12 research outputs found

    Polynomiography via Ishikawa and Mann Iterations

    Get PDF
    The aim of this paper is to present some modifications of complex polynomial roots finding visualization process. In this paper Ishikawa or Mann iterations are used instead of the standard Picard iteration. Kalantari introduced the name polynomiography for that visualization process and the obtained images he called polynomiographs. Polynomiographs are interesting both from educational and artistic point of view. By the use of different iterations we obtain quite new polynomiographs that look aestheatically pleasing comparing to the ones from standard Picard iteration. As examples we present some polynomiographs for complex polynomial equation z^3 - 1 = 0, permutation and doubly stochastic matrices. We believe that the results of this paper can inspire those who may be interested in aesthetic patterns created automatically. They also can be used to increase functionality of the existing polynomiography software

    Analysis of Productivity Plankton and Trophic Status Beratan Lake Ecosystem Tabanan Regency, Bali Province

    Get PDF
    Beratan Lake is used for fish cultivation activity, tourism, agriculture, and disposal activity. Utilization level is too high and makes lake ecosystem disturbed especially phytoplankton. Phytoplankton existence in water is acting as primary production and act to determine water quality on physical or chemical. The purpose of this research is to know plankton productivity and trophic status ecosystem Beratan Lake. Beratan Lake utilization that too high will impact in ecological pressure at lake ecosystem like decreasing water productivity and quality. The result of the research can conclude that water premier productivity of Beratan Lake is too low especially in cultivation fish territory that has phytoplankton abundance is 4585 individuals per ml that make Beratan Lake is classified to a lake that its trophic status is oligotrophic. The variety of phytoplankton and zooplankton that found in Beratan Lake shows low variety where it only found 5 classes and 11 species of phytoplankton and also 2 classes dan 3 species of zooplankton

    Exploring the Convergence Properties of a New Modified Newton-Raphson Root Method

    Get PDF
    We examine the convergence properties of a modified Newton-Raphson root method, by using a simple complex polynomial equation, as a test example. In particular, we numerically investigate how a parameter, entering the iterative scheme, affects the efficiency and the speed of the method. Color-coded polynomiographs are deployed for presenting the regions of convergence, as well as the fractality degree of the complex plane. We demonstrate that the behavior of the modified Newton-Raphson method is correlated with the numerical value of the parameter 1. Additionally, there are cases for which the method works flawlessly, while in some other cases we encounter the phenomena of ill-convergence or even non-convergence

    De Newton a Einstein: A Debate el Destino del Universo

    Get PDF
    En este artículo se describe la historia del pensamiento científico en términos de las teorías de la inercia, el espacio absoluto, la relatividad y la gravitación; de cómo Newton utilizó el trabajo de los primeros investigadores en sus teorías, y Einstein las teorías de Newton en la suya, para tratar de explicar el destino del universo. Es la descripción de un proceso revolucionario del conocimiento científico, y sus aportes al desarrollo de muchos otros campos del sabe

