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Abstract

With the exponential expansion of the Internet of Things (IoT) and the increasing demand

for multimedia applications, the upcoming sixth-generation (6G) wireless communication

network is poised to revolutionise connectivity. Non-orthogonal multiple access (NOMA)

technique has been extensively studied in recent years because of the higher spectrum ef-

ficiency compared with orthogonal multiple access (OMA). NOMA enables multiple users

and devices to share the same resource block, i.e., time slot, bandwidth and code, simultane-

ously, where the spectrum efficiency is improved. Furthermore, two innovative techniques,

known as reconfigurable intelligent surface (RIS) and backscattering (BAC), have aroused

people’s interest. RIS has the capability to dynamically reconfigure the channel, enhanc-

ing signal quality, while BAC enables passive devices to transmit signals without consuming

energy. Both of these techniques hold significant potential in IoT networks. This thesis fo-

cuses on exploring various optimisation problems arising from different NOMA scenarios to

enhance the system’s performance. First, a RIS-assisted NOMA downlink network, where

multiple users receive signals from the base station (BS) with the help of multiple RISs, is

investigated. Second, sum rate masmisation problem is formulated of multiple users in a

RIS-assisted downlink NOMA network, where reinforcement learning is utilised as a tool

to solve the this optimisation problem. Third, the combination of backscatter communica-

tion (BackCom) and NOMA is investigated. Finally, we verify the feasibility of introducing

a BAC device into a legacy NOMA network without compromising its performance. The

findings of this thesis not only underscore the critical significance of optimisation within the

realm of wireless communication but also vividly illustrate the remarkable strides in spectrum

efficiency realized through the deployment of NOMA technology.
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Chapter 1

Introduction

1.1 Overview

With the 5-th generation (5G) of wireless communication has been successfully commer-

cialised, people start to look forward to the next generation, the 6-th generation (6G) of wire-

less communication. Although the standard of 6G has not been released yet, academia and

industry have placed the focus on it. First, a brief introduction of 6G is presented and the

reason why 6G is necessary in the future is illustrated. Then, the introduction that how opti-

misation is important in wireless communication area is provided. The last part is about the

development of multiple access (MA) techniques and the state-of-the-art technique in recent

years.

1.1.1 The Evolution of 6G

Since the middle of 2019, commercial 5G networks have been widely deployed in many

countries [1]. Follow the tradition, researchers starts to put more interest in research of the

next generation wireless communication. The main technological driver is the explosively

growing mobile traffic. A large amount of smart products, interactive services,and intelli-

gent applications emerge, which introduce massive mobile traffic. A report from Ericsson

reveals that 5G is hard to support such tremendous volume of mobile traffic in the next 10

years because of extensive growth of mobile traffic [2]. In particular, rapid increase of mobile

broadband (MBB) leads to an exponential growth of smartphones. Meanwhile, rapid com-

mercialisation of new types of electronic terminals such as virtual reality (VR) glasses and

the autopilot sensors of vehicle also generate more traffic. On the other hand, the traffic de-
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mand of each electronic device, especially smartphones and smart-pads, continuously raises.

The reason of that is streaming services like Youtube and Tik-Tok and mobile games have

become the main form of entertainment in people’s daily life. Low latency and high stability

are critical factors of streaming services and mobile games. The Ericsson report also indi-

cates that traffic from streaming services and mobile games has been dominant in all traffic

and this phenomenon will become more pronounced in the next decade [2]. Another type of

potential traffic arises from augmented reality (AR) and VR applications. An ITU report [3]

reveals that the average data consumption is 5GB of every mobile user per month in 2020

and the estimated data consumption of every mobile user per month in 2030 will increase to

250GB. To better accommodate these tremendous traffic, the research and development of

6G are necessary. Hence, the rapid increase of mobile traffic has become a driving force of

6G.

To better understand characteristics and define requirements of 6G, some potential use

cases are foreseen in [1]. Intelligent transport and logistics is a promising solution for in-

ternational trades, where autonomous vehicles and drones are widely adopted to provide an

efficient, safe and green environment of goods. Communications between autonomous ve-

hicles and drones require the support from mobile networks� thus the capacity of future mo-

bile networks should be large enough to simultaneously support different types of scenarios.

Extended reality (ER) is a new concept by combining AR and VR, which has stepped into

practical applications. The main factor of ER is stable 360 field 3D video streaming, which

requires a large bandwidth demand. The necessity of 6G is not only emphasized by two

aforementioned user cases but also massive potential applications, which will request a lot of

traffic and large bandwidth. Many advanced technologies have also laid the foundation for

the advent of 6G.

1.1.2 Optimisation in a Wireless Communication Network

Optimisation as a fundamental mathematical theory is widely used in many engineering ar-

eas. Optimisation as a large subject includes many branches such as linear and non-linear pro-

gramming, fractional programming, dynamic programming and convex optimisation. Going

through the history of optimisation, the great ancient mathematician Euclid solved the ear-

liest optimisation problem for geometry in his book The Elements [4]. Since then, optimi-
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sation theory has started thousands of years of development. Many important optimisation

techniques were proposed by different mathematicians in the twentieth century. For exam-

ple, William Karush, Harold William Kuhn, and Albert William Tucker analysed optimal-

ity conditions for nonlinear problems, respectively and these conditions are named by the

Karush–Kuhn–Tucker (KKT) condition. The KKT condition has been widely used to decide

whether an optimisation problem has an optimal solution and it is also an efficient method

to calculate the closed-form optimal solution of a convex optimisation problem. In the last

decade, with the rapid growth of computer computing power, artificial intelligence (AI) es-

pecially machine learning (ML) has been considered as a promising solution for complex

multivariate nonlinear problems [5].

Wireless communication technology has achieved unprecedented development in the 21st

century. In the past 30 years, wireless communication networks have evolved from the earliest

1G to the current 5G and the next generation 6G will be commercialised in the near future.

However, the communication resource for each wireless communication network is limited.

In particular, the frequency bandwidth available for wireless communication is not infinite

and energy for transmitting signals is also limited. How to improve the performance of the

network under limited resources has become an important research topic. There are a few

popular types of optimisation problems, namely the transmit power minimisation problem,

the sum rate maximisation problem and the energy efficiency problem, in wireless commu-

nication area. As the name indicates, the aim of a transmit power minimisation problem is

to minimise the total transmit power, especially the transmit power of the base station or the

transmitter, however, the QoS of each user and device is guaranteed. In a sum rate maximi-

sation problem, the sum rate of all users and devices is the target that we want to maximally

improve. The total transmit power in this scenario is usually limited. However, the balance

of the total transmit power and the sum rate is considered in an energy efficiency problem,

where the ratio of the total transmit power and the sum rate is maximised. In addition to the

common optimisation problems mentioned above, there are many other types of optimisation

problems in the field of wireless communication. Hence, a specific optimisation problem

needs to be formulated according to the system model and the performance requirement.
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1.1.3 The Development of Multiple Access Techniques

Multiple access techniques perform as an very important role in wireless communication

networks to improve efficiency. According to the different ways of orthogonality, we divide

multiple access techniques into two categories, namely orthogonal multiple access (OMA)

techniques and non-orthogonal multiple access (NOMA) techniques [6]. There are some dif-

ferent types of OMA techniques, which are frequency division multiple access (FDMA), time

division multiple access (TDMA), code division multiple access (CDMA) and orthogonal fre-

quency division multiple access (OFDMA). Different multiple access techniques are adopted

in different generations of wireless communication. The first generation (1G) mobile cellular

system was designed to enable voice communications. FDMA was adopted in 1G network,

where the spectrum was divided into segments, called channel and each user occupied the

entire channel to transmit its signal. The second generation (2G) was designed to expand

the capacity of voice communication and also integrate a data service. The multiple access

technique in this generation was shifted from FDMA to TDMA in European community and

CDMA in U.S. The third generation (3G) mobile cellular system was designed to expand the

capacity of data service. TDMA was abandoned and the standard CDMA was selected as the

multiple access technique in this generation. When the cellular system evolved to the forth

generation (4G), which was designed for rapid increasing of data requirement, OFDMA was

adopted to address the higher data rate demand [6].

Another category of multiple access technique is called non-orthogonal multiple access.

NOMA allows different users and devices to share the same resource black such as time slots,

spectrum segments and codes by introducing intra-cell interference. Intra-cell interference

can be removed by successive interference cancellation (SIC). Compared with OMA, NOMA

greatly improves resource efficiency, which has been a candidate of 5G and a potential solu-

tion of multiple access in beyond 5G (B5G) [6].

1.2 Organisation of the thesis

The organisation of this thesis is summarised as follows:

Chapter 2: In this chapter, some background information is introduced. First, some or-

thogonal multiple access techniques are described, e.g., frequency-division multiple access
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(FDMA), time-division multiple access (TDMA), code-division multiple access (CDMA)

and space-division multiple access (SDMA). An advanced FDMA named orthogonal frequency-

division multiple access (OFDMA) is also introduced. Them, the power domain non-orthogonal

multiple access (NOMA) is introduced. Furthermore, some wireless communication tech-

niques such reconfigurable intellect surface (RIS) and backscattering communication (Back-

Com) are illustrated. Finally, optimisation tools, convex optimisation and machine learning,

are presented.

Chapter 3: In this chapter, a downlink multi-cluster NOMA network is considered, where

each cluster is supported by one RIS. This chapter aims to minimise the transmit power by

jointly optimising the beamforming, the power allocation and the phase shift of each RIS.

The formulated problem is non-convex and challenging to be solved due to the coupled vari-

ables, i.e., the beamforming vector, the power allocation coefficient and the phase shift ma-

trix. To address this non-convex problem, an alternating optimisation based algorithm is

proposed. Specifically, the primal problem is divided into two subproblems for beamforming

optimisation and phase shifting feasibility, where the two subproblems are solved iteratively.

Moreover, to guarantee the feasibility of the beamforming optimisation problem, an itera-

tive algorithm is proposed to search the feasible initial points. To reduce the complexity, a

simplified algorithm based on partial exhaustive search for this system model is also pro-

posed. Simulation results demonstrate that the proposed alternating algorithm can yield a

better performance gain than the partial exhaustive search algorithm, NOMA with random

RIS phase shift scheme and OMA-RIS scheme. The content is related to the first publication

”Joint Optimization of Beamforming, Phase-Shifting and Power Allocation in a Multi-Cluster

IRS-NOMA Network,” in IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp.

7705-7717, Aug. 2021.

