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Abstract. The aim of this paper is to present some modifications of
the complex polynomial roots finding visualization process. In this pa-
per Ishikawa and Mann iterations are used instead of the standard Pi-
card iteration. The name polynomiography was introduced by Kalantari
for that visualization process and the obtained images are called poly-
nomiographs. Polynomiographs are interesting both from educational
and artistic points of view. By the use of different iterations we obtain
quite new polynomiographs that look aestheatically pleasing comparing
to the ones from standard Picard iteration. As examples we present some
polynomiographs for complex polynomial equation z3 − 1 = 0, permuta-
tion and doubly stochastic matrices. We believe that the results of this
paper can inspire those who may be interested in created automatically
aesthetic patterns. They also can be used to increase functionality of the
existing polynomiography software.

1 Introduction

Polynomials are objects that can be met in many mathematical fields. They
are interesting not only from the theoretical but also from the practical point of
view. The problem of polynomial roots finding has a long history. Sumarians 3000
years B.C. then ancient Greeks faced with practical problems which, formulated
in modern mathematical language, can be presented as polynomial roots finding.
Next, Newton proposed the method of finding polynomial roots approximately.
Cayley in 1879 posed the problem related to the behaviour of Newton’s method
in the complex plane for equation z3 − 1 = 0. Caley’s problem was then solved
by Julia in 1919 that led directly to Julia set and then in 1970s to Mandelbrot
set and fractals [6]. The last interesting discovery in polynomial roots finding
history is Kalantari’s contribution [4] who introduced to science the so-called
polynomiography. Polynomiography defines visualization process in approxima-
tion of the zeros of complex polynomial, using fractal and non-fractal images
created via the mathematical convergence properties of iteration functions. An
individual image is called a polynomiograph. Polynomiography combines both
the art and science aspects. Polynomiography, as a method producing nicely
looking graphics that could be widely used, was patented by Kalantari in the
USA in 2005 [4].



Both fractal and polynomiograph are generated by iterations. A shape of
fractal is completely defined by the input data, e.g. by the coefficients of an IFS
(Iterated Function System), and is rather difficult to control efficiently. Fractal
is self-similiar, has complicated and not smooth structure and is not dependent
on resolution. Polynomiograph is quite different. Its shape can be controlled and
designed in a more predictable way in opposition to typical fractal. Generally,
fractals and polynomiographs belong to different classes of graphical objects.

Higher flexibility of polynomiography in comparison to fractals can be ex-
plained by taking into account the following arguments. It is known that any
complex polynomial:

p(z) = anz
n + an−1z

n−1 + . . . + a1z + a0 (1)

of degree n, according to the Fundamental Theorem of Algebra, has n roots. The
polynomial p is well defined by its coefficients {an, an−1, . . . , a1, a0} or by its n
zeros. So, the degree of polynomial defines the number of basins of attraction.
Localization of basins can be controlled by placing roots on the complex plane
manually. The chosen roots define the polynomial for which some iteration pro-
cedure has to find its zeros. Usually, polynomiographs are coloured based on the
number of iterations needed to obtain approximation of some polynomial root
with a given accuracy and the iteration method chosen. Description of poly-
nomiography, its theorethical background and artistic applications are described
in [3, 4].

Summing up, polynomiography can be treated as a theory and visualization
tool based on the roots finding process. It has many possible applications in
education, math, sciences, art and design.

In this paper we propose to use Mann and Ishikawa iterations instead of Pi-
card iteration to obtain some modifications of the Newton method and iteration
methods from Basic Family of Iterations [5]. Earlier, the other types of iterations
were used for superfractals [9] and for fractals generated by an IFS [10].

The paper is organised as follows. In Section 2 the theory of Picard, Mann
and Ishikawa iterations is presented. Section 3 is devoted to Newton’s method
of finding polynomial roots and its generalizations, and presents some iteration
formulae. In Section 4 the examples of polynomiographs with different types of
iterations (Mann, Ishikawa) for complex equation z3 − 1 = 0, permutation and
doubly stochastic matrices are presented. The last section, Section 5, describes
some conclusions and plans for future work.

2 Iterations

Let w : X → X be a mapping on a metric space (X, d), where d is a metric.
Further, let u0 ∈ X be a starting point. Following [1] we recall some popular
iterative procedures:

– Picard iteration:
un+1 = w(un), n = 0, 1, 2, . . . , (2)



– Mann iteration:

un+1 = αnw(un) + (1 − αn)un, n = 0, 1, 2, . . . , (3)

where 0 < αn ≤ 1.
– Ishikawa iteration:

un+1 = αnw(vn) + (1 − αn)un,

vn = βnw(un) + (1 − βn)un, n = 0, 1, 2, . . . ,
(4)

where 0 < αn ≤ 1 and 0 ≤ βn ≤ 1.

