13 research outputs found

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates

    DaLI: deformation and light invariant descriptor

    Get PDF
    Recent advances in 3D shape analysis and recognition have shown that heat diffusion theory can be effectively used to describe local features of deforming and scaling surfaces. In this paper, we show how this description can be used to characterize 2D image patches, and introduce DaLI, a novel feature point descriptor with high resilience to non-rigid image transformations and illumination changes. In order to build the descriptor, 2D image patches are initially treated as 3D surfaces. Patches are then described in terms of a heat kernel signature, which captures both local and global information, and shows a high degree of invariance to non-linear image warps. In addition, by further applying a logarithmic sampling and a Fourier transform, invariance to photometric changes is achieved. Finally, the descriptor is compacted by mapping it onto a low dimensional subspace computed using Principal Component Analysis, allowing for an efficient matching. A thorough experimental validation demonstrates that DaLI is significantly more discriminative and robust to illuminations changes and image transformations than state of the art descriptors, even those specifically designed to describe non-rigid deformations.Peer ReviewedPostprint (author's final draft

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Agregação de ranks baseada em grafos

    Get PDF
    Orientador: Ricardo da Silva TorresTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Neste trabalho, apresentamos uma abordagem robusta de agregação de listas baseada em grafos, capaz de combinar resultados de modelos de recuperação isolados. O método segue um esquema não supervisionado, que é independente de como as listas isoladas são geradas. Nossa abordagem é capaz de incorporar modelos heterogêneos, de diferentes critérios de recuperação, tal como baseados em conteúdo textual, de imagem ou híbridos. Reformulamos o problema de recuperação ad-hoc como uma recuperação baseada em fusion graphs, que propomos como um novo modelo de representação unificada capaz de mesclar várias listas e expressar automaticamente inter-relações de resultados de recuperação. Assim, mostramos que o sistema de recuperação se beneficia do aprendizado da estrutura intrínseca das coleções, levando a melhores resultados de busca. Nossa formulação de agregação baseada em grafos, diferentemente das abordagens existentes, permite encapsular informação contextual oriunda de múltiplas listas, que podem ser usadas diretamente para ranqueamento. Experimentos realizados demonstram que o método apresenta alto desempenho, produzindo melhores eficácias que métodos recentes da literatura e promovendo ganhos expressivos sobre os métodos de recuperação fundidos. Outra contribuição é a extensão da proposta de grafo de fusão visando consulta eficiente. Trabalhos anteriores são promissores quanto à eficácia, mas geralmente ignoram questões de eficiência. Propomos uma função inovadora de agregação de consulta, não supervisionada, intrinsecamente multimodal almejando recuperação eficiente e eficaz. Introduzimos os conceitos de projeção e indexação de modelos de representação de agregação de consulta com base em grafos, e a sua aplicação em tarefas de busca. Formulações de projeção são propostas para representações de consulta baseadas em grafos. Introduzimos os fusion vectors, uma representação de fusão tardia de objetos com base em listas, a partir da qual é definido um modelo de recuperação baseado intrinsecamente em agregação. A seguir, apresentamos uma abordagem para consulta rápida baseada nos vetores de fusão, promovendo agregação de consultas eficiente. O