Chapter 4: This chapter investigates a sum rate maximisation problem in a RIS-assisted

NOMA downlink network. Specifically, the sum rate of all the users is maximised by jointly

optimising the beams at the base station and the phase shift at the RIS. The deep reinforce-

ment learning (DRL), which has achieved massive successes, is applied to solve this sum rate

maximisation problem. In particular, an algorithm based on the deep deterministic policy

gradient (DDPG) is proposed. Both the random channel case and the fixed channel case are

studied in this chapter. The simulation result illustrates that the DDPG based algorithm has
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the competitive performance on both cases. The content is related to the second publica-

tion ”A Reinforcement Learning Approach for an IRS-Assisted NOMA Network,” ready to

submit.

Chapter 5: NOMA technique introduces spectrum cooperation among different users and

devices, which improves spectrum efficiency significantly. Energy‐limited devices benefit

from the backscatter (BAC) technique to transmit signals without extra energy consumption.

The combination of NOMA and BAC provides a promising solution for Internet of Things

(IoT) networks, where massive devices simultaneously transmit and receive signals. This

chapter investigates a system model with two NOMA downlink users and an uplink device.

The aim is to maximise the data rate of the uplink device by optimising the power allocation

coefficient and the backscattering coefficient. Meanwhile the quality of service requirements

of two NOMA users are guaranteed. The closed‐form solution of two optimisation variables

is derived, and an alternating algorithm is also proposed to solve the formulated optimisa-

tion problem efficiently. The proposed system verifies the feasibility of IoT devices being

added into existing networks and provides a promising solution for wireless communication

networks in the future. The content is related to the thrid publication “Backscatter-Assisted

Non-orthogonal Multiple Access Network for Next Generation Vommunication,” IET Signal

Processing, vol. 17, no. 4, e12211, 2023.

Chapter 6: Introducing BAC devices into a legacy NOMA network greatly improves spec-

trum efficiency, which provides a promising solution for the combination of IoT and wireless

networks. Deep learning (DL) as an emerging optimisation tool gradually attracts people’s

interest in wireless communication area. In this chapter, a BAC-NOMA network is investi-

gated, where a sum-rate maximisation problem is formulated and the closed form solution

of backscattering coefficient is derived. The original problem is transformed and solved by

a semi-definite relaxation (SDR) based algorithm and a learning based algorithm. The sim-

ulation results show that both algorithms have their own advantages and disadvantages and

should be chosen wisely according to actual situations. The content is related to the fourth

publication ”BAC-NOMA for Secondary Transmission,” accepted in IEEE Communications

Letters.

Chapter 7: This chapter summaries the conclusion of this thesis and also provides some

potential future research directions.
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Chapter 2

Background Information

2.1 Orthogonal Multiple Access Techniques

In wireless communication, it is desirable to allow the base station send signals simulta-

neously to different users and devices. Multiple access techniques enables base stations and

mobile users to a finite amount of radio spectrum. Orthogonal multiple access �OMA�tech-

niques are a batch of multiple access techniques where signals to different users are mutually

orthogonal. Orthogonality guarantees that there is no interference between different users.

Several commonly used OMA techniques shown in Fig. 2.1 are summarized below.
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Figure 2.1. Four commonly used OMA techniques

• Frequency-division multiple access (FDMA)
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FDMA allows multiple users to send their data simultaneously through the same com-

mutation channel. The bandwidth is divided into several channels each of which is

assigned to a user. Users can send data through a subchannel by modulating data on

a carrier wave and the frequency of carrier wave is used to identify users. Although

different users can send their signals at the same time, however, the bandwidth occupied

by each user will decrease when the number of users increases. The crosstalk may hap-

pen between two adjacent users. Hence, the frequency gap between subchannels of two

adjacent users is always inserted to avoid the crosstalk, which, obviously, cause a waste

of spectrum resource. The mathematical expression is described as follows. We assume

there are K users being serve by a base station. Let B denotes the whole bandwidth and

T denotes the whole time slot. The data rate of each user can be expressed as follows:

RFDMA =

(︃
B

K
−∆f

)︃
log2

(︃
1 +

S

N0

)︃
, (2.1)

where ∆f is the frequency gap and S
N0

is the signal-noise ratio. Equation (2.1) indicates

the data rate is affected by the bandwidth of the subchannel. When K increases, the

bandwidth allocated to each subchannel decreases, which further makes the data rate

decrease.

• Time-division multiple access (TDMA)

TDMA allows multiple users to send their data through the same bandwidth by dividing

the signal into different sub time slots. The users transmit in rapid succession, one after

the other, each using its own sub time slot. Although each user can occupy the whole

bandwidth to transmit its signal, however, the transmit time of each user is reduced. We

still adopt the same notations as above, where K denotes the number of users, T denotes

the whole time slot and B denotes the whole bandwidth. The instantaneous data rate of

each user can be expressed as follows:

R̃ = B log2

(︃
1 +

S

N0

)︃
. (2.2)

Since the whole time slot is divided into K subchannels and the duration of each sub-

channel is T
K

, hence, a user can transmit TR̃
K

data in total. The average data rate of each
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user over the whole time slot T can be expressed as follows:

RTDMA =
B

K
log2

(︃
1 +

S

N0

)︃
. (2.3)

Equation (2.3) indicates the data rate of each user will decrease when the number of

users increases.

• Code-division multiple access (CDMA)

CDMA uses different codes to identity different users which allows multiple users to

send their data through the same resource block, i.e., the same time slot and the same

bandwidth. In a CDMA system, each user will be assigned a unique code and the signal

sent by this user will be modulated on this unique code. All the modulated signals from

different users will be sent to the receiver simultaneously. Let us consider a CDMA

uplink scenario, where K users communicate with a base station. The signal sent by the

i−th user is

xi = ci(t)si(t), i ∈ {1, ..., K} (2.4)

where ci(t) is the unique code to identify this order. It is assumed that all signals are

synchronised, hence, the signal received by the receiver is given by

y =
K∑︂
i=1

ci(t)si(t). (2.5)

The unique code usually has strong auto-correlation and weak cross-correlation, which

can be described by

cicj =

⎧⎪⎪⎨⎪⎪⎩
1, j = i;

0, j ̸= i.

(2.6)

As a result, the receiver can remove interference caused by other users through orthog-

onality between codes. Since every user can fully utilise the entire bandwidth and the

time slot, the data rate of each user can be expressed by follows:

RCDMA = B log2

(︃
1 +

S

N0

)︃
. (2.7)

It seems CDMA can bring a higher data rate compared with FDMA and TDMA. How-
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ever, it still has some disadvantages. For example, the synchronisation is required, which

will introduce extra complexity to equipment. The CDMA system performance de-

grades with an increase in the number of users because cross-correlation increases.

• Space-division multiple access (SDMA)

Multi-antenna system can generate parallel spatial pipes, i.e., beamforming technique,

to allow multiple users send their data through the same resource block. In the beam-

forming technique, the base station will generate a unique beam for each user and the

beam decides the direction and the power. Let us assume that a network consists of K

users and a M -antenna base station. Only when M ≥ K, the base station can generate

K linearly independent beams. The beam vector is given by

wi = [βi,1e
θi,1 , βi,2e

θi,2 , ..., βi,Meθi,M ], i ∈ {1, 2, ..., K}, (2.8)

where βi,m and eθi,m , i ∈ {1, 2..., K},m ∈ {1, 2, ...,M} denote the amplitude coeffi-

cient and the phase of them-th antenna for the i−th user, respectively. Take zero-forcing

(ZF) as an example, each two beam vectors are mutually orthogonal, which means

wH
i wj =

⎧⎪⎪⎨⎪⎪⎩
Ci, j = i;

0, j ̸= i,

(2.9)

where Ci is a constant denoting the power allocated to the i−th beam. Each user can

fully utilise the entire bandwidth and the time slot, the data rate of each user can be

expressed by follows:

RSDMA = B log2

(︃
1 +

S

N0

)︃
. (2.10)

. An important condition of the beamforming technique is that the number of antennas

at the base station should be greater than then the number of users, otherwise, equation

(2.9) cannot be satisfied.

• Orthogonal frequency-division multiple access (OFDMA)

OFDMA is a special form of FDMA, which is designed to address the spectrum waste

issue of FDMA caused by the frequency gap. Fig. 2.13 shows the frequency domain

of OFDMA where all the signals are orthogonal at every sampling point. As a result,
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Figure 2.2. The frequency domain of OFDMA

crosstalk can be avoided without inserting frequency gaps and meanwhile the spectrum

efficiency is improved. The mathematical description is presented below. We assume

there are K users so K subcarriers in total are requred. Let di, i ∈ {1, ..., K} denote

the symbol of the i−th subcarrier and fi denote the frequency of the i−th subcarrier. If

time starts from ts, the OFDM signal can be expressed as follows:

s(t) =

⎧⎪⎪⎨⎪⎪⎩
∑︁K−1

i=0 direct
(︁
t− ts − TOFDM

2

)︁
ej2πfi(t−ts), ts ≤ t ≤ ts + TOFDM;

0, t ≤ ts or t ≥ ts + TOFDM,

(2.11)

where TOFDM is the duration of a OFDM symbol and rect(.) is a rectangular function. fi

usually is designed as i
TOFDM

to guarantee the orthogonality. If s(t) is sampled with the

sampling rate TOFDM/K, the distract signal can be expressed as follows:

sn(k) =
K−1∑︂
i=0

die
j 2πjn

K , 0 ≥ n ≥ K − 1. (2.12)

Note the expression of a discrete OFDM signal is the same at that of inverse discrete

Fourier transform (IDFT). Hence, OFDM is realised by inverse fast Fourier transform

(IFFT) in engineering. The data rate of each user can is given by

ROFDMA =

(︃
B

K

)︃
log2

(︃
1 +

S

N0

)︃
. (2.13)

Although OFDMA is a well-established and widely implemented technique, it does have

certain disadvantages that need to be considered. Two prominent drawbacks are its sen-

sitivity to frequency offsets and phase noise, as well as the increased complexity of
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OFDMA electronics due to the inclusion of IFFT.

2.2 Non-orthogonal Multiple Access Technique

Non-orthogonal multiple access technique (NOMA) is a different type of multiple access

technique compared with OMA. The name of NOMA directly indicates that transmit channels

for all users are non-orthogonal. The paper [7] proposed NOMA for cellular future radio ac-

cess towards the 2020s information society. In the context of NOMA, a groundbreaking con-

cept is employed where all users’ signals are combined and transmitted simultaneously over

the same channel, resulting in a remarkable enhancement of spectrum efficiency. However,

due to the non-orthogonal nature of the channels, each user’s signal experiences interference

from other users’ signals. To overcome this challenge, a NOMA system utilizes a successive

interference cancellation (SIC) receiver, which enables a user to eliminate the interference

caused by other users before decoding its own signal. In power domain NOMA, a sophisti-

cated technique used in modern communication systems, users are assigned different power

levels based on their individual channel qualities. This approach allows for effective user

identification within the system. By employing power allocation strategies, users with su-

perior channel conditions are allocated lower power levels, while users experiencing weaker

channel conditions are assigned higher power levels.

