 2000 A.N.T.

Table 2.2: List of applications of ACO algorithms to dynamic combinatorial optimization
problems. This table is adapted from Dorigo and Stützle (2000), Krishnan and Cheraghi (2002)

Problem Name Authors Year Algorithm Name
Connection-oriented
network routing

Schoonderwoerd, Holland,
 Bruten & Rothkrantz

White, Pagurek & Oppacher
Di Caro & Dorigo
Bonabeau, Henaux, Guerin,
Snyers, Kuntz & Theraulaz

1996

1998
1998
1998

ABC

ASGA
AntNet-FS

ABC-smart ants

Connection-less
network routing

Di Caro & Dorigo
Subramanian, Druschel &
Chen
Heusse, Guerin, Snyers &
Kuntz
van der Put & Rothkrantz

1997
1997

1998

1998

AntNet & AntNet-FA
Regular ants

CAF

ABC-backward

Optical networks
routing

Navarro Varela & Sinclair 1999 ACO-VWP

Dynamic routing in
telecommunication
networks

Zhou & Liu 1999 Intelligent Ant algorithm

CHAPTER 2. LITERATURE SURVEY

21

2.2 U-Type Line Balancing

U- type line balancing (ULB) concept is a new and promising topic in the

assembly line balancing literature. The literature in this area is accumulated since

Monden (1993) first introduced the U-type configuration to the attention of the

scientific community. Erel, Sabuncuoglu and Aksu (2001) classify the research

into two categories: line balancing and production flow lines. The first group

includes the studies for balancing the U-type assembly lines to minimize the

number of stations for a given cycle time or minimize the cycle time for a given

number of stations. The second group includes the studies to identify the

importance of design factors, and their effects on the performance of U-type flow

lines. Since this research focuses on the line balancing problem, we refer the

reader to the following papers: Nakade et al. (1997), Nakade and Ohno (1997,

1999, 2003), Miltenburg (2000, 2001a, 2001b).

The first study in this area is due to Miltenburg and Wijgaard (1994) who

analyze the U-line line balancing problem and develop solution procedures. They

also show how a solution method (developed for the traditional line-balancing

problem) can be adopted to the U-line. They work on twelve well-known sets of

line balancing problems taken from the literature. Each problem consists of a

number of tasks, task completion times, precedence constraints, and a number of

cycle times. Thus each cycle time corresponds to a new problem. (Indeed this data

set consists of 61 problems). In order to obtain an optimal balance for the U-line

and traditional line, Miltenburg and Wijgaard (1994) propose a dynamic

programming (DP) formulation, and solve 21 relatively small problems (up to 11

tasks). The authors also develop a heuristic which is based on maximum ranked

positional weight heuristic (RPWT) for the large size problems. They also use

standard version of this heuristic to obtain the optimal traditional line balances.

CHAPTER 2. LITERATURE SURVEY

22

Later, Miltenburg and Sparling (1995) develop three exact algorithms for

the ULB problem: a reaching dynamic programming algorithm, a breadth-first

branch and bound algorithm, and a depth-first branch and bound algorithm. The

authors solve 180 problem instances (up to 40 tasks). The computational

experiments indicate that the breadth-first and depth-first B&B algorithms are

more efficient than the DP approach.

In another study, Urban (1998) develops an integer programming (IP)

formulation to determine the optimal solution for ULB problem. Standard test

problems of Miltenburg and Wijngaard (1994) are solved using this model. Urban

(1998) considers only the “larger” problems (21 or more tasks). Problems of up to

45 tasks can be solved using proposed model.

To solve large size problems encountered in practice Scholl and Klein

(1999) propose a new branch and bound procedure, ULINO, which is adapted

from SALOME (previously developed algorithm for traditional straight line

balancing problem). SALOME is chosen as the basis of the ULINO, because it

has been shown to be very effective in several computational tests (Scholl and

Klein, 1999). ULINO is a branch and bound procedure that performs a depth-first

search by considering bounds and some dominance rules. Computational

experiences with their method are presented for 256 instances (complete data set),

problems with up to 297 tasks. The results indicate that the proposed method

yields very good results for Type-1 problem, (UALBP-1; minimizing the number

of stations given the cycle time) and Type-2 problem (UALBP-2; minimizing the

cycle time given the number of stations) in limited computation time. For the most

general problem type (UALBP-E; maximizing the line efficiency for variable

cycle time and number of stations). Scholl and Klein (1999) suggest a further

research to find more efficient solution procedures.

CHAPTER 2. LITERATURE SURVEY

23

Erel, Sabuncuoglu and Aksu (2001) propose a simulated annealing (SA)-

based algorithm for the UALB problem. Their algorithm employs with an

intelligent mechanism to search a large solution space effectively. The

performance of the proposed method is tested on a large number of benchmark

problems from the literature. Their computational results indicate that the

proposed method is quite effective and its computational requirements are not as

high as expected. The computational success of this SA-based heuristic can be

attributed to the intelligent way of searching a larger search space.

Miltenburg (2001) presents a detailed study on the theory and practice of

U-shaped production lines. He gives the related history of U-shaped production

lines, describes the JIT production environment, the layout and operation of the

U-line in an JIT production environment. He also provides useful information for

designers to design and manage the U-lines.

Some researchers focus on the mixed-model U-line balancing. In recent

years, manufacturers change their production lines from single product or batch

production to mixed-model production lines. This is an expected reason related

with their objective: implementing the just-in-time principles. Different products

or models are produced on the same line in mixed-model production and

manufacturers are able to respond their customers with a variety of products in a

timely and cost-effective manner. As Sparling and Miltenburg (1998) state, U-

lines are widely used for the mixed model production.

Sparling and Miltenburg (1998) study on the mixed model production and

the mixed-model U-line balancing (MMULB) problem. MMULB assigns the

tasks required producing all models to a minimum number of stations on a U-

shaped line. They develop an approximate algorithm to solve the problem. Their

algorithm transforms the multi-model problem into an `equivalent’ single-model

problem and finds the optimal balance to this problem using a branch and bound

CHAPTER 2. LITERATURE SURVEY

24

algorithm from the literature. The proposed algorithm is capable of solving the

single-model problem with up to 25 tasks.

Miltenburg (1998) work on the problem of balancing and rebalancing U-

line facilities. A U-line facility is defined as a unit that consists of numerous U-

lines connected by multi-line stations. The objective is to assign tasks to a

minimum number of stations while satisfying cycle time, precedence, location,

and station-type constraints when balancing such a facility. A secondary objective

is to concentrate the idle time in a single station. A reaching DP algorithm is

proposed to determine optimal balances for the facilities with any number of U-

lines. Miltenburg state that this reaching DP algorithm is effective for balancing

and rebalancing facilities with any number of U-lines, providing that individual

U-lines do not have more than 22 tasks and do not have wide, sparse precedence

graphs.

Sparling (1998) also work on U-line facilities. He introduces the concept

of a JIT production unit, where a number of U-lines produce and assemble parts

for the same production line. Balancing a JIT production unit problem is

considered as the N U-line balancing problem. For both cases (for the case where

U-line locations are not fixed and for the fixed case) problems are modelled and

heuristic algorithms are developed. This heuristic algorithm solves problems with

up to nine individual U-lines that each of them having tasks up to 18.

Kim et al. (2000) work on balancing and sequencing mixed-model U-lines

with a co-evolutionary algorithm. They develop a new approach using an artificial

intelligence search technique, called as cooperative co-evolutionary algorithm. It

is possible to solve the line balancing and the model sequencing problems at the

same time with this approach. In order to promote the population diversity and the

search efficiency authors adopt some strategies (these strategies are localized

evolution and steady-state reproduction) and develop some methods (selection of

CHAPTER 2. LITERATURE SURVEY

25

environmental individuals and evaluation of fitness). They also provide efficient

genetic representations and operator schemes. Based on the experimental results

the authors indicate that the proposed algorithm is much better than the other two

cooperative co-evolutionary algorithms and the traditional hierarchical approach.

They also state that with a little modification, the proposed algorithm can be

applied to many variants of the problem.

Also some of the researches work on different but interested subjects to

investigate some properties of the U-shaped production lines.

Nakade and Ohno (1999) deal with a U-shaped production line with

multiple-function workers. They consider an optimization problem of finding an

allocation of workers to the production line. The objective is to maximize the

overall cycle time under the minimum number of workers while satisfying the

demand.

Miltenburg (2000) investigates the effect of the U-shape of the line on the

production line’s effectiveness when breakdowns occur. The author finds that the

effectiveness of the U-line is greater than or equal to the effectiveness of the

straight line when buffer inventories are located between stations.

Miltenburg (2001) works on one-piece flow production system on U-

shaped production lines and examines the research literature on one-piece flow

manufacturing. Miltenburg state that if implemented carefully, in a situation

where it is appropriate impressive results are obtained. In this research the author

dwells upon the decision rules that determine when one-piece flow is appropriate,

and unique elements of this production system. Also he examines the

mathematical models used to design one-piece flow system.

Nakade and Ohno (2003) consider a U-shaped production line with

multiple workers. Each worker is a multi-function worker and takes charge of

multiple machines. They consider two types of allocations of workers to

CHAPTER 2. LITERATURE SURVEY

26

machines; a separate allocation and a carousel allocation. By using these

allocations they derive some upper and lower bounds for the expected overall

cycle times in U-shaped production line and they propose an approximate

expressions for the expected overall cycle times. The authors show that when the

processing, operation, and walking times are constant, the overall cycle time in the

carousel allocation is less than or equal to that in the separate allocation. In their

numerical study Nakade and Ohno (2003) compare these allocations and they

discuss the performance of their approximation.

Summary of the work done on the U-line line balancing problem is given

in Table 2.3.

CHAPTER 2. LITERATURE SURVEY

27

Ta
bl

e
2.

3:
 S

um
m

ar
y

of
 w

or
k

do
ne

 o
n

th
e

U
-ty

pe
 a

ss
em

bl
y

lin
e

pr
ob

le
m

s.

O

bj
ec

tiv
es

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

an

d
id

le
 ti

m
e

in
 a

si

n g
le

 st
at

io
n

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

,
cy

cl
e

tim
e,

 a
nd

 b
ot

h

nu
m

be
r o

f s
ta

tio
ns

nu
m

be
r o

f s
ta

tio
ns

So
lv

ed
 p

ro
bl

em
s

up
 to

 1
1

ta
sk

s
up

 to
 1

11
 ta

sk
s

up
 to

 4
0

ta
sk

s

up
 to

 2
5

ta
sk

s

up
 to

 4
5

ta
sk

s

in
di

vi
du

al
 U

-li
ne

s
w

ith
 u

p
to

 2
2

ta
sk

s

up
 to

 9
 U

-li
ne

s w
ith

up

 to
 1

8
ta

sk
s i

n
ea

ch

U
-li

ne

up
 to

 2
97

 ta
sk

s

up
 to

 1
11

 ta
sk

s

up
 to

 2
97

 ta
sk

s

Pr
ob

le
m

 ty
pe

si
ng

le
 m

od
el

si
ng

le
 m

od
el

m
ix

ed
 m

od
el

si
ng

le
 m

od
el

U
-li

ne
 fa

ci
lit

y
w

ith
 se

ve
ra

l
in

di
vi

du
al

 U
-li

ne
s

U
-li

ne
 fa

ci
lit

y
w

ith
 se

ve
ra

l
in

di
vi

du
al

 U
-li

ne
s

si
ng

le
 m

od
el

m
ix

ed
 m

od
el

si
ng

le
 m

od
el

M
et

ho
do

lo
gy

D
P

fo
rm

ul
at

io
n

R
PW

T-
ba

se
d

he
ur

is
tic

D
P-

ba
se

d
ex

ac
t a

lg
or

ith
m

D

ep
th

-f
irs

t a
nd

 b
re

ad
th

-f
irs

t B
&

B

H
eu

ris
tic

IP
 fo

rm
ul

at
io

n

D
P-

ba
se

d
ex

ac
t a

lg
or

ith
m

H
eu

ris
tic

B
&

B
-b

as
ed

 h
eu

ris
tic

C
o-

ev
ol

ut
io

na
ry

 a
lg

or
ith

m

SA
-b

as
ed

 h
eu

ris
tic

A
ut

ho
rs

M
ilt

en
bu

rg
 a

nd
 W

ijn
ga

ar
d

(1
99

4)

M
ilt

en
bu

rg
 a

nd
 S

pa
rli

ng
 (1

99
5)

Sp
ar

lin
g

an
d

M
ilt

en
bu

rg
 (1

99
8)

U
rb

an
 (1

99
8)

M
ilt

en
bu

rg
 (1

99
8)

Sp
ar

lin
g

(1
99

8)

Sc
ho

ll
an

d
K

le
in

 (1
99

9)

K
im

 e
t a

l.
(2

00
0)

Er
el

, S
ab

un
cu

og
lu

 a
nd

 A
ks

u
(2

00
1)

 28

Chapter 3

Ant Algorithms and Applications

This chapter focuses on pure ant algorithms. Most parts are writen with the

guide of Dorigo, Caro, and Gambardella’s (1999) paper (This paper overviews

the recent work on ant algorithms, gives detailed information about the biological

findings on the real ant colonies and defines ants’ artificial counterpart the ACO

meta-heuristic. Their paper mainly focuses on the most important aspects of the

ACO meta-heuristic. It is a very detailed study including every aspect of ant

algorithms and can be stated as a sort of handbook).

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

29

3.1 Introduction

Ant heuristics are proposed as a new approach to combinatorial

optimization in the literature (Dorigo, Maniezzo and Colorni, 1991a, 1996). Their

main characteristics are: positive feedback (that helps to discover better solutions),

distributed computation (that avoids early convergence), and the use of

constructive greedy heuristic (that helps ants to find acceptable solutions in the

early stages.

This new heuristic attracts the attention of the scientific community

because it is versatile (which is applicable to similar versions of the same

problem), robust (with only minimal changes it can be applied to other

combinatorial optimization problems), and a population based approach (which

allows the exploitation of positive feedback as a search mechanism). This last

property makes these systems suitable for parallel implementation. Detailed

information on the parallelization strategies for the Ant System can be found in

Bullnheimer, Kotsis, and Strauss (1998).

The first ant algorithm is developed by Dorigo and colleagues (Dorigo,

Maniezzo, Colorni, 1991) to difficult combinatorial optimization problems, such

as the travelling salesman problem (TSP) and the quadratic assignment problem

(QAP). Since then many researchers work on ant-based algorithms to apply ant

algorithms to various discrete optimization problems. These applications and

other details of ant colony optimization algorithms (ACO) are summarized in

Table 2.1 and Table 2.2.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

30

3.2 Biological Fundamentals
Similar to other nature based heuristics (such as genetic algorithms,

evolution strategies, simulated annealing, tabu search, neural nets, immune

networks) ant algorithms are ‘derived’ from nature and inspiration comes from the

observation of real ant colonies. The behaviour of ants in the colony constitutes

the main power of the ant algorithms. Members of the colony do not act selfishly,

only by focusing on their individual needs. On the contrary, everyone acts

cooperatively, as a whole in order to provide the survival of the colony. Ants have

no chance to survive when they are alone but when they form a group, then they

are more structural and their colonies can survive. This surviving mechanism and

their foraging behaviour have captured the attention of many scientists. Foraging

behaviour is an important and interesting behaviour. It is an ability to find the

shortest paths between the food sources and their nest.

On the way between the food source and the nest, ants deposit on the

ground a substance called pheromone which forms a trail of pheromone. Ants

have ability to detect (smell) the pheromone and chose their way according to

their detection level. This means the probability of choosing one of the possible

ways depends on the level of pheromone that is deposit on this way. By using this

pheromone trails the ants find their way back to the nest or the food source and

also other member of the colony detects the location of the food sources by

following the trails of the previous ants. Many paths are available between the

nest and the food source. When this pheromone trail following behaviour is

exploited by ants then a group of ants are able to find the shortest path between

the nest and the food source by following the previously laid pheromone trails of

the individual ants.

Deneubourg et al. (1990) study the ants’ foraging behaviour by using an

interesting experiment, ‘the binary bridge experiment’. This experiment is done

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

31

under controlled conditions. As seen in Figure 3.1a, a double bridge in which each

branch has the same length is put to separate the nest of a colony of ants and a

food source. Then, the ants are left free to move between the nest and the food

source. During the experiment the percentage of ants which choose one or the

other of the two branches is observed over time. The result is given in Figure 3.1b.

After an initial transition phase, ants tend to converge on the same path. It is stated

that arising of some oscillations during the transition state is normal.

Figure 3.1: Single Bridge Experiment. a)Experiment setup and b) Results for a typical single trial;
showing the percentage of passages on each of the two branches per unit of time as a function of
time. After an initial short transition phase, the upper branch becomes the most used. Deneubourg
et al., (1990)

In the first stage of the experiment the selection probability of any branch

is equal to each other because initially no pheromone is left. During the transition

phase some fluctuations occur because the amount of trail accumulated is not

enough yet to direct the ants. After an initial transition phase the number of ants

that randomly select one passage (let it be the upper passage) increases and more

pheromone accumulates on this passage over the other. As more pheromone

accumulates for the upper passage then there is more chance for an ant to choose

that way. This attitude continues as a vicious cycle.

Dorigo, Caro, and Gambardella (1999) describe this phenomenon with a

probabilistic model. The authors state that this model closely matches with the

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

32

experimental observation. The amount of pheromone on a branch is proportional

to the number of ants that used that branch in the past and the pheromone

evaporation is not taken into account. In this model, the probability of choosing a

branch at a certain time depends on the total amount of pheromone accumulated

on the branch. Thus the probability is proportional to the number of ants that used

the branch until that time. Let Um and Lm be the numbers of ants that have used the

upper and lower branch after m ants have crossed the bridge, with Um +Lm = m.

The probability PU(m) which the (m+1)th ant chooses the upper branch is given as:

h
m

h
m

h
m

U kLkU
kU

mP
)()(

)(
)(

+++
+

= (3.1)

and the probability PL(m) that ant chooses the lower branch is PL(m) = 1-PU(m).

This form of the probability is obtained from experiments on trail-following. The

parameters h and k allow the user to fit the model to experimental data. Then Um+1

is updated as follows: Um+1 = Um +1, if ψ ≤ PU, Um+1 = Um otherwise, where ψ is a

random variable uniformly distributed over the interval (0,1). Lm is also updated

by the same way.

Another experiment is done by preserving the same pheromone laying

mechanism and using the bridge with branches of different lengths. Mostly the

shortest branch is selected in this case. This result can be explained by the

pheromone laying mechanism: the first group of ants on the way to the food

source do not have chance to use the pheromone advantage and they choose the

shortest way arbitrary. But on the way to the nest those ants that took the shortest

branch will cause much pheromone to be accumulated on the short branch when

compared with the long branch. For a same unit of time more ant pass through the

short branch and cause more pheromone to be laid on the ground. This mechanism

and the result of the double bridge experiment with branches of different length is

given in Figure 3.2.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

33

Figure 3.2: Double Bridge Experiment.
a) Ants start exploiting the double bridge, b) As a result most of the ants choose the shortest path.
c) Distribution of the percentage of ants that selected the shorter path. Goss et al. (1989)

 Dorigo, Caro and Gambardella (1999) explain this process as a

‘distributed optimization mechanism’. A single ant is capable of finding a path

between the nest and the food source. Nevertheless, each single ant gives only a

very small contribution. On the contrary, with the corporation of ants only a

colony can present the “shortest path finding” behaviour. The ants perform this

specific behaviour by using a simple form of indirect communication with the

help of pheromone trails. This is known as stigmergy1.

Grasse (1946) defines stigmergy as follows: “stimulation of workers2 by

the performance they have achieved.”

Stigmergy is a different style of communication because the information

released by the communicating ants is a physical substance. This released

1 Dorigo, Caro and Gambardella (1999) state that the term stigmergy not only used to explain the
behavior of termite societies, the same term is also used to describe indirect communication
mechanism observed in other social insects.

2 There are castes is termite colonies and workers are one of the castes in these termite colonies.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

34

information belonging to a specific path is locally attainable for only the ants

which use that specific path or only the neighbourhood of that path.

Dorigo, Caro and Gambardella (1999) state that if appropriate state

variables are associated to problem states then the characteristics of stigmergy can

easily be extended to the ants. In order to explain this statement, a comparison of

real word with the imaginary model may be very helpful. The stigmergetic

communication of real ants is accomplished by using the pheromone laid on

ground. Similarly artificial agents update the proper pheromone variables that

representing the problem states that they have visited. Artificial agents have only

local access to these pheromone variables according to the stigmergetic

communication model.

Another important aspect of real ants’ behaviour is the coupling between

the autocatalytic (positive feedback) mechanism and the implicit evaluation of

solutions. The shorter paths (for artificial agents, the solutions with lower cost)

will be completed earlier than the longer ones. As a result, more pheromone will

be accumulated on these paths. This fact explains the ‘implicit evaluation of

solutions’. Dorigo, Caro and Gambardella (1999) state that the implicit solution

evaluation combined with the autocatalysis can be very effective. This is because

of the chain effect that arises spontaneously. The shorter paths will receive

pheromone quickly. As more pheromone is deposited on these paths, more ants

chose these paths and so on. If properly used the autocatalysis is stated as a

powerful mechanism for the population-based optimization algorithms. This

mechanism gives extra importance to the best individuals and these individuals

direct the search process. However, sometimes the misdirection of the search may

be dangerous. A misdirected search may result with premature convergence

(stagnation). Stagnation is a contingent situation in which some individuals that

are not very good take over the population and they dominate the search process.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

35

This situation prevents the further exploration of the search space. There are many

reasons of stagnation. Not getting out of a local optima results in giving extra

incorrect emphasis to this local solution and stagnation; or initial random

fluctuations may cause a not very good individual to be selected more than the

other individuals. Thus, this individual becomes much better than all others.

3.3 The Ant Colony Optimization Approach
In the ant colony optimization (ACO) meta-heuristic3 a group (colony) of

agents cooperatively work to find good solutions to difficult optimization

problems. Cooperation is the most important part of the ACO algorithms. All the

computational resources are divided into many parts and allocated to simple

agents. The only way to use that divided computational resource is the indirect

communication caused by stigmergy. Thus, good solutions are exposed by the

agents using this cooperative interaction.

When the agents and the real ants are compared there are some similarities

and dissimilarities. Mostly the agents are the abstraction of the real ants and they

have most of the abilities of the real ones, like shortest path finding behaviour.

However, they have some extra capabilities that the real ants do not have. These

extra capabilities (The agents have some memory. They are not completely blind

and they live in an environment where the time is discrete) are given to artificial

ants in order to make them more efficient and effective.

3 Dorigo, Caro and Gambardella (1999) use ACO meta-heuristic to refer to the general procedure.
The term ACO algorithm is used to refer any generic instance of ACO meta-heuristic. There are
also some algorithms called as Ant algorithms that not necessarily follow all the aspects of the
ACO meta-heuristic. So, all ACO algorithms are also ant algorithms, where as vice versa is not
true.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

36

3.3.1 Similarities and Difference with Real Ants
Dorigo, Caro, and Gambardella (1999) state the ideas that are inspired

from real ants as follows:

 (i) Usage of a colony of communicating and cooperating individuals,

 (ii) Usage of an artificial pheromone trail for the stigmergetic communication,

 (iii) Usage of a sequence of local moves to find the shortest paths,

 (iv) Usage of a local information for the stochastic decision policy.

We explain these characteristics as follows.

Colony of communicating and cooperating individuals: Like real ant

colonies, the agents are part of a population, which they globally and

asynchronously cooperate at the same time to find a better solution. Although a

single ant can construct a feasible solution (and a single real ant can also find the

path between nest and food source), better solutions are the result of the

cooperation between each single individual. The power of this cooperation comes

from their communication, namely the exploitation of the information that they

read or write on the problem’s visited states.

Pheromone trail and stigmergy: Similar to real ants pheromone laying

attitude, the agents apply the same behaviour by changing some numeric values of

the problem’s state that they have visited. With this information, previous ants’

performances are stored. This information will be ready for the new agents at the

next stage for re-reading or for updating. This numeric information belonging to

the problems state variables acts like artificial pheromone trail. Thus,

communication among the ants can only be proved by this artificial pheromone

trails and collective knowledge is evaluated and restructured by this way. This

knowledge supplies information about the problem landscape. In fact, this

knowledge acts like a function of whole history of the ant colony. Generally the

updating mechanism for this information is not only obtained by the accumulation

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

37

of feedback coming from the ants but also there is an evaporation mechanism

inspired from the nature. By evaporating some amount of the pheromone over

time, the ant colony slowly forgets its history and this mechanism helps directing

the search to new areas of the search space. Thus, stacking to a specific point or a

neighbourhood of a point can be avoided by this way.

Finding the solutions with minimum cost and local moves: The

objective of real ants is to find the shortest path joining the nest to the food

source. They accomplish this goal by moving on the ground from one point to

another, namely they move from one adjacent area to another one. The agents also

have a common objective. They try to find the solution with the minimum cost.

The agents move through the ‘adjacent states’ of the problem. They start from an

origin and move step by step to a destination point.

Stochastic and myopic state transition policy: The agents construct their

solutions by applying a probabilistic decision policy. The decision policy is used

while moving from one state to another state. The local information gained from

artificial pheromone trails obtains the primary information for this decision policy.

There is no lookahead information to predict the future condition of the state

(Although, simple forms of ACO algorithms do not use lookahead information,

there are some researchers working on this topic and there exist a special version

of ant algorithms using the lookahead mechanism). In fact, the transition

probability is totally local. The policy is a function of both the a priori information

represented by problem specifications and the local modifications in the artificial

pheromone trails induced by previous ants.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

38

Some characteristics of agents do not correspond with the characteristics of

their counterpart, real ants. These are:

• Agents do not move continuously. In fact, they move from one discrete state

to another discrete state. So their environment is a discrete habitat.

• Agents have a kind of memory that stores the information of the ant’s past

actions.

• Artificial pheromone is a function of the quality of the solution found.4

• Agents’ pheromone laying mechanism is a little bit different from the real life.

The timing in pheromone laying mechanism is problem dependent and

generally does not correspond with real ants’ behaviour. In most of the ant

algorithms the agents update the pheromone trails just after generating a

solution.

• Agents may have extra abilities and some special mechanisms can be applied

like parallelization (or parallel implementation), local optimization,

hybridization, lookahead, backtracking to improve the system effectiveness

and efficiency.

3.4 The ACO Meta-heuristic

This section gives information about how the agents are used in an

algorithmic framework so that the ACO algorithms can be applied to

combinatorial optimization problems.

In ACO algorithms a finite number of artificial ants cooperate and move in

the search space to find the good solutions to the optimization problem under

some predefined conditions. Each single ant constructs a full solution or only a

part of it starting from a predefined initial state. This state is determined by taking

problem specific conditions into consideration. As the ants move from one state to

4 Dorigo, Caro and Gambardella (1999) state that in real life some ants have a similar behaviour.
They deposit more pheromone if they found richer food sources.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

39

another they construct their own solution and also they gather some important

knowledge about the problem characteristics and their own performance. They use

this information to modify the problem-related variables (like trail values). All

individual ants move alone by making random choices. Indeed, all ants operate

collectively. This is not a direct communication between two or more ant. In fact,

it is the common usage of this information, or more literally stigmergetic

paradigm as explained before.

Under consideration of problem’s constraints, a desired solution is the one

with the minimum cost. Although some of the ants may individually find poor

solutions, better solutions (or the best) are obtained from a group of many

alternative solutions as a result of the global cooperation of these individuals.

Every ant constructs its solution by moving from one state to another

adjacent state by applying a stochastic local search policy. Definition of the

neighborhood, every ant’s memory, gathered pheromone trail information and

problem-specific local information direct this search policy.

Every ant’s own memory carries information about the history of that ant.

This information is used to compute the value of the solutions, the contribution of

each move generated by an ant and the most important one, to check the

feasibility of the constructed solutions. By using ant’s memory and the related

information about the local state, some moves that take the ant from a feasible

solution to an infeasible one can be avoided.

Both the knowledge of pheromone trails and the problem specific heuristic

information constitute the public information. The pheromone information is a

global and time dependent information that has an influence on ants’ decisions. It

is a shared local long-term memory. The quantity and the frequency of pheromone

depositing depend on the problem characteristic and the structure of the algorithm.

Each ant can lay pheromone just after making a move (updating step-by-step) or

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

40

after constructing the whole solution (delayed updating). Also it is possible to use

both of these policies at the same time. Generally the step-by-step updating and

the delayed updating are stated as mutually exclusive. Generally the amount of

pheromone deposed by an ant is proportional to the quality of the solution

generated by this ant. Thus, the contribution of better moves to the global

information will be higher than the contribution of the worse moves.

By combining the trail information and heuristic values and also list of

tabu moves, every ant constitutes its own decision table that directs its search.

This decision table includes the probability of each possible move for each ant.

Stochasticity in the decision mechanism and the evaporation of trail values

prevents the ants converging to a same solution or a certain part of the solution

space. Of course there is a balance between the exploitation of accumulated

knowledge and the exploration of new points in the search space depending on

how the stochasticity and the evaporation mechanisms are used. Also the ACO

meta-heuristic can be used to combine the ants’ decision policy with some extra

components. These components are optional and implementation dependent. For

instance, one method may be the collecting of some extra information from a

global perspective and using this information to deposit additional pheromone

information. Other method may be the usage of a problem specific local

optimization procedure. Main activities, the stochastic decision policy, the

pheromone evaporation and also some extra components need well

synchronization.

In Figure 3.3, a general description of the ACO meta-heuristic is given as a

pseudo-code. Some parts are optional like extra activities. Also, some parts and

the sequence of some activities may differ depending on the problem type and

implementation.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

41

MAIN PROGRAM ACO Meta-heuristic
 BEGIN {For MAIN PROGRAM}
 WHILE (termination criteria is not satisfied) DO
 BEGIN {For WHILE}
 Initialize the system;
 Proceed ants and construct solutions;
 Pheromone evaporation and update;
 Extra activities; {This part is optional and implementation dependent}
 END; {For WHILE}
 END; {For MAIN PROGRAM}

PROCEDURE Proceed ants and construct solutions {Life cycle of an ant}
 BEGIN {For PROCEDURE}
 Create new ants;
 Initialization of each ant;
 Mem = Call the memory of each ant;
 WHILE (a complete solution is not reached for predefined number of ants) DO
 BEGIN {For WHILE}
 Give initial position;
 NonTabu = Read the memory and determine non-tabu tasks;

 Prob = Compute transition probabilities (Mem, NonTabu, Problem
 Constraints);

 Next = Determine where to move due to decision policy (Prob, Problem
 Constraints);
 Move to next state (Next);
 IF (step-by-step pheromone update policy is used) THEN
 BEGIN {For IF}
 Update pheromone level on the visited arc;
 Update ant’s memory;
 END; {For IF}
 Update other related values;
 END; {For WHILE}
 END; {For PROCEDURE}

PROCEDURE Pheromone evaporation and update {Delayed pheromone update}
 BEGIN {For PROCEDURE}
 IF (delayed pheromone update policy is used) THEN
 BEGIN {For IF}
 Evaluate each ant’s solution;
 Update pheromone level on all visited arcs;
 END; {For IF}
 END; {For PROCEDURE}

Figure 3.3: A general description of ACO meta-heuristic. Comments, explanations are given in
braces. Necessary actions for related line and conditions for related IF THEN statements are given
in parentheses.

