6,084 research outputs found

    Bas-relief modeling from normal images with intuitive styles

    Get PDF
    Traditional 3D model-based bas-relief modeling methods are often limited to model-dependent and monotonic relief styles. This paper presents a novel method for digital bas-relief modeling with intuitive style control. Given a composite normal image, the problem discussed in this paper involves generating a discontinuity-free depth field with high compression of depth data while preserving or even enhancing fine details. In our framework, several layers of normal images are composed into a single normal image. The original normal image on each layer is usually generated from 3D models or through other techniques as described in this paper. The bas-relief style is controlled by choosing a parameter and setting a targeted height for them. Bas-relief modeling and stylization are achieved simultaneously by solving a sparse linear system. Different from previous work, our method can be used to freely design basreliefs in normal image space instead of in object space, which makes it possible to use any popular image editing tools for bas-relief modeling. Experiments with a wide range of 3D models and scenes show that our method can effectively generate digital bas-reliefs

    Computer Assisted Relief Generation - a Survey

    Get PDF
    In this paper we present an overview of the achievements accomplished to date in the field of computer aided relief generation. We delineate the problem, classify the different solutions, analyze similarities, investigate the evelopment and review the approaches according to their particular relative strengths and weaknesses. In consequence this survey is likewise addressed to researchers and artists through providing valuable insights into the theory behind the different concepts in this field and augmenting the options available among the methods presented with regard to practical application

    Photo2Relief: Let Human in the Photograph Stand Out

    Full text link
    In this paper, we propose a technique for making humans in photographs protrude like reliefs. Unlike previous methods which mostly focus on the face and head, our method aims to generate art works that describe the whole body activity of the character. One challenge is that there is no ground-truth for supervised deep learning. We introduce a sigmoid variant function to manipulate gradients tactfully and train our neural networks by equipping with a loss function defined in gradient domain. The second challenge is that actual photographs often across different light conditions. We used image-based rendering technique to address this challenge and acquire rendering images and depth data under different lighting conditions. To make a clear division of labor in network modules, a two-scale architecture is proposed to create high-quality relief from a single photograph. Extensive experimental results on a variety of scenes show that our method is a highly effective solution for generating digital 2.5D artwork from photographs.Comment: 10 pages, 11 figure

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Analysis of Bas-Relief Generation Techniques

    Get PDF
    Simplifying the process of generating relief sculptures has been an interesting topic of research in the past decade. A relief is a type of sculpture that does not entirely extend into three-dimensional space. Instead, it has details that are carved into a flat surface, like wood or stone, such that there are slight elevations from the flat plane that define the subject of the sculpture. When viewed orthogonally straight on, a relief can look like a full sculpture or statue in the respect that a full sense of depth from the subject can be perceived. Creating such a model manually is a tedious and difficult process, akin to the challenges a painter may face when designing a convincing painting. Like with painting, certain digital tools (3D modeling programs most commonly) can make the process a little easier, but can still take a lot of time to obtain sufficient details. To further simplify the process of relief generation, a sizable amount of research has gone into developing semi-automated processes of creating reliefs based on different types of models. These methods can vary in many ways, including the type of input used, the computational time required, and the quality of the resulting model. The performance typically depends on the type of operations applied to the input model, and usually user-specified parameters to modify its appearance. In this thesis, we try to accomplish a few related topics. First, we analyze previous work in the field and briefly summarize the procedures to emphasize a variety of ways to solve the problem. We then look at specific algorithms for generating reliefs from 2D and 3D models. After explaining two of each type, a “basic” approach, and a more sophisticated one, we compare the algorithms based on their difficulty to implement, the quality of the results, and the time to process. The final section will include some more sample results of the previous algorithms, and will suggest possible ideas to enhance their results, which could be applied in continuing research on the topic

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    Digital relief generation from 3D models

    Get PDF
    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors

    Ink-and-Ray: Bas-Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters

    Get PDF
    We present a new approach for generating global illumination renderings of hand-drawn characters using only a small set of simple annotations. Our system exploits the concept of bas-relief sculptures, making it possible to generate 3D proxies suitable for rendering without requiring side-views or extensive user input. We formulate an optimization process that automatically constructs approximate geometry sufficient to evoke the impression of a consistent 3D shape. The resulting renders provide the richer stylization capabilities of 3D global illumination while still retaining the 2D handdrawn look-and-feel. We demonstrate our approach on a varied set of handdrawn images and animations, showing that even in comparison to ground truth renderings of full 3D objects, our bas-relief approximation is able to produce convincing global illumination effects, including self-shadowing, glossy reflections, and diffuse color bleeding
    corecore