2.2.1 Downlink NOMA

Figure 2.3. T
he downlink NOMA network

Fig. 2.3 illustrates the downlink NOMA network, consisting of multiple users. First, the

decoding order needs to be decided. Without loss of generality, we assume the decoding order

is ΛK ≥ ΛK−1 ≥ ... ≥ Λ2 ≥ Λ1. Given the aforementioned decoding order, the i− th user
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needs to decode K − i users’ signals before decoding its own signal. Let us define the set

Sj = {1, 2, ..., j− 1}, j ∈ {1, 2, ..., K} as the collection of users who will cause interference

when decoding the j-th user’s signal. Hence, the j−th user’s data rate observed at the i−th

user can be expressed as follows:

Ri→j = log2

(︄
1 +

αjP0|hisj|2∑︁
k∈Sj

αkP0|hisk|2 + σ2
i

)︄
, j ≥ i (2.14)

where αi, hi and σ2
i , ∈ {1, 2, ..., K} denote the power allocation coefficient, channel coeffi-

cient and the power of AWGN of user i, respectively. The power allocation coefficient should

satisfy
∑︁K

i=1 αi = 1. The user i’s data rate is given by

Ri→i = log2

(︃
1 +

αiP0|hisi|2∑︁
k∈Si

αkP0|hisk|2 + σ2
i

)︃
, i ∈ {1, 2, ..., K}. (2.15)

From two equations above, we have the achievable data rate of user i, which is given by

Ri = min{Rk→i, k ∈ {1, 2, .., i}}. (2.16)

The reason of the i- th user’s acheivable data rate is defined by (2.16) is to guarantee the SIC

can be proceed successfully. When QoS is considered, this definition guarantees that every

user can decode user i’s data rate successfully. It is important to note that the first user is

required to decode the signals of K− 1 other users before decoding its own signal. However,

this approach is impractical due to the high time complexity involved. Hence, a downlink

NOMA network typically cannot accommodate a large number of users.

Figure 2.4. An uplink NOMA network

2.2.2 Uplink NOMA

Fig. 2.4 illustrates an uplink NOMA network where K users simultaneously transmit their

signals to the base station. The signal sent by the i− th user is given by
√
Pisi. We assume
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that signals from all the users are synchronised at the base station, hence, the received signal

by the base station can be expressed as follows:

y =
K∑︂
i=1

√︁
Pisi + w, (2.17)

where w denotes AWGN at the base station.

The SIC process in an uplink NOMA network is significantly simpler compared to that

of a downlink NOMA network. Firstly, in an uplink NOMA network, the SIC process is

performed at the base station, which has access to the received signals from multiple users

simultaneously. This allows for more efficient interference cancellation since the base station

can exploit the knowledge of the user signals and their power levels. In contrast, in a downlink

NOMA network, the SIC process is performed at the user devices, which have limited capa-

bilities compared to the base station. Each user device must decode the signals from other

users in a sequential manner, starting with the strongest interfering signal. This sequential

decoding process increases the complexity and introduces potential errors. Furthermore, the

uplink NOMA network benefits from having a centralised base station that can coordinate and

manage the interference cancellation process. This centralisation enables more sophisticated

algorithms and resource allocation strategies, simplifying the SIC process for individual user

devices.

Equation (2.16) illustrates that a user’s achievable data rate is is constrained by the decod-

ing outcomes of other users, however, this issue does not exist in an uplink NOMA network.

The achievable data rate of a user in an uplink NOMA network under the decoding order

ΛK ≥ ΛK−1 ≥ ... ≥ Λ2 ≥ Λ1 can be expressed as follows:

Ri = log2

(︃
1 +

Pi|hisi|2∑︁
k∈Si

Pk|hisk|2 + σ2

)︃
, i ∈ {1, 2, ..., K}. (2.18)

2.3 Reconfigurable Intelligent Surface

Reconfigurable intelligent surfaces (RIS) also known as intelligent reflecting surfaces (IRS)

have emerged as a revolutionary technology in wireless communication systems, which is

shown in Fig. 2.5. There are multiple passive reflecting elements on the panel of a RIS,
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Figure 2.5. The structure of a RIS

which can manipulate and control electromagnetic waves. The entire RIS is controller by

a smart controller to reconfigure the phase shift of each reflecting element [8], [9]. Unlike

the traditional wireless communication relying on active antennas, the RIS introduces a new

transmit model where the wireless propagation environment can be tuned in a desired man-

ner. One of the most important features of the RIS is to reshape channels, enabling better

signal quality and large signal propagation range. Moreover, RIS provides a cost-effective

and energy-efficient solution. By adopting the passive nature of the elements, RIS requires

minimal power consumption compared to traditional active transmitters. In addition, more

properly designed algorithms can be applied to optimally adjust the phase shift of each re-

flecting element. The RIS offers more opportunities to a wireless network to improve its

performance.

Figure 2.6. A RIS-assisted NOMA downlink network

Fig. 2.6 shows a RIS-assisted NOMA downlink network, where two NOMA users only

can communicate with the base station with the help from RIS since the direct link between

the base station and each user is unavailable due to heavy blockage. We assume the base

station and users are all equipped with a single antenna and the RIS consists of N reflecting

elements. The base station broadcasts the superimposed signal which is the same as (??).

Let hBR ∈ CN×1 denote the channel vector between the base station and the RIS and h1 ∈

CN×1 and h2 ∈ CN×1 denote the channel vectors between the RIS and user 1 and user 2,
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respectively. The vector

p =
[︁
β1e

jθ1 , β2e
jθ2 , ..., βNe

jθN
]︁

(2.19)

describes the phase shift of each reflecting elements, where βi and θi, i ∈ {1, 2, ..., N} denote

the amplitude coefficient and the phase angle of the i−th reflecting element, respectively. The

signal received by users can be expressed as follows:

yi = hH
i ΘhBR

(︂√︁
αP0s1 +

√︁
(1− α)P0s2

)︂
+ wi, i ∈ {1, 2}, (2.20)

where Θ denotes a diagonal matrix whose diagonal collects all the elements of p and wi

denotes AWGN at user i. Defining the decoding order prior to SIC is essential, therefore, the

decoding order in this example is assumed to be Λ2 ≥ Λ1. In particular, user 1 first decodes

user 2’s signal, eliminates it, and then proceeds to decode its own signal independently, free

from any interference, while user 2 directly decodes its own signal by treating user 1’s signal

as interference. The date rate of user 2 observed at user 1 can be expressed as

R1→2 = log2

(︃
1 +

(1− α)P0|hH
1 ΘhBRs2|2

αP0|hH
1 ΘhBRs1|2 + σ2

1

)︃
, (2.21)

where σ2
1 is the power of AWGN at user 1. After user 2’s signal is removed, the data rate of

user 1 can be expressed as follows:

R1 = log2

(︃
1 +

αP0|hH
1 ΘhBRs1|2

σ2
1

)︃
. (2.22)

For user 2, it decodes its own signal directly by treating user 1’s signal as interference. Hence,

the data rate of user 2 can be expressed as follows:

R2→2 = log2

(︃
1 +

(1− α)P0|hH
2 ΘhBRs2|2

αP0|hH
2 ΘhBRs1|2 + σ2

2

)︃
, (2.23)

where σ2
2 is the power of AWGN at user 2. The achievable data rate of user 2 is

R2 = min{R1→2, R2→2}. (2.24)

According to the discussion above, it is noted that the phase shift matrix Θ and the power

allocation coefficient α can be optimised to make the entire system achieve the best per-
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formance. Therefore, some typical optimisation problems are commonly investigated in a

RIS-assisted network. For example, the sum rate optimisation problem can be summarised

as follows:

max
α,Θ,P0

R1 +R2 (2.25a)

s.t. 0 ≤ P0 ≤ Pmax (2.25b)

|Θi,i|2 = 1, i = 1, · · · , N (2.25c)

θi ∈ [0, 2π] , i = 1, · · · , N (2.25d)

The aim of this optimisation problem is to achieve the largest sum rate of two users. Constraint

(2.25b) enforces the maximum power limit defined by the system, ensuring that the total

transmitted power does not exceed this limit. Constraints (2.25c) and (2.25d) stem from

inherent characteristics of the RIS, imposing restrictions on the reflecting elements’ reflecting

coefficient and phase shift. Another classic optimisation problem is the energy-efficiency

maximisation problem, which can be summarised as follows:

max
α,Θ,P0

R1 +R2

P0

(2.26a)

s.t. Ri ≥ Ri
t, i = 1, 2 (2.26b)

0 ≤ P0 ≤ Pmax (2.26c)

|Θi,i|2 = 1, i = 1, · · · , N (2.26d)

θi ∈ [0, 2π] , i = 1, · · · , N (2.26e)

where Ri
t.i = 1, 2 denotes the minimal data rate of user i. The objective function in this prob-

lem quantifies energy efficiency as the ratio of the sum rate to the transmit power. Constraint

(2.26b) guarantees the successful SIC. There are many other optimisation problems such as

multi-user interference management, security optimisation, cost-effectiveness optimisation

and so on. Each of these optimisation problems provides promising research directions to

study RIS-assisted NOMA in depth.
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2.4 Backscattering Communication

Backscattering (BAC) communication is a wireless communication technique which al-

lows BAC devices to transmit its own signal by utilising the principle of backscattering. Ac-

cording to my knowledge, the paper [10] first proposed the concept of backscattering commu-

nication. Unlike tradition transmission relying on active antennas, backscattering relies on

reflecting and modulating existing signals to convey data without extra energy consumption.

It well fits the requirement of the Internet of Things (IoT). A device having the function to

backscatter signal is usually called as a backscatterring device (BD). A BD is equipped with

a backscattering circuit. The circuit will be excited by the received signal first and modulate

the BD’s signal onto the received signal. The modulated signal is then reflected to the des-

tination. The BD usually operates with minimal energy requirements. The passive feature

allows a BD to be small, have high endurance or even operate without batteries. As a result,

backscattering communication provides a promising future for wireless communication and

IoT networks.

