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Abstract

This thesis presents an investigation into the integration of information extracted from co-aligned

range and intensity images to achieve pose invariant object recognition. Local feature matching is a

fundamental technique in image analysis that underpins many computer vision-based applications;

the approach comprises identifying a collection of interest points in an image, characterising the

local image region surrounding the interest point by means of a descriptor, and matching these

descriptors between example images. Such local feature descriptors are formed from a measure of

the local image statistics in the region surrounding the interest point. The interest point locations

and the means of measuring local image statistics should be chosen such that resultant descriptor

remains stable across a range of common image transformations. Recently the availability of low

cost, high quality range imaging devices has motivated an interest in local feature extraction from

range images. It has been widely assumed in the vision community that the range imaging domain

has properties which remain quasi-invariant through a wide range of changes in illumination and

pose. Accordingly, it has been suggested that local feature extraction in the range domain should al-

low the calculation of local feature descriptors that are potentially more robust than those calculated

from the intensity imaging domain alone. However, range images represent differing characterist-

ics from those represented within intensity images which are frequently used, independently from

range images, to create robust local features. Therefore, this work attempts to establish the best

means of combining information from these two imaging modalities to further increase the reliab-

ility of matching local features.

Local feature extraction comprises a series of processes applied to an image location such that

a collection of repeatable descriptors can be established. By using co-aligned range and intensity

images this work investigates the choice of modality and method for each step in the extraction

process as an approach to optimising the resulting descriptor. Additionally, multimodal features are

formed by combining information from both domains in a single stage in the extraction process. To

further improve the quality of feature descriptors, a calculation of the surface normals and a use of

the 3D structure from the range image are applied to correct the 3D appearance of a local sample

patch, thereby increasing the similarity between observations.



The matching performance of local features is evaluated using an experimental setup compris-

ing a turntable and stereo pair of cameras. This experimental setup is used to create a database of

intensity and range images for 5 objects imaged at 72 calibrated viewpoints, creating a database

of 360 object observations. The use of a calibrated turntable in combination with the 3D object

surface coordiantes, supplied by the range image allow location correspondences between object

observations to be established; and therefore descriptor matches to be labelled as either true pos-

itive or false positive. Applying this methodology to the formulated local features show that two

approaches demonstrate state-of-the-art performance, with a ~40% increase in area under ROC

curve at a False Positive Rate of 10% when compared with standard SIFT. These approaches are

range affine corrected intensity SIFT and element corrected surface gradients SIFT.

Furthermore,this work uses the 3D structure encoded in the range image to organise collections

of interest points from a series of observations into a collection of canonical views in a new model

local feature. The canonical views for a interest point are stored in a view compartmentalised struc-

ture which allows the appearance of a local interest point to be characterised across the view sphere.

Each canonical view is assigned a confidence measure based on the 3D pose of the interest point

at observation, this confidence measure is then used to match similar canonical views of model and

query interest points thereby achieving a pose invariant interest point description. This approach

does not produce a statistically significant performance increase. However, does contribute a val-

idated methodology for combining multiple descriptors with differing confidence weightings into a

single keypoint.

ii



Acknowledgements

I would like to thank my PhD supervisor Dr J.Paul Siebert for all the hard work he has put in

over the past 4 years to shape my way of thinking about problems, reasoning about results and

communicating the principal ideas behind my work. I certainly have not found the journey to

completing this thesis easy, and at times the belief he has given me in my work has been all that has

seen me through. I would like to thank my second supervisor Professor Joemon Jose, for helping

me keep sight of the goal of finishing the work and structuring a plan to ensure that it happened.

Thanks also to the EPSRC for funding the work carried out in this thesis and to the examiners for

their time and effort in reviewing. All of my office mates and members of the Computer Vision and

Graphics Group; our conversations on topics outside of PhD life which somehow worked their way

back to the current problems that we were facing in our work definitely helped me step back from

the smaller problems and see each as part of a bigger picture. Likewise, to all my friends in the

Mountaineering Club; the fresh air and hillwalking trips cleared my head and allowed me to keep

going. To my brother, Andy, for his support in living in Glasgow. To Laura Wright for all her love,

for standing by me and always believing that I would be able to complete this work. Lastly I would

like to thank my father, Mel, for having always encouraged me to reason about the world and to

pursue what I could achieve, I could not have hoped for a better role model.



Contents

1 Introduction 1

1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Scientific Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Keypoint performance evaluation . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Commercially available range imaging devices . . . . . . . . . . . . . . . 14

2.2.1.1 LIDAR laser scanners . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.2 LIDAR time of fight scanners . . . . . . . . . . . . . . . . . . . 15

2.2.1.3 Structured Light . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.4 Stereo Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Range image formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Range imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Summary of range image characteristics . . . . . . . . . . . . . . . . . . . 21

2.3 Feature Based Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



CONTENTS ii

2.3.1 Feature Extraction Paradigms . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1.1 Global Feature Extraction Approaches . . . . . . . . . . . . . . 24

2.3.1.2 Local Feature Extraction Approaches . . . . . . . . . . . . . . . 26

2.3.1.3 Adaptive Feature Characterisation . . . . . . . . . . . . . . . . 28

2.3.2 Local Feature Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2.1 Scale Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2.2 Feature Localisation . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2.3 Image Sample Patch . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2.4 Surface Description . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2.5 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Initial Investigation 41

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Validation experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 SIFT Keypoint Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Benchmarking Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2.1 Test Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Ground Truth Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3.1 Applying image warp . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3.2 Tracking keypoints in warped image . . . . . . . . . . . . . . . 52

3.2.4 Error in ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4.1 Error bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4.2 Error introduced through the experimental design . . . . . . . . 57

3.2.5 Modes of invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 SIFT Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Subpixel Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ii



CONTENTS iii

3.3.2 Canonical Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Receptive Field Configurations . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.4 Surface representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 3D Evaluation Approach 77

4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Overview of approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Turntable Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Processing Range Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1.1 Calibration points . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1.2 Range Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1.3 Correcting Circle Centre Range . . . . . . . . . . . . . . . . . . 84

4.3.1.4 Pixel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2.1 2D Hough Transform . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2.2 3D Hough Transform . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.3 Finding Centre of Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.4 Calibration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Capture setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Range Image Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Colour Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 3D Benchmarking Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Keypoint Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.2 Keypoint ROC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iii



CONTENTS iv

5 Single Observation Pose Invariant Local Features 106

5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Multimodal Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Range Scale Space Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Characteristics of Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Multimodal Keypoint Combination . . . . . . . . . . . . . . . . . . . . . 113

5.2.4 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Sample Patch Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.3 Projective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.5 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Surface Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.1 Surface Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.2 Shape Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.3 Element Correction Surface Gradients . . . . . . . . . . . . . . . . . . . . 126

5.4.4 2.5D Local SPIN Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.5 Surface Measure Combinations . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.6 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.1 Multimodal Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.2 Sample Patch Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5.3 Surface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1 Multimodal Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1.1 Keypoint localisation . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1.2 Keypoint description . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.2 Sample Patch Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iv



CONTENTS v

5.6.2.1 Instability of Keypoint Localisation . . . . . . . . . . . . . . . . 139

5.6.2.2 Invalid data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6.2.3 Axis compression . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.3 Surface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.3.1 Surface descriptor foot prints . . . . . . . . . . . . . . . . . . . 141

5.6.3.2 SPIN image normalisation . . . . . . . . . . . . . . . . . . . . . 142

5.6.3.3 Range Image Descriptor Normalisation . . . . . . . . . . . . . . 143

5.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Multi Observation Keypoint Combinations 148

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.1 3D Local Interest Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.1.1 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1.2 Keypoint Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1.3 Keypoint Clustering . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1.4 Keypoint Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2 Local Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2.1 Defining the local rotation matrix . . . . . . . . . . . . . . . . . 158

6.1.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.3 3D Local Interest Point Characterisation . . . . . . . . . . . . . . . . . . . 159

6.1.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . 163

6.1.3.2 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . . . . 166

6.1.3.3 Fishers Linear Discriminant . . . . . . . . . . . . . . . . . . . . 167

6.1.4 Methodology Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2.1 Synthetic Range Image Database . . . . . . . . . . . . . . . . . . . . . . 170

6.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.1 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.2 Mahalanobis distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3.3 FLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

v



CONTENTS vi

6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 View Compartmentalised Keypoints 180

7.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 View Compartmentalised Keypoint . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2.1 3D Keypoint Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.2 Pose Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2.3 View sphere decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.2.4 Compartment Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3.1 Matching Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3.1.1 Descriptor matches in compartments with high compartment weight-

ings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.3.1.2 Descriptor matches with low compartment weightings . . . . . . 194

7.3.1.3 Descriptor matches in incorrect compartments . . . . . . . . . . 194

7.3.1.4 Descriptor matching in the presence of noise . . . . . . . . . . . 194

7.4 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5.1 ROC curve performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5.2 Pose based compartment assignment . . . . . . . . . . . . . . . . . . . . . 202

7.5.3 Reduced complexity compartmentalised keypoint . . . . . . . . . . . . . . 202

7.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8 Conclusions and Future Work 209

8.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.2.1 Multimodal SIFT features . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.2.2 Element Correction and Range Estimated Affine . . . . . . . . . . . . . . 212

8.2.2.1 Sample Patch Pose Correction . . . . . . . . . . . . . . . . . . . 213

8.2.2.2 Element Corrected Range SIFT . . . . . . . . . . . . . . . . . . 215

8.2.3 Multiview Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

vi



CONTENTS vii

8.2.4 View Compartmentalised Keypoints . . . . . . . . . . . . . . . . . . . . . 216

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.3.1.1 Illumination and Clutter . . . . . . . . . . . . . . . . . . . . . . 218

8.3.2 Range SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.3.2.1 Pose Estimation in Range Images . . . . . . . . . . . . . . . . . 218

8.3.2.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.3.2.3 Affine Scale Space Pyramid . . . . . . . . . . . . . . . . . . . . 219

8.3.3 View Compartmentalised SIFT . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3.3.1 Multiview View Compartmentalised Keypoints . . . . . . . . . . 220

8.3.3.2 BOF compartmentalised SIFT . . . . . . . . . . . . . . . . . . . 220

8.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

vii



List of Figures

1.1 Example of in-plane and out-of-plane object rotations. In-plane rotation maintains

visual similarity with a linear transformation between pixels and pixels in the refer-

ence image. Out-of-plane rotation no-longer demonstrates a pixel-wise correspond-

ence with the reference image and, due to occlusions, includes differing information

from reference image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Laser Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Microsoft Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Stereo Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Point Correspondence Geometry (Hartley and Zisserman, 2005) . . . . . . . . . . 18

2.5 Stereo Capture Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Imaging Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 NURBS Surface Parametrisation, (Ko et al., 2003) . . . . . . . . . . . . . . . . . . 24

2.8 Shape Index (Koenderink and van Doorn, 1992) . . . . . . . . . . . . . . . . . . . 26

2.9 Sample patch arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Local feature sample patches at differing scales (Brown et al., 2005) . . . . . . . . 29

2.11 Recognition based on adaptive features . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 SIFT Feature Extraction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13 Aperture Problem, highlighting the difficulty in finding a localisable correspond-

ences between image locations. Here the effects of attempt to match (a) corners,

(b) lines, and (c) areas, are shown (Szeliski, 2010) . . . . . . . . . . . . . . . . . . 33

viii



LIST OF FIGURES ix

2.14 Outline of MSER features repeatably localised between pairs of images with large

changes in viewpoint , (Matas et al., 2004) . . . . . . . . . . . . . . . . . . . . . . 33

2.15 Collection of image sample patches, sampling patches are labeled Sx-n, where x

refers to the spatial sampling scheme, and n defines the number of receptive fields

(Winder and Brown, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.16 LIOP Regions segmenting a sample patch, (Wang et al., 2011) . . . . . . . . . . . 35

2.17 Affine corrected sample patches: (a, b) canonical view, figures (c-f) show the object

viewed from a new view point, the lower row of figures show an enlargement of

the sample patch. Subfigures (c, d) use a sample patch with in-plane orientation

correction only, (e, f) use an Affine corrected sample patch, covering the same

image region as in the original image (a, b), (Mikolajczyk and Schmid, 2004) . . . 35

2.18 Bag-of-features hierarchy showing the use of local features in an advanced vision

system preforming category level recognition with additional meta data (Lai et al.,

2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Flow chart showing an overview of the experimental design . . . . . . . . . . . . . 44

3.2 Probability density function for correct and incorrect matches based on a ratio

between nearest neighbour to second nearest neighbour (Lowe, 2004) . . . . . . . 45

3.3 Keypoint Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Image Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Confusion Matrix for Evaluation ROC Curve . . . . . . . . . . . . . . . . . . . . 48

3.6 Ideal ROC performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Keypoint detected in query image and corresponding location and catchment region

shown in the target image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



LIST OF FIGURES x

3.9 Homography Example, showing the rectification of a book cover imaged in the first

image, to estimate the appearance from an new viewing perspective shown in the

second image. The blue trapezoid shows the outline of the sampled region of the

second image in the space of the first image. Four magenta dots manually placed in

the second image, and back projected into the first image appear in the same loca-

tion with respect to the image texture, validating the back projection transformation

between the two images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Statistically significant ROC curves . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 ROC point probability density function, showing mean ROC point location at µ,

and 5% significance at 2.5σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.13 Error bars on ROC curve (subfigures c and d) established using multiple experi-

mental runs (subfigure a) to find the mean ROC curve (subfigure b)(Fawcett, 2006) 56

3.14 Catchment region of keypoint, shown on target image . . . . . . . . . . . . . . . . 58

3.15 Taylor approximation for subpixel keypoint location . . . . . . . . . . . . . . . . 61

3.16 Subpixel Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.17 Difference between estimation and actual location of Gaussian maxima, blue rep-

resents a small error, red represents a large error . . . . . . . . . . . . . . . . . . 64

3.18 Subpixel Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.19 Canonical Orientation Performance . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.20 Receptive fields in SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.21 Pixel weighting values for each receptive field . . . . . . . . . . . . . . . . . . . . 69

3.22 Standard SIFT Receptive Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.23 2.5D SIFT Receptive Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.24 3x3 Receptive Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.25 25 Receptive Field configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.26 S4-16 Receptive Field configuration . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.27 Receptive Field configurations Results . . . . . . . . . . . . . . . . . . . . . . . . 72

3.28 2D Shape Index Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



LIST OF FIGURES xi

4.1 Turntable with rotation axes shown with respect to the left camera and turntable

axis of rotation. The angular distance shown is the distance moved by the turntable

between two observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Benchmark Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Data Collection Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Turntable Calibration Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Valid region showing the pixel locations used to estimate the equation of the calib-

ration target plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Plane geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Calibration target dot numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Establishing transformation, T, between images using keypoint correspondences . 91

4.9 Constraint Calibration Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Centre Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Models Captured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12 Colour Separation Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Confusion Matrix for Evaluation ROC Curve . . . . . . . . . . . . . . . . . . . . 104

5.1 2.5D SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Projection of the image into the active region of the cameras. Measurements in

this space allow the range images, recorded in metres, to be converted to equivelent

pixels sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Range Scale Space Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Domain localised features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Comparison With Semantic Interest Points . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Sample patch corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 Sample Patch Change Between Views . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Difference Between Sample Patches . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Sample Patch Difference Between Instances . . . . . . . . . . . . . . . . . . . . . 124

5.10 2.5D Local SPIN Image Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.11 Area under ROC curve represented as a percentage change . . . . . . . . . . . . . 130

5.12 Multimodal ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xi



LIST OF FIGURES xii

5.13 Sample Patch Warping ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.14 Surface Description ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.15 Resampling the Range Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.16 Compression of Sampling Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.17 Surface Measure Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.18 Corrected footprint ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.19 SPIN Image Range Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.20 Range Image Surface Gradients Sampling . . . . . . . . . . . . . . . . . . . . . . 145

5.21 Optimum Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Examples of scanned objects from the Stanford Scanning Repository . . . . . . . 150

6.2 Multi Instance Feature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Keypoints from all views displayed in the canonical space . . . . . . . . . . . . . 153

6.4 Keypoints Detected in Synthetic Range Images . . . . . . . . . . . . . . . . . . . 154

6.5 Slice through the 3D density histogram; red regions represent valid keypoint locations156

6.6 Cluster Centres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 Weighted histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8 Pose estimation test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.9 Calculated Surface Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.10 Keypoints from Multiple Observations . . . . . . . . . . . . . . . . . . . . . . . . 162

6.11 Principal components of feature descriptors for different dimensions in Eigenvector

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.12 Single feature descriptor cluster, shown in magenta and located on the back of the

dragon head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.13 Keypoint and descriptors in FLD space . . . . . . . . . . . . . . . . . . . . . . . . 168

6.14 Dragon model with the locations of each view point shown as a magenta point . . . 171

6.15 Distribution of keypoints against observation angle . . . . . . . . . . . . . . . . . 173

6.16 Precision recall curve for features clustered with the Euclidean distance . . . . . . 174

6.17 Precision recall curves for PCA learned features . . . . . . . . . . . . . . . . . . . 175

6.18 Precision recall curve for Mahalanobis distance . . . . . . . . . . . . . . . . . . . 176

6.19 Precision recall curve for distance in FLD space . . . . . . . . . . . . . . . . . . . 178

xii



LIST OF FIGURES xiii

7.1 Local patch 3D orientation established through PCA, where the first eigenvector

corresponds to the eigenvector with the largest associated eigenvalue . . . . . . . . 182

7.2 View compartmentalised descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 In-plane surface orientation validation . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Segment Boresight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5 View Compartment Boresights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.6 Combining View Compartmentalised Keypoints . . . . . . . . . . . . . . . . . . . 190

7.7 View compartment matching function validation data . . . . . . . . . . . . . . . . 193

7.8 View Compartmentalised Matching Validation 1 . . . . . . . . . . . . . . . . . . . 195

7.9 View Compartmentalised Matching Validation 2 . . . . . . . . . . . . . . . . . . . 196

7.10 Matching function validation results with 10% descriptor noise and 10% weighting

compartment noise, match matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.11 Compartment weighting and match matrix for view compartmentalised keypoints,

with descriptor length of 30, 10 compartments, 1% descriptor noise, 30% weighting

noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.12 View Compartmentalised Keypoints ROC curve . . . . . . . . . . . . . . . . . . . 201

7.13 View space exploration and database keypoint compartment weighting value update 203

7.14 Top range image matches for each compartment . . . . . . . . . . . . . . . . . . 204

7.15 View space exploration for view compartmentalised descriptor with 3 compartments 206

7.16 View compartmentalised keypoint with 3 compartments . . . . . . . . . . . . . . . 207

8.1 Multi and Cross Modal Feature Extraction Pipe-line . . . . . . . . . . . . . . . . . 213

8.2 Sample Patch Corrected Feature Extraction Pipe-line . . . . . . . . . . . . . . . . 214

8.3 Gaussian Blur Functions for Affine Scale Space Pyramid . . . . . . . . . . . . . . 219

xiii



List of Tables

2.1 Stereo capture setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Test Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Number of keypoints per modality . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Cross Modal SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Sample Patch Corrected SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Sample patch description variations . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Multimodal Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Sample Patch Corrected Keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Surface Description Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Comparison of localisation approaches . . . . . . . . . . . . . . . . . . . . . . . . 138

xiv



List of Algorithms

1 Calibration Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2 Benchmarking tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3 Match Nearest Query and Target Keypoints . . . . . . . . . . . . . . . . . . . . . 103

4 Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 ROC Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xv



Chapter 1

Introduction

The main aim of this research project was to investigate the role of range and in-

tensity imaging modalities in point based correspondences between imaged repres-

entations of objects. As an approach to investigating the role of range and intensity

imaging in a local feature representation this thesis adopts the context of the local

feature matching. Local features have been widely adopted by the computer vision

community as an approach for formulating local feature representations for a range

of processing tasks. Such features comprise a distribution of intensity image prop-

erties such as gradient magnitudes and orientations of a limited area surrounding an

interest point, comprising a corner or similar compact 2D discontinuity. However,

standard local feature approaches have known limitations for matching features

under changes in the 3D pose of the object. In this thesis the use of multimodal

information from the range and intensity domains are used as an approach for mit-

igating the effects of changes in view point. Following an initial investigation of

modifications which can be made directly to the existing feature extraction process

to accommodate range domain information, the local feature extraction processing

pipe-line is extended to incorporate additional processing stages which rely on the

range domain information for structuring a view independent feature descriptor. As

part of the investigation an experimental procedure is outlined, whereby range and

intensity images of real-world objects are captured using a stereo camera pair and

calibrated turntable configuration.

1



1.1. AIMS AND OBJECTIVES 2

1.1 Aims and Objectives

A range image is a matrix where each pixel encodes the distance from the camera to each point

on the object imaged. This distance or range value is recorded in place of an intensity value in

a conventional digital image (Besl and Jain, 1986). The range image representation encodes a

measure of the 3D structure of an object. Therefore, the range domain information has been noted

to have the potential to be more invariant to a variety of common transformations observed in images

such as, illumination changes and 3D pose changes (Gordon, 1992). However, the range imaging

modality differs in characteristics from the intensity domain and many approaches which utilise

the range imaging modality do not realise the expected performance benefit (Pears et al., 2010).

Additionally, by using a stereo pair camera configuration for range image capture it is possible to

capture co-aligned images in both the range and intensity modalities. Combining information from

these domains has demonstrated improved recognition rates in face recognition (Faltemier et al.,

2007), although there has been limited interest in incorporating multimodal information within

local features. This thesis addresses the application of multimodal information within local feature

representations.

1.1.1 Scientific Questions

At the beginning of this research project, the following questions were posed:

• How can range and intensity domain representations of an object be integrated together in

order to form a consistent description?

– What possibilities are there for range information to be utilised in feature extraction?

– Is it possible to create locations in images where both range and intensity information

are diagnostic?

– How can the optimum representation combining features from range and intensity in-

formation be formulated?

• How can a standardised test to evaluate the performance of keypoints on 3D free form objects

under out-of-plane transformation changes be devised? See Figure 1.1 for an example of the

challenges of recognition under out-of-plane transformations in viewer perspective changes.

2



1.1. AIMS AND OBJECTIVES 3

Figure 1.1: Example of in-plane and out-of-plane object rotations. In-plane rotation maintains
visual similarity with a linear transformation between pixels and pixels in the reference image.
Out-of-plane rotation no-longer demonstrates a pixel-wise correspondence with the reference image
and, due to occlusions, includes differing information from reference image.

– How can correspondences between pixel locations in range images be established between

observations modified by out-of-plane viewer pose changes?

• Are there additional stages for keypoint extraction which can be introduced to exploit the

characteristics of the range domain?

1.1.2 Motivation

Range images or 2.5D depth images are frequently cited as a representation with characteristics

which are better suited for matching under changes in 3D pose and illumination (Lo and Siebert,

2009; Lo, 2009; Pears et al., 2010). Based on the assumption that range data is more stable than in-

tensity data and the recent availability of 3D scanning devices, such as the Microsoft Kinect (Janoch

et al., 2011), laser scanning (Taati and Greenspan, 2011) and stereo capture (Siebert and Marshall,

2000; Calonder et al., 2008; Hartley and Zisserman, 2005), there have been many proposed 2.5D

local surface descriptors. Many of these descriptors extend 2D local feature matching into the range

image domain using a similar structure for feature extraction, and exploit range image data at the

surface representation level (Ohbuchi et al., 2008). Other techniques have approached the problem

by extending 3D local feature matching into the 2.5D range domain for matching point clouds, with

the assumption that the range image is a close approximation to the surface (Kofman and Knopf,

1999). In addition to the above there are systems which are capable of using a combination of

2D intensity image data and 2.5D range image data to form a multimodal feature descriptor (Mian

3
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et al., 2008; Bowyer et al., 2006). The main goal of this work is to produce a high quality key-

point descriptor that can be used for finding point-to-point correspondences between 3D free form

objects, for tasks such as rigid body matching, range map registration, object recognition (Ohbuchi

and Furuya, 2009) and object landmarking. Range images are an important class of 3D represent-

ations as these comprise the fundamental output generated by 3D triangulation systems, and have

been suggested by many to offer greater object representational stability (Pears et al., 2010; Gor-

don, 1992). However range data is challenging to interpret by means of local feature descriptors as

the modality only provides partial 3D information, while sharing many of the characteristic of 2D

intensity images, such as: occlusions, perspective distortion and a lack of 3D connectivity. Range

images also inherit the noise characteristics of the 2D intensity images from which they have been

constructed. In this thesis the principal objective is to answer the question: what is the most effect-

ive use of range and intensity image data to achieve greater invariance in feature matching under

changes in 3D pose given the afore mentioned limitations?

1.2 Background

Local feature matching is a widely adopted approach for determining correspondences between im-

ages for a variety of applications. Local features comprise a set of localised interest points in an

image of an object and a collection of associated measurements from a limited region surrounding

the interest points which forms a feature descriptor. Image matching and analysis by local fea-

ture approaches are processed using matches between sets of local interest points collected from

examples and query images. As analysis is achieved by the matching of a number of local interest

points between images, analysis may be achieved in complex or cluttered scenes as the process

relies on determining statistically a number of good interest points matches. However, to achieve

successful analysis through local feature matching, the feature descriptor representation of a local

interest point must remain invariant to a range of possible image transformations. Additionally the

feature descriptors must also be distinctive enough to reduce ambiguity between instances of local

interest points which do not represent the same object location.

Therefore, surface representations and descriptor extraction processes are key to forming robust

local features. Progressing the representation of local features in this respect will improve the

performance of any application utilising local features. This goal is addressed in this thesis through

4



1.2. BACKGROUND 5

the inclusion of range and intensity domain information.

1.2.1 Keypoint performance evaluation

The performance of local feature matching systems is difficult to establish without ground truth for

full 3D out-of-plane motion. In a number of reported evaluation systems this problem is avoided by

evaluating the performance of local feature matching systems stochastically on images as a whole

(Lai et al., 2011; Van De Sande et al., 2010; Janoch et al., 2011). However, this approach does

not account for the modularity of many local feature matching systems, where the local intensity

or surface descriptor may perform well, although the overall performance is degraded by a poor

selection of local feature locations; or when a post processing stage which can be applied to both

local feature matching systems is responsible the performance increase. The focus of this thesis

is on improving the repeatability of the surface descriptors used for local feature matching. Here,

the stochastic approach is not appropriate as it shows the result of matching the corpus of features

present in an image, as opposed to the point-to-point correspondence performance. Other systems

have been proposed which do evaluate the point-to-point correspondence performance of local fea-

ture matching systems. In these systems the performance to out-of-plane rotation is inferred from

the performance under affine transformations (Mikolajczyk and Schmid, 2004, 2005; Schmid et al.,

2000). However, this assumption causes the evaluation system to be inherently biased towards

local features which correct for affine transformations, and discriminate against the cases where

the local range data is highly distinctive, the very cases that are of interest in this thesis. The use

of turntables and 3D geometry has been exploited to evaluate the performance of local descriptors

under 3D out-of-plane orientation changes (Moreels and Perona, 2007, 2004). Using local feature

matching between stereo image pairs and the constraints of epipolar geometry to find the ground

truth for matched keypoints in a 3rd query image, the effectiveness of the local feature matching

system can be evaluated. Winder and Brown have used a similar approach in unconstrained outdoor

scenes to investigate sample patch arrangements (Brown et al., 2011; Winder and Brown, 2007).

While this approach gives a clearer indication of the performance of local feature descriptors, it

however discards around 30 to 50% of the keypoints due to failed matches. Therefore, in Winder

and Browns work the performance of the failed matches cannot be evaluated. By adopting range

imaging of the scene it is however possible to find the transformation of all points on an object ap-

5
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plied by the turntable deterministically without the use of local features, this approach additionally

offers the opportunity to evaluate the performance of 2.5D local features, and the multimodal com-

bination of 2.5D range features with 2D intensity features. Therefore, one of the main contributions

of this work is an evaluation system framework capable of applying a known transformation to an

object and capturing range and intensity images together with the 3D motion of points on the object

surface when rotated.

1.3 Overview of General Approach

Figure 1.2, gives an overview of the SIFT pipeline and the stages where modifications are made

in this thesis to accommodate range domain information. This section gives an overview of the

general approach adopted in this thesis. Stereo pair images are captured and processed using a

stereophotogrammetry package, C3D, to create co-aligned pairs of range and intensity images (Ju

et al., 2003). Keypoints are detected in a scale space representation derived from both range and

intensity images using the scale space corner detector methodology from SIFT (Lowe, 2004, 1999).

The combination of keypoint locations from both imaging domains is investigated as a means to

finding consistent locations on an object which may be detected within different views. From the

resulting collection of keypoint locations, a statistical measure of the local surface surrounding

the keypoint in the range and intensity images is derived by subsampling the measurement region

of the keypoint with a spatial arrangement of receptive fields (Schiele and Crowley, 2000). The

spatial subsampling of the keypoint local area with receptive fields allows the composition of the

local area surrounding a keypoint to be encoded. An investigation into the optimum receptive field

arrangement is conducted.

In addition to subsampling the local region surrounding a keypoint, pose normalisation of the

whole sample patch may be applied, such that the keypoint region sampling aperture consistently

covers the same region between observations. The pose normalisation applied to the sample patch

may be based on measures of the intensity or range surface surrounding the keypoint. Using the

range surface as an estimation of the 3D object surface, the transformation applied to the sampling

patch was corrected to sample the range and intensity images to compute the pose corrected appear-

ance of the keypoint from the surface normal viewing angle.

The choice of surface measures used to create a feature descriptor will determine the perform-

6



1.4. CONTRIBUTIONS 7

ance of feature descriptor matching under pose changes. To investigate this, a number of possible

range and intensity image surface measures and their combinations are proposed for computing a

feature descriptor.

Post processing of extracted features is investigated as a means to create a set of keypoints

which describe the variation of feature descriptors across a view sphere. In order to investigate

post processing of feature descriptors two approaches are presented: the first approach attempts

a statistical characterisation of keypoints in feature descriptor space, to give a space of variation

in which keypoints may be match. A second approach is applied whereby the observation space

of the keypoint is partitioned into a series of compartments, each containing a feature descriptor

expression of the keypoint from a given view and a confidence measure.

To validate the approaches proposed in this thesis, a test set of co-aligned range and intensity

images were collected using a calibrated stereo camera pair and turn-table configuration. Using this

configuration the location of re-occurring keypoints between observations of an object under a pose

change has been established.

1.4 Contributions

This thesis makes the following key contributions:

• Formation of a methodology for the capture and position control of 3D free form objects un-

der out-of-plane orientation changes. This is used to create a database of range and intensity

images with known transformations.

• A methodology utilising the database of range and intensity images with known transforma-

tions, for evaluating keypoint matching under pose changes.

• The evaluation of range data implemented in several proposed keypoint matching approaches.

• The proposal of an extension to the SIFT feature extraction structure to accommodate range

domain pose information.

The work presented in this thesis has appeared in:
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Figure 1.2: Scope of Thesis

8
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• Euan Strachan and J.Paul Siebert: 2.5D local feature matching system, In Proc. of the

RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, April 2011,

Vasteras, Sweden

• Euan Strachan and J.Paul Siebert: Local Multi-Modal SIFT Features in Co-registered

Range and Intensity Images, International Conference in Signal and Image Technologies and

Internet Based Systems, November 2012, Sorrento, Italy

• Euan Strachan and J.Paul Siebert: A View Based Approach for matching the 3D Appear-

ance of Local Features, International Conference on Image Analysis and Recognition, June

2013, Póvoa de Varzim, Portugal

1.5 Hypothesis

This thesis argues that it is possible to achieve a performance improvement over existing local fea-

ture matching approaches by exploiting information from co-aligned range and intensity domain

images. Range images offer a partial representation of the 3D object surface which can allow key-

point feature descriptors to encode further information regarding the 3D appearance of the keypoint,

which is unavailable when using only the intensity imaging modality. This additional information

regarding the object structure can be encoded together with the intensity domain information to

form a robust local feature descriptor for an image location.

1.6 Overview of Thesis

This thesis is organised as follows: Chapter 2 gives a background and literature review for this

research project, covering imaging modalities and recognition approaches; Chapter 3 evaluates the

influential design choices in SIFT features for matching in 2D images; Chapter 4 extends the ex-

perimental methodology presented in Chapter 3 to capture range and intensity images of 3D free

form objects under out-of-plane orientation changes; Chapter 5 examines the implementation of

range domain information in the standard SIFT pipe-line; Chapter 6 uses multiple observations of

an object to create a set of SIFT descriptors for an object which account for descriptor variation in-

troduced by pose changes, the resulting characterisation is used to match to any single observation;

Chapter 7 creates local features which partition the view sphere based on a local pose estimation
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from the range image; Chapter 8 overviews the contributions of this research project, draws con-

clusions from the findings and suggests future work.

10



Chapter 2

Background and Literature Review

The aim of this research project is to exploit the use of range images to improve

local feature invariance, to exploit the cross modal information from range and in-

tensity images and to model the appearance change in imaged representations of

objects across time due to pose changes. As such this literature review chapter first

establishes the range imaging modality, its formulation, characteristic and context

in modern applications. It then reviews the goals of image representations, the

progress which has been made towards characterising underlying object informa-

tion and other approaches where a limited range of deformations can be accounted

for and characterised. This chapter concludes by identifying a possible avenue of

research where range data can contribute to the performance of object recognition.

2.1 Introduction

This chapter introduces the key paradigms in the current literature for 3D free form object recogni-

tion . From this corpus, local features are shown to be an important low level image representation

for many generalised tasks in computer vision. These low level image features typically form the

input to higher level reasoning algorithms (Freeman et al., 2008) which are in turn used as sensor

data for the completion of many autonomous tasks (Meger et al., 2008). With many high quality

and inexpensive cameras available much of the literature addresses low level feature extraction from

intensity based images. Whereas, other imaging systems such as lidar have created images in the

range image domain, these have different characteristics from intensity based images and new ap-

11
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proaches have been required to create appropriate representations. More recently, imaging systems

capable of extracting aligned intensity and depth images, such as stereo imaging, provide simultan-

eous information regarding the intensity and underlying 3D structure present in the scenes imaged.

However, in all camera based approaches, the initial stages involve the extraction of high quality

information from image data to form a mathematical description of the image contents (Szeliski,

2010; Gonzalez and Woods, 1992). The task of forming a mathematical description of the contents

of an image is challenging, as vision approaches are required to be sensitive to changes in the im-

age relating to the image contents, while remaining robust to changes in the image resulting from

observation conditions. This chapter first identifies the characteristics of images in each domain,

then focuses on the constraints and design choices made by others to create invariant object repres-

entations. The chapter concludes by identifying areas in the existing literature where progress may

be made.