método apresentou alta eficácia quanto ao estado da arte, além de trazer uma perspectiva de eficiência pouco abordada. Ganhos consistentes de eficiência são alcançadas em relação aos trabalhos recentes. Também propomos modelos de representação baseados em consulta para problemas gerais de predição. Os conceitos de grafos de fusão e vetores de fusão são estendidos para cenários de predição, nos quais podem ser usados para construir um modelo de estimador para determinar se um objeto de avaliação (ainda que multimodal) se refere a uma classe ou não. Experimentos em tarefas de classificação multimodal, tal como detecção de inundação, mostraram que a solução é altamente eficaz para diferentes cenários de predição que envolvam dados textuais, visuais e multimodais, produzindo resultados melhores que vários métodos recentes. Por fim, investigamos a adoção de abordagens de aprendizagem para ajudar a otimizar a criação de modelos de representação baseados em consultas, a fim de maximizar seus aspectos de capacidade discriminativa e eficiência em tarefas de predição e de buscaAbstract: In this work, we introduce a robust graph-based rank aggregation approach, capable of combining results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to incorporate heterogeneous models, defined in terms of different ranking criteria, such as those based on textual, image, or hybrid content representations. We reformulate the ad-hoc retrieval problem as a graph-based retrieval based on {\em fusion graphs}, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we show that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused. Another contribution refers to the extension of the fusion graph solution for efficient rank aggregation. Although previous works are promising with respect to effectiveness, they usually overlook efficiency aspects. We propose an innovative rank aggregation function that it is unsupervised, intrinsically multimodal, and targeted for fast retrieval and top effectiveness performance. We introduce the concepts of embedding and indexing graph-based rank-aggregation representation models, and their application for search tasks. Embedding formulations are also proposed for graph-based rank representations. We introduce the concept of {\em fusion vectors}, a late-fusion representation of objects based on ranks, from which an intrinsically rank-aggregation retrieval model is defined. Next, we present an approach for fast retrieval based on fusion vectors, thus promoting an efficient rank aggregation system. Our method presents top effectiveness performance among state-of-the-art related work, while promoting an efficiency perspective not yet covered. Consistent speedups are achieved against the recent baselines in all datasets considered. Derived from the fusion graphs and fusion vectors, we propose rank-based representation models for general prediction problems. The concepts of fusion graphs and fusion vectors are extended to prediction scenarios, where they can be used to build an estimator model to determine whether an input (even multimodal) object refers to a class or not. Performed experiments in the context of multimodal classification tasks, such as flood detection, show that the proposed solution is highly effective for different detection scenarios involving textual, visual, and multimodal features, yielding better detection results than several state-of-the-art methods. Finally, we investigate the adoption of learning approaches to help optimize the creation of rank-based representation models, in order to maximize their discriminative power and efficiency aspects in prediction and search tasksDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Understanding human-centric images : from geometry to fashion