Figure 2.7. A RIS-assisted NOMA downlink network

The backscattering technique has a good combination with uplink NOMA. Fig. 2.7 shows

a simple BAC-NOMA uplink network. which consists of one base station, two BDs and

one downlink user. Two BDs only communicate with the BS and the downlink user only

receives signal from the base station. We assume the base station and all devices in this

network are all equipped with one single antenna. The base station operates in full-duplex

mode, which means it can transmit and receive signals simultaneously. Let h1 and h2 denote

the channel coefficients between the base station and two BDs, respectively. hd denotes the

channel coefficient between the base station and the downlink user and g1 and g2 denote

the channel coefficients of two interference links. The base station sends a downlink signal

x =
√
P0s0 to the downlink user, meanwhile, this signal will be received by two BDs. The
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signal received by each BD can be expressed as follows:

yBD
i =

√︁
P0his0 + wi, i ∈ {1, 2}. (2.27)

The BD modulates its own signal onto the received signal and reflects the modulated signal

to the destination. In this way, the signal received by the base station is given by

yu =
√︁

P0η1|h1|2s0c1 +
√︁
P0η2|h2|2s0c2 + wu, (2.28)

where ci, i ∈ {1, 2} denotes the signal from BD i, ηi, i ∈ {1, 2} represents the backscattering

coefficient of BD i and wu refers to AWGN at the base station. The backscattering coefficient

enables the adjustment of the energy utilised for backscattering its own signal. It is worth

noting that we disregard the term wici due to its negligible power contribution. The SIC

process is operated by the base station, where BD 1’s signal is decoded first, followed by the

decoding of BD 2’s signal. By assuming E(|ci|2) = 1, i ∈ {1, 2}, the data rate of BD 1 is

expressed as follows:

R1 = log2

(︃
1 +

P0η1|h1|4|s0|2

P0η2|h2|4|s0|2 + σ2
u

)︃
, (2.29)

where σ2
u is the power of AWGN. Once BD 1’s signal is removed, the data rate of BD 2 is

expressed as follows:

R2 = log2

(︃
1 +

P0η2|h2|4|s0|2

σ2
u

)︃
. (2.30)

The sum rate of two BDs is given by

Rsum = log2

(︃
1 +

P0η1|h1|4|s0|2 + P0η2|h2|4|s0|2

σ2
u

)︃
. (2.31)

Since two BDs will cause interference to the downlink user, the signal recieved by the down-

link user can be expressed as follows:

yd =
√︁

P0hds0 +
√︁
P0η1h1g1s0c1 +

√︁
P0η2h2g2s0c2 + wd, (2.32)

where σ2
u is the power of AWGN at the downlink user. The downlink user’s data rate is given
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by

Rd = log2

(︃
1 +

P0|hd|2

P0η1|h1|2|g1|2 + P0η2|h2|2|g2|2 + σ2
d

)︃
, (2.33)

where σ2
d is the power of AWGN at the downlink user.

A classic optimisation problem of backscatterring communication is the sum rate max-

imisation problem, which can be summarised as follows:

max
P0,η1,η2

Rsum (2.34a)

s.t. Rd ≥ Rt (2.34b)

0 ≤ P0 ≤ Pmax (2.34c)

0 ≤ ηi ≤ 1, i = 1, 2. (2.34d)

Constraint (2.34b) guarantees the quality of service (QoS) of the downlink user to make its

data rate greater than the minimal target data rate Rt. Constraint (2.34c) is the transmit power

limit and constraint (2.34d) arises from the passive feature of backscattering.

2.5 Convex Optimisation

Convex optimisation is a subfield of mathematical optimisation that studies the optimisa-

tion problem with a convex function over a convex set. Convex optimisation plays a crucial

role to solve an optimisation problem due to the global optimal solution can be obtained [11].

The convex optimisation is also the foundation of machine learning (ML), which is very pop-

ular in every engineer field. Thus, the convex optimisation is compulsory for my research. In

this section, we discuss some basic concepts in convex optimisation.

2.5.1 Basic Concepts of Convex Optimisation

Some basic concepts are introduced in this subsection to better understand convex optimisa-

tion.

• Affine set and convex set: An affine set is a set that preserves the property that any line

passing through two points within the set remains entirely within the set. The mathe-
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matical express of an affine set is for any x1, x2 ∈ C and θ ∈ R, C is an affine set if

θx1 + (1− θ)x2 ∈ C. A set is called a convex set if it satisfies the property that for any

two points within the set, the line segment connecting those points lies entirely within

the set. The mathematical express of a convex set is for any x1, x2 ∈ C and 0 ≤ θ ≤ 1,

C is a convex set if θx1 + (1− θ)x2 ∈ C.

• Convex function: A function f : Rn → R is a convex function if the domain of f is a

convex set and if for all x1, x2 ∈ domf and 0 ≤ θ ≤ 1, we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), (2.35)

which is shown in Fig. 2.8.

Figure 2.8. A convex function

• First-order condition: If f is differentiable, f is convex if and only if domf is convex

and

f(x2) ≥ f(x1) +∇f(x1)
T (x2 − x1) (2.36)

holds for all x1, x2 ∈ domf . Fig. 2.9 graphically illustrates the first-order condition of

a convex function.

Figure 2.9. A graph to show the first-order condition

• Second-order condition: If f is twice differentiable, f is convex if and only if domf is

convex and the Hessian matrix of f is positive semidefinite. The mathematical express
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of the second-order condition is given by: for all x ∈ domf , if and only if

∇2f(x) ≽ 0. (2.37)

• α-sublevel set: the α− sublevel set of a function f : Rn → R is defined as

Cα{x ∈ domf |f(x) ≤ α}. (2.38)

A sublevel set of a convex function is a convex set.

2.5.2 Definition of Convex Problem

Given the definitions of convex set and convex function above, we can finally define the convex

problem. If the objective function of an optimisation problem is convex and the feasible set

of this problem is also a convex set, then we name this problems as a convex problem. In

general, we can write a standard form of a convex problem as:

min f(x) (2.39a)

s.t. fi(x) ≤ 0, i = 1, · · · ,m (2.39b)

hi(x) = 0, i = 1, · · · , p (2.39c)

where x ∈ Rn is an optimisation variable and functions f(x), fi(x), ∀i are all convex functions

and hi(x),∀i are affine functions (i.e. aix + bi). Generally, a convex problem may have one

or more solutions and also a convex function has many equivalent transformations. It is

necessary to point out that the local optimal solution of a convex problem is also its global

optional solution.

2.5.3 Classic Optimisation Problems

In a linear program (LP), the objective function and all constraints are affine, which is obvi-

ously a convex problem. A general linear program has the form

min cTx+ d (2.40a)
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s.t. Gx ≼ h (2.40b)

Ax = b, (2.40c)

where G ∈ Rm×n and A ∈ Rp×n. There are special cases of a LP problem, namely the

standard form LP and the inequality form LP. A standard form LP is expressed as

min cTx (2.41a)

s.t. x ≽ 0 (2.41b)

Ax = b, (2.41c)

where only one component-wise non-negativity constraint x ≽ 0 exists. An inequality form

LP is expressed as

min cTx (2.42a)

s.t. Ax ≼ b, (2.42b)

where only inequality constraints exist.

The linear-fractional programming is sightly different from LP, where the objective func-

tion is not affine. A linear-fractional program usually has a form

min f0(x) =
cTx+ d

eTx+ f
(2.43a)

s.t. Gx ≼ h (2.43b)

Ax = b. (2.43c)

whose objective function is a quasilinear function so we also call this problem quasiconvex

optimisation problems. However, this kind of problem can be easily transformed to a convex

form as

min cTy + dz (2.44a)

s.t. Gy − hz ≼ 0 (2.44b)

Ay − bz = 0 (2.44c)
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eTy + fz = 1 (2.44d)

z ≥ 0. (2.44e)

If x is feasible in (2.43) then the pair

y =
x

eTx+ f
, z =

1

eTx+ f

is feasible in (2.44), with the same objective value.

If the objective function is quadratic and convex, and other constraints are affine, this kind

of problem is quadratic program (QP), which can be summarised as:

min (1/2)xTPx+ qTx+ r (2.45a)

s.t. Gx ≼ h (2.45b)

Ax = b, (2.45c)

where P ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n. According to the definition of a convex problem,

QP is a convex problem. If the objective function and the inequality constraint functions are

all quadratic, QP becomes quadratically constrained quadratic programming (QCQP), which

is given by

min (1/2)xTP0x+ qT0 x+ r0 (2.46a)

s.t. (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, ·,m (2.46b)

Ax = b, (2.46c)

It is noted that the QCQP problem is not a convex problem due to its feasible set may not be

a convex set. However, there are many existing method to deal with this QCQP problems.

There is another common form named second-order cone programming (SOCP), which

is closely related to quadratic programming.

min fTx, (2.47a)

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, · · · ,m (2.47b)
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Fx = g, (2.47c)

where A ∈ Rni×n and F ∈ Rp×n. Constraint (2.47b) is a second-order cone constraint since

it is the same as requiring the affine function (Ax + b, cTx + d) to lie in the second-order

cone.

The semidefinite programming (SDP) problem has the form

min fTx, (2.48a)

s.t. x1F1 + · · ·+ xnFn +G ≼ 0 (2.48b)

Ax = b, (2.48c)

where F, F1, · · ·Fn ∈ Sk and A ∈ Rp×n. The inequality constraint of a SDP problem is a

linear matrix inequality.

2.5.4 Duality and KKT Condition

The duality is a very important concept in convex optimisation. The optimisation problem

we formulated in a project is non-convex at most time but its dual problem may be convex or

have a simpler form to be solved. The Karush-Kuhn-Tucher (KKT) condition is a powerful

tool to derive out the closed-form optimal solution of a convex problem. We consider an

optimisation problem in the standard form (2.39), we define the Lagrangian function L as

L(x, λ, ν) = f0(x) +
m∑︂
i=1

λifi(x) +

p∑︂
i=1

νihi(x), (2.49)

where λi and νi are the Lagrangian multiplier associated to the i-th inequality constraint

fi(x) ≤ 0 and i-th equality constraint hi(x) = 0 respectively. We further define the La-

grangian dual function based on Lagrangian function (2.49) as

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(︄
f0(x) +

m∑︂
i=1

λifi(x) +

p∑︂
i=1

νihi(x)

)︄
(2.50)

where D =
⋂︁m

i=0 domfi ∩
⋂︁p

i=0 domhi is non-empty. It is noted that even problem (2.39) is

not convex, the dual function is concave since it is the pointwise infimum of a family of affine
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functions of λ, ν.

From the definition of the dual function, we can see that the Lagrange dual function pro-

vides a lower bound of optimal value p∗ (assume the optimal value of problem (2.39) is p∗).