CHAPTER 3. ANT ALGORITHMS AND APPLICATIONS

42

3.5 Some Applications of ACO Algorithms

In literature there are many successful ACO applications to different

combinatorial optimization problems. Dorigo, Caro and Gambardella (1999)

classify these applications into two groups: those applied to static combinatorial

optimization problems and those applied to dynamic ones.

In static problems the definition and the initial characteristics of the

problem are given once and they do not change over time. Classic travelling

salesman problem is a good example. The location of cities and their relative

distances are given in the problem definition and they do not change during the

solution process. Quadratic assignment problem (QAP), Job-shop scheduling

problem (JSP), Vehicle routing problem (VRP), Shortest common supersequence

problem (SCS), Graph coloring problem (GCP), Sequential ordering problem

(SOP), are also some examples of the static problems. In the dynamic case, the

problem is defined as a function of some quantities and the values of these

quantities depend on the dynamics of the system. As the system changes overtime

the algorithm must also adapt itself to this changing environment. Some of the

examples of this type of problem are network routing, connection-oriented

network routing, connection-less network routing.

Once the mapping of problem (allows incremental construction of a

solution), the structure of neighbourhood and the stochastic state transition rule is

defined, then the ACO meta-heuristic can be applied directly to a static

combinatorial optimization problem. Many early applications of the ACO

algorithms in the literature are inspired by Ant System (AS) and most of these

applications are the relatively direct application of AS to the problem.

Applications of ACO to the dynamic combinatorial optimization problems

and the related research on these applications are focused on the communications

network. Because the characteristics communications network match with the

properties of ACO meta-heuristic.

 43

Chapter 4

Proposed Approach: Ant Colony
Optimization

4.1 Overview of the Proposed Approach

In this chapter we present a new heuristic, an Ant Colony Optimization

(ACO) meta-heuristic, and its variants to solve the U-type assembly line balancing

problem (UALBP). The UALBP is defined in Chapter 1 and the literature survey

on the U-lines and the ACO meta-heuristic is given in Chapter 2. Detailed

information about the ACO meta-heuristic can be found in Chapter 3.

Section 4.1 covers the fundamentals of ant type algorithms that do not

change from one method to another. Section 4.2 gives detailed information about

proposed methods. Especially the task selection rules and the pheromone trail

update mechanisms will be explained in details.

4.1.1 Motivation

As stated in Chapter 2 there are some exact algorithms for the U-line

problem even though these algorithms can handle only limited size problems.

Both UALBP and SALBP are NP-hard problem (Baybars, 1986; Miltenburg and

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

44

Sparling, 1995; Miltenburg, 1998; Sparling and Miltenburg, 1998). Obviously

large size realistic problems require heuristic approaches.

Even though many heuristics have been developed for SALBP (Erel and

Sarin, 1998), for the single model UALBP there are only three heuristics. These

are: RPWT based heuristic (Miltenburg and Wijngaard, 1994), branch and bound

based heuristic (Scholl and Klein, 1999) and SA based heuristic (Erel,

Sabuncuoglu and Aksu, 2001).

In this research, a new heuristic, Ant Colony Optimization (ACO) meta-

heuristic, and its variants are proposed for UALBP. There are two ant approaches

proposed for SALBP (Bautista and Pereira, 2002; McMullen and Tarasewich,

2003). However this study is the first application of ACO meta-heuristic to U-

shaped production lines. The work by McMullen and Tarasewich (2003) considers

only six problems (ranging in size from 21 to 74 task) and their objective function

is different from our objective function. Bautista and Pereira (2002) consider the

same objective function, minimizing the number of stations given a fixed cycle

time, but this model is proposed for only SALBP.

Since the first ant algorithm developed by Dorigo and colleagues (1991),

several variants of the AS have been proposed in the literature. In general, ACO is

an umbrella term for a number of similar metaheuristics: Ant System (AS), Ant

System with Elite Strategy (ASelite), Ant System with Ranking (ASrank), Ant

Colony System (ACS), MAX-MIN Ant System (MMAS) are some of these meta-

heuristics. Details can be found in Table 2.1 and Table 2.2 (see also Chapter 3).

4.1.2 Fundamentals
Although there are some aspects that makes these variants of the ACO meta-

heuristics differ from each other, the fundamentals of ant type algorithms do not

change from one method to another. These are as follows:

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

45

1. Problem Representation (UALBP must be represented as a graph that can be

searched by many simple agents);

2. Autocatalytic Feedback Process (it is necessary to find an efficient

representation for artificial trail values);

3. Solution Generator (heuristic also called as “greedy force”. It is very

important to define a proper heuristic function for UALBP);

4. Constraint Satisfaction (a proper tabu list that will satisfy the constraints of the

problem consideration).

Dorigo, Maniezzo, and Colorni (1991, 1996), state that the most difficult of

these is to find an appropriate graph representation for the problem and the greedy

force. These issues are discussed next.

4.1.2.1 The graph representation of the problem
For many real life problems, it is possible to describe the structure of the

problem using a graph. The key feature of any ant type algorithm is the definition

of the links between the elements of a solution (Montgomery and Randall,2002).

For example, for the Travelling Salesman Problem (TSP) and the Vehicle Routing

Problem (VRP), the key feature is the links between cities/customers respectively.

For the Quadratic Assignment Problem (QAP), the links represent couplings of

facilities and locations.

 UALPB can be defined as a graph, where the nodes represent tasks, the

arcs represent precedence relations between tasks and the operation times are

given as node weights. The (i,j) arc between nodes i and j represents the

precedence relations between task i and task j. This precedence graph forms a

basis for construction of solutions and generation of tabu lists.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

46

4.1.2.2 The autocatalytic process
For the proposed algorithms, the collective behavior of the ants emerges as

a form of autocatalytic process (the autocatalytic process is a process that

reinforces itself) where more ants follow a trail, the trail becomes more attractive

for being followed. Here, the amount of pheromone trail represents the

attractiveness of assignment of a task to a specific station. It is a global piece of

information. Thus, if a task is relatively assigned to a specific station many times,

then it is more attractive to assign the same task to the same station next time. The

process is thus characterized by a positive feedback loop, in which the probability

of assigning a task to a specific station increases with the number of ants that

previously assigned the same task to that station. If no control mechanism exists

this situation misleads the ants and may cause a very rapid convergence. This is

called stagnation (Dorigo, Maniezzo and Colorni 1991,1996). For detailed

information see Chapter 2.

4.1.2.3 The greedy force

The greedy force is basically defined as the available heuristic value that

gives a prior knowledge on attractiveness of a solution component. Thus a

solution component with a high heuristic value is more desirable. In fact, the

heuristic value represents a priori information about the problem instance

definition or run-time information provided by a source different from the ants

(Dorigo and Stützle, 2000). It is a local piece information. An ant algorithm only

using the heuristic information in the task selection process (no contribution of

trail value) is a stochastic greedy algorithm with multiple starting points.

 We took inspiration from Miltenburg and Wijngaard’s (1994) task priority

function, p(k) (this function is also called U-line maximum ranked positional

weight).

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

47

Following Miltenburg and Wijngaard‘s (1994) definition, let p
kU is given as the

set of tasks which must precede task k, and s
kU is given as the set of tasks which

must succeed task k. Then at any instant, the set of assignable tasks given as
s
k

p
k UjallorUiallkV ∈∈= |{ have already been assigned}.

A forward/backward priority of a task is defined as a priority function,

pf(k) / pb(k), and is called forward/backward U-line ranked positional weight. This

priority function constitutes our heuristic value, and is defined for each task k as:













+= ∑
∈ s

kUi

f itktkp)()()(for k = 1,.., N (4.1)













+= ∑
∈ p

kUj

b jtktkp)()()(for k = 1,.., N (4.2)

Thus, the priority of each task is either the time required to complete both

that task and all the tasks that must succeed or precede it. In this way, for tasks

whose successors/precedessors require a long time to complete are strongly

forward/backward assignable and it is better to assign them as soon as possible.

In order to illustrate the “forward” and “backward” positional weights,

consider the well-known Jackson problem, with 11 tasks. Task numbers are

written in nodes and duration of operations is written as weight of nodes.

Figure 4.1: Jackson problem with 11 tasks

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

48

For task 1, the forward positional weight is the duration of task 1 and sum

of task times of all the tasks that succeed it.

P f(1) = t(1)+ t(2)+ t(5)+ t(3)+ t(4)+ t(6)+ t(7)+ t(8)+ t(9)+ t(10)+ t(11) = 46

For task 1, the backward positional weight is the duration of task 1 and

sum of task times of all the tasks that precede it.

P b(1) = t(1) = 6

For the Jackson problem, forward and backward positional weights are

given in Table 4.1.

Table 4.1: Forward and backward positional weights for Jackson problem.

Task Number Forward positional weight Backward positional weight

1 46 6
2 19 8
3 17 11
4 19 13
5 13 7
6 17 10
7 12 22
8 15 16
9 9 27
10 9 21
11 4 46

We will explain allocation of tasks to the stations in Section 4.1.3.

4.1.2.4 The constraint satisfaction

Each ant has its own tabu list that stores the state of each task. During a

tour, assigned tasks are marked as tabu and can not be assigned once more. The

tabu list1 is used in order to determine feasible and assignable tasks to calculate

the selection probabilities of each.

1 The term ‘tabu list’ is used to indicate a simple memory that contains the set of already assigned
tasks, and has no relation with tabu search.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

49

4.1.3 Generation of a solution
Initially, very small amount of pheromone deposition for each task is

given as an initial input to the system. Based on given constraints, precedence

relations and limiting cycle time, the possible feasible solutions are constructed

and a search list is created. This constitutes the initial solution phase of the

solution system. Then, a number of ants move through the neighborhood of the

solution in order to find the alternative solutions, hopefully an optimal solution.

As they travel from one node to another feasible one, the memory is updated

instantly or later depending on the quality of the solution. This iterative process

continues until the best solution is obtained or the respecified termination

condition (either on the number of cycles or on the computation time of the

problem) is satisfied. For our algorithms, the termination criterion is a limit on the

number of tours (cycles).

For each ant, completion of one tour (or one cycle) means that all nodes

are visited and all tasks are allocated. During a tour for a graph with n nodes (i.e.,

a problem with n tasks), m ants find m solutions, each of them visiting n nodes

(i.e., each of them allocating n tasks). Briefly, during a tour, m ants find m

solutions each of them allocating n tasks, and a tour includes n iterations for each

ant (During an iteration each ant allocates one task). Generalized flow chart of

proposed methods is given in Figure 4.2. Next, we give a numerical example to

better explain the main features of the ant algorithms.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

50

Define problem in terms of a graph

Identify all the links, and the
limiting criteria

Determine initial task for each ant
using probability function

Create neighbourhood or search
solution space list for each ant

Generate agents (artificial ants)

For each ant construct a solution and
evaluate the best possible solution

from entire solution space

(Tour of an ant)

Is the terminating
condition reached? Print the best solution

Stop
Assign the new best solution as the

current solution

Update the solution set and trail
values based on the goodness of the
solution and generate a new search

Yes

No

Figure 4.2: A flowchart of the proposed algorithms. This flowchart is adapted from Krishnaiyer and
Cheraghi’s (2002) generalized flow chart.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

51

Numerical Example:

For illustrative purposes, consider the Jackson problem with a cycle time

of 10. The construction of a solution during one tour for a single ant is given

below. General form of the probability function, probability of assignment of task

i to station j, is defined as follows:

[] []
[] []









∈

⋅

⋅

= ∑
∈

otherwise

allowediif
tT

tT

tp
k

allowedk
kkj

iij

k
ij

k

0

)(

)(

)(
βα

βα

η

η

 (4.3)

Here Tij represents the trail value of assigning task i to station j and ηi

represents the heuristic value called visibility. If a task is forward assignable, than

its heuristic value is the forward positional weight of that task and if a task is

backward assignable, then heuristic value is the backward positional weight of

that task. Parameters α and β allow a user to control the relative importance of

trail versus visibility. Time counter t represents the iteration number. So, the

transition probability is a tradeoff between the visibility and the trail intensity. For

simplicity, Tij , α and β are taken as 1.

In tabu list; 0’s represent unavailable and unassigned tasks, -1’s represent

assigned tasks, 1’s represent forward assignable tasks, and 2’s represent backward

assignable tasks.

Iteration 1:

Station number: 1, Station time: 0
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values 1 0 0 0 0 0 0 0 0 0 2

Forward available and feasible tasks: 1
Backward available and feasible tasks: 11

[] []

[] [] [] []
5.0

461461
461

)1()1(

)1(
)1(1

11
1

1,11
1

1
1

1,1

1
1

1
1,1

1,1 =
×+×

×
=













⋅+⋅

⋅
=

ηη

η

TT

T
P ;

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

52

[] []
[] [] [] []

5.0
461461

461
)1()1(

)1(
)1(1

11
1

1,11
1

1
1

1,1

1
11

1
1,11

1,11 =
×+×

×
=













⋅+⋅

⋅
=

ηη

η

TT

T
P ;

Random number, RN(0,1) = 0.040; task 1 is forward assigned2. New station time

is 6.

Iteration 2:

Station number: 1, Station time: 6
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 1 1 1 1 0 0 0 0 0 2

Forward available and feasible tasks: 2, 5
Backward available and feasible tasks: 11

Here task 3 and 4 are also available for forward assignment but their task

times are greater than the remaining idle time for station 1. Thus, they are not

feasible tasks for iteration 2.

244.0)2(1,2 =P , 166.0)2(1,5 =P , 590.0)2(1,11 =P

Random number, RN(0,1) = 0.494; task 11 is backward assigned2. New station

time is 10.

Iteration 3:

No available task exists for station 1, thus we open a new station.

Station number: 2, Station time: 0
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 1 1 1 1 0 0 0 2 2 -1

Forward available and feasible tasks: 2, 3, 4, 5
Backward available and feasible tasks: 9, 10

164.0)3(2,2 =P , 147.0)3(2,3 =P , 164.0)3(2,4 =P , 112.0)3(2,5 =P ,

232.0)3(2,9 =P , 181.0)3(2,10 =P

2 Task selection: (i) Choose a random number, RN(O,1). (ii) Start from the smallest task number.
In a non-decreasing order of task numbers, add together the probability Pij(t) of all feasible and
assignable tasks (one at a time). Stop immediately when the sum is greater than or equal to
RN(O,1). The last individual added is the selected task for the assignment.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

53

Random number, RN(0,1) = 0.637; task 9 is backward assigned. New station time

is 5.

Iteration 4:

Station number: 2, Station time: 5
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 1 1 1 1 0 2 0 -1 2 -1

Forward available and feasible tasks: 2, 3, 5
Backward available and feasible tasks: 7, 10

207.0)4(2,2 =P , 185.0)4(2,3 =P , 141.0)4(2,5 =P , 239.0)4(2,7 =P 228.0)4(2,10 =P

Random number, RN(0,1) = 0.339; task 3 is forward assigned. New station time

is 10.

Iteration 5:

No available task exists for station 2, thus we open a new station.

Station number: 3, Station time: 0
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 1 -1 1 1 0 2 0 -1 2 -1

Forward available and feasible tasks: 2, 4, 5
Backward available and feasible tasks: 7, 10

202.0)5(3,2 =P , 202.0)5(3,4 =P , 138.0)5(3,5 =P , 234.0)5(3,7 =P , 223.0)5(3,10 =P

Random number, RN(0,1) = 0.172; task 2 is forward assigned. New station time

is 2.

Iteration 6:

Station number: 3, Station time: 2
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 1 1 1 2 0 -1 2 -1

Forward available and feasible tasks: 4, 5, 6
Backward available and feasible tasks: 7, 10

207.0)6(3,4 =P , 141.0)6(3,5 =P , 185.0)6(3,6 =P , 239.0)6(3,7 =P , 228.0)6(3,10 =P

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

54

Random number, RN(0,1) = 0.256; task 5 is forward assigned. New station time

is 3.

Iteration 7:

Station number: 3, Station time: 3
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 1 -1 1 2 0 -1 2 -1

Forward available and feasible tasks: 4, 6
Backward available and feasible tasks: 7, 10

241.0)7(3,4 =P , 215.0)7(3,6 =P , 278.0)7(3,7 =P , 266.0)7(3,10 =P

Random number, RN(0,1) = 0.891; task 10 is backward assigned. New station

time is 8.

Iteration 8:

Station number: 3, Station time: 8
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 1 -1 1 2 2 -1 -1 -1

Forward available and feasible tasks: 6
Backward available and feasible tasks: -

1)8(3,6 =P

Random number, RN(0,1) = 0.595; task 6 is forward assigned. New station time

is 10.

Iteration 9:

No available task exists for station 3, thus we open a new station.

Station number: 4, Station time: 0
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 1 -1 -1 2 2 -1 -1 -1

Forward available and feasible tasks: 4
Backward available and feasible tasks: 7, 8

333.0)9(4,4 =P , 386.0)9(4,7 =P , 281.0)9(4,8 =P

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

55

Random number, RN(0,1) = 0.194; task 4 is forward assigned. New station time

is 7.

Iteration 10:

Station number: 4, Station time: 7
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 -1 -1 -1 2 2 -1 -1 -1

Forward available and feasible tasks: -
Backward available and feasible tasks: 7

1)10(4,7 =P

Random number, RN(0,1) = 0.076; task 7 is backward assigned. New station time

is 10.

Iteration 11:

No available task exists for station 4, thus we open a new station.

Station number: 5, Station time: 0
Tabu list:

Tasks 1 2 3 4 5 6 7 8 9 10 11
Tabu values -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1

Forward available and feasible tasks: -
Backward available and feasible tasks: 8

1)11(5,8 =P

Random number, RN(0,1) = 0.582; task 8 is backward assigned. New station time

is 6. In Figure 4.3 the task allocation is given.

 Figure 4.3: The task allocation for Jackson problem, c = 10.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

56

4.2 Proposed Methods
This section provides more detailed information on the proposed methods

for UALBP. Especially the task selection rules and the pheromone trail update

mechanisms will be explained in detail. We consider these methods in three

groups: (i) directly applied methods, (ii) modified methods, and (iii) methods in

which ACO approach is augmented with a metaheuristic. First group includes

methods, AS, ASelite, ASrank, and ACS that is directly applied to UALBP. No

modification is done in the structure of the algorithms. Second group includes the

new methods that the structure of the algorithms is modified. Also, performance

of the algorithms in this group is much better than that in the first group. Last

group includes two specialized methods that the ACO approach is augmented

with simulated annealing (SA) and beam search (BS).

4.2.1 Ant System (AS)

AS is the first example of an ACO heuristic in the literature and its

importance resides in being the prototype of many ant algorithms. Therefore, we

consider the AS as our starting point. Indeed, AS is a set of three algorithms

called ant-cycle, ant-density, and ant-quantity (Dorigo, Maniezzo, Colorni, 1996).

These three versions differ in the way that the trail is updated.

While in ant-density and ant-quantity the ants update the trail directly just

after they allocate a task to a station, in ant-cycle the trail update is done only

once, after all ants finished a tour and construct a full solution (when all tasks are

allocated to stations). The amount of pheromone deposited by each ant is set to be

a function of its solution quality. For all methods the solution quality is

represented by the number of stations. Ant-cycle is reported (Dorigo, Maniezzo,

Colorni, 1996) to perform better than the other two variants and these two

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

57

algorithms are no longer studied. Thus, we only consider ant-cycle. Generally

ant-cycle is known as AS.

In AS each ant starts a tour with an empty station. After the initialization

phase of the system, depending on each ant’s memory, first available tasks are

determined and then the tabu list is used to determine the feasible tasks. If there

are available tasks but none of them are feasible, then a new station is opened.

Starting from first task, an ant iteratively moves from task to task and allocates

them to the stations. For iteration t, ant k chooses a feasible task i to assigns to

station j with a probability given by:

[] []
[] []()









∈

⋅

⋅

= ∑
∈

otherwise

allowediif
tT

tT

tp
k

allowedk
kkj

iij

k
ij

k

0

)(

)(

)(
βα

βα

η

η

 (4.3)

where allowedk is the set of available and feasible tasks for ant k. This state

transition rule is called as random-proportional rule. Parameter iη is the priory

available heuristic information and in Equation 4.3 it is defined as the positional

weight of task i (see section 4.1.2.2 and section 4.1.2.3). Parameters α and β

determine the relative influence of the pheromone trail and the heuristic

information. These parameters affect the behavior of the algorithm. If α = 0, the

selection probabilities are proportional to []βηi and tasks with high positional

weight are more likely to be selected. In this case, AS corresponds to a stochastic

greedy algorithm with multiple starts. If β = 0, only pheromone information

affects the selection probabilities, and if no control mechanism exists, this

situation misleads the ants. This may cause a very rapid convergence, leading to a

stagnation situation (Dorigo, Maniezzo, Colorni, 1996). In this situation, all the

ants follow the same path and construct the same solutions, which are strongly

suboptimal (see Section 4.1.2.2 and Section 4.1.2.3). Thus, there is a trade-off

between the trail intensity and the heuristic value.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

58

After each ant has completed a tour, the solution construction ends. Next,

the pheromone trails are updated by first lowering the trail values by a constant

factor (pheromone evaporation) and then allowing each ant to deposit an amount

of pheromone on the related trail value. For example, at time t if ant k allocates

task 3 to station 5, then the related trail value for this solution component is
)(5,3 tT k∆ . Trail values are updated as follows:

() ()),()(1)1(

1
jitTtTtT m

k
k

ijijij ∀∆+−⋅−= ∑ =
ρ (4.4)

where m is the number of ants and ρ is the pheromone trail evaporation rate (0 < ρ

< 1). Rate ρ enables the algorithm to forget the previously made bad selections.

Thus, unlimited accumulation of the pheromone trails is avoided. The amount of
pheromone trail,)(tTij represents the learned desirability of allocating task i to

station j. The trail values that are not updated will decrease exponentially with the
number of tours.)(, tT k

ji∆ is the amount of pheromone deposit by ant k if task i is

allocated to station j at tour t and it is defined as:







=∆

otherwise

kantbyjstationtoallocatedisitaskif
tf

Q
tT kk

ij

0
)()((4.5)

where f k(t) is the station number found by ant k and Q is a constant.)(, tT k
ji∆

depends on how well the ant has performed. Equation 4.5 satisfies more

pheromone to be deposit for better solutions (allocations with less number of

stations). The tasks which are allocated to some specific stations by more ants and

which are the part of a solution with less number of stations will receive more

pheromone. Therefore, these tasks are more likely to be allocated to same stations

in future tours of the algorithm. This choice helps to direct the search towards the

better solutions.

During tours, changing pheromone trail information reflects the experience

acquired by ants.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

59

The initial amount of pheromone)0(, jiT is set to a very small positive

constant value, τ0 and the total number of ants m, is set equal to the total number

of tasks, n. Values of α, β, ρ and Q are found after fine-tuning of these

parameters. Further information will be given in Chapter 5. Flowchart of the AS

algorithm is given in Figure 4.4.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

60

Figure 4.4: Flowchart of Ant System

Th
is

 lo
op

 is
 re

pe
at

ed
 p

re
de

te
rm

in
ed

 n
um

be
r o

f t
im

es

Get Data
-Get task times and precedence graph;
-Update [Task Time Matrix]; [Precedence Matrix];

First Initialize
-Initialize all related matrices and variables;
 [Task Time Matrix] = 0; [Precedence Matrix] = 0; [Positional Weight Matrix] = 0;
 [Trail Matrix] = τo

(*) [Probability Matrix] = 0; [Tabu Matrix] = 0;
 [Task Allocation Matrix] = 0; [Ant Memory Matrix] = 0;
 Best solution of the tour = 0; Best solution found up to now = 0;
 (*) τ0 : initial trail

Proceed Ants (Solution Construction)
-Repeat (n) times; (Until all task are allocated; or tabu list is full)
 -For each ant;
 -Determine available and feasible tasks;
 -For each task calculate the probability of allocating that task to current station using
 random-proportional rule (Equation 4.3) and Update [Probability Matrix];
 -Select a task and allocate it to current station;
 -Update [Task Allocation Matrix], [Tabu Matrix] and [Ant Memory Matrix]

Global Trail Update
-For each entry of the [Trail Matrix];),();1()1()(jitTtT ijij ∀−⋅−= ρ
-IF task i is allocated to station j by ant k THEN;

)(
)(

tf
QtT k

k
ij =∆ ;

),()()()(
1

jitTtTtT m

k
k

ijijij ∀∆+⋅= ∑ =
;

ELSE;),(0)()(jitTtT ijij ∀+⋅=

Print Results

 Calculate Positional Weights
-Calculate forward and backward positional weights;
-Update [Positional Weight Matrix];

Initialize
-Initialize some of the matrices and variables;
 [Probability Matrix] = 0; [Tabu Matrix] = 0;
 [Task Allocation Matrix] = 0; [Ant Memory Matrix] = 0; Best solution of the tour = 0;

Calculate Station Number
-For each ant calculate station number;
- Calculate the best solution of the tour;
- Update Best solution of the tour;
- IF (Best solution of the tour) is better than (Best solution found up to now) THEN

;

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

61

4.2.2 Ant System with Elitist Strategy (ASelite)
The idea of the elitist strategy is giving an extra emphasis to the best

solution found after every tour (Bullnheimer, Hartl and Strauss, 1997). In the AS

the trail values are updated based on the solution quality of all ants. The level of

contribution depends on the solution quality. A shortcoming of this procedure is

stated by Bullnheimer, Hartl and Strauss (1997) as follows: after a period if the

overall solution quality rises and the difference between the solutions decrease,

the effect of emphasizing better solutions will diminish. Thus the difference in

trail values and also the selection probabilities decrease. Therefore, the

exploitation of the solution space will not be as high as desired. One possible

alternative to solve this problem is elitist strategy.

After the trail values are updated, the best solution of the tour is treated as

if a certain number of elite ants had found that solution. Because some parts of

this solution may belong to the optimal solution. Thus the idea is to guide the

search in succeeding tours. The trail updating mechanism is as follows:

 () ()),()()(1)1((*)

1
jitTtTtTtT ij

m

k
k

ijijij ∀∆+∆+−⋅−= ∑ =
ρ (4.6)

where






=∆

otherwise

kantbyjstationtoallocatedisitaskif
tf

Q
tT kk

ij

0
)()((4.5)







=∆

otherwise

solutionbesttheofpartisjiif
tf

Q
tTij

0

),(
)()((*)(*) σ

 (4.7)

)((*) tTij∆ is the increase of trail level for allocation of task i to station j

caused by the elite ants. σ is the number of elite ants and f (*)(t) is the station

number of the best solution found. Bullnheimer, Hartl and Strauss’s (1997)

experiment results for the TSP are very good when σ = α = β. Nevertheless

ASelite does not give good results for UALBP. After a period, almost all ants find

the best solution of the tour. Although the allocation of each ant is different from

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

62

each other, the station number of these different allocations is the same. Thus, the

elitist strategy is applied for all of them and the extra emphasis is given for all of

their solutions. This does not help with the distinction of the actual best solution.

Actually this is related with the topology of the cost function. Hertz and

Widmer (2003) state that the topology of the cost function should not be too flat

for the heuristics to get the optimal point. The cost function can be considered as

an altitude with mountains, valleys and plateaus. If the cost function is too flat, it

is difficult for the search mechanism to escape from the large plateaus to fall into

the valleys. To tackle this problem, Hertz and Widmer (2003) suggest adding a

component to the cost function to discriminate the solutions with the same

original cost function value.

4.2.3 Ant System with Ranking (ASrank)
The concept of ranking is similar to the elitist strategy. After all m ants

generate a tour, these ants are sorted according to their solution quality. (f1 ≤

f2≤…≤fm). The contribution of an ant to the trail level update is weighted

according to the rank of that ant (Bullnheimer, Hartl and Strauss,1997). Only w

best ants are considered and this prevents the over-emphasis of the pheromone

trails when there are too many ants.

Based on computational results, Bullnheimer, Hartl and Strauss (1997)

state that the exploitation as well as the exploration is considerably high and well

balanced. Nevertheless ASrank is not proper for UALBP. In UALBP, after a period

almost all ants find the best solution of the tour. Although the allocation of each

ant is different from each other, the station number of these different allocations is

the same. Therefore, when ants are sorted by their solution quality (the number of

stations) most of them will have an equal rank and their contribution to the trail

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

63

level update will be equally weighted. There will be no distinction among the

solutions and this will not help the exploitation of the better solutions.

4.2.4 Ant Colony System (ACS)
Ant Colony System is proposed by Dorigo and Gambardella (1997),

Gambardella and Dorigo (1996) to improve the performance of the AS. ACS is

based on an earlier algorithm proposed by the same authors, called Ant-Q.

ACS differ from the AS in three main aspects: (i) ACS uses a more greedy

action choice rule than that of AS, (ii) the global pheromone trail update rule is

only applied for the global-best solution (after a tour), (iii) while the ants construct

a solution, a local pheromone updating rule is applied (during a tour). In the

following, these modifications will be explained in more detail.

Tour Construction. In ACS the state transition rule is defined as follows:

an ant allocates a task s to station j by applying the rule given in Equation (4.8)

[] []{ }





 ≤⋅

= ∈

)exp(

)(exp)(maxarg 0

lorationbiasedotherwiseS

loitationqqiftT
s uallowedu

uuj
βη

 (4.8)

where q is a uniformly distributed random number in [0,1], q0 is a parameter

(0≤ q0≤1), and S is a random variable selected according to the random-

proportional rule given in Equation (4.3). The state transition rule is the

combination of Equations (4.3, 4.8) and called pseudo-random-proportional rule.

This state transition rule favors allocations with a large amount of

pheromone. Parameter q0 controls the relative importance of exploitation versus

exploration. If q≤q0 then the best task is chosen and this selection is a kind of

greedy behavior which favors the exploitation of the search space. Otherwise, a

task is chosen according to Equation (4.3) and that favors the exploration of the

search space.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

64

Global Pheromone Trail Update. In ACS only the globally best ant is

allowed to deposit pheromone. This ant is the one, which finds the best solution

from the beginning. Dorigo and Gambardella (1997) state that the global updating

rule together with the use of the pseudo-random-proportional rule makes the

search more directed. The global updating is performed after all ants have

constructed their solutions (when a tour is completed) according to Equation (4.9):

 () ())(1)1()(
11 tTtTtT gb

ijijij ∆⋅+−⋅−= ρρ (4.9)

where







=∆

otherwise

solutionbestglobaltheofpartisjiif
tftT gbgb

ij

0

),(
)(

1
)()()((4.10)

0≤ρ1≤1 is pheromone evaporation parameter, and f(gb)(t) is the station number of

the globally best solution. As in AS, the global updating favors the better

solutions. However, this time only those trail values belonging to the globally best

solution receive reinforcement.