2.2 Imaging Modalities

To characterise a more fundamental representation of a scene which can in turn be useful for pro-

cessing tasks, we must first define the initial means of representation. In this thesis a scene is

defined as a physical environment which we desire to sense or measure with a computer vision

system. In order to sense and reason about the environment, or scene, a visual representation must

be constructed out of observable measurement signals, such a representation is referred to as an

image. As recognition is an important problem to solve in the case of almost any signal, and as

most approaches involve forming fundamental representations, there is an abundance of literature

offering solutions for differing signal domains (Zeng et al., 2009; Dror et al., 1995; Fanelli et al.,

2010). Many of these approaches have influenced the field of computer vision and pattern recogni-

tion which is principally concerned with the representations discussed in this chapter. This chapter

begins by covering the main scene representations, and their characteristics, discussed in the liter-

ature.

By far the most common image representation is the 2D intensity image. This is a 2D matrix

which records the intensity value of light focused on an array of optical sensors. Each element in

the 2D matrix is known as a pixel. This rectilinear arrangement of measurements gives a regular

structure to the representation of the object on the imaging plane. Cameras which record 2D intens-
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ity images are cheap, common and produce high quality data. Typically 2D intensity images have

additional colour information associated with the intensity value for each pixel. Resources such as

Google Image Search, Pisca and Flikr have allowed large databases of examples of scenes in intens-

ity images to be created (Hays and Efros, 2008; Ponce et al., 2006). However, due to the projective

nature of the light focused on the optical sensor, intensity images are a perspective representation

of an object, unique to the object viewing angle. The perspective intensity images are a complex

combination of object information and additional information regarding the object pose, lighting,

and setting as well as suffering from degradations such as occlusions, noise and clutter. More fun-

damental scene representations resulting from imaging in the intensity domain are challenging as

this additional information cannot be easily disentangled (Palmer, 1999).

Other representations exist which give a more intuitive representation of an object or scene,

such as 3D meshes or 3D computer aided design drawings (Turk and Levoy, 1994; Krishnamurthy

and Levoy, 1996); where the whole object is represented as it exists in 3D space independent of

viewing perspective. These approaches represent an object via a series of points joined together to

form polygons defining the local connectivity constraint. Mesh and CAD approaches are capable

of giving a whole view of an object. However, creating 3D mesh or CAD drawing representations

requires either an interaction with the object to fully explore the view space, or that the object is

manually created, as such a single observation instance is insufficient to create a full 3D represent-

ation (Bustos et al., 2005). In addition to meshes, 3D point clouds have recently become a popular

representation (Rusu and Cousins, 2011), these are representations which store the series of point

locations without the connectivity information. Both representations can be created from the integ-

ration of partial 3D measurements from range devices, or from multiview geometry. The individual

measurements from a range imaging device can be used to create a point cloud of X, Y, Z locations,

which can be incorporated across measurements in an approach such as Simultaneous Localisation

and Mapping, SLAM (Calonder et al., 2008). In recent years SLAM approaches have been able to

form 3D point clouds and mesh models from time series collections of intensity images (Parsley

and Julier, 2008). Meshes representations typically have complicated surface topology where an

even sampling of the surface manifold in not possible in three dimensions. In addition to this the

points used to create the polygon surface are unevenly distributed and there is no standard means by

which to create a unique mesh structure for any given object without imposing a landmarked case
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for an object class.

A compromise between distal and proximal representations can be reached using the range

image domain. Range images are a 2D matrix, similar to the 2D intensity image, where each

pixel in the image encodes the distance from the range imaging device to a projected point on the

object imaged. Range images have similar characteristics to 2D intensity images and are based

on a projective camera model. Range images are therefore a limited 3D model, or a 2.5D model

of the object imaged. They lack information regarding 3D structure unavailable from the given

viewpoint. However, range images do give explicit 3D compositional information and illumination

invariance absent in 2D intensity images (Fanelli et al., 2010). As range and intensity images are

both in matrix form these can be co-aligned to represent a new imaging modality which has so far

been under-utilised.

To frame the characteristics of the range and intensity domain data used in this thesis, this sec-

tion is arranged as follows. Firstly a selection of scanners which acquire range data are introduced

to highlight the general availability of the range medium and the requirement to process the result-

ant data; section 2.2.1 covers the specific details of the capture of range domain data by means of

stereo imaging; section 2.2.2 identifies the characteristics of range and intensity data and sources

of noise for the stereo image configuration; section 2.2.3 then gives the configuration of the stereo

capture rig used in the laboratory for the capture of all range data used in this thesis.

2.2.1 Commercially available range imaging devices

The aim of this section is to show the wide spread availability of range images capture using com-

mercially available devices. The characteristics of each approach are discussed as well as introdu-

cing some datasets created with each. Common issue across all range imaging devices are: image

noise; and surface specularity (Cyganek and Siebert, 2011). Specific issues experienced when gen-

erating range images through triangulation approaches additionally include: occlusions; and failure

to localise a pixel match (Cyganek and Siebert, 2011).

2.2.1.1 LIDAR laser scanners

Laser scanners such as the Minolta Vivid 910 or Z+F IMAGER 5010, offer co-aligned colour and

range data with highly accurate distance values. These scanners are an active triangulation approach
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(a) Z+F IMAGER 5010 (b) Minolta Vivid 910
Laser Scanner

(c) Distortions in the FRGC v2

Figure 2.1: Laser Scanner

where a laser scan line is projected from a known location and the intersection of this line and the

object can be used to calculate the distance. The laser is powerful enough for outdoor use. The

scanners have been used to form datasets of range and intensity images such as the Notre Dame

Facial Recognition Grand Challenge, FRGC v2, dataset (Faltemier et al., 2007) and as ground truth

in the EPFL multiview stereo benchmark (Calonder et al., 2008). However, it has been noted that

errors exist in laser scanning data due to object motion during the time taken for the laser to scan the

object (Boehnen and Flynn, 2009). Figure 2.1a shows the Z+F IMAGER 5010 used to create the

EPFL multiview stereo benchmark dataset (Calonder et al., 2008). Figure 2.1b shows the Minolta

Vivid 910 laser scanner used for the FRGC v2 dataset. Figure 2.1c, gives an example of distortion

in a range image resulting from object motion during the scan process (Boehnen and Flynn, 2009).

2.2.1.2 LIDAR time of fight scanners

Time of flight cameras work using the same principle as RADAR, i.e. by illuminating a scene with

light of a given frequency and measuring the time taken for the light to return when it is reflected

by a surface. For a single observation these methods typically have a range resolution error of 1cm,

due to noise in the measurements and the short times differences when the distances involved are

small (Cui et al., 2010).
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(a) Kinect Diagram (b) Kinect mounted on a Willow Garage PR2 robot platform

Figure 2.2: Microsoft Kinect

2.2.1.3 Structured Light

The most common example of a structured light device for creating depth representations of objects

or scenes is the Microsoft Kinect. The Kinect illuminates its field of view with a structured pattern

in infra red. From the distortions of the imaged infra red light pattern, a depth image can be created.

The Kinect has an additional colour camera to capture colour images of the scene, allowing the

device to capture a range, colour and intensity domain representation. The Kinect has been widely

adopted by the vision community and has open source support through OpenCV (Willow-Garage

and Intel, 2011), the Point Cloud Library (Rusu and Cousins, 2011) and ROS (Conley, 2012). The

Kinect has the ability to create range and intensity image representations in real-time, offering the

additional time dimension to potential representations. A large database of range and intensity

images for a range of common objects and object poses collected with the Kinect is available from

Washington State University (Lai et al., 2011).

The Kinect does however have known limitations. The resolution of the camera and range sensor

is only 640x480 pixels giving a low resolution image. Due to the need to detect the projected infra

red pattern, the Kinect is limited to indoor use. There is not a direct correspondence between pixels

in the range and intensity images, as these are captured by cameras or sensors at differing locations,

as such the captured range and intensity images are only roughly aligned. Figure 2.2a shows the

setup of the Kinect, Figure 2.2b shows the Kinect in use on a Willow Garage PR2 robot.
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(a) Dimensional Imaging Stereo Capture System (b) Examples of Stereo holes in Texas Data-
set (Gupta et al., 2010b)

Figure 2.3: Stereo Imaging

2.2.1.4 Stereo Capture

Stereo capture rigs are a passive range measurement device which can be created from standard

off the shelf digital cameras. This device is capable of forming high quality range images with

co-aligned texture images. Stereo capture is however a computationally expensive process, as the

displacement of every pixel with respect to each camera must be calculated. Recent use of GPUs

and machine learning approaches have allowed this processing to occur in real-time (Mei et al.,

2011; Di3, 2008). Stereo capture rigs rely on triangulation of points imaged in the intensity images

from each camera, and typically perform poorly when this correspondence cannot be established

such as with hair. As stereo imaging uses 2 images captured simultaneously, the approach is robust

to object motion distortions affecting laser scans. However motion blur present in images does

affect the stereo match quality. Figure 2.3b, shows range images from the Texas dataset, the range

values for the human hair in these range images cannot be established (Gupta et al., 2010b). Figure

2.3a, shows a Dimensional Imaging Ltd. stereo imaging device capable of capturing range, intensity

and colour time series data (Matuszewski et al., 2011).

Stereo photogrammetry is the means of range imaging used in this thesis. As such the remainder

of this section is focused on the specific characteristics of range imaging by means of stereo photo-

grammetry and the limitations of range images produced.
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Figure 2.4: Point Correspondence Geometry (Hartley and Zisserman, 2005)

2.2.2 Range image formulation

Range images are a matrix of distance values representing the distance from the perspective centre

of a camera, through which all rays pass, to the point on the object imaged by the pixel of the

given camera. The range images in this thesis are formed using a stereo capture configuration. The

images are created in a 4 step process outlined in this section. A more complete study involving

an in-depth analysis of the stereo vision approach used in this thesis can be found in (Siebert and

Marshall, 2000; Cyganek and Siebert, 2011; Ju et al., 2003; Urquart, 1997). An introduction to

stereo vision can be found in (Trucco and Verri, 1998), and a more general overview of the field of

multiview geometry can be found in (Hartley and Zisserman, 2005).

Figure 2.4 shows the standard approach for establishing the 3D location of points in a scene

using stereo camera configuration (Hartley and Zisserman, 2005). In this figure, X denotes the 3D

location of a point in a scene, x denotes the imaged location of the given point, and C denotes the

perspective center of the camera. The convention for geometry symbols used in this thesis is: [X,

Y, Z] denotes a 3D location in a scene, and [x, y] denotes a pixel location in an image.

1. Camera Calibration; each camera in the stereo configuration is calibrated with respects to

the other. The calibration establishes the location of the perspective centre of each cam-

era with respect to both the image formed by the camera, and the perspective centre of the
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other camera. This step allows the intersection of pixel correspondences between the stereo

intensity images to be projected into 3D space.

2. Stereo Matching, establishes correspondences of pixels in both stereo images. In this thesis

pixel correspondences are found using the C3D matcher. This is a coarse to fine correlation

approach. Stereo correspondence is an active area of research with advances continually be-

ing made. The Middlebury Stereo Evaluation benchmark (Scharstein and Szeliski, 2002) is

the standard benchmark for contemporary approaches. The current state of the art in stereo

matching relies on Markov Random Field, or loopy belief approaches (Szeliski et al., 2008;

Mei et al., 2011). These can achieve an accuracy of around 96% of correct pixel correspond-

ences.

3. Intersection; the location of each pixel correspondence between the cameras is then projec-

ted through the perspective centre to find the ray intersection, or closest point between two

rays, in R3 space (Abdel-Aziz and Karara, 1971; Hartley and Zisserman, 2005). The length

of the vector between a camera perspective centre and the intersection gives the range value

for the given camera.

4. Post processing; smoothing of the resulting range image or bundle adjustment to correct for

erroneous ray intersections.

As each pixel represents a distance measure from the perspective centre of the camera to the object,

the pixel divisions in the x, y image plane are proportional to angular divisions in azimuth and

elevation. In this thesis the weak perspective camera model is used, where the angular divisions

of the x, y image axes are assumed to be proportional to a linear change in distance measured

in metres, Equation 2.1. This assumption holds provided the maximum angular deviation across

the image is small, Equation 2.2. To achieve this, the mean distance to the object must be much

greater than both the distance across the field of view at the object distance, and the total deviation

of the object distances across the viewing space. As the range and intensity images use the same

perspective model, the space in which the weak perspective model assumption holds is the same for

both imaging modalities.
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Figure 2.5: Stereo Capture Setup

Figure 2.6: Imaging Plane

x = f X
Z̄

y = f Y
Z̄

, Z̄ � ∆Z, X, Y (2.1)

tan(θ, ψ) ≈ θ, ψ (2.2)

2.2.3 Range imaging setup

Figure 2.5, shows the layout of the stereo capture used in this thesis. This figure shows the average

distance with respect to the perspective centre of the left camera. The cameras used are two, 5M

pixel Prosilica GC2450C cameras; the left camera captures intensity and colour while the right

camera captures intensity only. The monochrome camera in the stereo capture configuration has

20



2.2. IMAGING MODALITIES 21

Parameter Symbol Value
Focal length f 50mm

Imaging plane x, y values x, y 1:2040,1:2448 pixels
Real world X, Y X, Y ±19 centimetres

Range values Z 1.66→ 2.06 metres
Range variation ∆Z 20 centimetres
Average range Z̄ 1.86 metres

Field of view in x, y direction θ, ψ 0.94 degrees
Stereo baseline N/A 25 centimetres

Table 2.1: Stereo capture setup

lower noise characteristics compared to the colour camera. Using both colour and monochrome

cameras in the stereo capture arrangement allows for co-algined range and colour images; where

the range image demonstrates higher pixel correspondence confidence than could be achieved using

two colour cameras. The parameters of the camera capture setup are shown in Table 2.1, here the

view angle of the cameras can be seen to be less than 1◦ giving the capture configuration a weak

perspective model.

2.2.4 Summary of range image characteristics

Range images are a compromise between a 3D object representation and an imaging modality which

can be observed from a single viewing perspective. As a 3D object representation, range images

include occlusions of greater than 50% of the object surface, due to the occluded back face of the

object (Besl and Jain, 1986; Frome et al., 2004). Additional characteristics which range images

inherit from using a projective camera model are that the resultant images include perspective dis-

tortions (Geiger et al., 1995). Using stereo capturing approaches there exist circumstances where

matches between left and right images cannot be established, in these cases a range value will ap-

pear erroneous. These cases are the result of two processes: firstly where the appearance change of

a pixel location is greater than a matching process will allow, this can occur when imaging protru-

sions such as hair; secondly when a view of an object is available in the image from one camera,

but not the other. To mitigate this the baseline between the cameras can be kept small.
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2.3 Feature Based Image Analysis

Feature based image analysis is an approach with which it is possible to reduce the information

present in a scene representation, so that the remaining information characterises only the desired

image property, or label referring to the image content. In addition to removing superfluous inform-

ation, the resulting description should be robust to a range of appearance variations which an object

can exhibit in the chosen imaging modality. In this section an introduction to object recognition

approaches based on extracting and matching features in range and intensity images is presented.

This section is organised as follows: Section 2.3.1 discusses the main paradigms in object re-

cognition, and Section 2.3.2 elaborates on the local feature structure showing research relating to

each stage in the processing pipeline.

2.3.1 Feature Extraction Paradigms

Since the 1970’s the computer vision literature has tackled the problem of recognition from a num-

ber of different angles and for a number of applications. Initially attempts were made to recognise

rigid unarticulated objects through analysing the structure present in the image representation as

a whole. Line and edge structures from detectors such as the Canny edge detector (Canny, 1986)

and Hough transform (Duda and Hart, 1972; Illingworth and Kittler, 1987) were used as a global

geometric representation for the object which could then be used for matching directly to an object

database. Matches in an object database could be established through finding a possible viewing

angle of the object, which accounts for the edge structure observed in the image (Lowe, 1987;

Roberts, 1963). As range data became available in the 1980s, the output of these scanners could

be used as geometric models where the structure present could be matched directly (Kanade, 1987;

Faugeras, 1993; Reid and Brady, 1995). However, these approaches were found to be susceptible

to noise and clutter in the image scene even when identifying rigid unarticulated models (Faugeras

and Hebert, 1986). To address these issues the problem was decomposed into segmentation (Pal

and Pal, 1993) and recognition (Murase and Nayar, 1993; Pontil and Verri, 1998); to first find the

object to be identified, then to characterise the object. Segmentation approaches are able to partition

an image into regions with similar surface statistics which can be derived from texture (Belongie

and Malik, 1998; Shi and Malik, 2000), colour (Klinker et al., 1990; Liu and Yang, 1994), surface

curvature (Hoover et al., 1996; Powell et al., 1998), silhouettes in intensity or range (Pal and Pal,
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1993).

In the late 1990’s and early 2000’s there was a revolution in object recognition allowing objects

to be recognised in scenes under challenging conditions, such as occlusion, clutter and a range

of poses. By dividing larger scenes up into smaller yet distinctive subimages, or sample patches,

localised around interest points (Schmid and Mohr, 1996; Lowe, 1999), it was possible to apply

standard recognition approaches which were previously used to characterise the scene as a whole

(Murase and Nayar, 1993; Wallraven et al., 2003). This approach is thought to have much in

common with biological vision present in mammals (Koenderink and Van Doorn, 1992; Burton

et al., 1986; Jones and Palmer, 1987; Biederman, 1987). In applications where enough local features

of sufficient quality could be captured under viewing conditions similar to those stored in a database

the object recognition problem becomes solvable and robust as the composition of these features

can be used to create a hypothesis regarding the object location and pose (Lowe, 2004).

More recently, much of the current research in the field has been directed to analysing large

quantities of image data using standard local features such as SIFT or SURF (Blaschko and Lampert,

2008; Bay et al., 2008) in conjunction with text based retrieval approaches, to create a bag-of-visual-

words (Freeman et al., 2008; Ponce et al., 2006; Sivic and Zisserman, 2003; Weinberger and Saul,

2004). However, these processes all introduce a bottleneck of information at the feature description

stage. This problem has been noted for the conditions of view point change, where an investig-

ation into improving the structure of the sampled intensity image data has shown improvements

in overall performance (Winder and Brown, 2007). The creation of local features which retain

their similarity under these conditions while still remaining distinctive is a challenging problem,

with many approaches for increasing the invariance of sample patches to image transformations

(Mikolajczyk and Schmid, 2005; Lo and Siebert, 2009; Brown et al., 2011; Winder and Brown,

2007; Lowe, 1999). The recent availability of co-aligned multi-modal range and intensity image

data for robotics applications has created the possibility of integrating this cross modal data as a

means to increase the robustness and distinctiveness of the extracted local features.

This section presents a selection of literature relating to extracting surface measures for repres-

entation. These surface measures are derived from:

1. Global approaches where the surface measures have been used to characterise areas with

similar structure;
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(a) NURBS global description (b) NURBS features

Figure 2.7: NURBS Surface Parametrisation, (Ko et al., 2003)

2. Local features, which typically investigate local feature structure.

3. Adaptive approaches where the object class is known, and the variation or presence of the

object is required.

2.3.1.1 Global Feature Extraction Approaches

This section reports surface characteristics which may be used for matching between object in-

stances. Where the full 3D information for an object is present in an uncluttered scene repres-

entation, the direct representation of the object can be used for recognition and matching using

the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Zhang, 1994). This approach

has been successfully applied to clutter free range images where there is a high overlap in the data

available between examples, and has shown high recognition rates in facial recognition (Pears et al.,

2010; Islam et al., 2009; Faltemier et al., 2008). However, the approach requires a comparison of

two objects over many iterations and the representations of the object must contain sufficient over-

lap of the object surface. Additionally, poor initialisation of ICP can cause the representation search

to find local minima as opposed to a true alignment. These issues make ICP prohibitively expensive

as a surface representation for large databases. Non Uniform B-Splines (NURBS) have been used

to recognise CAD models through a parametrisation of their object surfaces to create shape intrinsic

fingerprints (Krishnamurthy and Levoy, 1996; Ko et al., 2003; Ling et al., 2010), see Figure 2.7.

However, NURBS require large feature spaces, and full 3D information. These are typically used

for matching point clouds, and suffer similar problems as ICP with data which include occlusions.
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Frequency approaches such as Zernike moments (Novotni and Klein, 2003; Canterakis, 1999)

or Spherical Harmonics (Frome et al., 2004; Zhang and Hebert, 1999) have been applied to 3D free

form structures to create more generalisable rotationally invariant descriptions. These approaches

can create a unique spectrum for an object which can be formed from a range of different local

surface measures, such as colour, texture, surface normals (Zhang and Hebert, 1999; Dorai and

Jain, 1997). Surface normals however are view dependant, therefore a more intrinsic measure of

local surface structure has been required. This limitation can be accounted for using Splash Images

(Stein and Medioni, 1992) or with approaches similar to NURBS where the surface is parametrised

based on its local structure to allow a view independent representation to be created. Surface para-

metrisation can be achieved by fitting low order polynomials to local surface patches, an example

of this is Principal Curvatures where the surface gradient directions and magnitudes can be used

as a local representation (Besl and Jain, 1986; Gordon, 1992). Konderink and van Doorn advance

this surface measure to create Shape Index and Curvedness (Koenderink and van Doorn, 1992).

Shape Index extends Principal Curvatures by creating a single parameter to define the magnitudes

of both principal curvatures, and second, Curvedness, which defines the ratio between the two prin-

cipal curvatures. The Shape Index surface measure allows all surfaces to be categorised as a smooth

transition between differing surface types using a single measure, Figure 2.8, with a second measure

defining the scale of the surface type. Shape Index, in addition to creating an intuitive taxonomy of

surfaces types creates a resulting representation which is invariant to changes in in-plane orientation

and changes in object scale. Shape Index has proved a popular choice of surface measure for ob-

ject recognition in the range imaging domain (Hetzel et al., 2001; Lo and Siebert, 2009; Dorai and

Jain, 1997). In comparison to Principal Curvatures which combine measurements of surface type

and surface scale in a single measure for each principal direction. The use of principal directions

allow deformations to the surface to exist which preserve the Principal Curvature. These deform-

ations change the principal directions, and therefore the shape of a feature. Shape Index however

characterises any deformation of the surface as a change in either the Shape Index or Curvature

(Koenderink and van Doorn, 1992).

Cross modal and multi-modal surface representation have been investigated. The facial recog-

nition community have a large body of research and approaches for global recognition using a
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Figure 2.8: Shape Index (Koenderink and van Doorn, 1992)

combination of range and intensity images (Mian et al., 2007). Bowyer (Bowyer et al., 2006) and

Abate (Abate et al., 2007) independently present two surveys of multimodal information applied

to facial recognition. Both surveys report upwards of 95% recognition rates on the specific object

example of faces, and both report a marked improvement when using the combination of inform-

ation from range and intensity domains. Campbell and Flynn give a good summary of a number

of recognition approaches for the recognition of 3D free form objects in range images (Campbell

and Flynn, 2001). In their survey the best recognition rates are achieved using the local feature

approaches of Spin Images (Johnson, 1997) and Point Signatures (Chua et al., 2000), see Section

2.3.1.2.

2.3.1.2 Local Feature Extraction Approaches

Interest in local feature matching as an approach for object recognition in challenging environ-

ments began with the work of Schmid and Mohr in the late 90’s (Schmid and Mohr, 1996). These

approaches find keypoints in a scene representation which act as repeatable key locations or keypo-

ints, which may then be identified in subsequent examples of the object in differing scenes. Since

the introduction of local feature matching, Tuytelaars and Mikolajczyk (Tuytelaars and Mikola-

jczyk, 2008) have identified the key desirable qualities of any local feature extraction approach as

follows:

• Repeatability, features when detected in one example of an object scene, must be detected in

subsequent examples of the object. This measure is composed of two factors: invariance to

26



2.3. FEATURE BASED IMAGE ANALYSIS 27

deformations and robustness to changes in the keypoint expression; these factors are covered

in greater detail in Section 2.3.2.2.

• Distinctiveness, the areas on the object selected as keypoints must demonstrate informative

variation.

• Locality, keypoints are required to use a sufficiently small patch of the image such that the

effects of occlusion and distortions due to out-of-plane viewer location changes are reduced.

• Quantity, for a scene representation, a large number of keypoints are required to increase the

supporting evidence for a hypothesis regarding the scene content.

• Accuracy, the attributes of the localised feature should be accurately determined, these in-

clude the scale and orientation.

• Efficiency, for practical applications the keypoint extraction process should have the potential

to be optimised.

In order to satisfy these conditions a range of local feature approaches have been proposed in the

literature. SIFT features are the most common local feature extraction approach. Local features are

detected in position and scale, and characterised by a histogram of image intensity gradients (Lowe,

2004, 1999). SURF features are an efficient alternative to SIFT (Bay et al., 2008), using integral

images for scale localisation (Viola and Jones, 2001), and Haar wavelets for descriptor character-

isation (Gonzalez and Woods, 1992). GLOH, features use a modified patch sampling approach and

dimensionality reduction to compress the descriptor vector for increased efficiency in the matching

stage (Mikolajczyk and Schmid, 2005), Figure 2.9b. PCA-SIFT applies dimensionality reduction

directly to the SIFT sample patch. Ke and Sukthankar presents an evaluation of this approach (Ke

and Sukthankar, 2004a). Tola et al introduce the DAISY local feature descriptor, which uses a SIFT-

like structure with a densely represented image sampling patch, Figure 2.9a. This creates highly

distinctive features required for stereo matching (Tola et al., 2010). SPIN Images are pose invariant

local features which were originally proposed for matching between range images, or full 3D CAD

models (Johnson, 1997; Johnson and Hebert, 1999). Spin images are formed from histogramming

vertices in the feature local, based on the distance from the surface normal plane, and the radial

distance from the feature surface normal. Lazebnik et al have extended these into the intensity
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(a) DAISY, (Tola et al., 2010) (b) SIFT and GLOH, (Winder and Brown, 2007)

Figure 2.9: Sample patch arrangement

domain and investigated the combination of intensity domain SPIN images with other descriptors

(Lazebnik et al., 2005). (Chua et al., 2000) formulate Point Signatures, a descriptor similar to SPIN

images, which demonstrate ~90% recognition rates for facial recognition. Point Signatures encode

a range surface as a histogram of the vertices in the feature local, based on the angular distance

from the surface normal the radial distance from the keypoint location.

The majority of the local feature matching approaches presented in the literature follow the pro-

cessing pipeline outlined by SIFT. In order to give a fuller discussion of advances in local feature

extraction methodology Section 2.3.2 structures various advances in the context of the SIFT pro-

cessing pipeline. Figure 2.10, shows an example of local feature image sample patches used to form

feature descriptors. Each subfigure in Figure 2.10 shows local sample patches extracted at a single

scale, each sample patch is aligned to the dominant orientation of the patch.

2.3.1.3 Adaptive Feature Characterisation

The previous sections on global and local features have discussed recognition when the given object

is rigid, or does not exhibit significant changes at the scale of the local features. However, changes

in 3D observation positions or deformations of the object, do result in a transformation being ap-

plied to the object surface affecting both global and local feature interpretations (Tuytelaars and
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Figure 2.10: Local feature sample patches at differing scales (Brown et al., 2005)

Mikolajczyk, 2008; Gopalan et al., 2010). The problem has typically been constrained by consid-

ering the effects of deformation when the given object class is known. Pentland and Turk have

presented Eigenface, where an image patch covering a face is modelled, with Principal Component

Analysis, as a descriptor describing the common mode patch structure and an additional descriptor

to define the informative variations characterising the specific example (Turk and Pentland, 1991).

This is advanced using Fisher’s Linear Discriminant to form Fisherfaces, which have shown im-

proved performance (Belhumeur et al., 1997). Lee and Seung learn the characteristics of an image

patch using non-negative matrix factorisation. The response of an image patch to a series of filters

is learned to find a description for an object example (Lee et al., 1999). Viola and Jones present an

instance locator, which is capable of learning object classes and finding image patches containing

an instance of an object in larger scenes (Viola and Jones, 2001, 2004).

In addition to patch based approaches there are others which consider the underlying structure of

the object. These include Elastic Bunch Graph Matching, EBGM (Wiskott et al., 1997; Albiol et al.,

2008). EBGM marks faces with landmarks based on Gabor jet local features and a graph structure

joining the features; the landmarks are iteratively moved to satisfy an energy minimisation function

of the graph structure and local appearance. Active Shape Models generalise this approach to

allow arbitrary objects to be recognised with the requirement of prior landmarking of training data

(Cootes et al., 1995). Active Appearance Models extend this work further to fit a standard fully

textured model to the variations shown in the example (Cootes et al., 2001). The description of the

object can then be composed of the standard model and the deformations required to be applied to
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fit the model data to the object, Figure 2.11.

Felzenszwalb et al create a more detailed model of the possible variations which allows more

complex free form objects, such as human bodies, to be represented and recognised in varying

poses (Felzenszwalb and Huttenlocher, 2004, 2005). Many of these graph approaches have limited

connections between collections of local features to optimise the performance for a single object

class. Constellation models create a fully connected graph structure for more generalised applica-

tion (Chung et al., 2009; Fergus et al., 2003). Recently partial 3D information has allowed further

constraints for the motion of points which has aided simplifying the model (Matuszewski et al.,

2011).

Stark et al learn the 3D shape of features from 3D CAD models and apply the models learned to

recognition under out of plane orientation changes and deformations (Stark et al., 2010). Assump-

tions regarding 3D shape have been used to normalise intensity data for recognition of instances of

faces for head pose tracking (Zabulis et al., 2009). Rough parametrisation of objects can be used to

define contours and create Shape Context descriptors (Belongie et al., 2002). These have success-

fully used to recognise deformable silhouettes (Ling et al., 2010) and have been recently extended

for describing full 3D objects (Kokkinos et al., 2012).

2.3.2 Local Feature Structure

SIFT local features outline a processing pipeline which has been followed by other approaches

which adopt the local feature paradigm (Lowe, 2004, 1999). This section seeks to demonstrate the

advances made in local feature matching in this context. Local feature approaches which do not

follow the SIFT structure have their advances discussed under the subsection which most relates to

the novelty of the approach. Figure 2.12 shows the SIFT feature extraction pipeline.

2.3.2.1 Scale Space

Scene representations contain a range of spatial frequencies where informative features can appear

with differing size. Furthermore perspective changes and image resizing require that image features

may be created at any arbitrary scale, and matching must be done irrespective of the scale at which

the feature appears in an example (Lindeberg, 1993). In order to characterise features of differing

30



2.3. FEATURE BASED IMAGE ANALYSIS 31

(a) Iterations of fitting active appearance models to faces. Model starts with
a ’mean face’ and progresses towards a converged model, describing the face
through a set of parameters, (Cootes et al., 1998)

(b) Active shape models defined by feature locations on an object, (Cootes et al.,
1995)

(c) Elastic Bunch Graph Matching, fitting bunch graphs to
faces based on Gabor jets, (Wiskott et al., 1997)

Figure 2.11: Recognition based on adaptive features
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Figure 2.12: SIFT Feature Extraction Pipeline

scale SIFT divides the source image up into a Gaussian Image Pyramid where each image in the

pyramid contains a limited range of spatial frequencies (Lowe, 2004). Alternatively, SURF uses

integral images where gradient responses can be efficiently found at any scale without the require-

ment of building and storing an image pyramid (Bay et al., 2008; Viola and Jones, 2001). Wavelets

are another approach for calculating gradient responses at differing scale; wavelets calculate the

magnitude of the gradient response to wavelet filters characterising differing spatial frequencies

(Mallat, 1989).

2.3.2.2 Feature Localisation

Many types of features exist in images, such as lines, contours, corners, gradients etc (Szeliski,

2010). Localising these features within a repeatable measurement window is referred to as the

aperture problem, Figure 2.13. Corner detectors are the most localisable out of the taxonomy of

image features and therefore the best suited for localising image sample patches within larger im-

ages. The detection of corners can be established by a range of approaches designed to minimise

the effects of viewer location, lighting conditions. Moreels and Perona (Moreels and Perona, 2007)

investigate differing corner detectors approaches and report similar results to Mikolajczyk et al

(Mikolajczyk and Schmid, 2005), with Hessian Affine corners located in a Difference of Gaussians

Image Pyramid features remaining the most stable across a range of transformations.

Maximally Stable Extrema Regions, MSER, were proposed by Matas et al (Matas et al., 2004).

These features were originally proposed as repeatable features for 3D reconstruction of scenes from

multiview geometry, Figure 2.14. These features have been shown to demonstrate high performance

on planar scenes, however reduced performance on objects with complex 3D geometry (Moreels

and Perona, 2007). Gupta and Mittal show improved repeatability in feature localisation by find-
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Figure 2.13: Aperture Problem, highlighting the difficulty in finding a localisable correspondences
between image locations. Here the effects of attempt to match (a) corners, (b) lines, and (c) areas,
are shown (Szeliski, 2010)

Figure 2.14: Outline of MSER features repeatably localised between pairs of images with large
changes in viewpoint , (Matas et al., 2004)

ing line intersections of distinct lines in intensity images; however their approach produces fewer

keypoints than corner based approaches (Gupta et al., 2007).

Histograms of Orientated Gradients, HOG, descriptors identify all locations in the image as

potential interest points. Through densely sampling the image the significant locations are learned

in a post processing stage (Agarwal and Triggs, 2006; Dalal and Triggs, 2005; Nowak et al., 2006).

2.3.2.3 Image Sample Patch

For localised feature instances to be matched between examples, a unique identifier tag, or keypoint

descriptor is required. The keypoint feature descriptor is formed from a measure of an extracted

image sample patch from the local area surrounding the interest point. To increase the distinctness

of the resultant descriptor and allow a measure of local image composition to be formed, image
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Figure 2.15: Collection of image sample patches, sampling patches are labeled Sx-n, where x refers
to the spatial sampling scheme, and n defines the number of receptive fields (Winder and Brown,
2007)

sample patches are subdivided into a collection of receptive fields or subfield arrangements. Due

to their use in SIFT, rectilinear arrangements of receptive fields are a popular image sample patch

decimation (Lowe, 2004; Bay et al., 2008). GLOH uses a log polar image patch sample patch

decimation more similar to a mammal retina and focuses the descriptor information content on

the keypoint location (Mikolajczyk and Schmid, 2005). The GLOH arrangement is advanced by

DAISY (Tola et al., 2010) which is composed of an overlapping and foveated arrangement. The

composition of receptive fields using the DAISY approach is investigated by Winder et al (Winder

and Brown, 2007; Winder et al., 2009), Figure 2.15. Fan et al propose LIOP, which forms a unique

receptive field arrangement for every descriptor by segmenting the sample patch based on the local

intensity (Wang et al., 2011), Figure 2.16.