We always want to find the best lower bound so we can formulate a optimisation problem as

min g(λ, ν) (2.51a)

s.t. λ ≽ 0. (2.51b)

We name this problem as the Lagrange dual problem associated with the problem (2.39). We

define (λ∗, ν∗) as the optimal Lagrange multiplier and d∗ as the optimal solution of this dual

problem. If the equality

d∗ = p∗ (2.52)

holds, then we can alternatively solve the dual problem to obtain the optimal solution of

the related primal problem if the dual problem has a simpler form than the primal one. We

also call this problem has a strong duality. Now, we introduce the Slater’s condition. If

a optimisation satisfies the Slater’s condition, then the strong duality holds. The Slater’s

condition can be expressed as: There exists an x ∈ relintD

fi(x) ≤ 0, i = 1, ...,m, Ax = b. (2.53)

Consider a convex optimisation problem holding a strong duality. we define x∗ and (λ∗, ν∗)

are the optimal valuable of the primal problem and the associated dual problem. Then,

x∗, λ∗, ν∗ satisfy the KKT conditions.

fi(x
∗) ≤ 0, i = 1, · · · ,m

hi(x
∗) = 0, i = 1, · · · , p

λ∗
i ≥ 0, i = 1, · · · ,m

λ∗
i fi(x

∗) = 0, i = 1, · · · ,m

∇f0(x
∗) +

m∑︂
i=1

λ∗
i fi(x

∗) +

p∑︂
i=1

ν∗
i ∇hi(x

∗) = 0,

(2.54)

In some cases, we can derive the closed-form of the optimal solution from the KKT condi-
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tions.

2.6 Algorithms

2.6.1 Semidefinite Relaxation

Semidefinite relaxation (SDR) was first introduced to solve a nonconvex QCQP problem in

[12]. There is an important equation in SDR, which are given by

xTCx = Tr(xTCx) = Tr(CxxT ), (2.55)

where x is a n dimension vector and C is a n× n symmetric matrix. A QCQP problem can

be expressed as follows:

min
x

xTCx, (2.56a)

s.t. xTAix ⊵i bi, i = 1, · · · ,m, (2.56b)

where ”⊵i” represents either ”≥”, ”≤” or ”=” for each i and C,A1, · · · ,Am aren×n symmet-

ric matrices and bi, · · · , bm are constant numbers. By introducing a new variable X = xTx,

problem 2.56 has the following equivalent form

min
X

Tr(CX), (2.57a)

s.t. Tr(AiX) ⊵i bi, i = 1, · · · ,m, (2.57b)

X ≽ 0, (2.57c)

Rank(X) = 1. (2.57d)

Note that constraint (2.57c) and (2.57d) guarantee X = xTx is a rank one symmetric posi-

tive semidefinite (PSD) matrix. Except constraint (2.57d), all other constraints including the

objective function are convex. Problem 2.57 can be recast into a SDP problem by ignoring

the rank one constraint (2.57d). Since the rank one constraint is ignored, how to recover the

original optimisation variable x from X is important. Denote the optimal solution of the SDP

problem with X∗, there are two cases when retrieving x∗:
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• Rank(X∗) = 1: Eigenvalue decomposition is applied to X∗ to retrieve x∗.

• Rank(X∗) ̸= 1: Gaussian randomisation procedure described in [12] is utilised to find

an approximation of x∗.

2.6.2 Successive Convex Approximation

Successive convex approximation (SCA) in this thesis is utilised to approximate a non-convex

function with its first-order Taylor series at a specific point and iteratively optimise the ap-

proximated function.[13]. Given a non-convex function f(x), its first-order Tayler series at

point x0 in the i−th iteration is expressed as follows:

f̃x0
(x) = f(x

(i)
0 ) + f ′(x

(i)
0 )(x− x

(i)
0 ). (2.58)

f̃x0
(x) is a linear function and convex. The updating criteria is given by x

(i+1)
0 = x∗(i),

where x∗(i) is the optimised result in the previous iteration. If the original problem is a con-

vex problem, SCA can also provide an optimal solution, otherwise, SCA can only provide a

suboptimal solution.

2.7 Machine Learning

Machine learning as a powerful and popular tool to solve optimisation problems has been

applied in every engineering field. Learning is an update process, in this process the ML

algorithm will gradually approach the optimal solution. In many cases, ML only can find the

local optimal solution due to the high complexity of the objective function. However, this

local optimal solution will satisfy the engineer requirement in most time and will be better

than non-ML algorithm [14]. Deep learning (DL) as a subfield of ML is considered to solve

a problem with artificial neural networks (ANNs) [15]. The structure of a neural network

is inspired by the structure of the human brain, specifically the interconnected networks of

neurons. There are three main types of learning in the field of DL, which are supervised learn-

ing, unsupervised learning and reinforcement learning. Each type of them has its applicable

fields.
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2.7.1 Neural Networks

Figure 2.10. The structure of a fully connected neural network

Fig. 2.10 illustrates the structure of a fully connected neural network, which consists of

four layers. The name of this network directly indicates that every two neurons located at two

adjacent layers are mutually connected. There are three types of layers, namely the input layer,

the hidden layer and the output. It is important to note that the number of neurons in each layer

of this network varies. The dimension of the input data and the output data is determined by

the number of neurons in the input layer and the output layer, respectively. By adjusting the

number of neurons in these layers, the dimension of data can be easily controlled. Fig. 2.11

shows a classic structure of a neuron but may be changed in some special networks. The input

vector is denoted by x = [x1, x2, · · ·xN ]. the weight vector is denoted by w = [w1, w2, · · ·wN ]

and the bias is denoted by b. σ(·) denotes the activation function. The whole process of a

neuron can be expressed as

y = σ(wTx + b). (2.59)

The reason why we introduce activation functions into a neural network is that activation

functions can introduce non-linearity. The neural network without activation functions can

only approximate linear functions, where the neural network without activation functions can

understand the non-linear relationship present in data. Two commonly adopted activation

functions are

f(x) =
1

1 + e−x
(2.60)
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Figure 2.11. The structure of a neuron

and

f(x) = max(0, x). (2.61)

(2.60) is named by sigmoid function and (2.61) is named by relu function. It is worth not-

ing that the sigmoid function normalises the output within the range 0 to 1, which is commonly

adopted to produce a probabilistic result. Another feature of the sigmoid function is differ-

entiable everywhere, whose gradient can be calculated in the back propagation. However,

the sigmoid function is not commonly used between hidden layers due to vanishing gradient

issue because the gradients usually become very small with the backpropagate proceeds. To

address this issue, relu is preferred to be the activation function between hidden layers. The

relu function does not only introduce non-linearity to the network but also introduce sparsity

in the network because the negative values are set to be zero. Compared with the sigmoid

function, the relu function is easier to be implemented in the network.

2.7.2 Loss Function

The loss function is the gateway to train a neural network by adjusting the weights of neurons

to minimise it. The loss function in the supervised learning is normally designed to represent

the distance between the correct label and the predict result. However, the loss function in

unsupervised learning is more flexible. It can be Euclidean distance between each data or the

objective function of a specific optimisation problem. Some commonly used loss functions

are summarised below [15].

• Mean squared error loss (MSE): MSE loss is the most common loss function in deep

learning, which is calculated by squaring the difference between the correct label and
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the predict result. The equation of MSE loss is expressed as follows:

FMSE =
1

N

N∑︂
i=1

(yi − ŷi)
2, (2.62)

where we assume there are N samples and yi and ŷi denote the predicted result and

the label of the i-th sample, respectively. MSE loss is usually utilised in a regression

problem to train a neural network.

• Mean absolute error loss (MAE): MAE loss is another common loss function, which is

quite similar to MSE loss. The equation of MAE loss can be expressed as follows:

FMAE =
1

N

N∑︂
i=1

|yi − ŷi|. (2.63)

The advantage of MAE compared with MSE is that MAE is more robust at abnormal

points because MSE squares the error, making the error of the abnormal point too large.

However, MAE converges slower than MES because the gradient of MSE changes with

the size of the error, while the gradient of MAE remains at 1.

• Huber loss: Huber loss is a combination of MSE and MAE, taking advantages of both.

The principle underlying the selection of MSE or MAE is based on the magnitude of

the error. MSE is typically employed when the error is relatively small or close to zero,

whereas MAE is more suitable when the error is larger in magnitude. The equation of

Huber loss can be expressed as follows:

Fhuber =
1

N

N∑︂
i=1

I|yi−ŷi|≤δ

(︃
(yi − ŷi)

2

2

)︃
+ I|yi−ŷi|≥δ

(︃
δ|yi − ŷi| −

1

2
δ2
)︃
, (2.64)

where δ is a hyper-parameter to define the position where MSE and MAE are connected

and I is an indicator function.

• Cross entropy loss (CEL): The cross entropy loss is most commonly utilised in the clas-

sification problem. For a binary classification problem, the cross entropy loss can be

expressed as

F 2
CEL = −

N∑︂
i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (2.65)
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2.7.3 Supervised Learning

Supervised learning is the machine learning task of learning a function that maps an input to

an output based on example input-output pairs [16]. It will infer a function from a training

data set where each data sample has a associated label to form a pair [17]. The most important

work in supervised learning is to generate the training data set, where training data will consist

of inputs paired with the correct outputs.

There are two subcategories in supervised learning which are classification and regres-

sion. The aim of classification is to assign the input data to a specific class. A very simple

example of classification is to determine the gender of a person. In this case, the input data

will be an image of a person, while the network’s output is a set of probabilities indicating

the likelihood of that person being classified as either male or female. The gender having

the larger probability will be the predicted result of the neural network. This predicted result

will be compared with the correct label to train the network. The goal of regression is to

predict a continuous number such as temperature and profit. For example, we want to pre-

dict a farmer’s revenue based on weather condition. There is a positive correlation between

the agricultural revenue and the weather condition. Regression algorithms try to find these

relationships between two variables.

2.7.4 Unsupervised Learning

Unsupervised learning is looking for a previously undetected patterns from a non-label dataset

[18]. Unlike supervised learning, unlabeled data is utilised to train the model.

There are several popular techniques used in unsupervised learning, including clustering,

dimensionality reduction, and generative modeling. Clustering algorithms aim to cluster data

having the similarity into the same group. Dimensionality reduction techniques, such as

principal component analysis (PCA) [19], aim to capture the most relevant features within

a low dimension. Generative models, such as autoencoders [20] or generative adversarial

networks (GANs) [21], are designed to learn the underlying probability distribution of the

data. A generative model is able to generate new sample based on features extracted from

training data.
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There is no specific loss function for unsupervised learning. If unsupervised learning is

utilised to solve an optimisation problem, the objective function is usually the loss function.

The neural network will directly apply gradient decent on the objective function to train the

neural network. A very classic unsupervised learning algorithm is K-means, which is utilised

to allocate data into different clusters [22]. Let assume the training set is x1, x2, · · · , xN and

xi, i ∈ {1, 2, · · · , N} is a data sample. There are K clusters for each data sample to be

allocated. The loss function in this algorithm is expressed as follows:

FKMEANS =
N∑︂
i=1

K∑︂
k1

wik||xi − µk||2, (2.66)

where µk is centroid of the k−th cluster and wik = 1 means the data sample xi belongs to

cluster k, otherwise, wik = 0. Note that equation (2.66) is non-convex and it is difficult to

find a global optimal solution. Therefore, gradient-based optimisation strategy is commonly

utilised to find a local optimal solution. If unsupervised learning is adopted to solve an opti-

misation problem in wireless communication field, the loss function is normally the objective

function of the optimisation problem. For example, if we want to maximise the sum rate of

two mobile users, the loss function can be expressed as − (R1 +R2), where R1 and R2 de-

note the data rate of user 1 and user 2, respectively. Note that minimising − (R1 +R2) is

equivalent to maximising R1 + R2. Moreover, if the optimisation problem is a constrained

problem, the loss function should be modified accordingly based on all constraints.