    Get PDF
    Understanding humans from photographs has always been a fundamental goal of computer vision. Early works focused on simple tasks such as detecting the location of individuals by means of bounding boxes. As the field progressed, harder and more higher level tasks have been undertaken. For example, from human detection came the 2D and 3D human pose estimation in which the task consisted of identifying the location in the image or space of all different body parts, e.g., head, torso, knees, arms, etc. Human attributes also became a great source of interest as they allow recognizing individuals and other properties such as gender or age. Later, the attention turned to the recognition of the action being performed. This, in general, relies on the previous works on pose estimation and attribute classification. Currently, even higher level tasks are being conducted such as predicting the motivations of human behavior or identifying the fashionability of an individual from a photograph. In this thesis we have developed a hierarchy of tools that cover all these range of problems, from low level feature point descriptors to high level fashion-aware conditional random fields models, all with the objective of understanding humans from monocular, RGB images. In order to build these high level models it is paramount to have a battery of robust and reliable low and mid level cues. Along these lines, we have proposed two low-level keypoint descriptors: one based on the theory of the heat diffusion on images, and the other that uses a convolutional neural network to learn discriminative image patch representations. We also introduce distinct low-level generative models for representing human pose: in particular we present a discrete model based on a directed acyclic graph and a continuous model that consists of poses clustered on a Riemannian manifold. As mid level cues we propose two 3D human pose estimation algorithms: one that estimates the 3D pose given a noisy 2D estimation, and an approach that simultaneously estimates both the 2D and 3D pose. Finally, we formulate higher level models built upon low and mid level cues for human understanding. Concretely, we focus on two different tasks in the context of fashion: semantic segmentation of clothing, and predicting the fashionability from images with metadata to ultimately provide fashion advice to the user. In summary, to robustly extract knowledge from images with the presence of humans it is necessary to build high level models that integrate low and mid level cues. In general, using and understanding strong features is critical for obtaining reliable performance. The main contribution of this thesis is in proposing a variety of low, mid and high level algorithms for human-centric images that can be integrated into higher level models for comprehending humans from photographs, as well as tackling novel fashion-oriented problems.Siempre ha sido una meta fundamental de la visión por computador la comprensión de los seres humanos. Los primeros trabajos se fijaron en objetivos sencillos tales como la detección en imágenes de la posición de los individuos. A medida que la investigación progresó se emprendieron tareas mucho más complejas. Por ejemplo, a partir de la detección de los humanos se pasó a la estimación en dos y tres dimensiones de su postura por lo que la tarea consistía en identificar la localización en la imagen o el espacio de las diferentes partes del cuerpo, por ejemplo cabeza, torso, rodillas, brazos, etc...También los atributos humanos se convirtieron en una gran fuente de interés ya que permiten el reconocimiento de los individuos y de sus propiedades como el género o la edad. Más tarde, la atención se centró en el reconocimiento de la acción realizada. Todos estos trabajos reposan en las investigaciones previas sobre la estimación de las posturas y la clasificación de los atributos. En la actualidad, se llevan a cabo investigaciones de un nivel aún superior sobre cuestiones tales como la predicción de las motivaciones del comportamiento humano o la identificación del tallaje de un individuo a partir de una fotografía. En esta tesis desarrollamos una jerarquía de herramientas que cubre toda esta gama de problemas, desde descriptores de rasgos de bajo nivel a modelos probabilísticos de campos condicionales de alto nivel reconocedores de la moda, todos ellos con el objetivo de mejorar la comprensión de los humanos a partir de imágenes RGB monoculares. Para construir estos modelos de alto nivel es decisivo disponer de una batería de datos robustos y fiables de nivel bajo y medio. En este sentido, proponemos dos descriptores novedosos de bajo nivel: uno se basa en la teoría de la difusión de calor en las imágenes y otro utiliza una red neural convolucional para aprender representaciones discriminativas de trozos de imagen. También introducimos diferentes modelos de bajo nivel generativos para representar la postura humana: en particular presentamos un modelo discreto basado en un gráfico acíclico dirigido y un modelo continuo que consiste en agrupaciones de posturas en una variedad de Riemann. Como señales de nivel medio proponemos dos algoritmos estimadores de la postura humana: uno que estima la postura en tres dimensiones a partir de una estimación imprecisa en el plano de la imagen y otro que estima simultáneamente la postura en dos y tres dimensiones. Finalmente construimos modelos de alto nivel a partir de señales de nivel bajo y medio para la comprensión de la persona a partir de imágenes. En concreto, nos centramos en dos diferentes tareas en el ámbito de la moda: la segmentación semántica del vestido y la predicción del buen ajuste de la prenda a partir de imágenes con meta-datos con la finalidad de aconsejar al usuario sobre moda. En resumen, para extraer conocimiento a partir de imágenes con presencia de seres humanos es preciso construir modelos de alto nivel que integren señales de nivel medio y bajo. En general, el punto crítico para obtener resultados fiables es el empleo y la comprensión de rasgos fuertes. La aportación fundamental de esta tesis es la propuesta de una variedad de algoritmos de nivel bajo, medio y alto para el tratamiento de imágenes centradas en seres humanos que pueden integrarse en modelos de alto nivel, para mejor comprensión de los seres humanos a partir de fotografías, así como abordar problemas planteados por el buen ajuste de las prendas

