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Two new families of multipoint without memory iterative methods with eighth- and sixteenth-orders are constructed using the
symbolic software Mathematica.The key idea in constructing such methods is based on producing some generic suitable functions
to reduce the functional evaluations and increase the order of convergence along the computational efficiency. Again by applying
Mathematica, we design a hybrid algorithm to capture all the simple real solutions of nonlinear equations in an interval. The
application of the new schemes in producing fractal pictures is also furnished.

1. Introduction

In this work, we are concerned with the numerical solution
of nonlinear equations with application. As usual, let the
scalar function 𝑓(𝑥) be sufficiently differentiable in the open
interval𝐷 and have a zero.That is,𝛼 exists such that𝑓(𝛼) = 0.
If 𝑓(𝛼) ̸= 0, we categorize the solution as a simple one,
while if 𝑓(𝛼) = 𝑓(𝛼) = ⋅ ⋅ ⋅ = 𝑓(𝑚−1)(𝛼) = 0 and
𝑓(𝑚)(𝛼) ̸= 0, then the solution is multiple. The application
of such schemes, from finding Moore-Penrose inverse to
calculating the 𝑝-adic inverse of a number to the module
𝑘, has attracted the researchers for constructing multipoint
schemes possessing a much more reliable computational
efficiency; see, for example, [1–4].

Basically in the literature (see, e.g., [5, 6]), two important
features determine the choice of an iteration method for
solving the equation 𝑓(𝑥) = 0 as follows: first the total
number of iterations and second the computational cost. The
former is measured by the order of convergence and the latter
by the necessary number of evaluations of the function 𝑓
and its derivatives per full cycle. These two characteristics
are linked by the concept of computational efficiency index,
defined by Traub in [7] as 𝑛√𝑝 wherein 𝑝 is the order and

𝑛 is the number of functional evaluations per iteration by
considering that both function and derivative evaluations
have the same computational cost. It should be remarked
that, based on the still unproven Kung-Traub conjecture [8],
an iterative method without memory with 𝑛 (functional)
evaluation in each iteration has the maximum order of
convergence 2(𝑛−1) (called optimal order).

The aim of this work is threefold. First is to apply the
programming package Mathematica so as to obtain some
newmultipoint iterative methods of optimal orders eight and
sixteen, including three and four steps, respectively.

The second is the application of the new schemes in
computer graphics. In fact, each iterative fixed-point type
method produces unique basins of attraction and fractal
behavior, which results in nice pictures, useful in arts as
discussed fully by Kalantari in [9].

The only drawback of such iterative schemes is in the
choice of the initial guess (seed) to start the process and
guarantee the convergence. In this paper, an algorithm
will be constructed to provide a list of simple real initial
approximations and then to obtain all the simple real zeros
up to any desired tolerance, when high precision computing
is needed. This would be the third goal of the present work.
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The rest of the paper unfolds the contents as follows.
Section 2 gives a generic three-step family of methods, while
Section 3 is devoted to propose a new general family of four-
step optimal methods along its analysis of convergence. The
fractal behaviors for one of the new methods in producing
nice self-similar pictures in arts will be given in Section 4.
In Section 5, we remind of the approach of Wagon [10] for
extracting a list of initial approximations for simple real zeros
along some notes and a hybrid algorithm for computing all
the simple real zeros. Some numerical examples will also be
pointed out therein. Section 6 concludes the paper.

2. A New Optimal Eighth-Order Method with
Two Generic Functions

At first in this section, we aim at constructing an optimal
eighth-order method without memory, which is used as
the first three steps in constructing our four-step optimal
sixteenth-order family in the next section.

To this end, consider the following three-point method
(without the index 𝑛):

𝑦 = 𝑥 −
𝑓 (𝑥)

𝑓 (𝑥)
,

𝑧 = 𝑦 −
𝑓 (𝑥)

𝑓 (𝑥) − 2𝑓 (𝑦)

𝑓 (𝑦)

𝑓 (𝑥)
,

𝑥 = 𝑤 = 𝑧 −
𝑓 (𝑧)

𝑓 (𝑧)
.

(1)

The first two steps are optimal since that is Ostrowski’s
fourth-order two-step iterative method, since it reaches the
order four using three functional evaluations. But, the third
step is not good enough. This method performs five func-
tional evaluations per cycle, which does not coincide with
Kung and Traub conjecture for iterations without memory.
In fact, functional evaluations must be reduced such that it
consumes four instead of five.

For this purpose, it is tried to approximate 𝑓(𝑧) in terms
of 𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧), and 𝑓(𝑥); that is

𝑓 (𝑧) ≈
𝑓 (𝑥)

𝜇 (𝑡, 𝑠) + 𝜌 (𝑢)
, (2)

where 𝑡 = 𝑓(𝑦)/𝑓(𝑥), 𝑠 = 𝑓(𝑧)/𝑓(𝑥), and 𝑢 = 𝑓(𝑧)/𝑓(𝑦).
Note that we omit the index 𝑛 for simplicity only. Substituting
(2) into (1), we have

𝑦 = 𝑥 −
𝑓 (𝑥)

𝑓 (𝑥)
,

𝑧 = 𝑦 −
𝑓 (𝑥)

𝑓 (𝑥) − 2𝑓 (𝑦)

𝑓 (𝑦)

𝑓 (𝑥)
,

𝑤 = 𝑧 − (𝜇 (𝑡, 𝑠) + 𝜌 (𝑢))
𝑓 (𝑧)

𝑓 (𝑥)
.

(3)

Although the iteration (3) uses four functional evalua-
tions per full cycle, generally it does not have convergence

order eight. It is necessary to find some suitable conditions
on the generic functions 𝜇(𝑡, 𝑠) and 𝜌(𝑢) so that iteration
(3) attains an optimal eighth order. The approach of unde-
termined coefficients, Maclaurin series andMathematica [11]
are our means. For simplicity, we consider the following
truncated Maclaurin series:

𝜇 (𝑡, 𝑠) = 𝜇
0,0
+ 𝜇
1,0
𝑡 + 𝜇
0,1
𝑠 +

1

2!
𝜇
2,0
𝑡2 +

1

6
𝑡3, (4)

where 𝜇
𝑖,𝑗
= (𝜕𝑖+𝑗𝜇(𝑡, 𝑠)/𝜕𝑖𝑡𝜕𝑗𝑠)|

(0,0)
for 𝑖, 𝑗 = 0, 1, 2, . . ., and

𝜌 (𝑢) = 𝜌
0
+ 𝜌
1
𝑢 + ⋅ ⋅ ⋅ , (5)

wherein 𝜌
𝑖
= 𝜌(𝑖)(0) for 𝑖 = 0, 1, 2, . . .. Note that we defined

the truncated Maclaurin series (in the above way purposely)
as if to construct the most general iterative methods without
memory in the programming package Mathematica.

Theorem 1. Let 𝛼 ∈ 𝐷 be a simple zero of the sufficiently
differentiable function 𝑓: 𝐷 ⊂ 𝑅 → 𝑅 and 𝑐

𝑖
=

𝑓(𝑖)(𝛼)/(𝑓(𝛼)𝑖!), 𝑖 ≥ 2. If 𝑥
0
is sufficiently close to 𝛼, then (1)

the order of convergence for (3) is eight if

𝜇 (0, 0) = 0, 𝜇
𝑡
(0, 0) = 2, 𝜇

𝑠
(0, 0) = 4,

𝜇
𝑡𝑡
(0, 0) = 10, 𝜇

𝑡𝑡𝑡
(0, 0) = 72,

𝜌 (0) = 𝜌


(0) = 1.

(6)

(2) Its error equation reads

𝑒
𝑛+1

= 𝑐
2
(𝑐2
2
− 𝑐
3
) (41𝑐4

2
− 15𝑐2
2
𝑐
3
+ 𝑐
2
𝑐
4
) 𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) . (7)

Proof. Let 𝑒
𝑛
= 𝑥
𝑛
− 𝛼, 𝑒

𝑛
= 𝑦
𝑛
− 𝛼, 𝑒

𝑛
= 𝑧
𝑛
− 𝛼, and

𝑒
𝑛+1

= 𝑥
𝑛+1

− 𝛼. Denote 𝑐
𝑖
= (1/𝑖!)(𝑓(𝑖)(𝛼)/𝑓(𝛼)), 𝑖 ≥ 2.