The standard Picard iteration is used in the Banach Fixed Point Theorem
[1] to obtain the existence of the fixed point x∗ such that x∗ = w(x∗) and
its approximation under additional assumptions on the space X that should
be a Banach one and the mapping w should be contractive. The Mann [7] and
Ishikawa [2] iterations allow to weak the assumptions on the mapping w. Further,
our considerations will be conducted in the space X = IR2 or X = C that are
obviously Banach ones. We take u0 = (x0, y0) ∈ IR2 and αn = α, βn = β, such
that 0 < α ≤ 1 and 0 ≤ β ≤ 1. It is easily seen that the Ishikawa iteration with
β = 0 is Mann iteration, and for β = 0, α = 1 is Picard iteration. The Mann
iteration with α = 1 is the Picard iteration.

3 Newton roots finding method and its generalizations

In this section we recall the well-known Newton method for finding roots of a
complex polynomial p. The Newton procedure is given by the formula:

zn+1 = zn − p(zn)

ṗ(zn)
, n = 0, 1, 2, . . . , (5)

where z0 ∈ C is a starting point.
Applying the Mann iteration (3) in (5) we obtain the following formula:

zn+1 = α

(
zn − p(zn)

ṗ(zn)

)
+ (1 − α)zn, n = 0, 1, 2, . . . , (6)

where 0 < α ≤ 1.
Using the Ishikawa iteration (4) in (5) we get:

zn+1 = α

(
vn − p(vn)

ṗ(vn)

)
+ (1 − α)zn,

vn = β

(
zn − p(zn)

ṗ(zn)

)
+ (1 − β)zn, n = 0, 1, 2, . . . ,

(7)

where 0 < α ≤ 1 and 0 ≤ β ≤ 1.
The sequence {zn}∞n=0 (or orbit of the point z0) converges or not to a root of

p. If the sequence converges to a root z∗ then we say that z0 is attracted to z∗. A



set of all starting points z0 for which {zn}∞n=0 converges to z∗ is called the basin
of attraction of z∗. Boundaries between basins usually are fractals in nature. In
[11] some generalizations of the classic Newton formula (5) are discussed. The
formulae given above are used in the next section to obtain polynomiographs for
complex polynomials that visualize the roots finding process.

Further generalization procedures for roots finding of complex polynomial are
given in [4, 5]. They are introduced in the following way. First, define D0(z) = 1
and for m > 0 let

Dm(z) = det


ṗ(z) p̈

2! (z) · · · pm−1

(m−1)! (z) pm

m! (z)

p(z) ṗ(z) · · · · · · pm−1

(m−1!) (z)
...

...
. . .

. . .
...

0 0 · · · ṗ(z) p̈(z)
0 0 · · · p(z) ṗ(z)

 . (8)

The elements of the so-called Basic Family of Iterations are then defined as:

Bn(z) = z − p(z)
Dm−2(z)

Dm−1(z)
, n = 2, 3, . . . . (9)

It is easily seen that B2 is the Newton method, whereas B3 is the Hal-
ley method. Iterations from the Basic Family can be modified using Mann or
Ishikawa iterations because those iterations produce only different orbits in com-
parison to Picard iteration. Only the character of convergence is different and
the basins of attraction to roots of complex polynomial p are looking differently
for different kinds of iteration used.

4 Examples of polynomiographs

In this section we present some polynomiographs for complex polynomial equa-
tion z3 − 1 = 0, permutation and doubly stochastic matrices. They are obtained
for different parameters α and β via Newton method using Picard, Mann or
Ishikawa iterations.

In all examples the colour of each point in the image is determined with the
help of Algorithm 1. Iα,β in the algorithm is the Ishikawa iteration method given
by (7), but as we mentioned earlier, for particular values of α and β we obtain
Picard or Mann iteration method.

Let us start from equation z3 − 1 = 0 having three roots: 1, − 1
2 −

√
3
2 i,

− 1
2 +

√
3
2 i. In Fig.1 nine images with three distinct basins of attraction to the

three roots of polynomial z3 − 1 are presented. The colours of different image
areas depend on the number of iterations needed to reach a root with the given
accuracy ε = 0.001. The upper bound of the number of iterations was fixed as
k = 15. By changing parameters α, β, ε and k one can obtain infinitely many
polynomiographs.



Algorithm 1: Colour determination

Input: z0 ∈ C – starting point, k – maximum number of iterations, ε –
accuracy, α, β – parameters of iteration Iα,β

Output: colour c of z0

1 i = 0
2 while i ≤ k do
3 zi+1 = Iα,β(zi)
4 if |zi+1 − zi| < ε then
5 break

6 i = i+ 1

7 c = i

Fig. 1. Polynomiographs of equation z3 − 1 = 0, the top row (from the left): Picard
iteration, Mann iterations for α = 0.8 and α = 0.6, the middle row (from the left):
Mann for α = 0.5, Ishikawa for {α = 0.6, β = 0.0}, {α = 0.6, β = 0.1}, and the
bottom row (from the left): Ishikawa for {α = 0.6, β = 0.5}, {α = 1.0, β = 0.5},
{α = 1.0, β = 0.7}, respectively.