Local Pheromone Trail Update. In ACS, additional to the global updating

rule, the ants use a local update rule. That is just after they allocate task i to station

j they change the related pheromone level by using Equation (4.11):

 () () 022 1)1(τρρ ⋅+−⋅−= tTtT ijij (4.11)

where ρ2 ,0≤ρ2≤1, and τo is the initial pheromone level. The effect of the local

updating is to make the desirability of tasks change dynamically. The local

updating rule makes the already chosen task less desirable for the following ants.

In this way, the exploration of unallocated tasks is increased and the ants make a

better use of pheromone information.

For UALBP, ACS performed better than AS, ASelite and yield better

results. ACS is able to find the optimal solution for some small and medium size

instances that AS and ASelite can not find the optimal solution. Nevertheless,

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

65

ACS’s performance is poor for some large size problems. ACS finds such

allocations having one station more than the optimal allocation. Details are given

in Chapter 5. When we study the behavior of ACS, our investigations make us

focus on pheromone trail accumulation mechanism and the structure of the trail

matrix. When the problem size increases, it gets difficult to find the proper task

allocation that gives the optimal solution. While searching for the optimal

allocation it is very hard to find the exact place of a task (that may lead to an

optimal allocation) by using only a random selection mechanism. Therefore, to

increase the probability of allocating a task to a correct place, the related

pheromone level must be comparatively high. Also structure of the trail matrix

must be suitable in order to allow this pheromone accumulation. Consider the

Jackson problem given in Figure 4.5. The optimal task allocation is given in

Figure 4.5.a and Figure 4.5.b with different representations.

When the location information is not given, it is not clear where the tasks are

located in a station and how they are allocated (forward or backward). Sometimes

knowing only to which station a task is assigned will not be enough. Consider

station 4 in Figure 4.5.a. We only know that tasks 4 and 7 are allocated to station

4. However, the location information is unknown. With this information, it is

possible to define three different feasible allocation alternatives:

Figure 4.5.a: Optimal task allocation for the Jackson
problem, c=10. Location of tasks is not given.

Figure 4.5.b: Optimal task allocation for the Jackson
problem, c=10. Location of tasks is given.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

66

Alternative 1: Station 4; Alternative 2: Station 4; Alternative 3: Station 4;

However, only Alternative 1 is the part of the given optimal allocation.

 In order to emphasize the location information, the structure of the trail

representation is modified to consider the location values. With this new
modification, for a given tour number t,)()(tT upperij represents the desirability of

allocating task i to the upper part of station j; and)()(tT lowerij represents the

desirability of allocating task i to the lower part of station j. For station 4, only

trail values T4,4(upper)(t) and T7,4(lower)(t) will receive reinforcement. However in the

previous version of ACS, when T4,4(t) value is reinforced, at the same time
T4,4(upper)(t) and T4,4(lower)(t) receive reinforcement (Note that,)(tTij =

)()(tT upperij +)()(tT upperij) but only the T4,4(lower)(t) characterizes the real situation.

With this new pheromone structure, proposed algorithm performs better

than the previous version. It is able to find the optimal allocations that the

previous version could not find. For the problems that optimal solution is found,

this modified version finds the optimal solution faster than the previous version.

Flowchart of the ACS algorithm is given in Figure 4.6 (The pheromone

structure modification is not included in the figure).

4

7

4, 7

7, 4

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

67

Figure 4.6: Flowchart of Ant Colony System

Th
is

 lo
op

 is
 re

pe
at

ed
 p

re
de

te
rm

in
ed

 n
um

be
r o

f t
im

es

Get Data
-Get task times and precedence graph;
-Update [Task Time Matrix]; [Precedence Matrix];

First Initialize
-Initialize all related matrices and variables;
 [Task Time Matrix] = 0; [Precedence Matrix] = 0; [Positional Weight Matrix] = 0;
 [Trail Matrix] = τo

(*) [Probability Matrix] = 0; [Tabu Matrix] = 0;
 [Task Allocation Matrix] = 0; [Ant Memory Matrix] = 0;
 Best solution of the tour = 0; Best solution found up to now = 0;
 (*) τ0 : initial trail

Proceed Ants (Solution Construction)
-Repeat (n) times; (Until all task are allocated; or tabu list is full)
 -For each ant;
 -Determine available and feasible tasks;
 -For each task calculate the probability of allocating that task to current station using
 random-proportional rule (Equation 4.3) and Update [Probability Matrix];
 -Select a task and allocate it to current station;

Local Trail Update
() () 022 1)1(τρρ ⋅+−⋅−= tTtT ijij

Global Trail Update
-For each entry of the [Trail Matrix];),();()1()1()()(

11 jitTtTtT gb
ijijij ∀∆⋅+−⋅−= ρρ

-IF (i,j) is part of the global best solution THEN;

)(
1)()(

)(

tf
tT gb

gb
ij =∆ ;

ELSE; ;0)()(=∆ tT gb
ij

Print Results

 Calculate Positional Weights
-Calculate forward and backward positional weights;
-Update [Positional Weight Matrix];

Initialize
-Initialize some of the matrices and variables;
 [Probability Matrix] = 0; [Tabu Matrix] = 0;
 [Task Allocation Matrix] = 0; [Ant Memory Matrix] = 0; Best solution of the tour = 0;

Calculate Station Number
-For each ant calculate station number;
- Calculate the best solution of the tour;
- Update Best solution of the tour;
- IF (Best solution of the tour) is better than (Best solution found up to now) THEN

;

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

68

4.2.5 Modified Ant Colony System (ACS) with Random
 Search

With the new pheromone structure, ACS algorithm performs better than

the previous versions. It is able to find the optimal allocations that the previous

version could not find (Details are given in Chapter 6). This new pheromone

structure allows the exploitation of some new and important information. This fact

leads us to investigate the task allocations and accumulation of the trail values for

problems that the optimal solution is not found. We focused on the two smallest

size problems (Buxey with cycle time of 36, and Gunther with cycle time of 69)

that AS, ASelite, and ACS could not find the optimal solution; none of the

modifications and parameter fine-tuning succeed with these problems.

In order to explain our modifications, consider Gunther problem with 35

tasks and cycle time of 69. We run ACS algorithms for 1 replication until 1000

tours have been completed and store the trail matrix data to investigate the

accumulation of pheromone (Trail matrix for tour number 10, 100, 500, 1000 is

given in Appendix A). After a short period, most of the entries of the trail matrix

converge to zero and the remaining entries have a value, which is very close to

zero. Somehow the valuable information intended to gain by pheromone

accumulation is lost. The difference between the very small values of trail matrix

and the values of positional weight matrix is very high. Therefore, the influence of

pheromone trail on the selection probabilities is very low. In this situation, most

of the information for selection probabilities is coming from the heuristic value.

The selection probabilities are mostly proportional to []βηi and the tasks with high

positional weight are more likely to be selected. In this case, algorithm behaves

like a stochastic greedy algorithm. This also explains the fact that why small and

medium size problems are easily solved with ACS. For most of these problems,

the positional weight information is sufficient to search the solution space.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

69

However for harder and larger size instances it is insufficient. Therefore, we need

to magnify the effect of trail values and we need to satisfy the pheromone

accumulation in an effective way.

Modification Step 1. Our first method is simple and works cooperatively

with ACS. We use a secondary pheromone trail accumulation mechanism that

directly collects the task allocation information. After all ants finished a tour and

constructed a full solution (when all tasks are allocated to stations), a secondary

trail update mechanism works in parallel with the global trail update. For each

globally best ant k, if a task i is allocated to location j´(now each station is divided

into two locations) this secondary trail update mechanism updates the related

entry of a secondary trail matrix by adding only 1. We call this secondary trail

matrix as T2, and it is updated as follows:

 ∑ =

∀∆+=
m

k
k
ijijij jitTtTtT

1 '''),()(2)(2)(2 (4.12)

where





=∆
otherwise

kantbestgloballybyjlocationtoallocatedisitaskif
tT k

ij 0
'1

)(2 ' (4.13)

First we collect the T2 matrix for a single and very long replication. By

letting the algorithm to work for a long replication, we give an opportunity for

some critical entries of the T2 matrix to be emphasized more. In their experiments,

Dorigo, Maniezzo, Colorni (1991, 1996) let the algorithm run until 2500 tours

have been completed. Similarly, we have done two experiments: (i) the algorithm

is allowed to run until 5000 tours have been completed, (ii) the algorithm is

allowed to run until 10000 tours have been completed (the T2 matrix for tour

number 5000 and 10000 is given in Appendix B).

Scholl and Klein’s (1999) optimal task allocation for Gunther problem is

given in Figure 4.7. In Table 4.2, we list the ranking of most possible location

alternatives for each task depending on the T2 matrix.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

70

Figure 4.7: Scholl and Klein’s (1999) optimal task allocation for Gunther problem

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

71

 Table 4.2: Ranking of most possible location alternatives for each task depending on T2 matrix

Experiment with 5000 tours Experiment with 10000 tours
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

1 1 3 5 7 13 1 3 5 7 13
2 1 3 5 7 9 1 3 5 7 9
3 3 5 7 1 9 3 5 7 1 9
4 7 9 5 11 3 7 9 11 5 3
5 3 1 5 7 9 3 1 5 7 9
6 3 7 5 9 1 3 7 5 9 1
7 3 7 5 9 1 3 7 5 9 1
8 7 3 9 5 1 7 3 5 9 1
9 9 11 7 5 13 7 11 9 5 3

10 7 3 9 5 1 3 7 9 5 1
11 14 10 12 8 5 12 14 10 8 7
12 7 3 9 5 1 3 7 9 1 11
13 10 8 14 12 6 12 10 6 14 7
14 9 11 5 7 3 9 11 5 7 3
15 11 13 9 7 5 11 13 9 7 5
16 13 14 11 12 9 13 11 14 12 9
17 1 3 5 7 9 3 1 5 7 9
18 9 11 5 7 3 9 11 5 7 3
19 11 9 13 7 5 11 13 9 7 5
20 13 14 11 12 9 13 14 11 9 10
21 12 14 10 13 11 14 12 10 13 11
22 12 14 10 8 6 12 14 10 8 6
23 10 12 8 6 14 12 10 6 8 14
24 10 8 12 4 6 10 4 8 14 12
25 10 8 6 12 4 10 8 6 12 4
26 8 6 10 12 4 8 6 10 4 12
27 4 8 6 10 12 4 8 6 20 14
28 4 2 6 8 14 4 2 6 8 12
29 2 4 6 8 10 2 4 6 8 10
30 2 8 10 12 6 2 8 10 12 6
31 2 6 8 10 12 2 6 8 10 4
32 2 6 4 8 10 2 6 4 8 10
33 2 4 6 8 10 2 6 4 8 10
34 2 4 6 8 10 2 4 6 8 10
35 2 4 6 8 10 2 4 6 8 10

Total
matching 14 10 3 5 2 14 8 5 3 3

Alternatives

Task

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

72

When we compare our alternatives with Scholl and Klein’s (1999) optimal

task allocation, the results are very encouraging. In Table 4.2 shaded cells

represents alternatives matching with Scholl and Klein’s (1999) optimal task

allocation. For most of the tasks the first or the second alternative gives a

matching.

Modification Step 2.

Observation 1. While collecting data for the T2 matrix we take a single

long run. However, for a particular replication, consecutive tours are not

independent form each other. Therefore the observations are neither independent

nor identically distributed. There is a bias and we can not statistically trust our

data. Thus we modify out method. In order to collect reliable data for the T2

matrix we make 100 independent replications (runs) of length 100 tours and for

each replication (run) different random numbers are used.

Observation 2. Since there is no pheromone evaporation mechanism for

the T2 matrix, algorithm does not forget the previously done bad selections and

there is a risk of unlimited accumulation of the trail values. Therefore, during a

single replication at time t, if there is an improvement and globally best solution is

updated then all the entries of the T2 matrix is cleared and new update is done for

only new globally best solution (Because we do not need pheromone

accumulation for previous globally best solution any more).

Observation 3. During a single replication some ants (assume k ants) can

find the same globally best solution. When the T2 matrix is updated for each ant

indeed it is updated k times only for the same single solution. This causes over-

emphasis of that globally best solution. To handle this problem, during a single

run, every solution must be kept in the memory, every new globally best solution

must be compared with the previous globally best solutions and the T2 matrix

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

73

must be updated for only the new globally best solutions. Unfortunately it is a

very hard job to keep every globally best solution in the memory. (Assume that

every tour, k ants find a new solution. For a single replication of length m, there

exist m x k solutions. Moreover each solution is an allocation matrix of n x 2n

dimension; where n is the task number and 2n is the maximum limit allowed)

Solution Labeling Mechanism. We propose a very practical and effective

solution labeling mechanism to overcome this memory problem. Each globally

best solution is characterized with two labels and the algorithm uses these labels

while checking if this solution is previously found or not.

Consider two similar optimal allocation for the Jackson problem with

cycle time of 10. Allocation A and Allocation B are given in Figure 4.8.

Label 1 is calculated as follows:

Label 1 =∑ ∑=
∈









⋅

'

1'
)'(

)('J

j
jIi

itaskofnumberj (4.14)

Label 2 is calculated as follows:

Label 2 =∑ ∏=
∈









⋅

'

1'
)'(

)('J

j
jIi

itaskofnumberj (4.15)

Figure 4.8: Two similar optimal allocation for Jackson problem, c =10.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

74

where, J’ is the total number of locations; I(j’) is the set of tasks allocated to

location j’.

For Allocation A;

Label 1 = 1(1+2+6) + 3(5) + 4(11+9) + 5(4) + 6(7) + 7(3) + 8(10) + 9(8) = 339;

Label 2 = 1(1⋅2⋅6) + 3(5) + 4(11⋅9) + 5(4) + 6(7) + 7(3) + 8(10) + 9(8) = 658.

For Allocation B;

Label 1 = 1(1+2+6) + 3(5) + 4(11+9) + 5(4) + 6(7) + 7(3) + 8(10) + 10(8) = 347;

Label 2 = 1(1⋅2⋅6) + 3(5) + 4(11⋅9) + 5(4) + 6(7) + 7(3) + 8(10) + 10(8) = 666.

Observation 4: There can be different allocations that their Label 1 values

are equal.

Proof: Assume that for Allocation 1 tasks 7 and 5 are allocated to

location n and for Allocation 2 tasks 10 and 2 are allocated to location n.

For Allocation 1, Label 1 = n(7+5) = 12n; Allocation 2, Label 1 = n(10+2) = 12n

For Allocation 1, Label 2 = n(7⋅5) = 35n; Allocation 2, Label 2 = n(10⋅2) = 20n

Observation 5: There can be different allocations that their Label 2 values

are equal.

Proof: Assume that for Allocation 1 tasks 2 and 6 are allocated to

location n and for Allocation 2 tasks 3 and 4 are allocated to location n.

For Allocation 1, Label 1 = n(2+6) = 8n; Allocation 2, Label 1 = n(3+4) = 7n

For Allocation 1, Label 2 = n(2⋅6) = 12n; Allocation 2, Label 2 = n(3⋅4) = 12n

Observation 6: There can not be different allocations that their Label 1 and

Label 2 values are equal.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

75

Proof: Let for Allocation 1 tasks x1 and y1 are allocated to location n and

for Allocation 2 tasks x2 and y2 are allocated to location n.

Assume that Allocation 1 and Allocation 2 are different and their Label 1

and Label 2 values are equal. By using labeling definition we can write:

(1) n(x1 + y1) = n(x2 + y2) ; (Equality of Label 1 values)

(2) n(x1 ⋅ y1) = n(x2 ⋅ y2) ; (Equality of Label 2 values)

By using (2) we can write: (3)
1

22
1 x

yxy ⋅
= and (4)

2

11
2 x

yxy ⋅
= ;

By using (1); x1 + y1 = x2 + y2

 x1 – y2 = x2 - y1

By using (4); 12
2

11
1 yx

x
yxx −=− or By using (3);

1

22
221 x

yxxyx −=−

2

21

2

2
2

2

11

2

21

x
xy

x
x

x
yx

x
xx

−=−
1

22

1

21

1

21

1

2
1

x
yx

x
xx

x
yx

x
x

−=−

 21
2
21121 xyxyxxx −=− 222121

2
1 yxxxyxx −=−

)()(122121 yxxyxx −=−)()(212211 xxxyxx −=−

 x1 = x2 y1 = y2 x1 = x2 y1 = y2

If x1 = x2 and y1 = y2 then Allocation 1 is equal to Allocation 2 and this

contradicts with our assumption. So there can not be and different allocations that

their Label 1 and Label 2 values are equal.

Random Search with Multiple Starts. The T2 matrix is collected in an

effective and statistically correct way after the modifications given in

Observations 1-3. After gathering T2 matrix the ants are used to make a random

search by only using the T2 matrix. This time algorithm is modified to use only

the secondary trail matrix, T2. There is no primary trail update mechanism (no

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

76

local or global pheromone update) or pheromone evaporation. Indeed, tours are

independent from each other. We can call this second stage as a pure random

search with multiple starts.

We test this method with medium size problems that AS, ASelite and ACS

never find the optimal solution. These problems are Buxey with 29 tasks (C=36),

Gunther with 35 tasks (C=69), Warnecke with 58 tasks (C=60, C=78, C=82,

C=86, C=92, C=97, C=104, C=111), Lutz2 with 89 tasks (C=11, C=12, C=13,

C=14, C=17).

This random search method finds the optimal allocation for problems

Buxey (C=36), Gunther (C=69), Warnecke (C=60, C=111). It is an important

development that for the first time we are able to find the optimal solution for

these problems.

However, there is a disadvantage of this method. For large size problems it

requires extensive amount of time to collect the T2 matrix. We test the random

search method on large size problems but we can not find the optimum solution.

Therefore, we need a more efficient mechanism to search the solution space.

Our observations and investigations on the structure of the T2 matrix led

us to develop the New Ant Colony Optimization method.

4.2.6 A New Ant Colony Optimization (ACO) Method
This new method takes inspiration from the ACS and the secondary trail

accumulation mechanism proposed in the previous section. For ACS, after a short

period most of the entries of the trail matrix converge to zero and the remaining

entries have a value, which is very close to zero. Somehow the valuable

information intended to gain by pheromone accumulation is lost. The secondary

pheromone trail accumulation mechanism particularly overcomes this situation.

However, this method is a two-stage method and it requires extensive amount of

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

77

time to collect the T2 matrix. Furthermore, only random search is not enough for

the large size problems. Therefore, this new method is designed to overcome these

problems.

Version 1.

Modification of Local Pheromone Update Mechanism. We modify the

local pheromone update mechanism of ACS to prevent losing valuable

information gained by the pheromone accumulation. The new local pheromone

update mechanism is defined as follows:

() () 11)(2 +−⋅= tTtT ijij ρ (4.16)

where ρ2 ,0≤ρ2≤1. Instead of adding a very small value ρ2⋅τo (Equation 4.11), we

reinforce the trail matrix by adding up 1 as we did in the previous method while

collecting the T2 matrix. Thus, emphasize of the related trail values will be more

and their effect will be magnified by this way. For the pheromone evaporation we

use only ρ2 as a multiplier instead of (1-ρ2).

Modification of Global Pheromone Update Mechanism. We modify the

global pheromone update mechanism of ACS to increase the effect of better

solution on trail reinforcement. The new global pheromone update mechanism is

defined as follows:

 () ())(1)1()(
1 tTtTtT gb

ijijij ∆+−⋅−= ρ (4.17)

where







=∆

otherwise

solutionbestglobaltheofpartisjiif
tf

Optimal
tT gbgb

ij

0

),(
)()()()((4.18)

0≤ρ1≤1 is pheromone evaporation parameter, Optimal is the optimal station

number of the considered problem, f(gb)(t) is the station number of the globally

best solution and
)()(tf

Optimal
gb is a reward function that satisfies more reinforcement

for the solutions which have less station number (a solution with less station

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

78

number is more close to the optimal solution and the reward value will be more

for this solution).

Modification of Pseudo-Random-Proportional Rule. When we investigate

the Scholl and Klein’s (1999) optimal task allocations we note that, the idle time

of almost all stations is zero, namely it is not possible to allocate an another task

to these stations. These stations are called full-loaded stations. This is a very

interesting and important characteristic of the optimal solutions.

We have to guide the search mechanism to obtain such kind of task

selection and allocation, which gives a full-load. Duration of a task is the key

point. Thus, the task selection process (state transition rule) must also consider the

task times. On the other hand, it is an important decision to consider which tasks

first; the tasks with low duration or high duration?

Consider an empty station. At the beginning no task is allocated and the

idle time is equal to the cycle time. Assume that first the tasks with low duration

are allocated to that station. As the low duration tasks assigned, the remaining idle

time decreases and only the tasks with high duration remain unassigned. Later on,

there will be only limited idle time left which is not enough for the assignment of

the remaining tasks with high duration. On the contrary, if the tasks with high

duration are allocated to that station first, later the remaining tasks with low

duration would not be a problem. It will be easy to allocate them to this station or

to an another available station. Therefore, we modify the task selection

mechanism (state transition rule) to emphasize the tasks with high duration. The

new random-proportional rule is defined as follows:

[] [] []
[] [] []()









∈

⋅⋅

⋅⋅

= ∑
∈

otherwise

allowediif
ttT

ttT

tp
k

allowedk
ikkj

iiij

k
ij

k

0

)(

)(

)(
ββα

ββα

η

η

 (4.19)

where allowedk is the set of available and feasible tasks for ant k.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

79

An ant allocates task s to station j by applying the rule given by Equation (4.20):

[] [] []{ }




 ≤⋅⋅

= ∈

otherwiseS

qqifttT
s uallowedu

uuuj 0)(maxarg ββη
 (4.20)

where q is a uniformly distributed random number in [0,1], q0 is a parameter (0≤

q0≤1), and S is a random variable selected according to the new random-

proportional rule given in Equation (4.19).

When we test the new method on medium and large size test problems

(Buxey with 29 tasks, Gunther with 35 tasks and Mukherje with 94 tasks), we

investigate that these modifications are effective and the trail values are

accumulated in a consistent way. For illustrative purpose consider Buxey problem

with cycle time of 36. In Figure 4.9, the trail accumulation for the ACS and the

new method is given.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

80

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

to u r n u m b e r

tr
ai

l v
al

ue

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

to u r n u m b e r

tr
ai

l v
al

ue

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

to u r n u m b e r

tr
ai

l v
al

ue

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

to u r n u m b e r

tr
ai

l v
al

ue

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

to u r n u m b e r

tr
ai

l v
al

ue

Figure 4.9.a: Trail accumulation for ACS, α =1, β =1, ρ1 = ρ2 = 0.4, q0 =0.2, initial trail =1

Figure 4.9.c: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.95, q0 =0.3, initial trail =1

Figure 4.9.d: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.3, initial trail =1

Figure 4.9.e: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.99, q0 =0.8, initial trail =1

Figure 4.9.b: Trail accumulation for the new method, α =1, β =1, ρ1 = ρ2 =0.9, q0 =0.3, initial trail =1

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

81

A little change in parameters ρ1, ρ2, and q0 effects the trail accumulation.

Trail values are not too small as they were in ACS and they accumulate more

consistently. Also, the test results of this new method on medium size and large

size problems indicates that defining locations for each station is not necessary,

namely when the stations are not divided into locations, the algorithm performs

better and finds the optimal solutions faster.

After a short period, the trail values are stabilized and the trail matrix

reaches a steady-state. Short number of tours is necessary to emphasize the trail

matrix. For test problems (Buxey with cycle time of 36, and Gunther with cycle

time of 69) it is possible to find many matchings with Scholl and Klein’s (1999)

optimal task allocation.

Consider Buxey problem with 29 tasks and cycle time of 36. We have

done three experiments; run the algorithm until 100, 250 and 1000 tours have

been completed and store the trail matrices (The trail matrix for tour number 100,

250, 1000 is given in Appendix C).

Scholl and Klein’s (1999) optimal task allocation for Buxey problem is

given in Figure 4.10. In Table 4.3 we list the ranking of most possible station

alternatives for each task depending on the trail matrices.

Figure 4.10: Scholl and Klein’s (1999) optimal task allocation for Buxey problem

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

82

Table 4.3: Ranking of most possible location alternatives for each task depending on trail matrix.

Experiment with 100 tours Experiment with 250 tours Experiment with 1000 tours
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

1 1 2 4 6 8 1 2 4 3 5 1 2 3 4 5
2 2 1 9 8 7 2 1 8 4 5 2 1 4 8 5
3 3 4 2 6 7 3 2 4 5 8 3 4 2 5 7
4 3 4 6 7 8 3 4 5 6 8 3 4 5 6 7
5 5 8 6 4 7 5 6 4 7 8 6 5 4 7 8
6 3 2 9 8 1 3 2 4 1 9 3 2 1 4 5
7 1 3 2 4 5 1 3 2 4 5 1 3 2 4 5
8 8 6 9 7 5 6 7 8 9 5 6 7 8 9 5
9 3 2 1 4 5 3 2 4 1 5 3 2 4 1 5

10 4 5 6 3 2 5 4 6 3 7 5 4 6 7 8
11 7 6 8 9 5 7 8 6 9 - 7 8 6 9 -
12 4 8 6 3 5 4 5 3 8 6 4 6 5 8 7
13 9 7 8 5 6 9 8 7 6 5 9 8 7 6 5
14 4 5 7 8 6 7 6 5 8 9 7 6 8 9 5
15 9 7 8 6 5 9 8 7 6 4 9 8 7 6 5
16 7 8 6 9 5 8 9 6 7 5 9 8 6 7 5
17 5 6 8 9 7 6 7 5 8 9 5 6 7 8 9
18 5 6 7 8 9 5 6 8 7 9 6 5 8 7 9
19 9 8 7 6 5 9 8 7 6 5 9 8 7 6 5
20 5 4 8 9 6 5 4 6 8 7 5 4 6 7 8
21 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
22 4 5 7 6 8 4 5 6 7 3 4 5 6 3 7
23 3 4 5 7 8 4 3 5 9 7 3 4 5 8 9
24 1 2 3 9 5 1 3 2 4 9 1 2 3 4 9
25 9 8 7 4 6 9 8 7 4 6 9 8 7 6 3
26 2 4 3 5 6 2 3 4 5 6 2 3 4 5 6
27 9 8 7 4 5 9 8 6 7 5 9 8 3 4 5
28 2 1 3 4 9 2 1 3 4 9 2 1 3 4 9
29 1 2 3 4 9 1 2 3 1 - 1 2 3 4 -

Total
matching 8 5 8 3 2 10 8 3 3 3 10 8 4 4 1

Alternatives

Task

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

83

When we compare our alternatives with Scholl and Klein’s (1999) optimal

task allocation, the results are encouraging. In Table 4.3 shaded cells represents

the alternatives matching with Scholl and Klein’s (1999) optimal task allocation.

For most of the tasks, the first or the second alternative gives a matching, however

there are many instances that the third or the fourth alternative also gives a

matching.

This method is able to find optimal allocation for small, medium and large

size problems that non-of the previous methods succeed. The performance of this

method is very encouraging. However, for the two largest problems (Barthol2

problem with 148 tasks, and Scholl problem with 297 tasks) we need

improvement.

 Version 2.

Version 1 succeed almost all problems but it’s performance is insufficient

for the two largest problems.

Accumulation of the trail values is the reason of this situation. When the

trail matrices are investigated (The trail matrices gathered for tour number 100,

250, 1000 are given in Appendix C) most of the entities in a column are so close

to each other, namely for a station the trail values of the task alternatives are very

close to each other. Also, when the task alternatives are too many (when the

problem size is very large) it is very hard to find the proper task allocation.

Version 2 is the modified style of Version 1 joined up with a secondary

global pheromone trail update mechanism and works as follows:

() ())()(tTtTtT loadfullgb
ijijij

−∆+= (4.21)

where








−=∆ −

otherwise
stationloadedfullaisjand

solutionbestglobaltheofpartisjiifQ
tT loadfullgb

ij

0

),(
)(

2
)(

(4.22)

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

84

After regular global pheromone update (as defined in Equation 4.17 and

Equation 4.18), a secondary pheromone update is done for the globally best ants.

The trail values of the tasks belonging to a full-loaded stations are reinforced with

a very high number. Thus, after a very short time the trail values of these tasks

will be distinguished easily. This situation can be easily observed for the trail

matrices given in Appendix D.

We consider Buxey problem with cycle time of 36. We have done three

experiments and run the algorithm until 100, 250 and 1000 tours have been

completed and store the trail matrices (Trail matrix for tour number 100, 250,

1000 is given in Appendix D). Scholl and Klein’s (1999) optimal task allocation

for Buxey problem is given in Figure 4.10. In Table 4.4 we list the ranking of

most possible station alternatives for each task depending on the trail matrices.

For Version 2 matching rates of the first and the second alternatives are

slightly higher than Version 1.

Version 2 succeeds for small, medium and large size problems and able to

find the optimal allocation. Only there are a few instances that it finds such an

allocation with one station more than the optimal. Versions 2 also solves the

Barthol2 problem with 148 tasks optimally. Only the largest problem Scholl with

297 tasks is a handicap and Version 2 finds such an allocation with one station

more than optimal.

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

85

Table 4.4: Ranking of most possible location alternatives for each task depending on trail matrix

Experiment with 100 tours Experiment with 250 tours Experiment with 1000 tours
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

1 1 - - - - 1 - - - - 1 - - - -
2 1 - - - - 1 - - - - 1 - - - -
3 3 5 2 8 4 3 4 8 - - 3 4 8 - -
4 3 5 2 6 7 4 6 5 7 8 4 3 6 5 8
5 6 7 5 9 8 4 6 5 8 7 6 5 4 7 9
6 1 2 3 7 9 1 2 5 4 7 1 2 5 8 9
7 1 3 7 5 6 1 5 4 7 3 1 5 7 4 3
8 7 9 8 6 5 5 7 9 8 6 5 7 9 8 -
9 1 4 3 7 6 1 4 5 6 13 1 5 6 7 4

10 5 2 3 7 4 5 2 7 6 9 2 5 7 8 6
11 7 8 10 - - 8 9 7 - - 8 9 - - -
12 5 7 3 6 13 5 2 7 4 6 5 7 6 4 9
13 7 6 8 9 5 4 7 6 9 8 6 4 8 7 9
14 4 5 7 6 3 5 7 4 6 2 5 4 7 6 9
15 6 7 8 9 - 5 8 9 7 - 9 7 8 6 -
16 6 9 7 8 5 7 6 9 8 5 6 7 9 8 5
17 5 7 6 9 8 6 8 7 9 - 6 7 9 8 -
18 6 5 9 8 7 6 7 9 8 - 6 8 7 9 -
19 7 6 5 9 8 7 6 5 9 8 7 6 8 9 5
20 5 7 9 8 - 5 7 9 8 - 5 7 9 8 -
21 5 8 7 6 9 5 7 9 6 8 5 6 8 7 9
22 4 5 6 7 9 5 7 6 9 8 5 6 8 7 9
23 4 9 5 7 - 9 4 6 - - 4 6 7 9 -
24 2 3 4 9 - 2 3 4 9 - 2 3 9 7 -
25 4 5 9 - - 3 2 9 7 - 3 9 8 - -
26 2 3 4 5 7 2 5 4 6 3 2 4 3 8 5
27 7 3 6 8 4 5 7 6 9 8 5 7 6 8 9
28 4 3 5 - - 3 4 8 1 - 3 4 7 9 -
29 2 3 - - - 2 8 3 - - 2 - - - -

Total
Matching 11 11 2 3 1 8 9 3 3 2 11 5 4 4 2

Alternatives

Task

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

86

For Version 2 matching rates of the first and the second alternatives are

slightly higher than Version 1. Especially matching rates of the trail matrix

gathered for 100 tour is higher than Version 1. These high matching rates

indicates that the trail reinforcement mechanism of Version 2 is effective and less

number of tours are enough to collect the trail matrix.