Using Taylor’s expansion and taking into account 𝑓(𝛼) = 0,
we have 𝑓(𝑥

𝑛
) = 𝑓(𝛼)[𝑒

𝑛
+ 𝑐
2
𝑒2
𝑛
+ 𝑐
3
𝑒3
𝑛
+ 𝑐
4
𝑒4
𝑛
+ 𝑐
5
𝑒5
𝑛
+

𝑐
6
𝑒6
𝑛
+ 𝑐
7
𝑒7
𝑛
+ 𝑐
8
𝑒8
𝑛
+ 𝑂(𝑒9

𝑛
)], also by differentiation, we obtain

𝑓(𝑥
𝑛
) = 𝑓(𝛼)[1 + 2𝑐

2
𝑒
𝑛
+ 3𝑐
3
𝑒2
𝑛
+ 4𝑐
4
𝑒3
𝑛
+ 5𝑐
5
𝑒4
𝑛
+ 6c
6
𝑒5
𝑛
+

7𝑐
7
𝑒6
𝑛
+ 8𝑐
8
𝑒7
𝑛
+ 𝑂(𝑒8

𝑛
)]. Using the last two equations gives us

𝑓(𝑥
𝑛
)/𝑓(𝑥

𝑛
) = 𝑒
𝑛
− 𝑐
2
𝑒2
𝑛
+ 2(𝑐2
2
− 𝑐
3
)𝑒3
𝑛
+ (7𝑐
2
𝑐
3
− 4𝑐3
2
− 3𝑐
4
)𝑒4
𝑛

+ (8𝑐4
2
− 20𝑐2
2
𝑐
3
+ 6𝑐2
3
+ 10𝑐
2
𝑐
4
− 4𝑐
5
)𝑒5
𝑛
+ ⋅ ⋅ ⋅ + 𝑂(𝑒9

𝑛
). Hence,

𝑒
𝑛
= 𝑐
2
𝑒2
𝑛
+ 2 (−𝑐2

2
+ 𝑐
3
) 𝑒3
𝑛
+ (−7𝑐

2
𝑐
3
+ 4𝑐3
2
+ 3𝑐
4
) 𝑒4
𝑛

− (8𝑐4
2
− 20𝑐2
2
𝑐
3
+ 6𝑐2
3
+ 10𝑐
2
𝑐
4
− 4𝑐
5
) 𝑒5
𝑛

− [−16𝑐5
2
+ 52𝑐3
2
𝑐
3
− 28𝑐2
2
𝑐
4
+ 17𝑐
3
𝑐
4

+𝑐
2
(−33𝑐2

3
+ 13𝑐
5
) − 5𝑐

6
] 𝑒6
𝑛

+ ⋅ ⋅ ⋅ + 𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) .

(8)

Similarly, we get 𝑓(𝑦
𝑛
) = 𝑓(𝛼)[𝑐

2
𝑒2
𝑛
+ 2(−𝑐2

2
+ 𝑐
3
)𝑒3
𝑛
+

(5𝑐3
2
− 7𝑐
2
𝑐
3
+ 3𝑐
4
)𝑒4
𝑛
− 2(6𝑐4

2
− 12𝑐2
2
𝑐
3
+ 3𝑐2
3
+ 5𝑐
2
𝑐
4
− 2𝑐
5
)𝑒5
𝑛
+
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(28𝑐5
2
− 73𝑐3
2
𝑐
3
+ 34𝑐2
2
𝑐
4
− 17𝑐
3
𝑐
4
+ 𝑐
2
(37𝑐2
3
− 13𝑐
5
) + 5𝑐
6
)]𝑒6
𝑛
+

𝑂(𝑒7
𝑛
). Now, we have

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)

= 1 + 2𝑐
2
𝑒
𝑛
+ (−2𝑐2

2
+ 4𝑐
3
) 𝑒2
𝑛
+ (−4𝑐

2
𝑐
3
+ 6𝑐
4
) 𝑒3
𝑛

+ (4𝑐4
2
− 6𝑐2
2
𝑐
3
− 4𝑐
2
𝑐
4
+ 8𝑐
5
) 𝑒4
𝑛

− 2 (4𝑐5
2
− 14𝑐3
2
𝑐
3
+ 5𝑐2
2
𝑐
4

−2𝑐
3
𝑐
4
+ 𝑐
2
(9𝑐2
3
+ 2𝑐
5
) − 5𝑐

6
) 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) .

(9)

Moreover, we obtain

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)
= 𝑐
2
𝑒2
𝑛
+ (−4𝑐2

2
+ 2𝑐
3
) 𝑒3
𝑛

+ (13𝑐3
2
− 14𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒4
𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒6

𝑛
) .

(10)

From (9) and (10), follows

𝑒
𝑛
= 𝑒
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
) − 2𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
)

𝑓 (𝑥
𝑛
)

= (𝑐3
2
− 𝑐
2
𝑐
3
) 𝑒4
𝑛
− 2 (2𝑐4

2
− 4𝑐2
2
𝑐
3
+ 𝑐2
3
+ 𝑐
2
𝑐
4
) 𝑒5
𝑛

+ (10𝑐5
2
− 30𝑐3
2
𝑐
3
+ 12𝑐2
2
𝑐
4

−7𝑐
3
𝑐
4
+ 3𝑐
2
(6𝑐2
3
− 𝑐
5
)) 𝑒6
𝑛
+ 𝑂 (𝑒7

𝑛
) .

(11)

Also,𝑓(𝑧
𝑛
) = 𝑓(𝛼)[𝑐

2
(𝑐2
2
−𝑐
3
)𝑒4
𝑛
−2(2𝑐4

2
−4𝑐2
2
𝑐
3
+𝑐2
3
+𝑐
2
𝑐
4
)𝑒5
𝑛

+ (10𝑐5
2
− 30𝑐3
2
𝑐
3
+ 12𝑐2
2
𝑐
4
− 7𝑐
3
𝑐
4
+ 3𝑐
2
(6𝑐2
3
− 𝑐
5
))𝑒6
𝑛
] + 𝑂(𝑒7

𝑛
).

We now need 𝑠
𝑛
= 𝑓(𝑦

𝑛
)/𝑓(𝑥

𝑛
), 𝑡
𝑛
= 𝑓(𝑧

𝑛
)/𝑓(𝑥

𝑛
), and 𝑢

𝑛
=

𝑓(𝑧
𝑛
)/𝑓(𝑦

𝑛
). Then,

𝑠
𝑛
= 𝑐
2
𝑒
𝑛
+ (−3𝑐2

2
+ 2𝑐
3
) 𝑒2
𝑛
+ (8𝑐3
2
− 10𝑐
2
𝑐
3
+ 3𝑐
4
) 𝑒3
𝑛

+ (−20𝑐4
2
+ 37𝑐2
2
𝑐
3
− 8𝑐2
3
− 14𝑐
2
𝑐
4
+ 4𝑐
5
) 𝑒4
𝑛

+ (48𝑐5
2
− 118𝑐3

2
𝑐
3
+ 51𝑐2
2
𝑐
4
− 22𝑐
3
𝑐
4

+𝑐
2
(55𝑐2
3
− 18𝑐
5
) + 5𝑐

6
) 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) ,

(12)

𝑡
𝑛
= (𝑐3
2
− 𝑐
2
𝑐
3
) 𝑒3
𝑛
+ (−5𝑐4

2
+ 9𝑐2
2
𝑐
3
− 2𝑐2
3
− 2𝑐
2
𝑐
4
) 𝑒4
𝑛

+ (15𝑐5
2
− 40𝑐3
2
𝑐
3
+ 14𝑐2
2
𝑐
4

− 7𝑐
3
𝑐
4
+ 3𝑐
2
(7𝑐2
3
− 𝑐
5
)) 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) ,

(13)

𝑢
𝑛
= (𝑐2
2
− 𝑐
3
) 𝑒2
𝑛
− 2 (𝑐3
2
− 2𝑐
2
c
3
+ 𝑐
4
) 𝑒3
𝑛

+ (𝑐4
2
− 6𝑐2
2
𝑐
3
+ 3𝑐2
3
+ 5𝑐
2
𝑐
4
− 3𝑐
5
) 𝑒4
𝑛

+ (4𝑐5
2
− 4𝑐3
2
𝑐
3
− 4𝑐2
2
𝑐
4
+ 6𝑐
3
𝑐
4

+ 𝑐
2
(−4𝑐2
3
+ 6𝑐
5
) − 4𝑐

6
) 𝑒5
𝑛
+ 𝑂 (𝑒6

𝑛
) ,

(14)

while 𝑓(𝑧
𝑛
)/𝑓(𝑥

𝑛
) = (𝑐3
2
−𝑐
2
𝑐
3
)𝑒4
𝑛
−2(3𝑐4

2
−5𝑐2
2
𝑐
3
+𝑐2
3
+𝑐
2
𝑐
4
)𝑒5
𝑛

+ (22𝑐5
2
− 53𝑐3
2
𝑐
3
+ 16𝑐2
2
𝑐
4
− 7𝑐
3
𝑐
4
+ 𝑐
2
(25𝑐2
3
− 3𝑐
5
))𝑒6
𝑛
+ 𝑂(𝑒7

𝑛
).