2.7.5 Reinforcement Learning

Basic knowledge of reinforcement learning

Reinforcement learning (RL) is a kind of learning types to obtain rewards through an agent

which constantly takes actions in an environment and maximize the total reward [23]. The

reinforcement learning is an area of machine learning that handles with sequential decision-

making [24]. There are two critical parts for a RL system, where are the agent and the en-

vironment. The key idea of RL is to train an agent can generate good actions based on the

environment. A few factors fully characterize the RL processing.

• Policy π: π(s(t), a(t)) reflects the probability of an action chose by an agent conditioned

48



to s(t).

• State s: The state is a set of observations from the environment. The state will continu-

ously change with time. We utilize s(t) to represent the state in the t-th time slot.

• Action a: The action is the choices made by the agent adopting a policy π based on the

current state. a(t) denotes the action correlating to the state s(t). The state will switch to

s(t+1) after the agent makes an action.

• Reward r: The reward is an evaluation of the action. Once the agent generates an action,

the environment will give feedback to evaluate this action. r(t) is utilized as the reward

for the action a(t).

There are two kinds of RL algorithms in the RL family, one is value-based RL and another is

policy gradient RL.

The value-based RL algorithm aims to build a value function and by minimizing or maxi-

mizing this function to define a policy. Q learning is a value based algorithm. Under a policy

π„ the Q function for a certain action at and state st can be defined as

Qπ(st, at) = Eπ

[︄
+∞∑︂
k=0

ξkrt+k | st, at

]︄
, (2.67)

where ξ ∈ (0, 1] is the reward discount factor. (2.67) indicates that Q value this the expecta-

tion of the cumulative reward and the future reward has a smaller impression of the current

Q value. Deep Q learning (DQN) is also a value based learning algorithm. The Q function

is also defined as the expectation of the cumulative reward shown in (2.67). The difference

between QL and DQN is that the deep neural network is utilized to estimate the Q function.

According to the Bellman’s equation, the Q function can be also expressed as follows:

Q(st, at|θ) = rt + ξ max
a′

Q′ (st+1, a
′|θ′) (2.68)

where Q′ is another neural network named target network to predict the Q value of the next

state. To train the neural network, we define the loss function as the expectation of the mean

square error (MSE) between (2.67) and (2.68), which can be expressed as follows:

L(θ) = E
[︃(︂

rt + ξ max
a′

Q′ (st+1, a
′|θ′)−Q(st, at|θ)

)︂2]︃
. (2.69)
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It is worth to point out the parameters of the target network θ′ are fixed during the training.

Both QL and DQL aim to address discrete action problems.

The policy gradient (PG) RL algorithm aims to optimize a performance objective by find-

ing a good policy [24]. PG algorithms are also designed for the continuous action space.

There is one classic PG algorithm named stochastic policy gradient. The parameter updating

rule can be expressed as follows:

θt+1 = θt + lE[∇θ(log πθ(st, at))Q
πθ(st, at)], (2.70)

where l is the learning rate and Qπθ is the Q function under the current policy πθ to evaluate

the current policy.

Deep deterministic policy gradient

Figure 2.12. The block diagram of a DDPG model

According to the above description, QL and DQN are not suitable to solve the problem

having a continuous action space. Although PG algorithms can be applied to continuous

problems, the convergence performance is unsatisfactory in a wireless communication envi-

ronment [25]. The idea of deep deterministic policy gradient (DDPG) is to combine DQN

and PG together which can handle with the problem with a continues action space and also
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has a better convergence performance.

A DDPG framework shown in Fig. 2.12 is constructed by two neural networks. One

named critic network estimates the Q function to evaluate the policy. Another named actor

network generates policy and makes actions based on this policy. In training process, DDPG

model updates the critic network through Bellman equation to minimising the MSE between

the estimated Q value and the observed rewards plus the discounted value of the next state.

The actor network is then updated using the PG.

The replay buffer is a crucial aspect in DDPG. The replay buffer stores the training sam-

ples, consisting of state, action, reward, next state tuples, which are randomly selected during

training. This replay buffer helps break the temporal correlations in the data, making the

learning process more stable.

DDPG has been successfully applied to a wide range of continuous control problems.

DDPG is utilised in the chapter 4 in this thesis to maximise the sum rate of multiple users in

a RIS-NOMA network.
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Chapter 3

Joint Optimisation of Beamforming,

Phase-Shifting and Power Allocation in a

Multi-cluster RIS-NOMA Network
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3.1 Introduction

The 5G communication system has been commercialised world-widely, and the beyond

5G (B5G) system starts attracting more and more researchers’ attention due to its low en-

ergy consumption, high spectrum efficiency and massive multi-device interconnections [26]–

[28]. In order to satisfy the increasing demand caused by the fast-growing number of users,

various techniques, including millimetre wave [29], massive multi-inputs and multi-outputs

(MIMO) system [30], and small cell [31], have been investigated and extensively used in

practice. As a potential technique of B5G, non-orthogonal multiple access (NOMA) has

received widespread attention due to its high spectral efficiency [6], [32]. Different from

conventional orthogonal multiply access (OMA), such as frequency division multiple access

(FDMA), time division multiple access (TDMA), code division multiple access (CDMA),

and orthogonal frequency-division multiple access (OFDMA), NOMA allows multiple users

to share the same time slot, frequency block and channel code, which dramatically increases

the spectral efficiency. In particular, the users in a NOMA network usually adopt successive

inference cancellation (SIC) to remove the inference from other NOMA users, which can

efficiently improve the signal to interference and noise ratio (SINR) and reception reliabil-

ity [33]. Recently, intelligent reflective surface (RIS) has also been proposed as a potential

solution to further improve the performance of wireless networks, including enlarging the

communication coverage, and improving transmission robustness. Specifically, the RIS can

reflect the electromagnetic wave to extend the cover rage of the base station (BS). It also has

the ability to tune the channel by adjusting the phase shift of each element, which will greatly

improve the quality of users’ received signal[34]. The typical architecture of RIS consists of

a reflecting panel and a smart controller. The reflecting panel is composed of many reflecting

elements and a control circuit. The control circuit is responsible for tuning the phase shift of

each reflecting element. Moreover, the smart controller determines the reflection adaptation

and also performs as a gateway to communicate with the BS. The smart controller can receive

the control signal from the BS and then adjust the phase shift of each reflecting element [35].
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3.1.1 Related Works

In literature, extensive research has been carried out for the NOMA technique, which has

been combined with various state-of-the-art techniques such as MIMO and orthogonal time-

frequency space modulation (OTFS)[36]–[40]. Recently, RIS has emerged as a kind of pow-

erful equipment for wireless communication networks [8], [41], [42]. Among these works,

RIS was proved as a perfect solution for a wireless communication network, where the chan-

nel will be intelligently reconfigured by the RIS[39], [43].

Motivated by the benefits from NOMA and RIS, the combination of NOMA and RIS has

been recently proposed as a promising solution to improve the communication systems. There

have been some ongoing works studying the combination of NOMA and RIS. Some recent

research works such as [44], [45] considered a simple scenario where a single RIS serves two

users in a downlink NOMA network. In [44], the authors minimised the transmit power at the

BS by optimizing beanforming and RIS phase shift and also considered an improved quasi-

degradation condition to guarantee that NOMA can achieve the capacity region with high

possibility. In [45], the authors analysed two kinds of phase shift designs, namely random

phase shifting and coherent phase shifting.

Moreover, there are many works considering an RIS-assisted NOMA network where a

signal RIS serves multiple users [46]–[50]. The problems which have been researched can

be divided into two categories, one is about the transmit power minimisation [46], [47] and

the other is about the the sum-rate maximization[48]–[50]. For the transmit power minimi-

sation problem, the authors in [48] minimised the total transmit power by optimizing beam-

forming vectors of each user and the phase shift design of the RIS in an RIS-empowered

downlink NOMA network. [47] considered a single RIS assisted downlink NOMA network

and adopted reinforcement learning to design the beamforming vectors which minimised the

transmit power at the BS. Regarding to the sum rate maximization problem, the authors of

[48] optimised the beamforming design to maximise the sum rate in a downlink MISO RIS

aided NOMA system. [49] discussed a multi-channel downlink communications RIS-NOMA

framework, where the sum rate of multiple NOMA users served by one RIS was maximised

by optimizing resource allocation to each user and jointly considering channel assignment

and decoding order. [50] considered an RIS-assisted uplink NOMA system where multiple
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NOMA users can only transmit data through an RIS to the BS.

There are also some works considering a multi-cluster system mode, i.e., users are di-

vided into different clusters [51], [52]. In [51], the authors discussed a downlink RIS-assisted

NOMA network where two types of users named the central user and the cell edge user were

assigned to different clusters. Each cluster had one central user, one cell edge user and one

RIS serving all users. The authors minimised the transmit power at the BS by jointly opti-

mizing the beamforming vectors of each user and the phase shift design of the RIS. In [52],

the authors considered a multi-cluster and multi-BS RIS-aided NOMA network, where each

cluster is served by its associated BS and one RIS serves all clusters. The sum rate was

minimised by jointly optimizing power allocation and phase shift.

3.1.2 Motivation and Challenges

All the above works only consider one RIS. However the channel state of each user is related

to its particular surrounding environment. Therefore, one single RIS might not be enough to

reconfigure all users’ channels simultaneously. Thus, multiple RISs are deployed to assist the

users whose channel conditions are bad. One RIS can adjust its phase shift dedicatedly for its

associated user to generate a better channel condition. This chapter considers a multi-cluster

NOMA network, where each cluster has one RIS and the BS generates an unique beam for

each cluster to serve all users located in this cluster.