4.2.7 Ant Colony System Augmented with Simulated
Annealing (ACS with SA)

We propose a modified version of ACS augmented with SA in order to

improve the performance of ants. We intend to use SA as a support mechanism

that works cooperatively with each ant. When a tour is completed, namely after an

ant constructs a full solution, SA based mechanism efforts to improve the ants

solution with swap (swapping of two tasks located in different stations), insert

(inserting a task to an another station), and repair (instead of rejecting infeasible

alternatives and generating a new alternative, repairing module repairs infeasible

alternatives and makes them feasible, thus computational effort is saved) modules.

ACS with SA is only tested on very small size problems however it’s

performance is poor. Even for the second smallest problem Jackson with 11

elements, the computation time ranges between 2.53 hours and 164.63 hours.

4.2.8 Ant Colony System Augmented with Beam Search
(ACS with BS)

A modified version of ACS augmented with beam search (BS) is proposed

to direct the search in an intelligent way. As stated in Section 4.2.5 for ACS after

a short period most of the entries of the trail matrix converge to zero and the

remaining entries have a value, which is very close to zero. Somehow the valuable

information intended to gain by the pheromone accumulation is lost. The

CHAPTER 4. PROPOSED APPROACH: ANT COLONY OPTIMIZATION

87

difference between very small values of the trail matrix and the positional weight

values is very high. In this situation most of the information for the selection

probabilities is coming from the heuristic value. Thus, the selection probabilities

are mostly proportional to []βηi and the tasks with high positional weight are more

likely to be selected. Another disturbing point is the structure of heuristic

function. Heuristic function (positional weights) is static and it is not adapting

itself (where as trail matrix does) as the search proceeds.

Instead of using positional weights we propose beam search to calculate

the value of the heuristic function. Consider an ant k; just before allocating a task

to station j, for each task s (s∈alloweds) BS continues an imaginary allocation

process. By using a very simple allocation mechanism, BS allocates the remaining

tasks and calculates the station number of the imaginary allocation if that task s

would have been selected for allocation. Instead of using positional weights, beam

search supplies an estimate of the next move. Heuristic function values of the

promising tasks will be higher than non-promising task. Therefore the selection

probability of these promising tasks are expected to be high.

ACS with BS is tested on small and medium size problems. Structure of

the beam search is very suitable for ACO however the performance of the

algorithm is poor in terms of computational time. It requires excessive amount of

time to complete a single tour.

 88

Chapter 5

Experimental Setting

 In this chapter, we present the parameters that we use in our numerical

study and explain how we determine these parameters.

Cycle time (C), task processing times (t) and number of tasks (n) are the

inputs of the algorithm. The other parameters such as number of ants (m), α, β, ρ,

ρ1, ρ2, Q, Q2, q0, τ0 are also used in the algorithm.

 In the following section we briefly explain how to set up and fine tune

these parameters for various versions of the proposed ant algorithms.

The performances of the proposed algorithms are tested by using the

benchmark problems available in the literature. In the U-type assembly line

literature, there are a number of test problems used by several researchers (Scholl

and Klein, 1999 classify these problems into three data sets: Talbot et al., 1986;

Hoffmann, 1990, 1992; Scholl, 1993). These data sets are available at:

 (i) http://www.assembly-line-balancing.de/

 (ii) http://www.wiwi.uni-jena.de/Entscheidung/alb/

 (iii) http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/

 The first data set considers 64 instances with varying problem sizes

ranging from 8 to 111 tasks. The second data set considers 50 instances with

varying problem sizes ranging from 30 to 111 tasks. 13 of these instances are also

CHAPTER 5. EXPERIMENTAL SETTING

89

contained in Set 1. The last data set is relatively new and most complex data set

such that it considers 168 instances with varying problem sizes ranging from 25 to

297 tasks.

 We use proposed algorithms (Ant System, Ant System with Elitist Strategy,

Ant Colony System, New Ant Colony Optimization Approach; Version 1 and

Version 2) to solve 190 instances from these data sets and compare the results

with ULINO (Scholl and Klein, 1999) and simulated annealing based algorithm of

Erel, Sabuncuoglu and Aksu (2001). The computational results of SA based

algorithm are provided only for 190 problem instances. Therefore we restrict

ourselves only to those problems instead of whole data set. These data sets that we

consider are given as follows:

Data Set 1:

Bowman (8 tasks, C = 20);

Mansoor (11 tasks, C = 48, 62, 94);

Jackson (11 tasks, C = 7, 9, 10, 13, 14, 21);

Mitchell (21 tasks, C = 14, 15, 21, 26, 35, 39);

Arcus2 (111 tasks, C = 5755, 8847, 10027, 10743, 11378, 17067);

Data Set 3:

Roszieg (25 tasks, C =14, 16, 18, 21, 25, 32);

Buxey (29 tasks, C = 27, 30, 33, 36, 41, 47, 54);

Lutz1 (32 tasks, C = 1414, 1572, 1768, 2020, 2357, 2828);

Gunther (35 tasks, C = 41, 44, 49, 54, 61, 69, 81);

Hahn (53 tasks, C = 2004, 2338, 2806, 3507, 4676);

Warnecke (58 tasks, C = 54, 56, 58, 60, 62, 65, 68, 71, 74, 78, 82, 86, 92, 97, 104,111);

Wee-mag (75 tasks, C = 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

45, 46, 47, 49, 50, 52, 54, 56);

Lutz2 (89 tasks, C = 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21);

CHAPTER 5. EXPERIMENTAL SETTING

90

Lutz3 (89 tasks, C = 75, 79, 83, 87, 92, 97, 103, 110, 118, 127, 137, 150);

Mukherje (94 tasks, C = 176, 183, 192, 201, 211, 222, 234, 248, 263, 281, 301, 324,

351);

Arcus2 (111 tasks, C = 5755, 8847, 10027, 10743, 11378, 17067);

Barthold (148 tasks, C = 403, 434, 470, 513, 564, 626, 705, 805);

Barthol2 (148 tasks, C = 84, 85, 87, 89, 91, 93, 95, 97, 99, 101, 104, 106, 109, 112,

115, 118, 121, 125, 129, 133, 137, 142, 146, 152, 157, 163, 170)

Scholl (297 tasks, C = 1394, 1422, 1452, 1483, 1515, 1548, 1584, 1620, 1659, 1699,

1742, 1787, 1834, 1883, 1935, 1991, 2049, 2111, 2177, 2247, 2322, 2402, 2488, 2580,

2680, 2787)

Task Processing Time (t) is the duration to complete a task. In this

research task processing times are assumed to be deterministic.

Station Time (ST) is the sum of the processing times of tasks that are

performed at the same station. The station time should not exceed the cycle time.

Cycle Time (C) is the time interval between two successive outputs of a

station. The cycle time of a worker is defined as the time interval between his

consecutive arrivals at his first task, and consists of operation times, walking time

between tasks which are located at the entrance side and at the exit side. In this

research walking times are assumed to be zero. A new item can only enter a

station only after a product is completed. Cycle time of a station is bounded by the

maximum task time of the tasks allocated to that station and total duration of all

tasks (;max
1

∑
=∈

≤≤
n

i
iiSi

tCt
k

Sk is the set of assigned to station k = 1,..,K). Also total

operation time of tasks assigned to a station k, station

time, should not exceed the cycle time (KkCt

kSi
i ,..,1=≤∑

∈

).

CHAPTER 5. EXPERIMENTAL SETTING

91

 Scholl and Klein (1999) report the optimal station number for most of the

problem instances, however some of them are given in the interval. A simple

lower bound on the minimal number of stations is equal to 







= ∑

=

n

i
i CtLB

1
/ ,

where x is the smallest integer larger than x (Scholl and Klein, 1999; Erel,

Sabuncuoglu and Aksu, 2001). Besides the simple lower bound LB, Scholl and

Klein (1999) use three additional bound arguments. The upper bound on the

minimal number of stations is proposed to be the required number of stations after

all the tasks are assigned and a feasible solution is found.

Number of Tasks (n) for each problem is given at Scholl and Klein’s web

site. All related data (number of tasks, task processing times and precedence

relations) is given as a compressed file. This data file can be downloaded from

this web address (http://www.wiwi.uni-jena.de/Entscheidung/alb/albdata.zip).

 Number of Ants (m): Each ant is a problem-solving agent. Cooperation

between ants is one of the important characteristics of the ACO metaheuristics. In

fact, although a single ant is capable of construct a solution, better solutions are

found when a colony of ants are used. Good solutions are exposed when these

agents interact with each other (by using trail values) and work in cooperation.

Dorigo and Stütze (2000) suggest that ACO algorithms perform better when the

number of ants is set to a value m > 1. Dorigo, Maniezzo and Colorni (1991,

1996); Colorni, Dorigo and Maniezzo (1991, 1992) also suggest that the optimal

number of ants should be taken close to the number of cities (m≈n) for TSP. Our

test results support this fact. It is better to take number of ants m equal to number

of tasks n.

 We have carried out a set of experiments in order to test the effect of the

number of ants on the performance of the proposed algorithm. A small size

(Jackson with 11 tasks and cycle time of 10), a medium size (Gunther with 35

tasks and cycle time of 54) and a large size problem (Barthold with 148 tasks and

CHAPTER 5. EXPERIMENTAL SETTING

92

cycle time of 805) are chosen as the test problems. The proposed algorithms

perform better when the number of ants is taken equal to the number of tasks. We

evaluate the performance of proposed algorithms varying number m of ants from

1 to 2n, given (100 replications • 100 ant tours) for Jackson and Gunther problem

and (1 replications • 100 ant tours) for Barthold problem. The results are given in

the Section 5.1.

 Parameters α and β allow a user to control the relative importance of

pheromone trail versus heuristic information (visibility). These parameters affect

the behaviour of the algorithm. If α = 0, the selection probabilities are

proportional to []βηi and the tasks with high positional weight are more likely to

be selected. In this case AS corresponds to a stochastic greedy algorithm with

multiple starts. If β = 0, only the trail information effects the selection

probabilities and if no control mechanism exists this situation misleads the ants.

This may cause a very rapid convergence, leading to a stagnation situation

(Dorigo, Maniezzo, Colorni, 1996). In this situation all the ants follow the same

path and construct the same solutions; strongly suboptimal solutions (see also

section 4.1.2.1 and section 4.1.2.2). Thus, there is a trade-off between the trail

intensity and the heuristic value.

 Parameters ρ, ρ1 and ρ2 are called as pheromone trail evaporation rate

(0 < ρ, ρ1, ρ2 < 1). Evaporation enables the algorithm to forget the previously done

bad selections and unlimited accumulation of the pheromone trails is avoided by

this way.

Parameter q0 is used in Ant Colony System, Modified Ant Colony System

with Random Search, New Ant Colony Optimization Approach; Version 1 and

Version 2. It controls the relative importance of exploitation versus exploration. If

q≤q0 then the best task is chosen and this selection is a kind of greedy behaviour

which favours the exploitation of the search space. Otherwise a task is chosen

CHAPTER 5. EXPERIMENTAL SETTING

93

according to random-proportional rule and that favours the exploration of the

search space.

 Parameter Q and Q2 are the constants related to the quantity of trail laid

by ants. The amount of reinforcement that the related trail value receives is

controlled by these parameters.

 Parameter τ0 is the amount of pheromone reinforcement that the related

trail values receives during the local pheromone update in Ant Colony System,

Modified Ant Colony System with Random Search, New Ant Colony Optimization

Approach; Version 1 and Version 2.

We have done a second set of experiments in which we study the

performance of the proposed algorithms with respect to α, β, ρ, ρ1, ρ2 and q0

using the previous test problems. The number of ants m, is taken to be equal to the

number of tasks n. We test several values for each parameter. The values being

tested are: α ∈ {0, 1, 2, 5}, β ∈ {0, 1, 2, 5}, ρ (also ρ1 and ρ2) ∈ {0.1, 0.4, 0.7,

0.9, 0.99} and q0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. A small size (Jackson with 11 tasks

and cycle time of 10), a medium size (Gunther with 35 tasks and cycle time of 54)

and a large size problem (Barthold with 148 tasks and cycle time of 805) are

chosen as the test problems. We evaluate the performance of proposed algorithms

given a (100 replications • 100 ant tours) for Jackson and Gunther problem and

(1 replications • 100 ant tours) for Barthold problem.

The results are given in Tables 5.1-5.6. In each cell the first element

represents the results of Jackson problem, the second element represents the

results of Gunther problem and the third element represents the results of Barthold

problem. The results are reported like X(Y); where X represents the number of

stations found after (Y) number of replications completed (tours for Barthold

problem). When the optimal number of stations is obtained, (Y) is not reported.

CHAPTER 5. EXPERIMENTAL SETTING

94

5.1 Experimental Setting for AS

5.1.1 Number of Ants
 The effect of the number of ants on the efficiency of the Ant System is

given in Figure 5.1. The abscissa represents the total number of ants used in each

set of replication and the ordinate represents the number of replications (tours for

Barthold problem) required to obtain the optimum.

CHAPTER 5. EXPERIMENTAL SETTING

95

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f ants

N
um

be
r

of
 r

ep
lic

at
io

ns

Figure 5.1.a: Number of replications required to obtain the optimum number of stations. Jackson
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours).

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N um be r o f a nts

N
um

be
r

of
 r

ep
lic

at
io

ns

Unable to obtain the
optimum

Unable to obtain the
optimum

Figure 5.1.b: Number of replications required to obtain the optimum number of stations. Gunther
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours).

Unable to
obtain the
optimum

/
/

/
/

0
10
20
30
40
50
60
70
80
90

100

1 15 30 45 60 75 90 105 120 135 150 165 180 195

N umber o f a nts

N
um

be
r

of
 to

ur
s

Figure 5.1.c: Number of tours required to obtain the optimum number of stations. Barthold problem
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours).

CHAPTER 5. EXPERIMENTAL SETTING

96

For Jackson problem, AS finds the optimal station number for any number

of ants at the first replication. For Gunther problem, the optimum is obtained at

replications 96 and 83 with 30 and 35 ants, respectively. For Barthold problem,

the minimum number of tours to obtain the optimum is 1 with 150 ants.

Depending on the results we take the number of ants equal to the number of tasks.

5.1.2 Parameters Setting
 The performance of AS with respect to the parameters α, β, and ρ is given

in Table 5.1. We take the number of ants m, equal to the number of tasks n.

The results indicate that the optimal solution is found at the first replication (tour

for Barthold problem) when the parameters are taken as: α=2, β=2 and ρ=0.7.

The shaded cell in Table 5.1 indicates the best set of these parameters.

CHAPTER 5. EXPERIMENTAL SETTING

97

Table 5.1: Fine tune-up of the parameters α, β, and ρ for AS.

ρ = 0.1

 α
 β 0 1 2 5

0 5(1) / 9(23) / 7(15) 5(1) / 9(12) / 7(21) 5(1) / 10 / 7(33) 5(1) / 10 / 8
1 5(1) / 9(12) / 7(1) 5(1) / 9(62) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(2)
2 5(1) / 9(4) / 7(8) 5(1) / 9(57) / 7(10) 5(1) / 10 / 7(23) 5(1) / 10 / 8
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(5) 5(1) / 10 / 8

ρ = 0.4

0 5(1) / 9(7) / 7(6) 5(1) / 10 / 7(18) 5(1) / 10 / 7(2) 5(1) / 10 / 8
1 5(1) / 9(3) / 7(3) 5(1) / 9(29) / 7(4) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8
2 5(1) / 9(48) / 7(3) 5(1) / 10 / 7(2) 5(1) / 10 / 7(4) 5(1) / 10 / 8
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(6) 5(1) / 10 / 7(6) 5(1) / 9(75) / 7(3)

ρ = 0.7

0 5(1) / 9(3) / 7(11) 5(1) / 9(11) / 7(8) 5(1) / 10 / 7(23) 5(1) / 10 / 8
1 5(1) / 9(18) / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 8
2 5(1) / 9(30) / 7(4) 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 8
5 5(1) / 10 / 7(6) 5(1) / 10 / 7(2) 5(1) / 9(8) / 7(5) 5(1) / 10 / 8

ρ = 0.9

0 5(1) / 9(5) / 7(1) 5(1) / 10 / 7(81) 5(1) / 9(9) / 8 5(1) / 9(1) / 8
1 5(1) / 9(17) / 7(5) 5(1) / 10 / 7(2) 5(1) / 10 / 8 5(1) / 10 / 8
2 5(1) / 9(14) / 7(9) 5(1) / 10 / 7(7) 5(1) / 10 / 7(1) 5(1) / 10 / 8
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(2) 5(1) / 10 / 7(5) 5(1) / 10 / 8

ρ = 0.99

0 5(1) / 9(26) / 7(9) 5(1) / 10 / 7(23) 5(1) / 10 / 8 5(1) / 10 / 8
1 5(1) / 9(61) / 7(1) 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 8
2 5(1) / 9(47) / 7(2) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 8
5 5(1) / 10 / 7(3) 5(1) / 10 / 7(1) 5(1) / 10 / 7(4) 5(1) / 10 / 7(2)

CHAPTER 5. EXPERIMENTAL SETTING

98

5.2 Experimental Setting for ASelite

5.2.1 Number of Ants
 The effect of the number of ants on the efficiency of the Ant System with

elitist strategy is given in Figure 5.2. The abscissa represents the total number of

ants used in each set of replication and the ordinate represents the number of

replications (tours for Barthold problem) required to obtain the optimum.

For Jackson problem, ASelite finds the optimal solution for any number of

ants at the first replication. For Gunther problem, minimum number of

replications to reach the optimum is 18 with 35 ants. For Barthold problem, the

minimum number of tours to obtain the optimum is 4 with 150 ants. Fewer

number of replications (tours for Barthold problem) are required to obtain the

optimal station number, when the number of ants is nearly equal to the number of

tasks.

CHAPTER 5. EXPERIMENTAL SETTING

99

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f ants

N
um

be
r

of
 r

ep
lic

at
io

ns

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N um be r o f a nts

N
um

be
r

of
 r

ep
lic

at
io

ns

Unable to obtain the
optimum

Unable to obtain
the optimum

Figure 5.2.a: Number of replications required to obtain the optimum number of stations. Jackson
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours).

Figure 5.2.b: Number of replications required to obtain the optimum number of stations. Gunther
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours).

0
10
20
30
40
50
60
70
80
90

100

1 15 30 45 60 75 90 105 120 135 150 165 180 195

N umber o f a nts

N
um

be
r

of
 to

ur
s

Unable to obtain the optimum //

Figure 5.2.c: Number of tours required to obtain the optimum number of stations. Barthold problem
with 148 tasks, C=805. The expeiment has been carried out for (1 replications • 100 ant tours).

CHAPTER 5. EXPERIMENTAL SETTING

100

5.2.2 Parameters Setting
The performance of ASelite with respect to the parameters α, β, and ρ is

given in Table 5.2. We take the number of ants m, equal to the number of tasks n.

The results indicate that when the parameters are taken as α=2, β=1 and ρ=0.9

the optimum solution is found at the first replication (tour for Barthold problem).

In Table 5.2 the shaded cell indicates the best set of parameters.

CHAPTER 5. EXPERIMENTAL SETTING

101

Table 5.2: Fine tune-up of the parameters α, β, and ρ for ASelite.

ρ = 0.1

 α
 β 0 1 2 5

0 5(1) / 9(13) / 7(52) 5(1) / 10 / 8 5(1) / 10 / 7(45) 5(1) / 10 / 8
1 5(1) / 9(3) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(11) 5(1) / 10 / 8
2 5(1) / 9(17) / 7(4) 5(1) / 10 / 7(3) 5(1) / 10 / 7(76) 5(1) / 10 / 8
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(3)

ρ = 0.4

0 5(1) / 9(2) / 7(2) 5(1) / 10 / 7(49) 5(1) / 10 / 7(6) 5(1) / 9(50) / 8
1 5(1) / 9(21) / 7(12) 5(1) / 10 / 7(1) 5(1) / 9(52) / 7(13) 5(1) / 9(1) / 8
2 5(1) / 9(14) / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 8 5(1) / 10 / 8
5 5(1) / 10 / 7(5) 5(1) / 10 / 7(3) 5(1) / 10 / 7(2) 5(1) / 10 / 8

ρ = 0.7

0 5(1) / 9(9) / 7(7) 5(1) / 9(30) / 7(56) 5(1) / 9(1) / 8 5(1) / 9(1) / 8
1 5(1) / 9(15) / 7(3) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1)
2 5(1) / 9(28) / 7(2) 5(1) / 9(73) / 7(4) 5(1) / 9(1) / 7(6) 5(1) / 9(1) / 7(1)
5 5(1) / 10 / 7(2) 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(26)

ρ = 0.9

0 5(1) / 9(12) / 7(9) 5(1) / 10 / 7(58) 5(1) / 10 / 8 5(1) / 10 / 8
1 5(1) / 9(4) / 7(11) 5(1) / 9(30) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 8
2 5(1) / 9(75) / 7(2) 5(1) / 10 / 7(7) 5(1) / 10 / 8(1) 5(1) / 10 / 8
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(1) 5(1) / 10 / 7(3) 5(1) / 10 / 8

ρ = 0.99

0 5(1) / 9(54) / 7(22) 5(1) / 9(66) / 7(78) 5(1) / 10 / 7(12) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(7) 5(1) / 10 / 7(3) 5(1) / 10 / 7(21) 5(1) / 10 / 8
2 5(1) / 9(6) / 7(3) 5(1) / 10 / 7(3) 5(1) / 10 / 8 5(1) / 10 / 8
5 5(1) / 9(87) / 7(4) 5(1) / 10 / 7(3) 5(1) / 10 / 7(1) 5(1) / 10 / 8

CHAPTER 5. EXPERIMENTAL SETTING

102

5.3 Experimental Setting for ACS

5.3.1 Number of Ants
 The effect of the number of ants on the efficiency of the ACS is given in

Figure 5.3. The abscissa represents the total number of ants used in each set of

replication and the ordinate represents the number of replications (tours for

Barthold problem) required to obtain the optimum.

For Jackson problem, ACS finds the optimal station number for any

number of ants at the first replication. For Gunther problem, the optimum is

obtained with minimum number of replications when more than 25 ants are used.

It is possible to obtain the optimum with minimum number of replications for 55,

60, 65, 70 ants. However, using fewer ants (30 and 35 ants) reduces the

computational effort. For Barthold problem, the optimum is obtained with

minimum number of tours when more than 25 ants are used (In this experiment, it

is not possible to test ACS with 165, 180 and 195 ants due to memory

requirements). Fewer number of replications (tours for Barthold problem) are

required to obtain the optimal station number, when the number of ants is nearly

equal to the number of tasks.

CHAPTER 5. EXPERIMENTAL SETTING

103

Figure 5.3.b: Number of replications required to obtain the optimum number of stations. Gunther
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours).

Figure 5.3.c: Number of tours required to obtain the optimum number of stations. Barthold problem
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours).

Figure 5.3.a: Number of replications required to obtain the optimum number of stations. Jackson
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours).

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f ants

N
um

be
r

of
 r

ep
lic

at
io

ns

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N umber of ants

N
um

be
r

of
 r

ep
lic

at
io

ns

Unable to
obtain the
optimum

0
10
20
30
40
50
60
70
80
90

100

1 15 30 45 60 75 90 105 120 135 150

N umber o f ants

N
um

be
r

of
 to

ur
s

Unable to
obtain the
optimum

CHAPTER 5. EXPERIMENTAL SETTING

104

5.3.2 Parameters Setting
The performance of ACS with respect to the parameters β, q0, ρ1 and ρ2 is

given in Table 5.3. We take the number of ants m, equal to the number of tasks n.

The results indicate that the optimal solution is found at the first replication (tour

for Barthold problem) when the parameters are taken as: β= 1, q0= 0.2 and

ρ1=ρ2= 0.4. The shaded cell in Table 5.3 indicates the best set of parameters.

CHAPTER 5. EXPERIMENTAL SETTING

105

Table 5.3: Fine tune-up of the parameters β, q0, ρ1 and ρ2 for ACS.

ρ1 = ρ2= 0.1
 q0
β 0 0.2 0.4 0.6 0.8 1
0 5(1) / 9(6) / 7(45) 5(1) / 9(26) / 7(1) 5(1) / 9(9) / 7(6) 5(1) / 9(37) / 7(11) 5(1) / 9(2) / 7(22) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(2) 5(1) / 9(12) / 7(6) 5(1) / 9(5) / 7(3) 5(1) / 9(36) / 7(5) 5(1) / 9(32) / 7(4) 5(1) / 10 / 8
2 5(1) / 9(24) / 7(12) 5(1) / 9(26) / 7(2) 5(1) / 10 / 7(3) 5(1) / 9(46) / 7(3) 5(1) / 10 / 7(4) 5(1) / 10 / 8
5 5(1) / 10 / 7(1) 5(1) / 10 / 7(4) 5(1) / 10 / 7(6) 5(1) / 10 / 7(4) 5(1) / 10 / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.4

0 5(1) / 9(6) / 7(29) 5(1) / 9(1) / 7(49) 5(1) / 9(5) / 7(17) 5(1) / 9(2) / 7(49) 5(1) / 9(1) / 7(2) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(5) 5(1) / 9(1) / 7(28) 5(1) / 9(5) / 7(4) 5(1) / 10 / 8
2 5(1) / 9(26) / 7(6) 5(1) / 9(7) / 7(4) 5(1) / 9(6) / 7(4) 5(1) / 9(2) / 7(2) 5(1) / 9(5) / 7(5) 5(1) / 10 / 8
5 5(1) / 9(83) / 7(1) 5(1) / 9(23) / 7(2) 5(1) / 9(28) / 7(2) 5(1) / 10 / 7(4) 5(1) / 9(21) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.7

0 5(1) / 9(2) / 7(11) 5(1) / 9(2) / 7(22) 5(1) / 9(3) / 7(16) 5(1) / 9(7) / 7(4) 5(1) / 9(1) / 7(4) 5(1) / 10 / 8
1 5(1) / 9(2) / 7(6) 5(1) / 9(6) / 7(4) 5(1) / 9(1) / 7(9) 5(1) / 9(2) / 7(6) 5(1) / 9(1) / 7(4) 5(1) / 10 / 8
2 5(1) / 9(5) / 7(5) 5(1) / 9(2) / 7(7) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(2) 5(1) / 9(7) / 7(1) 5(1) / 9(17) / 7(1) 5(1) / 10 / 7(1) 5(1) / 9(5) / 7(6) 5(1) / 10 / 8

ρ1 = ρ2= 0.9

0 5(1) / 9(1) / 7(2) 5(1) / 9(3) / 7(3) 5(1) / 9(2) / 7(89) 5(1) / 9(1) / 7(24) 5(1) / 9(17) / 7(25) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(4) 5(1) / 9(2) / 7(7) 5(1) / 9(1) / 7(4) 5(1) / 9(2) / 7(1) 5(1) / 9(15) / 7(3) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(10) 5(1) / 9(3) / 7(8) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(8) 5(1) / 9(13) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(2) / 7(3) 5(1) / 9(34) / 7(1) 5(1) / 9(24) / 7(2) 5(1) / 9(21) / 7(5) 5(1) / 9(22) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.99

0 5(1) / 9(3) / 7(27) 5(1) / 9(6) / 7(3) 5(1) / 9(1) / 7(22) 5(1) / 9(1) / 7(26) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8
1 5(1) / 9(5) / 7(1) 5(1) / 9(2) / 7(3) 5(1) / 9(3) / 7(1) 5(1) / 9(2) / 7(4) 5(1) / 9(2) / 7(3) 5(1) / 10 / 8
2 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(6) / 7(2) 5(1) / 9(5) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(15) / 7(5) 5(1) / 9(15) / 7(4) 5(1) / 9(6) / 7(6) 5(1) / 9(26) / 7(2) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8

CHAPTER 5. EXPERIMENTAL SETTING

106

5.4 Experimental Setting for Modified ACS
with Random Search

 The Modified ACS with Random Search is an extension of ACS. Thus, the

same parameter set is used in this algorithm and the number of ants is taken equal

to the number of tasks.

5.5 Experimental Setting for New ACO
Approach, Version 1

5.5.1 Number of Ants
 The effect of the number of ants on the efficiency of the new ACO

approach (Version 1) is given in Figure 5.4. The abscissa represents the total

number of ants used in each set of replication and the ordinate represents the

number of replications (tours for Barthold problem) required to obtain the

optimum.

CHAPTER 5. EXPERIMENTAL SETTING

107

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f a nts

N
um

be
r

of
 r

ep
lic

at
io

ns

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

N umber o f ants

N
um

be
r

of
 r

ep
lic

at
io

ns

Figure 5.4.a: Number of replications required to obtain the optimum number of stations. Jackson
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours).

Figure 5.4.b: Number of replications required to obtain the optimum number of stations. Gunther
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours).

Figure 5.4.c: Number of tours required to obtain the optimum number of stations. Barthold problem
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours).

0
10
20
30
40
50
60
70
80
90

100

1 15 30 45 60 75 90 105 120 135 150 165 180 195

N umber o f ants

N
um

be
r

of
 to

ur
s Unable to

obtain the
optimum

CHAPTER 5. EXPERIMENTAL SETTING

108

For Jackson problem, Version 1 finds the optimal solution for any number

of ants at the first replication. For Gunther problem, the optimum is obtained with

minimum number of replications when more than 5 ants are used. For Barthold

problem, Version 1 yields the optimum with less number of tours when more than

45 ants are used. Version 1 finds the optimum at the first replication for 60, 105,

120, 150, 165, 180 and 195 ants. Version 1 works efficiently when there is more

ants. For Barthold problem, although the optimal is obtained at the first replication

for 60, 105 and 120 ants, Version 1 finds the optimum at third replication with

135 ants. Therefore it is more reliable to take the number of ants equal to the

number of tasks.

5.5.2 Parameters Setting
The performance of Version 1 with respect to the parameters α, q0, ρ1 and

ρ2 is given in Table 5.4. β is left constant and taken as 1. We take the number of

ants m, equal to the number of tasks n.

The results indicate that the optimal solution is found at the first

replication (tour for Barthold problem) for various values of the parameters:

α, q0, ρ1 and ρ2. The shaded cells in Table 5.4 indicate the best set of parameters.

The performance of Version 1 with respect to β, q0, ρ1 and ρ2 is given in

Table 5.5. α is left constant and taken as 1. We take the number of ants m, equal

to the number of tasks n.

Referring to the results given in Table 5.5, the optimal solution is found at

the first replication (tour for Barthold problem) for various values of the

parameters: β, q0, ρ1 and ρ2. The shaded cells in Table 5.5 indicate the best set of

parameters.