It is remarked that although we have not presented
higher order terms in the above expressions, one can obtain
them simply by the aid of a system of computation such as
Mathematica. In the third step of (3), we need to consider
Taylor’s series of 𝜇(𝑡

𝑛
, 𝑠
𝑛
) and 𝜌(𝑢

𝑛
) about (0, 0) and 0,

respectively. To our purposes, it suffices to use the following:
𝜇(𝑡
𝑛
, 𝑠
𝑛
) = 𝜇
0,0
+ 𝜇
1,0
𝑡 + 𝜇
0,1
𝑠
𝑛
+ (1/2)𝜇

2,0
𝑡2
𝑛
+ (1/6)𝜇

3,0
𝑡3
𝑛
, and

𝜌(𝑢
𝑛
) = 𝜌
0
+ 𝜌
1
𝑢
𝑛
.

So, we get the following general error equation if 𝛼 is
subtracted from both sides of (3):

𝑒
𝑛+1

= 𝐶
4
𝑒4
𝑛
+ 𝐶
5
𝑒5
𝑛
+ 𝐶
6
𝑒6
𝑛
+ 𝐶
7
𝑒7
𝑛
+ 𝐶
8
𝑒8
𝑛
+ 𝑂 (𝑒9

𝑛
) , (15)

where 𝐶
4
= −𝑐
2
(𝑐2
2
− 𝑐
3
)(−1 + 𝜌

0
+ 𝜇
0,0
), and

𝐶
5
= [2𝑐2
3
(−1 + 𝜌

0
+ 𝜇
0,0
) + 2𝑐
2
𝑐
4
(−1 + 𝜌

0
+ 𝜇
0,0
)

+ 𝑐4
2
(−4 + 6𝜌

0
+ 6𝜇
0,0
− 𝜇
1,0
)

+ 𝑐2
2
𝑐
3
(8 − 10𝜌

0
− 10𝜇

0,0
+ 𝜇
1,0
)] ,

𝐶
6
= [7𝑐
3
𝑐
4
(−1 + 𝜌

0
+ 𝜇
0,0
)

− 𝑐
2
𝑐2
3
(−18 + 25𝜌

0
+ 𝜌
1
+ 25𝜇

0,0
− 4𝜇
1,0
)

+ 2𝑐2
2
𝑐
4
(6 − 8𝜌

0
− 8𝜇
0,0
+ 𝜇
1,0
)

−
1

2
𝑐5
2
(−20 + 44𝜌

0
+ 2𝜌
1
+ 44𝜇

0,0
− 18𝜇

1,0
+ 𝜇
2,0
)

+
1

2
𝑐3
2
𝑐
3
(106𝜌

0
+ 4𝜌
1
+ 106𝜇

0,0

−30 (2 + 𝜇
1,0
) + 𝜇
2,0
)] ,

𝐶
7
= [−2 (−3𝑐2

4
(−1 + 𝜌

0
+ 𝜇
0,0
)

+𝑐3
3
(−6 + 9𝜌

0
+ 𝜌
1
+ 9𝜇
0,0
− 2𝜇
1,0
))

− 2𝑐
2
𝑐
3
𝑐
4
(−26 + 38𝜌

0
+ 2𝜌
1
+ 38𝜇

0,0
− 7𝜇
1,0
)

+ 𝑐3
2
𝑐
4
(−40 + 76𝜌

0
+ 4𝜌
1
+ 76𝜇

0,0
− 25𝜇

1,0
+ 𝜇
2,0
)

+ 𝑐2
2
𝑐2
3
( − 80 + 160𝜌

0
+ 16𝜌

1

+160𝜇
0,0
− 𝜇
0,1
− 61𝜇

1,0
+ 3𝜇
2,0
)

+ 𝑐6
2
( − 20 + 64𝜌

0
+ 8𝜌
1
+ 64𝜇

0,0

−𝜇
0,1
− 48𝜇

1,0
+ 6𝜇
2,0
−
𝜇
3,0

6
)

+
1

6
𝑐4
2
𝑐
3
( − 6 (−80 + 204𝜌

0
+ 22𝜌

1
+ 204𝜇

0,0

−2𝜇
0,1
− 113𝜇

1,0
+ 10𝜇

2,0
) + 𝜇
3,0
) ] ,
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𝐶
8
=
1

6
[(−6𝑐2

3
𝑐
4
(−50 + 79𝜌

0
+ 11𝜌

1
+ 79𝜇

0,0
− 20𝜇

1,0
)

+ 3𝑐2
2
𝑐
3
𝑐
4
(−418 + 898𝜌

0
+ 112𝜌

1

+ 898𝜇
0,0
− 8𝜇
0,1
− 386𝜇

1,0
+ 21𝜇

2,0
)

+ 6𝑐
2
(𝑐2
4
(37 − 57𝜌

0
− 4𝜌
1
− 57𝜇

0,0
+ 12𝜇

1,0
)

+ 𝑐3
3
(−91 + 202𝜌

0
+ 36𝜌

1
+ 202𝜇

0,0

− 4𝜇
0,1
− 96𝜇

1,0
+ 6𝜇
2,0
))

+ 𝑐5
2
𝑐
3
(6 (−178 + 654𝜌

0
+ 126𝜌

1
+ 654𝜇

0,0

−30𝜇
0,1
− 604𝜇

1,0
+ 97𝜇

2,0
) − 25𝜇

3,0
)

− 3𝑐7
2
(−72 + 330𝜌

0
+ 70𝜌

1
+ 330𝜇

0,0

−22𝜇
0,1
− 396𝜇

1,0
+ 83𝜇

2,0
− 5𝜇
3,0
)

− 2𝑐4
2
𝑐
4
(−303 + 831𝜌

0
+ 111𝜌

1
+ 831𝜇

0,0

−12𝜇
0,1
− 516𝜇

1,0
+ 51𝜇

2,0
− 𝜇
3,0
)

+ 𝑐3
2
𝑐2
3
(1512 − 4392𝜌

0
− 786𝜌

1
− 4392𝜇

0,0

+138𝜇
0,1
+ 3012𝜇

1,0
− 339𝜇

2,0
+ 8𝜇
3,0
) ] .

(16)

Moreover, note that the first two steps are optimal because
it is Ostrowski’s method. Therefore, we find some necessary
conditions on the generic functions 𝜇(𝑡

𝑛
, 𝑠
𝑛
) and 𝜌(𝑢

𝑛
) in

such a way that all the coefficients of 𝑒𝑖
𝑛
in the general error

equation become zero for 𝑖 = 4, 5, 6, 7. To this end, we
proceed as follows.

We have 𝐶
4
= −𝑐
2
(𝑐2
2
− 𝑐
3
)(−1 + 𝜌

0
+𝜇
0,0
). Then, to vanish

this coefficient it is enough to choose 𝜌
0
= 1 and 𝜇

0,0
= 0. If

we consider this condition, then 𝐶
5
= −𝑐2
2
(𝑐2
2
− 𝑐
3
)(−2 + 𝜇

1,0
).

Again, to vanish this coefficient, we chose 𝜇
1,0

= 2. Repeating
this argument leads to 𝐶

6
= (1/2)𝑐

2
(𝑐2
2
− 𝑐
3
)(−2𝑐
3
(−1 + 𝜌

1
) +

𝑐2
2
(−12 + 2𝜌

1
+ 𝜇
2,0
)). It turns to the conditions 𝜌

1
= 1 and

𝜇
2,0

= 10. Finally, 𝐶
7
= −(1/6)𝑐2

2
(𝑐2
2
− 𝑐
3
)(−6𝑐
3
(−4 + 𝜇

0,1
) +

𝑐2
2
(−96 + 6𝜇

0,1
+𝜇
3,0
)) for which we obtain 𝜇

0,1
= 4 and 𝜇

3,0
=

72.
Vanishing the coefficient of 𝑒7

𝑛
states that, by considering

the above conditions for the weight functions (a.k.a. generic
functions), we then could have an error equation of the form
𝑒
𝑛+1

= 𝑐
2
(𝑐2
2
− 𝑐
3
)(41𝑐4
2
− 15𝑐2
2
𝑐
3
+ 𝑐2
3
+ 𝑐
2
𝑐
4
)𝑒8
𝑛
+ 𝑂(𝑒9

𝑛
). This

error reveals that we have constructed an optimal eighth-
order scheme and the proof is completed.