In addition to choices of receptive field arrangements, image sample patches may have a variable

shape based on a calculated measure of the local interest point pose. SIFT calculates the canonical

orientation of the interest point, the image sample patch is then aligned with this orientation (Lowe,

2004). Mikolakczyk and Schmid apply an Affine warping function based on the local characteristics

of the 2D intensity image to give partial invariance to changes in 3D observation location changes

(Mikolajczyk and Schmid, 2004), Figure 2.17. Lo uses range image surface gradients to apply a

similar Affine warping function to a range image sample patch (Lo and Siebert, 2009). SPIN images

extracted from point clouds apply a full 3D out-of-plane rotation normalisation to sample patches,

these however have no sensitivity to in-plane patch orientation (Johnson and Hebert, 1999).
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Figure 2.16: LIOP Regions segmenting a sample patch, (Wang et al., 2011)

Figure 2.17: Affine corrected sample patches: (a, b) canonical view, figures (c-f) show the object
viewed from a new view point, the lower row of figures show an enlargement of the sample patch.
Subfigures (c, d) use a sample patch with in-plane orientation correction only, (e, f) use an Affine
corrected sample patch, covering the same image region as in the original image (a, b), (Mikolajczyk
and Schmid, 2004)
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2.3.2.4 Surface Description

To create a unique descriptor for a keypoint location, the extracted image sample patch and re-

ceptive field arrangements are used to sample the local image statistics. The local statistics are

histogrammed to form a key mathematical representation of the keypoint local, termed a feature

descriptor. A variety of surface measures have been proposed in the literature, these include in-

tensity image gradient orientation and magnitude measures. SURF uses Haar wavelets, these are

a fast approximation where the local response to a binary gradient operation is measured (Bay

et al., 2008). To reduce quantisation noise Local Binary Patches, LBP, have been proposed. These

are a local binary operation which encodes the comparison between a pixel intensity and that of

its neighbours (Ojala et al., 1996; Heikkilä et al., 2009). Gupta et al investigate LBP approaches

further using different pixel comparisons for forming descriptors (Gupta et al., 2007; Zabih and

Woodfill, 1994). Additionally, descriptors may be formed from the relationship of shapes and lines

(Gupta et al., 2010a). Belongie et al use shape context to form rotationally invariant descriptions of

objects (Belongie et al., 2002). Zitnick uses a local parametrisation approach to form descriptions

of lines in local image patches (Zitnick, 2010). Shape Index and Curvature have been shown to be

more robust measure of local surface statistics in the range imaging modality (Lo and Siebert, 2008,

2009; Dorai and Jain, 1997; Lukins and Fisher, 2006; Hetzel et al., 2001; Atmosukarto et al., 2010).

Campbell and Flynn provide an overview of description metrics for range images (Campbell and

Flynn, 2001). Bowyer provides a survey on the choices of surface measures for facial recognition

in the range and intensity domains (Bowyer et al., 2006).

2.3.2.5 Postprocessing

Having established a collection of keypoints, with the desirable properties outlined in Section

2.3.1.2, it is possible to apply these keypoints to a range of applications. The information presented

in the keypoint structure may be optimised for a given application through a series of post pro-

cessing steps. This subsection details a limited selection of these applications and their associated

post processing steps. The goal of this subsection is to place local features in a chain of processing

from image capture to application, and identify potential steps which may be incorporated into the

extraction process or additional information which extracted keypoints may present to allow for

further post processing stages.
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Local features have been used for object matching (Lowe, 2004) and image stitching (Brown

and Lowe, 2007). In these application, extracted keypoints must form a consensus on the composi-

tion of keypoint locations between image examples. In order to identify keypoints which conform

the generalised Hough transform has been used on local feature location and orientation (Pope

and Lowe, 2000; Ballard, 1981). Object recognition from individual keypoints in a large database

requires that the processing power required to match two keypoints is minimised. To reduce the

processing required to match two points an efficient search through the descriptor space, such as a

k-d tree, may be used (Muja and Lowe, 2009), or the descriptor length may be reduced by applying

PCA to the keypoint feature descriptor (Ke and Sukthankar, 2004b). Efficient keypoint matching

has applications in mobile phone, and optical flow (Liu et al., 2011). An additional level of ab-

straction may be introduced so that extracted keypoints themselves form data from which keypoints

may be extracted. This bag-of-features approach has been used in applications such as pedestrian

detection (Dalal and Triggs, 2005), instance recognition (Fei-Fei and Perona, 2005; Agarwal and

Triggs, 2006) and scene interpretation (Sivic and Zisserman, 2003). The application of instance

detection allows for use of positive and negative keypoint matches to enforce the resulting repres-

entation of an instance (Lee et al., 2011). Recently, further levels of abstraction to bag-of-features

models have been added to create a hierarchy of recognition for a semantic representation allowing

for a comprehensive vision system based on local features (Lai et al., 2011), Figure 2.18. How-

ever, the performance of all post processing stages outlined in this section rely on the successful

representation of the initial image data in local feature descriptor form.

2.4 Summary and Conclusions

This chapter has introduced the characteristics of various imaging modalities and the restrictions

these place on the available information regarding an object. Specifically the characteristics of

range images have been discussed in detail. These are shown to offer a partial 3D representation of

the underlying structure of an object, which is unavailable when using only intensity images. Range

images are shown to be a challenging representation which share many characteristics with intens-

ity images, such as the perspective projection and a similar level of surface occlusion. A number

of range scanning devices have been introduced in this chapter to demonstrate the availability of
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Figure 2.18: Bag-of-features hierarchy showing the use of local features in an advanced vision
system preforming category level recognition with additional meta data (Lai et al., 2011)

capture devices supporting this imaging domain. Furthermore, stereo imaging has been identified

as an area of specific interest, as scanners are passive, cheap, and form co-aligned range and in-

tensity images. Additionally, given these qualities there is a recent body of research into reducing

processing time and increasing the quality of the resultant range image (Scharstein and Szeliski,

2002).

The approaches to analysing the underlying data from imaged representations of objects were

separated into 3 categories for discussion: global approaches, characterising the whole image scene

through measures of surface types; local features where portions of an image are used to form

point correspondences between images; and adaptive approaches which are capable of account-

ing statistically for variations between imaged objects. These 3 approaches are frequently used in

combination where measures of local surface topology categorisations are used to find point cor-

respondences in images to form a collection of feature descriptors. The statistical variation may

then be accounted for over this set of descriptors. Recently, many of the approaches adopted by the

research community for the recognition of free form objects have been based on adopting a local

feature representation and then applying an analysis to the resultant descriptor (Fei-Fei and Per-
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ona, 2005; Pontil and Verri, 1998; Sivic and Zisserman, 2003; Sivic et al., 2005). However, it has

been noted that the local feature representations themselves form an information bottle-neck, where

sufficient information is required to characterised the local image region surrounding the interest

point. In addition, the representations formed should not be sensitive to transient information which

may change between observations (Tuytelaars and Mikolajczyk, 2008). Therefore, local feature ex-

traction processes which are capable of characterising an invariant representation of a interest point

local region will improve the results of any subsequent processing and analysis (Winder and Brown,

2007).

The adoption of 2.5D SIFT local features in range images has demonstrated the ability to form

robust local range feature descriptors (Lo and Siebert, 2009). However, 2.5D SIFT does not in-

corporate additional information from the intensity domain, which has independently been used to

form distinct local feature representations. There is evidence that features calculated using mul-

timodal information from co-aligned range and intensity images can demonstrate an improvement

in local feature distinctiveness, as multimodal information has been used to increase the perform-

ance of facial recognition systems on the FRGCv2 (Bowyer et al., 2006). The concept of using

multimodal information from co-aligned range and intensity images has not been investigated in a

local feature context.

In order to investigate the application of co-aligned range and intensity images in local feature

extraction processes, the underlying processing pipeline architecture that implements the Scale In-

variant Feature Transform, SIFT, is adopted (Lowe, 2004). SIFT is a frequently cited extraction

approach which has been applied to a number of computer vision tasks from robotic vision, to im-

age retrieval. The algorithm comprises a pipeline of low level image processing steps which divide

a scene representation into a series of patches surrounding interest points and characterises each

interest point with a unique descriptor. This chapter has decomposed this processing pipeline into a

combination of choices of modality and method for each stage in interest point localisation, sample

patch transformations, and surface measures. An advance on the state-of-the art for any recogni-

tion system based on local features can be made through careful design choices and through the

integration of information from an appropriate modality at each stage of the processing pipeline.

This thesis therefore seeks to investigate the integration of multimodal range and intensity domain

images as an approach to improving the distinctiveness of robust local features.
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The next chapter introduces an initial investigation into the choices of design parameters for

each stage in the SIFT algorithm; a test configuration using 2D intensity images is developed to

investigate the success of variations on SIFT; and a series of rules for design parameters is devised.

Chapter 4 extends this experimental configuration allowing the combination of range and intensity

domain to be investigated in Chapter 5. Chapters 6 and 7 seek to use adaptive recognition ap-

proaches for extending descriptor representations for handling surface patch deformations resulting

from changes viewing position.
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Chapter 3

Initial Investigation

This chapter follows from the background and literature review to conduct an initial

investigation into the implementations of presented concepts and extends existing

SIFT code towards an implementation of 2.5D SIFT. To evaluate changes made to

the existing SIFT code an experimental methodology capable of tracking keypoint

locations under a range of image transformations is outlined. The outlined exper-

imental setup is used to test all changes made and results are presented as ROC

curves.

3.1 Objectives

The main objective of this chapter is to investigate the stages in SIFT which influence feature match-

ing performance in order to formulate underlying rules for algorithm configurations; from this set

of rules an optimum configuration is found. The modified SIFT configurations examined in this

section focus on the surface interpretation and extraction of local surface statistics for creating key-

point feature descriptor vectors. In order to conduct this investigation this chapter develops a readily

reconfigurable and efficient experimental setup with the ability to directly compare any modified

SIFT formulation against an implementation of Lowes original SIFT (Lowe, 2004). The experi-

mental setup presented in this chapter focuses on point-to-point matching of individual keypoints;

the composition of keypoints and higher level feature matching stages which analyse collections of

keypoints are omitted.

Using the experimental setup presented in this chapter the performance of all modified SIFT
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algorithms can be compared directly against the performance of standard SIFT to isolate the effects

of each modification. All implementations of SIFT variants presented are based on freely available

SIFT MATLAB code (F. El-Maraghi, 2008). The initial stages of the SIFT algorithm involve the

preprocessing steps of feature detection and scale space filtering. In these steps the Harris corner

blob detection threshold level, number of octaves and intervals in scale space parameters are fixed

focusing this investigation to the effects of surface representation in the feature descriptor. This

results in the SIFT variations investigated in this chapter using the same finite support region win-

dow to sample the data, allowing the match quality of the resulting feature descriptor to attributed

to the intended changes in the local receptive field arrangement, angular resolution and local sur-

face statistic representations. It is anticipated that the influencing factors in the SIFT algorithm

investigated in this chapter can be extended to sample range data similarly. The results from this

chapter can then be used to create local features in an approach which produces an increase in the

distinctiveness and robustness of the feature descriptor in both domains.

The modified SIFT algorithms investigated in this chapter are evaluated against each other by

considering their ability to correctly identify a location instance in a transformed image based on

local surface statistics while minimising the probability of incorrect labelling of the location in-

stance. In order to examine this an experimental configuration was developed which is capable of

producing a range of transformed query images from a collection of target images. In addition to

applying the image transformation, each query image also stores ground truth for the transformation

of each pixel location between the target and query images. The range of image transformations

investigated as characteristic of the environment in which the SIFT algorithms are intended to be

used. The variant SIFT algorithms under investigation are run on both the query and the target image

sets to produce a dataset of feature descriptors with keypoint locations for each image. The feature

descriptor matches are found using the Euclidean distance between features with a log-likelihood

distance measure between the first and second nearest neighbour. The descriptor matches between

the query and target datasets are then compared against the keypoint location correspondences from

each image to find the correct and incorrect matches based on the feature descriptor matches. The

ratios of correct-to-incorrect feature descriptor matches are presented as ROC curves, this gives

an indication of the performance of each algorithm independent of the selection of log-likelihood

threshold.
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3.2 Validation experimental design

The various SIFT implementations presented in this chapter were evaluated on their ability to

identify location matches between transformed images based on the local surface statistics of these

locations. This section shows how the test data was created, the ground truth established and finally

how the ROC curve for each SIFT variation was created. An overview of the principles behind the

system is shown in Figure 3.1. This figure shows SIFT keypoints created for every target image.

The target images have transformed copies made to create a test set of query images from which

SIFT keypoints can be extracted, see Figure 3.3. The transformation from target to query image

is used as ground truth to associate the positional matches to the feature descriptor matches. From

the correspondences between the the positional and feature descriptor matches, a ROC curve can

be created to show the performance of each of the SIFT variations. This section describes the pro-

cess described above, and concludes with an overview of the implementation of the bench marking

system.

3.2.1 SIFT Keypoint Matches

Descriptor matches are found through a comparison of query and model feature descriptors. Feature

descriptors are compared using the Euclidean distance to determine for a query feature descriptor

the first and second closest matches in the model feature descriptor database. The first nearest

neighbour will be used as a candidate match, given that the distance between the model and query

feature descriptors is below an adaptive thresholded level, termed the log-likelihood threshold. The

log-likelihood threshold uses the ratio of the first nearest neighbour to the second nearest neighbour

match to reject keypoints which are indistinctive and likely to lie within the portion of the density

function describing false matches. Figure 3.2 shows the probability density function of correct and

incorrect matches for a database of 40,000 keypoints using Lowe’s SIFT implementation Lowe

(2004). In this figure 0.8 is found to be an optimum log-likelihood threshold. However, depending

on the desired application of the local feature extraction approach, more correct keypoints can

be found by lowering this threshold, or fewer incorrect matches can be found by raising the log-

likelihood threshold.
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Figure 3.2: Probability density function for correct and incorrect matches based on a ratio between
nearest neighbour to second nearest neighbour (Lowe, 2004)

Each keypoint is described by the keypoint attributes, shown in Equation 3.1. These attributes

are:

1. keypoint x and y position in the image

2. keypoint scale, σ

3. keypoint dominant orientation, or canonical orientation, θ

4. and a keypoint feature descriptor vector, in the case of SIFT a 128 element vector.

Distances between model and query keypoints are found using the Euclidean distance, shown in

Equation 3.2. The distance between a query keypoint and every model keypoint in the database

is found, desc1 denotes a 128 element feature descriptor vector from the query image, and desc2

denotes a 128 element feature descriptor vector from the model database.

keypoint = {x, y, σ, θ, desc} (3.1)

dist =
√
desc2

1 − desc2
2 (3.2)

The log-likelihood nearest neighbours matching criteria is shown in Equation 3.3. The value

distn1 denotes the distance for the nearest neighbour match, distn2 denotes the distance of the
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second nearest neighbour match, and keyn1 denotes the index of the first nearest neighbour. In

Section 3.2.2.2, the sensitivity level for the ROC curve is varied by varying the value Threshold.

match =


keyn1,

distn1
distn2

≤ Threshold

0, distn1
distn2

> Threshold

(3.3)

3.2.2 Benchmarking Tool

The performance of the local feature matching algorithms examined in this chapter was determined

through a comparison of keypoints location correspondences against feature descriptor matches

between keypoints extracted from a target database and a query image. In order to achieve this

goal a benchmark tool was programmed in Matlab. The benchmark tool allows a query image with

a known transformation to be synthesised from an image in the database and to have keypoints

extracted from it to be compared against those extracted from its untransformed counterpart.

3.2.2.1 Test Images

The test image database is a set of 20 2D images collected from a Google image search. These

images are intended to cover a variety of scenes with a good range of image textures at a range of

scales, see Figure 3.4. The local feature matching algorithm being tested is run on each of these

images to create a database of keypoints specific to the algorithm being examined. Query images are

then created by randomly selecting an image and applying a random transform defined in Section

3.2.3.

3.2.2.2 Performance Evaluation

The performance of local feature matching algorithms is evaluated by comparing the keypoint posi-

tion correspondences against keypoint descriptor matches found in the target and query images. The

ROC curves are created by plotting the ratio of true positive of keypoints in the query image against

the ratio of false positive keypoints in the query image, for a range of sensitivity levels. The true

positive and false positives keypoints are determined using the confusion matrix defined in Figure
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Figure 3.3: Keypoint Matches
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Figure 3.4: Image Database

Figure 3.5: Confusion Matrix for Evaluation ROC Curve

3.5. The ideal ROC curve performance would be demonstrated by a matching algorithm capable of

finding all true positive matches and no false positive matches. This performance is shown as the

point tp = 1 fp = 0 on the ROC curve, Figure 3.6.

Keypoint position correspondences are defined as keypoints from the query image which, when

their positions are transformed using the ground truth, are within a catchment region surrounding

a target keypoint position. The catchment region surrounding the keypoint is region of 1.5 sigma

of the scale of the query keypoint and has a tolerance of a change of up to 0.5 divisions in scale

space between the keypoint location in the target image and the transformed location of the query

keypoint, Figure 3.7. The ground truth for the transformed location is outlined in Section 3.2.3.

Descriptor matches are found using the approach outlined in Section 3.2.1.
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Figure 3.6: Ideal ROC performance

Figure 3.7: Keypoint detected in query image and corresponding location and catchment region
shown in the target image

A single keypoint position in a query image can produce multiple keypoints varying in orienta-

tion, only one of these orientations is required to form a correct position and descriptor correspond-

ence for a query keypoint to be labelled as a true positive. The other orientations are ignored and

not considered in the evaluation of the SIFT variation. Similarly if all of the multiple keypoints for

the same image position fail to find a descriptor match, the keypoints only count as a single failed

match.
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3.2.3 Ground Truth Transform

This section focuses on the development of 2.5D feature descriptors and increasing the perform-

ance of matching algorithms with respect to distortions characteristic of changes in 3D view point.

As such, a homography transform was used as an initial approximation of changes to an image

resulting from 3D out of plane pose change. The homography transformation approximates the

3D motion of points with the assumption that all points on the image lie on a plane equidistant

from the camera. As part of the initial investigation, the performance of matching systems under

this transformation was investigated. An outline of the implementation is given here. Setting some

parameters in the homography transform to zero can allow the resulting system to create other key

image transformations, such as rotations, translations and Affine transformations.

3.2.3.1 Applying image warp

To apply the homography transform, the target image is resampled with a grid of new pixel loca-

tions. The grid of new pixel locations are created by normalising the original image co-ordinates to

be in the range of -0.5 to 0.5 in x and y, if the image is not square the smallest dimension is zero

padded so as ensure that it becomes square. The normalised pixel co-ordinates can now have the

chosen warping applied. To create the homography warp a camera model as shown in Figure 3.8 is

used as a mathematical model to create the effect of perspective distortion, Equations 3.4 to 3.10.

This mathematical model allows changes in the camera position to be represented as a transforma-

tion matrix for the motion of pixel co-ordinate locations from one camera position to another. The

resampling of the target image is taken by resampling the pixel co-ordinates x and y to create the

new pixel co-ordinates Bx and By, s defines the change in scale between the images, Equations

3.11 and 3.12.

Mx =


1 0 0

0 cos(θx) sin(θx)

0 −sin(θx) cos(θx)

 (3.4)
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Figure 3.8: Mathematical Model

My =


cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

 (3.5)

Mz =


cos(θz) sin(θz) 0

−sin(θz) cos(θz) 0

0 0 1

 (3.6)

M = [Mx] [My] [Mz] (3.7)

offset =


sin(θy)

sin(θx)

cos(θx)cos(θy)− 1

 (3.8)

T = s

 [M ] [offset][
0 0 0

]
1

 (3.9)
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D = s

 [M ] [offset][
0 0 0

]
1




x

y

1

1


=



D1

D2

D3

D4


(3.10)

Bx =
D1

D3
(3.11)

By =
D2

D3
(3.12)

3.2.3.2 Tracking keypoints in warped image

Position correspondences between keypoints collected from query and target images are established

from the image transformation used to create the synthetic query image. To find the keypoint

position correspondences, the keypoint positions are normalised by the image size as done for the

creating the synthetic query image. The normalised query keypoint locations then has the inverse

image transformation matrix applied, Equation 3.13. The keypoint positions are then have the

inverse normalisation applied, x and y represent the keypoint location in the synthetic image, Kx

and Ky represent the keypoint location back projected into the model image, and T represents the

transformation from the model image to the synthetic image.



x

y

1

1


= T−1



Kx

Ky

1

1


(3.13)

An example of the homography warp being applied to perform image rectification is shown in

Figure 3.9. Here the cover of a book is taken at a skewed angle. This out of plane rotation and

perspective distortion are then corrected. The bounds of the first image are shown in the second

image to show the effect of the distortion on the image shape. Landmarks were manually placed in

the distorted image on the ’H’ in the book title, these are then projected back into the original image

as an empirical validation test for returning keypoint locations from query images to target images.
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Figure 3.9: Homography Example, showing the rectification of a book cover imaged in the first
image, to estimate the appearance from an new viewing perspective shown in the second image.
The blue trapezoid shows the outline of the sampled region of the second image in the space of
the first image. Four magenta dots manually placed in the second image, and back projected into
the first image appear in the same location with respect to the image texture, validating the back
projection transformation between the two images.

3.2.4 Error in ROC Curves

In this thesis a number of Local Feature Matchers, LFMs, are presented and compared. The per-

formance of each LFM is presented using a graph of Receiver Operator Characteristics, or ROC

curve Fawcett (2006). The ROC curve is a parametric plot of the ratio of true positive keypoint

matches against the ratio of false positive keypoint matches for a varying operating sensitivity. Fig-

ure 3.10 shows an example of a ROC curve, where each point on the ROC curve, or ROC point, is

the ratio of true positive keypoint matches and ratio of false positive keypoints at a fixed operating

sensitivity. Modifying the operating sensitivity will move the ROC points along the ROC curve.

The ROC performance of a LFM can be gauged by the proximity of the curve to the point of ideal

operation; where the false positive ratio is 0, indicating no incorrect keypoints have been matched;

and the true positive ratio is 1, indicating that all keypoints which have a correct match have been

correctly matched. Therefore, the ROC curve allows the reader to visually assess the performance

of a number of LFMs simultaneously and independent of any differences arising from the choice of

operating sensitivity.
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Figure 3.10: ROC Curve

The ROC curve for each new LFM is compared against the ROC curve for SIFT (Lowe, 2004),

a well established LFM which serves as a baseline performance measure. In order for a given ROC

curve to be recognised as demonstrating a statistically significant improvement in performance

error bars are attached to each ROC point. Overlapping error bars indicate that a result is not

statistically significant and that more data must be captured to reinforce the hypothesis. Whereas,

non-overlapping error bars will indicate a statistically significant result.

The error bars in this work are set at a p-value of 0.05, demonstrating the 5% significance

level, see Figure 3.12. This work assumes a Normal distribution of individual measurements of

ROC point location. The mean value of ROC point location, µ, is taken as the population mean

of individual measurements of the ROC point location, x̄. The standard deviation, σ, is calculated

from the variance, v, and the number of ROC points used to calculated the mean, n, see Equation

3.14. In this work the variance is calculated as a result of the experimental design, see Subsection

3.2.4.2.

σ =
v√
n

(3.14)
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Figure 3.11: Statistically significant ROC curves

3.2.4.1 Error bars

Fawcett calculates the error bars on a ROC curve from the variance of individual measurements

of ROC point locations from multiple runs of the experiment (Fawcett, 2006), see Figure 3.13.

Multiple runs of an experiment are used to establish the mean ROC curve for each true positive

and false positive rate as the population mean of multiple ROC curve measurements interpolated at

these measurements. . In this thesis the mean ROC curve, µ, is the mean of multiple ROC points

at a fixed operating sensitivity, x̄, calculated from multiple experimental runs. However, the error

in ground truth can be established through an analysis of the experimental design. Therefore, the

ROC curve error bars are calculated from the error in the experiment ground truth, see Subsection

3.2.4.2.
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Figure 3.12: ROC point probability density function, showing mean ROC point location at µ, and
5% significance at 2.5σ

Figure 3.13: Error bars on ROC curve (subfigures c and d) established using multiple experimental
runs (subfigure a) to find the mean ROC curve (subfigure b)(Fawcett, 2006)
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3.2.4.2 Error introduced through the experimental design

The experimental design used to investigate LFM performance uses ground truth for keypoint loca-

tions to form a decision on whether there is a keypoint which should match to a given location and,

if a keypoint match does exist, whether the location of the matched keypoint is correct. In order

to establish the ground truth for a keypoint location correspondence a catchment region around a

keypoint location correspondence is used. The catchment region allows for a translation error in

keypoint location. The catchment region is based on the exact location correspondence and the area

used to form the keypoint feature descriptor, see Figure 3.7. However, the use of a catchment region

also allows for the possibility of incorrectly labeled keypoints. In this work the probability of an

incorrectly labeled keypoint in the experiment is used to evaluate the significance of the results.

The statistical significance of the experiment is based on the probability of incorrectly labeling

any of the detected keypoints. The probability of labeling any one keypoint incorrectly is the proba-

bility of a keypoint falling within the catchment region of a keypoint with which it should not form a

location correspondence, see Figure 3.14. The probability of labeling a single keypoint incorrectly

can be calculated as the proportion of the image occupied by the catchment region, see Equation

3.15, where r is the radius of the catchment region, h, is the image height, w, is the image width and

a is the probability of the keypoint being incorrectly labeled. The radius of the catchment region, r,

is proportional to the scale of the keypoints. Here the radius, r, is taken as the mean keypoint scale.

a =
πr2

hw
(3.15)

The error in an individual experiment can now be calculated from the probability of an incor-

rectly labeled a keypoint, a, and the number of keypoints detected in the query image, k. Repeating

the experiment n times, reduces the error by a factor of
√
n. The standard deviation, σ, for the

experimental design is shown in Equation 3.16. ROC error bars with a statistical significance level

of 5% can now be placed either side of the mean ROC point at ±2.5σ.

σ =
1− (1− a)k√

n
(3.16)
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Figure 3.14: Catchment region of keypoint, shown on target image

3.2.5 Modes of invariance

The experimental configuration outlined in this chapter is capable of tracking keypoint instances

between a model image and a synthetic image. From the comparison of keypoint position and

feature descriptor matches it is possible to gauge the performance of the point based matching

algorithm. The experimental configuration presented tests the invariance of point based matching

algorithms to a range of transformations. However due to a lack of 3D information regarding the

structure of the objects represented in the intensity image database, it is not possible to implement

a number of realistic image transformations in the configuration outlined here. The configuration

presented in this chapter can be used to investigate the invariance of feature matching algorithms to

the following range of image transformations:

• Scale changes

• Translation changes

• Orientation changes

• An approximation to perspective change

• Gaussian image noise.

Due to a lack of 3D information in the test data, a range of image transformations could not be

implemented in the experimental configuration. The range of image transformations which the

experimental configuration presented in this chapter cannot examine are:
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• Changes in illumination

• Changes in 3D view point

• The effects of depth of field

The ROC curve performance of the local feature matching algorithms presented in this chapter eval-

uate the performance of individual point-to-point correspondences between images. The combin-

ation of local feature extraction and post processing steps are not considered in this experimental

configuration. This study is focused on optimising only the performance of the feature extrac-

tion stage, the resulting feature extraction algorithms can then be used in conjunction with post

processing steps to further increase performance. In order that results are comparable with other

studies presented in the literature all results are compared against the unmodified MATLAB SIFT

implementation as a benchmark.

3.2.6 Overview

An overview of the system is presented here to show the order of execution of each of the steps

detailed in this section.

1. Collect image dataset, each of the images placed in the image set folder is read into the

MATLAB code.

2. Create model keypoints for each target image, the SIFT variation is run on all images in

the target database. The image name, and keypoint locations, scales and feature descriptors

for each of the target images are stored in a database ready to be used at the matching stage.

3. Create query keypoints, this stage is executed in a loop for the number of query examples

required. Increasing the number of examples will give a better approximation of the ROC

curve for the SIFT variation under examination, although it will also increase run time.

(a) Create transformed image, a transformed image is created by applying the chosen im-

age warping, or noise function with random parameters within the defined boundaries.

(b) Extract keypoints, the feature descriptors, image name, location and scale are extracted

and stored.
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(c) Find ground truth keypoint correspondences, the positions and image names of each

of the query keypoints are matched against the positions and image names of the target

keypoints. Positional matches are stored as the ground truth for correct matches.

(d) Find feature descriptor matches, this stage is executed in a loop to find the perform-

ance on matching each image for every log-likelihood detection threshold. The feature

matches are stored as the matches for the SIFT variation.

(e) Associate, find the true positives as the feature descriptor matches which also have a

positional match, find the false positives as the feature descriptor matches which do not

have a positional match.

(f) Save ROC points, the ROC point for each log-likelihood detection threshold is stored

as the performance of the SIFT algorithm on the given image.

(g) Save experimental setup statistics, calculate the average catchment area, a, and store

number of keypoints collected, k.

4. Create the ROC curve, the ROC curve is created by taking the average over the set of images

for each of the ROC points at a given log-likelihood sensitivity level.

5. Attach ROC error bars, calculate the 5% significance level and display on ROC curve.

3.3 SIFT Variations

All SIFT variations are based on freely available MATLAB SIFT code (F. El-Maraghi, 2008). This

section investigates modifications to SIFT which are presented in the literature and evaluates the

performance gains on the experimental configuration outlined in the previous section. This section

investigates each stage of the feature extraction process and draws conclusions on the parameter

choices at each stage.

3.3.1 Subpixel Localisation

The MATLAB SIFT code used in the experiments here does not include code to implement subpixel

localisation of keypoints. In order to make the MATLAB SIFT code equivalent to other SIFT code

available the subpixel keypoint localiser was implemented as detailed by Brown and Lowe (Brown
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Figure 3.15: Taylor approximation for subpixel keypoint location

and Lowe, 2002; Lowe, 2004). To find the local maxima or local minima the pixels surrounding

the course grain pixel localised local minima or maxima are taken as a 3x3x3 image, L(x, y, σ),

which can be fit to a second order polynomial function, see Equation 3.17. This function which

approximates the data contains a turning point, which is the true location of the local minima or

maxima. By finding the value of the vector x, representing the x, y axes of the 3x3 image with

2 levels in scale space either side, which sets the first derivative to zero, the true location of the

keypoint, x̂, can be found to subpixel accuracy, see Equation 3.18. The image patch, L, surrounding

an area of local maximum together with the Taylor approximation of the true keypoint location, x̂

are shown in Figure 3.15.

L(x) = L+
∂LT

∂x
x+

1

2
xT
∂2L

∂x2
x (3.17)

x̂ = −
(
∂2L

∂x2

)−1
∂L

∂x
(3.18)

Furthermore Brown and Lowe use the subpixel location of the keypoint to interpolate the gray-

scale value of the subpixel keypoint location, see Equation 3.19. The grayscale value L(x̂x,y,σ)

is then used to determine whether a local maxima is sufficiently stronger than its neighbours to be

accepted or rejected as a keypoint. This approach was also adopted and implemented in this section.

L(x̂x,y,σ) = L(x) +
1

2

∂L

∂xx,y,σ
x̂Tx,y,σ (3.19)
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Figure 3.16: Subpixel Test Data

Gaussian Estimated Maxima Estimated Location Difference
Maxima Location Location Output with Offset

x 2.4 0.3960 2.3960 0.004
y 2.2 0.1954 2.1954 0.0064
σ 2 0 2 0

Table 3.1: Test Data Example

3.3.1.1 Validation

To validate the subpixel implementation a 3x3x3 synthetic image patch was created using a Gaus-

sian function, Equation 3.20. The standard deviation was set to be 3 pixels, the x, y and σ offsets

can be used as variable to determine the performance of the subpixel localiser. If the subpixel loc-

aliser is working correctly it should return the same values as outputs in the x̂ vector. An example

of the subpixel localiser is shown in Figure 3.16. Table 3.1 shows the comparison of actual location

against estimated location for this example. The Euclidean distance between the localised keypoint

and the true Gaussian Maxima is shown in Figure 3.17 for the range of x and y offsets in the range

of -1 to 1 for a selected range of offsets in σ. The mean of the discrepancy between the offset and

Gaussian maxima in the region of -0.5 to 0.5 in x, y and σ offsets is 0.0069 pixels.

G(x, y, σ) = exp

(
−(Xsample − xoffset)2 − (Ysample − yoffset)2 − (σsample − σoffset)2

2std2

)
(3.20)
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3.3.1.2 Results

The performance of SIFT with the inclusion of the subpixel keypoint localiser was compared using

the experimental setup outlined in Section3.2. A comparison was carried out for two cases:

1. Lowe’s demo C release of SIFT (Lowe, 2008) with subpixel keypoint localisation compared

against Colour SIFT applied to the grayscale images, with and without subpixel localisation

(Burghouts and Geusebroek, 2009), Figure 3.18a; and

2. The Matlab SIFT implementation with and without subpixel keypoint localisation, Figure

3.18b.

The Colour SIFT demo release is based on Lowe’s Demo SIFT release however contains source

code where the subpixel localiser can be disabled. A comparison of Lowe’s Demo release of

SIFT and Colour SIFT shows that near identical results are produced when subpixel localisation

is included. However, when the subpixel localisation is removed the performance of the feature

descriptor match quality between transformed images is substantially improved. In the Matlab SIFT

implementation a similar result is observed, where the inclusion of subpixel localisation degrades

the match quality between the transformed images.

This result implies that the Gaussian approximation for curve fitting which shows an accurate

subpixel location fitting in Figure 3.17 does not hold for real image features. Furthermore the

Gaussian approximation assumes even spaced divisions in scale space which is an exponential

dimension compared to the linear dimensions of x, y image space.

3.3.2 Canonical Orientation

When a keypoint is found and localised, SIFT assigns to the keypoint a repeatable orientation which

is then used for rotational normalisation, this step give the keypoint descriptor a degree of in-plane

orientation invariance. The canonical orientation is found from the direction in which most of the

63



3.3. SIFT VARIATIONS 64

(a) σ= -0.5 (b) σ= 0

(c) σ= 0.5 (d) σ= 0.6

Figure 3.17: Difference between estimation and actual location of Gaussian maxima, blue repres-
ents a small error, red represents a large error
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(a) C SIFT Subpixel Comparison (b) Matlab SIFT Subpixel Comparison

Figure 3.18: Subpixel Results

image gradients surrounding that keypoint are oriented, the sample patch is then aligned with this

orientation. The orientation of the patch is quantised to allow a histogram approach to be used in

order to determine the dominant orientation of the patch. It has been proposed that by increasing

the canonical orientation resolution it is possible to increase the reliability of keypoint matches (Lo,

2009). This section investigate the effects of canonical orientation quantisation.

In standard SIFT the canonical orientation of a keypoint is found by examining the histogram

of the image gradients of the area surrounding a keypoint. The support region for the canonical

orientation estimation is taken from a 11x11 pixel patch in the Gaussian image pyramid. The

11x11 pixel sample patch surrounding the keypoint represents a patch of 1.5x the sigma of the scale

of the keypoint at that level in the Gaussian pyramid. The gradients from the area surrounding the

keypoint are then weighted with a Gaussian so that the gradients closest to the keypoint location

have greatest influence on the canonical orientation. The sigma of the weighting Gaussian is 1.5x

the scale of the keypoint at the level in the Gaussian pyramid. The weighted gradients surrounding

the keypoints are then histogrammed, non maximal suppression is then applied to eliminate any

bins in the histogram which are not peaks; the highest peak is assigned as the canonical orientation.

