234 research outputs found

    Battery draining attacks against edge computing nodes in IoT networks

    Get PDF
    Many IoT devices, especially those deployed at the network edge have limited power resources. In this work, we study the effects of a variety of battery draining attacks against edge nodes. Specifically, we implemented hello flooding, packet flooding, selective forwarding, rank attack, and versioning attack in ContikiOS and simulated them in the Cooja simulator. We consider a number of relevant metrics, such as CPU time, low power mode time, TX/RX time, and battery consumption. Besides, we test the stretch attack with three different batteries as an extreme scenario. Our results show that versioning attack is the most severe in terms of draining the power resources of the network, followed by packet flooding and hello flooding attacks. Furthermore, we find that selective forwarding and rank attacks are not able to considerably increase the power resource usage in our scenarios. By quantifying the effects of these attacks, we demonstrate that under specific scenarios, versioning attack can be three to four times as effective as packet flooding and hello flooding attacks in wasting network resources. At the same time, packet flooding is generally comparable to hello flooding in CPU and TX time usage increase but twice as powerful in draining device batteries

    Securing Low-Power Blockchain-Enabled IoT Devices Against Energy Depletion Attack

    Get PDF
    Blockchain-enabled Internet of Things (IoT) envisions a world with rapid development and implementations to change our everyday lives based on smart devices. These devices are attached to the internet that can communicate with each other without human interference. A well-known wireless network in blockchain-enabled IoT frameworks is the Low Power and Lossy Network (LLN) that uses a novel protocol known as Routing protocol for low power and lossy networks (RPL) to provide effective and energy-efficient routing. LLNs that run on RPL are inherently prone to multiple Denial of Service (DoS) attacks due to the low cost, shared medium. and resource-constrained nature of blockchain-enabled IoT devices. A Spam DODAG Information Solicitation (DIS) attack is one of the novel attacks that drain the energy source of legitimate nodes and ends up causing the legitimate nodes to suffer from DoS. To address this problem, a mitigation scheme named DIS Spam Attack Mitigation (DISAM) is proposed. The proposed scheme effectively mitigates the effects of the Spam DIS attack on the network’s performance. The experimental results show that DISAM detects and mitigates the attack quickly and efficiently

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out

    Software defined membrane: policy-driven edge and internet of things security

    Get PDF
    The Internet of Things (IoT) is the latest web evolution incorporating potentially billions of devices (such as cameras, sensors, RFIDs, smart phones, and wearables), owned by different organizations and by individuals deploying and using them for their own purposes. There are currently 6.4 billion IoT devices in use around the world (according to Gartner). Their number, capabilities, as well as their scope of use keeps growing and changing rapidly. Gartner also forecasts that the number of IoT devices will reach 20.8 billion by 2020, and that IoT service spending will reach 1,534 billion, and hardware spending 1,477 billion by this period. Similarly, the volume of generated data and computing requirements of IoT applications will continue to increase with the increasing pervasiveness of IoT technologies. However, security and data privacy remain major challenges in the use of such devices

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Secure Bluetooth Communication in Smart Healthcare Systems: A Novel Community Dataset and Intrusion Detection System †

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97–99.5% based on the F1 scores.Peer reviewe
    • …
    corecore