At this time, we introduce specific sets of generic func-
tions, satisfying obtained conditions (6) and also applying
them to (3) for constructing concrete methods. For example,
we could have

𝜇 (𝑡, 𝑠) = 2𝑡 + 4𝑠 + 5𝑡
2 + 12𝑡3,

𝜌 (𝑢) = 1 +
𝑢

1 + 𝑢2
,

(17)

which satisfy the conditions ofTheorem 1.Thus, one iteration
scheme can be defined as

𝑦 = 𝑥 −
𝑓 (𝑥)

𝑓 (𝑥)
,

𝑧 = 𝑦 −
𝑓 (𝑥)

𝑓 (𝑥) − 2𝑓 (𝑦)

𝑓 (𝑦)

𝑓 (𝑥)
,

𝑥 = 𝑧 − (1 + 2𝑡 + 4𝑠 + 5𝑡2 + 12𝑡3 +
𝑢

1 + 𝑢2
)
𝑓 (𝑧)

𝑓 (𝑥)
.

(18)

We could also have 𝜇(𝑡, 𝑠) = −1 + 2𝑡 + 6𝑠 + (1/(1 + 2𝑠 −

5𝑡2 − 12𝑡3)), or 𝜇(𝑡, 𝑠) = (22𝑡3 + 9𝑡2 + 2𝑡 + 4𝑠)/(1 + 2𝑡). And
also 𝜌(𝑢) = (2 + 𝑢)/(2 − 𝑢).

3. A New Optimal Sixteenth-Order Family

This section is concerned with construction of a new
sixteenth-order family. We add Newton’s step to the obtained
concrete method (18) in the previous section as follows:

𝑦 = 𝑥 −
𝑓 (𝑥)

𝑓 (𝑥)
,

𝑧 = 𝑦 −
𝑓 (𝑥)

𝑓 (𝑥) − 2𝑓 (𝑦)

𝑓 (𝑦)

𝑓 (𝑥)
,

𝑤 = 𝑧 − (1 + 2𝑡 + 4𝑠 + 5𝑡2 + 12𝑡3 +
𝑢

1 + 𝑢2
)
𝑓 (𝑧)

𝑓 (𝑥)
,

𝑥 = 𝑤 −
𝑓 (𝑤)

𝑓 (𝑤)
.

(19)

Although the first three steps are optimal and iteration
(19) has convergence order sixteen, the whole procedure
is not optimal since it is not satisfying Kung and Traub
conjecture. The iteration (19) reaches order 16 with 6 func-
tional evaluations. To obtain an optimal method, we must
reduce one functional evaluation. To this end, our goal is to
approximate 𝑓(𝑤) in terms of the other existing function
values, that is, 𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑧), 𝑓(𝑤), and 𝑓(𝑥), that is
similar to the case of Section 2. Finding this approximation
sounds easy at first, but when we tried to do, it was not simple
at all. In fact, after trying many generic functions we had
succeeded.

In addition, the general approach is very similar to the
previous section and to save the space of the present paper
we avoid repeating some cumbersome details. Let

𝑓(𝑤)
−1 = (1 + 2𝑡 + 5𝑡2 + 12𝑡3 + 4𝑠 +

𝑢

1 + 𝑢2

+𝑝 (𝑡, 𝑠) + 𝑞 (𝑠, 𝑢) + 𝑔 (𝑡, 𝑠, V) + ℎ (𝑡, 𝑠, V, 𝑢) )

× (𝑓 (𝑥))
−1

,

(20)

where V = 𝑓(𝑤)/𝑓(𝑧); the generic functions 𝑝(𝑡, 𝑠), 𝑞(𝑠, 𝑢),
𝑔(𝑡, 𝑠, 𝑘), and ℎ(𝑡, 𝑠, 𝑘, 𝑢) are supposed to be determined in
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such a way that scheme (19) has optimal order sixteen. We
can express the following relations:

𝑝 (𝑡, 𝑠) = 𝑝
0,0
+ 𝑝
1,0
𝑡 + 𝑝
0,1
𝑠

+
1

2!
(𝑝
2,0
𝑡2 + 2𝑝

1,1
𝑡𝑠 + 𝑝

0,2
𝑠2)

+
1

6
𝑝
3,0
𝑡3 +

1

6
𝑝
3,1
𝑡3𝑠 +

1

24
𝑝
4,0
𝑡4 +

1

24
𝑝
4,1
𝑡4𝑠,

𝑞 (𝑠, 𝑢) = 𝑞
0,0
+ 𝑞
1,0
𝑠 + 𝑞
0,1
𝑢 + 𝑞
1,1
𝑠𝑢

+
1

2
𝑞
0,2
𝑢2 +

1

6
𝑞
0,3
𝑢3 +

1

2
𝑞
1,2
𝑠𝑢2 +

1

6
𝑞
1,3
𝑠𝑢3,

𝑔 (𝑡, 𝑠, V) = 𝑔
0,0,0

+ 𝑔
1,0,0

𝑡 + 𝑔
0,1,0

𝑠 + 𝑔
0,0,1

V

+ 𝑔
1,1,0

𝑡𝑠 + 𝑔
1,0,1

𝑡V + 𝑔
0,1,1

𝑠V + 𝑔
1,1,1

𝑡𝑠V,

ℎ (𝑡, 𝑠, V, 𝑢) = ℎ
0,0,0,0

+ ℎ
1,0,0,0

𝑡 + ℎ
0,1,0,0

𝑠 + ℎ
0,0,1,0

V

+ ℎ
0,0,0,1

𝑢 + ℎ
1,1,0,0

𝑡𝑠 + ℎ
1,0,1,0

𝑡V

+ ℎ
1,0,0,1

𝑡𝑢 + ℎ
0,0,1,1

V𝑢 + ℎ
0,1,0,1

𝑠𝑢

+ ℎ
0,1,1,0

𝑠V + ℎ
1,1,1,0

𝑡𝑠V + ℎ
1,1,0,1

𝑡𝑠𝑢

+ ℎ
1,0,1,1

𝑡V𝑢 + ℎ
0,1,1,1

𝑠V𝑢 + ℎ
1,1,1,1

𝑡𝑠V𝑢

+
1

2
(ℎ
2,0,0,0

𝑡2 + ℎ
2,0,0,1

𝑡2𝑢

+ℎ
2,0,1,0

𝑡2V + ℎ
2,1,0,0

𝑡2𝑠)

+
1

2
(ℎ
2,0,1,1

𝑡2V𝑢 + ℎ
2,1,0,1

𝑡2𝑠𝑢

+ℎ
2,1,1,0

𝑡2𝑠V + ℎ
2,1,1,1

𝑡2𝑠V𝑢)

+
1

6
(ℎ
3,0,0,0

𝑡3 + ℎ
3,1,0,0

𝑡3𝑠

+ℎ
3,0,1,0

𝑡3V + ℎ
3,0,0,1

𝑡3𝑢)

+
1

6
(ℎ
3,1,1,0

𝑡3𝑠V + ℎ
3,1,0,1

𝑡3𝑠𝑢

+ ℎ
3,0,1,1

𝑡3V𝑢 +ℎ
3,1,1,1

𝑡3𝑠V𝑢) ,
(21)

where 𝑝
𝑖,𝑗

= [𝜕𝑖+𝑗𝑝(𝑡, 𝑠)/𝜕𝑖𝑡𝜕𝑗𝑠]
(0,0)

, 𝑞
𝑖,𝑗

= [𝜕𝑖+𝑗𝑞(𝑠, 𝑢)/

𝜕𝑖𝑠𝜕𝑗𝑢]
(0,0)

, 𝑔
𝑖,𝑗,𝑘

= [𝜕𝑖+𝑗+𝑘𝑔(𝑡, 𝑠, V)/𝜕𝑖𝑡𝜕𝑗𝑠𝜕𝑘V]
(0,0,0)

,

ℎ
𝑖,j,𝑘,𝑙 = [

𝜕𝑖+𝑗+𝑘+𝑙ℎ(𝑡, 𝑠, V, 𝑢)
𝜕𝑖𝑡𝜕𝑗𝑠𝜕𝑘V𝜕𝑙𝑢

]
(0,0,0,0)

, 𝑖, 𝑗, 𝑘, 𝑙 ≥ 0. (22)

Finding the required conditions for the new generic
functions 𝑝, 𝑞, 𝑔, and ℎ is very similar to the above approach
in determination functions 𝜇(𝑡

𝑛
, 𝑠
𝑛
) and 𝜌(𝑢

𝑛
). Therefore, we

provide and address its Mathematica source in the Appendix
due to limited space. We summarize the obtained results in
the following theorem.