As there may be multiple peaks which dominate the orientation histogram under differing lighting
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conditions; any peak with a magnitude within 80% of the main peak is also assigned as a keypoint

with its own canonical orientation.

2.5D SIFT uses an increased resolution for canonical orientation assignment. This is implemen-

ted by setting the quantisation level for the canonical orientation histogram to 1° and filtering the

orientation histogram (Lo and Siebert, 2009; Lo, 2009). The higher canonical orientation resolu-

tion places the feature descriptor sample patch over the keypoint with a higher angular resolution.

It is hypothesised that the higher angular resolution will cause the corresponding keypoint feature

descriptors to be better aligned and more similar throughout rotation changes. The filtering is in-

tended to reduce noise in the canonical orientation histogram before assigning keypoints.

3.3.2.1 Results

The optimum performance of SIFT is obtained using a canonical orientation resolution between 5◦

and 20◦, Figure 3.19. Increasing the canonical orientation resolution to 1◦ significantly decreases

the performance of the local feature matcher, as does increasing the resolution past 20◦, where 36◦

represents a significant decrease in performance. These results suggest that the choice of canonical

orientation resolution is influenced by the orientation resolution of the feature descriptor, which in

these experiments is set to 45◦, 8 orientation bins to cover 360◦ for each receptive field. Using the

feature descriptor orientation resolution as the influencing factor sets the lowest usable canonical

orientation resolution to the Nyquist frequency of angular divisions every 22.5◦. Furthermore, the

reduced performance of the increased canonical orientation resolution can be explained by the ex-

ample where multiple keypoints with differing orientations are found at a single location. When us-

ing the higher canonical resolution with the descriptor resolution fixed at 45◦, identical descriptors

may be extracted for two keypoints at the same location with differing canonical orientation. When

matching query descriptors to the database using the log-likelihood matching criteria it is likely

that the first and second nearest neighbours will have been extracted from the same location. These

keypoints will therefore have identical descriptors and result in the nearest neighbour being rejec-

ted as below the log-likelihood threshold, regardless of the distinctiveness of the descriptor to other

descriptors in the database.
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Figure 3.19: Canonical Orientation Performance

3.3.3 Receptive Field Configurations

To build a unique descriptor of a keypoint localised in position, scale and orientation, a series of

histograms of the image gradients are taken from a sample patch surrounding the keypoint. To form

the feature descriptor for a keypoint, the keypoint sample patch is divided into a series of receptive

fields; each receptive field creates a weighted histogram of the image gradients it covers, Figure

3.20. The keypoint feature descriptor is created by concatenating each of the resulting receptive

field histograms, and normalising to unit length. The choice of receptive field arrangement defines

the spatial sampling of the the local area surrounding a keypoint. A number of variations of the

receptive field arrangement have been proposed. In this section an evaluation of these has been

conducted.

The receptive field configurations investigated in this section are created using a look-up table

of weightings to find the influence that each pixel in the sample patch will have on each descriptor

element. Each receptive field histogram in the resulting feature descriptor is calculated from the

weighted influence of the strength and orientation of the gradients of each pixel in the sample

patch. The weighted influence for each pixel in the sample patch is found from the receptive field
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Figure 3.20: Receptive fields in SIFT

look-up table shown in Figure 3.21. Any receptive field configuration can be generated by creating a

series of weighting images. The advantages of this approach are that the weighting function for the

receptive field configuration only needs to be calculated once and that any modifications made to the

sample patch configuration, such as rotations, are also applied to the receptive field configuration.

The receptive field configurations investigated in this section are:

1. Standard SIFT, 4x4 rectilinear configuration of receptive fields each with a sigma of 2 pixels

and separation of 2 sigma between receptive fields. 16 receptive fields giving a feature length

of 128, Figure 3.22.

2. 2.5D SIFT, 3x3 rectilinear configuration of receptive fields with a overlap of 1 sigma between

fields to reduce anti-aliasing, each field has a sigma of 4 pixels to cover the same sample patch

foot print as standard SIFT (Lo and Siebert, 2009). 9 receptive fields giving a descriptor

length of 72, Figure 3.23.

3. Modified 2.5D SIFT configuration, 2.5D SIFT configuration with Standard SIFT receptive

field size and non-overlapping fields. 9 receptive fields giving a descriptor length of 72,
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Figure 3.21: Pixel weighting values for each receptive field

Figure 3.24.

4. Dense sampled configuration, Combination of 2.5D SIFT and Standard SIFT configura-

tions, giving the same sample patch representation as Standard SIFT with the anti-aliasing

invariance of 2.5D SIFT. 25 sample patches giving a feature descriptor length of 200, Figure

3.25.

5. Foveated receptive field configuration, the S3-16 configuration has shown a performance

comparable to the state of the art while maintaining a descriptor length of 128 (Winder and

Brown, 2007), Figure 3.26. As the receptive fields in this configuration differ in size, to

ensure that each field will have the same influence in the resultant feature descriptor the sum

under the area of each receptive field in this arrangement is equal to 1.
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Figure 3.22: Standard SIFT Receptive Field

Figure 3.23: 2.5D SIFT Receptive Field

Figure 3.24: 3x3 Receptive Field
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Figure 3.25: 25 Receptive Field configuration

Figure 3.26: S4-16 Receptive Field configuration
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Figure 3.27: Receptive Field configurations Results

3.3.3.1 Results

Figure 3.27 shows the ROC curves with the performance of the receptive field sampling schemes

outlined in this section. The experiments conducted here show that the standard SIFT receptive

field configuration achieves the highest performance out of the tested receptive field configurations.

The dense sampled receptive field configuration achieves similar performance to standard SIFT

however has an increased descriptor length. This results indicates no significant performance benefit

is gained from including intermediate receptive fields to increase invariance to anti-aliasing. The

receptive field configuration used in 2.5D SIFT gives a statistically significant lower performance

than the standard SIFT configuration despite 2.5D SIFT receptive fields covering the same area of

sample patch.

The foveated receptive field configuration implemented in this study does not give the same per-

formance improvement as seen in the study where it was originally presented (Winder and Brown,

2007). The reduced performance observed in this experiment is not statistically significant, how-
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ever, may be a result of the fixed sample patch criteria applied to all the sampling approaches

presented here. A further study into the locality of information surrounding a keypoint and the

effects of foveation in accounting for this using increased sample patch sizes, may show the per-

formance improvements observed for the S3-16 sample patch; however is beyond the scope of this

study.

3.3.4 Surface representation

To create a feature descriptor for each keypoint, the local feature matching algorithms used here

sample a measurement of the image for each pixel in the sample patch. In standard SIFT the image

measurement for each pixel is surface gradient magnitude and orientation. However, the range

image modality offers more information regarding the underlying structure of a free form object,

shape index and curvature are surface measures which use 3D information to create an invariant

surface measurement (Koenderink and van Doorn, 1992). A number of matching approaches have

adopted this surface measure for 3D object description (Hetzel et al., 2001; Atmosukarto et al.,

2010; Guo et al., 2010; Lo and Siebert, 2009; Bayramoglu and Alatan, 2010; Zeng et al., 2010).

Shape index and curvature measure a region of 3x3 pixels surrounding a pixel to generate the

surface measure, gathering more information regarding surrounding pixels than surface gradient

approaches. This section applies shape index and curvature methods to 2D images to establish

whether these surface measures can contribute to standard 2D image matching.

The shape index feature descriptor is implemented by replacing the pixel gradient orientation

bins in the feature descriptor with shape index bins. The shape index bins have their influence on the

overall feature descriptor weighted by the pixel curvature instead of the pixel gradient magnitude,

as formulated in 2.5D SIFT (Lo and Siebert, 2009). The Mean,H , and Gaussian Curvatures,K, are

calculated from the first, fx, fy, and second derivatives, fxx, fyy, fxy, of the image gradients at the

pixel location i, j, see Equations 3.21 and 3.22. The Gaussian and Mean Curvatures are then used

to find the principal curvatures, k1, k2, see Equation 3.23. Using the Gaussian, Mean and principal

curvatures the Shape index, S, and Curvature, C, are calculated for every pixel in the sample patch,

see Equations 3.24 and 3.25.
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H(i, j) =
(1 + f2

y (i, j))fxx(i, j) + (1 + f2
x(i, j))fyy(i, j)− 2fx(i, j)fy(i, j)fxy(i, j)

2
(√

1 + f2
x(i, j) + f2

y (i, j)
)3 (3.21)

K(i, j) =
fxx(i, j)fyy(i, j)− fxy(i, j)(

1 + f2
x(i, j) + f2

y (i, j)
)2 (3.22)

k1, k2 = H ±
√
H2 −K (3.23)

S =
2

π
arctan

(
k2 + k1

k2 − k1

)
(3.24)

C =
√

2H2 −K (3.25)

3.3.4.1 Results

Figure 3.28 shows the performance of using Shape index and Curvature as an intensity surface

measure. On the intensity images used in this investigation the Shape index and curvature SIFT

does not perform as well as the standard orientated gradients SIFT. The transformations in viewing

angle applied by this experimental setup do not reflect the surface of the object where shape index

and curvature may form an invariant description.

3.4 Summary and Discussions

In this chapter a performance evaluation methodology is outlined. This was then used to investigate

a number of modifications made to SIFT. The main aims of this chapter are to develop existing

MATLAB SIFT code and investigate potential changes proposed in the literature which could offer

performance improvements. In doing this we introduced a framework for developing the code into

the current state of the art for range image point based matching, 2.5D SIFT. Modifications to each

stage in the SIFT processing pipeline have been outlined and benchmarked against the unmodified
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Figure 3.28: 2D Shape Index Results

SIFT MATLAB code. The main outcomes from these experiments are summarised here.

Section 3.3.1 found that contrary to existing implementations of SIFT, subpixel keypoint local-

isation by fitting a Taylor approximation to the pixels surrounding keypoint locations dramatically

decreased the performance of the resulting local feature matching algorithm. The results indicated

that the use of a second order polynomial fit to the pixels surrounding a keypoint location is insuf-

ficient to characterise the turning point in local patch to subpixel accuracy. This stage in the feature

extraction pipeline will therefore be omitted in future implementations of SIFT in this study. The

divisions in canonical orientation of a keypoint were found to be proportional to the divisions in

angle in the feature descriptor; with standard SIFT the feature descriptor allocates the image gradi-

ents into a histogram with bin divisions of 45◦, the most effective canonical orientation estimation

divisions should therefore have divisions of about half this angle, ∼ 20◦. A range of receptive

field configurations were investigated, these were principally designed to investigate 2 sampling

concepts proposed in the literature: receptive field configurations with an overlap of greater than

1 sigma, and a foveated configuration. The optimum receptive field configuration for the sample

patch size and configuration used in this study was found to be the original SIFT configuration
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where the receptive fields cover every pixel in the sample patch and represent these within the half

power point overlap of a receptive field in the configuration. Using overlapping receptive fields or

adding intermediate receptive fields to the original SIFT configuration was found not to increase

the matching performance. These modifications do however increase the feature descriptor length

lowering the information density of the feature descriptor. Shape index and curvature are used in

2.5D SIFT as a surface description measure. In this chapter an initial step towards developing the

MATLAB SIFT into 2.5D SIFT was taken by implementing shape index and curvature measures in

the feature extraction stage. The resulting Shape index and curvature SIFT performance on the 2D

images was compared against the surface gradients measures used in SIFT. It was found that this

surface measure did not improve the performance of matching on the 2D image database. However

it is hypothesised that 2.5D range image data will behave differently from 2D intensity data and the

benefits of Shape index and curvature will be evident in the range domain.

The experimental setup used in this chapter is capable of investigating the invariance of local

feature matching algorithms to a range of image transformations and image noise. The performance

of the individual feature descriptors to repeatable apply the same keypoint feature descriptor at the

same image location, scale and orientation in transformed query images, is investigated. Around

400 individual keypoints are extracted from a single image giving a population size of around 8000

keypoints from which to form an algorithm performance measure. ROC curves are used to present

the results, showing the trade off between correctly and incorrectly identified keypoints for each

algorithm, independent of sensitivity threshold. The experimental setup presented in this chapter is

limited to linear 2D image transformations, and unable to apply transformations typical of realistic

data such as, out-of-plane changes in viewing angle which cause non-linear motion of pixels relative

to each other between viewing instances, and illumination changes resulting from object motion

relative to a light source. Furthermore the transformations applied to the intensity images in this

chapter do not account for the behaviour of range images to the same transformations applied in the

range domain. The next chapter addresses these issues and extends the experimental setup outlined

here to the range domain.
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Chapter 4

3D Evaluation Approach

This chapter extends the methodology presented in the initial investigation to allow

for invariance of local features to 3D out of plane rotations and illumination ef-

fects. The data is collected as range and intensity images allowing for co-registered

multimodal features to be extracted and aligned between single instances of object

views. This chapter presents the methodology adopted for calibrating the 3D ste-

reo capture rig and turntable configuration used in the evaluation of the 3D local

features investigated throughout the remainder of the thesis.

4.1 Objectives

The objective of this chapter is to establish a methodology whereby the performance of keypoint

matching approaches proposed in subsequent chapters may be evaluated. The data collected in the

process outlined in this chapter has the following desirable characteristics, which at the time of

publication were not currently available in other test data sets:

• Images are collected by a stereo pair of cameras and form co-aligned intensity and range

images.

• The observations of the objects represented in both range and intensity images have real

world noise characteristics.

• The observations of the objects represented in the images exhibit out-of-plane changes in

view angle.
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• The observations for intensity images have illumination changes associated with out-of-plane

changes in viewing angle.

• Ground truth for the motion of all points on the object surface is available, allowing the

repeatability of individual keypoints to be established.

The approach used in the previous chapter tracked the motion of all points on a 2D image, allowing

the repeatability of the individual keypoints in isolation of others detected in the image to be eval-

uated. However, the approach used in the previous chapter was limited to 2D images and as such

realistic transformations resulting from changes in 3D viewing position, which causes non-linear

changes in the position of points in the image, could not be investigated. Furthermore, the evalu-

ation used in the previous chapter lacked depth information, therefore the performance of keypoint

extraction on range image measurements could not be evaluated. To account for these limitations

this chapter uses intensity and range images of an object captured in a controlled setting, where the

motion of all points on the object surface between observations is known.

The approach taken in this chapter is to use the depth and camera model information from the

range image and camera calibration to find the X, Y, Z world space location of points on the object

surface. A measurement of the 3D transformation applied to the object between viewing instances

is used to form a high resolution estimate of the motion of keypoint location between viewing

observations. To establish this ground truth, a computer controlled turntable is used to control the

3D motion of the object and a stereo capture rig is used to find the X, Y, Z location of points on

the object. The computer controlled turntable is calibrated in order to create a mathematical model

for the transformation it applies to the object. Using this transformation, the location of keypoints

from both query and target image are projected into a canonical space where their locations can be

compared. With the keypoint locations projected into a canonical space the proximity criteria from

the previous chapter can then be used to establish the performance of feature descriptor matching,

with the results presented as a ROC curve.

The remainder of this chapter is organised as follows, Section 4.2 gives an overview of the

approach taken for 3D location comparison, Section 4.3 details the approach used to calibrate the

turntable and form the ground truth, Section 4.4 details the data capture procedure, Section 4.5

outlines the performance evaluation, and Section 4.6 concludes the chapter with a summary.
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4.2 Overview of approach

This section presents an overview of the 3D evaluation approach outlined in this chapter. Figure

4.3, shows the stereo camera and turntable configuration used to image and actuate the the objects.

Figure 4.2, shows a general overview of the system implemented in 3 stages in execution order,

these are: system calibration, data capture and keypoint matching evaluation. The remainder of this

section gives an overview of these stages:

1. Calibration, The stereo pair of cameras are calibrated using the C3D calibration routine (Ju

et al., 2003). The turntable is calibrated using an approach outlined in Section 4.3.

2. Data Capture, Once calibrated the cameras and turntable form a system where the elements

cannot be moved with respect to each other. Using this arrangement, a stereo pair of intensity

images of the objects are captured at 5◦ intervals for a full 360◦ range of out-of-plane view

changes in the turntable axis of rotation, which is closest aligned with the yaw axis, see

Figure 4.1. From the captured intensity images and the camera calibration information from

step 1, a range image for each observation is constructed using C3D (Ju et al., 2003). The

co-aligned intensity and range image pairs for all observations form the observation database.

This process is detailed in Section 4.4.1.

3. Target Database Construction, From the captured observation database a smaller database

of target models can be constructed. The target models are created from observation instances

in the observation database whose separation is 60◦ . From the target observations keypoints

are extracted and the instance is removed from the observation database. Using the turntable

calibration data, the position of the extracted keypoints is then transformed into the canonical

space for the object.

4. Query Database Construction, From the remaining instances in the observation database a

database of query observations is constructed. From the observation database a query data-

base is formed from 20 randomly selected models which are then used as samples to evaluate

the performance of a keypoint extraction approach. Similarly as for the target database con-

struction, keypoint locations from the models in the query database are transformed into the

canonical space for the object using the turntable calibration data.
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5. Keypoint Association, Ground truth for keypoint descriptor matches is formed from a com-

parison of keypoints locations in the model and the query observations. The location of key-

points extracted from a query observation are compared to the location of keypoints extracted

from the closest match in the target model database. The closest match in the target database

is the observation instance from the same object, which has the closest angular distance to

the query model, see Figure 4.1.

6. Keypoint Comparison, keypoint feature descriptors extracted from the query images are

compared to the keypoint feature descriptors extracted from the nearest target image. The

descriptors are compared using the log-likelihood threshold. The matches for all threshold

sensitivity levels are recorded. The keypoint descriptor matches are compared against the

keypoint location matches from the previous stage; the keypoint location matches are used

as ground truth for the keypoints whose descriptors should also match. Results are recorded

as the ratio of correct descriptor matches per image over the total descriptor matches per

image, the true positive ratio, and the ratio of incorrect descriptor matches per image, the

false positive ratio, for all log-likelihood sensitivity thresholds.

7. Display results as a ROC Curve, the average of the true positive ratios and the false positive

ratios for all log-likelihood threshold levels, across the 20 query images are used to form the

ROC for the local feature matching algorithm being evaluated. The ROC curve is formed

as a plot of true positive ratios against false positive ratios for all log-likelihood sensitivity

thresholds.

4.3 Turntable Calibration

This dissertation aims at improving the reliability of keypoint feature descriptor matches between

observations of an object. In Section 4.5, the performance of the keypoint feature descriptor in the

query image is evaluated as its ability to match to the correct keypoint extracted from the target
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Figure 4.1: Turntable with rotation axes shown with respect to the left camera and turntable axis of
rotation. The angular distance shown is the distance moved by the turntable between two observa-
tions.

image. However, in order to perform this evaluation the location of keypoints in both the model

and the query instances must be transformed into a common canonical space where their keypoint

locations may be compared. This ground truth for keypoint locations is achieved using a computer

controlled turntable to control the motion of the object between observations. This section outlines

the methodology for formulating the turntable calibration data.

4.3.1 Processing Range Data

The turntable setup used in this experimental configuration is calibrated using range and intensity

image data collected by imaging a calibration target at a number of turntable positions. The protocol

for calibrating the turntable outlined here can therefore be applied to any turntable setup where

range and intensity image data are available and the angular motion of the turntable is known.

This section describes the processing of the range and intensity images of calibration targets into

calibration points which are then used in sections 4.3.2 and 4.3.3 for calculating the turntable

transformations.
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Figure 4.2: Benchmark Overview
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Figure 4.3: Data Collection Setup

4.3.1.1 Calibration points

A set of reliable and well-localised calibration points are detected in the intensity image of the

calibration target. These are a set of known positions which are consistently localised in consecutive

images of the calibration target. Calibration points are used in C3D for camera calibration (Ju et al.,

2003), therefore the code which performs the subpixel localisation and labelling of the calibration

points was available for use in this application. In this experimental configuration the calibration

points are found using the C3D circle centre finder; however other well localised calibration points

such as the checker patterns used in many OpenCV applications may be used (Gabor, 2011).

4.3.1.2 Range Images

Range maps used in this setup are built in C3D from a stereo pair of images. In each of the stereo-

pair a local pixel-wise match is found between the left and right images. The location of pixel-wise

matches are determined from the cross correlation of local patches which are refined through a

scale space to find a pixel match for all locations in the stereo pair of images (Siebert and Marshall,

2000). To aid the cross correlation local patch matching process, a Gaussian noise field is added

to the calibration target, Figure 4.4. The Gaussian noise field simulates a speckle pattern projected
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on to an object in some 3D capture systems (Dekiff et al., 2010; Siebert and Marshall, 2000). To

aid the detection of the circles, the Gaussian noise is not applied around the edges of the circles.

To further reduce errors in the resulting range data an average over 10 intensity images of 5M pixel

resolution was used.

The range images of the calibration targets are built in C3D using the combination of the loc-

ation of pixel matches from the disparity map, and prior knowledge of the perspective centres of

the cameras, gained from camera calibration (Cyganek and Siebert, 2011; Hartley and Zisserman,

2005). The range images are co-aligned with the left camera intensity image.

Figure 4.4: Turntable Calibration Target

4.3.1.3 Correcting Circle Centre Range

To further increase confidence in the range values of the calibration points, the calibration points

have their range values fit to plane using least means square which takes account of the range of all

pixels covering a region on the calibration target. The 4 corner calibration points create a polygon

segmenting a planar region on the calibration target where all values within may be used to calculate

the equation of a plane in 3D. The range values of the calibration points may then be corrected to

lie on the least squares fitted plane.

The centre of the target is segmented using the 4 corner calibration points, see Figure 4.5. The 4

calibration points at corners of the calibration target trace a polygon, inside which all range values

and their pixel locations are stored in a 3xn dimensional matrix, where n is the number of samples in

the polygon region. To fit a least means square plane to these points a covariance matrix is formed

from the stored 3xn matrix, Cov(loc3xn), and the principal components of the covariance matrix

are then computed from the Eigenvector, x, and Eigenvalue, λ, decomposition of the covariance
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Figure 4.5: Valid region showing the pixel locations used to estimate the equation of the calibration
target plane

matrix, see Equation 4.1.

[λ, x] = Eig(Cov(loc3×n)) (4.1)

From the formulated eigenvalue matrix, the lowest eigenvalue indicates the direction in which

the data shows the lowest variation. The eigenvector with the lowest corresponding eigenvalue is

taken as the normal to the plane on which all points of the calibration target lie. To complete the

formulation of the equation of the calibration target plane a point on the plane is required. The point

p0 is the mean of the 3xn matrix of all points within the valid region, see Figure 4.6.

n = x[min(λ)] (4.2)
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Figure 4.6: Plane geometry

plane : n.(p− p0) = 0 (4.3)

The range values, of the calibration points before correction are replaced with the corresponding

Z value for the X and Y position on the least means square plane, see Equation 4.4, the value shown

here as Z, in Equation 4.5.

plane :


nx

ny

nz

 .

X − p0x

Y − p0y

Z − p0z

 = 0 (4.4)

Z = p0z −
nx(X − p0x) + ny(Y − p0y)

nz
(4.5)

4.3.1.4 Pixel Scaling

The specification of the printed calibration target defines that the physical separation between adja-

cent circle centres is set to 4.8cm, in both X and Y directions. From this measurement the scaling of

X and Y in the observed images can be determined as a function in the turntable calibration routine.

As a requirement for the camera calibration routine the calibration points are localised to subpixel
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Figure 4.7: Calibration target dot numbering

accuracy. As all calibration points are accurately localised to subpixel accuracy in X and Y in the

intensity image, the scaling in X and Y may be calculated by use of any pair of orthogonal and

adjacent calibration points. The distance between each of the dots in a pair is known to be 0.048m.

In this section two pairs of dots in a calibration target image are required to find the scaling in X

and Y, dots numbered 3 and 7 are chosen as the first pair and dots numbered 3 and 4 are chosen

as the second pair, see Figure 4.7. The scaling in x and y are given by the values a and b, and are

measured in metres/pixel.

0.0482 = a2(x3 − x7)2 + b2(y3 − y7)2 + (z3 − z7)2 (4.6)

0.0482 = a2(x3 − x4)2 + b2(y3 − y4)2 + (z3 − z4)2 (4.7)

The equations 4.6 and 4.7 are then solved for a. The value of a can then be substituted into the

equation 4.6 to find the value of b.
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a =

√√√√√0.0482( (y3−y4)2

(y3−y7)2
− 1)− (y3−y4)2

(y3−y7)2
(z3 − z7)2 + (z3 − z4)2

(y3−y4)2

(y3−y7)2
(x3 − x7)2 − (x3 − x4)2

(4.8)

4.3.2 Hough Transform

The Hough Transform is a feature extraction technique whereby image data may be characterised

as a histogram of parameters. This geometric interpretation of an image can be used as representa-

tion for describing an image or the composition of features within an image. The Hough Transform

was originally implemented as a means for finding features such as lines and ellipses in images

as a basic low-level feature for image description (Duda et al., 1995). This was later extended to

form the Generalised Hough Transform. The Generalised Hough Transform is capable of repres-

enting arbitrary shapes, by performing a composition analysis where locations in the image vote on

a consistent representation of the object (Ballard, 1981). In the turntable calibration routine a con-

sistent representation of the changes in parameters between observations from differing turntable

rotations is required. In order to achieve this representation, a 3D Hough Transform is used to vote

on the common transformation between observations. The 3D Hough Transform has been reported

by Khoshelham (Khoshelham, 2007) and subsequently and independent to this work extended by

Tombari and Di Stefan (Tombari and Di Stefano, 2010) to histogram the transformation parameters

as a set of absolute angles. However, both these approaches apply an R-table Hough Transform as

described by Ballard (Ballard, 1981), whereas the approach described in this section implements

the Hough transform as a more efficient linearised transformation matrix. This section discusses

implementations of the 2D Hough Transform as a linearised transformation matrix approach as a

way to show how this approach may be extended into the 3D domain.

4.3.2.1 2D Hough Transform

SIFT uses an equivalent of the Hough Transform in 2 stages of its matching routine. The first

use is a coarse level culling of erroneous keypoints through histogramming of the parameter dif-

ferences between the model and the query keypoints (Pope and Lowe, 2000). The second use is

the parametrisation of smaller sets of keypoints with RANSAC applied to the parametrised form

to find keypoints which conform with a consensus (Lowe, 2004). As a mathematical convenience
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the output of the RANSAC method is treated as similar to the Generalised Hough Transform and is

discussed as a means of extending the parametrisation representation into the 3D domain.

In the experimental design described here the transformation matrix for the motion of keypoints

on the turntable is extracted from the common parametrisation. Equation 4.9, shows the transform-

ation between a point in the model and query images for extracting the differences in translation,

scale changes and rotations, see Figure 4.8a. Histogramming the parameters of the transforma-

tion from a single keypoint match is possible in this equation due to the constraints on the rotation

matrix, and the known canonical orientation θ.

 x′1

y′1

 = σ

 sin (θ)

cos (θ)

+

 x1

y1

 (4.9)

When the canonical orientation information is unavailable the transformation may be expressed

as an linear transformation between a set of two points, see Equation 4.10. From this equation the

change in orientation, ∆θ, between the two sets of points may be calculated from the variables c1

and c2, see Equation 4.11. The transformation between the two point sets are shown in Figure 4.8b.



c1

c2

tx

ty


=



x′1 −y′1 1 0

y′1 x′1 0 1

x′2 −y′2 1 0

y′2 x′2 0 1



−1 

x1

y1

x2

y2


(4.10)

∆θ = arctan

(
c2

c1

)
,∆σ =

c1

cos (θ)
(4.11)

The second implementation finds the transformation as an Affine Transform. This is imple-

mented as a linearisation between 3 sets of model and query points. The transform described in

Equations 4.12 and 4.13 has the advantage that it is capable of calculating the orientation of the

point set as a value for each element in the rotation matrix, without requiring the keypoint canon-

ical orientation, see Figure 4.8c.

 x′

y′

 =

 m11 m12

m21 m22


 x

y

+

 tx

ty

 (4.12)

89



4.3. TURNTABLE CALIBRATION 90



x′1

y′1

x′2

y′2

x′3

y′3


=



x1 y1 0 0 1 0

0 0 x1 y1 0 1

x2 y2 0 0 1 0

0 0 x2 y2 0 1

x3 y3 0 0 1 0

0 0 x3 y3 0 1





m11

m12

m21

m22

tx

ty


(4.13)

4.3.2.2 3D Hough Transform

The 3D Hough Transform has been described for use in 3D data as an R-table approach (Khoshel-

ham, 2007; Tombari and Di Stefano, 2010). However, here we use an extension of the 2D linearised

Hough Transform to find the transformation between the calibration keypoints located on turntable

calibration target. In the 2D Hough, 3 keypoints were sufficient to constrain each element in the

Affine Transform between two sets of points. However, to constrain the rotation matrix in 3D, 4

keypoints are required. In the turntable calibration routine the points used to constrain the trans-

formation between instances are taken as the 3 calibration points from the corners of the target, the

4th keypoint is determined as the cross product of the 3 calibration points. The 3 calibration points

from the calibration target and the 4th synthetic calibration point are shown in Figure 4.9.

A =

[
x y z 1

]T
(4.14)

B =

[
nx ny nz 1

]T
(4.15)
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(a) Point1 matches with point1’, each consists an x y location and canonical orientation θ.

(b) Point1 matches with point1’, point2 matches with point2’, each consists only x and y loca-
tions

(c) Three keypoint correspondences between two images, all consist only of x and y locations

Figure 4.8: Establishing transformation, T, between images using keypoint correspondences
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Figure 4.9: Constraint Calibration Points

C =



m11 m12 m13 tx

m21 m22 m23 ty

m31 m32 m33 tz

0 0 0 1


(4.16)

B = CA (4.17)

The transformation between a set of calibration points from the first target and second target are

represented by Equations 4.14 and 4.15. The calibration point set in the first target are represented

by {x, y, z} and the calibration point set in the second target are represented by {nx, ny, nz}.

The transformation between these two point sets is defined by the matrix C, Equations 4.16 and

4.17. The rotation matrix may then be linearised as done in Section 4.3.2.1 to calculate the Affine

Transform between two point sets. The linearised form of the matrix C is shown in Equation 4.20,

and calculated from Equation 4.21, where Equations 4.18 and 4.19 show the effects on matrices A

and B of linearising matrix C.
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A =



x1 0 0 y1 0 0 z1 0 0 1 0 0

0 x1 0 0 y1 0 0 z1 0 0 1 0

0 0 x1 0 0 y1 0 0 z1 0 0 1

x2 0 0 y2 0 0 z2 0 0 1 0 0

0 x2 0 0 y2 0 0 z2 0 0 1 0

0 0 x2 0 0 y2 0 0 z2 0 0 1

x3 0 0 y3 0 0 z3 0 0 1 0 0

0 x3 0 0 y3 0 0 z3 0 0 1 0

0 0 x3 0 0 y3 0 0 z3 0 0 1

x4 0 0 y4 0 0 z4 0 0 1 0 0

0 x4 0 0 y4 0 0 z4 0 0 1 0

0 0 x4 0 0 y4 0 0 z4 0 0 1



(4.18)

B =

[
nx1 ny1 nz1 nx2 ny2 nz2 nx3 ny3 nz3 nx4 ny4 nz4

]T
(4.19)

C =

[
m11 m12 m13 m21 m22 m23 m31 m32 m33 tx ty tz

]T
(4.20)

C = A−1B (4.21)

The form of matrix C has calculated the transformation between the two sets of calibration

points as a directional cosine matrix and a translation. However, directional cosine matrices are not

unique, and many differing direction cosine matrices can exist for the same 3D rotation of points;

this problem is referred to as the gimble problem and is not present in the 2D case. To solve this

problem the orientation of a point set in 3D can be described as a set of absolute angles defining a

rotation about an axis. The directional cosine rotation matrix is converted to a quaternion matrix

which describes the rotation as a unit, 4 dimensional vector, from this the angle and axis of rotation

can be easily extracted. The quaternion is then used to find the axis and angle of rotation (Horn,
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1987). This approach gives two possible outcomes for the axis and the angle. In the approach taken

here the solution is made unique by rectifying the axis and angle so as to give only one possible

rotation and rotation axis. Subsequent to the start of this work a similar 3D Hough Transform has

been proposed which uses the same approach for describing the resulting directional cosine rotation

matrix as a combination of angle and axis of rotation (Tombari and Di Stefano, 2010).

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (4.22)

[
q1 q2 q3 q4

]
= Quart (M) (4.23)

angle = 2 arccos (q1) (4.24)

axis =

[
q2 q3 q4

]
sin
(
angle

2

) (4.25)

The result of the 3D Hough Transform is a 7 dimensional parameter vector for each transforma-

tion between observations. These vectors could be then be histogrammed in a quantised parameter

space. However, in this experimental configuration the result of the 3D Hough Transformation is

stored as an individual point in a continuous space. The resulting rotation applied by the turntable

can be found from the mean of a comparison of a number of observations of calibration targets

(Aragon-Camarasa and Siebert, 2010). The translation component of the 3D Hough Transform

vector, see {tx, ty, tz} in Equation 4.20, in the turntable calibration defines the motion between

individual observations of the calibration targets; this is however not the centre of rotation of the

turntable. The next section details the approach for calculating the centre of rotation of the turntable.
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4.3.3 Finding Centre of Rotation

The 3D Hough Transform returns the rotation and translation between two sets of 3D calibration

points, however the calculated translation does not define the centre of rotation of the turntable. The

line about which the turntable rotates can be found by considering the intersection of two planes

which lie radial to the turntable rotation. These planes can be defined by their normal, which is

tangential to the rotation of the turntable, and a point on the plane, which can be computed as the

mean of a calibration point location used to form the tangent.

Figure 4.10 shows a 2D representation of the turntable centre finder. V ec1 and V ec2 are tan-

gents to the circle formed by taking two observations of the same point on a calibration target for

different positions of the turntable. The intersection of the vectors perpendicular to V ec1 and V ec2

which pass through the mid point of the vectors is the centre of the turntable.