    Basins of attraction for various Steffensen-Type methods

    Full text link
    The dynamical behavior of different Steffensen-type methods is analyzed. We check the chaotic behaviors alongside the convergence radii (understood as the wideness of the basin of attraction) needed by Steffensen-type methods, that is, derivative-free iteration functions, to converge to a root and compare the results using different numerical tests. We will conclude that the convergence radii (and the stability) of Steffensen-type methods are improved by increasing the convergence order. The computer programming package MATHEMATICA provides a powerful but easy environment for all aspects of numerics. This paper puts on show one of the application of this computer algebra system in finding fixed points of iteration functions.The authors are indebted to the referees for some interesting comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Shateyi, S. (2014). Basins of attraction for various Steffensen-Type methods. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/539707S2014Soleymani, F. (2011). Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 12(2), 255. doi:10.18514/mmn.2011.303Zheng, Q., Zhao, P., Zhang, L., & Ma, W. (2010). Variants of Steffensen-secant method and applications. Applied Mathematics and Computation, 216(12), 3486-3496. doi:10.1016/j.amc.2010.04.058Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017Neta, B., & Scott, M. (2013). On a family of Halley-like methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 219(15), 7940-7944. doi:10.1016/j.amc.2013.02.035Neta, B., & Chun, C. (2013). On a family of Laguerre methods to find multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(23), 10987-11004. doi:10.1016/j.amc.2013.05.002Neta, B., Chun, C., & Scott, M. (2014). Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 227, 567-592. doi:10.1016/j.amc.2013.11.017Amat, S., Busquier, S., & Plaza, S. (2005). Dynamics of the King and Jarratt iterations. Aequationes mathematicae, 69(3), 212-223. doi:10.1007/s00010-004-2733-yChicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718Susanto, H., & Karjanto, N. (2009). Newton’s method’s basins of attraction revisited. Applied Mathematics and Computation, 215(3), 1084-1090. doi:10.1016/j.amc.2009.06.041Vrscay, E. R., & Gilbert, W. J. (1987). Extraneous fixed points, basin boundaries and chaotic dynamics for Schr�der and K�nig rational iteration functions. Numerische Mathematik, 52(1), 1-16. doi:10.1007/bf01401018Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860McMullen, C. (1987). Families of Rational Maps and Iterative Root-Finding Algorithms. The Annals of Mathematics, 125(3), 467. doi:10.2307/1971408Smale, S. (1985). On the efficiency of algorithms of analysis. Bulletin of the American Mathematical Society, 13(2), 87-122. doi:10.1090/s0273-0979-1985-15391-1Liu, Z., Zheng, Q., & Zhao, P. (2010). A variant of Steffensen’s method of fourth-order convergence and its applications. Applied Mathematics and Computation, 216(7), 1978-1983. doi:10.1016/j.amc.2010.03.028Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2012). A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 1-15. doi:10.1155/2012/836901Zheng, Q., Li, J., & Huang, F. (2011). An optimal Steffensen-type family for solving nonlinear equations. Applied Mathematics and Computation, 217(23), 9592-9597. doi:10.1016/j.amc.2011.04.035Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/56874

    High Performance Multidimensional Iterative Processes for Solving Nonlinear Equations