Now recall that a n×n matrix Π = (πij) is a matrix whose rows and columns
form a permutation of the identity matrix. To each matrix Π we can associate a
complex polynomial in the following way. To the location (i, j) in Π we set Θij :

Θij = i + ji, (10)

where i =
√
−1.

Next, to the matrix Π we further define a n× n matrix Π = (πij) as πij =
πj,(n+1−i). This matrix is analogous to the transpose, except that i-th row of Π

corresponds to the i-th column of Π but written from the bottom up. Finally,
for the matrix Π = (πij) the complex polynomial pΠ can be defined as [5]:

pΠ(z) =
∏

πij=1

(z −Θij). (11)

As an example take 2 × 2 permutation matrices Π1 and Π2 and create Π1

and Π2:

Π1 =

[
1 0
0 1

]
,Π2 =

[
0 1
1 0

]
, Π1 =

[
0 1
1 0

]
, Π2 =

[
1 0
0 1

]
. (12)

Complex polynomials associated to matrices Π1 and Π2 are as follows:

pΠ1(z) = (z − (1 + 2i))(z − (2 + i)), (13)

pΠ2(z) = (z − (1 + i))(z − (2 + 2i)). (14)

Their polynomiographs are presented in Fig. 2 and Fig. 3, respectively. It is easily
seen that localizations of ones in permutation matrices Π1 and Π2 correspond
to the images of polynomiographs. Polynoniographs obtained via Mann and
Ishikawa iterations for different α, β are quite different in comparison to the
Picard iteration. All the images have been obtained for ε = 0.001 and k = 8.

It is worth mentioning that permutation matrices have the following obvious
properties:

1. If Π1 and Π2 are n × n permutation matrices then Π1Π2 is also n × n
permutation matrix.

2. Inverse Π−1 to a permutation matrix Π exists and it is also a permutation
matrix, it is equal to its transpose, i.e. Π−1 = ΠT .

3. Tensor product of n×n permutation matrices Π1,Π2, i.e. Π1⊗Π2, is n2×n2

permutation matrix.

The number of n×n permutation matrices is huge and equals n!. So, very many
nice polynomiographs can be generated.

Doubly stochastic matrices have all non-negative elements and the sum of the
entries of each row and column equals 1. According to Birkhoff-von Neumann
theorem [8] any double stochastic matrix A can be represented as a convex
combination of permutation matrices:

A =
k∑

i=1

αiΠi, (15)



Fig. 2. Polynomiographs of matrix Π1, the top row (from the left): Picard iteration,
Mann iterations for α = 0.7 and α = 0.8, the bottom row (from the left): Ishikawa
iterations for {α = 0.7, β = 0.4}, {α = 0.7, β = 0.6}, {α = 0.6, β = 0.9}, respectively.

Fig. 3. Polynomiographs of matrix Π2, the top row (from the left): Picard iteration,
Mann iterations for α = 0.7 and α = 0.8, the bottom row (from the left): Ishikawa
iterations for {α = 0.7, β = 0.4}, {α = 0.7, β = 0.6}, {α = 0.6, β = 0.9}, respectively.



where
∑k

i=1 αi = 1 and αi ≥ 0 for i = 1, . . . , k.
The corresponding complex polynomial pA to a doubly stochastic matrix A

can be defined as follows:

pA(z) =
∏

aij>0

(z − aijΘij), (16)

where matrix A to A is constructed in a similar way as matrix Π to Π.
As an example take the following double stochastic matrix A:

A =

[
1
2

1
2

1
2

1
2

]
=

1

2

[
1 0
0 1

]
+

1

2

[
0 1
1 0

]
(17)

The corresponding complex polynomial pA to the matrix A has the following
form:

pA(z) =

(
z − 1 + i

2

)(
z − 1 + 2i

2

)(
z − 2 + i

2

)(
z − 2 + 2i

2

)
. (18)

In Fig.4 polynomiographs for a double stochastic matrix A are presented.

Fig. 4. Polynomiographs of doubly stochastic matrix A, the top row (from the left):
Picard iteration, Mann iterations for α = 0.5 and α = 0.3, the bottom row (from the
left): Ishikawa iterations for {α = 0.5, β = 0.6}, {α = 0.8, β = 0.6}, {α = 0.2, β = 0.7},
respectively.



5 Conclusions

In this paper we presented some generalizations of the classic Newton method
obtained by the use of Mann or Ishikawa iterations instead of the standard Pi-
card iteration. The obtained polynomiographs for complex equation z3 − 1 = 0,
permutation and doubly stochastic matrices look quite different in comparison
to Picard iteration. Mann and Ishikawa iterations can be used to generalize Ba-
sic Family of Iteration. Further experiments will be carried out to check how
polynomiographs look after replacing Picard iteration by Mann or Ishikawa iter-
ations. We believe that the results of this paper can be interesting for those whose
works or hobbies are related to automatically created nicely looking graphics.
We also think that using Mann and Ishikawa iterations can be applied to increase
the functionality of the existing polynomiography software.
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