CHAPTER 5. EXPERIMENTAL SETTING

109

It is hard to determine a single set of parameters. Therefore, we have

carried out another set of experiment on Buxey problem with 29 tasks and cycle

time of 36, given (100 replications • 100 ant tours). Keeping β as 1, we first

analyze the performance of Version 1 with respect to α, q0, ρ1 and ρ2. Then

keeping α as 1 we investigate the behaviour of Version 1 with respect to β, q0, ρ1

and ρ2.

Referring to the results given in Table 5.6, in each cell the first element

represents the result of the first experiment and the second element represents the

result of the second one. Note that the number of ants is set equal to the number of

tasks.

CHAPTER 5. EXPERIMENTAL SETTING

110

Table 5.4: Fine tune-up of parameters α, q0, ρ1 and ρ2 for New ACO Approach, Version 1.

ρ1 = ρ2= 0.1
 q0
α 0 0.2 0.4 0.6 0.8 1
0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(3) / 7(1) 5(1) / 9(3) / 7(3) 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(7) / 7(3) 5(1) / 10 / 8

ρ1 = ρ2= 0.4

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(2) / 7(3) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(3) 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(2) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.7

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(9) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(2) 5(1) / 9(5) / 7(11) 5(1) / 10 / 8

ρ1 = ρ2= 0.9

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(2) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(35) / 7(8) 5(1) / 9(7) / 7(12) 5(1) / 9(19) / 7(13) 5(1) / 10 / 7(4) 5(1) / 9(24) / 7(8) 5(1) / 10 / 8

ρ1 = ρ2= 0.99

0 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(2) / 7(6) 5(1) / 10 / 8
2 5(1) / 9(4) / 7(5) 5(1) / 9(2) / 7(1) 5(1) / 9(1) / 7(6) 5(1) / 9(14) / 7(5) 5(1) / 9(11) / 7(22) 5(1) / 10 / 8
5 5(1) / 10 / 7(21) 5(1) / 10 / 8 5(1) / 10 / 7(1) 5(1) / 9(39) / 8 5(1) / 9(43) / 8 5(1) / 10 / 8

CHAPTER 5. EXPERIMENTAL SETTING

111

Table 5.5: Fine tune-up of the parameters β, q0, ρ1 and ρ2 for New ACO Approach, Version 1.

ρ1 = ρ2= 0.1
 q0
β 0 0.2 0.4 0.6 0.8 1
0 5(1) / 9(6) / 7(1) 5(1) / 9(16) / 7(1) 5(1) / 9(17) / 7(32) 5(1) / 9(4) / 7(20) 5(1) / 9(16) / 7(42) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.4

0 5(1) / 9(6) / 7(6) 5(1) / 9(2) / 7(2) 5(1) / 9(5) / 7(5) 5(1) / 9(4) / 7(66) 5(1) / 9(94) / 7(14) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(3) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.7

0 5(1) / 9(3) / 7(1) 5(1) / 9(5) / 7(2) 5(1) / 9(32) / 7(19) 5(1) / 9(13) / 7(31) 5(1) / 9(34) / 7(50) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(5) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(3) / 7(1) 5(1) / 9(9) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.9

0 5(1) / 9(11) / 7(12) 5(1) / 9(6) / 7(24) 5(1) / 9(60) / 7(10) 5(1) / 9(6) / 7(39) 5(1) / 9(87) / 7(16) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(4) / 7(1) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(10) / 7(1) 5(1) / 10 / 8

ρ1 = ρ2= 0.99

0 5(1) / 9(29) / 7(81) 5(1) / 9(84) / 7(7) 5(1) / 9(35) / 7(19) 5(1) / 10 / 7(76) 5(1) / 10 / 7(66) 5(1) / 10 / 8
1 5(1) / 9(1) / 7(4) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(5) 5(1) / 10 / 8
2 5(1) / 9(1) / 7(2) 5(1) / 9(1) / 7(3) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(10) 5(1) / 10 / 8
5 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(1) / 7(1) 5(1) / 9(2) / 7(3) 5(1) / 9(4) / 7(6) 5(1) / 10 / 8

CHAPTER 5. EXPERIMENTAL SETTING

112

Table 5.6: Fine tune-up of parameters α, β, q0, ρ1 and ρ2 for New ACO Approach, Version 1.

ρ1 = ρ2= 0.1
 q0
α orβ 0 0.2 0.4 0.6 0.8 1

0 9(85) / 10 9(46) / 10 9(55) / 10 10 / 10 10 / 10 10 / 10
1 10 / 10 9(22) / 10 10 / 10 10 / 10 10 / 10 10 / 10
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10

ρ1 = ρ2= 0.4

0 9(35) / 10 9(89) / 10 9(80) / 10 10 / 10 10 / 10 10 / 10
1 10 / 9(69) 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
5 9(29) / 10 10 / 9(77) 10 / 10 10 / 10 10 / 10 10 / 10

ρ1 = ρ2= 0.7

0 10 / 10 9(63) / 10 9(81) / 10 9(64) / 10 10 / 10 10 / 10
1 10 / 10 9(54) / 10 10 / 10 10 / 10 10 / 10 10 / 10
2 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10

ρ1 = ρ2= 0.9

0 10 / 10 10 / 10 9(75) / 10 9(37) / 10 10 / 10 10 / 10
1 10 / 10 9(5) / 10 9(76) / 10 10 / 10 10 / 10 10 / 10
2 9(42) / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10
5 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10

ρ1 = ρ2= 0.99

0 10 / 9(38) 9(32) / 10 10 / 10 10 / 10 10 / 10 10 / 10
1 9(98) / 10 9(42) / 9(43) 10 / 9(8) 10 / 10 10 / 10 10 / 10
2 10 / 10 10 / 9(44) 10 / 10 10 / 10 10 / 10 10 / 10
5 10 / 10 9(60) / 10 10 / 10 10 / 10 10 / 10 10 / 10

CHAPTER 5. EXPERIMENTAL SETTING

113

In both of the experiments, Version 1 obtains the optimal solution with the

minimum number of replications when the parameters are taken as: α=1, β=1,

q0=0.2 and ρ1=ρ2=0.99. In the first experiment, Version 1 finds the optimal

solution with the minimum number of replications for α=1, β=1, q0=0.2 and

ρ1=ρ2=0.9. The shaded cells indicate the best set of parameters. Details are given

at Chapter 6.

5.6 Experimental Setting for New ACO
Approach, Version 2

5.6.1 Number of Ants

The effect of the number of ants on the efficiency of the New ACO

Approach (Version 2) is given in Figure 5.5. The abscissa represents the total

number of ants used in each set of replication and the ordinate represents the

number of replications (tours for Barthold problem) required to obtain the

optimum.

CHAPTER 5. EXPERIMENTAL SETTING

114

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N umber o f a nts

N
um

be
r

of
 r

ep
lic

at
io

ns

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 00

1 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0

N um be r o f a nts

N
um

be
r

of
 r

ep
lic

at
io

ns

Figure 5.5.a: Number of replications required to obtain the optimum number of stations. Jackson
problem with 11 tasks, C=10. The experiment has been carried out for (100 replications • 100 ant tours).

Figure 5.5.b: Number of replications required to reach optimum number of stations. Gunther
problem with 35 tasks, C=54. The experiment has been carried out for (100 replications • 100 ant tours).

0
10
20
30
40
50
60
70
80
90

100

1 15 30 45 60 75 90 105 120 135 150 165 180 195

N umber o f ants

N
um

be
r

of
 to

ur
s

Unable to
obtain the
optimum

Figure 5.5.c: Number of tours required to reach optimum number of stations. Barthold problem
with 148 tasks, C=805. The experiment has been carried out for (1 replications • 100 ant tours).

CHAPTER 5. EXPERIMENTAL SETTING

115

The results indicate that for Jackson problem, Version 2 finds the optimal

station number for any number of ants at the first replication. For Gunther

problem, the optimum is obtained with the minimum number of replications when

more than 1 ant is used. For Barthold problem, when more than 45 ants are used,

Version 2 finds the optimum with less number of tours. At first tour, the optimum

is reached for 60, 75, 90, 120, 135, 150 and 165 ants. After 165 ants, Version 1

needs more that 1 tour to find the optimum. Therefore it is more reliable to take

the number of ants equal to the number of tasks.

5.6.2 Parameters Setting
 Version 2 is an extension of Version 1. Therefore, the same parameter set

is used for Version 2. However there are some problem instances that the

performance of Version 2 is better when the parameter q0 is taken as 0.3 and 0.8.

The details are given at Chapter 6.

 116

Chapter 6

Computational Results

In this chapter we present the results of the proposed algorithms on several

test problems. Recall that the algorithms under consideration are Ant System, Ant

System with Elitist Strategy, Ant Colony System, Modified Ant Colony System with

Random Search, New Ant Colony Optimization Approach; Version 1 and

Version 2.

 Two data sets are used. The first data set (Talbot et al., 1986) considers 64

instances with varying problem sizes ranging from 8 to 111 tasks. The second data

set (Scholl, 1993) is relatively new and most complex with 168 instances ranging

from 25 to 297 tasks.

 We run the proposed algorithms with 190 instances from these data sets

and compare the results with those of ULINO (Scholl and Klein, 1999) and the

simulated annealing based algorithm of Erel, Sabuncuoglu and Aksu (2001). The

results indicate that ULINO finds the optimal solution for most of the instances. In

some cases, results are given in the interval. A simple lower bound on the minimal

number of stations is equal to 







= ∑

=

n

i
i CtLB

1

/ , where x is the smallest integer

larger than x (Scholl and Klein, 1999; Erel, Sabuncuoglu and Aksu, 2001).

Besides the simple lower bound LB, Scholl and Klein (1999) use three additional

bound arguments. The upper bound on the minimal number of stations is

CHAPTER 6. COMPUTATIONAL RESULTS

117

proposed to be the required number of stations after all the tasks are assigned to

the stations.

 Solutions for 15 out of 190 instances are given in intervals with a lower

bound and an upper bound. The upper bound and the lower bound of the interval

are explained above. SA could not find the optimal solution in 45 out of 187

instances. SA finds optimal solution for only 127 instances. For 15 instances,

solutions are given in intervals. ULINO finds the optimal solution for 169 out of

190 instances. For 6 instances, ULINO could not find the optimum, but the result

are given in intervals in this case.

 In the following (Sections 6.1-6.6), we present the computational results.

The results are given in Tables 6.1-6.5. Each table has 3 parts. In the first part, the

information about the problem (problem name, number of tasks, cycle time and

total task time) is given. In the second part, the results of SA, ULINO, proposed

ant algorithm and the optimal solution are reported. For the proposed ant

algorithm, the computation time is given in milliseconds. We run the algorithm

until (100 replications × 100 ant tours) have been completed. However, for some

problem instances more ant tours are required. Details about these instances are

given in Tables 6.4 and 6.5. In the third part of the table, the difference between

the results of the ant algorithm, SA and ULINO and the optimal solution are

reported. In each table, the light shaded cells represent the problem instances that

result greater than the optimal and the dark shaded cells represents the instances

that the result is given in interval.

The computational requirements are not high for any of the proposed

algorithms. The algorithms are written in Borland Delphi 6.0. The average

computational time for an experiment requires a few seconds on an AMD Athlon

XP 2000+, 266 Mhz machine with 256 MB RAM (333MHZ).

CHAPTER 6. COMPUTATIONAL RESULTS

118

6.1 Computational Results for AS

In the proposed AS, we take the number of ants m, equal to the number of

tasks n. The parameters are selected as follows: α=2, β=2, ρ=0.7, initial trail=1,

Q=1. The computational results of Ant System are given in Table 6.1.

Recall that, in 15 instances the number of stations is given in intervals.

Referring to Table 6.1, AS could not find the optimal solution in 103 out of 190

instances. In fact, in 97 out of 103 instances AS yields the solution with one

station more than the optimal, in 4 out of 103 instances AS finds two stations

more than the optimal, and in 2 out of 103 instances AS yields three stations more

than the optimal. For the remaining 72 instances AS finds the optimal station

number.

 In 5 instances AS performs better than SA and finds the optimal solution.

However, in 63 instances SA performs better than AS and finds the optimal

solution. There is only one instance that none of them can find the optimum. In

that instance AS finds 1 station less than SA.

 In 6 instances ULINO could not find the optimum and the solutions are

given in intervals whereas AS finds the upper bound in 5 of these instances.

However, SA finds the optimum in 5 of these instances. In 97 problem instances

ULINO performs better than AS and finds the optimum.

 We generally observe that AS can solve small and medium size problems

(8-32 tasks). However AS displays generally a poor performance for the large size

problems (53, 58, 89, 94, 148 and 297 tasks).

CHAPTER 6. COMPUTATIONAL RESULTS

119

Table 6.1: Computational Results of Ant System

 Problem Task
Num

Cycle
Time

Total
Time ULINO SA AS Optimal CPU

milisec
Opt-
AS

Opt-
ULINO

Opt-
SA

1 Bowman 8 20 75 4 5 4 4 160 0 0 -1
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0
3 62 3 3 3 3 50 0 0 0
4 94 2 2 2 2 0 0 0 0
5 Jackson 11 7 46 7 7 7 7 380 0 0 0
6 9 6 6 6 6 0 0 0 0
7 10 5 5 5 5 0 0 0 0
8 13 4 4 4 4 0 0 0 0
9 14 4 4 4 4 0 0 0 0

10 21 3 3 3 3 0 0 0 0
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0
12 15 8 8 8 8 0 0 0 0
13 21 5 5 5 5 0 0 0 0
14 26 5 - 5 5 0 0 0 -
15 35 3 - 3 3 0 0 0 -
16 39 3 - 3 3 0 0 0 -
17 Roszieg 25 14 125 9 9 9 9 1100 0 0 0
18 16 8 8 8 8 0 0 0 0
19 18 7 7 7 7 0 0 0 0
20 21 6 6 6 6 0 0 0 0
21 25 5 5 5 5 0 0 0 0
22 32 4 4 4 4 50 0 0 0
23 Buxey 29 27 324 13 13 13 13 0 0 0 0
24 30 11 11 11 11 19010 0 0 0
25 33 10 10 11 10 0 -1 0 0
26 36 9 9 10 9 0 -1 0 0
27 41 8 8 8 8 60 0 0 0
28 47 7 7 7 7 0 0 0 0
29 54 6 7 6 6 1430 0 0 -1
30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0
31 1572 10 10 10 10 0 0 0 0
32 1768 9 9 9 9 0 0 0 0
33 2020 8 8 8 8 0 0 0 0
34 2357 7 7 7 7 50 0 0 0
35 2828 6 6 6 6 0 0 0 0
36 Gunther 35 41 483 12 13 13 12 50 -1 0 -1
37 44 12 12 12 12 0 0 0 0
38 49 10 11 11 10 0 -1 0 -1
39 54 9 9 10 9 50 -1 0 0
40 61 8 9 8 8 9720 0 0 -1
41 69 7 8 8 7 0 -1 0 -1
42 81 6 7 6 6 0 0 0 -1
43 Hahn 53 2004 14026 8 8 8 8 50 0 0 0
44 2338 7 7 7 7 50 0 0 0
45 2806 5 6 6 5 0 -1 0 -1
46 3507 5 5 5 5 0 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

120

Table 6.1: (Cont’d)

47 4676 3 4 3 3 5930 0 0 -1
48 Warnecke 58 54 1548 30, 31 31 32 30, 31 50
49 56 29 29 30 29 8790 -1 0 0
50 58 28 29 29 28 0 -1 0 -1
51 60 27 27 28 27 0 -1 0 0
52 62 26, 27 27 27 26, 27 45970
53 65 24, 25 25 26 24, 25 60
54 68 23, 24 24 25 23, 24 50
55 71 22, 23 23 24 22, 23 0
56 74 21, 22 22 22 21, 22 64200
57 78 20 21 21 20 60 -1 0 -1
58 82 19, 20 20 20 19, 20 110
59 86 18 19 19 18 50 -1 0 -1
60 92 17 17 18 17 0 -1 0 0
61 97 16 17 17 16 0 -1 0 -1
62 104 15 15 16 15 0 -1 0 0
63 111 14 14 15 14 50 -1 0 0
64 Wee-mag 75 28 1499 63 63 63 63 60 0 0 0
65 29 63 63 63 63 50 0 0 0
66 30 62 62 62 62 170 0 0 0
67 31 62 62 62 62 60 0 0 0
68 32 61 61 61 61 60 0 0 0
69 33 61 61 61 61 60 0 0 0
70 34 61 61 61 61 50 0 0 0
71 35 60 60 60 60 110 0 0 0
72 36 60 60 60 60 50 0 0 0
73 37 60 60 60 60 60 0 0 0
74 38 60 60 60 60 60 0 0 0
75 39 60 60 60 60 60 0 0 0
76 40 60 60 60 60 50 0 0 0
77 41 59 59 59 59 60 0 0 0
78 42 55 55 55 55 50 0 0 0
79 43 50 50 50 50 50 0 0 0
80 45 38 38 38 38 11090 0 0 0
81 46 34 34 34 34 75520 0 0 0
82 47 32, 33 33 33 32, 33 60
83 49 31, 32 32 32 31, 32 50
84 50 31, 32 32 32 31, 32 60
85 52 31 31 31 31 110 0 0 0
86 54 31 31 31 31 60 0 0 0
87 56 30 30 30 30 50 0 0 0
88 Lutz2 89 11 485 45 49 48 45 50 -3 0 -4
89 12 41 44 44 41 220 -3 0 -3
90 13 38 40 40 38 390 -2 0 -2
91 14 35 36 37 35 50 -2 0 -1
92 15 33 34 34 33 160 -1 0 -1
93 16 31 31 32 31 50 -1 0 0
94 17 29 29 30 29 110 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

121

Table 6.1: (Cont’d)

95 18 27 28 28 27 50 -1 0 -1
96 19 26 26 26 26 940 0 0 0
97 20 25 25 25 25 60 0 0 0
98 21 24 24 24 24 50 0 0 0
99 Lutz3 89 75 1644 22 23 23 22 50 -1 0 -1

100 79 21 22 22 21 50 -1 0 -1
101 83 20 21 21 20 60 -1 0 -1
102 87 19 20 20 19 60 -1 0 -1
103 92 18 19 19 18 50 -1 0 -1
104 97 17 18 18 17 60 -1 0 -1
105 103 16 17 17 16 60 -1 0 -1
106 110 15 15 16 15 50 -1 0 0
107 118 14 14 15 14 60 -1 0 0
108 127 13 14 14 13 60 -1 0 -1
109 137 12 13 13 12 60 -1 0 -1
110 150 11 12 12 11 50 -1 0 -1
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110
112 183 23 24 24 23 60 -1 0 -1
113 192 22 23 23 22 50 -1 0 -1
114 201 21 22 22 21 50 -1 0 -1
115 211 20 21 21 20 110 -1 0 -1
116 222 19 20 20 19 110 -1 0 -1
117 234 18 19 19 18 110 -1 0 -1
118 248 17 18 18 17 60 -1 0 -1
119 263 16 17 17 16 110 -1 0 -1
120 281 15 16 16 15 110 -1 0 -1
121 301 14 15 15 14 110 -1 0 -1
122 324 13 14 14 13 110 -1 0 -1
123 351 12 13 13 12 110 -1 0 -1
124 Arcus2 111 5755 150399 27 27 27 27 110 0 0 0
125 8847 17, 18 18 18 17, 18 160
126 10027 15, 16 16 16 15, 16 160
127 10743 14, 15 15 15 14, 15 170
128 11378 14 14 14 14 170 0 0 0
129 17067 9 9 9 9 170 0 0 0
130 Barthold 148 403 5634 14 14 15 14 440 -1 0 0
131 434 13 13 14 13 490 -1 0 0
132 470 12 12 13 12 440 -1 0 0
133 513 11 11 11 11 61350 0 0 0
134 564 10 10 10 10 1590 0 0 0
135 626 9 9 9 9 128690 0 0 0
136 705 8 8 8 8 440 0 0 0
137 805 7 7 7 7 1040 0 0 0
138 Barthol2 148 84 4234 51 51 52 51 132650 -1 0 0
139 85 50, 51 50 52 50 380 -2 0
140 87 49 49 51 49 390 -2 0 0
141 89 48, 49 48 49 48 380 -1 0
142 91 47 47 48 47 3300 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

122

Table 6.1: (Cont’d)

143 93 46, 47 46 47 46 380 -1 0
144 95 45 45 46 45 390 -1 0 0
145 97 44, 45 44 45 44 3290 -1 0
146 99 43 43 44 43 2090 -1 0 0
147 101 42 42 43 42 440 -1 0 0
148 104 41 41 42 41 380 -1 0 0
149 106 40 40 41 40 390 -1 0 0
150 109 39 39 40 39 380 -1 0 0
151 112 38 38 39 38 440 -1 0 0
152 115 37 37 38 37 390 -1 0 0
153 118 36 36 37 36 380 -1 0 0
154 121 35 35 36 35 440 -1 0 0
155 125 34 34 35 34 380 -1 0 0
156 129 33 33 34 33 440 -1 0 0
157 133 32 32 33 32 390 -1 0 0
158 137 31 31 32 31 440 -1 0 0
159 142 30 30 31 30 380 -1 0 0
160 146 29 29 30 29 440 -1 0 0
161 152 28 28 29 28 440 -1 0 0
162 157 27 27 28 27 390 -1 0 0
163 163 26 26 27 26 430 -1 0 0
164 170 25 25 26 25 440 -1 0 0
165 Scholl 297 1394 69655 50, 51 50 51 50 720 -1 0
166 1422 49, 50 50 50 49, 50 710
167 1452 48 48 49 48 660 -1 0 0
168 1483 47 47 48 47 710 -1 0 0
169 1515 46, 47 47 47 46 720 -1 -1
170 1548 45 46 46 45 710 -1 0 -1
171 1584 44 44 45 44 660 -1 0 0
172 1620 43 44 44 43 720 -1 0 -1
173 1659 42 43 43 42 710 -1 0 -1
174 1699 41 41 42 41 710 -1 0 0
175 1742 40 40 41 40 720 -1 0 0
176 1787 39 39 40 39 710 -1 0 0
177 1834 38 38 39 38 720 -1 0 0
178 1883 37 37 38 37 710 -1 0 0
179 1935 36 36 37 36 710 -1 0 0
180 1991 35 35 36 35 720 -1 0 0
181 2049 34 34 35 34 710 -1 0 0
182 2111 33 33 34 33 720 -1 0 0
183 2177 32 32 33 32 710 -1 0 0
184 2247 31 31 32 31 710 -1 0 0
185 2322 30 30 31 30 720 -1 0 0
186 2402 29 29 30 29 710 -1 0 0
187 2488 28 28 29 28 720 -1 0 0
188 2580 27 27 28 27 710 -1 0 0
189 2680 26 26 27 26 710 -1 0 0
190 2787 25 25 26 25 720 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

123

6.2 Computational Results for ASelite

For ASelite, we take the number of ants m, equal to the number of tasks n.

The parameters are selected as follows: α=2, β=1, ρ=0.9, initial trail=1, Q=1.

The computational results of ASelite are given in Table 6.2.

 Referring to Table 6.2, ASelite could not find the optimal solution in 94 out

of 190 problem instances. In fact, in 90 out of 94 instances, ASelite finds the

solution with one station more than the optimal and ASelite finds two stations more

than the optimal in 4 of 94 instances. For the remaining 81 instances, ASelite finds

the optimal station number. Recall that, in 15 instances the number of stations is

given in intervals.

 In 9 instances ASelite performs better than SA finding the optimal solution.

However, in 59 instances SA performs better finding the optimal solution. There

are 3 instances that none of them find the optimal. In 2 of these instances ASelite

finds 1 station less than SA and in the other instance ASelite finds 2 stations less

than SA.

 In 6 instances ULINO could not find the optimum where as ASelite finds

the upper bound in 5 of these instances. However SA finds optimum in 5 of these

instances. In 88 problem instances, ULINO performs better than ASelite and finds

the optimum. We also observe that ASelite’s can solve small and medium size

problems (8-45 tasks). Also, ASelite performs well for some large size problems

(53, some instances of 58 tasks, 111 and 148 tasks). However, its performance is

poor for most large size problems (some instances of 58 tasks, 89, 94, 148 and

297 tasks).

 In conclusion, ASelite performs slightly better than AS that ASelite finds the

optimal solution in 9 instances more than AS .

CHAPTER 6. COMPUTATIONAL RESULTS

124

Table 6.2: Computational Results of ASelite

 Problem Task
Num

Cycle
Time

Total
Time ULINO SA ASelite Optimal CPU

milisec
Opt-
ASelite

Opt-
ULINO

Opt-
SA

1 Bowman 8 20 75 4 5 4 4 60 0 0 -1
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0
3 62 3 3 3 3 50 0 0 0
4 94 2 2 2 2 0 0 0 0
5 Jackson 11 7 46 7 7 7 7 50 0 0 0
6 9 6 6 6 6 0 0 0 0
7 10 5 5 5 5 0 0 0 0
8 13 4 4 4 4 0 0 0 0
9 14 4 4 4 4 0 0 0 0

10 21 3 3 3 3 0 0 0 0
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0
12 15 8 8 8 8 0 0 0 0
13 21 5 5 5 5 0 0 0 0
14 26 5 - 5 5 0 0 0 -
15 35 3 - 3 3 0 0 0 -
16 39 3 - 3 3 0 0 0 -
17 Roszieg 25 14 125 9 9 9 9 3410 0 0 0
18 16 8 8 8 8 0 0 0 0
19 18 7 7 7 7 220 0 0 0
20 21 6 6 6 6 0 0 0 0
21 25 5 5 5 5 0 0 0 0
22 32 4 4 4 4 0 0 0 0
23 Buxey 29 27 324 13 13 13 13 0 0 0 0
24 30 11 11 11 11 15320 0 0 0
25 33 10 10 11 10 0 -1 0 0
26 36 9 9 10 9 0 -1 0 0
27 41 8 8 8 8 0 0 0 0
28 47 7 7 7 7 0 0 0 0
29 54 6 7 6 6 440 0 0 -1
30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0
31 1572 10 10 10 10 0 0 0 0
32 1768 9 9 9 9 0 0 0 0
33 2020 8 8 8 8 0 0 0 0
34 2357 7 7 7 7 0 0 0 0
35 2828 6 6 6 6 50 0 0 0
36 Gunther 35 41 483 12 13 12 12 8790 0 0 -1
37 44 12 12 12 12 0 0 0 0
38 49 10 11 10 10 40480 0 0 -1
39 54 9 9 9 9 3350 0 0 0
40 61 8 9 8 8 7470 0 0 -1
41 69 7 8 8 7 0 -1 0 -1
42 81 6 7 6 6 0 0 0 -1
43 Hahn 53 2004 14026 8 8 8 8 60 0 0 0
44 2338 7 7 7 7 0 0 0 0
45 2806 5 6 5 5 36030 0 0 -1
46 3507 5 5 5 5 0 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

125

Table 6.2: (Cont’d)

47 4676 3 4 3 3 7470 0 0 -1
48 Warnecke 58 54 1548 30, 31 31 31 30, 31 229090
49 56 29 29 30 29 4230 -1 0 0
50 58 28 29 28 28 218000 0 0 -1
51 60 27 27 28 27 110 -1 0 0
52 62 26, 27 27 27 26, 27 8460
53 65 24, 25 25 26 24, 25 170
54 68 23, 24 24 24 23, 24 19880
55 71 22, 23 23 23 22, 23 32290
56 74 21, 22 22 22 21, 22 0
57 78 20 21 21 20 160 -1 0 -1
58 82 19, 20 20 20 19, 20 110
59 86 18 19 19 18 60 -1 0 -1
60 92 17 17 18 17 0 -1 0 0
61 97 16 17 17 16 50 -1 0 -1
62 104 15 15 16 15 0 -1 0 0
63 111 14 14 15 14 60 -1 0 0
64 Wee-mag 75 28 1499 63 63 63 63 50 0 0 0
65 29 63 63 63 63 60 0 0 0
66 30 62 62 62 62 100 0 0 0
67 31 62 62 62 62 60 0 0 0
68 32 61 61 61 61 50 0 0 0
69 33 61 61 61 61 60 0 0 0
70 34 61 61 61 61 50 0 0 0
71 35 60 60 60 60 60 0 0 0
72 36 60 60 60 60 50 0 0 0
73 37 60 60 60 60 60 0 0 0
74 38 60 60 60 60 110 0 0 0
75 39 60 60 60 60 50 0 0 0
76 40 60 60 60 60 60 0 0 0
77 41 59 59 59 59 50 0 0 0
78 42 55 55 55 55 60 0 0 0
79 43 50 50 50 50 50 0 0 0
80 45 38 38 38 38 60 0 0 0
81 46 34 34 34 34 432320 0 0 0
82 47 32, 33 33 33 32, 33 50
83 49 31, 32 32 32 31, 32 60
84 50 31, 32 32 32 31, 32 110
85 52 31 31 31 31 50 0 0 0
86 54 31 31 31 31 60 0 0 0
87 56 30 30 30 30 50 0 0 0
88 Lutz2 89 11 485 45 49 47 45 85740 -2 0 -4
89 12 41 44 43 41 166260 -2 0 -3
90 13 38 40 39 38 81290 -1 0 -2
91 14 35 36 36 35 11540 -1 0 -1
92 15 33 34 33 33 380 0 0 -1
93 16 31 31 31 31 64760 0 0 0
94 17 29 29 29 29 119960 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

126

Table 6.2: (Cont’d)

95 18 27 28 28 27 60 -1 0 -1
96 19 26 26 26 26 44920 0 0 0
97 20 25 25 25 25 60 0 0 0
98 21 24 24 24 24 50 0 0 0
99 Lutz3 89 75 1644 22 23 23 22 60 -1 0 -1

100 79 21 22 22 21 50 -1 0 -1
101 83 20 21 21 20 60 -1 0 -1
102 87 19 20 20 19 50 -1 0 -1
103 92 18 19 19 18 110 -1 0 -1
104 97 17 18 18 17 60 -1 0 -1
105 103 16 17 17 16 50 -1 0 -1
106 110 15 15 16 15 60 -1 0 0
107 118 14 14 15 14 50 -1 0 0
108 127 13 14 14 13 60 -1 0 -1
109 137 12 13 13 12 50 -1 0 -1
110 150 11 12 12 11 110 -1 0 -1
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 60
112 183 23 24 24 23 110 -1 0 -1
113 192 22 23 23 22 110 -1 0 -1
114 201 21 22 22 21 50 -1 0 -1
115 211 20 21 21 20 110 -1 0 -1
116 222 19 20 20 19 110 -1 0 -1
117 234 18 19 19 18 60 -1 0 -1
118 248 17 18 18 17 110 -1 0 -1
119 263 16 17 17 16 110 -1 0 -1
120 281 15 16 16 15 50 -1 0 -1
121 301 14 15 15 14 110 -1 0 -1
122 324 13 14 14 13 110 -1 0 -1
123 351 12 13 13 12 110 -1 0 -1
124 Arcus2 111 5755 150399 27 27 27 27 170 0 0 0
125 8847 17, 18 18 18 17, 18 110
126 10027 15, 16 16 16 15, 16 160
127 10743 14, 15 15 15 14, 15 110
128 11378 14 14 14 14 170 0 0 0
129 17067 9 9 9 9 160 0 0 0
130 Barthold 148 403 5634 14 14 15 14 390 -1 0 0
131 434 13 13 14 13 60250 -1 0 0
132 470 12 12 12 12 56850 0 0 0
133 513 11 11 11 11 990 0 0 0
134 564 10 10 10 10 440 0 0 0
135 626 9 9 9 9 75800 0 0 0
136 705 8 8 8 8 440 0 0 0
137 805 7 7 7 7 2080 0 0 0
138 Barthol2 148 84 4234 51 51 52 51 139900 -1 0 0
139 85 50, 51 50 52 50 380 -2 0
140 87 49 49 51 49 330 -2 0 0
141 89 48, 49 48 49 48 279850 -1 0
142 91 47 47 48 47 70520 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

127

Table 6.2: (Cont’d)

143 93 46, 47 46 47 46 380 -1 0
144 95 45 45 46 45 200320 -1 0 0
145 97 44, 45 44 45 44 131650 -1 0
146 99 43 43 44 43 3790 -1 0 0
147 101 42 42 43 42 6540 -1 0 0
148 104 41 41 42 41 380 -1 0 0
149 106 40 40 41 40 390 -1 0 0
150 109 39 39 40 39 380 -1 0 0
151 112 38 38 39 38 390 -1 0 0
152 115 37 37 38 37 380 -1 0 0
153 118 36 36 37 36 390 -1 0 0
154 121 35 35 36 35 380 -1 0 0
155 125 34 34 35 34 390 -1 0 0
156 129 33 33 34 33 380 -1 0 0
157 133 32 32 33 32 380 -1 0 0
158 137 31 31 32 31 440 -1 0 0
159 142 30 30 31 30 390 -1 0 0
160 146 29 29 30 29 380 -1 0 0
161 152 28 28 29 28 390 -1 0 0
162 157 27 27 28 27 440 -1 0 0
163 163 26 26 27 26 380 -1 0 0
164 170 25 25 26 25 390 -1 0 0
165 Scholl 297 1394 69655 50, 51 50 51 50 710 -1 0
166 1422 49, 50 50 50 49, 50 720
167 1452 48 48 49 48 650 -1 0 0
168 1483 47 47 48 47 720 -1 0 0
169 1515 46, 47 47 47 46 660 -1 -1
170 1548 45 46 46 45 710 -1 0 -1
171 1584 44 44 45 44 660 -1 0 0
172 1620 43 44 44 43 720 -1 0 -1
173 1659 42 43 43 42 650 -1 0 -1
174 1699 41 41 42 41 720 -1 0 0
175 1742 40 40 41 40 660 -1 0 0
176 1787 39 39 40 39 710 -1 0 0
177 1834 38 38 39 38 720 -1 0 0
178 1883 37 37 38 37 650 -1 0 0
179 1935 36 36 37 36 720 -1 0 0
180 1991 35 35 36 35 710 -1 0 0
181 2049 34 34 35 34 660 -1 0 0
182 2111 33 33 34 33 720 -1 0 0
183 2177 32 32 33 32 710 -1 0 0
184 2247 31 31 32 31 660 -1 0 0
185 2322 30 30 31 30 710 -1 0 0
186 2402 29 29 30 29 720 -1 0 0
187 2488 28 28 29 28 710 -1 0 0
188 2580 27 27 28 27 660 -1 0 0
189 2680 26 26 27 26 710 -1 0 0
190 2787 25 25 26 25 720 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

128

6.3 Computational Results for ACS

In ACS, we take the number of ants m, equal to the number of tasks n. The

parameters are selected as follows: β=1, ρ1=ρ2=0.4, q0=0.2, τ0=0.0028, initial

trail=1. The computational results of ACS are given in Table 6.3.