Theorem 2. Let 𝛼 ∈ 𝐷 be a simple zero of the sufficiently dif-
ferentiable function 𝑓:𝐷 ⊂ 𝑅 → 𝑅 and 𝑐

𝑖
= 𝑓(𝑖)(𝛼)/(𝑓(𝛼)𝑖!),

𝑖 ≥ 2. If 𝑥
0
is sufficiently close to 𝛼, then (1) the order of

convergence for (19)-(20) is sixteen if

𝑝
0,0

= 𝑝
1,0

= 𝑝
0,1

= 𝑝
2,0

= 𝑝
0,2

= 𝑝
3,0

= 𝑝
4,0

= 0,

𝑝
1,1

= 1, 𝑝
2,1

= 12,

𝑝
3,1

= −90, 𝑝
4,1

= −1968

𝑞
0,0

= 𝑞
1,0

= 𝑞
0,1

= 𝑞
0,2

= 0

𝑞
1,1

= 2, 𝑞
0,3

= −6, 𝑞
1,2

= −8,

𝑔
0,0,0

= 𝑔
1,0,0

= 𝑔
0,0,1

= 𝑔
0,1,0

= 0

𝑔
0,0,1

= 1, 𝑔
1,0,1

= 2, 𝑔
0,1,1

= 8,

ℎ
0,0,0,0

= ℎ
1,0,0,0

= ℎ
0,0,0,1

= ℎ
2,0,0,0

= ℎ
0,1,0,0

= ℎ
1,0,0,1

= ℎ
3,0,0,0

= 0,

ℎ
0,0,1,0

= ℎ
1,1,0,0

= ℎ
2,0,0,1

= ℎ
0,1,0,1

= ℎ
1,0,1,0

= ℎ
2,1,0,0

= ℎ
3,1,0,0

= ℎ
0,1,1,0

= 0,

ℎ
3,0,0,1

= −12, ℎ
0,0,1,1

= 2,

ℎ
2,0,1,0

= 10, ℎ
1,1,0,1

= −3,

ℎ
3,0,1,0

= 72, ℎ
2,1,0,1

= −44.

(23)

(2) Its error equation is

𝑒
𝑛+1

= [−
1

6
𝑐2
2
(𝑐2
2
− 𝑐
3
) (41𝑐4

2
− 15𝑐2
2
𝑐
3
+ 𝑐2
3
+ 𝑐
2
𝑐
4
)

× (−18𝑐2
3
𝑐
4
+ 3𝑐4
2
𝑐
4

× (2 (−98 + 𝑔
1,1,1

+ ℎ
1,1,1,0

) + ℎ
2,0,1,1

)

−3𝑐2
2
𝑐
3
𝑐
4
(2 (−47 + 𝑔

1,1,1
+ ℎ
1,1,1,0

) + ℎ
2,0,1,1

))

− (3𝑐
2
× (2𝑐2
4
+ 2𝑐
3
𝑐
5
+ 𝑐3
3

× (2 (−40 + 𝑔
1,1,1

+ ℎ
1,1,1,0

) + ℎ
2,0,1,1

)))

− 2𝑐5
2
𝑐
3
(−4686 + 168𝑔

1,1,1
+ 168𝑔

1,1,1,0

+ 84ℎ
2,0,1,1

+ ℎ
3,1,0,1

)

+ 𝑐7
2
(3 (−3752 + 82𝑔

1,1,1

+ 82ℎ
1,1,1,0

+ 41ℎ
2,0,1,1

) + ℎ
3,1,0,1

+ 𝑐3
2
(6𝑐
5
+ 𝑐2
3

× ( − 2730 + 96𝑔
1,1,1

+ 96ℎ
1,1,1,0

+ 48ℎ
2,0,1,1

+ ℎ
3,1,0,1

))) ] 𝑒16
𝑛
+ 𝑂 (𝑒17) .

(24)

Proof. See the Appendix.
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Now, we introduce specific sets of generic functions,
satisfying obtained conditions (23), and apply it in (19), to
construct concrete methods. Hence, we attain

𝑝 (𝑡, 𝑠) = 𝑠𝑡 + 6𝑡
2𝑠 − 15𝑡3𝑠 − 82𝑡4𝑠,

𝑝 (𝑡, 𝑠) = −1 +
1

1 − 𝑠𝑡 − 6𝑡2𝑠 + 15𝑡3𝑠 + 82𝑡4𝑠
,

𝑝 (𝑡, 𝑠) = 𝑠𝑡 (1 + 6𝑡 + 𝑡
2

(15 + 82𝑡)) (𝑡𝑠 − 1) ,

𝑞 (𝑠, 𝑢) = 2𝑠𝑢 − 𝑢
3 − 4𝑠𝑢2,

𝑞 (𝑠, 𝑢) =
2𝑠𝑢

1 + 2𝑢
− 𝑢3,

𝑞 (𝑠, 𝑢) = 2𝑠𝑢 (1 + 𝑢 + 4𝑠) − (𝑠 + 𝑢)
2

(𝑢 + 4𝑠) ,

𝑔 (𝑡, 𝑠, V) = V + 8𝑠V + 2𝑡V,

𝑔 (𝑡, 𝑠, V) =
V

1 − 2𝑡
+ 8𝑠V,

𝑔 (𝑡, 𝑠, V) = (𝑠2 + V) ((1 + 𝑡)2 + 8𝑠) ,

ℎ (𝑡, 𝑠, V, 𝑢) = −2𝑡3𝑢 + 2V𝑢 − 3𝑡𝑠𝑢

+ 12𝑡3V − 22𝑡2𝑠𝑢 + 5𝑡2V,

ℎ (𝑡, 𝑠, V, 𝑢) = (1 + 𝑡V) ((12V − 2𝑢) 𝑡3 + V3)

+ (5V − 22𝑠𝑢) (𝑡 + 𝑠)2

− 𝑡𝑠 (44𝑠𝑢 + 10V + 3𝑢) + 2V𝑢,

ℎ (𝑡, 𝑠, V, 𝑢) = (12V − 2𝑢) (𝑡3 + V3) + (5V − 22𝑠𝑢) (𝑡 + V)2

+ 𝑡𝑢 (44𝑠V − 3𝑠) + 2𝑘 (𝑢 − 𝑡V) .
(25)

Each derivedmethod from the scheme (3) by considering
the suitable weight functions achieves the optimal efficiency
index 161/5 ≈ 1.741, which is the same to [12] and is greater
than 21/2 ≈ 1.414 of the Newton’s method, 41/3 ≈ 1.587 of
the optimal fourth-order methods (e.g., see [13]), and 81/4 ≈
1.682 of the optimal three-point methods such as (18) or
the methods given in [14] and even with memory methods
recently developed in [15]. This shows that the contribution
in this work is quite effective.

Note that although we have performed all the develop-
ments by considering 𝑓: 𝐷 ⊆ 𝑅 → 𝑅, all the theorems
could be extended and deduced if the function 𝑓 is defined
in the complex plane as 𝑓:𝐷 ⊆ 𝐶 → 𝐶, or having a complex
zero. In such case a complex seed (initial guess) is needed for
converging.

4. Application in Art

Kalantari in [9] coined the term polynomiography as a clear
application of fixed-point iterative methods in producing
beautiful fractal pictures, which are in use in computer
graphics and art. Polynomiography is defined to be the art

and science of visualization in approximation of the zeros
of complex polynomials, via fractal and nonfractal images
created using the mathematical convergence properties of
iteration functions.

As is known according to the Fundamental Theorem of
Algebra, a polynomial of degree 𝑛, with real or complex
coefficients, has 𝑛 zeros (roots) which may or may not be
distinct.

In this section, usingmachine precision and the computer
programming package Mathematica 8 (see, e.g., [16]), we
produce some of such beautiful fractals obtained from our
new methods. In fact, an iteration function is a mapping of
the plane into itself; that is, given any point in the plane, it is
a rule that provides another point in the plane.This section is
necessary in this paper to show how the new schemes could
be considered in polynomiography.

Consider a polynomial 𝑝(𝑧) and a fixed natural number
𝑚 ≥ 2. The basins of attraction of a root of 𝑝(𝑧) with respect
to the iteration function 𝐵

𝑚
(𝑧) are regions in the complex

plane such that, given an initial point 𝑎
0
within them, the

corresponding sequence 𝑎
𝑘+1

= 𝐵
𝑚
(𝑎
𝑘
), 𝑘 = 0, 1, . . ., will

converge to that root (see for more details [17, 18]).
It turns out that the boundary of the basins of attraction

of any of the polynomial roots is the same set. This boundary
is known as the Julia set and its complement is known as the
Fatou set.