With the considered scenario, there are a few challenges which need to be overcome. We

consider a multi-user and multi-RIS scenario which increases the number of optimisation

variables and hence make the optimisation more complicated than the case with a single RIS

in the network. The joint optimisation problem contains three coupled variables, which is

a non-convex problem and highly intractable. Therefore, the primal problem is divided into

subproblems. Those subproblems are approximately transformed to the convex form but the

feasibility of these subproblems cannot be guaranteed during the transformation. Moreover,

due to the high quality of variables, the computing time of algorithms will be extensive.
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3.1.3 Contributions

Different from the above mentioned works [51], [52], a new system model assisted with multi-

ple RISs is adopted in this chapter. Then, a power minimisation problem is formulated, which

is non-convex and highly intractable. A novel alternating algorithm is proposed to solve this

non-convex problem efficiently. Finally, a low-complexity algorithm, which achieves a rea-

sonable performance, is also provided. The contributions are summarised as follows:

• A multi-cluster RIS-NOMA system is considered, where each cluster contains two users

served by one RIS. The transmit power minimisation problem with respect to the beam-

forming vector, the phase shifting matrix of RISs and the power allocation coefficient

of each cluster is formulated. Each RIS can accomplish channel reconfiguration ac-

cording to the channel condition between the BS and the cell edge user it serves, which

intuitively yields a better performance than the scenario with the single RIS serving the

whole system.

• The formulated problem is non-convex because three variables are highly coupled to-

gether. To solve the proposed optimisation problem, a novel alternating algorithm is

proposed, where the primal problem is divided into the beamforming optimisation prob-

lem and the phase shift feasibility problem. However, the beamforming optimisation

problem still has two variables coupled together, which causes the intractability. To

address this challenge, the arithmetic and geometric means inequality is utilised to ap-

proximately transform the non-convex set to its convex upper bound. Then, the equiva-

lence between Schur complement larger than zero and the positive semidefinite matrix

and successive convex approximation (SCA) are applied to transfer another non-convex

constraint to a convex form. Finally, the proposed alternating algorithm is utilised to

iteratively solve those two subproblems.

• Some fixed points are introduced during the approximation. It is essential to obtain

the initial choice of the fixed points to guarantee the feasibility of the beamforming op-

timisation problem. Therefore, a feasible initial points search algorithm is proposed,

where an auxiliary variable forces all constraints to be feasible. Minimising this auxil-

iary variable until it equals to zero will find the feasible fixed points. The values of the

fixed points when this auxiliary variable equals to zero can be the initial choice of the
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fixed points for the proposed alternating algorithm.

• The complexity of the proposed alternating algorithm is high. To reduce the complexity,

a simplified system model, where each cluster shares the same power allocation coef-

ficient, is considered. With this assumption, the previous problem will be degraded

into a simpler one with two coupled variables. A partial exhaustive search algorithm

is proposed to solve this new problem. Compared with the alternating algorithm, the

complexity is reduced but the performance is still reasonable.

3.1.4 Organisation

The rest of chapter is organised as follows. In Section II, a multi-cluster RIS-assisted NOMA

downlink network is introduced and a power minimisation problem is formulated. In Section

III, the solution to solve the formulated problem is introduced. In Section IV, the simplified

optimisation problem and the partial exhaustive search based algorithm are introduced. In

Section V, the convergence analysis of the algorithms and the simulation results are provided.

Finally, a conclusion is summarised in Section VI.

3.2 System Model and Problem Formulation

3.2.1 System Model

CU1

EU1

CU2

EU2

CU3

EU3

CU4

EU4

central user link cell edge user link

Figure 3.1. An RIS NOMA sytem model.

As shown in Fig.3.1, the multi-user downlink network contains two types of users, namely
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the central user and the cell edge user. They are served by the BS simultaneously. Generally,

the central users are much closer to the base station than the cell edge users. It is assumed that

there are K clusters and each cluster contains a central user, a cell edge user and an RIS. We

useCUk, EUk and RISk to represent the central user, the cell edge user and the RIS in the k-th

cluster, respectively. Each RIS is equipped with N passive reflecting elements and assists the

cell edge user receiving signal from the BS. The BS is equipped with M (K ≤ M ≤ 2K)

antennas and generates K beams to serve K clusters. It is assumed that the direct links

between the BS and all the cell edge users are not available due to blockage, and the RISs

are implemented to reflect the signals sent by the BS to the cell edge users. Each cluster

is far from others so the interference caused by the RISs serving the other clusters can be

reasonably ignored. In practice, the surface area of the RIS hardware is very limited, which

can only reflect partial electromagnetic waves sent by the BS. The energy of the reflected

signal will be greatly attenuated if there is severe path loss or fading attenuation [35]. In each

cluster, an RIS can be deployed carefully to ensure that it has strong connection to the cell

edge user which does not have line-of-sight with the base station . As such, it is very likely

that this RIS also has weak connections to those central users due to potential blockages [53].

The study for the case with direct links to those central users will be beyond the scope of

this work, but it will be an important direction for future research. The locations of each RIS

and each user will also affect the total transmit power. For simplicity, the system model will

be presented by assuming that the distances between the RISs and the BS are the same. In

Section V, simulation results will be presented to demonstrate the impact on the performance

of the proposed algorithm with different BS-RIS distances. We note that the locations of the

RISs provide another dimension of system optimisation, which is beyond the scope of this

work and will be treated as an important direction for future research.

To improve the spectrum efficiency, each cluster will use the same frequency-time resource

block but with different beams, which is similar to the principle of spatial division multiple

access (SDMA). NOMA is adopted within each mean to further improve the spectrum effi-

ciency. The BS assigns different power levels to the signals being sent to the users in each

cluster. The base station broadcasts the superposition signal
∑︁K

i=1 wi(
√
αisi,c+

√
1− αisi,e),

where wi ∈ CM denotes the beamforming vector in the i-th cluster and i ∈ 1, 2, ..., K. si,c

and si,e denote the signals to be sent to the central user and the cell edge user in the i-th clus-
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ter, respectively, and αi is the power allocation coefficient of CUi, thus 1 − αi is the power

coefficient of EUi.

Since the RIS only reflects the signal to users, it is assumed there is no line-of-sight (LoS)

component. Therefore, the channel between the RIS to the cell edge user follows Rayleigh

fading in each cluster. When it comes to the base station, which serves as the signal source, it

is essential to consider the LoS component. As a result, we employ a Rician fading channel

model for both the link between the base station and the RIS and the link between the BS and

the central user within each cluster. This modeling approach can be represented as follows:

f =
√︃

κ

1 + κ
fLoS +

√︃
1

1 + κ
fnLoS, (3.1)

where κ is the Rician factor, fLoS is the LoS component and fnLoS is the non-Los (nLoS)

component following the Rayleigh distribution.

Channel estimation is crucial for an RIS-assisted network to realise the beamforming de-

sign and phase shift design. If perfect channel state information (CSI) is available, RIS is able

to properly adjust the phase shift under the aid of a smart controller and the BS can generate

the proper beams. In an RIS-assisted network, there are two types of channels, namely the

BS-RIS channel and the RIS-user channel. These two channels are always coupled together

at the receiver end. Individually estimating these two channels is the main challenge for RIS

channel estimation. Typically, an RIS is implemented two operational modes, which are the

estimation mode and the reflecting mode [46]. The RIS can be switched between these two

modes. On the estimation mode, the RIS will adjust each reflecting element to a particular

phase and then RIS channel estimation algorithms, e.g. passive channel estimation based on

machine learning [54], are applied to acquire CSI. On the reflecting mode, the RIS performs

like a mirror to reflect the signal sent by the BS. This work mainly focuses on the beamform-

ing, power allocation and phase shift design, and it is assumed that the perfect CSI is available

at every node. Therefore, the signal received at CUk is given by
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yk,c =hH
k,cwk

√
αksk,c⏞ ⏟⏟ ⏞

signal

+hH
k,cwk

√
1− αksk,e⏞ ⏟⏟ ⏞

intra-cluster interference

+hH
k,c

K∑︂
i=1
i ̸=k

wi(
√
αisi,c +

√
1− αisi,e)

⏞ ⏟⏟ ⏞
inter-cluster interference

+wk,c,

(3.2)

where hk,c ∈ CM×1 denotes the channel vector between the base station and CUk, and wk,c ∼

CN (0, σ2) is the additive white Gaussian noise (AWGN). Meanwhile, the signal received at

EUk is given by

yk,e =(hH
k,eΘkGk)wk

√
1− αksk,e⏞ ⏟⏟ ⏞

signal

+(hH
k,eΘkGk)wk

√
αksk,c⏞ ⏟⏟ ⏞

intra-cluster interference

+ (hH
k,eΘkGk)

K∑︂
i=1
i ̸=k

wi(
√
αisi,c +

√
1− αisi,e)

⏞ ⏟⏟ ⏞
inter-cluster interference

+wk,e, (3.3)

where Gk ∈ CN×M denotes the channel matrix between the BS and RISk, wk,e ∼ CN (0, σ2)

denotes AWGN, hk,e ∈ CN×1 denotes the channel vector between RISk and EUk and Θk =

diag(βejθk1 , ..., βejθkn) is the phase shift matrix of RISk, where θkn ∈ [0, 2π), n ∈ {1, ..., N}

and β ∈ [0, 1] denote the phase shift of each reflecting element n and amplitude coefficient

on the signal, respectively. It is assumed that β = 1 given the fact that each reflecting element

can only change the phase but not the amplitude of the reflected signal [47]. It is worth to

point out that the RIS with β = 1 may not be the optimal choice in some scenarios which are

related to physical layer security. Therefore, the design of amplitudes is still crucial. More

detailed discussions about the choices of the reflecting amplitude and the phase shift can be

found in [55]. Due to path loss, we consider that the signal can be only efficiently reflected by

the RIS once. Moreover, the long distance that geographically separates each cluster justifies

the assumption that the RIS in one cluster will not infect other clusters. SIC strategies will

directly affect the power allocation level. Since the cell edge user is far from the BS whose

signal will suffer severe large scale path loss, the strategy that SIC is only performed at the

central user to eliminate the interference from its intra-cluster edge user and the cell edge

user decodes its data directly is adopted. In this case, the cell edge user will be allocated
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more power. It is necessary to point out that other SIC strategies will result in different power

allocation, which will be studied in the future research. Hence, the SINR of EUk is given by

SINRk,e =
|hH

k,eΘkGkwk|2(1− αk)

|hH
k,eΘkGkwk|2αk +

K∑︁
i=1
i ̸=k

|hH
k,eΘkGkwi|2 + σ2

, (3.4)

where |hH
k,eΘkGkwk|2αk is intra-cluster interference and

∑︁K
i=1
i ̸=k

|hH
k,eΘkGkwi|2 is inter-cluster

interference. For the central users, they need to apply SIC to decode sk,e first and then remove

it. Thus, the SINR of signal sk,e observed at CUk can be expressed as follows:

SINRk,c→e =
|hH

k,cwk|2(1− αk)

|hH
k,cwk|2αk +

K∑︁
i=1
i ̸=k

|hH
k,cwi|2 + σ2

. (3.5)

The SINR of CUk to decode its own signal is given by

SINRk,c =
|hH

k,cwk|2αk

K∑︁
i=1
i ̸=k

|hH
k,cwi|2 + σ2

. (3.6)

The design of beamforming vector is critical. Some existing works adopted block-diagonalization-

based beamforming, e.g. using vectors from a FFT matrix, to cancel the inter-cluster inter-

ference[51]. However, in this chapter, beamforming vectors are deigned by applying convex

optimisation directly, thus, the inter-cluster interference exists as noise which cannot be ig-

nored.