In 15 instances, the solution is given in intervals. Referring to Table 6.3,

ACS yields the optimal solution in 81 problem instances. However, ACS can not

find the optimal solution for 94 instances. In fact, in 90 out of 94 instances, ACS

finds a solution with one station more than the optimum and two stations more

than the optimal for the remaining 4 instances.

In 9 instances, ACS performs better than SA finding the optimal solution.

In 58 instances, SA performs better finding the optimal solution. There are 3

instances that none of them find the optimal solution. In fact, in 2 of these

instances, ACS finds 1 station less than SA and in the remaining instance ACS

finds 2 stations less than SA.

In 6 instances ULINO could not find the optimum whereas ACS finds the

upper bound in 5 of these instances. However, SA finds the optimum in 5 of these

instances. In 88 problem instances ULINO performs better than ACS.

We also note that ACS performs well up to 53 tasks. It yields the optimal

solution for 75 and 111 task problems. Its performance is poor for large size

problems (58, 89, 94, 148 and 297 tasks).

In conclusion, the performance of ASelite and ACS are the same and both

of them solve 81 problem instances optimally.

CHAPTER 6. COMPUTATIONAL RESULTS

129

Table 6.3: Computational Results of ACS

 Problem Task
Num

Cycle
Time

Total
Time ULINO SA ACS Optimal CPU

milisec
Opt-
ACS

Opt-
ULINO

Opt-
SA

1 Bowman 8 20 75 4 5 4 4 0 0 0 -1
2 Mansoor 11 48 185 4 4 4 4 0 0 0 0
3 62 3 3 3 3 0 0 0 0
4 94 2 2 2 2 0 0 0 0
5 Jackson 11 7 46 7 7 7 7 0 0 0 0
6 9 6 6 6 6 0 0 0 0
7 10 5 5 5 5 0 0 0 0
8 13 4 4 4 4 0 0 0 0
9 14 4 4 4 4 0 0 0 0

10 21 3 3 3 3 0 0 0 0
11 Mitchell 21 14 105 8 8 8 8 0 0 0 0
12 15 8 8 8 8 0 0 0 0
13 21 5 5 5 5 0 0 0 0
14 26 5 - 5 5 0 0 0 -
15 35 3 - 3 3 0 0 0 -
16 39 3 - 3 3 0 0 0 -
17 Roszieg 25 14 125 9 9 9 9 50 0 0 0
18 16 8 8 8 8 0 0 0 0
19 18 7 7 7 7 0 0 0 0
20 21 6 6 6 6 0 0 0 0
21 25 5 5 5 5 0 0 0 0
22 32 4 4 4 4 0 0 0 0
23 Buxey 29 27 324 13 13 13 13 0 0 0 0
24 30 11 11 11 11 2030 0 0 0
25 33 10 10 10 10 7190 0 0 0
26 36 9 9 10 9 50 -1 0 0
27 41 8 8 8 8 0 0 0 0
28 47 7 7 7 7 0 0 0 0
29 54 6 7 6 6 930 0 0 -1
30 Lutz1 32 1414 14140 11 11 11 11 60 0 0 0
31 1572 10 10 10 10 0 0 0 0
32 1768 9 9 9 9 50 0 0 0
33 2020 8 8 8 8 0 0 0 0
34 2357 7 7 7 7 0 0 0 0
35 2828 6 6 6 6 0 0 0 0
36 Gunther 35 41 483 12 13 12 12 4280 0 0 -1
37 44 12 12 12 12 0 0 0 0
38 49 10 11 10 10 1260 0 0 -1
39 54 9 9 9 9 870 0 0 0
40 61 8 9 8 8 490 0 0 -1
41 69 7 8 7 7 19110 0 0 -1
42 81 6 7 6 6 0 0 0 -1
43 Hahn 53 2004 14026 8 8 8 8 60 0 0 0
44 2338 7 7 7 7 0 0 0 0
45 2806 5 6 6 5 50 -1 0 -1
46 3507 5 5 5 5 0 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

130

Table 6.3: (Cont’d)

47 4676 3 4 3 3 110 0 0 -1
48 Warnecke 58 54 1548 30, 31 31 31 30, 31 3350
49 56 29 29 30 29 110 -1 0 0
50 58 28 29 29 28 50 -1 0 -1
51 60 27 27 28 27 380 -1 0 0
52 62 26, 27 27 27 26, 27 2690
53 65 24, 25 25 26 24, 25 110
54 68 23, 24 24 24 23, 24 15550
55 71 22, 23 23 23 22, 23 7030
56 74 21, 22 22 22 21, 22 15210
57 78 20 21 21 20 60 -1 0 -1
58 82 19, 20 20 20 19, 20 0
59 86 18 19 19 18 50 -1 0 -1
60 92 17 17 18 17 0 -1 0 0
61 97 16 17 17 16 60 -1 0 -1
62 104 15 15 16 15 0 -1 0 0
63 111 14 14 15 14 50 -1 0 0
64 Wee-mag 75 28 1499 63 63 63 63 110 0 0 0
65 29 63 63 63 63 50 0 0 0
66 30 62 62 62 62 60 0 0 0
67 31 62 62 62 62 50 0 0 0
68 32 61 61 61 61 110 0 0 0
69 33 61 61 61 61 60 0 0 0
70 34 61 61 61 61 50 0 0 0
71 35 60 60 60 60 110 0 0 0
72 36 60 60 60 60 60 0 0 0
73 37 60 60 60 60 50 0 0 0
74 38 60 60 60 60 60 0 0 0
75 39 60 60 60 60 110 0 0 0
76 40 60 60 60 60 50 0 0 0
77 41 59 59 59 59 60 0 0 0
78 42 55 55 55 55 50 0 0 0
79 43 50 50 50 50 60 0 0 0
80 45 38 38 38 38 9880 0 0 0
81 46 34 34 35 34 110 -1 0 0
82 47 32, 33 33 33 32, 33 170
83 49 31, 32 32 32 31, 32 110
84 50 31, 32 32 32 31, 32 50
85 52 31 31 31 31 50 0 0 0
86 54 31 31 31 31 110 0 0 0
87 56 30 30 30 30 60 0 0 0
88 Lutz2 89 11 485 45 49 47 45 39380 -2 0 -4
89 12 41 44 43 41 19060 -2 0 -3
90 13 38 40 39 38 8630 -1 0 -2
91 14 35 36 36 35 1210 -1 0 -1
92 15 33 34 33 33 28890 0 0 -1
93 16 31 31 31 31 9180 0 0 0
94 17 29 29 29 29 24380 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

131

Table 6.3: (Cont’d)

95 18 27 28 28 27 210 -1 0 -1
96 19 26 26 26 26 16370 0 0 0
97 20 25 25 25 25 610 0 0 0
98 21 24 24 24 24 110 0 0 0
99 Lutz3 89 75 1644 22 23 23 22 110 -1 0 -1

100 79 21 22 22 21 60 -1 0 -1
101 83 20 21 21 20 50 -1 0 -1
102 87 19 20 20 19 110 -1 0 -1
103 92 18 19 19 18 60 -1 0 -1
104 97 17 18 18 17 110 -1 0 -1
105 103 16 17 17 16 50 -1 0 -1
106 110 15 15 16 15 60 -1 0 0
107 118 14 14 15 14 110 -1 0 0
108 127 13 14 14 13 50 -1 0 -1
109 137 12 13 13 12 110 -1 0 -1
110 150 11 12 12 11 60 -1 0 -1
111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110
112 183 23 24 24 23 50 -1 0 -1
113 192 22 23 23 22 110 -1 0 -1
114 201 21 22 22 21 110 -1 0 -1
115 211 20 21 21 20 110 -1 0 -1
116 222 19 20 20 19 110 -1 0 -1
117 234 18 19 19 18 110 -1 0 -1
118 248 17 18 18 17 110 -1 0 -1
119 263 16 17 17 16 110 -1 0 -1
120 281 15 16 16 15 110 -1 0 -1
121 301 14 15 15 14 110 -1 0 -1
122 324 13 14 14 13 110 -1 0 -1
123 351 12 13 13 12 110 -1 0 -1
124 Arcus2 111 5755 150399 27 27 27 27 440 0 0 0
125 8847 17, 18 18 18 17, 18 170
126 10027 15, 16 16 16 15, 16 160
127 10743 14, 15 15 15 14, 15 170
128 11378 14 14 14 14 160 0 0 0
129 17067 9 9 9 9 170 0 0 0
130 Barthold 148 403 5634 14 14 15 14 500 -1 0 0
131 434 13 13 13 13 5220 0 0 0
132 470 12 12 12 12 4500 0 0 0
133 513 11 11 11 11 3190 0 0 0
134 564 10 10 10 10 7910 0 0 0
135 626 9 9 9 9 21750 0 0 0
136 705 8 8 8 8 1870 0 0 0
137 805 7 7 7 7 5100 0 0 0
138 Barthol2 148 84 4234 51 51 52 51 2150 -1 0 0
139 85 50, 51 50 52 50 430 -2 0
140 87 49 49 51 49 440 -2 0 0
141 89 48, 49 48 49 48 6920 -1 0
142 91 47 47 48 47 1210 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

132

Table 6.3: (Cont’d)

143 93 46, 47 46 47 46 500 -1 0
144 95 45 45 46 45 440 -1 0 0
145 97 44, 45 44 45 44 31580 -1 0
146 99 43 43 44 43 10710 -1 0 0
147 101 42 42 43 42 23340 -1 0 0
148 104 41 41 42 41 500 -1 0 0
149 106 40 40 41 40 1970 -1 0 0
150 109 39 39 40 39 440 -1 0 0
151 112 38 38 39 38 440 -1 0 0
152 115 37 37 38 37 500 -1 0 0
153 118 36 36 37 36 440 -1 0 0
154 121 35 35 36 35 490 -1 0 0
155 125 34 34 35 34 440 -1 0 0
156 129 33 33 34 33 500 -1 0 0
157 133 32 32 33 32 430 -1 0 0
158 137 31 31 32 31 500 -1 0 0
159 142 30 30 31 30 440 -1 0 0
160 146 29 29 30 29 490 -1 0 0
161 152 28 28 29 28 440 -1 0 0
162 157 27 27 28 27 500 -1 0 0
163 163 26 26 27 26 490 -1 0 0
164 170 25 25 26 25 440 -1 0 0
165 Scholl 297 1394 69655 50, 51 50 51 50 270 -1 0
166 1422 49, 50 50 50 49, 50 110
167 1452 48 48 49 48 110 -1 0 0
168 1483 47 47 48 47 60 -1 0 0
169 1515 46, 47 47 47 46 110 -1 -1
170 1548 45 46 46 45 110 -1 0 -1
171 1584 44 44 45 44 110 -1 0 0
172 1620 43 44 44 43 110 -1 0 -1
173 1659 42 43 43 42 50 -1 0 -1
174 1699 41 41 42 41 110 -1 0 0
175 1742 40 40 41 40 110 -1 0 0
176 1787 39 39 40 39 110 -1 0 0
177 1834 38 38 39 38 50 -1 0 0
178 1883 37 37 38 37 110 -1 0 0
179 1935 36 36 37 36 110 -1 0 0
180 1991 35 35 36 35 110 -1 0 0
181 2049 34 34 35 34 110 -1 0 0
182 2111 33 33 34 33 60 -1 0 0
183 2177 32 32 33 32 110 -1 0 0
184 2247 31 31 32 31 110 -1 0 0
185 2322 30 30 31 30 110 -1 0 0
186 2402 29 29 30 29 50 -1 0 0
187 2488 28 28 29 28 110 -1 0 0
188 2580 27 27 28 27 110 -1 0 0
189 2680 26 26 27 26 110 -1 0 0
190 2787 25 25 26 25 110 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

133

6.4 Computational Results for Modified ACS
with Random Search

Modified ACS with random search is a two-phase approach and it requires

excessive amount of time to collect data for the T2 matrix. For that reason, we test

this approach with some medium and large size problems that AS, ASelite and

ACS could not yield the optimal solution. These problems are Buxey with 29

tasks (C=36), Gunther with 35 tasks (C=69), Warnecke with 58 tasks (C=60,

C=78, C=82, C=86, C=92, C=97, C=104, C=111), Lutz2 with 89 tasks (C=11,

C=12, C=13, C=14, C=17).

Modified ACS finds the optimal allocation for only three of these fifteen

problem instances, Buxey (C=36), Gunther (C=69), and Warnecke (C=60,

C=111). However, it is an important development that for the first time we find

the optimal allocation for these problems.

Our observations on the structure of the T2 matrix led us to develop the

New ACO Approach (Version 1 and Version 2).

CHAPTER 6. COMPUTATIONAL RESULTS

134

6.5 Computational Results for New ACO
Approach, Version 1

In the New ACO Approach, Version 1 we take the number of ants m, equal

to the number of tasks n. The parameters are selected as follows: α=1, β=1,

q0=0.2, ρ1=ρ2=0.9, τ0=1, initial trail=1, Q=1. For some problems ρ1 and ρ2 are

taken as 0.99; q0
 is taken as 0.3. The computational results of Version 1 are given

in Table 6.4.

Referring to Table 6.4, the performance of Version 1 is highly satisfying

when compared with the previous algorithms. In 108 out of 190 instances,

Version 1 finds the optimum solution. Recall that, in 15 instances optimal

solutions are given in intervals. In the remaining 67 instances Version 1 can not

find the optimum.

 In 25 instances Version 1 performs better than SA finding the optimal

solution. However, in 47 instances SA performs better than Version 1 finding the

optimal solution. Generally in 16 out of 18 problems the performance of Version 1

is better. Somehow, only in the two largest problems SA beats Version 1.

There are 2 instances that none of them can find the optimal solution. In

fact, in 1 of these instances Version 1 finds 3 stations less than SA and in the other

instance Version 1 finds 2 stations less than SA. Also, there is one instance that

Version 1 finds the optimal solution with 2 stations less than SA.

 In 6 instances ULINO could not find the optimum whereas Version1 finds

the upper bound in 5 of these instances. However, SA finds the optimal solution in

5 of these instances. In 61 problem instances ULINO performs better than

Version 1 and finds the optimal solution.

 For some problem instances, we observe that Version 1 can find the

optimal solution with the parameters different from the parameters stated in

CHAPTER 6. COMPUTATIONAL RESULTS

135

Section 5.5.2. Some problems need more ant tours to find the optimal solution.

Also for some problems when the parameter q0 is taken as 0.3, Version 1 obtains

better results than when q0=0.2. Also setting the parameters ρ1 and ρ2 equal to

0.99 yields better results instead of taking ρ1 and ρ2 equal to 0.9. These

observations are also pointed out in Table 6.4.

CHAPTER 6. COMPUTATIONAL RESULTS

136

Table 6.4: Computational Results of the New ACO Approach, Version 1.

 Problem Task

Num
Cycle
Time

Total
Time ULINO SA Ver. 1 Optimal CPU

milisec
Opt-

Ver. 1
Opt-

ULINO
Opt-
SA

 1 Bowman 8 20 75 4 5 4 4 0 0 0 -1
 2 Mansoor 11 48 185 4 4 4 4 0 0 0 0
 3 62 3 3 3 3 0 0 0 0
 4 94 2 2 2 2 0 0 0 0
 5 Jackson 11 7 46 7 7 7 7 0 0 0 0
 6 9 6 6 6 6 0 0 0 0
 7 10 5 5 5 5 0 0 0 0
 8 13 4 4 4 4 0 0 0 0
 9 14 4 4 4 4 0 0 0 0
 10 21 3 3 3 3 0 0 0 0
 11 Mitchell 21 14 105 8 8 8 8 0 0 0 0
 12 15 8 8 8 8 0 0 0 0
 13 21 5 5 5 5 0 0 0 0
 14 26 5 - 5 5 0 0 0 -
 15 35 3 - 3 3 0 0 0 -
 16 39 3 - 3 3 0 0 0 -
 17 Roszieg 25 14 125 9 9 9 9 0 0 0 0
 18 16 8 8 8 8 0 0 0 0
 19 18 7 7 7 7 0 0 0 0
 20 21 6 6 6 6 0 0 0 0
 21 25 5 5 5 5 0 0 0 0
 22 32 4 4 4 4 0 0 0 0
 23 Buxey 29 27 324 13 13 13 13 0 0 0 0
 24 30 11 11 11 11 50 0 0 0
 25 33 10 10 10 10 60 0 0 0
 26 36 9 9 9 9 9010 0 0 0
 27 41 8 8 8 8 0 0 0 0
 28 47 7 7 7 7 0 0 0 0
 29 54 6 7 6 6 0 0 0 -1
 30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0
 31 1572 10 10 10 10 0 0 0 0
 32 1768 9 9 9 9 0 0 0 0
 33 2020 8 8 8 8 0 0 0 0
 34 2357 7 7 7 7 60 0 0 0
 35 2828 6 6 6 6 0 0 0 0
 36 Gunther 35 41 483 12 13 12 12 60 0 0 -1
 37 44 12 12 12 12 0 0 0 0
 38 49 10 11 10 10 330 0 0 -1
 39 54 9 9 9 9 50 0 0 0
 40 61 8 9 8 8 0 0 0 -1
 41 69 7 8 7 7 0 0 0 -1
 42 81 6 7 6 6 0 0 0 -1
 43 Hahn 53 2004 14026 8 8 8 8 0 0 0 0
 44 2338 7 7 7 7 0 0 0 0
 45 2806 5 6 5 5 30810 0 0 -1
 46 3507 5 5 5 5 0 0 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

137

Table 6.4: (Cont’d)

 47 4676 3 4 3 3 710 0 0 -1
 48 Warnecke 58 54 1548 30, 31 31 31 30, 31 110
 49 56 29 29 29 29 4940 0 0 0
 50 58 28 29 28 28 5660 0 0 -1
 51 60 27 27 27 27 440 0 0 0
 52 62 26, 27 27 27 26, 27 60
 53 65 24, 25 25 25 24, 25 5600
 54 68 23, 24 24 24 23, 24 0
 55 71 22, 23 23 23 22, 23 0
 56 74 21, 22 22 22 21, 22 50
 57 78 20 21 21 20 0 -1 0 -1
 58 82 19, 20 20 20 19, 20 0
 59 86 18 19 19 18 0 -1 0 -1

(1)1 60 92 17 17 17 17 6760 0 0 0
 61 97 16 17 17 16 60 -1 0 -1

(1) 62 104 15 15 15 15 15110 0 0 0
 63 111 14 14 15 14 60 -1 0 0
 64 Wee-mag 75 28 1499 63 63 63 63 60 0 0 0
 65 29 63 63 63 63 50 0 0 0
 66 30 62 62 62 62 0 0 0 0
 67 31 62 62 62 62 60 0 0 0
 68 32 61 61 61 61 50 0 0 0
 69 33 61 61 61 61 0 0 0 0
 70 34 61 61 61 61 60 0 0 0
 71 35 60 60 60 60 50 0 0 0
 72 36 60 60 60 60 0 0 0 0
 73 37 60 60 60 60 60 0 0 0
 74 38 60 60 60 60 50 0 0 0
 75 39 60 60 60 60 60 0 0 0
 76 40 60 60 60 60 0 0 0 0
 77 41 59 59 59 59 50 0 0 0
 78 42 55 55 55 55 60 0 0 0
 79 43 50 50 50 50 0 0 0 0
 80 45 38 38 38 38 160 0 0 0
 81 46 34 34 34 34 220 0 0 0
 82 47 32, 33 33 33 32, 33 50
 83 49 31, 32 32 32 31, 32 60
 84 50 31, 32 32 32 31, 32 0
 85 52 31 31 31 31 50 0 0 0
 86 54 31 31 31 31 60 0 0 0
 87 56 30 30 30 30 50 0 0 0
 88 Lutz2 89 11 485 45 49 46 45 6590 -1 0 -4
 89 12 41 44 42 41 3020 -1 0 -3

(2)2 90 13 38 40 38 38 165440 0 0 -2
 91 14 35 36 36 35 720 -1 0 -1

(1) For these instances the algorithm is run until 1000 ant tours have been completed. In these
experiments qo is taken as 0.3.
(2) For these instances the algorithm is run until 250 ant tours have been completed.

CHAPTER 6. COMPUTATIONAL RESULTS

138

Table 6.4: (Cont’d)

 92 15 33 34 33 33 170 0 0 -1
 93 16 31 31 31 31 720 0 0 0
 94 17 29 29 29 29 50 0 0 0

(2) 95 18 27 28 27 27 166370 0 0 -1
 96 19 26 26 26 26 50 0 0 0
 97 20 25 25 25 25 60 0 0 0
 98 21 24 24 24 24 50 0 0 0
 99 Lutz3 89 75 1644 22 23 23 22 60 -1 0 -1
 100 79 21 22 22 21 50 -1 0 -1

(3)3 101 83 20 21 20 20 12250 0 0 -1
(3) 102 87 19 20 19 19 63110 0 0 -1
(3) 103 92 18 19 18 18 770 0 0 -1
(3) 104 97 17 18 17 17 159120 0 0 -1
(3) 105 103 16 17 16 16 69590 0 0 -1
(3) 106 110 15 15 15 15 20320 0 0 0
(3) 107 118 14 14 14 14 1210 0 0 0
(3) 108 127 13 14 13 13 3400 0 0 -1
(3) 109 137 12 13 12 12 55690 0 0 -1
(3) 110 150 11 12 11 11 170 0 0 -1

 111 Mukherje 94 176 4208 24, 25 25 25 24, 25 110
 112 183 23 24 24 23 110 -1 0 -1
 113 192 22 23 23 22 110 -1 0 -1
 114 201 21 22 22 21 60 -1 0 -1
 115 211 20 21 21 20 110 -1 0 -1
 116 222 19 20 20 19 110 -1 0 -1
 117 234 18 19 19 18 50 -1 0 -1
 118 248 17 18 18 17 110 -1 0 -1
 119 263 16 17 17 16 110 -1 0 -1

(4)4 120 281 15 16 15 15 497510 0 0 -1
(4) 121 301 14 15 14 14 290450 0 0 -1
(4) 122 324 13 14 13 13 492580 0 0 -1
(4) 123 351 12 13 12 12 35200 0 0 -1

 124 Arcus2 111 5755 150399 27 27 27 27 170 0 0 0
 125 8847 17, 18 18 18 17, 18 160
 126 10027 15, 16 16 16 15, 16 110
 127 10743 14, 15 15 15 14, 15 160
 128 11378 14 14 14 14 160 0 0 0
 129 17067 9 9 9 9 110 0 0 0
 130 Barthold 148 403 5634 14 14 14 14 2190 0 0 0
 131 434 13 13 13 13 660 0 0 0
 132 470 12 12 12 12 1760 0 0 0
 133 513 11 11 11 11 270 0 0 0
 134 564 10 10 10 10 330 0 0 0
 135 626 9 9 9 9 48610 0 0 0

(3) For these instances the algorithm is run until 250 ant tours have been completed. In these
experiments qo is taken as 0.3.
(4) For these instances the algorithm is run until 1000 ant tours have been completed. In these
experiments qo is taken as 0.3; ρ1 and ρ2 are taken as 0.99.

CHAPTER 6. COMPUTATIONAL RESULTS

139

Table 6.4: (Cont’d)

 136 705 8 8 8 8 330 0 0 0
 137 805 7 7 7 7 280 0 0 0
 138 Barthol2 148 84 4234 51 51 52 51 280 -1 0 0
 139 85 50, 51 50 51 50 14550 -1 0
 140 87 49 49 50 49 330 -1 0 0
 141 89 48, 49 48 49 48 280 -1 0
 142 91 47 47 48 47 270 -1 0 0
 143 93 46, 47 46 47 46 280 -1 0
 144 95 45 45 46 45 330 -1 0 0
 145 97 44, 45 44 45 44 270 -1 0
 146 99 43 43 44 43 270 -1 0 0
 147 101 42 42 43 42 330 -1 0 0
 148 104 41 41 42 41 280 -1 0 0
 149 106 40 40 41 40 270 -1 0 0
 150 109 39 39 40 39 330 -1 0 0
 151 112 38 38 39 38 280 -1 0 0
 152 115 37 37 38 37 270 -1 0 0
 153 118 36 36 37 36 330 -1 0 0
 154 121 35 35 36 35 280 -1 0 0
 155 125 34 34 35 34 270 -1 0 0
 156 129 33 33 34 33 330 -1 0 0
 157 133 32 32 33 32 270 -1 0 0
 158 137 31 31 32 31 280 -1 0 0
 159 142 30 30 31 30 330 -1 0 0
 160 146 29 29 30 29 270 -1 0 0
 161 152 28 28 28 28 118420 0 0 0
 162 157 27 27 28 27 280 -1 0 0
 163 163 26 26 27 26 330 -1 0 0
 164 170 25 25 25 25 163900 0 0 0
 165 Scholl 297 1394 69655 50, 51 50 51 50 720 -1 0
 166 1422 49, 50 50 50 49, 50 710
 167 1452 48 48 49 48 720 -1 0 0
 168 1483 47 47 48 47 710 -1 0 0
 169 1515 46, 47 47 47 46 710 -1 -1
 170 1548 45 46 46 45 720 -1 0 -1
 171 1584 44 44 45 44 710 -1 0 0
 172 1620 43 44 44 43 720 -1 0 -1
 173 1659 42 43 43 42 710 -1 0 -1
 174 1699 41 41 42 41 710 -1 0 0
 175 1742 40 40 41 40 720 -1 0 0
 176 1787 39 39 40 39 710 -1 0 0
 177 1834 38 38 39 38 720 -1 0 0
 178 1883 37 37 38 37 710 -1 0 0
 179 1935 36 36 37 36 720 -1 0 0
 180 1991 35 35 36 35 710 -1 0 0
 181 2049 34 34 35 34 710 -1 0 0
 182 2111 33 33 34 33 660 -1 0 0
 183 2177 32 32 33 32 720 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

140

Table 6.4: (Cont’d)

 184 2247 31 31 32 31 710 -1 0 0
 185 2322 30 30 31 30 710 -1 0 0
 186 2402 29 29 30 29 720 -1 0 0
 187 2488 28 28 29 28 710 -1 0 0
 188 2580 27 27 28 27 720 -1 0 0
 189 2680 26 26 27 26 710 -1 0 0
 190 2787 25 25 26 25 710 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

141

6.6 Computational Results for New ACO
Approach, Version 2

In the New ACO Approach, Version 2 we take the number of ants m, equal

to one fourth of the number of tasks (n/4). Version 2 is an extension of Version 1.

Therefore, the same parameter set is used for Version 2. However, Version 2 can

not find optimal solution in most of the problem instances with the following

parameters: α=1, β=1, q0=0.2, ρ1=ρ2=0.9, τ0=1, initial trail=1, Q=1. Therefore,

for Version 2 the new parameters are selected as follows: α=1, β=1, q0=0.8,

ρ1=ρ2=0.99, τ0=1, initial trail=1, Q1=1 and Q2=100. We run the algorithm,

Version 2 until 250 ant tours have been completed. The computational results of

Version 2 are given in Table 6.5.

Referring to Table 6.5, in most of the problem instances the performance

of Version 2 is much better than the previous algorithms. In 144 out of 190

instances Version 2 finds the optimal solution. Only in 31 instances Version 2

performs poor.

 Version 2 performs better than SA in 39 instances finding the optimal

solution. In fact, there are three instances that SA finds 4 stations more, 3 stations

more and 2 stations more in each. In 25 instances SA performs better than Version

2 finding the optimal solution.