Figure 4.10: Centre Finder

target1 =
[
p1

1, p
1
2

]
(4.26)
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target2 =
[
p2

1, p
2
2

]
(4.27)

[V ec1, V ec2] = [target2− target1] (4.28)

The centre of rotation is calculated from the intersection of planes whose normal is tangential

to the rotation of the turntable. r10 and r20 lie on each of these planes and have normals of V ec1

and V ec2 respectively, Equations 4.31 and 4.32. The equation of the plane can then be rearranged,

Equations 4.35 and 4.36.

r10 =
V ec1

2
+ p1

1 (4.29)

r20 =
V ec2

2
+ p1

2 (4.30)

plane1 : V ec1.(r1− r10) = 0 (4.31)

plane2 : V ec2.(r2− r20) = 0 (4.32)

V ec1xx+ V ec1yy + V ec1zz = V ec1.r1T0 (4.33)

V ec2xx+ V ec2yy + V ec2zz = V ec2.r2T0 (4.34)

m1 = V ec1.r1T0 (4.35)

m2 = V ec2.r2T0 (4.36)

The rearranged plane equations can then be solved for the intersection. Equation 4.38 where

the point c gives a point on the line which defines the axis of the centre of rotation of the turntable,

Equation 4.37.

c =


X

Y

0

 (4.37)
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 V ec1x V ec1y

V ec2x V ec2y


 X

Y

 =

 m1

m2

 (4.38)

 X

Y

 =

 V ec1x V ec1y

V ec2x V ec2y


−1  m1

m2

 (4.39)

To increase the confidence in the point chosen as the centre of rotation of the turntable, a least

squares fit for the intersection of many planes is calculated, Equation 4.42. A combination of all

pairs of calibration targets imaged at 5◦ intervals is used for additional confidence.

A =



V ec1x V ec1y

V ec2x V ec2y
...

...

V ecnx V ecny


(4.40)

b =



m1

m2

...

mn


(4.41)

(ATA)−1AT b = c (4.42)

4.3.4 Calibration Summary

This section has described the calibration routine used in this experimental configuration to establish

the ground truth for motion of the object surface between imaging observations. The result of the

calibration routine is a deterministic linear transformation for the alignment of every point on a

range image surface between observations. The steps taken to achieve this have been to first locate

calibration keypoints in 3D, then use the location of these to calculate the turntable motion, these

steps are shown in Algorithm 1.
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Algorithm 1 Calibration Routine

1. Locate calibration keypoints in 3D

(a) Locate calibration points in texture images

(b) Build range images

(c) Constrain calibration range

(d) Find x-y image pixel scaling

2. Calculate turntable transformation

(a) Calculate turntable rotation

(b) Calculate centroid of rotation

4.3.4.1 Accuracy

Three factors affecting the accuracy of the experimental configuration to align pixels on the range

image surface between observations have been identified. These potential sources of error are listed

here and discussed in this section, these are:

• Control inaccuracies in the position of the turntable.

• Inaccuracies in turntable calibration resulting from the calibration routine.

• Errors in the capture of the range surface.

An error in the position of the turntable can be caused by mechanical friction, or the build quality

of the turntable actuating equipment. To mitigate for this potential source of error, the turntable

employs an optical feedback encoder in a control loop to allow the actuating angle to be refined

to match the reference angle. To allow for the turntable to settle into a steady state, 1 minute is

allowed between turntable actuation and image capture.

The error in turntable calibration routine can be characterised by the comparison of points found

between calibration target observations. To characterise this the calibration points from multiple

observations are transformed to the canonical position. The standard deviation of the difference

in position between calibration points was measured at less than a millimetre. For use in the ex-

perimental configuration the standard deviation of the error in calibration point locations in the

canonical space must be sufficiently smaller than the catchment region defined in Section 4.5. As

catchment regions are of many pixels each covering more than a millimetre, the turntable calibration

error value of less than a millimetre is therefore an acceptable error.
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The error in range image calculation may result from imaging errors or errors in camera calib-

ration. In this experimental evaluation C3D returned a calibration error of less than 0.5 pixels. The

resultant noise in the range images is discussed in Section 4.4.

4.4 Capture setup

Stereo pair images of each object observation were captured using a camera configuration located

2.2m from the object. The stereo pair camera configuration comprised of cameras with 50mm

lenses, and baseline separation of 35cm. This camera configuration is sufficient to assume the

weak perspective for both intensity and range images captured within the operating region of the

cameras. From the stereo pair intensity images a range image for each object is built using the

software package C3D (Ju et al., 2003). The range image is formed with respect to the left camera

intensity image. Stereo pair image were captured at 5◦ intervals to cover the full 360◦ view in

the yaw axis of rotation of the object. The position of the object is controlled by the calibrated

turntable, introduced in the previous section. Object observations were imaged using 5 Mega pixel

resolution intensity cameras. To reduce image noise 10 intensity images were captured for each

object position and from these an average image formed. The image noise in the average image,

Imnoise, is assumed to be Normally distributed. This can be estimated by comparing the pixel

variance in each individual image, Impix, to the variation in the average image. Using central

limit theory the resultant image noise in the average image, Imnoise, is estimated as the average

pixel variance in a single image, var(Impix), divided by the square root of the number of images

averaged,
√
Nim , Equation 4.43. This is calculated to be 0.4680%.

Imnoise =
var (Impix)√

Nim
(4.43)

4.4.1 Range Image Dataset Collection

The performance of the evaluation configuration outlined in this chapter relies on object observa-

tions with high quality range images. This requirement can be met by selecting objects whose

surface texture aid the cross correlation matching approach used in C3D to formulate the range

images (Siebert and Marshall, 2000; Ju et al., 2003; Urquart, 1997). Surfaces which typically form
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(a) (b) (c)

(d) (e)

Figure 4.11: Models Captured

high confidence matches between stereo pair images are highly textured surfaces with no specular

reflection (Gupta et al., 2010b; Cyganek and Siebert, 2011). As such the selection of objects used

were 5 free-form rigid body objects with speckle-like surface texture, Figure 4.11. The selected ob-

jects also have the additional advantage that the speckle-like surface texture forms unique intensity

local patterns for locations on the objects which the keypoint feature descriptors investigated in this

dissertation should be optimised to characterise.

4.4.2 Colour Segmentation

The turntable position transformation between observations is only applied to the portion of the

image which is actuated by the turntable. However, intensity and range image captures of an object

also include a background which is not actuated by the turntable. Local features may be detected

on this background and form correct matches between observations, however the location ground

truth will reject these as a turntable position change is assumed. To mitigate for this effect colour

separation is applied to remove any keypoints detected on the background.
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Figure 4.12: Colour Separation Mask

In this experimental configuration a blue background is used to create a mask by colour separa-

tion. The resultant colour separation mask is then smoothed by applying a dilation of 2 pixels and

then eroded by 2 pixels. Keypoints detected in this invalid region defined by the mask may then be

removed from the extracted keypoints. Figure 4.12 shows the left colour and intensity image, and

the resulting colour separation mask.

4.5 3D Benchmarking Tool

The 3D evaluation methodology presented in this section adopts a similar approach as used in

Section 3.2. In this section intensity and range images are collected using the same calibrated cam-

eras and turntable configuration described in Sections 4.3 and 4.4. The experimental methodology

presented here allows the effects of 3D view points changes on feature descriptor discriminability

to be investigated while maintaining an exact correspondence of the range surface between obser-

vation, allowing for a ground truth of keypoint location matches to be established. In addition to

the effects of out of plane pose changes, illumination changes are also present as the object surface

changes its pose with respect to the light sources. These variations between successive images of

the object, in conjunction with the available range data will allow for an evaluation of proposed pose

invariant local features, using both intensity and range data. The remainder of this section details

the experimental setup and implementation issues. Algorithm 2 shows the order of operation of the
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Algorithm 2 Benchmarking tool
Sort object database: find target images, every n degrees
Collect Target Keypoints
For target images

Read range, texture and colour images
Extract features: SIFT
Colour separate valid keypoints
Transform position (and pose) to canonical space
Add to keypoints to database, store model id

Collect Query Keypoints
For Queries = 1 to 20

Select random model
Read range, texture and colour images
Extract features: SIFT
Colour separate valid keypoints
Transform position (and pose) to canonical space
Match Nearest Query and Target Keypoints
For sensitivity = 0 to 1

Nearest Neighbours
ROC Statistics
ROCData(Queries, sensitivity) = ROC point

For sensitivity 0 to 1

ROC point mean = mean(ROCData(:, sensitivity))
ROC point std = standardDeviation(ROCData(:, sensitivity))

Store ROC points

experimental design, key sections are shown in bold and expanded on in subsequent subsections.

4.5.1 Keypoint Comparison

Keypoints localised and described by a SIFT variation are compared in two stages in this experi-

mental setup. The known location of corresponding keypoints between target and query images is

established using a catchment region in location and scale surrounding the query keypoint in the

3D canonical space. All target keypoints which are within this catchment region and from the same

model are associated together and stored in the position match tuple keyMatch, Algorithm 3.

The keypoint feature descriptor are matched together using the nearest neighbour log-likelihood

distance measure between a query keypoint and all target keypoints. The log-likelihood distance

measure estimates the distribution of incorrect matches by a ratio of the nearest match to the second
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Algorithm 3 Match Nearest Query and Target Keypoints
For keyNum = 1:length(queryKeypoints)

posDist = sqrt((targetPos - repeat(queryPos(keyNum)))^2)
scaleDist = abs(log2(targetScale) - log2(queryScale(keyNum)))
posMatch = posDist < posThresh * queryScale(keyNum)
scaleMatch = scaleDist < scaleThresh
modelMatch = targetId == queryId
keyMatch{keyNum} = posMatch & scaleMatch & modelMatch

return keyMatch

Algorithm 4 Nearest Neighbours
For keyNum = 1:length(queryKeypoints)

featDist = sqrt((targetFeat - queryFeat)^2)
firstNn = min(featDist)
firstNnId = targetId(firstNn)
featDist(~(targetId == firstNnId)) = 1
featDist(firstNn) = 1
secondNn = min(featDist)
if firstNn/secondNn < sensitivity

nn(keyNum) = firstNn

else

nn(keyNum) = 0

return nn

nearest match. In the target database there may exist multiple instances of the same keypoint. To

ensure that any duplicate keypoints are not considered for the second nearest neighbour all feature

descriptors from any target model other than the nearest match are set to the maximum distance

value of 1, the second nearest neighbour is then taken from the same model, Algorithm 4.

4.5.2 Keypoint ROC Analysis

The ROC curves used to compare the performance of local matching features are determined with

reference to the query keypoints. For every query keypoint the neighbouring target keypoints in all

target instances of the same object are found and associated in Algorithm 3. To generate the ROC

curves the benchmark applies the rule shown in Figure 4.13 to every query keypoints. If any query

target keypoint pair match in position and feature descriptor space, the keypoint is labelled as true

positive, otherwise if a position match exist which is not verified by the feature descriptor matching
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Figure 4.13: Confusion Matrix for Evaluation ROC Curve

stage a false positive label is applied, Algorithm 5.

4.6 Summary and Discussions

An evaluation approach for the comparison of keypoint correspondences between object views has

been introduced. The evaluation has been designed to form a deterministic transformation for the

motion of keypoint locations between viewing instances, allowing the comparison of all keypoints

localised on the object surface. In order to calibrate the turntable, an efficient approach for the

analysis of the composition of distinctive locations on a calibration target has been introduced, the

3D Hough Transform.

The use of a stereo capture and calibrated turntable configuration has allowed for co-aligned

range and intensity images to be captured at accurately controlled view poses. The use of co-

aligned range and intensity image data allows not only for the 3D alignment of locations on the

object surface, but also for an evaluation of the performance of keypoints from each modality inde-

pendently, or the performance of keypoints from the combination of modalities to be investigated.

The objects collected have a highly textured surface to aid stereo matching, giving a high confid-

ence in the stereo match. It is anticipated that this highly textured surface will create a distinctive

and unique image sample patch for each keypoint location, allowing for the matching of feature

descriptors under the best conditions to be evaluated.

The following chapter aims to investigate the possible cross modal combinations of local fea-
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Algorithm 5 ROC Statistics
true = 0
false = 0
positive = 0
negative = 0
For keyNum = 1:length(nn)

if length(keyMatch{keyNum}6=0 & nn(keyNum)6=0
match = sum(keyMatch{keyNum} == nn(keyNum))
true = true + match
false = false + ~match
positive ++

elseif length(keyMatch{keyNum}==0 & nn(keyNum)6=0
false ++
negative ++

elseif length(keyMatch{keyNum} 6=0 & nn(keyNum)==0

positive ++

elseif length(keyMatch{keyNum}==0 & nn(keyNum)==0

negative ++

truePositive = true/positive
falsePositive = false/positive
return truePositive falsePositive

tures extracted from the intensity and range images and evaluates their performance using the ex-

perimental setup outlined in this chapter.
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Chapter 5

Single Observation Pose Invariant Local

Features

This chapter follows on from Chapter 3, where variations on local feature matching

algorithms in 2D were investigated, to investigate the potential advantages offered

by range domain or multimodal combinations of information from range and in-

tensity domain images. In order to investigate the effects of local feature matching

in these modalities a calibrated capture configuration, outlined in Chapter 4, was

used to collect a database of real free form objects imaged at differing out-of-plane

viewpoints. This chapter utilises the co-aligned range and intensity images to in-

vestigate modifications which can be applied to keypoints from single observations

to improve their matching performance.

5.1 Objectives

This chapter introduces and evaluates a variety of invariant local feature matching algorithms based

on the SIFT MATLAB code used in previous chapters. The main focus of the chapter is on single

observations of local features and investigates what modifications can be made to the SIFT pro-

cessing pipe-line in order to best utilise information from range and intensity domain images.

Therefore, three stages in the SIFT processing pipe-line where the application of information from

the range domain may improve performance:
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• Keypoint localisation, The range domain represents the underlying surface structure of the

object imaged and may offer features which are more consistently localised through view

point changes. Furthermore, co-aligned range and intensity images offer the potential to

investigate the performance of a combination of features localised in both range and intensity

domains, see Section 5.2.

• Sample patch arrangement, In Chapter 3 static receptive field arrangements were investig-

ated. This chapter extends this investigation using range domain information. Range domain

information offers an invariant measure of surface structure at a keypoint location. This can

be used to dynamically change the local keypoint sample patch between keypoint observa-

tions to reflect the change in underlying surface structure resulting from a change in 3D view

point, see Section 5.3.

• Surface description, Keypoint feature descriptors rely on an invariant surface measure cal-

culated from a surface patch surrounding a keypoint location. Co-aligned range and intensity

patches offer a greater range of possible local surface measures, in addition to offering cross

modal combinations of descriptors resulting from measures of each domain, see Section 5.4.

The ROC curves from the modified SIFT implementations are compared against the ROC perform-

ance curves for the unmodified SIFT MATLAB code. The unmodified SIFT MATLAB code serves

as a standard bench mark isolating the effects of each modification, Section 5.5. Section 5.7 con-

cludes this chapter with an overview of the effects of each of the proposed local feature matching

algorithms and the influence on performance of each change.

5.1.1 Overview

This chapter investigates the existing SIFT pipe-line and changes which can be made to accom-

modate the characteristics of the range imaging modality. The chapter addresses three issues: the

principal actions of the SIFT processing pipe-line, how the action of these are affected in the range

image and potential changes which can be made to stages in the processing pipe-line to accommod-

ate information from the range imaging modality. The SIFT processing pipeline is shown in Figure

5.1. The principal actions of the local feature extraction are:

1. Keypoint Localisation
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(a) Scale space pyramid - Allows for features to be located at differing scales. However,

scale space image pyramids cannot be applied directly to range images. Therefore, this

chapter introduces a range scale space pyramid which accounts for the characteristics

of the range imaging modality.

(b) Interest point detector - The approach used to locate keypoints can be applied to the

range imaging modality opening the potential for cross modal feature localisation and

multimodal feature description, from co-registered range and intensity images.

2. Local Patch Invariance Estimation

(a) Canonical orientation assignment - In-plane orientation changes are addressed in the

SIFT approach outlined by Lowe (Lowe, 2004, 1999), these are extended by Mikolak-

czyk and Schmid to create a measure of affine pose of features (Mikolajczyk and

Schmid, 2005). However, the range imaging modality offers further information re-

garding the 3D pose of a local sample patch which should remain invariant under full

3D out-of-plane view point changes.

(b) Receptive field correction - Before extracting a measure of the local surface surround-

ing a keypoint location, a geometric transformation to the local surface sampling patch

may be applied. The geometric transformation applied to the sample patch allows the

area covered by a sample patch from the same keypoint in differing observations to

sample the same underlying object surface. In standard SIFT this sample patch cor-

rection addresses only the in-plane orientation changes, however additional 3D pose

information can be used to apply a warping to a given image sample patch to fit it to the

underlying 3D object surface.

3. Feature Extraction

(a) Receptive field arrangement - The receptive field structure were investigated in Chapter

3, the conclusion of this study was that a rectilinearly arranged 16x16 pixel patch with

Gaussian receptive fields achieved the highest performance. Therefore, this receptive

field arrangement has been selected and is used throughout this chapter.
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Figure 5.1: 2.5D SIFT Descriptors

(b) Surface measurement - The range imaging modality has characteristics that differ from

the intensity modality, where the approach of using surface gradients has been applied.

In this chapter surface gradients and a number of other surface measures are proposed

and investigated.

5.2 Multimodal Keypoints

Keypoints may be localised in either range or intensity image modalities with their corresponding

image patch feature descriptors extracted independently from the other imaging domain. This cross

modal keypoint localisation and local feature description approach offers the potential to gain a

high number of keypoint locations seeded in the texture rich 2D intensity domain, and form a

corresponding descriptor in the illumination and pose invariant range domain. Conversely, a greater

performance benefit may be achieved using the lower resolution range image to form keypoint

locations which are more localisable and repeatable, which, with feature descriptors extracted from

the 2D intensity domain form a well localised and distinct feature descriptor for an image location.

This section aims to outline the preprocessing stages which must be applied to the range images,

the characteristics of keypoints localised in each domain and the naming conventions for the SIFT

types investigated in the results section, section 5.5.
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5.2.1 Range Scale Space Pyramid

In order to create local features in the 2.5D range domain, the range image must be described with

equal pixel divisions in the X, Y and Z axes; this relationship between surface structures at every

scale should remain the same. In order to achieve this every pixel in the native scale range image

measures the distance to the object in terms of number of pixels, this gives an equal divisions in X,

Y and Z axes for the native scale range image. To maintain these equal axes throughout the scale

space pyramid the range image pixel values must be scaled accordingly. This section describes the

scaling process.

Range image scale space pyramids are calculated differently from intensity image scale space

pyramids. Akaunduz and Ulusoy detail a scale space for range images (Akagunduz and Ulusoy,

2007; Abate et al., 2007). In this section a practical implementation of the range scale space pyramid

approach used in this dissertation is outlined. The resulting range image scale space pyramid has

the desirable property that the 3D geometry of the imaged surface remains invariant through levels

in scale space.

The initial range image pixel values, Imrange, are given in meters. To correctly process the

range images as 3D point clouds, where the X, Y and Z axes are equal, the range image pixel

measurements, Imrange, must be converted from metres to pixels, ˆImrange. In order to achieve this

conversion, a scalar value, divpixel, which represents the size of each pixel in metres is calculated.

The value of divpixel, is calculated by projecting the image into the active region and measuring

the size of a single pixel. The projection of the image is found from the distance from the camera

perspective centre to the active region Z̄, and the optical viewing angle in the x direction of the left

camera θx, Figure 5.2. The size of each pixel is taken as the proportion of the whole image which

a pixel occupies; nx is the number of pixels in the x image direction, see Figure 5.2. The size of x

and y pixels in meters were found in the C3D camera calibration routine to be equal, therefore the

pixel size in the y direction is assumed to be the the same as the pixel size in the x direction.

X̄ = 2Z̄.tan(θx) (5.1)
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Figure 5.2: Projection of the image into the active region of the cameras. Measurements in this
space allow the range images, recorded in metres, to be converted to equivelent pixels sizes.

divpixel =
X̄

nx
(5.2)

ˆImrange =
Imrange

divpixel
(5.3)

In the stereo capture configuration used in this dissertation there is a small operational region

of the object viewing space where both cameras are focused, in this region the camera model for

the left camera, and subsequent range, image assume weak perspective. The difference in range at

the edges of the range image between this configuration and a true orthographic camera model was

calculated to be 0.3mm.

To create a range image scale space pyramid, equal divisions in image pixel values and range

values are required for each level in the scale space pyramid. Equal divisions in X, Y and Z at

every level in scale space maintains the surface shape throughout scale space. In order to achieve

this, the range values for each new level in the scale space pyramid are divided by the subsampling

factor used to down sample between scale levels in the pyramid. The subsequent levels in the scale

space pyramid are formed by Gaussian filtering the range image with a 2D Gaussian, σ equal to

the subsampling ratio, decimating the range image by the subsampling ratio and dividing the new

range image range values by the subsampling ratio.

ˆImrange,pry = σ.Gσ ∗ ˆImrange,pyr−1 (5.4)
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Figure 5.3: Range Scale Space Pyramid

A scale space image pyramid with a subsampling factor equivalent to
√

2 pixels is used, this

maintains a smooth variation in scale space without discarding potential keypoints (Cyganek and

Siebert, 2011). The range image scale space pyramid covers 4 octaves in scale each with 2 intervals.

5.2.2 Characteristics of Keypoints

The regions surrounding keypoints localised in intensity and range domain images have differing

characteristics. To highlight these differences, a typical example of a range and intensity pair of

images is described here. Figure 5.4 shows a comparison of keypoints localised in each domain,

sub-figure c shows the keypoints from both domains on the one image. By inspection, it can be

seen that typically range and intensity domain keypoints are localised at differing image locations

with only a small number of keypoints locations overlapping between the domains. The intensity

domain typically produces twice the number of keypoints locations as the range domain, Table 5.1.

Figure 5.5, shows a comparison of the locations of the keypoints in each of the image domains with

regions of semantic interest from an instance of facial landmarking Ferrario et al. (1998). Keypoints

near semantic points of interest are highlighted in red. This comparison shows that in this example,
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Number of Keypoints
Texture 275
Range 508

Multimodal 783

Table 5.1: Number of keypoints per modality

keypoint localisation in the range image detected more keypoints close to repeatable landmarks

selected by human clinicians, when compared to keypoints localised in the intensity domain. This

result indicates that the quality of the keypoints is expected to be higher for the range imaging

domain. Furthermore the semantically important keypoint, localised in the range domain with the

Harris Corner detector approach, show a higher degree of symmetry, where keypoints detected on

the left side of the object are also detected on the right, than for the corresponding intensity keypoint

localisation approach.

5.2.3 Multimodal Keypoint Combination

To create multimodal keypoints, keypoints extracted from the range and intensity domains need

to be combined together in a optimal fashion. There are four possible combinations of modalities

for cross modal features in addition to the combination of multimodal features, giving a possibility

of nine different combinations of keypoints, see Table 5.2. Cross modal features can be formed

through localising in one domain and extracting a surface description from the corresponding image

location in the other domain. However, the combination of multimodal localisation and description

presents two challenges:

• How can combined keypoints be localised in both domains to create a multimodal localised

keypoint?

• How can a multimodal feature descriptor resulting from separate surface measurements in

range and intensity domains be created?
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(a) Intensity

(b) Range

(c) Multimodal

Figure 5.4: Domain localised features
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Figure 5.5: Comparison With Semantic Interest Points
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Texture Localised Range Localised Multimodal Localised
Intensity Descriptors SIFT_2D_2D SIFT_3D_2D SIFT_2D3D_2D
Range Descriptors SIFT_2D_3D SIFT_3D_3D SIFT_2D3D_3D

Multimodal Descriptors SIFT_2D_2D3D SIFT_3D_2D3D SIFT_2D3D_2D3D

Table 5.2: Cross Modal SIFT

To create a multimodal localised keypoint, a collection of keypoints formed from localising and

describing in both the range and intensity domain are created. To form a multimodal localised

keypoint from this collection of keypoints, the two collections are concatenated, Equation 5.5.

However, as feature descriptors must must have a vector length of 1, this approach is not appro-

priate for creating multimodal feature descriptors. In order to create a multimodal feature descriptor,

keypoints have feature descriptors extracted from the same image location in each domain. The res-

ulting feature descriptors are then concatenated and renormalised to unit length, Equation 5.7. In

this work keypoint feature descriptors extracted in each of the range and intensity modalities have

feature descriptor vectors of equal number of elements, therefore equal importance is assigned to

each modality during the matching stage. All keypoints have their canonical orientation assigned

from the modality from which they have been localised. All combinations of multimodal keypoints

can be created following the rules set out in this subsection.

Keypointsloc2D,loc3D =

 x2D, y2D, σ2D, feat

x3D, y3D, σ2D, feat

 (5.5)

normL2 =
√

sum
{
feat22D, feat

2
3D

}
(5.6)

Keypointsloc2Ddesc2D3D =

{
x2D, y2D, σ2D,

{feat2D, feat3D}
normL2

}
(5.7)

5.2.4 Naming conventions

This section has presented a multimodal feature localisation and description approach. The dif-

ferences between range and intensity images have been presented and the implementation issues

addressed. The results for the outlined descriptors are presented in Section 5.5.1, the naming con-

ventions of the descriptors outlined in this section are shown in Table 5.2.
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5.3 Sample Patch Warping

SIFT offers invariance to in-plane rotational changes by calculating a dominant orientation of 2D

intensity gradients in an image sample patch and correcting the orientation of the sample patch

to align with this orientation. The orientation estimation and sample patch orientation correc-

tion stages ensure that the sample patch will have a normalised orientation which consistently

aligns with the dominant orientation irrespective of the camera orientation. However, the invari-

ance offered through this approach is limited to in-plane orientation, or out-of-plane orientation

changes of planar structures where the perspective warp introduced by the imaging device is small.

To account for a greater degree of freedom in image transformations, the orientation estimation and

sample patch correction stages in the local feature matching algorithms processing pipe-line has

been extended in order to find and correct for the dominant affine approximation for the local fea-

ture sample patch. However, the range of invariance offered by both these approaches is unable to

handle the non-linear 3D motion of points due to changes in view point when imaging 3D free form

objects. Additionally, the estimation of surface orientation is based on a measure of the intensity

image which may not remain invariant through view point changes.

The range image modality offers a consistent surface topology between views which can be

used to infer the connectivity of sampled points on the object surface. 2.5Dpc SIFT uses this

additional 3D local pose information to correct for changes in image orientation and apply affine

transformations to the sample patch to compensate for changes in view point (Lo and Siebert, 2009).

By adopting the range image representation, the concept of applying corrective transformations to

the sample patch can be extended further to apply a full projective transformation to a keypoint

sample patch. In this section the 3 corrective transformations which can be applied to keypoint

local sample patch are introduced, these are the similarity transform, the affine transform and the

projective transform, shown in Figure 5.6.
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(a) Similarity transform corrected patch; full size left, zoomed patch right

(b) Affine transform corrected patch; full size left, zoomed patch right

(c) Projective transform corrected patch; full size left, zoomed patch right

Figure 5.6: Sample patch corrections
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5.3.1 Similarity

The similarity transform allows for a rotation of the sample patch in the imaging plane to align with

a repeatable orientation. In this dissertation, the SIFT method of calculating the in-plane orientation

of the sample patch is used. The orientation of the sample patch is found from the weighted mean

of the 2D image gradients surrounding the keypoint, Equation 5.8.

θ =
∑

wght(xn, yn)arctan

(
L (xn, yn + 1)− L (xn, yn − 1)

L (xn + 1, yn)− L (xn − 1, yn)

)
(5.8)

The new sample patch is rotated to align with the keypoint orientation θ and centred on the

keypoint location, kx, ky, equation 5.10 and is defined by sampling the intensity image or range

image at the points ŝx, ŝy; sx and sy is the original sample grid, spanning the range of -16 to +16

pixels in the x and y directions.

Min =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (5.9)


ŝx

ŝy

1

 = Min


sx

sy

1

+


kx

ky

1

 (5.10)

5.3.2 Affine

In an approach similar to that applied by Lo and Siebert (Lo and Siebert, 2009), the affine trans-

formation applied to the sample patch is calculated from the slant and tilt of the surface patch. The

estimates for the values of slant, φ, and tilt,τ , for each keypoint are taken from the components of

the surface normals in the x, y and z directions, Nx, Ny and Nz . From these the affine transforma-

tion matrix can be calculated and applied to the sample grid, Equation 5.17. This approach differs

from Affine Invariant regions where the transformation matrix is the result of a factorisation of 2D

intensity image gradients (Mikolajczyk et al., 2005; Mikolajczyk and Schmid, 2004).

φ = arctan

(√
Nx +Ny

Nz

)
(5.11)
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τ = arctan

(
Nx

Ny

)
(5.12)

Min =



cos(θ) −sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1


(5.13)

Mtilt =



cos(τ) sin(τ) 0 0

−sin(τ) cos(τ) 0 −sin(φ)

0 0 1 1− cos(φ)

0 0 0 1


(5.14)

Mslant =



cos(τ) −sin(τ) 0 0

sin(τ)cos(φ) cos(τ)cos(φ) sin(φ) −sin(φ)

−sin(τ)sin(φ) −cos(τ)sin(φ) cos(φ) 1− cos(φ)

0 0 0 1


(5.15)

M3D(φ, τ, θ) = MtiltMslantMin (5.16)



ŝx

ŝy

ŝz

1


= M3D(φ, τ, θ)



sx

sy

1

1


+



kx

ky

1

1


(5.17)

5.3.3 Projective

This work expands on the corrective transformations applied in the literature, which have been

described in previous subsections, by proposing a transformation which is capable of correcting

for the motion of points on a 3D free form surface under full out-of-plane rotation. The projective

transformation is a non-linear transformation applied to the sample points, based on the range image

surface structure. To account for self occlusion from facets of the object surface, the range image
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is represented as a point cloud which is rotated and resampled so as each keypoint can viewed

perpendicular to the range image surface at the keypoint location. The rotation is applied using

a similar approach to the affine transformation, whereby the in-plane orientation is applied first

followed by the out-of-plane transformation. Points in the point cloud which are occluded are then

removed using the “Fast Hidden Point Removal Algorithm” (Katz et al., 2007). The local keypoint

sample patch is created by projecting a rectilinear sample grid on to the resampled range surface,

Equation 5.20. The resultant sample point locations are rotated back into the range image co-

ordinate frame and form the “projective transformation sample patch”. The resulting sample patch

can be applied to sample the range or intensity domain.



X̂

Ŷ

Ẑ

1


= M3D(φ, τ, θ)−1



X

Y

Z

1


(5.18)



k̂x

k̂y

k̂z

1


= M3D(φ, τ, θ)−1



kx

ky

kz

1


(5.19)



ŝx

ŝy

ŝz

1


= Resample


HPR





X̂

Ŷ

Ẑ

1




,



sx

sy

1

1


+



k̂x

k̂y

1

1




(5.20)

5.3.4 Validation

To validate the proposed sample patch warping approaches and investigate the effects of these

warping transformations under ideal conditions, the changes in sample patch foot print are shown

for each method. Figure 5.7, shows the calculated sample patch foot print for each warping ap-

proach in the right image at the keypoint location shown as a yellow cross. The sample patch foot

print from the right image is then projected into the left image using the range image for X, Y, Z

co-ordinates and the turntable rotation ground truth established in Chapter 4.3. In the left image the
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keypoint is viewed close to the surface normal, whereas the keypoint observed in the right image is

imaged with a surface normal of 30◦ out-of-plane rotation in the yaw axis. The projected sample

patch foot print from the right image can be compared to the circular sample patch footprint in the

left image. For all examples in Figure 5.7, the keypoint sample patch footprint in the left image

should be close to being circular; the circular footprint is shown in green. From inspection, the pro-

jectively corrected example gives the best performance with a consistent sample patch throughout

views and a sample patch close to circular in the 0◦ object instance, see Figure 5.7c.

The difference in the sample patch foot print between object observations was calculated by

calculating the average displacement of all points on the footprint circumference, see Figure 5.8.

These displacements are plotted against out-of-plane rotation angle, see Figure 5.9. The diameter of

the sample patch used was 16 pixels. This validation experiment found that the projective corrected

sample patch maintained a performance of similar object surface coverage up to 35◦ which the other

approaches could only achieve up to 10◦.

5.3.5 Naming conventions

This section has presented an approach for a variety of local image sample patch corrections, from

standard in-plane orientation correction to full projective corrected sample patches. The imple-

mentation issues have been addressed, showing the exact calculation of the resulting patch for a

given local pose estimation. The validation in Subsection 5.3.4, has shown the abilities of each

sample patch correction approach to approximate an invariant foot print throughout a range of out

of plane orientation changes. The results for the outlined descriptors are presented in Section 5.5.2,

the naming conventions of the descriptors outlined in this section are shown in Table 5.6.

The results section investigates using the pose component from the 2D image scene to form

the estimation for the transformation applied to the sample patch, column 1 of Table 5.6, in the

projective case the transformation uses the range data to estimate the sample patch layout. Column

2 investigates the effect of using the 3D information for pose estimation and sample patch cor-

rection only, keypoints are localised and described using the intensity image. Column 3 uses 3D

information for all stages of keypoint localisation, pose estimation and description.
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(a) Similarity Example

(b) Affine Example

(c) Projective Example

Figure 5.7: Sample Patch Change Between Views

Similarity Affine Projective
2D Loc 2D Desc 2D Pose SIFT_2D_2D SIFT_aff_2D_2D_2D SIFT_pro_2D_2D_2D
3D Loc 3D Desc 2D Pose SIFT_3D_3D SIFT_aff_3D_2D_3D SIFT_pro_3D_2D_3D
2D Loc 2D Desc 3D Pose SIFT_2D_2D SIFT_aff_2D_3D_2D SIFT_pro_2D_3D_2D
3D Loc 3D Desc 3D Pose SIFT_3D_3D SIFT_aff_3D_3D_3D SIFT_pro_3D_3D_3D

Table 5.3: Sample Patch Corrected SIFT

123



5.3. SAMPLE PATCH WARPING 124

Figure 5.8: Difference Between Sample Patches

Figure 5.9: Sample Patch Difference Between Instances
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5.4 Surface Descriptor

To create the feature descriptor vector used to match keypoint instances, a histogram of surface

measures encoding a measure of the underlying object surface is formed from a sample patch. For

each pixel in the sample patch, a surface measure is computed and used to vote in a weighted histo-

gram which forms the feature descriptor for a receptive field. The feature descriptor for a keypoint

is formed from the concatenation of the histograms for each receptive field. The choice of surface

representation used to create the receptive field histograms has a large impact on the repeatability

of the feature descriptor. The choice of surface measure should therefore be chosen to increase

invariance to the transformations which a keypoint can express, while increasing the discrimination

between non-corresponding keypoints. In this section a number of surface representations for char-

acterising local patches on 2.5D range images are proposed in order to establish the most effective

representation for creating repeatable feature descriptors.

5.4.1 Surface Gradients

The surface gradients surface measure is created by applying the standard SIFT feature descriptor

extraction directly to the 2.5D range image Lowe (2004). This measure calculates the first derivative

of the range image as seen from the viewing angle. The first derivative of the surface is then

described as 8 rotation bins covering the 360◦ for each receptive field of in-plane surface orientation.

