59 research outputs found

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Ambient backcom in beyond 5G NOMA networks: A multi-cell resource allocation framework

    Get PDF
    The research of Non-Orthogonal Multiple Access (NOMA) is extensively used to improve the capacity of networks beyond the fifth-generation. The recent merger of NOMA with ambient Backscatter Communication (BackCom), though opening new possibilities for massive connectivity, poses several challenges in dense wireless networks. One of such challenges is the performance degradation of ambient BackCom in multi-cell NOMA networks under the effect of inter-cell interference. Driven by providing an efficient solution to the issue, this article proposes a new resource allocation framework that uses a duality theory approach. Specifically, the sum rate of the multi-cell network with backscatter tags and NOMA user equipments is maximized by formulating a joint optimization problem. To find the efficient base station transmit power and backscatter reflection coefficient in each cell, the original problem is first divided into two subproblems, and then the closed form solution is derived. A comparison with the Orthogonal Multiple Access (OMA) ambient BackCom and pure NOMA transmission has been provided. Simulation results of the proposed NOMA ambient BackCom indicate a significant improvement over the OMA ambient BackCom and pure NOMA in terms of sum-rate gains

    Utility based cooperative resource sharing in symbiotic radio aided Internet of Things networks

    Get PDF
    Symbiotic radio (SR) is a key technique to solve the energy shortage and spectrum limitation of the future Internet of Things (IoT). In the SR-aided IoT networks supporting energy harvesting (EH), we study the cooperation schemes and offloading strategy between the primary users (PUs), IoT devices and the base station (BS) for reasonably allocating the spectrum, power and time resources. Considering the monetary transactions between the PUs and IoT devices, two cooperation schemes, namely the “Preferential Scenario" and the “No-Preferential Scenario", are proposed. In the “Preferential Scenario", based on the final strategy, the IoT devices use the purchased spectrum and power to offload their own tasks to the BS after assisting the cooperative PUs to offload during a certain time slot. Due to the assistance of IoT devices for the PUs, IoT devices enjoy a discount when paying for the purchased spectrum and power. In the “No-Preferential Scenario", the IoT devices and the cooperative PUs offload tasks to the BS together in a certain time slot according to the offloading strategy. The spectrum and power used by the IoT devices are purchased at the original price without a discount. For each scenario, we study the utility maximization problem of the PUs, where the utility of PUs includes the transmission rates and income. The utility based resource sharing algorithm is proposed to obtain an approximately optimal resource allocation scheme. Our simulation results indicate that the proposed algorithm provides good performances for both scenarios, while each scenario applying the proposed algorithm has its own advantages

    Performance analysis of NOMA in 5G systems with HPA nonlinearities

    Get PDF
    LISBOA-01-0145-FEDER-0307095-PTDC/EEITEL/30709/2017 PTDC/EEI-TEL/30588/20 UIDB/50008/2020In this paper, we provide an analytical performance assessment of downlink non-orthogonal multiple access (NOMA) systems over Nakagami-m fading channels in the presence of nonlinear high-power amplifiers (HPAs). By modeling the distortion of the HPA by a nonlinear polynomial model, we evaluate the performance the NOMA scheme in terms of outage probability (OP) and ergodic sum rate. Hence, we derive a new closed-form expression for the exact OP, taking into account the undesirable effects of HPA. Furthermore, to characterize the diversity order of the considered system, the asymptotic OP in the high signal-to-noise (SNR) regime is derived. Moreover, the ergodic sum rate is investigated, resulting in new upper and lower bounds. Our numerical results demonstrate that the performance loss in presence of nonlinear distortions is very substantial at high data rates. In particular, it is proved that in presence of HPA distortion, the ergodic sum rate cannot exceed a determined threshold which limits its performance compared to the ideal hardware case. Monte-Carlo simulations are conducted and their results agree well with the analytical results.publishersversionpublishe

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    corecore