 In 6 instances ULINO could not find the optimum whereas Version 2 finds

the upper bound in 3 of these 6 instances and the optimum in 3 out of these 6

instances. In 28 instances ULINO performs better than Version 2.

 We also note that, one advantage of Version 2 is that it can find the

optimal solution with a fewer number of ants. Recall that, in 190 problem

instances number of ants m, is taken to be equal to one fourth of the number of

task (n/4), whereas we take the number of ants equal to the number of tasks in the

CHAPTER 6. COMPUTATIONAL RESULTS

142

previous algorithms. This fact indicates that Version 2 is powerful and the trail

update mechanism can be effective when the number of ants is equal to only n/4.

CHAPTER 6. COMPUTATIONAL RESULTS

143

Table 6.5: Computational Results of the New ACO Approach, Version 2.

 Problem Task

Num
Cycle
Time

Total
Time ULINO SA Ver. 2 Optimal CPU

milisec
Opt-

Ver. 2
Opt-

ULINO
Opt-
SA

 1 Bowman 8 20 75 4 5 4 4 110 0 0 -1
 2 Mansoor 11 48 185 4 4 4 4 0 0 0 0
 3 62 3 3 3 3 0 0 0 0
 4 94 2 2 2 2 0 0 0 0
 5 Jackson 11 7 46 7 7 7 7 110 0 0 0
 6 9 6 6 6 6 0 0 0 0
 7 10 5 5 5 5 0 0 0 0
 8 13 4 4 4 4 0 0 0 0
 9 14 4 4 4 4 0 0 0 0
 10 21 3 3 3 3 0 0 0 0
 11 Mitchell 21 14 105 8 8 8 8 0 0 0 0
 12 15 8 8 8 8 0 0 0 0
 13 21 5 5 5 5 60 0 0 0
 14 26 5 - 5 5 0 0 0 -
 15 35 3 - 3 3 0 0 0 -
 16 39 3 - 3 3 0 0 0 -
 17 Roszieg 25 14 125 9 9 9 9 60 0 0 0
 18 16 8 8 8 8 0 0 0 0
 19 18 7 7 7 7 0 0 0 0
 20 21 6 6 6 6 0 0 0 0
 21 25 5 5 5 5 0 0 0 0
 22 32 4 4 4 4 0 0 0 0
 23 Buxey 29 27 324 13 13 13 13 0 0 0 0
 24 30 11 11 11 11 380 0 0 0
 25 33 10 10 10 10 0 0 0 0
 26 36 9 9 9 9 990 0 0 0

(1)5 27 41 8 8 8 8 0 0 0 0
 28 47 7 7 7 7 0 0 0 0
 29 54 6 7 6 6 440 0 0 -1
 30 Lutz1 32 1414 14140 11 11 11 11 0 0 0 0
 31 1572 10 10 10 10 0 0 0 0
 32 1768 9 9 9 9 0 0 0 0
 33 2020 8 8 8 8 0 0 0 0
 34 2357 7 7 7 7 0 0 0 0
 35 2828 6 6 6 6 0 0 0 0
 36 Gunther 35 41 483 12 13 12 12 440 0 0 -1
 37 44 12 12 12 12 0 0 0 0
 38 49 10 11 10 10 5990 0 0 -1
 39 54 9 9 9 9 0 0 0 0
 40 61 8 9 8 8 0 0 0 -1
 41 69 7 8 7 7 0 0 0 -1
 42 81 6 7 6 6 0 0 0 -1
 43 Hahn 53 2004 14026 8 8 8 8 0 0 0 0
 44 2338 7 7 7 7 0 0 0 0

(1) In these problems q0 is taken as 0.3.

CHAPTER 6. COMPUTATIONAL RESULTS

144

Table 6.5: (Cont’d)

(1) 45 2806 5 6 5 5 12090 0 0 -1
 46 3507 5 5 5 5 0 0 0 0
 47 4676 3 4 3 3 2310 0 0 -1
 48 Warnecke 58 54 1548 30, 31 31 31 30, 31 220
 49 56 29 29 29 29 18350 0 0 0
 50 58 28 29 28 28 5220 0 0 -1
 51 60 27 27 27 27 7630 0 0 0
 52 62 26, 27 27 27 26, 27 0
 53 65 24, 25 25 25 24, 25 6210
 54 68 23, 24 24 24 23, 24 0
 55 71 22, 23 23 23 22, 23 0
 56 74 21, 22 22 22 21, 22 0

(1) 57 78 20 21 20 20 80520 0 0 -1
 58 82 19, 20 20 20 19, 20 0
 59 86 18 19 19 18 0 -1 0 -1
 60 92 17 17 17 17 2420 0 0 0
 61 97 16 17 16 16 1430 0 0 -1
 62 104 15 15 15 15 440 0 0 0
 63 111 14 14 14 14 3570 0 0 0
 64 Wee-mag 75 28 1499 63 63 63 63 50 0 0 0
 65 29 63 63 63 63 0 0 0 0
 66 30 62 62 62 62 110 0 0 0
 67 31 62 62 62 62 60 0 0 0
 68 32 61 61 61 61 0 0 0 0
 69 33 61 61 61 61 0 0 0 0
 70 34 61 61 61 61 0 0 0 0
 71 35 60 60 60 60 0 0 0 0
 72 36 60 60 60 60 50 0 0 0
 73 37 60 60 60 60 0 0 0 0
 74 38 60 60 60 60 0 0 0 0
 75 39 60 60 60 60 0 0 0 0
 76 40 60 60 60 60 0 0 0 0
 77 41 59 59 59 59 60 0 0 0
 78 42 55 55 55 55 0 0 0 0
 79 43 50 50 50 50 0 0 0 0
 80 45 38 38 38 38 0 0 0 0
 81 46 34 34 34 34 0 0 0 0
 82 47 32, 33 33 32 32, 33 82770
 83 49 31, 32 32 32 31, 32 0
 84 50 31, 32 32 32 31, 32 50
 85 52 31 31 31 31 60 0 0 0
 86 54 31 31 31 31 0 0 0 0
 87 56 30 30 30 30 0 0 0 0
 88 Lutz2 89 11 485 45 49 45 45 47010 0 0 -4
 89 12 41 44 41 41 94970 0 0 -3
 90 13 38 40 38 38 52120 0 0 -2
 91 14 35 36 35 35 7140 0 0 -1
 92 15 33 34 33 33 0 0 0 -1

CHAPTER 6. COMPUTATIONAL RESULTS

145

Table 6.5: (Cont’d)

 93 16 31 31 31 31 170 0 0 0
 94 17 29 29 29 29 0 0 0 0
 95 18 27 28 27 27 880 0 0 -1
 96 19 26 26 26 26 50 0 0 0
 97 20 25 25 25 25 0 0 0 0
 98 21 24 24 24 24 0 0 0 0
 99 Lutz3 89 75 1644 22 23 22 22 96620 0 0 -1
 100 79 21 22 21 21 32680 0 0 -1
 101 83 20 21 20 20 0 0 0 -1
 102 87 19 20 19 19 930 0 0 -1
 103 92 18 19 18 18 50 0 0 -1
 104 97 17 18 17 17 57240 0 0 -1
 105 103 16 17 16 16 3240 0 0 -1
 106 110 15 15 15 15 2030 0 0 0
 107 118 14 14 14 14 770 0 0 0
 108 127 13 14 13 13 160 0 0 -1
 109 137 12 13 12 12 8080 0 0 -1
 110 150 11 12 11 11 50 0 0 -1
 111 Mukherje 94 176 4208 24, 25 25 24 24, 25 24390
 112 183 23 24 24 23 0 -1 0 -1
 113 192 22 23 22 22 2200 0 0 -1
 114 201 21 22 21 21 8730 0 0 -1
 115 211 20 21 20 20 930 0 0 -1
 116 222 19 20 19 19 19610 0 0 -1
 117 234 18 19 18 18 32960 0 0 -1
 118 248 17 18 17 17 20760 0 0 -1
 119 263 16 17 16 16 32680 0 0 -1
 120 281 15 16 15 15 3020 0 0 -1
 121 301 14 15 14 14 1040 0 0 -1
 122 324 13 14 13 13 8190 0 0 -1
 123 351 12 13 12 12 270 0 0 -1
 124 Arcus2 111 5755 150399 27 27 27 27 60 0 0 0
 125 8847 17, 18 18 18 17, 18 0
 126 10027 15, 16 16 16 15, 16 50
 127 10743 14, 15 15 15 14, 15 60
 128 11378 14 14 14 14 0 0 0 0
 129 17067 9 9 9 9 50 0 0 0
 130 Barthold 148 403 5634 14 14 14 14 550 0 0 0
 131 434 13 13 13 13 710 0 0 0
 132 470 12 12 12 12 60 0 0 0
 133 513 11 11 11 11 50 0 0 0
 134 564 10 10 10 10 110 0 0 0
 135 626 9 9 9 9 2150 0 0 0
 136 705 8 8 8 8 50 0 0 0
 137 805 7 7 7 7 110 0 0 0
 138 Barthol2 148 84 4234 51 51 51 51 23130 0 0 0
 139 85 50, 51 50 51 50 2030 -1 0
 140 87 49 49 50 49 60 -1 0 0

CHAPTER 6. COMPUTATIONAL RESULTS

146

Table 6.5: (Cont’d)

 141 89 48, 49 48 48 48 26750 0 0
 142 91 47 47 47 47 127320 0 0 0
 143 93 46, 47 46 46 46 10720 0 0
 144 95 45 45 45 45 15660 0 0 0
 145 97 44, 45 44 44 44 19170 0 0
 146 99 43 43 43 43 13840 0 0 0
 147 101 42 42 43 42 50 -1 0 0
 148 104 41 41 41 41 4060 0 0 0
 149 106 40 40 40 40 43280 0 0 0
 150 109 39 39 39 39 9780 0 0 0
 151 112 38 38 38 38 15810 0 0 0
 152 115 37 37 37 37 5110 0 0 0
 153 118 36 36 36 36 68940 0 0 0
 154 121 35 35 36 35 110 -1 0 0
 155 125 34 34 34 34 6750 0 0 0
 156 129 33 33 33 33 17740 0 0 0
 157 133 32 32 32 32 4500 0 0 0
 158 137 31 31 31 31 21860 0 0 0
 159 142 30 30 30 30 7200 0 0 0
 160 146 29 29 29 29 99250 0 0 0
 161 152 28 28 28 28 6980 0 0 0
 162 157 27 27 27 27 30040 0 0 0
 163 163 26 26 26 26 4060 0 0 0
 164 170 25 25 25 25 6860 0 0 0
 165 Scholl 297 1394 69655 50, 51 50 51 50 770 -1 0
 166 1422 49, 50 50 50 49, 50 770
 167 1452 48 48 49 48 710 -1 0 0
 168 1483 47 47 48 47 720 -1 0 0
 169 1515 46, 47 47 47 46 770 -1 -1
 170 1548 45 46 46 45 710 -1 0 -1
 171 1584 44 44 45 44 710 -1 0 0
 172 1620 43 44 44 43 770 -1 0 -1
 173 1659 42 43 43 42 720 -1 0 -1
 174 1699 41 41 42 41 710 -1 0 0
 175 1742 40 40 41 40 770 -1 0 0
 176 1787 39 39 40 39 710 -1 0 0
 177 1834 38 38 39 38 720 -1 0 0
 178 1883 37 37 38 37 770 -1 0 0
 179 1935 36 36 37 36 710 -1 0 0
 180 1991 35 35 36 35 770 -1 0 0
 181 2049 34 34 35 34 710 -1 0 0
 182 2111 33 33 34 33 720 -1 0 0
 183 2177 32 32 33 32 770 -1 0 0
 184 2247 31 31 32 31 710 -1 0 0
 185 2322 30 30 31 30 770 -1 0 0
 186 2402 29 29 30 29 710 -1 0 0
 187 2488 28 28 29 28 720 -1 0 0
 188 2580 27 27 28 27 770 -1 0 0
 189 2680 26 26 27 26 710 -1 0 0
 190 2787 25 25 26 25 770 -1 0 0

 147

Chapter 7

Conclusion

In this thesis, we study single model U-type assembly line balancing

problem (UALBP). We consider a U-shaped line with constant operation times,

no waiting times, and no walking times. Our objective is to minimize the number

of stations, given the cycle time, C. This is achieved by finding a proper allocation

of tasks to the stations.

We propose a new heuristic (Ant Colony Optimization (ACO) meta-

heuristic) and its variants for the single model U-type assembly line balancing

problem (UALBP). Although there are two ant algorithm developed for the single

assembly line balancing problem (Bautista and Pereira, 2002; McMullen and

Tarasewich, 2003) to the best of our knowledge, this study is the first application

of the ACO meta-heuristic to U-shaped production lines.

Even though several heuristics have been developed for SALBP (Erel and

Sarin, 1998) for the single model UALBP, we could find only three heuristics in

the literature. These are: RPWT based heuristic (Miltenburg and Wijngaard,

1994), branch and bound based heuristic (Scholl and Klein, 1999) and simulated

annealing based heuristic (Erel, Sabuncuoglu and Aksu, 2001).

CHAPTER 7. CONCLUSION

148

Proposed methods for UALBP are considered in three groups: (i) directly

methods, (ii) modified methods, and (iii) methods in which ACO approach is

augmented with some metaheuristic. The first group includes algorithms such as

AS, ASelite, ASrank, and ACS that is directly applied to UALBP. No modification is

done in the structure of the algorithms. The second group includes new

approaches that the structure of the algorithms is modified. Also, performance of

the algorithms in this group is much better than the first group. The last group

includes two specialized approaches that ACO is augmented with simulated

annealing (SA) and beam search (BS).

The performance of the proposed algorithms is tested by using benchmark

problems available in the literature. We use proposed algorithms (Ant System, Ant

System with Elitist Strategy, Ant Colony System, New Ant Colony Optimization

Approach; Version 1 and Version 2) to solve 190 instances from these data sets

and compare the results with those from ULINO (Scholl and Klein, 1999) and the

simulated annealing based algorithm proposed by Erel, Sabuncuoglu and Aksu

(2001).

The computational requirements are not high for any of the proposed

algoritms. The algorithms are coded in Borland Delphi 6.0. The average

computational time for an experiment requires a few seconds on an AMD Athlon

XP 2000+, 266 Mhz machine with 256 MB RAM (333MHZ).

AS is the first algorithm used to solve UALBP. Later we apply ASelite, ACS

and the performance of these algorithms is better than AS. In these methods, some

deficiencies of AS are improved. However, none of the algorithms give sufficient

performance for UALBP. Structure of these algorithms, especially ASelite, ASrank,

is not suitable for UALBP.

Actually, this is related with the topology of the cost function. Hertz and

Widmer (2003) state that the topology of the cost function should not be too flat

CHAPTER 7. CONCLUSION

149

for the heuristics to get the optimal solution. The cost function can be considered

as an altitude with mountains, valleys and plateaus. If the cost function is too flat,

it is difficult for the search algoritm to escape from the large plateaus to fall into

the valleys. To tackle this problem Hertz and Widmer (2003) suggest adding a

component to the cost function to discriminate the solutions with the same

original cost function value.

The second group methods are modified from the first group to tackle this

problem. Their task selection and pheromone trail update mechanisms are totally

improved. In general, their performance is better than that of the first group.

The third group includes algorithms in which ACO is augmented with a

metaheuristic. One of them is a modified version of ACS augmented with SA and

the other one is a modified version of ACS augmented with beam search (BS).

ACS with SA performs poor in terms of computational time. Even for the second

smallest problem Jackson with 11 elements, computation time ranges between

2.53 hours and 164.63 hours. The structure of the beam search is very suitable for

ACS however the performance of the algorithm was poor in terms of

computational time. It requires excessive amount of time to complete a single

tour.

 We can list the following directions for further research:

(i) The proposed algorithms can be applied to different U-line configurations such

as, stochastic assembly line balancing problems, mixed model assembly systems,

etc.

 It is possible to extend the proposed algorithms for more complex U-lines

such as: multi-lines in a single U, double-dependent U-lines, embedded U-lines,

and multi-U-line facility.

 It is more realistic to consider a mixed-model U-line (a mixed-model

production line is a line where different products are produced) instead of a single

CHAPTER 7. CONCLUSION

150

model U-line. Because in todays business environment, many firms produce

different kinds of products in order to satisfy the customer’s needs.

(ii) It would be interesting to augment the new Ant Colony Optimization (ACO)

approach (Version 1 and Version 2) with a metaheuristic. However this

augmentation must be done in an efficient way to prove the fast search of the

search space.

(iii) A meta-heuristic can be used to find the best set of the parameters. When

there are many parameters it will be tedious to fine tune these parameters by using

an experimental design. In such cases, it may be more intelligent to use a meta-

heuristic to find the best values for these parameters. Botee and Bonabeau (1998)

use a genetic algorithm to select some of the parameters of the ACO algorithm.

For our proposed algorithms, it is possible to use a genetic algorithm or an another

meta-heuristic too.

(iv) The new Ant Colony Optimization (ACO) approach (Version 1 and

Version 2) can be effectively used to solve Type II problems (the minimization of

cycle time, given the number of stations). In that case, we would have to re-

balance an existing line with a particular number of stations.

 151

Bibliography

[1] Bautista, J., Pereira, J., “Ant Algorithms for Assembly Line Balancing”, In

Proceedings of Ant Algorithms, Third International Workshop, ANTS 2002,

Dorigo, M., Caro, D.G., Sampels, M., (Eds), Brussels, Belgium, 65-75, 2002.

[2] Baybars, I., “A Survey of Exact Algorithms for the Simple Assembly Line

Balancing Problem”, Management Science, 32, 909-932, 1996.

[3] Baysakoglu, A., Gindy, N.Z. Nabil, “A Simulated Annealing Algorithm for

Dynamic Layout”, Computers & Operations Research, 28, 1403-1426, 2001.

[4] Besten, M., Stutzle, T., Dorigo, M., “Ant Colony Optimization for the Total

Weighted Tardiness Problem”. In Parallel Problem Solving from Nature: 6th

International Conference, Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,

Lutton, E., Merelo, J.J., Schwefel, H.P., (Eds), Berlin, Springer Verlag. Vol.

1917 of LNCS, 611-620, 2000. (Also available as Tech.Rep.IRIDIA/99-16,

Université Libre de Bruxelles, Belgium.)

[5] Besten, M.L., Stutzle, T., Dorigo, M., “An Ant Colony Optimization

Application to the Single Machine Total Weighted Tardiness Problem”. In

Abstract Proceedings of ANTS'2000: From Ant Colonies to Artificial Ants:

Second International Workshop on Ant Algorithms, Dorigo, M., Middendorf,

M., Stützle, T., (Eds), Brussels, Belgium, 39-42, 2000.

[6] Blum, C., Sampels, M., “Ant Colony Optimization for FOP Shop Scheduling:

A Case Study on Different Pheromone Representations”. In Proceedings of

BIBLIOGRAPHY

152

the 2002 Congress on Evolutionary Computation (CEC '02), IEEE Computer

Society Press, 2, 1558-1563, 2002.

[7] Botee, H.M., Bonabeau, E., “Evolving Ant Colony Optimization”, Advance

Complex Systems, 1, 149-159, 1998.

[8] Bullnheimer, B., Hartl, R.F., Strauss, C., “A New Rank-Based Version of the

Ant System: A Computational Study”. Central European Journal for

Operations Research and Economics, 7-1, 25-38, 1999.

[9] Bullnheimer, B., Kotsis, G., Strauss, C., “Parallelization Strategies for the Ant

System”. In Leone, R.D., Murli, A., Pardalos, P., Toraldo, G., (Eds.), High

Performance Algorithms and Software in Nonlinear Optimization, Vol 24 of

Applied Optimization, 87-100, Kluwer Academic Publishers, Dordrecht, NL,

1998.

[10] Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., Trubian, M.,

“Heuristics from Nature for Hard Combinatorial Optimization Problems”,

International Transactions in Operational Research, 3, 1, 1-21, 1996.

[11] Colorni, A., Dorigo, M., Maniezzo, V., “An Investigation of Some Properties

of an Ant Algorithm”, Proceedings of the Parallel Problem Solving From

Nature Conference (PPSN 92), Brussels, Belgium, Manner, R., Manderick, B.,

(Eds.), Elsevier Publishing, 509-520, 1992.

[12] Colorni, A., Dorigo, M., Maniezzo, V., “Distributed Optimization by Ant

Colonies”, Proceedings of ECAL91-European Conference on Artificial Life,

Paris, France, Elsevier Publishing, 134-142, 1991.

[13] Deneubourg, J.L., Aron, S., Goss, S., Paspeels, J.M., “The self-organizing

exploratory pattern of the argentine ant”, Journal of Insect Behavior, 3, 159-

168, 1990.

BIBLIOGRAPHY

153

[14] Dorigo, M., Caro, D.C., and Gambardella, L.M., “Ant Algorithms for Discrete

Optimization”, Artificial Life, 5(2), 137-172, 1999.

[15] Dorigo, M., Gambardella, L.M., “A Study of Some Properties of Ant-Q”. In

Proceedings of PPSN IV- Fourth International Conference on Parallel

Problem Solving From Nature, Voigt, H.M., Ebeling, W., Rechenberg, I.,

Schwefel, H.S. (Eds.), Springer-Verlag, Berlin 656-665, 1996.

[16] Dorigo, M., Gambardella, L.M., “Ant Colony System: A Cooperative

Learning Approach to the Travelling Salesman Problem”, IEEE Transactions

on Evolutionary Computation, 1-1, 53-66, 1997a.

[17] Dorigo, M., Gambella, L.M., “Ant Colonies for the Traveling Salesman

Problem”, BioSystems, 43, 73-81, 1997b.

[18] Dorigo, M., Maniezzo, V., Colorni, A., “Ant System: An Autocatalytic

Optimizing Process”, Technical Report 91-016 Revised, Dipartmentio di

Eletronica e Informazione, Politecnico di Mileno, Italy, 1991.

[19] Dorigo, M., Maniezzo, V., Colorni, A., “Positive Feedback as a Search

Strategy”, Technical Report 91-016, Dipartmentio di Eletronica, Politecnico di

Mileno, Italy, 1991.

[20] Dorigo, M., Maniezzo, V., Colorni, A., “The Ant System: Optimization by a

Colony of Cooperating Agents”, IEEE Transactions on Systems, Man, and

Cybernetics – Part B, 26-1, 1-13, 1996.

[21] Dorigo, M., Stutzle, T., “The Ant Colony Optimization Metaheuristic:

Algorithms, Applications, and Advances”, Technical Report, IRIDIA/2000-

32, IRIDIA, University Libre de Bruxelles, Belgium, 2000.

[22] Erel, E. Sarin, S.C., “A Survey of the Assembly Line Balancing Procedures”,

Production Planning and Control, 9, 414-434, 1998.

BIBLIOGRAPHY

154

[23] Erel, E., Sabuncuoglu, I., Aksu, B.A., “Balancing of U-Type Assembly

Systems Using Simulated Annealing”, International Journal of Production

Research, 39-13, 3003-3015, 2001.

[24] Fenet S., Hassas S., “A.N.T: A Distributed Problem-Solving Framework

Based on Mobile Agents”. In Advances in Mobile Agents Systems Research,

Vol. 1., Theory and Practice, G.E. Lasker, J. Dospisil, E. Kendall, Kendall,

(Eds.), MAA’2000, International Institute for Advanced Studies in Systems

Research and Cybernetics, 39-44, 2000.

[25] Gagné C., Gravel M., Price W.L., “A Look-ahead Addition to the Ant Colony

Optimization Algorithm and its Application to an Industrial Scheduling

Problem”. In Proceedings of the – 4th Metaheuristics International

Conference (MIC’2001), Porto, Portugal, 79-84, 2001.

[26] Gambardela, L.M., Dorigo, M., “Solving Symmetric and Asymmetric TSPs by

Ant Colonies”. In Proceedings of the 1996 IEEE International Conference on

Evolutionary Computation (ICEC’96), IEEE Press, Piscataway, NJ, 622-627,

1996.

[27] Gambardella, L.M., Dorigo, M., “Ant-Q: A Reinforcement Learning

Approach to the Travelling Salesman Problem”. In Proceedings of the Twelfth

International Conference on Machine Learning (ML-95), Prieditis, A.,

Russell, S., (Eds.), Morgan Kaufmann Publishers, Palo Alto, CA, 252-260,

1995.

[28] Glover, F., Greenberg, H.J., “New Approaches for Heuristic Search: A

Bilateral Linkage with Artificial Intelligence”, European Journal of

Operational Research, 39, 119-130, 1989.

[29] Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M., “Self-organized shortcuts

in the Argentine ant”, Naturwissenschaften, 76, 579-581, 1989.

BIBLIOGRAPHY

155

[30] Grassé, P.P., “La reconstruction du nid et les coordinations interindividuelles

chez bellicositermes natalensis et cubitermes sp. La théorie de la stigmergie:

essai d’interprétation du comportement des termites constructeurs”, Insectes

Sociaux, 6, 41-81, 1959.

[31] Hertz, A., Widmer, M., “Guidelines for the Use of Meta-Heuristics in

Combinatorial Optimization”, European Journal of Operational Research,

151, 247-252, 2003.

[32] Hoffmann, T.R., “Assembly Line Balancing - A Set of Challenging

Problems”, International Journal of Production Research, 28, 1807-1815,

1990.

[33] Hoffmann, T.R., EUREKA: “A Hybrid System for Assembly Line

Balancing”, Management Science, 38, 39-42, 1992.

[34] Kim, Y.K., Kim, S.J., Kim, J.Y., “Balancing and Sequencing Mixed- Model

U-lines with a Co-evolutionary Algorithm”, Production Planning & Control,

11-8, 754-764, 2000.

[35] Krishnaiyer, K., Cheraghi, S.H., “Ant Algorithms: Review and Future

Applications”. In IERC´02, Industrial Engineering Research Conference,

Orlando, Florida, USA, 2002.

[36] Maniezzo, V., Carbonaro, A., “Ant Colony Optimization: An Overview”. In

Ribeiro, C., (Eds.) Essays and Surveys in Metaheuristics, Kluwer, 21-44,

2001.

[37] McMullen, P.R., Tarasewich, P. “Using Ant Techniques to Solve the

Assembly Line Balancing Problem”, IIE Transactions, 35, 605-617, 2003.

BIBLIOGRAPHY

156

[38] Middendorf, M., Reischle, F., Schmeck, H., “Multi Colony Ant Algorithms”,

Journal of Heuristics, Kluwer Akademic Publishers, 305-320, 2002.

[39] Miltenburg, G.J., Sparling, D., “Optimal Solution Algorithms for the U-line

Balancing Problem”, Working Paper, McMaster University, Hamilton,

Ontario, Canada, 1995.

[40] Miltenburg, G.J., Wijngaard, J., “The U-line Line Balancing Problem”,

Management Science, 40-10, 1378-1388, 1994.

[41] Miltenburg, J., “Balancing U-lines in a Multiple U-line Facility”, European

Journal of Operational Research, 109, 1-23, 1998.

[42] Miltenburg, J., “One-piece Flow Manufacturing on U-shaped Production

Lines: A Tutorial”, IIE Transactions, 33, 303-321, 2001b.

[43] Miltenburg, J., “The Effect of Breakdowns on U-shaped Production Lines”,

International Journal of Production Research, 38, 353-364, 2000.

[44] Miltenburg, J., “U-shaped Production Lines: A Review of Theory and

Practice”, International Journal of Production Economics, 70, 201-214,

2001a.

[45] Monden, Y., “Toyota Production System” (Norcross, GA: Industrial

Engineering and Management Press, Institute of Industrial Engineers), 1993.

[46] Montgomery, J., Randall, M., “Alternative Pheromone Applications for Ant

Colony Optimization”, Technical Report TR02-07, School of Information

Technology, Bond University, Australia, 2002.

[47] Nakade, K., Ohno, K., “An Optimal Worker Allocation Problem for a U-

shaped Production Line”, International Journal of Production Economics, 60-

1, 353-358, 1999.

BIBLIOGRAPHY

157

[48] Nakade, K., Ohno, K., “Separate and Carousel Type Allocations of Workers in

a U-shaped Production Line”, European Journal of Operational Research,

145, 403-424, 2003.

[49] Nakade, K., Ohno, K., Shanthikumar, J.G., “Bounds and Approximations for

Cycle Times of a U-shaped Production Line”, Operations Research Letters,

21, 191-200, 1997.

[50] Nakade, K., Ohno, K., “Stochastic Analysis of a U-shaped Production Line

with Multiple Workers”, Computers and Industrial Engineering, 33, 809-812,

1997.

[51] Reeves, C.R. (ed.), “Modern Heuristic Techniques for Combinatorial

Problems”, Blackwell Scientific Press, Oxford, 1993.

[52] Sabuncuoglu, I., Bayiz, M., “Job Shop Scheduling with Beam Search”,

European Journal of Operational Research, 118, 390-412, 1999.

[53] Salveson, M.E., “The Assembly Line Balancing Problem”, Journal of

Industrial Engineering, 6, 18-25, 1955.

[54] Scholl, A. “Data of Assembly Line Balancing Problems”. Schriften zur

Quantitativen Betriebswirtschaftslehre 16/93, TU Darmstadt, 1993.

[55] Scholl, A., Klein, R., “ULINO: Optimally Balancing U-shaped JIT Assembly

Lines”, International Journal of Production Research, 37-4, 721-736, 1999.

[56] Sparling, D., “Balancing Just-In-Time Production Units: The N U-line

Balancing Problem”, Information Systems and Operational Research, 36-4,

215-237, 1998.

BIBLIOGRAPHY

158

[57] Sparling, D., Miltenburg, J., The Mixed-Model U-line Balancing Problem,

International Journal of Production Research, 36-2, 485-501, 1998.

[58] Stutze, T., Dorigo, M., “ACO Algorithms for the Travelling Salesman

Problem”. In Miettinen, K., Makela, M., Neittaanmaki, P., and Periaux, J.,

(Eds.), Evolutionary Algorithms in Engineering and Computer Science:

Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary

Programming, Genetic Programming and Industrial Applications. John Wiley

& Sons., 163-183, 1999.

[59] Stutzle, T., “An Ant Approach to the Flow Shop Problem”. In Proceedings of

the 6th European Congress on Intelligent Techniques & Soft Computing (EU-

FIT’98), Verlag Mainz, Aachen, 3, 1560-1564, 1998.

[60] T’kindt, V., Monmarché, N., Tercinet, F., Laügt, D., “An Ant Colony

Optimization Algorithm to Solve a 2-Machine Bicriteria Flowshop

Scheduling Problem”, European Journal of Operational Research, 142, 250-

257, 2002.

[61] Talbot, F.B., J.H. Patterson, Gehrlein, W.V., “A comparative evaluation of

heuristic line balancing techniques”, Management Science 32, 430 – 454,

1986.

[62] Urban, T.L., “Optimal Balancing of U-shaped Assembly Lines”, Management

Science, 44, 738-741, 1998.

[63] Zanakis, S.H., Evans, J.R., Vazacopoulos, A.A., “Heuristic Methods and

Applications: A categorized Survey”, European Journal of Operations

Research, 43, 88-110, 1989.