The vote for the orientation of each surface gradient is weighted by its magnitude. The surface

orientations vote into the receptive field histogram based on the strength of the gradient magnitude.

5.4.2 Shape Index

Shape index and curvature are frequently cited as a measure of surface invariant to out-of-plane

orientation changes (Dorai and Jain, 1997; Koenderink and van Doorn, 1992; Lukins and Fisher,

2006; Lo and Siebert, 2009, 2008; Hetzel et al., 2001; Atmosukarto et al., 2010). In this dissertation

shape index and curvature are implemented as a feature descriptor describing the range surface as

described for intensity images in Section 3.3.4. Shape index is a function which varies between

the limits of -1 to 1, and is capable of describing all surface types which may be expressed by a

3x3 surface patch. The shape index scale is equally partitioned into 8 bins, the contribution of each

pixel to the feature descriptor histogram is weighted by the curvature of the keypoint.
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5.4.3 Element Correction Surface Gradients

The Element Corrected Surface Gradients surface measure uses the standard 2.5D SIFT feature ex-

traction stage applied to the range image surface gradients to create the feature descriptor. However,

this approach introduces an additional step to calculate the mean value of the the surface gradients,

over the whole 16x16 pixel sample patch, for both x and y directions. The mean gradients are

removed from the gradient calculated for each pixel in the sample patch before applying histogram-

ming to create the feature descriptor, Equation 5.22. This step creates a robust, low cost surface

metric for the creation of a feature descriptor aimed at improving out-of-plane pose invariance.

descSIFT = Norm ({hist(Grad1), ...hist(Grad16)}) (5.21)

descEC = Norm ({hist (Grad1−mean(Grad)) , . . .hist (Grad16−mean(Grad))}) (5.22)

5.4.4 2.5D Local SPIN Image

In addition to the proposed SIFT like features, SPIN image are frequently cited in the literature

as local features invariant to changes in pose (Frome et al., 2004; Lai and Fox, 2009; Assfalg

et al., 2007). The SPIN image local features implemented in this dissertation are a local feature

representation based on the SPIN images outlined by Johnson and Hebert (Johnson and Hebert,

1999; Johnson, 1997). The local 2.5D SPIN images use the same localisation and feature vector

length as standard SIFT features however are independent of in-plane orientation changes. The

local 2.5D SPIN image feature descriptor approach considers all pixels within an 8 pixel radius of

the keypoint centre, these pixels and their range values are represented as an X, Y, Z point cloud

which is aligned with the surface normal of the keypoint. The co-ordinates of the aligned keypoints

are then converted from Cartesian to polar co-ordinates, see Equation 5.23, giving the angle of

location of the points in the point cloud as in-plane rotation angle, radius as distance from surface

normal vector, and height from aligned plane tangential to surface at keypoint location, see Figure

5.10.
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Figure 5.10: 2.5D Local SPIN Image Extraction

[θ,R, Z] = polar (X,Y, Z) (5.23)

The 3D point cloud described in polar co-ordinates is then histogrammed in theR and Z dimen-

sions to form the 2D SPIN image describing the local surface patch. In order to make the feature

descriptor comparable to the SIFT descriptors presented in this chapter, the image patch is chosen

to be the same as covered by the SIFT descriptor sample patch. In addition the quantisation of R

and Z are chosen to give equal weight to each dimension and give a total number of bins equal to

the number of elements in the SIFT feature descriptor. The quantisation of R and Z are shown in

Figure 5.10. The resulting 2D SPIN image is linearised to form a 1D feature vector describing the

image patch. This vector is then normalised to form the 2.5D Local SPIN Image vector.

As the θ dimension is ignored the resulting feature descriptor has a built-in in-plane orientation

invariance. Used in conjunction with the normalisation of the point cloud to align with the surface

normal at the keypoint location, this feature descriptor approach offers invariance to all three Euler

angles. An overview of the descriptor extraction is shown in Figure 5.10.
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Description Shortened Reference
2D SIFT SIFT_2D_2D

Surface Gradients SIFT_3D_3D
Shape Index SIFT_3D_3Dsi

Surface Gradients Element Correction SIFT_3D_3Dec
Range SPIN Image SPIN_3D_3D
Texture SPIN Image SPIN_2D_2D

Surface Gradients & Shape Index SIFT_3D_3Dsgsi
Surface Gradients Element Correction & Shape Index SIFT_3D_3Decsi

Range SPIN Image & Shape Index SPIN_SIFT_3D_3Dsi
Surface Gradients Element Correction & Shape Index & Range SPIN Image SPIN_SIFT_3D_3Decsi

Table 5.4: Sample patch description variations

5.4.5 Surface Measure Combinations

In addition to creating keypoints from a single surface measure of a local sample patch, a variety

of surface measures can be combined in an approach similar to that taken in Section 5.2.3 for

combining features from differing image modalities, Equation 5.25.

normL2 =
√

sum
{
feat2measure1, feat

2
measure2

}
(5.24)

feat =
{featmeasure1, featmeasure2}

normL2
(5.25)

5.4.6 Naming conventions

This section has presented a range of approaches for forming a feature descriptor from a local

sample patch region of range or intensity images. The range image has been described in terms

of shape index, and variations based on the surface gradients; SPIN images for range and intensity

images introduced. The implementation of each of these approaches has been outlined, showing

the detailed calculation of the feature descriptor vector from the local image sample patch. The

results for the outlined descriptors are presented in Section 5.5.3, the naming conventions of the

descriptors outlined in this section are shown in Table 5.4.
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5.5 Results

The performance of the local feature matching approaches outlined in this chapter were evaluated

using the experimental setup detailed in Chapter 4. The results in this section are formed by evalu-

ating the performance for matching between random query range and intensity image pairs to target

examples of the 3D free form objects separated by 60◦. The results for each method are presented

as a table giving an example of the number of keypoints, the number of matches and the number

of correct matches for the log-likelihood sensitivity level of 0.8. A second table showing the per-

formance of each approach in terms of the percentage increase in the area under the ROC curve

when compared with the unmodified SIFT case, and a ROC curve showing the matching quality

for the feature descriptors for every sensitivity level. The percentage change in area under ROC

curve is defined as the precentage change of the area under SIFT up to a given false positive rate,

yellow area, to the area under a comparison ROC cuve to the same false positive rate, green area,

see Figure 5.11. An analysis of the results observed in this section is presented in Section 5.6.

5.5.1 Multimodal Keypoints

The results for the multimodal keypoints proposed in Section 5.2, are presented here. Table 5.2

gives the naming conventions for the multimodal keypoints results, Table 5.7a shows an average

of matching keypoints at the likelihood threshold of 0.8. In this table, overlapping refers to the

number of keypoint location correspondences which exist between the query and model images;

query keypoints refer to the number of keypoints extracted from the query image; matches refer

to the keypoint descriptor matches between the model and query images; correct matches refer

to the number of keypoints which have descriptor matches and location correspondences between

the model and query images. Table 5.5b shows the percentage change of area under the ROC curve

when compared to standard SIFT for false positive rates of 10%, 20% and 100%, Figure 5.12 shows

the ROC curves.
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Figure 5.11: Area under ROC curve represented as a percentage change
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SIFT description Overlapping Query Keypoints Matches Correct Matches
SIFT_2D_2D (standard SIFT) 23.3 57.7 27.0 12.0

SIFT_2D_3D 28.1 53.1 33.5 11.6
SIFT_3D_2D 13.2 44.2 14.9 5.3
SIFT_3D_3D 18.5 38.9 22.1 8.1

SIFT_2D3D_2D 50.8 102.3 44.8 25
SIFT_2D3D_3D 50.5 93.3 56.0 18.8
SIFT_2D_2D3D 47.7 95.0 54.9 18.8
SIFT_3D_2D3D 42.3 101.4 51.5 14.3

SIFT_2D3D_2D3D 46.8 97.0 55.6 15.4
(a) Examples of matching at 0.8 log-likelihood threshold for multimodal keypoints

SIFT description FPR 10% FPR 20% FPR 100%
SIFT_2D_2D (standard SIFT) 0 0 0

SIFT_2D_3D -25.9 -31.2 -24.3
SIFT_3D_2D 1.2 -10.9 -11.6
SIFT_3D_3D -11.8 -19.4 -10-6

SIFT_2D3D_2D 22.6 7.9 -2.6
SIFT_2D3D_3D -36.6 -38.9 -30.9
SIFT_2D_2D3D -40.5 -41.5 -31.4
SIFT_3D_2D3D -50.3 -48.8 -39.9

SIFT_2D3D_2D3D -46.8 -49.5 -40.8
(b) Percentage change for area under ROC curve

Table 5.5: Multimodal Keypoints
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(a) 2D Localised (b) 2D Described

(c) 3D Localised (d) 3D Described

(e) Multimodal Localised (f) Multimodal Described

Figure 5.12: Multimodal ROC Curves
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SIFT description Overlapping Query Keypoints Matches Correct Matches
SIFT 2D 2D 23.3 57.7 27.0 12.0
SIFT 3D 3D 18.5 38.9 22.1 8.1

SIFT aff 2D 2D 2D 26.0 50.7 31.6 11.6
SIFT aff 2D 3D 2D 28.6 42.6 25.4 17.5
SIFT aff 3D 2D 3D 15.0 44.4 18.0 4.9
SIFT aff 3D 3D 3D 13.8 30.2 25.4 5.1
SIFT pro 2D 2D 2D 27.6 67.9 22.9 5.4
SIFT pro 2D 3D 2D 17.6 54.3 19.0 6.6
SIFT pro 3D 2D 3D 17.8 37.8 18.1 4.5
SIFT pro 3D 3D 3D 14.9 23.2 28.7 3.7

(a) Examples of matching at 0.8 log-likelihood threshold

SIFT description FPR 10% FPR 20% FPR 100%
SIFT 2D 2D 0 0 0
SIFT 3D 3D -11.8 -19.4 -10.6

SIFT aff 2D 2D 2D -22.5 -21.9 -15.4
SIFT aff 2D 3D 2D 44.1 31.2 25.9
SIFT aff 3D 2D 3D -29.4 -31.5 -29.2
SIFT aff 3D 3D 3D -58.0 -52.2 -31.4
SIFT pro 2D 2D 2D -70.9 -69.4 -56.3
SIFT pro 2D 3D 2D -13.2 -18.5 -12.4
SIFT pro 3D 2D 3D -67.4 -63.2 -45.1
SIFT pro 3D 3D 3D -88.9 -86.5 -64.6

(b) Percentage change for area under ROC curve

Table 5.6: Sample Patch Corrected Keypoints

5.5.2 Sample Patch Warping

The results for sample patch warped keypoints proposed in Section 5.3, are presented here. Table

5.3 gives the naming conventions for the multimodal keypoints results, Table 5.6a shows an average

of matching keypoints at the likelihood threshold of 0.8, Table 5.7b shows the percentage change

of area under the ROC curve when compared to standard SIFT for false positive rates of 10%, 20%

and 100%, Figure 5.13 shows the ROC curves.
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(a) Similarity Transform (b) Affine Transform

(c) Projective Transform (d) All Transforms

Figure 5.13: Sample Patch Warping ROC Curves
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SIFT description Overlapping Query Keypoints Matches Correct Matches
SIFT_2D_2D 23.3 57.7 27.0 12.0
SIFT_3D_3D 18.5 38.9 22.1 8.1

SIFT_3D_3Dsi 16.3 45.1 17.0 7.9
SIFT_3D_3Dec 19.3 45.8 23.2 9.0
SPIN_3D_3D 15.6 33.9 21.7 6.9
SPIN_2D_2D 21.1 75.9 9.6 3.0

SIFT_3D_3Dsgsi 16.9 44.2 21.2 8.2
SIFT_3D_3Decsi 19.7 52.9 18.2 9.3

SPIN_SIFT_3D_3Decsi 14.6 50.5 9.8 5.1
SPIN_SIFT_3D_3Dsi 7.6 57.5 7.5 2.7

(a) Examples of matching at 0.8 log-likelihood threshold

SIFT description FPR 10% FPR 20% FPR 100%
SIFT_2D_2D 0 0 0
SIFT_3D_3D -11.8 -19.4 -10.6

SIFT_3D_3Dsi 18.3 8.2 3.5
SIFT_3D_3Dec 9.1 0.1 3.1
SPIN_3D_3D -25.7 -22.0 39.7
SPIN_2D_2D -68.4 -58.9 -44.4

SIFT_3D_3Dsgsi 28.2 11.3 2.1
SIFT_3D_3Decsi 38.7 15.5 2.0

SPIN_SIFT_3D_3Decsi -12.7 -7.0 -1.4
SPIN_SIFT_3D_3Dsi -35.0 -22.6 8.0

(b) Percentage change for area under ROC curve

Table 5.7: Surface Description Variants

5.5.3 Surface Description

The results for sample patch warped keypoints proposed in Section 5.4, are presented here. Table

5.4 gives the naming conventions for the multimodal keypoints results, Table 5.7a shows an average

of matching keypoints at the likelihood threshold of 0.8, Table 5.7b shows the percentage change

of area under the ROC curve when compared to standard SIFT for false positive rates of 10%, 20%

and 100%, Figure 5.14 shows the ROC curves.
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(a) Individual measures (b) SPIN Image

(c) Combined Surface Measures (d) All Surface Measures

Figure 5.14: Surface Description ROC Curves
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5.6 Analysis

This section analyses the results reported in the previous section. The successes and failures of

each of the proposed approaches are discussed and conclusions are drawn regarding the underlying

causes of these.

5.6.1 Multimodal Keypoints

From the comparison of the multimodal features approaches outlined in Section 5.2, it was found

that the approach using multimodal keypoint localisation with intensity domain image patch de-

scription produced a significant performance improvement in terms of both achieving the highest

number of correct matches and increasing the ROC curve performance when compared to the un-

modified SIFT case. This is the only instance of cross modal, or multimodal combinations for loc-

alisation or description which produced a marked improvement, all others resulted in significantly

diminished performance. The following subsections investigate the localisation and description

stages separately to form conclusions.

5.6.1.1 Keypoint localisation

A comparison between the ROC performance at 10% FPR for single domain localised and de-

scribed keypoints shows that for both range and intensity described features, keypoints localised

in the range domain out perform those localised in the intensity domain, see Figure 5.8. However,

this performance improvement in terms of ROC curve characteristics is offset by fewer keypoints

localised in the range domain. This result indicates that the range imaging modality does produce a

more stable keypoint localisation stage, however produce fewer keypoints per image due to the low

variation in surface.

5.6.1.2 Keypoint description

Keeping the domain in which the keypoints are localised constant, the best ROC curve perform-

ance were achieved using feature descriptors created from image patches collected in the intensity

domain. The poorest performance from the keypoint extraction approaches evaluated resulted from

the concatenation of feature descriptors extracted from both intensity and range imaging modalities.

This result indicates that the keypoint locations which formed highly distinctive features in range
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SIFT Description FPR 10% Overlapping
SIFT_2D_2D (standard SIFT) 0 23.3

SIFT_3D_2D 1.2 13.2
(a) Intensity described features

SIFT Description FPR 10% Overlapping
SIFT_2D_3D -25.9 28.1
SIFT_3D_3D -11.8 18.5

(b) Range described features

Table 5.8: Comparison of localisation approaches

and intensity images separately are not the same locations.

5.6.2 Sample Patch Warping

The experimental results for sample patch warping SIFT approaches showed that a significant im-

provement in matching performance was achieved when creating 2D features, with an affine sample

patch warping guided by the range image surface gradients. Affine corrected features based on the

intensity images is an approach similar to the affine features proposed by Schmid and Mikolajczyk

(Mikolajczyk et al., 2005; Mikolajczyk and Schmid, 2004). The comparison between the use of

intensity and range information to estimate the image patch pose shows that the intensity image

gradients were insufficient for estimating an invariant patch warping on the free form 3D objects

used in this experimental configuration.

In every instance where image surface gradients were used to both estimate the surface pose

and localise the keypoint, the performance was significantly degraded. This result indicates that

keypoints are localised in areas where the local surface gradients are unstable. Therefore, applying

a corrective transform to the local image patch with a local pose estimated from the same imaging

domain as the keypoint localisation creates inherently unstable feature descriptors.

Extending the out of plane orientation invariance to evenly sample the surface from a perpendic-

ular view point decreased the performance of the resulting local features, contrary to the hypothesis.

Furthermore no modifications to the feature extraction and sample patch corrective stage resulted

in a performance improvement in the range imaging modality, when compared to the unmodified

case: SIFT_3D_3D. The remainder of this subsection investigates the factors which influence the

performance of local features using sample patch warping approaches.
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Figure 5.15: Resampling the Range Image

5.6.2.1 Instability of Keypoint Localisation

An error in keypoint localisation for keypoints localised in regions where the image surface demon-

strates a large variation cause the pose estimation stage to vary widely between keypoint instances.

When using sample patch warping, this error in keypoint localisation manifests as a modification to

the sample patch. The error in sample patch footprint exists only where the warping is applied and

does not affect the similarity transformed features used in standard SIFT. Therefore reducing the

corrective measures applied to the image patch increases the invariance to noise in both keypoint

localisation and local pose estimation.

5.6.2.2 Invalid data

Range images do not contain reliable connectivity information for all locations on the imaged object

surface. This effect manifests as a smooth transition in the range surface between the visible object

surfaces at occlusion boundaries. In the range image this is represented as a flat surface joining

two locations, and masks cases where more underlying structure in the 3D object may be present.

With projective corrected keypoints, projecting sample points to lie perpendicular to the surface

causes many sample points to lie on a “range shadow” of invalid data and therefore decreases the

repeatability of the feature descriptor, see Figure 5.15.
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(a) Compression against Angle (b) Sample Patch and Calculation of Compression

Figure 5.16: Compression of Sampling Scale

5.6.2.3 Axis compression

The sample warping processing applied to the local window sample patch, used to create pose cor-

rected features, changes the distance between sampled locations in the sampling patch. This change

of distance between sampling points effectively increases the sampling frequency in direction of the

dominant slant of the sample patch, causing the keypoint to be extracted at an incorrect scale for

the direction of of maximal axis compression. Equation 5.26 defines the effect of axis compression

as a change in scale, ∆σ, where ∆X is the unaltered seperation between two sample points, and

∆Bx(τ) is the effective sample point seperation for sample patch rotation angle, τ . This effect

limits the out-of-plane invariance afforded by affine corrected features to around ±30◦ for the scale

space pyramid used in this study with scale divisions of σ = 1.4 between levels, see Figure 5.16a.

To mitigate this effect, a scale space pyramid which accounts for slant and tilt axes compression

could produce more stable keypoints for feature extraction using affine pose correction.

∆σ =
1

∆Bx(τ)
− 1

∆X
(5.26)

5.6.3 Surface Description

Approaches to construct surface descriptors included an comparison of feature descriptors collected

using individual surface measures and combinations of differing surface measures. Shape index
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gave the most reliable individual surface measure. The surface measure using surface gradients

with element correction significantly improved the performance of the surface gradients approach

giving a ~20% increase of the area under the ROC curve at FPR 10%, and a ~10% greater area

under the ROC curve at FPR 10% when compared to standard SIFT. SPIN images produced poorer

results than the baseline SIFT in both ROC curve performance, and number of keypoints. SPIN

images performed better in the range image domain than in the intensity. In the range domain a

higher true positive ratio than the baseline SIFT was observed when a high level of false positives

were tolerated.

The combination of differing surface measures showed that combining surface measures from

SIFT-like features gave better ROC curve characteristics than individual surface measures and than

the baseline SIFT applied to the intensity domain image. The optimum ROC performance was

achieved using a combination of shape index and element corrected surface gradients. However,

the performance improvement observed is marginal. Additionally, all the combination approaches

investigated use range localised features which resulted in fewer keypoints being detected when

compared with intensity localised approaches.

The following subsections investigate the characteristics of the surface measures and improve-

ments which can be made to improve the performances of each of these surface measures.

5.6.3.1 Surface descriptor foot prints

To measure the shape index and curvature for each point in the sample patch, a footprint of the

8 neighbouring pixels surrounding the keypoint is used. The extraction of the surface gradients

measure however uses a smaller footprint of 4 pixels, see Figure 5.17. The original performance

improvement observed when using shape index may have resulted from an increased measurement

stability resulting from the larger footprint. To investigate this effect a modification to element

correction surface gradients is proposed which makes use the same footprint as used for calculat-

ing shape index, Figure 5.17. Evaluating the performance of the modified surface gradients with

element correction shows that this effect is significant and that the resultant approach demonstrates

state of the art performance, Figure 5.18.

Combining the modified element correction surface gradients approach with the shape index

approach increases the true positive ratio for low tolerance of false positives; however it decreases
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Figure 5.17: Surface Measure Footprint

the true positive ratio for FPR of greater than 5%, Figure 5.18.

5.6.3.2 SPIN image normalisation

The poorest performance of the proposed surface measures resulted from the SPIN image. A po-

tential cause for the degraded performance of the SPIN image approach is the uneven distribution

of samples in the voting space used to create the feature descriptor. This uneven distribution of

samples in the voting space effectively reduces the information content in the feature descriptor.

The SPIN image aligns the X, Y, Z location of points on the range image surface to the dominant

patch pose, then applies a Cartesian to polar co-ordinates transform to represent the range surface

as θ, R, Z. The resultant R and Z values are histogrammed to create the feature descriptor, with

even divisions in radius and Z, see Figure 5.10. However, as the radius increases, each division of

radius covers an increased area giving a greater number of votes to the corresponding elements in

the feature descriptor, see Figure 5.19.

Furthermore the scale space approach applied to the range or intensity image ensures that all
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Figure 5.18: Corrected footprint ROC curve

image patches contain a fixed set of spatial frequencies. This low variation in surface topology

will cause a consistent uneven distribution of elements in the voting space, where few range values

will be binned in the high Z low R bins. Due to this typical distribution of range values in the

SPIN image histogram, the SPIN image histogram is not an effective use of a 128 element feature

descriptor.

5.6.3.3 Range Image Descriptor Normalisation

The normalisation stage which transforms a histogram of surface gradients into a feature descriptor

vector of unit length is required in order to perform the comparison between two feature vectors in

the matching stage. The normalisation stage also has the additional effect of removing information

regarding the level of variation present in the sampled surface. In the intensity domain this norm-

alisation step offers invariance to variations introduced into the image as a result of illumination

effects. However, in the range imaging modality the variations removed by the normalisation stage

encode underlying characteristics of the range image surface at the keypoint location.

The normalisation stage has an additional effect in the range image: the projection of sample
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Figure 5.19: SPIN Image Range Sampling

points at an occlusion boundary cause a spike in the variation of surface gradients observed in

the feature descriptor before normalisation, see Figure 5.20. It is not possible to know the depth

at which the projected sample points will lie when projected past the keypoint location, as the

occlusion boundaries in the range image are unknown. Furthermore, the projected sample points

will tend to have a large change in range between views. This large change in depth results in a

large influence in the normalisation step in the feature descriptor creation. This effect decreases the

confidence of keypoints along occlusion boundaries, as occlusion boundary information is allowed

to dominate over the informative elements in the feature vector.

5.7 Summary and Conclusions

In this chapter a range of modifications to the local feature extraction processing pipeline have been

investigated. The MATLAB SIFT code used in previous chapters was further developed to incor-

porate proposed modifications. The unmodified SIFT code was used as a baseline for comparison

in the new experimental configuration outlined in the previous chapter. The study conducted in this

chapter focuses at every stage of the processing pipeline on the use of multimodal information from

the co-registered range and intensity images. The main outcomes of these experiments are outlined

here.
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Figure 5.20: Range Image Surface Gradients Sampling

Localisation of keypoints in the range domain creates fewer keypoints than localisation in the

intensity domain. The keypoints localised in the range domain formed more distinctive features for

a FPR of 10% and below, however intensity domain localised features had a higher recall. Intensity

domain described features outperformed range domain descriptions. The optimum multimodal

combination of localisation and description resulted from keypoints localised in both the range and

intensity domains, and described only in the intensity domain. Multimodal information can be used

to apply a warping to the image patch estimated from cross modal information. The effects of

applying a warping to the sample patch were investigated using 3 levels of warping: similarity, or

no warping; affine, or fitting the sample patch to a plane; and projective warping, resampling the

range image from a new viewer position. The invariant surface measure used to estimate the warp

to apply to the image patch between keypoint instances can be estimated from either the range or

intensity domain, with the description of the image patch formed from either the range or intensity

domain independently. It was found that keypoints localised in the intensity domain with an affine

warp estimated from the surface gradients of the range image, and an image patch description

created from the intensity domain gave the best performance. The high performance observed in
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using the affine corrected sample patches and not the projective corrected, in part resulted from a

constrained sample patch arrangement which is robust to noise in the range domain. In addition

keypoints localised in the range domain with the affine warping approach applied showed degraded

performance, indicating that these keypoints were localised in regions with high range domain

variance and form an unstable local pose estimation.

A range of surface description measures were proposed for describing the characteristics of the

image patch extracted in the range domain, these included popular descriptions such as shape index,

surface gradients and SPIN images. In addition to these the novel surface description, element cor-

rected surface gradients, was proposed based on surface gradients, this surface measure addresses

the issue of out-of-plane view change. The element corrected surface gradients surface measure

advances state of the art performance and achieves results comparable to range affine corrected

intensity SIFT features. The ROC performance of the optimum descriptors from each section is

shown in Figure 5.21.

State of the art performance is advanced through 2 of the approaches outlined in this chapter.

However, the modifications made to each of these approaches cannot be combined. Furthermore,

partial composition information encoded in the range data is under utilised. The next chapter seeks

to use this additional information from the range image to identify multiple instances of features

across range image examples, and combine these in a learning phase to model the modes of expres-

sion of the feature descriptor.
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Figure 5.21: Optimum Descriptors
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Chapter 6

Multi Observation Keypoint

Combinations

Chapter 5 investigated a number of uses of range data for increasing the reliability

of feature matching under changes in viewpoint based on a single observation of

the keypoint. This chapter extends the individual features from a single viewing in-

stance by modelling the feature vector space expressed by a keypoint from differing

viewing angles. The rational behind this approach is to assume that out-of-plane

view point changes can be characterised as a deformation of a keypoint sample

patch and therefore can be treated using adaptive object recognition approaches.

The composition of the local range surface surrounding each keypoint serves to

guide the integration of feature descriptors. This chapter covers the combination

of keypoints locations from differing viewing angles to form a set of “3D local in-

terest points”. From this set of 3D local interest points a number of approaches to

integrate keypoint feature descriptors observations from differing viewing angles

are investigated.

6.1 Overview

The investigation into local features in range and intensity modalities in previous work and chapters

has focused on recognition from a single observation instance, using the available local informa-

tion to form a descriptor which remains invariant across observations. However, 3D data, range data
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and time series data offer additional information regarding the variety of feature descriptors which a

given keypoint can express. For humans this ability to explore the view observation space of a query

object can allow the viewer to disambiguate between many multiple object or feature hypotheses

(Palmer, 1999). Recent category recognition approaches have achieved much progress in disambig-

uating between object hypotheses in a range of poses through a similar approach of exploring the

observation space to learning the local feature view space based on collections of single instance

features present in an image (Yang et al., 2007). This chapter investigates whether it is possible to

encode extra information from the view space into the feature descriptor, such that individual low

level feature confidence can benefit from information gained across a range of observations.

To create pose invariant feature descriptors in this chapter it is proposed that a measure of mean

and variance of feature descriptors observed at a range of views are collected to be used in the

matching stage. This approach will allow the variation in the feature descriptor space resulting

from changes in viewing angle of a keypoint to be modelled. The modelled variations can be used

as tolerable variations in the feature descriptor space, in which the weightings of distances in cov-

ariant dimensions between query and target feature descriptors are reduced. Reducing the distances

between model and target descriptors has the effect of making feature descriptors collected from a

single keypoint on a 3D object appear more similar when matched across a range of views. In order

to investigate this approach, common keypoint locations between instances must be established. In

addition this chapter estimates the local pose of the surface in order to restrict the range of keypoint

poses to be included in the descriptor statistics, thereby limiting the variance of feature descriptors.

Common locations on an object surface between observations can be established through op-

tical flow or 3D surface alignment approaches. In this chapter range images are synthetically cre-

ated from 3D polygon meshes of objects available from the Stanford Scanning Repository, see

Figure 6.1. The transformation between viewing angles used to create the synthetic range images

is also used to establish keypoint location correspondences between observation instances. Keypo-

int locations which are repeatably localised between observations of a specific object are stored as

significant 3D interest points. The significant 3D interest points have descriptors collected from a

range of observations where the keypoint location is detected. The collected descriptors are used to

create a model of the descriptor variation space using a range of learning approaches investigated

in Section 6.1.3.
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(a) Bunny (b) Armadillo

(c) Dragon

Figure 6.1: Examples of scanned objects from the Stanford Scanning Repository

The principal contributions of this chapter are to outline a methodology to associate keypoints

between views to create 3D local interest points, and to investigate local feature learning in the

context of keypoints observed through variations in pose. The chapter is outlined as follows, Section

6.1.4 details an overview of the 3D feature extraction process, Section 6.1.1 finds 3D local interest

points, Section 6.1.1 associates keypoints together to create a feature descriptor example collection

for the 3D local keypoints, Section 6.1.3 describes a range of statistical approaches which can be

applied at the matching stage and Section 6.2 describes the evaluation approach used in this chapter

to determine the performance of matching in the descriptor space with differing statistical measures

based on the precision recall characteristics of all keypoints observed on an object.

6.1.1 3D Local Interest Points

The main aim of this chapter is to investigate the combination of keypoint feature descriptors from

differing viewing observations as a means to create a pose invariant keypoint descriptor which
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generalises to keypoints from a range of observations. In order to investigate this main aim in the

chapter, keypoints detected in differing observations must be associated with a set of 3D Local

Interest Points for an object which are common to all views. In this chapter, the 3D models used

to create the range images are available. Therefore, it would be possible to form the 3D Local

Interest Points directly from the 3D models using segmentation approaches based on the underlying

object surface structure (Dorai and Jain, 1997; Mangan and Whitaker, 1999), or a measure of the

composition of points in the point cloud (Lian et al., 2011). However, as this work aims to create a

keypoint representation which is matchable to a range of observations, the keypoint localisation and

detection for the 3D Local Interest Points should be similar to the localisation and detection applied

in a single range image observation. Therefore, this work applies an approach similar to Ohbuchi et

al (Ohbuchi et al., 2008), where interest points from all views are collected and integrated together

using the standard SIFT localisation.

This section describes the combination of local features detected from multiple viewing angle

observations of an object. Keypoint detections from all observations are projected into a common

canonical space. Keypoint locations in the canonical space can be seen to cluster around 3D interest

points, see Figure 6.3. However, the canonical space also contains spurious detections. These spuri-

ous detections are removed using 3D density filtering, Section 6.1.1.2. The remaining keypoints are

then clustered to group the individual keypoints into collections of descriptors representing a 3D

interest point.

6.1.1.1 Keypoint Detection

Keypoints are detected using the Harris Corner detector interest point locator applied to a scale

space pyramid derived from the synthetic range image, see Figure 6.4a. The 3D location of a

keypoint is found from interpolating the range image value at the keypoint location. Keypoints

which lie not on the object but on the range image background are removed with a mask. The

background mask is created from the areas of the range image which do not lie on the object hull,

see Figure 6.4b.
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Figure 6.3: Keypoints from all views displayed in the canonical space
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(a) Synthetic Range Image with Detected Keypoints and footprints

mask
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(b) Synthetic range image background mask shown in red

Figure 6.4: Keypoints Detected in Synthetic Range Images
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6.1.1.2 Keypoint Filtering

Keypoint detections from a collection of single observation range images projected into a common

object based co-ordinate frame, here termed the canonical space, tend to cluster around 3D local

interest points, see Figure 6.3. However spurious keypoint locations can also seen to be present.

Directly applying the keypoint clustering without removing these noisy keypoint locations will

negatively affect the localisation of the 3D interest points as the clustering algorithm attempts to

account for spurious keypoint locations. The effect of spurious keypoint locations can be mitigated

by removing keypoints localised in areas of low keypoint density.

A voxelised 3D density histogram is created and aligned with the X, Y, Z dimensions in the

canonical space. The density histogram ranges from the furthest outlying keypoints in each of the

dimensions. The resolution of voxels in the density histogram is set to the width of a pixel in the

source range image. The resulting density histogram is then convolved with a 3D Gaussian function

with a sigma of 3 pixels in all dimensions. A valid keypoint mask is created by setting a threshold

on the density histogram at a level of x keypoints per voxel. Keypoints which do not meet this

criteria are discarded.

6.1.1.3 Keypoint Clustering

Two clustering approaches were applied to the filtered keypoint locations to investigate the most

suitable for creating 3D local interest points. The approaches investigated were the mean values

calculated using Gaussian Mixture Models, GMM, and the cluster centres found using K-means

clustering, both approaches were configured to assign 300 interest points per 3D model, see Figure

6.6. The GMM, models the data as a collection of overlapping Gaussian distributions of keypoints

(Bishop, 2006). The GMM is calculated iteratively to simultaneously to establish the best fit of

Gaussian distributions for all keypoint locations. The mean values of the GMM concentrates the

resulting 3D local interest points around the centroid of all keypoint locations, as opposed to areas of

high keypoint density. The K-means clustering approach was applied with 10 iterations to approach

a convergence. K-means clustering divides the keypoint locations into clusters which tend towards

having equal numbers of members. The K-means clustering approach successfully localises areas

of high keypoint density, with cluster centres identifying 3D interest locations.
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Figure 6.5: Slice through the 3D density histogram; red regions represent valid keypoint locations
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Figure 6.6: Cluster Centres

6.1.1.4 Keypoint Scale

To ensure that only keypoints of the same scale will are included in the 3D interest point cluster, the

scale of individual keypoints within clusters are then histogrammed and scale outliers are removed.

Removing individual keypoints of differing scale ensures that in the descriptor characterisation

stage the keypoint cluster will contain only similar feature descriptors, see Figure 6.7. Keypoints

found at larger scales will tend to be fewer in number as there are fewer range pixels available

to locate these, to account for this the histogram is weighted by the relative size of a pixel in the

detected scale when compared to a pixel in the native scale.

6.1.2 Local Pose Estimation

Having established keypoint locations and collections, the pose of each keypoint member in a 3D

Local Interest Point should be established with respect to the viewing angle at which it was ob-

served. This section describes the method by which the 3D orientation of the individual keypoint

within a range image is estimated. The 3D surface orientation is used to structure the extracted

keypoints from individual range image examples in the resulting 3D local interest point descriptor.
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Figure 6.7: Weighted histogram

The remainder of this section describes the methodology.

6.1.2.1 Defining the local rotation matrix

The surface normal for each keypoint example from each range image observation is defined from

the first vector in the calculated local rotation matrix. This subsection describes the calculation of

the local rotation matrix.