From now on, a complex rectangle 𝐷 = [−3, 3] ×
[−3, 3]𝐼 ⊆ 𝐶 will be considered and we subsequently assign a
color to each complex point 𝑧

0
∈ 𝐷 according to the root, at

which the correspondingmethod starting from 𝑧
0
converges.

We assign a color to each attraction basin of a root. But,
we further make the color lighter or darker according to the
number of iterations needed to reach the root with the fixed
precision required 10−2.

An important aspect of the work of Kalantari which
emerged in his Carpet design ([9]) is in applying iterations
functions for higher order polynomials with various styles
of coloring. We herein use six different polynomials with
different coloring forms in Mathematica 8. Toward such an
option, we used three different colorings as indicated in
Figure 1. The results of basins of attraction (by (18)), which
provide beautiful pictures, are given in Figures 2, 3, and 4, via
coloring described in Figure 1.

5. All the Simple Real Zeros

The fixed-point type iterative methods might diverge if the
conditions of the main theorems given in Sections 2 and 3
fail. Actually, an important advantage of multipoint optimal
schemes, as the ones in Sections 2 and 3, is that their
convergence could not be achieved without having a robust
approximation of the position of the zeros. This sometimes
is referred to as the most important difficulty of iterative
methods in practical problems. Besides, in practice onewants
to find all the real solutions of a nonlinear function at the
same time.

To remedy such shortcomings, only a few approaches
such as interval methods (see, e.g., [19] or [20]) have been
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Figure 1: The colors “LightTemperatureMap,” “RedBlueTones,” and “DarkBands” (from left to right, respectively).

Figure 2: The fractal pictures obtained by (18) using the polynomials 𝑝(𝑧) = 𝑧2 + 1 and 𝑝(𝑧) = 𝑧3 + 1.

Figure 3: The fractal pictures obtained by (18) using the polynomials 𝑝(𝑧) = 𝑧5 + 1 and 𝑝(𝑧) = 𝑧6 + 1.

Figure 4: The fractal pictures obtained by (18) using the polynomials 𝑝(𝑧) = 𝑧12 + 1 and 𝑝(𝑧) = 𝑧13 + 1.
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Clear[“Global‘∗”]
f[x ]:= ChebyshevT[20, x] − ChebyshevU[40, x] + Sin[x + 1] − 11/10;

a = −1.; b = +1.;

p = Plot[f[x], {x, a, b}, Mesh -> {{0}}, MeshFunctions -> (f[#] &),

PlotPoints -> 1000, PerformanceGoal -> “Quality”,
WorkingPrecision -> 128];

Algorithm 1

seeds = Cases[Normal[p], Point[z ]:> z[[1]], Infinity];

setInitial = Sort[seeds]

NumberOfGuesses = Length[setInitial]

Algorithm 2

given to the literature up to now. For instance, Yun in [21]
applied a numerical integration based technique toward this
goal. His technique is robust, but it might be time consuming
in case of having so many zeros in an interval.

Herein we provide a predictor-corrector algorithm based
on Mathematica 8 software consisting of two parts. In the
first part, we apply the procedure given by Wagon in [10] for
extracting robust initial approximations for all the simple real
zeros. And second is to apply any of the presented optimal
methods in this paper as a corrector to increase the accuracy
of the solution in a short piece of time, when high precision
computing is needed. To illustrate the procedure, we start by
the fact that we attempt to find all the axis crossings; that is to
say, we will not attempt to capture simple zeros at which there
is no axis crossing.

Toward this end and as Wagon did in [10], we can use the
options of plotting as a function and to find the crossings.
Thus, one picks out the points from the normal graphics form
of the plot 𝑝. Note that the setting of MeshFunctions must
be a pure function and cannot be just 𝑓.

To further illustrate, consider the following example
in which the whole of the procedure is to extract all
the simple real zeros of a nonlinear equation f(x) =
ChebyshevT[20, x] − ChebyshevU[40, x] + Sin[x + 1] −
11/10 = 0 in a given interval𝐷 = [−1., 1.](see Algorithm 1).

We used PerformanceGoal-> "Quality" and
WorkingPrecision-> 128 in order to obtain high
reliable initial approximations for the crossing of the
function to the 𝑥-axis. Note that some of such considerations
for some problems could also be changed adaptively for
providing better feedbacks. In what follows, we extract the
initial guesses, sort them, and obtain the (estimate) number
of zeros in the considered interval (see Algorithm 2).

The plot of the function 𝑓 is given in Figure 5, which
clearly reveals the difficulty in obtaining all the real solutions.
But the hybrid algorithm descried in this section could be
applied for all the real simple solutions. For this test, we have
40 zeros which must be found in high precision accuracy.
The initial list of approximations would be {−0.995857,
−0.989387, −0.972279, −0.953544, −0.92376, −0.905373,
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Figure 5: The plot of the function 𝑓(𝑥) along with its finitely many
simple real zeros on the interval [−1, 1].

−0.852924, −0.817623, −0.763259, −0.740905, −0.652616,
−0.602838, −0.53862, −0.502713, −0.392391, −0.328099,
−0.271123, −0.212284, −0.096817, −0.0213889, 0.0204006,
0.0989106, 0.207534, 0.282518, 0.316156, 0.399215, 0.492675,
0.553758, 0.590388, 0.660032, 0.731315, 0.774491, 0.81035,
0.857463, 0.901219, 0.927616, 0.951482, 0.973356, 0.988923,
0.996117}.

Now the corrector part of our algorithm could be written
inwhat follows for the optimal scheme (18) (see Algorithm 3).

In the above piece of code, each member of the list of
initial approximations obtained from the predictor step of
our algorithm will be corrected until its residual, that is,
|𝑓(𝑥
𝑛
)| ≤ 10−1000, while we work with 2000 number of fixed

point arithmetics. Note that the other iterative solvers could
be coded in a similar way.

An interesting point is that one may ask that higher
optimal order is equal to higher computational load and
thus the whole procedures might be inefficient in terms of
computational time. We clearly respond that there is no
such thing for optimal schemes and especially when we
mix them with a convergence guaranteed algorithm; that is
to say, the computation of functional evaluations is much
more expensive than operational cost when working in high
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digits = 2000;

For[i = 1, i <= NumberOfGuesses, i++,

{k = 0; X = SetAccuracy[setInitial[[i]], digits];

While[Abs[f[X]] > 10 ∧ −1000 && k <= 20,

{k = k + 1; fX = SetAccuracy[f[X], digits];

f1X = SetAccuracy[f  [X], digits];

Y = SetAccuracy[X − fX/f1X, digits];

fY = SetAccuracy[f[Y], digits];

Z = SetAccuracy[Y − (fX/(fX − 2 fY)) (fY/f1X), digits];

fZ = SetAccuracy[f[Z], digits]; t = fY/fX; s = fZ/fX; u = fZ/fY;

Weight = SetAccuracy[1 + 2 t + 4 s + 5 t ∧ 2 + 12 t ∧ 3 + u/(1 + u ∧ 2),

digits];

X = SetAccuracy[Z − Weight (fZ/f1X), digits];};];
Print[Column[{

“The number of full iterations is:” k,
“The zero is:” N[X, 64],

“The residual norm of the approximate zero is:” N[Abs[f[X]],
5]}, Background -> {{LightRed, LightBrown, LightBlue}},

Frame -> All]];}]; // AbsoluteTiming

Algorithm 3

Table 1: Comparison of different optimalmethods for finding all the
zeros of f[x ].

Iterative methods Newton (18) (A.19)
Computational time (in seconds) 6.06 4.82 3.37

precision computing.This note alongside the efficiency of our
new schemes is totally revealed in Table 1, whereas the total
elapsed time for three different correctors has been compared
for the above numerical example. One may easily observe
that the new optimal 16th order method (by considering
𝑝(𝑡, 𝑠) = 𝑠𝑡 + 6𝑡2𝑠 − 15𝑡3𝑠 − 82𝑡4𝑠, 𝑞(𝑠, 𝑢) = 2𝑠𝑢 − 𝑢3 − 4𝑠𝑢2,
𝑔(𝑡, 𝑠, V) = V + 8𝑠V + 2𝑡V, and ℎ(𝑡, 𝑠, V, 𝑢) = −2𝑡3𝑢 + 2V𝑢 −
3𝑡𝑠𝑢 + 12𝑡3V − 22𝑡2𝑠𝑢 + 5𝑡2V) beats the other solvers in terms
of computational time (in seconds). Note that, due to page
limitation, we do not include the approximation of the 40
zeros in the considered interval which are basically correct
up to 1500 decimal places.