    The application of range imaging for improved local feature representations

    Get PDF
    This thesis presents an investigation into the integration of information extracted from co-aligned range and intensity images to achieve pose invariant object recognition. Local feature matching is a fundamental technique in image analysis that underpins many computer vision-based applications; the approach comprises identifying a collection of interest points in an image, characterising the local image region surrounding the interest point by means of a descriptor, and matching these descriptors between example images. Such local feature descriptors are formed from a measure of the local image statistics in the region surrounding the interest point. The interest point locations and the means of measuring local image statistics should be chosen such that resultant descriptor remains stable across a range of common image transformations. Recently the availability of low cost, high quality range imaging devices has motivated an interest in local feature extraction from range images. It has been widely assumed in the vision community that the range imaging domain has properties which remain quasi-invariant through a wide range of changes in illumination and pose. Accordingly, it has been suggested that local feature extraction in the range domain should allow the calculation of local feature descriptors that are potentially more robust than those calculated from the intensity imaging domain alone. However, range images represent differing characteristics from those represented within intensity images which are frequently used, independently from range images, to create robust local features. Therefore, this work attempts to establish the best means of combining information from these two imaging modalities to further increase the reliability of matching local features. Local feature extraction comprises a series of processes applied to an image location such that a collection of repeatable descriptors can be established. By using co-aligned range and intensity images this work investigates the choice of modality and method for each step in the extraction process as an approach to optimising the resulting descriptor. Additionally, multimodal features are formed by combining information from both domains in a single stage in the extraction process. To further improve the quality of feature descriptors, a calculation of the surface normals and a use of the 3D structure from the range image are applied to correct the 3D appearance of a local sample patch, thereby increasing the similarity between observations. The matching performance of local features is evaluated using an experimental setup comprising a turntable and stereo pair of cameras. This experimental setup is used to create a database of intensity and range images for 5 objects imaged at 72 calibrated viewpoints, creating a database of 360 object observations. The use of a calibrated turntable in combination with the 3D object surface coordiantes, supplied by the range image allow location correspondences between object observations to be established; and therefore descriptor matches to be labelled as either true positive or false positive. Applying this methodology to the formulated local features show that two approaches demonstrate state-of-the-art performance, with a ~40% increase in area under ROC curve at a False Positive Rate of 10% when compared with standard SIFT. These approaches are range affine corrected intensity SIFT and element corrected surface gradients SIFT. Furthermore,this work uses the 3D structure encoded in the range image to organise collections of interest points from a series of observations into a collection of canonical views in a new model local feature. The canonical views for a interest point are stored in a view compartmentalised structure which allows the appearance of a local interest point to be characterised across the view sphere. Each canonical view is assigned a confidence measure based on the 3D pose of the interest point at observation, this confidence measure is then used to match similar canonical views of model and query interest points thereby achieving a pose invariant interest point description. This approach does not produce a statistically significant performance increase. However, does contribute a validated methodology for combining multiple descriptors with differing confidence weightings into a single keypoint

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Highly Sensitive, Stretchable and Durable Sensors Based on Conductive Polymer Hydrogels

    Full text link
    In recent years, wearable sensor devices, which directly attach to human skin for precise and dynamic human motion and physiological signals monitoring, have experienced a rapid development and presented a great use in modern medical systems. Despite the great research progress, the wearable sensors often need synchronized deformation of conductive fillers and flexible substrates to enable the mechanical signals transformation. However, some of the matrices are not flexible and stretchable enough, thus constraining the sensitivity and high precision of devices. Therefore, a stretchable, durable, and highly sensitive material was urgently needed. In this light, conductive hydrogels, offering the advantages of good flexibility, stretchability and biocompatibility, have attracted great interest as body-worn sensors. Additionally, hydrogels enjoy the capacity of tuning their mechanical properties to perfectly match with human skin. Therefore, a large number of stretchable hydrogel-based sensors has been fabricated. However, only a few hydrogel sensors can widely realize commercial application, with insufficient mechanical strength and stretchability as one of the main reasons. In addition, the sensing performance is not satisfactory. Particularly, it is difficult to detect some subtle deformations due to easy interference by external environment, thus leading to poor long-term durability. In this thesis, a novel one-pot technique to synthesize ultrastretchable hydrogel-based strain sensors by integrating carbon nanofibers with a double-network hydrogel matrix was reported. Outstanding mechanical properties of Agar/polyacrylamide(PAAm) double-network (DN) hydrogel, combing with high strain sensitivity given by tunneling effect of carbon nanomaterials, enable it to be a durable human motion sensor. We also prepare a highly anisotropic nanofluidic ionic skin (ANIS) composing of polyvinyl alcohol (PVA) and cellulose nanofibril via thermal stretching method, displaying comparable modulus, higher fracture energy and anti-fatigue property with cartilage and skin. It shows good pressure-independent temperature sensing property. Additionally, anisotropic and ionic conductive PVA/poly(N-isopropylacrylamide) (PNIPAM) DN hydrogel films with both physically and chemically cross-linked networks are created for multifunctional devices via thermal stretching, immersing and etching method. Combining the strong mechanical property of PVA under prestretching and unique thermal sensitivity of PNIPAM, PVA/PNIPAM DN gel can be ideal candidate for multiple sensing upon strain, pressure and temperature

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    Get PDF
    This Special Issue on CFS/ME collects 18 papers with an interdisciplinary view on the current demographic and epidemiological data and immunological characteristics of CFS/ME and examines the different pathogenic hypotheses, as well as giving information about the latest knowledge on diagnostic investigations, pharmacological, integrative, physical, cognitive-behavioral and psychological curative approaches
    corecore