The local rotation matrix is estimated by considering the 10x10 pixel sample patch from the

source range image as a point cloud, Pts, from which a covariance matrix can be calculated, see

Equation 6.1. The covariance matrix for a set of points in R3 forms a set of vectors which defines

main axes along which the X, Y, Z points demonstrated the most variation, eigv. The length of

these vectors is determined by the strength of variation in the given direction. Principal component

analysis, PCA, offers a convenient method to separate the unit vectors from their weighted contribu-

tions. Taking eigen vectors of the covariance matrix, a matrix of orthogonal unit length vectors can

be found which defines the orientation of the surface patch. The eigen vector, eigv, corresponding

to the lowest eigen value, λ, defining the surface normal.

[λ, eigv] = Eig(Cov(Pts)) (6.1)
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Mpose = eigv (6.2)

6.1.2.2 Validation

The collection of X, Y, Z points used to estimate the surface orientation clearly has an important

influence on the resulting alignment estimation. The points used to create this estimation are extrac-

ted in a similar method as used for determining the surface orientation in SIFT. The sample points

are taken from a 10x10 patch in the range image scale space pyramid at the scale with which the

keypoint was detected by means of the corner detector.

An example of this is shown in Figure 6.8a, where a synthetic 3D object with a distinctive T

shape has been projected on to a plane to create a range image, using a similar method as described

in the Experimental Setup, Section 6.2. The generated synthetic range image then has Gaussian

image noise of 10% of the full scale range deflection applied. Each Sub-figure B shows the sample

patch outline in green, and 10x10 sample patch points in magenta. Each Sub-figure C shows the

surface alignment axes in red, blue and green, respectively for each eigen vector. Only the surface

normal has been rectified to show the consistency of alignment between range images of the object.

From tracking the keypoint location on the object, it was found that a sample patch sampling the

object surface could be placed between ±40◦. The calculated surface normal was then compared

against the actuated surface to show the stability of this approach. The results are shown in Figure

6.9a, Figure 6.9b shows the root mean square error. This result shows an inaccuracy in estimated

surface normal of ~10◦using the approach outlined in this section.

6.1.3 3D Local Interest Point Characterisation

In this chapter keypoints have been extracted from all observations of the object. Their locations and

pose at observation have been projected into a common canonical space for the object. This section

addresses the central issue of this chapter: is there an approach for feature descriptor integration

from multiple observations which will allow a common representation of a 3D local interest point

on an object which will match to all keypoints members of the 3D local interest point? In order

to address this issue, feature descriptors from a collection of keypoints describing the same object
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(a) Example object at 145◦ (b) Example object at 150◦

(c) Example object at 175◦ (d) Example object at 205◦

Figure 6.8: Pose estimation test data

(a) Calculated surface normal against actuation angle (b) Error in calculated surface normal

Figure 6.9: Calculated Surface Normals
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location must be integrated together to form the 3D local interest point characterisation, therefore

there are 2 issues which this section addresses:

• Which keypoints should be grouped?

• What grouping approach should be applied?

In the previous section, the extracted keypoints from multiple observations have been clustered

together based on their locations to form the 3D local interest points. However, within these clusters,

keypoints from a variety of viewing angles exist. In previous chapters it has been shown, matching

with the Euclidean distance, that feature descriptors only remain invariant to around 30◦ of out-

of-plane view point change. Therefore, selecting feature descriptors from keypoints based on the

range of variation in observation angles should also factor when integrating feature descriptors, in

addition to keypoint location and scale.

In this chapter sets of keypoints within 3D local interest points are created by thresholding

membership of individual keypoints based on their observation angles. The variation of feature

descriptors within the 3D local interest points can therefore be controlled by varying the inclusion

of keypoints from surface observations with pose angles further from the surface normal. The

formation of these sets of keypoints are shown in Figure 6.10, where Set(10) includes all keypoints

which have been observed with a surface normal of 10◦ or less in their range image . The Set(20)

keypoints represents all keypoints collected where the local pose angle is 20◦ or less in their range

image; the set of keypoints Set(20) includes all keypoints within the subset Set(10). Equation 6.3,

formalises the definition of the 3D local interest point sets, and shows the inclusion of keypoints,

keyidx, in a set, given that the dot product between the keypoint surface normal, normkeyidx , and

the viewing axis, view, is less than or equal the set threshold.

view.normkeyidx



≤ 0◦

≤ 10◦

≤ 20◦

...

≤ 90◦

set0 = {seto, keyidx}

set10 = {set10,keyidx}

set20 = {set20, keyidx}
...

set90 = {set90, keyidx}

(6.3)
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Figure 6.10: Keypoints from Multiple Observations
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From the collection of keypoints in a set of angles, a characterisation of feature descriptors is

performed to form the descriptor for the 3D local interest point. This descriptor comprises a mean

feature descriptor for the set, and a measure of the variation within the set, µseti . To establish the

optimum approach for characterising the variation within the set of feature descriptors, a number of

approaches are investigated in this chapter. The investigated approaches are: Principal Component

Analysis (Jolliffe, 2005), the Mahanalobis distance (Bishop, 2006), and Fishers Linear Discriminant

(McLachlan and Wiley, 1992). Support Vector Machines (Cristianini and Shawe-Taylor, 2000), and

the Earth Movers Distance (Zhang et al., 2007) were also considered as an approach for character-

ising the feature descriptor variation. However, due to the dimensionality of the feature descriptors

and potential overlap in feature descriptor space between the area covered by differing features, the

complexity for an SVM or EMD solution would be prohibitively expensive.

The remainder of this section covers the implementation of each of the proposed feature descriptor

association approaches for creating a characterisation of 3D local interest points.

6.1.3.1 Principal Component Analysis

Principal Component Analysis, PCA, is a method of reducing feature descriptor dimensionality

without affecting match performance. This can be useful for saving storage space and increasing

match efficiency (Bishop, 2006; Jolliffe, 2005). Typically PCA is used with SIFT to reduce the

entire set of feature descriptors to a common principal component space in which the modes of

variance of all feature descriptors is maximised (Ke and Sukthankar, 2004b). In this experiment

a principal component space is created for each 3D interest point where the in-cluster descriptor

variation is minimised using a PCA space trained on the in-custer descriptors. When matching, all

feature descriptors are projected into this space and the Euclidean distance to the cluster feature

descriptor mean is taken as the similarity measure. The projection of the feature descriptors on to

the first 10 principal components of the in-cluster features can be seen in Figure 6.11. The in-cluster

feature descriptors are shown in magenta, and the out-of-cluster are shown in green. These feature

descriptors are taken from the cluster of keypoints shown in Figure 6.12, also with the in-class

keypoints shown in magenta, and out-of-class in green. It can be seen by inspection that in the

low dimensions of the PCA space, Figures 6.11a to 6.11h, the in-class cluster shown in magenta

forms a point around the cluster mean, whereas the out-of-class cluster is not tightly formed and
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covers a larger area. Subfigure 6.11g, however shows the final dimension in the PCA space, where

the within class features exhibit the most variation; here the magenta points can be seen to spread

out through the same area covered by the out-of-class features. This result shows that feature

descriptors projected into a PCA space based on their variance are well clustered when compared

with all other feature descriptors projected into the same space; in this instance it is possible to

form a characterisation for the 3D local interest points which fits well to all member keypoints

using PCA.

PCA is used to create a set of projection vectors defining the reduced feature space for the

principal components of the cluster feature descriptors, see Equation 6.4. The mean of the feature

descriptors belonging to the 3D interest point from this space are also stored, see Equation 6.6. The

PCA eigen vectors are used to project query descriptors into the reduced feature descriptor space of

the in-class descriptors, Equation 6.5, and compare the distance between the query descriptor and

the mean of the model descriptors using a weighted Euclidean distance based on the eigen values,

Equation 6.9.

[win, λin] = Eig(Cov (descin)) (6.4)

ˆdescin = descin.win (1 : n) (6.5)

µin = mean
(

ˆdescin

)
(6.6)

ˆdesc = desc.win (1 : n) (6.7)

dist =

√
sum

((
ˆdesc− µin

)2
)

(6.8)
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Figure 6.12: Single feature descriptor cluster, shown in magenta and located on the back of the
dragon head

wghtdist = diag

(√(
ˆdesc− µin

)T
λ(1 : n)−1

(
ˆdesc− µin

))
(6.9)

6.1.3.2 Mahalanobis Distance

The covariance matrix created for each cluster of feature descriptors can be used directly as a meas-

ure of descriptor similarity. The Mahalanobis distance is a multi-variant analysis approach which

decreases the weighting for the distance in the dimensions of the feature descriptor which have high

in-class variation (McLachlan and Wiley, 1992). It is hypothesised that in the Mahalanobis space

the distance within cluster features descriptors will show a smaller variation when compared with

non-member descriptors.

µ = median (descin) (6.10)

∑
= cov (descin) (6.11)
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dist = diag
(√

(desc− µ)T Σ−1 (desc− µ)

)
(6.12)

6.1.3.3 Fishers Linear Discriminant

Fishers Linear Discriminant, FLD, finds a vector on which to project the feature descriptors such

that the variance between non-members is maximised and the variance between members is min-

imise. The FLD distance can be found from the ratio of the covariance of non-member feature

descriptors, to the covariance of member feature descriptors, see Equation 6.16. Projecting the fea-

ture descriptors onto the FLD space shows a good separation of the within cluster feature descriptors

against out-of-cluster feature descriptors. Figure 6.13a shows the distribution of the within cluster

and out-of-cluster feature descriptors for a 3D interest point localised on the Dragon model, where

the green curve shows the distribution of out-of-class interest points, and the magenta curve shows

the distribution of in-class interest points. The in-cluster keypoints for the 3D interest point used is

shown in magenta on dragon model, see Figure 6.13b.

µi = mean
(
descin(i)

)
(6.13)

Σb = cov(µ) (6.14)

∑
= cov (descin) (6.15)

dist =
descTΣbdesc

descTΣdesc
(6.16)

6.1.4 Methodology Summary

This section summarises the processing approach proposed in this chapter for creating a keypoint

characterisation across a range of observations.

1. Keypoint extraction, keypoints are extracted from individual range images using 2.5D SIFT.
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(a) Distribution of keypoints in FLD space

(b) Keypoint 35 on Dragon model

Figure 6.13: Keypoint and descriptors in FLD space
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Keypoints are characterised as position in x, y and range, scale and SIFT feature descriptor.

These are single observation keypoints and can be extracted using any approach from Chapter

5, in this chapter the extracted keypoints are standard 2.5D SIFT applied to the range image.

2. Pose estimation, extracted keypoints have their local pose estimated from an 10x10 pixel

patch taken from the range image surrounding the keypoint location. The pose of the local

keypoints is stored as the keypoint observation angle..

3. Projection of keypoints into the canonical space, all keypoints collected from all range

images are projected in to a common, ’canonical space’. In this chapter, the projection of all

keypoints into the canonical space is achieved using the initial transformation applied to the

3D object for creating the synthetic range image, Section 6.2.1.

4. 3D interest point filtering and clustering, the 3D locations of all keypoints collected form

all range images represented in the canonical space form clusters around repeatable 3D loc-

ations on the object surface. However, many 3D localised keypoints do not associate with

any given cluster, these keypoints are removed through 3D density filtering, the remaining

keypoints are associated together into clusters.

5. Keypoint association, K-means clustering is applied to the filtered keypoint locations to

form groups of keypoints surrounding 3D interest points.

6. 3D interest point characterisation, The groups of keypoints are used to form examples of

different expressions of feature descriptor possible for a given 3D interest point on the object.

The mean value of the feature descriptors and the variation present in the group is recorded.

7. Matching, Query keypoints are matched to the database of collected 3D interest points using

either PCA, FLD or Mahanalobis distance, the effectiveness of each of the proposed matching

approaches in investigated in Section 6.3.

6.2 Experimental Setup

The aim of this experiment is to establish which methodology proposed in Section 6.1.3 is most

appropriate for creating a characterisation of a 3D local interest point, and using each approach

what range of keypoint observations may be matched. In order to evaluate the performance of
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the proposed characterisations, outlined in Section 6.1.3, each approach must be used to form a

characterisation for every 3D local interest point and evaluate which keypoints in the database

belong to this 3D local interest point. As multiple keypoints in the database should all match to

the same 3D local interest point, the experimental configuration outlined in Chapter 4 cannot be

directly applied. Furthermore, the models from Chapter 4 demonstrate a out-of-plane orientation

change in only the yaw axis. This limited range of object observations will result in a limited

range of keypoints which are viewed across a significant portion of the view sphere. To address

these issues this section decomposes the problem into two parts: the formation of a database with

examples from a more complete view sphere, and an approach for evaluating the performance of

matching descriptors extracted from example range images to their corresponding 3D local interest

points.

6.2.1 Synthetic Range Image Database

The test data used in Chapter 4, contains range images which exhibit out-of-plane observations

changes in the yaw axis only. This limitation in range image observations of an object reduces the

range of angles at which a keypoint may be observed, therefore reducing the number of keypoints

which may exist in each set of keypoints for a 3D local interest point, Section 6.1.3. To create

a complete set of observations for an object, a database of synthetic range image examples with

out-of-plane observation changes in both the yaw and pitch axes were created from models in the

Stanford 3D Scanning Repository. The orientation of the roll axis was fixed for all observations.

The synthetic range images are created at 10 degree intervals in azimuth and elevation surrounding

the object. Figure 6.14 shows the Dragon model with camera locations surrounding the object on a

sampling sphere. To reduce the level of variation in the extracted feature descriptors no orientations

change in the roll axis was applied and feature extraction was applied with no in-plane orientation

invariance. This approach has been shown by Agrawal et al to increase the performance of SIFT

descriptors in situations similar to those created here where objects are consistently viewed with the

same in-plane orientation, or roll axis (Agrawal et al., 2008).

To create the synthetic range images a rotation is applied to the 3D model to align it with the axis

of viewing observation. The viewing observation axis for each observation instance is the vector

which joins an observation point, shown in magenta in Figure 6.14, to the centre of the object.
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Figure 6.14: Dragon model with the locations of each view point shown as a magenta point

Hidden point removal is then applied to remove obscured vertices (Katz et al., 2007). The resulting

point cloud is then resampled to create the synthetic range image at a resolution of 2000x2000

pixels. The resultant range images are then resized to 10% of their original range image size before

extracting keypoints. All models in the Stanford 3D Scanning Repository have upwards of 5

million triangles.

6.2.2 Performance Evaluation

To evaluate the ability of the approaches outlined in Section 6.1.3 to characterise the variation within

collections of descriptors in a 3D local interest point, precision recall curves are used. Precision

recall curves are a parametric plot of the precision of a proposed approach against the approaches

recall. In this experiment the precision is defined as the ratio of number of keypoints which are

successfully matched to the given 3D local interest point, to the number of keypoints found. The

recall is defined as the ratio of number of keypoints which are successfully matched to the given

3D local interest point, to the total number of keypoints which should match to the given 3D local

interest point. In the evaluation methodology outlined here, all keypoints are ranked based on the

distance to the cluster mean in the learned descriptor space.

Precision recall curves are formed by progressing through the ranked list of keypoints, key(idx),

and evaluating whether each entry increases the precision and recall values. Each entry in the ranked

list is evaluated using the equations for precision and recall outlined in Equations 6.19 and 6.20,
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where i is the index for each entry in the ranked list idx, key is the database of keypoints and set is

the subset of keypoints that belong to the 3D local interest point. The precision recall curves in this

chapter are plotted as 1-precision against recall, thereby giving a similar appearance to ROC curves

used in previous chapters. Ideal performance is demonstrated at the point (0,1), where 1-precision

is 0, indicating that all keypoints found belong to the set, and recall is 1, indicating that all keypoints

which belong to the set were found. In this section the Euclidean distance measure is used as the

base-line ranking for characterising the 3D interest points, Equation 6.17. All results are shown as

a comparison between the proposed characterisation approach and the Euclidean distance.

dist =

√
sum

(
(desc− µseti)

2
)

(6.17)

idx = sort (dist) (6.18)

precisioni =

∑i
n=0 key(idx(n)) ∩ set

i
(6.19)

recalli =

∑i
n=0 key(idx(n)) ∩ set∑

set
(6.20)

Figure 6.16 shows different precision recall curves for keypoint sets formed using increasing

viewing angles from the surface normal, and the Euclidean distance. Each curve is formed by

varying the value of i for a given inclusion angle set, set. The precision recall curves for sets of

inclusion angles remove all keypoints in the database whose angle is greater than the set maximum

angle. It can be seen that there is no curve for feature descriptors collected at a viewing angle

closer than 0, 10, or 20 degrees from the surface normal as features detected at these angles are not

present in the majority of 3D interest points, Figure 6.15 shows the distribution of keypoints against

observation angle. The distribution of keypoint poses indicate that the majority of the keypoints

are detected around occlusion boundaries. In Figure 6.16, the performance of including keypoints

with surface normals greater than the viewing angle drops off steadily, with around 60 degrees

inclusions representing the boundary of indecision. In the next section the performance of various

distance metrics learned from cluster membership are compared for a range of observation angle
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Figure 6.15: Distribution of keypoints against observation angle

inclusions.

6.3 Results and Analysis

This section presents the results of 3D interest point characterisation using the approach outlined in

Section, under the performance criteria described in Section 6.1.3. . All precision recall curves for

learned 3D interest point characterisation approaches are compared against the performance of the

Euclidean distance in the subfigures below the performance for all angles.

6.3.1 PCA

Figure 6.17 shows the precision recall curve for PCA characterised 3D local interest points. Group-

ing descriptors based on the PCA space for each 3D interest point out performs the grouping based

on the Euclidean distance. Descriptors maintain a stronger similarity at 60◦, with better perform-

ance for all investigated angles.
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Figure 6.16: Precision recall curve for features clustered with the Euclidean distance

6.3.2 Mahalanobis distance

The Mahalanobis distance uses the same covariance matrix as the PCA approach for each view

angle set. The distance of feature descriptors in the covariance space is compared. This approach

shows a dramatic decrease in performance for angles up to 50◦; however it maintains a higher

performance when compared to the Euclidean distance in sets containing keypoints observed with

up to 90◦ of deviation in out-of-plane rotation from the surface normal.

6.3.3 FLD

Figure 6.19, shows the precision recall curves for distances measured along the Fisher’s Linear

Discriminant. This measure performances the poorest out of all investigated characterisation ap-

proaches and worse than grouping based on the Euclidean distance, with precision for angles greater

than 30◦ dropping to 0. The FLD distance finds a single vector along which the distances between

model and query can be measured. The space occupied by within cluster descriptors is multidimen-
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(a) Precision recall curve for all angles with PCA features
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(b) Precision recall curve for all angles with PCA

Figure 6.17: Precision recall curves for PCA learned features
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(a) Precision recall curve for all angles with Mahalanobis distance
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(b) Comparison with Euclidean distance

Figure 6.18: Precision recall curve for Mahalanobis distance
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sional and therefore this approach is inappropriate for characterising the 3D interest points.

6.4 Summary and Conclusions

This chapter has presented a methodology for creating and characterising view independent 3D

local interest points on a 3D free form object. The collection of view independent 3D local interest

points are created from a collection of view dependant SIFT keypoints extracted from range images.

An attempt to statistical characterise the underlying local structure of the object surface at these 3D

local interest points has been made from the collection of SIFT descriptors taken from all views,

such that the likelihood of matching a local feature descriptor from any given view to the 3D local

interest point to which it belongs is increased. The characterisation of keypoints in this manner

allows for the integration of multiple keypoint descriptors to form a ’typical’ descriptor for a 3D

local interest point and to give an indication of the variation in feature descriptor space which the

descriptor may express.

From inspection of the 3D clusters formed by the 3D local interest point locator, keypoints

characterising protrusions can be seen to be well represented. However, keypoints characterising

surface textures or macro surface features such as large scale inflections of the object surface are

not well represented. This chapter also found that using the current keypoint localisation approach

in range images there are few keypoints which are detected in observations where the local pose is

close to the surface normal.

Another limitation of the approach presented in this chapter is that the number of 3D local

interest points must be specified in advance, this number is expected to vary between objects de-

pending on the characteristics of the surface. As the number of 3D local interest points must be

specified in advance, online learning of objects through a continuous exploration of the observation

space is not possible. This requirement limits the applications of this approach to instances where

the full observation space of an object is available for creating the initial keypoint database. Fur-

thermore, the approaches presented for learning of variation in the feature descriptor space requires

that all feature descriptors are present for a learning iteration; therefore to perform online learning

and satisfy this requirement, all keypoints for a 3D local interest point must be stored.

The next chapter addresses the main issues identified with the approach detailed in this chapter.
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(a) Precision recall curve for all angles with distances in FLD space
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(b) Comparison with Euclidean distance

Figure 6.19: Precision recall curve for distance in FLD space
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Keypoint localisation is addressed by keeping all keypoints from all views, such that the 3D local

interest points are not required to be calculated. Furthermore, this chapter found that keypoints

localised in the range image tend to be localised around regions where the local pose is greater

than 40◦; keypoints in the next chapter may be localised in intensity images, therefore increasing

the range of poses over which keypoints may be observed. The increase of variation of feature

descriptors within sets with the increase of the surface pose inclusion criteria, is addressed by

compartmentalising the feature view space into a series of canonical views. In this chapter PCA

was found to give the highest performance of all characterisation approaches investigated. However,

the performance compared to the Euclidean was only marginal. Therefore, the feature learning

approach adopted in the next chapter will be performed by updating the view compartments with

keypoints which best relate to the compartment criteria.
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Chapter 7

View Compartmentalised Keypoints

Previous chapters have attempted to improve the performance of feature descriptors

when observed under changes in view point using either an invariant representa-

tions for single observation of keypoints or by combining multiple observations

to form a single characterisation of a keypoint location. This chapter joins these

two concepts by creating a keypoint composed of multiple observations arranged

in a compartmentalised keypoint. View compartmentalised keypoints have an ad-

ditional weighting component which allows a confidence measure to be assigned

to a compartment, based on the similarity of the viewing angle to the ideal obser-

vation angle for the compartment. A novel keypoint matching stage is introduced

to incorporate the keypoint weighting component.

7.1 Objectives

The surface description methods used to formulate the feature descriptors in Chapter 5 have relied

on a single observation of an object with which to create a view invariant descriptor. These ap-

proaches were found to only be capable of characterising a keypoint location on the object surface

within a tolerance of ±30 degrees change in viewing angle from the original observation. There-

fore, using the standard local feature extraction approach, without knowledge of the complete 3D

structure of the object and only a single observation, it is not possible to achieve a fully pose in-

variant local description which will hold for all viewing angles. Chapter 6 approached the problem

using a characterisation, modelling the descriptor space which a specific surface location can ex-
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press within a keypoint. The characterisation of the descriptor space for each keypoint was based

on observations from multiple viewing angles. Chapter 6 found that feature descriptors for the view

sphere surrounding a keypoint demonstrated a large degree of variation depending on the viewing

angle of the observer. This result shows that given different observations through the view sphere,

keypoints may display a range of differing descriptor expressions; for example, the orthonormal

view of a keypoint localised on a surface protrusion will contain many occlusion boundaries and

other diagnostic information which will be characteristic of the keypoint location. Although ap-

pearance information from the orthonormal view of a keypoint is diagnostic for characterising the

keypoint location, a keypoint may be equally well characterised by any one of its many silhou-

ette images, no single canonical view for a keypoint exists. Additionally large differences between

these multiple canonical views will cause each to fail to when matching to the others. Merging

the descriptors from each of the possible canonical views was found in, Chapter 6, to reduce the

distinctiveness of the resultant keypoint. Clearly a pose invariant feature descriptor must be capable

of characterising all these expressions of the same keypoint independently in addition to structuring

the observed data for matching purposes.

The approach taken in this chapter is to use the structure of the object surface and local pose

information from the range image to associate keypoints together in a training phase. The keypo-

int training and association phases create descriptors which characterise the different view-based

modes which a local feature can express: the orthonormal view, and a set of silhouette views cov-

ering a viewing hemisphere. The feature descriptors for each canonical view of a keypoint are then

concatenated together and stored in a view compartmentalised descriptor with an associated com-

partment weighting value for each keypoint compartment. The view compartmentalised descriptor

characterises the surface as measured from the given observation and the compartment weighting

value describes the confidence which can be placed in the associated feature descriptor match for a

compartment. Given a single keypoint observation, the extracted feature descriptor is initially as-

signed to every compartment and a weighting is calculated for the assignment to each compartment

based on the 3D pose of the keypoint.

The 3D pose of a keypoint is calculated using the 3D pose estimation approach outlined in

Chapter 6. This approach considers the range image as a 3D point cloud and calculates the principal

components of the X, Y and Z points in a local support region surrounding the keypoint. In Chapter
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Figure 7.1: Local patch 3D orientation established through PCA, where the first eigenvector cor-
responds to the eigenvector with the largest associated eigenvalue

6, the Eigenvector corresponding to the lowest eigenvalue of the point cloud covariance matrix is

used as an estimation of the surface normal of the keypoint. However, this chapter extends this

approach by additionally using the second eigenvector as an estimate of 3D in-plane orientation of

the local patch, see Figure 7.1.

As the compartment weighting value is to be included in the keypoint matching process the

standard Euclidean distance metric cannot be directly applied for matching keypoints. To incor-

porate the compartment weighting value in the keypoint matching process, a weighted Euclidean

distance approach is outlined and validated. Additionally, keypoints can be trained across a range

of observations, to achieve this, an approach for updating existing keypoints in a database as new

observations of the same keypoints from different poses become available is presented.

In this chapter a methodology is outlined for the association of the observed feature descriptors

with their respective compartments in the view compartmentalised keypoint, and the implementa-

tion of the weighting function used for matching. This chapter contributes an approach for structur-

ing keypoints based on 3D pose and for matching keypoints based on a confidence score for target

and query view compartments. This chapter presents both the methodology and the experimental
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results, using the experimental design detailed in Chapter 4. The remainder of this chapter is or-

ganised as follows: Section 7.2.1 outlines the approach for determining the invariant local 3D pose

space of the keypoint; Section 7.2.2 details the approach for establishing the compartment weight-

ing value; Section 7.3 details the weighted Euclidean distance function for matching view compart-

mentalised descriptors; Section 7.5 details the results of the view compartmentalised descriptor in

comparison with other local feature descriptors; Section 7.6 concludes the chapter with a summary

and discussion of the approach and results.

7.2 View Compartmentalised Keypoint

The view compartmentalised keypoint is an approach for dividing a viewing hemisphere of an

individual keypoint into a series of views, such that information regarding the appearance of the

keypoint from each view can be encoded. The approach to formulating view compartmentalised

keypoints was inspired by view bubbles, introduced by Peters and Zitova (Peters et al., 2002), where

views of an object are characterised based on their similarity across the viewing space. However, in

this application not all views are immediately available, therefore a characterisation of the difference

between these is not possible; as a solution to this, the view compartmentalised keypoints store

information from the views which have been observed in view compartments within the keypoint.

In this approach each keypoint comprises a location, scale, 3D pose represented as a directional

cosine matrix, and a series of compartments each with a SIFT feature descriptor and a weighting

value, describing the confidence in each keypoint compartment for the viewing angles where the

keypoint has been observed. The arrangement of compartments is aligned with the directional

cosine matrix, defining the 3D orientation of the surface at the keypoint location. This alignment

step aligns the keypoint viewing hemisphere with the keypoint surface normal and a calculated 3D

in-plane orientation of the keypoint.

Figure 7.2a shows the arrangement of compartments covering the keypoint viewing hemisphere

surrounding the keypoint location, the black arrow represents the surface normal at the keypoint

location, the green arrow represents the in-plane surface orientation. Figure 7.2b shows the key-

point viewed from the surface normal with the keypoint viewing hemisphere decimated into com-

partments, numbered 1 to 8; the resulting descriptor weighting vector is shown below, the green

arrow represents the in-plane keypoint orientation. Figure 7.2c shows an example of the keypoint
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weighting vector for a keypoint extracted from a 3D object. In the example shown in Figure 7.2c,

compartment 2 best aligns with the viewing angle and therefore has the highest weighting value,

visualised as a light coloured weighting element, represent a high weighting value. Equation 7.1

gives an outline of the extracted keypoint measurements; a SIFT descriptor for each view compart-

ment, a corresponding weighting value for each view compartment, a keypoint pose component

defining the 3D orientation of the keypoint, a keypoint scale and a 3D X, Y, Z keypoint position.

This keypoint extraction process allows for a keypoint to be detected, its descriptor computed

and a match to be made based on a single observation. However, in addition to single obser-

vations keypoints the view compartmentalised keypoint extraction approach can allow keypoints

locations which overlap between successive views to be integrated together, forming a more com-

plete description of the 3D appearance of the local area surrounding a keypoint. The integration of

keypoints from differing viewing angles can be achieved by updating the keypoint descriptor and

weighting compartments when a new keypoint with a higher compartment weighting value for the

same location on an object becomes available. The modular keypoint structure, see Equation 7.1,

allows extracted descriptors to be of any type (investigated in Chapter 5), and extracted from either

the intensity or depth modalities or combinations of both.

Key =



{Desc1,1:128, Desc2,1:128 . . . Descn,1:128} ,

{Wght1,Wght2 . . .Wghtn} ,

Pose3,3,

σ,

x, y, z


(7.1)

7.2.1 3D Keypoint Pose

The 3D pose of extracted keypoints is calculated using the local pose estimation outlined in Chapter

6. This chapter, however, extends the local pose estimation to use the second eigen vector as an

estimation of in-plane 3D pose of the surface patch. The use of the second eigen vector to define an

orthogonal principal axes is used in similar approaches for aligning 3D CAD models so as to extract

descriptors (Furuya and Ohbuchi, 2009). The validation data from Chapter 6 was used to track a

keypoint on the test object surface through examples of synthetic range images. A comparison of

the estimated in-plane 3D pose angle against the ground truth is shown for a range of views of the
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(a) View compartmentalised keypoint (b) View compartments viewed from the surface normal, and
resulting weighting vector

(c) Example of view compartmentalised keypoint sampling a 3D
object

Figure 7.2: View compartmentalised descriptor
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(a) In-plane surface orientation estimation (b) Instability of second eigen vector for pose estimation

(c) RMS error for second eigen vector in pose estimation

Figure 7.3: In-plane surface orientation validation

keypoint in Figure 7.3a.

It can be seen that the calculated 3D in-plane pose orientation gives a close estimate of the actual

in-plane orientation for 65% of the test examples. However, many of the incorrectly estimated ex-

amples show an in-plane ambiguity of 180◦. Figure 7.3b shows the second eigen vector component

of the 3D pose estimation duplicated with a 180◦phase shift. Including this effect the in-plane pose

estimation gives a close estimation for 95% of the example cases, only incorrectly labelling the 0◦

case. The root mean square error for the pose estimation is shown in Figure 7.3c, the maximum

in-plane orientation inaccuracy is ∼ 18◦.
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Figure 7.4: Segment Boresight

7.2.2 Pose Weighting

The pose weighting for a compartment is calculated as a linear function of the angular distance

between the aligned compartment boresights and the viewing angle,
[

0 0 1

]
, see Equation

7.3. A compartment boresight is defined as the optimum viewing angle of the canonical view for

the given compartment, see Figure 7.4. The compartment boresights are formed from the angle

C(Ψ), which defines the angular distance from the surface normal to the compartment boresight,

and the angle C(Θ) which defines the angular division of the hemisphere surrounding the keypoint.

These measures define a set of boresight vectors covering a viewing hemisphere, see Figure 7.2a.

Figure 7.5, shows the compartment boresights on a range image before alignment, θcompartment,

in blue. These are then rotated to align with the 3D local pose of the keypoint, Mpose, to give the

boresights in the keypoint space, θboresights, shown in red, see Equation 7.2.

The weighting function is calculated from the comparison of the observation vector,
[

0 0 1

]
,

to each of the compartment boresights vectors, θboresighti . The dot product between these vectors

gives the cosine distance which is linearised with the arc cosine. The result varies between 0 andπ/2,

such that dividing by π/2 allows the pose weighting to vary between 0 and 1, see Equation 7.3.

θboresighti = Mposeθcompartments (7.2)

Wghtposei =
acos(dot(θboresighti , viewangle))

π/2
(7.3)
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Figure 7.5: View Compartment Boresights

7.2.3 View sphere decimation

The view sphere is partitioned by the choice of boresight locations. These are chosen such that

each compartment covers an angular range greater than twice the uncertainty in the keypoint pose

estimation. The keypoint pose uncertainty was found in Section 7.2.1 to be ∼ 18◦. Therefore, view

compartments should have a minimum width of 36◦. Additionally, the maximum separation should

be set to reflect the range of views over which a local feature descriptor remains stable, this sets an

ideal maximum separation of 30◦. However, an increase in the number of view compartments cre-

ates an increase in the length of keypoint feature descriptor, and therefore an increase the processing

power required to match descriptors. Accounting for these factors the view sphere decimation is ini-

tially set as a compromise between descriptor length and feature descriptor stability, with boresight

separations of C(Θ), C(Ψ) = 45◦, allowing 180◦ of view hemisphere to be partitioned into 3

compartments. This arrangement gives 9 compartments, 1 central, and 8 surrounding the surface

normal, and a feature descriptor of length 9x128 = 1152 elements.

7.2.4 Compartment Assignment

During a training phase the view sphere of an object may be explored. Locations on the object sur-

face may be tracked using motion ground truth, ICP, optical flow or keypoint consensus approaches

such as the GHT; using these approaches it is possible to establish the association between indi-

vidual keypoints from multiple observations. Individual keypoints of the same scale from differing
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observations which demonstrate large overlaps in sample area can be considered to belong to the

same master keypoint, with the individual keypoints describing differing expressions of the keypoint

for differing viewing angles. The view compartmentalised keypoint approach integrates individual

keypoints, describing the same location on the object, together to form a master keypoint by sub-

stituting compartments from keypoints in the database with corresponding keypoint compartments

when a higher confidence value becomes available.

Figure 7.6, shows an example of this substitution approach where 3 observations of a keypoint

are collected from differing viewing angles. The keypoint observations have different compartment

weightings based on the pose of the keypoint at the point of observation, these are shown as shading

of the keypoint compartments. In the association stage the view compartments with the higher

weighting values replace those view compartments with lower weightings to form the single master

keypoint which then describes all the original keypoint locations.