Note that, the computer specifications in this paper are
Intel(R) Core (TM) 2 Quad CPU, Q9550 @ 2.83GHz with
2.00GB of RAM.The theoretical number of real solutions in
an interval is important for the approach shown in this paper
to succeed in finding all the simple real zeros in the desired
interval.

The theoretical number of real zeros in the desired
interval must be known in advance. Let us consider the above
test equation in a given interval 𝐷 = [−1, 1]. We can show
that 𝑓 has only 40 zeros which are all real and contained
in the interval 𝐷 = [−1, 1] by using element properties
of Chebyshev polynomials of either kind and Weierstrass
approximation theorem. We first of all observe that the
smooth function sin(𝑥+1)−11/10 in𝐷 can be approximated
by a cubic polynomial: 𝑝

3
(𝑥) = −0.258529 + 0.519736𝑥 −

0.386822𝑥2−0.065087𝑥3, withmaximum interpolating abso-
lute error of 0.0151886 at 𝑥 = −0.645823 via Weierstrass
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Figure 6: The plot of the function 𝑔(𝑥) along with its finitely many
simple real zeros on the interval [−1, 1].

approximation theorem. Hence, there exist at most 40 real
zeros in𝐷.

Now, we compose 𝑓(𝑥) = 𝑓
1
(𝑥) + 𝑓

2
(𝑥), where

𝑓
1
(𝑥) = 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒V𝑇[20, 𝑥] − 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒V𝑈[40, 𝑥] and

𝑓
2
(𝑥) = + Sin[𝑥 + 1] − 11/10. Then, by the properties

of Chebyshev polynomials of either kind, 𝑓
1
has only 40

real zeros in 𝐷. Indeed, 𝑓
1
(𝑥) has double zeros at 𝑥 = 0

since ChebyshevT[20, x] − ChebyshevU[40, x] = 0 and
ChebyshevT[20, x] − ChebyshevU[40, x] = 0, while all
the remaining 38 simple real zeros are in 𝐷. Since 𝑓

2
moves

𝑓 downward slightly, the double zero at 𝑥 = 0 splits into
two simple zeros near 𝑥 = 0, and 𝑓

2
(0) = −0.258529. But

in the remaining locations, the overall downward movement
of 𝑓
2
(𝑥) does not affect the number of real zeros of 𝑓(𝑥).

Consequently, the theoretical number of real roots for𝑓(𝑥) =
0 is 40.

We also compare different optimal methods in finding
all the simple real zeros of the nonlinear oscillatory function
g[x ] := cos[10Sin[12x]] − x3 + 1/10 on the interval
𝐷 = [−1., 1.] with the same stopping criterion as in the above
test. The graph of this function is illustrated in Figure 6 and
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Table 2: Comparison of different optimal methods for finding all
the zeros of g[x ].

Iterative methods Newton (18) (A.19)
Computational time (in seconds) 9.26 6.10 5.04

the results of comparison in terms of the elapsed time are
reported in Table 2. The list of initial approximations would
be {−0.951071, −0.929957, −0.910096, −0.873815, −0.819725,
−0.804222, −0.767296, −0.749607, −0.703525, −0.603417,
−0.561856, −0.538937, −0.508479, −0.484731, −0.445715,
−0.338982, −0.301488, −0.275968, −0.24768, −0.221955,
−0.185071, −0.0766472, −0.0399471, −0.0139904, 0.0139903,
0.0399483, 0.0766347, 0.185246, 0.221749, 0.247938, 0.275612,
0.302007, 0.33791, 0.448186, 0.48259, 0.510735, 0.536286,
0.565254, 0.597367, 0.713616, 0.741522, 0.775409, 0.795057,
0.831029, 0.853649, 0.984546, 0.995607}. We have 47 zeros
in this interval which shows the difficulty of finding all the
simple real zeros. Hopefully the hybrid algorithm given
above works well in this case for finding all the simple real
zeros in the interval. Again, the new optimal sixteenth-order
method beats the other schemes.

Without the theoretical number of real zeros in the
desired interval, it would be also difficult to choose the
number of initial guesses. It must be noted that this approach
must only be taken into account for finding the real simple
zeros of nonlinear equations. In fact, if the nonlinear function
has zeros with multiplicity, then the fast approach of Wagon
must be replaced by a verified method, as the ones discussed
in [22] to extract all the simple and multiple real solutions of
a nonlinear function as the seeds for the simple and multiple
zero-finders developed in this paper.

6. Concluding Remarks

This paper has contributed two optimal eighth- and
sixteenth-order methods for solving nonlinear equations
using generic functions (weight function) in the computer
programming package Mathematica 8. It was observed
that any derived method from the new optimal methods
possesses 1.682 and 1.741 as the optimal computational
efficiency indices.

From Tables 1 and 2 and the tested examples, we can con-
clude that all implemented methods for nonlinear functions
converge fast in a shorter piece of time in contrast to the
lower order schemes when a list of powerful initial guesses
is available for all the simple real zeros in the interval.

The application of one of the new schemes, that is, (18),
was given by producing beautiful fractal pictures useful in
computer graphics as Kalantari mentioned. We note that
keeping tighter conditions will produce fractals with much
more quality and reliability. For further application, refer to
[4, 23, 24].

We also used the programming packageMathematica 8 in
our calculations and gave the necessary cautions and pieces of
codes for the users to implement them in their own problems
as easily as possible. We have designed a hybrid algorithm to
capture all the simple real solutions of nonlinear equations as

rapidly as possible using a similar technique introduced by
Stan Wagon. The algorithm worked efficiently for very hard
test problems. And thus, the proposed algorithm could be
easily used in practical problems.

Appendix

Proof of Theorem 2

Consider the following:

f [e
−
] := f [e] = f1a ∗ (e +

16

∑
i=2

ci ∗ e
i) ;

ey = e − Series [
f [e]

f [e]
, {e, 0,16}] ; (∗first step∗)

ez = ey − f [e]

f [e] − 2 ∗ f [e]
∗

f [e]

f [e]
; (∗Second step∗)

t :=
f [ey]
f [e]

; s :=
f [ez]

f [e]
;

u :=
f [ez]

f [ey]
, v :=

f [ew]
f [ez] ;

𝜇 [t
−
, s
−
] = 1 + 2 ∗ t + 5 ∗ t

2 + 12 ∗ t
3 + 4 ∗ s;

𝜌 [u
−
] =

u

1 + u2
;

ew = ez − h [t, s, u] ∗
f [ez]

f [e]
; (∗Third step∗)

e1 = ew − 𝜇 [t, S] + 𝜌 [u] + p (t, S) + q (S, u)

+ g (t, S, v) + h (t, S, v, u)

×
f [ew]

f [e]
; (∗Fourth step∗) .

(A.1)

The first three steps are optimal according to Section 2.
Now, our goal is to add another step and identify some
appropriate conditions in such a way that produces an
optimal four-step iterative method. Thus, we have

p [t
−
, s
−
] = p0,0 + p1,0t + p0,1s

+
1

2!
(p2,0t

2 + 2p1,1ts + p0,2s
2) +

1

6
p3,0t

3

+
1

6
p3,1t

3
s +

1

24
p4,0t

4 +
1

24
p4,1t

4
s,

q [s
−
, u
−
] = 𝑞
0,0
+ 𝑞
1,0
𝑠 + 𝑞
0,1
𝑢 + 𝑞
1,1
𝑠𝑢

+
1

2
𝑞
0,2
𝑢2 +

1

6
𝑞
0,3
𝑢3 +

1

2
𝑞
1,2
𝑠𝑢2 +

1

6
𝑞
1,3
𝑠𝑢3,

g [t
−
, s , v
−
] = 𝑔
0,0,0

+ 𝑔
1,0,0

𝑡 + 𝑔
0,1,0

𝑠 + 𝑔
0,0,1

V

+ 𝑔
1,1,0

𝑡𝑠 + 𝑔
1,0,1

𝑡V + 𝑔
0,1,1

𝑠V + 𝑔
1,1,1

𝑡𝑠V,



Journal of Applied Mathematics 11

h [t
−
, s
−
, v
−
, u
−
]

= h0,0,0,0 + h1,0,0,0t + h0,1,0,0s + h0,0,1,0v

+ h0,0,0,1u + h1,1,0,0ts + h1,0,1,0tv + h1,0,0,1tu

+ h0,0,1,1vu + h0,1,0,1su + h0,1,1,0sv + h1,1,1,0tsv

+ h1,1,0,1tsu + h1,0,1,1tvu + h0,1,1,1svu + h1,1,1,1tsvu

+
1

2
(h2,0,0,0t

2 + h2,0,0,1t
2
u + h2,0,1,0t

2
v + h2,1,0,0t

2
s)

+
1

2
(h2,0,1,1t

2
vu + h2,1,0,1t

2
su

+ h2,1,1,0t
2
sv + h2,1,1,1t

2
svu)

+
1

6
(h3,0,0,0t

3 + h3,1,0,0t
3
s + h3,0,1,0t

3
v + h3,0,0,1t

3
u)

+
1

6
(h3,1,1,0t

3
sv + h3,1,0,1t

3
su

+ h3,0,1,1t
3
vu + h3,1,1,1t

3
svu) .