159

Table A.1.1: Trail matrix gathered for tour number 10

A.1 APPENDIX A

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0.65 0.01 0.40 0.01 0.45 0.01 0.08 0.01 0.06 0.01 0.01 0.01 0.01 0.01
0.50 0.01 0.55 0.01 0.22 0.02 0.26 0.01 0.11 0.01 0.04 0.01 0.01 0.01
0.36 0.01 0.50 0.01 0.23 0.02 0.26 0.02 0.26 0.01 0.05 0.01 0.02 0.02
0.09 0.01 0.27 0.01 0.22 0.03 0.17 0.03 0.31 0.05 0.21 0.08 0.12 0.03
0.41 0.01 0.45 0.01 0.40 0.01 0.30 0.01 0.07 0.01 0.01 0.01 0.01 0.01
0.26 0.01 0.36 0.01 0.27 0.01 0.26 0.01 0.26 0.01 0.16 0.01 0.11 0.01
0.26 0.01 0.36 0.01 0.27 0.01 0.22 0.01 0.31 0.01 0.16 0.01 0.12 0.02
0.22 0.01 0.31 0.01 0.27 0.01 0.22 0.00 0.31 0.09 0.17 0.03 0.11 0.04
0.01 0.01 0.05 0.01 0.21 0.04 0.22 0.08 0.35 0.08 0.22 0.13 0.11 0.09
0.23 0.01 0.26 0.01 0.31 0.01 0.31 0.01 0.26 0.01 0.18 0.01 0.11 0.01
0.01 0.01 0.09 0.09 0.10 0.09 0.11 0.07 0.14 0.13 0.11 0.26 0.17 0.26
0.18 0.01 0.31 0.01 0.21 0.01 0.41 0.01 0.26 0.01 0.15 0.01 0.13 0.01
0.01 0.01 0.00 0.21 0.05 0.08 0.03 0.22 0.17 0.26 0.01 0.21 0.06 0.18
0.01 0.01 0.23 0.01 0.36 0.01 0.21 0.01 0.26 0.01 0.26 0.02 0.21 0.09
0.01 0.01 0.07 0.01 0.21 0.01 0.14 0.01 0.31 0.03 0.41 0.06 0.26 0.14
0.01 0.01 0.01 0.01 0.09 0.01 0.14 0.04 0.12 0.08 0.18 0.21 0.31 0.26
1.45 0.01 0.19 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.17 0.01 0.36 0.01 0.27 0.01 0.31 0.01 0.21 0.05 0.31 0.08
0.01 0.01 0.03 0.01 0.17 0.01 0.21 0.01 0.36 0.02 0.31 0.04 0.21 0.21
0.01 0.01 0.01 0.01 0.02 0.01 0.12 0.07 0.12 0.06 0.26 0.22 0.36 0.26
0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.12 0.01 0.31 0.07 0.31 0.35 0.23
0.01 0.01 0.01 0.01 0.01 0.16 0.01 0.12 0.01 0.40 0.05 0.36 0.26 0.26
0.01 0.01 0.01 0.01 0.01 0.26 0.01 0.31 0.01 0.31 0.01 0.23 0.06 0.31
0.01 0.01 0.01 0.13 0.01 0.30 0.01 0.31 0.01 0.31 0.01 0.27 0.01 0.31
0.01 0.01 0.01 0.21 0.01 0.36 0.01 0.36 0.01 0.18 0.04 0.40 0.11 0.08
0.01 0.01 0.01 0.21 0.01 0.45 0.01 0.27 0.01 0.31 0.00 0.31 0.09 0.08
0.01 0.01 0.01 0.55 0.01 0.27 0.01 0.31 0.01 0.26 0.01 0.17 0.01 0.15
0.01 0.55 0.01 0.60 0.01 0.26 0.01 0.18 0.01 0.09 0.01 0.04 0.01 0.06
0.01 1.30 0.01 0.31 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.40 0.01 0.17 0.01 0.26 0.01 0.26 0.01 0.19 0.02 0.26 0.07 0.02
0.01 0.40 0.01 0.21 0.01 0.31 0.01 0.22 0.01 0.22 0.01 0.17 0.01 0.12
0.01 0.40 0.01 0.36 0.01 0.31 0.01 0.31 0.01 0.14 0.01 0.12 0.01 0.11
0.01 0.40 0.01 0.36 0.01 0.31 0.01 0.31 0.01 0.14 0.01 0.16 0.01 0.01
0.01 1.30 0.01 0.31 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 1.35 0.01 0.27 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Location
Task

Station

160

Table A.1.2: Trail matrix gathered for tour number 100

A.1 APPENDIX A (Cont’d)

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0.75 0.00 0.45 0.00 0.31 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.05 0.00
0.55 0.00 0.50 0.00 0.36 0.00 0.22 0.00 0.06 0.00 0.06 0.00 0.00 0.05
0.40 0.00 0.45 0.00 0.22 0.00 0.45 0.00 0.17 0.00 0.06 0.05 0.03 0.00
0.00 0.00 0.17 0.00 0.36 0.00 0.26 0.00 0.26 0.00 0.31 0.07 0.23 0.09
0.45 0.00 0.50 0.00 0.40 0.00 0.27 0.00 0.08 0.00 0.00 0.00 0.06 0.00
0.26 0.00 0.45 0.00 0.31 0.00 0.27 0.00 0.22 0.00 0.12 0.00 0.05 0.00
0.26 0.00 0.41 0.00 0.36 0.00 0.24 0.00 0.23 0.00 0.16 0.00 0.02 0.05
0.26 0.00 0.31 0.00 0.26 0.00 0.36 0.00 0.20 0.16 0.15 0.04 0.07 0.11
0.00 0.00 0.26 0.00 0.17 0.00 0.22 0.13 0.26 0.07 0.13 0.16 0.19 0.22
0.31 0.00 0.26 0.00 0.22 0.00 0.40 0.00 0.23 0.00 0.18 0.00 0.07 0.00
0.00 0.00 0.00 0.00 0.09 0.14 0.13 0.19 0.08 0.26 0.13 0.18 0.10 0.31
0.22 0.00 0.27 0.00 0.31 0.00 0.22 0.00 0.26 0.00 0.26 0.00 0.21 0.00
0.00 0.00 0.00 0.00 0.12 0.18 0.01 0.31 0.16 0.26 0.08 0.17 0.07 0.23
0.00 0.00 0.20 0.00 0.41 0.00 0.31 0.00 0.27 0.00 0.22 0.06 0.16 0.06
0.00 0.00 0.00 0.00 0.18 0.00 0.27 0.00 0.36 0.00 0.41 0.06 0.14 0.16
0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.17 0.14 0.31 0.26 0.31 0.22
1.30 0.00 0.35 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.23 0.00 0.26 0.00 0.26 0.00 0.31 0.00 0.26 0.09 0.31 0.02
0.00 0.00 0.00 0.00 0.18 0.00 0.21 0.00 0.31 0.04 0.31 0.09 0.40 0.12
0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.13 0.13 0.31 0.22 0.31 0.22
0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.17 0.08 0.27 0.11 0.27 0.35 0.36
0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.18 0.00 0.31 0.14 0.23 0.21 0.36
0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.22 0.00 0.36 0.00 0.36 0.18 0.22
0.00 0.00 0.00 0.45 0.00 0.14 0.00 0.36 0.00 0.31 0.00 0.22 0.12 0.08
0.00 0.00 0.00 0.08 0.00 0.31 0.00 0.45 0.08 0.50 0.06 0.22 0.12 0.05
0.00 0.00 0.00 0.08 0.00 0.50 0.00 0.41 0.04 0.36 0.06 0.22 0.12 0.07
0.00 0.00 0.00 0.50 0.00 0.36 0.00 0.41 0.00 0.26 0.00 0.08 0.08 0.12
0.00 0.45 0.00 0.65 0.00 0.41 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.25 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.00 0.10 0.00 0.21 0.00 0.24 0.00 0.40 0.04 0.22 0.12 0.01
0.00 0.50 0.00 0.17 0.00 0.36 0.00 0.27 0.00 0.26 0.02 0.13 0.06 0.12
0.00 0.50 0.00 0.35 0.00 0.36 0.00 0.22 0.00 0.22 0.02 0.07 0.02 0.12
0.00 0.50 0.00 0.41 0.00 0.31 0.00 0.26 0.00 0.18 0.00 0.13 0.00 0.00
0.00 1.30 0.00 0.31 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.40 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Location
Task

Station

161

Table A.1.3: Trail matrix gathered for tour number 500

A.1 APPENDIX A (Cont’d)

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0.60 0.00 0.45 0.00 0.50 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.02 0.00
0.46 0.00 0.50 0.00 0.45 0.00 0.31 0.00 0.08 0.02 0.02 0.00 0.00 0.00
0.27 0.00 0.55 0.00 0.31 0.00 0.31 0.00 0.26 0.02 0.09 0.00 0.01 0.00
0.00 0.00 0.36 0.00 0.13 0.00 0.26 0.00 0.26 0.07 0.27 0.06 0.22 0.12
0.32 0.00 0.50 0.00 0.50 0.00 0.31 0.00 0.13 0.00 0.00 0.00 0.02 0.00
0.20 0.00 0.31 0.00 0.40 0.00 0.31 0.00 0.22 0.00 0.21 0.00 0.11 0.00
0.20 0.00 0.31 0.00 0.40 0.00 0.31 0.00 0.23 0.00 0.21 0.00 0.10 0.06
0.20 0.00 0.31 0.00 0.22 0.00 0.31 0.03 0.31 0.12 0.21 0.04 0.16 0.00
0.00 0.00 0.15 0.00 0.18 0.00 0.31 0.08 0.14 0.13 0.19 0.12 0.17 0.21
0.26 0.00 0.31 0.00 0.31 0.00 0.31 0.00 0.27 0.00 0.26 0.00 0.10 0.00
0.00 0.00 0.00 0.00 0.14 0.17 0.03 0.22 0.10 0.22 0.00 0.22 0.26 0.14
0.22 0.00 0.31 0.00 0.17 0.00 0.36 0.00 0.41 0.00 0.31 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.19 0.09 0.26 0.18 0.26 0.17 0.23 0.01 0.13
0.00 0.00 0.22 0.00 0.26 0.00 0.27 0.00 0.27 0.00 0.45 0.06 0.23 0.07
0.00 0.00 0.00 0.00 0.18 0.00 0.26 0.00 0.18 0.00 0.41 0.06 0.26 0.18
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.12 0.26 0.27 0.31 0.35
1.50 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.23 0.00 0.26 0.00 0.22 0.00 0.41 0.00 0.40 0.00 0.15 0.13
0.00 0.00 0.00 0.00 0.22 0.00 0.31 0.00 0.22 0.00 0.22 0.08 0.31 0.18
0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.21 0.22 0.22 0.22 0.31 0.22
0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.22 0.11 0.50 0.22 0.17 0.18 0.27
0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.26 0.00 0.36 0.21 0.26 0.23 0.17
0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.36 0.00 0.31 0.11 0.23 0.14 0.22
0.00 0.00 0.00 0.45 0.00 0.22 0.00 0.31 0.00 0.17 0.00 0.22 0.17 0.21
0.00 0.00 0.00 0.21 0.00 0.31 0.00 0.40 0.11 0.32 0.17 0.14 0.04 0.07
0.00 0.00 0.00 0.21 0.00 0.50 0.00 0.36 0.06 0.23 0.17 0.12 0.11 0.12
0.00 0.00 0.00 0.65 0.00 0.36 0.00 0.26 0.00 0.18 0.00 0.08 0.13 0.13
0.00 0.55 0.00 0.60 0.00 0.26 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.25 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.55 0.00 0.13 0.00 0.16 0.00 0.36 0.05 0.36 0.08 0.17 0.06 0.03
0.00 0.55 0.00 0.17 0.00 0.40 0.00 0.27 0.00 0.22 0.09 0.12 0.02 0.05
0.00 0.55 0.00 0.36 0.00 0.31 0.00 0.26 0.00 0.22 0.09 0.06 0.00 0.05
0.00 0.55 0.00 0.36 0.00 0.36 0.00 0.22 0.00 0.22 0.00 0.00 0.00 0.10
0.00 1.60 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.35 0.00 0.36 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Location
Task

Station

162

Table A.1.4: Trail matrix gathered for tour number 1000

A.1 APPENDIX A (Cont’d)

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0.65 0.00 0.55 0.00 0.31 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.06 0.00
0.45 0.00 0.70 0.00 0.25 0.00 0.18 0.00 0.16 0.00 0.03 0.00 0.06 0.00
0.22 0.00 0.45 0.00 0.41 0.00 0.31 0.00 0.15 0.00 0.21 0.00 0.03 0.06
0.00 0.00 0.21 0.00 0.26 0.00 0.19 0.00 0.31 0.00 0.13 0.03 0.26 0.22
0.45 0.00 0.60 0.00 0.28 0.00 0.31 0.00 0.09 0.00 0.00 0.00 0.02 0.06
0.21 0.00 0.50 0.00 0.26 0.00 0.41 0.00 0.18 0.00 0.14 0.06 0.07 0.00
0.21 0.00 0.50 0.00 0.22 0.00 0.41 0.00 0.22 0.00 0.14 0.06 0.09 0.05
0.17 0.00 0.40 0.00 0.31 0.00 0.22 0.05 0.31 0.07 0.16 0.06 0.13 0.06
0.00 0.00 0.12 0.00 0.21 0.00 0.31 0.09 0.18 0.08 0.26 0.09 0.18 0.14
0.26 0.00 0.40 0.00 0.26 0.00 0.36 0.00 0.31 0.00 0.15 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.08 0.13 0.21 0.23 0.09 0.26 0.16 0.17 0.09 0.22
0.22 0.00 0.26 0.00 0.35 0.00 0.27 0.00 0.31 0.00 0.18 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.26 0.11 0.18 0.06 0.26 0.00 0.26 0.15 0.36
0.00 0.00 0.31 0.00 0.36 0.00 0.22 0.00 0.45 0.00 0.31 0.06 0.07 0.10
0.00 0.00 0.00 0.00 0.26 0.00 0.22 0.00 0.26 0.00 0.40 0.08 0.41 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.31 0.22 0.26 0.31
1.55 0.00 0.18 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.22 0.00 0.50 0.00 0.17 0.00 0.36 0.06 0.31 0.05 0.04 0.17
0.00 0.00 0.00 0.00 0.31 0.00 0.22 0.00 0.31 0.06 0.36 0.09 0.22 0.17
0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.21 0.17 0.31 0.26 0.31 0.22
0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.26 0.04 0.31 0.35 0.45 0.22 0.15
0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.26 0.00 0.40 0.17 0.36 0.26 0.23
0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.31 0.00 0.36 0.06 0.31 0.26 0.13
0.00 0.00 0.00 0.18 0.00 0.36 0.00 0.31 0.00 0.36 0.00 0.22 0.21 0.09
0.00 0.00 0.00 0.36 0.00 0.20 0.00 0.22 0.04 0.28 0.21 0.35 0.06 0.12
0.00 0.00 0.00 0.36 0.00 0.36 0.00 0.20 0.00 0.27 0.13 0.31 0.07 0.06
0.00 0.00 0.00 0.50 0.00 0.32 0.00 0.36 0.00 0.22 0.00 0.08 0.11 0.12
0.00 0.55 0.00 0.50 0.00 0.31 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.30 0.00 0.41 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.00 0.16 0.00 0.31 0.00 0.19 0.00 0.22 0.10 0.26 0.01 0.07
0.00 0.50 0.00 0.22 0.00 0.36 0.00 0.22 0.00 0.14 0.07 0.26 0.02 0.08
0.00 0.50 0.00 0.41 0.00 0.27 0.00 0.26 0.00 0.17 0.07 0.12 0.00 0.06
0.00 0.50 0.00 0.41 0.00 0.27 0.00 0.31 0.00 0.21 0.00 0.00 0.00 0.08
0.00 1.45 0.00 0.26 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.40 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Location
Task

Station

163

Table A.2.1: T2 matrix gathered for tour number 5000

A.2 APPENDIX B

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

4106 0 2711 0 2263 0 825 0 3 0 3 0 45 0
3007 0 2978 0 2370 1 1267 0 239 3 33 5 50 3
1572 0 2828 0 2202 2 1948 2 957 5 320 10 61 34
 7 0 1256 0 1359 3 1488 3 1410 47 1335 81 1216 369
2592 0 2780 0 2443 0 1746 0 315 0 26 0 3 36
1238 0 2350 0 1868 0 2054 0 1593 0 672 37 49 5
1206 0 2239 0 1846 0 1932 0 1731 0 803 37 63 32
1128 0 1761 0 1723 8 1801 85 1731 154 978 115 268 96
0 0 917 0 1000 13 1044 288 1196 516 1113 608 943 848
1400 0 1764 0 1497 0 1847 0 1657 0 1097 0 194 5
0 0 5 53 617 226 455 1161 375 1331 556 1163 530 1431
1461 0 1748 0 1475 0 1799 0 1713 0 1037 0 342 0
0 0 2 838 219 1003 508 1115 358 1270 448 1089 376 1104
0 0 1356 0 1761 0 1609 0 2177 2 1881 90 494 376
0 0 6 0 1197 0 1272 0 1696 4 2078 114 1985 666
0 0 0 0 16 0 635 2 981 26 1436 1269 1676 1572
7963 0 1838 0 109 0 36 0 5 0 3 0 2 0
0 0 1396 0 1773 0 1578 1 2177 59 1832 144 550 286
0 0 15 0 1204 0 1313 1 1744 82 1956 221 1725 776
0 0 0 0 19 0 616 15 1043 706 1393 1152 1711 1319
0 0 0 0 0 582 9 776 290 1588 806 1876 1287 1863
0 0 0 0 0 947 2 1021 11 1716 630 1947 954 1779
0 0 0 0 0 1474 0 1484 2 1930 8 1887 657 1435
0 0 0 1356 0 1312 0 1666 0 1851 1 1644 128 1289
0 0 0 892 0 1665 7 2199 245 2263 357 1230 259 456
0 0 0 892 0 2373 1 2453 133 1897 263 1017 164 479
0 0 0 3101 0 1960 0 2132 0 1275 1 661 104 626
0 2884 0 3873 0 1835 0 978 0 32 0 7 0 315
0 8001 0 1916 0 34 0 4 0 1 0 0 0 0
0 2966 0 541 0 966 2 1662 60 1523 155 1035 280 350
0 2966 0 718 0 1774 1 1565 0 1177 95 851 108 461
0 2966 0 1672 0 1973 1 1318 0 982 71 627 59 271
0 2966 0 1940 0 1913 0 1332 0 1079 0 508 0 106
0 8170 0 1681 0 80 0 19 0 6 0 0 0 0
0 7982 0 1921 0 40 0 12 0 1 0 0 0 0

Location
Task

Station

164

Table A.2.2: T2 matrix gathered for tour number 10000

A.2 APPENDIX B (Cont’d)

Gunther problem, cycle time = 69; α =1, β =1, ρ1 =0.4, ρ2=0.4, q0=0.2, τ0=0.0028.

(Optimal station number is 7. The trail values are considered only for 7 stations)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

139811 0 94356 0 71442 0 25039 0 4 0 7 0 744 0
102231 0 101452 0 81750 2 36735 59 7084 317 1077 71 642 246
55477 0 94467 0 76505 3 62303 110 29996 366 8933 147 2226 640
11 0 43575 0 46457 8 53880 447 48564 971 47217 5372 33832 11714
89111 0 94391 0 81735 0 53637 0 10496 0 1050 4 447 635
43749 0 78736 0 62966 0 68191 0 50634 0 22954 618 1292 144
42710 0 75098 0 61644 0 65516 0 55200 0 26655 622 1367 888
39462 0 59128 0 58848 3 59518 848 57827 2973 34189 3528 9225 2307
0 0 30978 0 33928 15 43448 3269 42505 13156 42631 26041 28529 24231
48134 0 60723 0 49557 0 60316 0 55088 0 36674 0 1119 380
0 0 9 89 18524 13560 23289 40242 11112 41403 20533 44195 17282 43144
47917 0 60963 0 49944 0 60531 0 55371 0 37351 0 1265 19
0 0 11 408 14840 39726 22658 41835 7482 44443 14708 45244 15720 37864
0 0 47428 0 61394 0 51026 1 72532 1 64154 3308 10660 12933
0 0 2 0 40844 0 46285 1 56681 12 71747 4816 59098 25407
0 0 0 0 5 0 5702 20 39708 235 53020 48339 60570 51357
264875 0 62022 0 3575 0 869 0 268 0 96 0 5 0
0 0 47099 0 61692 0 51130 0 73345 1178 63813 2308 11468 10992
0 0 2 0 40814 0 45913 0 56826 2032 72246 3356 61244 21846
0 0 0 0 10 0 1713 3 41199 25037 52891 1462 61486 59408
0 0 0 0 0 15012 17 30264 7103 54017 36375 63152 36919 63845
0 0 0 0 0 29239 0 36452 49 56077 26395 68685 29064 58038
0 0 0 0 0 49605 0 49589 0 64258 4469 65614 23152 42337
0 0 0 59691 0 32524 0 55950 0 61622 200 52577 13370 31418
0 0 0 37361 0 47945 5 72964 6269 76065 19943 40457 9377 11964
0 0 0 37361 0 72901 0 79872 869 64771 14079 32114 10781 9266
0 0 0 97522 0 64805 0 79937 0 37653 17 16229 11110 19684
0 93719 0 127142 0 62533 0 36778 0 14 0 65 0 0
0 266352 0 63928 0 1134 0 290 0 9 0 3 0 0
0 98186 0 19407 0 30424 12 57280 348 51702 12421 30696 7947 10533
0 98186 0 24543 0 57997 0 54405 1 38054 6025 24485 4787 12537
0 98186 0 54115 0 65582 0 50221 1 24939 5850 15569 1405 15474
0 98186 0 62813 0 62860 0 48962 0 35766 0 734 0 20079
0 270575 0 57761 0 2564 0 650 0 165 0 1 0 0
0 262345 0 67179 0 1571 0 588 0 27 0 2 0 4

Location
Task

Station

165

Table A.3.1: Trail matrix gathered for tour number 100

A.3 APPENDIX C

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 182 167 54 153 60 104 53 77 30
 164 190 7 17 2 13 25 67 82
 2 161 175 164 73 145 117 102 79
 0 107 172 166 123 149 142 132 119
 0 1 7 153 168 155 144 162 144
 104 172 177 87 88 91 39 108 115
 174 161 173 127 113 60 36 20 71
 0 0 0 0 126 166 161 174 162
 153 170 175 150 109 102 42 37 74
 17 119 144 165 164 145 148 109 117
 0 0 0 0 2 174 179 148 140
 0 56 153 168 151 154 7 160 116
 0 0 0 29 139 124 167 162 167
 0 19 115 160 158 153 157 153 137
 0 0 2 3 6 154 167 161 178
 0 0 0 0 129 165 169 168 160
 0 0 0 0 176 173 129 148 143
 0 0 0 2 177 166 162 154 118
 0 0 0 0 23 133 158 167 177
 0 0 0 179 180 47 45 140 113
 0 0 74 177 172 147 145 101 74
 0 0 111 180 167 131 132 94 86
 0 0 184 177 115 1 73 22 7
 182 174 168 9 29 0 4 1 34
 0 0 18 116 44 92 123 150 171
 0 177 159 159 158 80 64 59 73
 0 10 61 124 122 84 138 152 172
 172 180 168 127 1 3 2 7 15
 192 162 40 6 0 0 0 0 1

 Station
Task

166

Table A.3.2: Trail matrix gathered for tour number 250

A.3 APPENDIX C (Cont’d)

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 184 166 142 145 78 52 70 34 17
 166 190 5 47 45 0 20 114 0
 2 166 175 166 153 0 64 121 55
 0 109 173 166 157 148 98 132 106
 0 0 4 153 172 168 144 141 139
 147 164 174 147 99 94 105 122 116
 174 161 173 142 128 62 45 74 47
 0 0 0 0 115 172 168 166 164
 146 171 175 156 129 101 65 82 70
 35 127 142 157 167 155 142 140 136
 0 0 0 0 0 162 181 170 146
 1 118 154 165 159 148 146 150 126
 0 0 0 24 130 158 164 164 170
 0 19 125 145 157 158 158 154 154
 0 0 0 54 52 149 163 166 177
 0 0 0 0 112 161 161 172 169
 0 0 0 25 163 175 166 150 147
 0 0 0 0 172 171 155 162 144
 0 0 0 1 73 140 149 165 177
 0 0 0 172 181 145 118 122 104
 0 0 90 178 172 155 136 123 75
 0 0 123 183 167 144 126 115 90
 0 11 180 181 146 5 32 27 53
 178 174 174 72 2 0 0 0 22
 2 50 106 118 103 117 126 143 169
 7 179 169 157 144 97 81 86 65
 0 76 119 121 121 128 126 144 168
 173 178 171 122 1 5 6 5 14
 192 164 58 1 0 0 0 0 0

 Station
Task

167

Table A.3.3: Trail matrix gathered for tour number 1000

A.3 APPENDIX C (Cont’d)

Buxey problem, cycle time = 36; α =1, β =1, ρ1 =0.99, ρ2=0.99, q0=0.3, τ0=1.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 183 170 146 139 86 51 51 54 23
 167 189 0 112 47 28 44 55 36
 0 162 176 169 153 81 93 66 70
 0 109 172 169 159 149 116 113 97
 0 0 81 146 171 174 144 139 127
 150 167 173 145 126 119 101 99 80
 173 163 170 144 136 82 72 76 31
 0 0 0 52 104 174 171 165 157
 143 169 173 159 138 108 87 83 62
 28 121 140 156 168 154 146 142 135
 0 0 0 0 0 162 180 173 143
 0 127 147 161 155 157 148 152 132
 0 0 11 70 118 157 164 165 171
 0 14 109 144 154 156 163 155 155
 0 0 0 26 94 131 159 168 180
 0 0 0 4 109 163 160 171 171
 0 0 0 39 171 170 163 156 147
 0 0 0 53 166 171 160 165 148
 0 0 0 0 93 138 151 163 177
 0 0 0 173 181 143 117 117 101
 0 0 109 176 176 153 141 120 76
 0 0 131 179 173 144 126 122 89
 0 2 182 180 144 0 0 69 33
 180 173 171 78 0 0 0 3 26
 0 92 119 114 0 122 124 141 167
 2 179 168 156 142 104 96 70 59
 0 0 128 128 127 114 123 144 172
 171 181 170 122 0 10 2 16 22
 192 165 61 9 0 0 0 0 0

 Station
Task

168

Table A.4.1: Trail matrix gathered for tour number 100

A.4 APPENDIX D

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 904 0 0 0 0 0 0 0 0
 904 0 2 0 0 0 0 0 0
 0 74 257 25 175 0 0 53 0
 0 159 352 65 167 75 69 22 2
 0 0 0 12 80 300 82 35 57
 639 389 164 0 10 0 118 0 10
 441 0 141 1 59 17 68 11 2
 0 0 0 0 2 5 262 9 10
 441 2 177 422 20 42 68 2 37
 0 396 207 50 461 4 145 29 32
 0 0 0 0 0 0 75 56 10
 0 0 85 13 294 50 266 1 8
 0 0 0 0 10 38 89 17 11
 0 1 37 361 169 66 72 6 9
 0 0 0 0 0 98 71 60 9
 0 0 0 0 1 241 10 8 15
 0 0 0 0 342 29 32 9 16
 0 0 0 0 168 267 5 10 16
 0 0 0 0 23 49 208 7 13
 0 0 0 0 542 0 102 3 8
 0 0 0 8 221 60 141 156 18
 0 0 0 474 259 105 28 0 21
 0 0 0 667 10 0 9 0 14
 0 601 423 4 0 0 0 0 1
 0 0 0 59 47 0 0 6 16
 0 589 381 245 19 10 17 0 0
 0 0 116 14 11 90 335 22 9
 0 0 125 345 22 0 0 0 0
 0 784 154 0 0 0 0 0 0

 Station
Task

169

Table A.4.2: Trail matrix gathered for tour number 250

A.4 APPENDIX D (Cont’d)

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 904 0 0 0 0 0 0 0 0
 904 0 0 0 0 0 0 0 0
 0 0 842 147 0 0 0 89 0
 0 0 4 416 86 152 41 5 3
 0 0 0 374 115 237 17 29 8
 627 291 0 104 171 0 24 1 1
 442 0 4 233 267 0 12 0 0
 0 0 0 1 414 4 198 7 11
 442 0 1 230 222 106 5 9 13
 0 358 2 39 394 64 148 29 47
 0 0 0 0 0 0 9 28 10
 0 174 1 148 498 85 156 6 9
 0 0 0 383 0 134 153 14 34
 0 21 1 161 461 73 230 9 8
 0 0 0 0 178 0 1 29 11
 0 0 0 0 6 93 117 10 11
 0 0 0 0 0 245 12 16 9
 0 0 0 0 0 206 30 10 23
 0 0 0 0 106 115 197 27 75
 0 0 0 0 510 0 157 8 37
 0 0 0 0 410 97 207 73 162
 0 0 0 0 461 55 183 11 16
 0 0 0 60 0 43 0 0 92
 0 716 307 16 0 0 0 0 2
 0 87 677 0 0 0 2 0 5
 0 708 15 164 202 29 3 1 0
 0 0 0 2 254 86 169 21 41
 0 0 842 18 0 0 1 11 0
 0 907 1 0 0 0 0 12 0

 Station
Task

170

Table A.4.3: Trail matrix gathered for tour number 1000

A.4 APPENDIX D (Cont’d)

Buxey problem, cycle time= 36; α =1, β =1, ρ1 =0.9, ρ2=0.9, q0=0.3, τ0=1, Q2=30.

(Optimal station number is 9. The trail values are considered only for 9 stations)

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 936 0 0 0 0 0 0 0 0
 936 0 0 0 0 0 0 0 0
 0 0 634 212 0 0 0 111 0
 0 0 101 187 78 84 9 16 3
 0 0 0 105 125 328 53 1 9
 598 473 0 0 134 0 0 11 1
 515 0 9 56 405 0 85 0 0
 0 0 0 0 329 0 182 19 35
 515 0 1 50 389 126 65 1 38
 0 473 3 63 284 70 197 166 55
 0 0 0 0 0 0 0 30 10
 0 0 0 81 420 94 139 28 38
 0 0 0 64 5 65 24 61 17
 0 0 1 175 205 87 162 9 49
 0 0 0 0 0 7 24 8 42
 0 0 0 0 7 231 35 14 16
 0 0 0 0 0 115 36 11 12
 0 0 0 0 0 241 16 35 9
 0 0 0 0 3 40 52 32 23
 0 0 0 0 494 0 69 5 11
 0 0 0 0 442 92 18 34 6
 0 0 0 0 463 107 16 27 5
 0 0 0 50 0 9 8 0 7
 0 643 294 0 0 0 1 0 3
 0 0 459 0 0 0 0 1 8
 0 643 141 159 6 6 5 17 1
 0 0 0 15 349 93 141 45 23
 0 0 564 7 0 0 3 0 1
 0 936 0 0 0 0 0 0 0

 Station
Task