    Full text link
    [ES] En gran cantidad de problemas de la matemática aplicada, existe la necesidad de resolver ecuaciones y sistemas no lineales, dado que numerosos problemas, finalmente, se reducen a estos. Conforme aumenta la dificultad de los sistemas, la obtención de la solución analítica se vuelve más compleja. Además, con el aumento de las herramientas computacionales, las dimensiones de los problemas a resolver han crecido de manera exponencial, por lo que se vuelve más necesario obtener una aproximación a la solución de manera sencilla y que no requiera mucho tiempo y coste computacional. Esta es una de las razones por las que los métodos iterativos han aumentado su importancia en los últimos años, ya que se han diseñado multitud de procesos con el fin de que converjan rápidamente a la solución y, de esta forma, poder resolver problemas que con las herramientas clásicas resultaría más costoso. La presente Tesis Doctoral, se centra en estudiar y diseñar numerosos métodos iterativos que mejoren a los esquemas clásicos en cuanto a su orden de convergencia, accesibilidad, cantidad de soluciones que obtienen o aplicabilidad a problemas con características especiales, como la no diferenciabilidad o la multiplicidad de las raíces. Entre los procesos que se estudian en esta memoria, se pueden encontrar desde una familia de métodos multipaso óptimos para la resolución de ecuaciones, hasta una familia paramétrica libre de derivadas de esquemas con función peso a la que se introduce memoria para la resolución de sistemas no lineales. Se destacan otros métodos en esta memoria como esquemas iterativos que obtienen raíces con diversas multiplicidades para ecuaciones y procesos que aproximan raíces de forma simultánea, tanto para ecuaciones como para sistemas, y, tanto para raíces simples como para múltiples. Además, parte de esta memoria se centra en cómo realizar el análisis dinámico para métodos iterativos con memoria que resuelven sistemas de ecuaciones no lineales, a la par que se realiza dicho estudio para diversos esquemas iterativos conocidos. Este análisis dinámico permite visualizar y analizar los posibles comportamientos de los procesos iterativos en función de las aproximaciones iniciales. Los resultados anteriormente descritos forman parte de esta Tesis Doctoral para la obtención del título de Doctora en Matemáticas.[CA] En gran quantitat de problemes de la matemàtica aplicada, existeix la necessitat de resoldre equacions i sistemes no lineals, atés que nombrosos problemes, finalment, es redueixen a aquests. Conforme augmenta la dificultat dels sistemes, l'obtenció de la solució analítica es torna més complexa. A més, amb l'augment de les eines computacionals, les dimensions dels problemes a resoldre han crescut de manera exponencial, per la qual cosa es torna més necessari obtindre una aproximació a la solució de manera senzilla i que no requerisca molt temps i cost computacional. Aquesta és una de les raons per les quals els mètodes iteratius han augmentat la seua importància en els últims anys, ja que s'han dissenyat multitud de processos amb la finalitat que convergisquen ràpidament a la solució i, d'aquesta manera, poder resoldre problemes que amb les eines clàssiques resultaria més costós. La present Tesi Doctoral, es centra en estudiar i dissenyar nombrosos mètodes iteratius que milloren als esquemes clàssics en quant al seu ordre de convergència, accessibilitat, quantitat de solucions que obtenen o aplicabilitat a problemes amb característiques especials, com la no diferenciabilitat o la multiplicitat de les arrels. Entre els processos que s'estudien en aquesta memòria, es poden trobar des d'una família de mètodes multipas òptims per a la resolució d'equacions, fins a una família paramètrica lliure de derivades de esquemes amb funció pes a la que s'introdueix memòria per a la resolució de sistemes no lineals. Es destanquen altres mètodes en aquesta memòria com esquemes iteratius que obtenen arrels amb diverses multiplicitats per a equacions i processos que aproximen arrels de manera simultània, tant per a equacions com per a sistemes, i, tant per a arrels simples com per a múltiples. A més, part d'aquesta memòria es centra en com realitzar l'anàlisi dinàmic per a mètodes iteratius amb memòria que resolen sistemes d'equacions no lineals, al mateix temps que es realitza aquest estudi per a diversos esquemes iteratius coneguts. Aquest anàlisi dinàmic permet visualitzar i analitzar els possibles comportaments dels mètodes iteratius en funció de les aproximacions inicials. Els resultats anteriorment descrits formen part d'aquesta Tesi Doctoral per a l'obtenció del títol de Doctora en Matemàtiques.[EN] In a large number of problems in applied mathematics, there is a need to solve nonlinear equations and systems, since many problems eventually are reduced to these. As the difficulty of the systems increases, obtaining the analytical solution becomes more complex. Furthermore, with the growth of computational tools, the dimensions of the problems to be solved have increased exponentially, making it more essential to obtain an approximation to the solution in a simple way that does not require significant time and computational cost. That is one of the reasons why iterative methods have increased their importance in recent years, as a multitude of schemes have been designed to converge rapidly to the solution and, in this way, to be able to solve problems that would be more arduous to solve using classical tools. This Doctoral Thesis focuses on the study and design of numerous iterative methods that improve classical schemes in terms of their order of convergence, accessibility, number of solutions obtained or applicability to problems with special characteristics, such as non-differentiability or multiplicity of roots. The procedures studied in this report range from a family of optimal multi-step methods for solving equations, to a parametric derivative-free family of weight function schemes, to which memory is introduced for solving nonlinear systems. Additional procedures are described in this report such as iterative schemes that obtain roots with different multiplicities for equations and methods that approximate roots simultaneously for equations as well as for systems, and for simple as well as for multiples roots. In addition, part of this report focuses on how to perform the dynamical analysis for iterative schemes with memory that solve systems of nonlinear equations, as well as this study is carried out for different known iterative procedures. This dynamical analysis allows us to visualise and analyse the possible behaviours of the iterative methods depending on the initial approximations. The results described above form part of this Doctoral Thesis to obtain the title of Doctor in Mathematics.Triguero Navarro, P. (2023). High Performance Multidimensional Iterative Processes for Solving Nonlinear Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19426
    corecore