(A.2)

The following command produces the coefficient of 𝑒8 in
the error equation:

a8 = coefficient [e1, e8] //FullSimplify

Out [a8] = −c2 (c
2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (p0,0 + q0,0 + g0,0,0 + h0,0,0) .

(A.3)

To vanish the coefficient of 𝑒8 it is sufficient to set

𝑝
0,0

= 0; 𝑞
0,0

= 0;

𝑔
0,0,0

= 0; ℎ
0,0,0,0

= 0.

(A.4)

Similarly, we find the following:

a9 = coefficient [e1, e9] //FullSimplify

Out [a9] = −c
2
2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (p1,0 + g1,0,0 + h1,0,0,0) .

(A.5)

Set

𝑝
1,0

= 0; 𝑔
1,0,0

= 0; ℎ
1,0,0,0

= 0; (A.6)

a10 = coefficient [e1, e10] //FullSimplify

Out [a10] = −
1

2
c2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× ( − 2c3 (q0,1 + h0,0,0,1)

+ c22 (2q0,1 + p2,0 + 2h0,0,0,1 + h2,0,0,0)) .

(A.7)

Set

𝑞
0,1

= 0; 𝑝
2,0

= 0; ℎ
0,0,0,1

= 0; ℎ
2,0,0,0

= 0.

(A.8)

a11 = coefficient [e1, e11] //FullSimplify

Out [a11]

= −
1

6
c
2
2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× −6c3 (q1,0 + p0,1 + h0,1,0 + h0,1,0,0 + h1,0,0,1)

+ c
2
2 (6q1,0 + 6p0,1 + p3,0

+ 6 (g0,1,0 + h0,1,0,0 + h1,0,0,1 + h3,0,0,0)) ;

(A.9)

Set

𝑞
1,0

= 0; 𝑝
0,1

= 0; 𝑝
3,0

= 0; 𝑔
0,1,0

= 0;

ℎ
0,1,0,0

= 0; ℎ
1,0,0,1

= 0; ℎ
3,0,0,0

= 0;

(A.10)

a12 = coefficient [e1, e12] //fullSimplify

Out [a12]

= −
1

24
c2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (24c2c4 (−1 + g0,0,1 + h0,0,1,0)

+ 12c23 (q0,2 + 2 (−1 + g0,0,1 + h0,0,1,0))

− 12c22c3 (2 (−16 + q0,2 + p1,1 + 15g0,0,1

+g1,1,0 + 15h0,0,1,0 + h1,1,0,0) + h2,0,0,1)

+ c
4
2 (12q0,2 + 24p1,1 + p4,0

+ 12 (2 (−42 + 41g0,0,1 + g1,1,0

+41h0,0,1,0 + h1,1,0,0) + h2,0,0,1))) .

(A.11)
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Set

𝑞
0,2

= 0; 𝑝
1,1

= 1; 𝑝
4,0

= 0; 𝑔
0,0,1

= 1;

𝑔
1,1,0

= 0; ℎ
0,0,1,0

= 0; ℎ
1,1,0,0

= 0;

ℎ
2,0,0,1

= 0;

(A.12)

a13 = coefficient [e1, e13] //FullSimplify

Out [a13]

= −
1

6
c
2
2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (6c2c4 (−2 + g1,0,1 + h1,0,1,0)

+ 6c23 (−4 + q1,1 + g1,0,1

+ h0,1,0,1 + h1,0,1,0 − c
2
2c3

× (3 (−76 + 4q1,1 + p2,1 + 30g1,0,1

+ 4h0,1,0,1 + 30h1,0,1,0 + h2,1,0,0)

+ h3,0,0,1) + c
4
2

× (6q1,1 + 3 (−176 + p2,1 + 82g1,0,1

+2h0,1,0,1 + 82h1,0,1,0 + h2,1,0,0)

+h3,0,0,1) .

(A.13)

Set

𝑞
1,1

= 2; 𝑝
2,1

= 12; 𝑔
1,0,1

= 2; ℎ
0,1,0,1

= 0;

ℎ
1,0,1,0

= 0; ℎ
2,1,0,0

= 0; ℎ
3,0,0,1

= −12;

(A.14)

a14 = coefficient [e1, e14] //FullSimplify

Out [a14]

= −
1

6
c2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (−6c2c3c4 (−2 + 𝜙0,0,1,1)

− c
3
3 (−6 + q0,3 + 6h0,0,1,1)

+ 3c32c4 (−14 + 2h0,0,1,1 + h2,0,1,0)

+ 3c22c
2
3 (−62 + q0,3 + 32h0,0,1,1

+2h1,1,0,1 + h2,0,1,0)

− c
4
2c3 (−978 + 3q0,3 + p3,1 + 336h0,0,1,1

+12h1,1,0,1 + 45h2,0,1,0 + h3,1,0,0)

+ c
6
2 (−1608 + q0,3 + p3,1 + 246h0,0,1,1

+6h1,1,0,1 + 123h2,0,1,0 + h3,1,0,0)) .

(A.15)

Set

𝑞
0,3

= −6; 𝑝
3,1

= −90; ℎ
0,0,1,1

= 2;

ℎ
2,0,1,0

= 10; ℎ
1,1,0,1

= −3; ℎ
3,1,0,0

= 0;

(A.16)

a15 = coefficient [e1, e15] //FullSimplify

Out [a15]

= −
1

24
c
2
2 (c

2
2 − c3) (41c

4
2 − 15c

2
2c3 + c

2
3 + c2c4)

× (−24c2c3c4 (−8 + g0,1,1 + h0,1,1,0 + h1,0,1,1)

− 12c33 (q1,2 + 2 (−4 + g0,1,1

+h0,1,1,0 + h1,0,1,1))

+ 4c32c4 (6 (−20 + g0,1,1 + h0,1,1,0 + h1,0,1,1)

+h3,0,1,0) + 4c
2
2c

2
3

× (−636 + 9q1,2 + 96g0,1,1 + 96h0,1,1,0

+96h1,0,1,1 + 3h2,1,0,1 + h3,0,1,0)

− c
4
2c3 (36q1,2 + p4,1 + 24

× (−490 + 56g0,1,1 + 56h0,1,1,0

+56h1,0,1,1 + h2,1,0,1) + 60h3,0,1,0)

+ c
6
2 (12q1,2 + p4,1 + 12

× (−1424 + 82g0,1,1 + 82h0,1,1,0

+ 82h1,0,1,1 + h2,1,0,1) + 164h3,0,1,0)) .

(A.17)

Set

𝑞
1,2

= −8; 𝑝
4,1

= −1968; 𝑔
0,1,1

= 8;

ℎ
0,1,1,0

= 0; ℎ
1,0,1,1

= 0; ℎ
3,0,1,0

= 72;

ℎ
2,1,0,1

= −44.

(A.18)
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By vanishing the coefficient of 𝑒15
𝑛
, we have the following

optimal four-step sixteenth-order method:

𝑦 = 𝑥 −
𝑓 (𝑥)

𝑓 (𝑥)
,

𝑧 = 𝑦 −
𝑓 (𝑥)

𝑓 (𝑥) − 2𝑓 (𝑦)

𝑓 (𝑦)

𝑓 (𝑥)
,

𝑤 = 𝑧 − 
𝑓 (𝑧)

𝑓 (𝑥)
,

𝑥 = 𝑤 − [ + 𝑝 (𝑡, 𝑠) + 𝑞 (𝑠, 𝑢) + 𝑔 (𝑡, 𝑠, V)

+ ℎ (𝑡, 𝑠, V, 𝑢) ]
𝑓 (𝑤)

𝑓 (𝑥)
,

(A.19)

wherein  = (1+2𝑡+4𝑠+5𝑡2 +12𝑡3 + (𝑢/(1+𝑢2))). The proof
is complete.
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