7.3 Matching

The matching function for the view compartmentalised keypoint extraction algorithm presented in

this chapter must account for both descriptor matches between the compartments of the model and

query keypoints and the compartment weighting values. The confidence values for each compart-

ment are based on the pose of a query keypoint and the learned appearances of the target keypo-

ints. In order to utilise the additional confidence information in the matching approach a weighted

Euclidean distance is proposed. The weighted Euclidean distance weights the dimensions of a Eu-

clidean space by the product of confidence measures for corresponding compartments in the model

and query keypoints. The keypoint compartment weightings in the model and query keypoints are

termed: modelWghtcompi and queryWghtcompi . The product of these compartment weighting

values are used to create a weighted space which is unique to each model-query keypoint pair. To

compare the distances between all query and model keypoints, the weighted spaces of each model-

query keypoint pair must be normalised to unit length, see Equations 7.6 and 7.7. Matches between

model and query keypoints are then established using the Log-likelihood of the model-query pair

distances as used in Chapters 3 and 5, and in SIFT (Lowe, 2004, 1999), see Equation 7.8.
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V ali = queryWghtcompimodelWghtcompi (queryDesccompi −modeDesccompi)
2 (7.4)

ˆV al =
√∑

V ali (7.5)

normWght =
√∑

(queryWghtcompimodelWghtcompi)
2 (7.6)

dist =
ˆV al

normWght
(7.7)

Match =


1, if dist1dist2

< distRatio

0, otherwise

(7.8)

7.3.1 Matching Validation

A system for matching view compartmentalised descriptors should have the following desirable

qualities:

• A match should be established where a descriptor match in a compartment with a high weight-

ing value exist.

• Keypoints where a descriptor match does not exist but a view compartment has a high con-

fidence should be rejected.

• Descriptor matches which exist in incorrect view compartments should be rejected.

• Keypoint matching should be robust to noise in either the feature descriptor, the compartment

weighting or both.

To investigate the effectiveness of the proposed weighted Euclidean distance with regards to these

criteria, the system was tested on synthetic data. The synthetic example data was created with char-

acteristics similar to the intended application. However, in order to visualise the data a simplified

validation was conducted with reduced complexity descriptors.
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A database of 10 keypoints each with descriptors of length 20 elements was created using a ran-

dom number generator. The descriptors are divided into 10 compartments each with descriptors of

length 2 elements, each descriptor compartment vector is normalised to unit length, see Figure 7.7a.

Note that this normalisation stage reflects the normalisation stage of the view compartmentalised

keypoint descriptors proposed in Section 7.2; where the feature descriptor for each compartment is

normalised to unit length. However, the final view compartmentalised feature descriptor vector is

not of unit length. The baseline query view compartmentalised feature descriptor vector is created

from the concatenation of one descriptor compartment from each of the keypoints in the database,

see Figure 7.7c. The query compartmentalised feature descriptor vector is repeated to create a data-

base of query view compartmentalised descriptors. The database of keypoint weighting vectors is

formed by assigning each of the query descriptor vectors a different compartment weighting vector.

In the initial experiments in this validation the query weighting value is either set to 1 to represent

the presence of a compartment or 0 to denote the absence, see Figure 7.7b. Using this synthetic data

4 experiments were conducted. The remainder of this section details these validation experiments.

7.3.1.1 Descriptor matches in compartments with high compartment weightings

The weighted Euclidean matching function was tested for its ability to minimise a distance between

query keypoints and a known database keypoint match. The results for the distances are displayed

as a match matrix showing the distance between every query keypoint and database keypoint pair,

dark blue indicates a low distance between the keypoints in match space, which corresponds to

a high match score. Figure 7.9b, shows the results of comparing keypoints with identical feature

descriptors, although differing compartment weighting values for each keypoint. In this experiment

there is a strong keypoint association along the diagonal of the match matrix where the correct

matches between query and database keypoints exist. This result shows that correct matches ex-

ist where descriptor matches are in the correct compartments with a high compartment weighting

value. Matches exist for all other compartments, however these compartments have low weighting

values and as a result are suppressed by the matching function.

Shuffling the query weighting function shows the match matrix following the new weighting

function, maintaining correct matching correspondence between the query and database keypoints,

see Figure 7.8b. This result shows that the order of the keypoints in the query database does not
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affect the match score.

7.3.1.2 Descriptor matches with low compartment weightings

To investigate the case where descriptor matches exist with low compartment weightings, the data-

base compartment weightings were shuffled. In this example, descriptor matches exist along the di-

agonal of the database keypoints; however these compartments in the database keypoints have now

been assigned a low weighing value. As a result the match matrix for this experiments shows that

no distinct keypoint matches, see Figure 7.9a. This result demonstrates the ability of the weighted

Euclidean distance to suppress keypoints which have a descriptor match in the correct compartment,

although have a low confidence measure for the matching compartment.

7.3.1.3 Descriptor matches in incorrect compartments

This section tests the ability of the weighted Euclidean distance to discern between similar ap-

pearances existing in different canonical views of an example of keypoints. In this circumstance

individual feature descriptors will form matches however the compartment ordering will be incor-

rect. The compartment ordering in a view compartmentalised descriptor is a result of the structuring

of the keypoint based on 3D pose. An example of this is created in the synthetic keypoints by mov-

ing the query keypoint compartments round by one compartment, see Figure 7.9b. In this example

the keypoint match scores indicate that there are no distinct matches. This validation establishes

the ability of the matching function to reject correct descriptor matches where high compartment

weightings exist in both model and the query keypoints, although the order of the compartments is

incorrect.

7.3.1.4 Descriptor matching in the presence of noise

Robust keypoint matching where noise is present is another desirable property of any matching

system. To investigate this 10% descriptor noise and 10% weighting noise are applied to the query

keypoints, the match matrix for this result shows high match scores across the diagonal. However,

in this experiment high match scores can be seen elsewhere in the match matrix, indicting false

positive matches. This effect is potentially the result of low descriptor dimensionality in the test

data. To investigate further a set of database view compartmentalised keypoints were created with
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Figure 7.10: Matching function validation results with 10% descriptor noise and 10% weighting
compartment noise, match matrix

compartment descriptor lengths of 30 elements. The experiment using the 30 element compart-

ment descriptors uses a lower descriptor noise of 1% was and a higher weighting noise of 30%

to emphasis the effect of noise in the compartment weighting. Figure 7.11, shows the query view

compartment weightings and the corresponding match matrix. In the match matrix it can be seen

that the highest match scores are those for the correct matches. However, good match scores can

also be seen to be highly correlated with query compartment weightings. This artefact is explain

by the fact that all query descriptors have a corresponding database match in every view compart-

ment. However, this result does indicate that the proposed weighted Euclidean distance has a high

sensitivity to the view compartment weightings.
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Figure 7.11: Compartment weighting and match matrix for view compartmentalised keypoints,
with descriptor length of 30, 10 compartments, 1% descriptor noise, 30% weighting noise
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7.4 Approach Overview

This section summarises the steps taken to create a view compartmentalised keypoint.

1. Keypoint localisation, Keypoints are localised in either range or intensity images or both

using the SIFT keypoint localising approach. The structure of keypoint localisation used

by the view compartmentalised keypoints allows the extraction process to take advantage of

multimodal features, investigated in Chapter 5.

2. Keypoint extraction, keypoint are extracted using the processes found in Chapter 5 to give

the most repeatable keypoint descriptors, these were: Affine corrected SIFT keypoints and

element corrected 2.5D range SIFT keypoints. In addition to these standard SIFT is included

as a baseline comparison.

3. Keypoint pose estimation, Following feature localisation and extraction, each of the key-

point locations has an associated local 3D pose. This pose is based on the principal axes of

sample points on the range surface surrounding the keypoint. The principal axes are defined

as the surface normal and a 3D in-plane orientation component.

4. Compartment weighting function, A weighting value for each compartment is established

through the comparison of the viewing angle with a set of compartment boresights aligned to

the keypoint pose. The weighting function is determined as a linear function of the angular

difference between the current view and the canonical view for any given compartment.

5. Update database keypoints, the database of keypoints is created during an exploration of the

view space. While exploring the view space, points on the surface are tracked and keypoints

extracted from the same scale and are of a distances of less than 50% of the sample patch size

are associated together. The association of keypoints from the same location is achieved by

updating existing keypoint compartments in the database with new keypoint compartments

which have a higher compartment weighting value.

6. Keypoint matching, A weighted Euclidean distance has been introduced which allows key-

points to be compared based on compartments with a shared level of confidence. To match

view compartmentalised keypoints, descriptor matches must exist in compartments which
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have a significant weighting value. The compartment weighting value serves to reject key-

points where the level of confidence for a given observation is low, while the compartment

assignment function serves to compare keypoint appearances from similar views.

7.5 Results and Analysis

This section covers the direct comparison of keypoint pairs from single observations using the ex-

perimental methodology outlined in Chapter 4 to form ROC curves, Section 7.5.1. An example

of the exploration of the view sphere for view compartmentalised keypoints with 9 compartments

is presented in Section 7.5.2; where the range images which formed the best match to each com-

partment for a single keypoint through multiple observations are displayed. Additionally a view

compartmentalised descriptor with 3 compartments is also investigated in Section 7.5.3.

7.5.1 ROC curve performance

The ROC performance of the top feature extraction approaches found in Chapter 5 were com-

pared with their equivalent view compartmentalised keypoint extraction approaches. This experi-

ment investigates the effects of view compartmentalisation on a pair of keypoints each generated

from a single observation. The view compartmentalised descriptors have a repetition of the feature

descriptor component in every compartment with only the compartment weighting value changing

between compartments in a keypoint. Therefore, this experiment investigates the combination of

keypoint pose estimation and the resulting weighting and matching function. Figure 7.12 shows the

performance for keypoint matches formed from a single observation.

The results show that for all cases the resultant view compartmentalised keypoints exhibit a

decreased performance when compared with the non-view compartmentalised keypoints, with the

exception of the unmodified SIFT case, where the view compartmentalised keypoints exhibit a

marginal improvement in performance. As all keypoint compartments contain the same feature

descriptor, which forms matches between instances in the non-view compartmentalised keypoints,

the decrease in performance is expected to be attributed either to the instability in pose estimation

observed in Section 7.2.1, or the weighted Euclidean distance function.
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Figure 7.12: View Compartmentalised Keypoints ROC curve
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7.5.2 Pose based compartment assignment

Keypoints compartments in the database may be updated during an online learning phase when

keypoint observations with higher compartments weighting values become available. The com-

partments with higher weighting values then replace the original database keypoint compartment

characterising the same keypoint view. To investigate the views which are stored as the canonical

views of the object for each compartment the view space of the Dragon model, used in Chapter 6,

was explored for a manually labelled location on the object surface. The manually labelled loca-

tion was then transformed between observations instances using the inverse of the transformation

applied to create each synthetic range image. Figure 7.13a, shows the first view of the object in the

exploration; here every compartment of the the database keypoint is updated with the those from

the current observation. In the initial view the upper left most compartment, compartment 9, shows

the highest confidence, this indicates that the in-plane orientation has assigned this compartment to

the lower left most corner of the object. Figure 7.13b, shows the state of the view sphere explora-

tion after the lower half the view sphere has been covered, half the compartments in the database

keypoint have high confidence values. Additionally, the weighting values indicate that the current

view of the keypoint best aligns with the central view compartment.

By recording the range image from each of the views which best aligns with the compartment

boresights a visual representation of the optimum viewing angle for each compartment can be cre-

ated, see Figure 7.14. This figure shows the compartments in the same arrangement as shown in

Figure 7.13a, where compartment 1 is in the centre, with compartments 2 to 9 surrounding starting

from the top and increasing in number clockwise. From this figure it can be seen that the highest

candidate matches for each of the keypoint compartments appear to be incorrectly identified, in-

dicating that the pose estimation for the keypoint at these locations has been incorrectly estimated.

From the examples presented in Figure 7.14, the incorrect pose estimation appears to result from

the object viewed at extreme observation angles resulting in the keypoint pose estimation sample

patch sampling the surface as a point cloud with high variability.

7.5.3 Reduced complexity compartmentalised keypoint

In Section 7.2.1 the in-plane orientation estimation was shown to be unstable and liable to 180◦

shifts in pose estimation, whereas the surface normal estimation outlined and investigated in Chapter
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(a) Initial exploration

(b) Half view sphere explored, observation taken at surface normal

Figure 7.13: View space exploration and database keypoint compartment weighting value update
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Figure 7.14: Top range image matches for each compartment
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6 was found to be more stable, due to the ±90◦ limitation in surface normals offered by the range

image. In addition to the limitation in views offered by the nature of the range image, the test data

used for the experiments is limited to applying an out-of-plane rotation only in the yaw axis. These

limitations in data allows a reduced complexity compartmentalised keypoint to be formulated which

investigates the performance of the view compartmentalised keypoint methodology in an example

of reduced complexity.

The reduced complexity example has compartment boresights along the yaw plane at ±45◦ and

0◦, see Figure 7.15a shows an example of the weighting component of the keypoint. The view space

was then explored along the yaw plane only and the range images with the highest confidence in

each compartment is shown in Figure 7.15b. The highest candidate matches in this example appear,

by inspection, to be more intuitively correct. Figure 7.16, show the ROC curve for this arrangement

of view compartmentalised keypoint. It can be seen that view compartmentalised SIFT with 2D

intensity gradients shows a significant improvement in ROC performance when compared with the

9 compartment view compartmentalised keypoints. View compartmentalised Element Corrected

SIFT shows a marginal improvement in ROC performance, however view compartmentalised Affine

corrected SIFT shows a decrease in ROC performance. Further improvements are expected with

more stable estimations of keypoint 3D pose.

7.6 Summary and Conclusions

This chapter has introduced view compartmentalised keypoints, which utilise range data to create

a 3D structured keypoint description from standard SIFT keypoints. Standard SIFT keypoints have

stages in processing pipe-line for correcting for in-plane orientation invariance and increasing fea-

ture descriptor distinctiveness through a measure of the composition of the surface statistics. This

is achieved through aligning the measurement aperture with a calculated canonical orientation and

spatially dividing the area surrounding the keypoint into a series of sub patches. The aim of the

approach presented in this chapter has been to apply an analogous methodology, inspired by the

concept of canonical views from view bubbles (Peters et al., 2002), for aligning keypoints with a

canonical 3D pose and compartmentalising an appearance of the keypoint at each observation angle.

In Chapter 5 it was noted that range images alone do not form many keypoints and typically have

low surface variation. Whereas, intensity images form a greater number of keypoints and encode a
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(a) View space exploration showing database keypoint being updated with current keypoint compartments

(b) Top range image matches for each compartment

Figure 7.15: View space exploration for view compartmentalised descriptor with 3 compartments
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Figure 7.16: View compartmentalised keypoint with 3 compartments
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richer level of texture information. Both modalities, however suffer from appearance changes due

to pose, such that single observation keypoints are restricted to ±30◦ of out-of-plane view point

changes. Therefore, the approach outlined in this chapter was aimed at realising the potential of co-

aligned range and intensity images to create a pose invariant object description, by utilising range

images to establish a set of canonical views, and both range and intensity features to characterise

the keypoint appearance in these views.

This was achieved through a view compartmentalised keypoint arrangement comprising a key-

point feature descriptor and weighting value for each view compartment, and a novel weighted

Euclidean distance. The compartment weighting values characterise how well a given observation

of a keypoint aligns with the optimum view for each view compartment. The weightings are used in

a training phase, where the view sphere of the object is explored, and subsequent views of a keypo-

int are used to update a master keypoint. During the matching phase, a weighted Euclidean distance

is used to ensure that only descriptors as observed from similar viewing angles are compared. A

set of 4 desirable properties for the proposed weighted Euclidean distance were identified and the

system was validated with tests conducted on synthetic data.

The performance of point-to-point correspondences from single observations of view compart-

mentalised keypoints was investigated using the experimental configuration from Chapter 4. The

results of the ROC curves for view compartmentalised keypoints with 9 compartments exhibited

a significantly decreased performance when comparing view compartmentalised keypoints to their

non-view compartmentalised counterparts. An exploration of the view space of the object for a

single keypoint instance showed that this result was due to an instability in the calculation of the

compartment weighting resulting from an instability in pose estimation. In order to investigate view

compartmentalised keypoints with a reduced dependency on the 3D in-plane pose estimation, a view

compartmentalised keypoint with 3 compartments was proposed and investigated. Through the ex-

ploration of the view space of an object for single keypoint, the compartment assignment for these

keypoints demonstrated a greater level of stability than the case of 9 view compartments. Using the

3 compartment view compartmentalised keypoints the ROC curves, in most cases, showed a mar-

ginal, however statistically insignificant, increase in feature matching performance when compared

with non-view compartmentalised keypoints, with the exception being for Range-Affine intensity

features.
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Chapter 8

Conclusions and Future Work

This chapter summaries the research conducted in this thesis and the placement of

this work in the current literature. The achievements and limitations of the work

conducted are outlined. The chapter concludes with potential directions for future

work, where the work conducted in this thesis may be furthered or applied.

8.1 Thesis Objectives

The objective of this work was to investigate the use of range and intensity imaging modalities

in local features. Range images have been frequently cited in the literature as having desirable

properties for many applications. The recent availability of co-aligned range and intensity domain

information for applications, such as robotics, has prompted the question of how to combine these

imaging modalities to form a single robust local feature representation for a location on an object

surface. The SIFT architecture was chosen to achieve this goal as this have been frequently cited,

and the structure of the algorithm pipeline is readily reconfigurable, allowing the application of the

range imaging modality in a local feature context to be investigated.

This objective was decomposed into the following goals:

• Create a validation approach and co-aligned range and intensity image dataset to gauge the

performance of all modifications, and ensure that the work consistently progressed with meas-

urable improvements.

• Examine the applications of range domain images and co-aligned range and intensity images
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in the existing SIFT structure, as an approach for improving the invariance of keypoints to

common transformations.

• Extend the current SIFT structure through processing of extracted feature descriptors to ac-

count for variation resulting from pose changes.

In order to address these objectives this thesis has followed a structured approach for evaluating

the available design choices when formulating SIFT-like features, and analysing where range and

intensity information may be applied to best improve the resultant description of a location on an

object between observations.

At the beginning of this thesis the following hypothesis was made:

“This thesis argues that it is possible to achieve a performance improvement over

existing local feature matching approaches by exploiting information from co-

aligned range and intensity domain images. Range images offer a partial repres-

entation of the 3D object surface which can allow keypoint feature descriptors to

encode further information regarding the 3D appearance of the keypoint, which is

unavailable when using only the intensity imaging modality. This additional in-

formation regarding the object structure can be encoded together with the intensity

domain information to form a robust local feature descriptor for an image location.”

These objectives have been achieved and the hypothesis has been validated through the work con-

ducted and detailed in this thesis. The conclusions of this work are summarised in the next section.

Furthermore, the future work section details areas of research which may advance the work in this

thesis to improve range and intensity local features further.

8.2 Contributions

The key intellectual contribution of this thesis is to advance the understanding of how to best exploit

range images and show how to best combine the information from range and intensity modalities

for the purposes of feature extraction. The following contributions resulting from this work address

the initial objectives and hypothesis:

The Major Contributions of this work are:
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• Analysis and formulation of multimodal combinations of features, and feature structures.

• Element Corrected SIFT features and Range-Affine SIFT features, both of which advance the

state of the art in local feature repeatability.

• A study of local feature integration in range images captured from multiple observation

angles.

• View compartmentalised features, which allow the structure of keypoints to be view optim-

ised.

The Minor Contributions of this work are:

• Benchmark experimental methodology for examining the effect of local feature matching

between observations differing in pose by an out-of-plane rotation.

8.2.1 Multimodal SIFT features

Prior to this study SIFT features have been typically localised and described in a single imaging

domain for creating repeatable local features. This thesis extends this approach by including in-

formation from both the range and intensity domains as a means to localise and formulate keypoint

descriptions. The modularity of the SIFT processing pipeline allows the extraction process to be

decomposed into the stages of scale space feature localisation and characterisation, which com-

prises canonical orientation sample patch correction, and feature descriptor extraction. The use of

information from the range or intensity domain, or the use of information from both domains to per-

form the actions of each of these two stages, allows for the creation of 9 differing types of features

extraction processes.

Cross modal features, combining range localisation and intensity descriptors, and intensity loc-

alisation and range descriptors, were formed by applying the extraction process in one domain and

the characterisation process to the other. However, the combination of features which were local-

ised in both domains or characterised in both domains presented two distinct questions of how to

combine keypoint locations and how to combine keypoint characterisations. As a solution to these

challenges a methodology was proposed, whereby the extraction process remains as two distinct

stages and the combination of multimodal information is executed in each stage independently. For
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multimodal keypoint localisation, keypoints are localised in each domain and their resultant keypo-

int locations and scales are concatenated. For multimodal keypoint descriptors, keypoint locations

had a canonical orientation estimated independently for each domain; a descriptor sample patch

was aligned to the calculated canonical orientation in each domain; and a surface gradient meas-

ure is extracted to form the feature descriptor for each domain. The two feature descriptors both

describing the same image location, however extracted from differing domains are then concaten-

ated and renormalised to form a 256 element multimodal feature descriptor. This feature descriptor

comprises a 128 element SIFT descriptor from each domain. The equal number of elements in the

descriptors resulting from range and intensity, attributes equal weighting to information extracted

from each domain.

The performance of the proposed cross modal and multimodal features for matching under out-

of-plane pose variation was evaluated using the turn-table and stereo camera experimental configur-

ation. From the analysis of the combinations of cross modal and multimodal features it was found

that the optimum performance is achieved using a keypoint extraction process localising keypoints

in both range and intensity, and applying a keypoint characterisation stage using information from

the intensity domain images only. By the examination of other combinations of cross modal and

multimodal keypoints it was found that range localised features typically gave better ROC perform-

ance for high sensitivity levels, although fewer keypoints are produced. Feature descriptors formed

from range image surface gradients do not form as robust feature descriptors as expected.

8.2.2 Element Correction and Range Estimated Affine

The analysis of features extracted from co-aligned range and intensity images was extended to

investigate an increased complexity in sample patch pose correction and surface measurements.

This resulted in two sets of experiments, one to investigate the effect of sample patch pose correction

approaches and another to investigate feature descriptor formation from a range of different surface

measures.
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Figure 8.1: Multi and Cross Modal Feature Extraction Pipe-line

8.2.2.1 Sample Patch Pose Correction

The sample patch pose correction approaches presented in this thesis investigates in-plane orienta-

tion invariance, affine correction, and full projective pose corrected sample patches. In addition to

the level of sample patch pose correction applied, the modality from which the pose estimation of

the sample patch was formed was also investigated.

The out-of-plane pose estimation of the sample patches was determined by means of a calcula-

tion of the local slant and tilt measures from either the range or intensity image values of a limited

region surrounding the keypoint. Using these measures the sample patch correction approaches

were applied. For the in-plane orientation invariance and affine pose correction, the pose corrected

sample patches were established deterministically by applying the corrective transformation to the

sample point locations. However, full projective pose correction required that the viewing axis of

range surface was aligned with the surface normal and a rectilinear sample grid of sample points

placed. The sample points were then projected back into the space of the original range and intensity

images and then used as sample point locations for creating a feature descriptor.

The performance of the formulated pose corrected features was established using the calibrated

turn-table and stereo camera configuration. The performance of feature extraction approaches were

expected to increase as the level of out-of-plane correction was increased; affine features were ex-

pected to out perform in-plane corrected, and full pose corrected features were expected to increase
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Figure 8.2: Sample Patch Corrected Feature Extraction Pipe-line

performance further. However, it was found that the optimum performance resulted from a local

feature extraction approach comprising detection with descriptor extraction from the intensity im-

ages with an affine pose estimation and sample patch correction established from the range image.

Conversely, range localised and range pose corrected features showed a decrease in performance.

These results can be explained by the poor performance of the pose estimation approach in regions

with high range variability, in these the pose estimation remains unstable, no matter how many

range features are localised. The performance of intensity features may be explained by a more

stable pose estimation from the surrounding range surface.

Full pose corrected features exhibited a further decrease in performance, this result may be ex-

plained by the non-linear placement of sample points on the image, such that the level in scale space

where descriptors are extracted displays an inappropriate set of spatial frequencies. Additionally

an instability in pose estimation applies a greater degree of patch shape for full pose corrected fea-

tures; such that an error in pose estimation causes two patches describing a similar location to have

a greater difference in shape, using full pose correction, than patches formed with an equivalent

affine pose correction.
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8.2.2.2 Element Corrected Range SIFT

A range of surface descriptor extraction approaches were investigated, including the proposal of a

novel range surface descriptor termed Element Corrected SIFT, that consists of a feature descriptor

comprising a measure of surface gradients as for standard SIFT. However, the mean value across

the whole sample patch is calculated and subtracted from the surface gradient calculated for each

pixel in the patch. This has the effect of correcting the pose of the surface gradient measure for

each pixel in the sample patch, without applying sample patch pose correction. This approach

allows robust local features to be extracted from range images under changes in out-of-plane view

point, for features localised around regions of high range variability. Initial experiments showed

another measure, of Shape Index and Curvature, out performed Element Corrected SIFT features.

However when the pixel-wise sample patch for both approaches was made equivalent, 9 pixels for

each, Element Corrected SIFT features were found to exceed prior state of the art performance.

8.2.3 Multiview Integration

The investigations in Chapter 5 focus on the use of range and intensity information as a means to

improve out-of-plane descriptor performance based on single observation of a keypoint. However,

range information gives a partial representation of the 3D structure of an object, whereby features

from multiple observations may be associated together to create a collection of possible descriptor

expressions. To investigate the potential use of multiple observations, as a means to account for

changes in keypoint feature descriptors as a result of out-of-plane pose change, a collection of

keypoint observations from a range of views was used to form a model of the feature descriptor

space of variation.

In order to achieve this, a set of 3D local interest points were selected around regions of high

keypoint density in multiple object views. The descriptors from the keypoints associated with a 3D

local interest point were used to form a measure of the mean descriptor and the variance within

the group of descriptors. These measurements form the characterisation a 3D local interest point.

To match any query keypoints to a model 3D local interest point, query descriptors are projected

into the space of the model descriptors for each 3D local interest point where the match distance is

then calculated. A range of statistical measures of variance were investigated to establish the most

appropriate for characterising feature descriptor variations. Additionally, as descriptor variance
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increases with out-of-plane orientation changes the effect of increasing the range of keypoint poses

was investigated.

The performance of 3D local interest point characterisations was investigated as keypoint pre-

cision versus recall for synthetic range images with observation changes along the pitch and yaw

axes. In the experiments conducted it was found that the variation in the feature descriptor corpus

for a 3D local interest point was best characterised using a PCA space for each 3D local interest

point; the optimum performance for the range of keypoint observations was found when the in-

clusion of keypoints was limited to those with a surface normal less than 40◦off the viewing axis.

However, the performance of PCA features showed only a marginal improvement on the standard

Euclidean distance. Additionally, the structure of the 3D local interest point localiser and descriptor

characterisation approaches prohibit the use of the multiview integration approach presented in this

thesis from applications which require on-line learning, such as robotics.

8.2.4 View Compartmentalised Keypoints

View Compartmentalised keypoints were proposed in Chapter 7, these features comprise an addi-

tional processing step in the SIFT processing pipe-line which allows the resulting feature descriptor

to encapsulate a measure of the 3D appearance of the keypoint, and the observation angles at which

the keypoint has been observed. Extracted SIFT features are stored in a series of keypoint view com-

partments, the 3D pose of the keypoint is used to assign a weighting value to each compartment,

representing the confidence which may be invested in a descriptor match in any given compartment.

During a learning phase the system explores the view sphere of an object, subsequent observations

of a keypoint may be used to update compartments in a master keypoint when a compartment with

a higher confidence becomes available. In order to match any pair of keypoints, a weighted Eu-

clidean distance was formulated and validated. The weighted Euclidean distance finds Euclidean

distances between the descriptors from all compartments and weights the combination of these by

the product of the confidence scores for the corresponding compartments. This allows the confid-

ence in the descriptor match between two compartments to be factored into the keypoint matching

approach.

The system introduces three novel stages to the extraction and matching of SIFT features: the

weighted Euclidean distance, the compartment weighting and the compartment assignment. The
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weighted Euclidean distance was validated through matching examples of synthetic descriptors

where weighting values were set, this allowed the resultant matches to be compared to the ex-

pected matches. The weighted Euclidean distance performed well on the synthetic keypoints and

gave an indication that matches obtained using this approach would be sufficiently robust. The

compartment assignment was investigated through an example of exploring a view hemisphere of

a keypoint in synthetic range images. In this experiment, incorrect example range images were

stored as the closest match for each compartment, these images tended to be at the extremes of

the view hemisphere, indicating that pose instability around occlusion boundaries significantly af-

fects the choice of compartment assignment. Additionally the keypoint pose experiments showed

a significant instability in 3D in-plane pose estimation from the range image, where ambiguities of

±90◦ and 180◦ were observed. The observed pose instability affects the compartment weight, hav-

ing the effect of incorrectly labelling the structure of the compartments with erroneous weighting

scores, and thereby giving erroneous descriptor matching. The ROC curves for view compartment-

alised features were compared with their non-view compartmentalised counterparts, for the cases

of 9 view compartments and 3 view compartments, in both cases of view compartmentalisation an

improvement was observed using standard SIFT descriptors. However, the lack of sufficiently ro-

bust 3D pose estimation from range images limits the effectiveness of the view compartmentalised

keypoints.

8.3 Future Work

The work presented in this thesis furthers the state of the art in local feature matching perform-

ance using combinations of range and intensity imaging modalities. This section suggests research

routes whereby further developments, which may improve the repeatability of individual range and

intensity local features are identified. In addition to generalising the approaches outlined in this

thesis to other applications of local features.

8.3.1 Evaluation

The evaluation approach outlined in this thesis is based upon matching a query image to the nearest

target image. This approach limits the number of target keypoints in the database to which a query

keypoint must match. An alternative approach might extend the search space by matching the query

217



8.3. FUTURE WORK 218

keypoints to all target keypoints in the database. However, it is expected that this more expensive

approach would produce fewer correct keypoint matches per query image, requiring an increase in

the number of iterations of the experiment in order to gain a sufficient sample of keypoint matches to

allow a ROC curve to be constructed for each keypoint extraction process. The resultant ROC curves

are predicted to show decreased ROC performance for all proposed approaches when compared

with the current experimental design, in accordance with those results observed by Moreels and

Perona (Moreels and Perona, 2007).

8.3.1.1 Illumination and Clutter

The experiments outlined in Chapter 4 use a lighting source either side of the stereo camera con-

figuration, this subsequently limits the effects of illumination to be explored only in conjunction

with a 3D out-of-plane rotation. Other experimental designs such as the Coil-100 database have

used a series of lamps which may be selected to create a range of illuminations patterns for an

object observed at a single pose (Nene et al., 1996). To implement similar experimental design

using the approach adopted in this thesis would require a stereo matching approach robust to illu-

mination changes, in addition to a formalisation of the range of illumination changes which will

be investigated. A more robust stereo matching approach may be achieved using range image pro-

cessing approaches such as Adaptive Surface Smoothing (Sun et al., 2002), Anisotropic diffusion

(Weickert, 1998) or energy minimisation constraints (Li, 1992).

8.3.2 Range SIFT

A number of SIFT variations which utilising range domain information were proposed and invest-

igated in this thesis. This section details potential future work which could be conducted to improve

the work outlined in this thesis.

8.3.2.1 Pose Estimation in Range Images

Large errors were observed when tracking the pose of local features between range images between

observations. Many of the range based approaches presented in this thesis rely on accurate meas-

urements of keypoint surface normals based on range images. Therefore, improvements in the

performance of all of these approaches can be achieved through greater accuracy in pose estimation
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Figure 8.3: Gaussian Blur Functions for Affine Scale Space Pyramid

from the range surface.

8.3.2.2 Normalisation

The normalisation of 2.5D range values in order to create a descriptor of unit length removes dia-

gnostic information regarding the local surface surrounding interest points in range images. To ac-

count for the loss of information resulting from the normalisation stage, a further investigation into

how to encode the local range surface variation into local features while allowing feature descriptors

to be normalised to unit length is required.

8.3.2.3 Affine Scale Space Pyramid

The sample patch warping approaches outlined in Chapter 5.5.2 were shown to compress the axes

of the sampling patch, thereby changing the spatial sampling frequency in the direction of compres-

sion. This effect may be accounted for by introducing an affine scale space pyramid. The affine

scale space pyramid should comprise a scale space pyramid in which each level includes additional

images formed with elliptical Gaussian blur functions, see Figure 8.3. When applying an affine

warp to a sample patch, an appropriate affine scale space image can therefore be selected in which

the effect of the axis compression of the sample patch is minimised.
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8.3.3 View Compartmentalised SIFT

The performance of view compartmentalised SIFT keypoints relies on correctly establishing the

pose of the keypoint in the given observation for compartment assignment and the associated pose

weighting. Therefore, as an approach to increasing the performance of view compartmentalised

SIFT keypoints a more accurate pose estimation stage is required, as recommended in the previous

section. However, this section details a number of applications for view compartmentalised SIFT

keypoints.

8.3.3.1 Multiview View Compartmentalised Keypoints

Local features are frequently used as an approach for building multiview representations from

sparse collections of points. However, the source images frequently include large baseline sep-

arations, resulting in large change in the feature appearance between observations. As an approach

to reducing the feature descriptor distance between keypoint correspondences a view compartment-

alised feature descriptor methodology could be adopted. This approach may use affine pose estim-

ations for structuring the compartments and the level of warping applied to create the compartment

weighting function for the feature. Matching between keypoint instances can be established using

the weighted Euclidean matching scheme outlined in Chapter 7.

8.3.3.2 BOF compartmentalised SIFT

Bag-Of-Features approaches to image analysis for object instance recognition and scene interpret-

ation have recently become popular among the vision community (Sivic et al., 2005; Fei-Fei and

Perona, 2005). Ohbuchi et al have proposed a method by which range features can be extracted to

from a Bag-Of-Features representation utilising the range domain representations of an object cap-

tured from multiple observations (Ohbuchi et al., 2008). However, this approach may be extended

using view compartmentalised SIFT descriptors which more explicitly encode the local range struc-

ture in the weighting vector. The compartment weighting vector can be used to create a weighted

vote in a bag-of-features approach, which reflects the encoding of the keypoint appearance. Addi-

tionally, where both range and intensity are available, such as in many robotics applications, view

compartmentalisation based on range measurements may be performed on extracted intensity fea-

tures. Lai et al recently present a range and intensity image repository of 300 instances of objects in
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varying poses captured with a Microsoft Kintect (Lai et al., 2011). This repository may be used to

investigate the potential application of view compartmentalised features in a bag-of-words model.

8.4 Concluding Remarks

This thesis investigates the combination of range and intensity domain information to formulate ro-

bust and highly distinctive local features. The work has shown the potential for multimodal RGB-D

representations to improve local feature matching under changes in observer location. Additionally,

work on View Compartmentalised features has introduced an approach for combining a variety of

keypoint observations together to form a single keypoint with differing confidences associated with

each of its constituting descriptions. The above future work section highlights existing computer

vision algorithms which may be used in conjunction with the techniques developed in this disser-

tation to further advance the state-of-the-art. Vision systems based on these techniques may find

applications in clinical landmarking, robotic navigation, manipulation, and inspection.
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