3.2.2 Problem Formulation

In this section, a transmit power minimisation problem is formulated by jointly optimizing the

beamforming vector (wk, k ∈ {1, ...K}), power allocation coefficients (αk, k ∈ {1, ...K})

and phase shifting matrix (Θk, k ∈ {1, ...K}), while considering the quality of service (QoS)

requirement and the constraints of reflecting elements. The considered transmit power min-

imisation problem can be formulated as follows:
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P0 : min
α,w,Θ

K∑︂
k=1

||wk||2 (3.7a)

s.t. log2(1 + SINRk,c) ≥ Rk,c, ∀k (3.7b)

log2(1 + min(SINRk,e,SINRk,c→e)) ≥ Rk,e,∀k (3.7c)

0 ≤ θk,n ≤ 2π, ∀ k, n (3.7d)

|Θk,n,n| ≤ 1, ∀ k, n (3.7e)

where ||wk||2 is the transmit power allocated to the cluster k, Rk,c andRk,e denote the required

minimum data rate of CUk and EUk, respectively. The constraints (3.7b) and (3.7c) indicate

the QoS requirements of the central users and the cell edge users, (3.7d) defines the phase

shift range of the reflecting elements and (3.7e) ensures that the RIS is a passive component.

Note that for many important applications for RIS, such as the next-generaiton Internet of

Things (IoT), users, such as IoT sensors, can be severely energy constrained, which motivates

the formulated power minimisation problem. In particular, this formulated optimisation prob-

lem can reduce the energy consumption at the IoT sensors, while guaranteeing their commu-

nication requirements [46], [51]. Alternatively, the energy efficiency optimisation problem

can also be formulated for the addressed RIS-NOMA network, which is beyond the scope of

this work but is an important direction for future research.

However, problem P0 is highly intractable due to the non-convex constraints (3.7b) and

(3.7c). The non-convexity is caused by three highly coupled variables (i.e. w, α and Θ). To

efficiently solve this problem, SCA, SDR and the inequality approximation are adopted to

develop an alternating algorithm to iteratively solve it.

3.3 Optimisation Solution

As discussed in the previous section, it is difficult to find the optimal solution of P0 due

to its non-convexity. In this section, an alternating optimisation algorithm is proposed to

solve P0 efficiently. The main idea of this algorithm is to divide the primal problem into

two subproblems and solve them alternatively. In particular, P0 is divided to a beamforming
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optimisation subproblem and a feasible phase shifting matrix search subproblem. As shown

later, each of the two subproblems is non-convex, and we will approximately transform them

into the convex form, which can be solved efficiently by convex solvers, e.g., CVX in Matlab.

3.3.1 Beamforming Optimisation

For a given phase shifting matrix Θ, the concatenated channel respond hH
k,eΘkGk ∈ C1×M is

fixed. Thus, the beamforming optimisation problem can be formulated as

P1 :min
α,w

K∑︂
k=1

||wk||2 (3.8a)

s.t. log2(1 + SINRk,c) ≥ Rk,c, ∀k (3.8b)

log2(1 + SINRk,e) ≥ Rk,e, ∀k (3.8c)

log2(1 + SINRk,c→e) ≥ Rk,e, ∀k (3.8d)

0 ≤ αk ≤ 1, ∀k. (3.8e)

P1 is non-convex because the beamforming vector and the power allocation coefficient are still

coupled together in all constraints except (3.8e), which is challenging to be solved. It is noted

that the rank-constrained semidefinite programming (SDP) problem can be approximated to

a convex form. Therefore, after converting P1 into a SDP form, SDR can be applied to solve

this problem.

First, the constraint (3.8c) needs to be approximately transformed into a convex form.

According to (3.4), the constraint (3.8c) can be rewritten as follows:

|eHk Dk,eGkwk|2(1− αk)

|eHk Dk,eGkwk|2α +
K∑︁
i=1
i ̸=k

|eHk Dk,eGkwi|2 + σ2

≥ rk,e, (3.9)

where rk,e = 2Rk,e −1, ek is an N ×1 vector containing all the diagonal elements of ΘH
k , and

Dk,e is a diagonal matrix, whose main diagonal elements are from the channel vector hH
k,e.

After some algebraic transformations, (3.9) can be equivalently expressed as follows:

|eHk Dk,eGkwk|2(1 + rk,e)αk ≤ |eHk Dk,eGkwk|2 −
K∑︂
i=1
i ̸=k

|eHk Dk,eGkwi|2rk,e − σ2rk,e. (3.10)
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Since the CSI is perfectly known by the BS, the channel eHk Dk,eGk is fixed with a given phase

shifting matrix. For simply notation, we replace eHk Dk,eGk with zHk,e and rewrite (3.10) as

follows:

αk|zHk,ewk|2 ≤
|zHk,ewk|2

1 + rk,e
−

⎛⎜⎝ K∑︂
i=1
i ̸=k

|zHk,ewi|2 + σ2

⎞⎟⎠ rk,e
1 + rk.e

, (3.11)

where zHk,e = eHk Dk,eGk. The quadratic form |zHk,ewk|2 in (3.11) can be rewritten as wH
k Zk,ewk,

where Zk,e = zk,ezHk,e. A slack matrix Wk = wkwH
k is introduced, which is a rank-one positive

semidefinite (PSD) matrix. It is known that wH
k Zk,ewk = Tr(Zk,eWk) from SDR. Moreover,

the rank of Wk has to be 1 and Wk is a PSD because of Wk = wkwH
k . Then the constraint

(3.11) can be equivalently rewritten as follows:

αkTr(Zk,eWk) ≤
Tr(Zk,eWk)

1 + rk,e
−

⎛⎜⎝ K∑︂
i=1
i ̸=k

Tr(Zk,eWi) + σ2

⎞⎟⎠ rk,e
1 + rk.e

(3.12)

Wk ≽ 0 (3.13)

Rank(Wk) = 1. (3.14)

From (3.12), it is noted that the right hand side of (3.12) is a liner combination of two convex

terms with respect to Wk, which is convex. The only obstacle is the left hand side, which is

a bilinear term constructed by αk and Tr(Zk,eWk). To make this constraint a convex set, we

need to approximately transform the non-convexity function αkTr(Zk,eWk) to a convex form.

Inspired by the inequality of arithmetic and geometric means 2ab ≤ a2 + b2, where a and b

are both non-negative numbers, we have the inequality that

2αkTr(Zk,eWk) ≤ (αkck)
2 +

(︃
(Tr(Zk,eWk)

ck

)︃2

, (3.15)

where ck is a fixed point. From (3.15), it is noted that (αkck)
2 +

(︂
(Tr(Zk,eWk)

ck

)︂2
is an upper

bound of 2αkTr(Zk,eWk) and is a liner combination of two convex terms. Therefore, the

non-convex feasible set of the left hand side term can be upper bounded by a convex set
1
2
(α2

k + Tr(Zk,eWk)
2). To tighten this upper bound in each iteration of the proposed iterative

algorithm, updating rule of ck in each iteration needs to be defined.
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Lemma 1. The fixed point ck at the m-th iteration can be updated by:

c
(m)
k =

⌜⃓⃓⎷Tr(Zk,eW(m−1)
k )

α
(m−1)
k

(3.16)

Proof. A difference function of the original function 2αkTr(Zk,eWk) and its approximated

upper bound is defined as follows:

F(ck) = 2αkTr(Zk,eWk)− (αkck)
2 −

(︃
(Tr(Zk,eWk)

ck

)︃2

. (3.17)

When the function (3.17) equals to 0, the equality of (3.15) holds, which tightens the upper

bound. From (3.15), it is noted that the maximum value of function F(ck) is 0. Since

∂2F(ck)

∂c2k
= −2αk −

6Tr(Zk,eWk)

c4k
≤ 0, (3.18)

when αk ≥ 0 and Tr(Zk,eWk) ≥ 0, the function F(ck) is a concave function with respect

to ck. According to the Karush–Kuhn–Tucker (KKT) conditions, the maximum value of a

concave function is obtained by letting the first order derivative equal to 0. Thus, the optimal

value of ck, defined as c∗k, can be obtained by ∂F(ck)
∂ck

= 0, then c∗k can be given by

c∗k =

√︄
Tr(Zk,eWk)

αk

. (3.19)

Hence, the constraint (3.12) can be approximated as follows:

(αkck)
2 +

(︃
(Tr(Zk,eWk)

ck

)︃2

≤ 2
Tr(Zk,eWk)

1 + rk,e
− 2

⎛⎜⎝ K∑︂
i=1
i ̸=k

Tr(Zk,eWi) + σ2

⎞⎟⎠ rk,e
1 + rk.e

.

(3.20)

It is noted that the left hand side of (3.20) is convex and the right hand side of (3.20) is an

affine function, which means that the constraint (3.20) is a convex set. Eventually, (3.8c) can

be approximated by (3.13), (3.14) and (3.20).

For handling with the next non-convex constraint (3.8d), after some algebraic manipula-
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tions, (3.8d) can be rewritten as follows:

αk|hH
k,cwk|2 ≤

|hH
k,cwk|2

1 + rk,e
− (

K∑︂
i=1
i ̸=k

|hH
k,cwi|2 + σ2)

rk,e
1 + rk.e

. (3.21)

It is worth to point out that (3.21) has the same form as (3.11). Similarly, the method allied

to (3.11) can be efficiently applied to (3.21) to yield a convex form. Therefore, (3.21) can be

approximately transformed to

(αkdk)
2 +

(︃
(Tr(Hk,cWk)

dk

)︃2

≤ 2
Tr(Hk,cWk)

1 + rk,e
− 2

⎛⎜⎝ K∑︂
i=1
i ̸=k

Tr(Hk,cWi) + σ2

⎞⎟⎠ rk,e
1 + rk.e

,

(3.22)

(3.13), (3.14),

where Hk,c = hk,chH
k,c, and dk is a fixed point. At the m-th iteration, dk can be updated as

follows:

d
(m)
k =

⌜⃓⃓⎷Tr(Hk,cW(m−1)
k )

α
(m−1)
k

. (3.23)

Eventually, (3.8d) can be approximated by (3.13), (3.14) and (3.22).

Now, we focus on the last non-convex constraint (3.8b). First, it can be rewritten as follows:

αkTr(Hk,cWk) ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c (3.24)

where rk,c = 2Rk,c − 1. Though (3.24) also has a bilinear term αkTr(Hk,cWk), the method

which has been successfully applied to the constraint (3.8c) and (3.8d) cannot be straight-

forwardly applied. Replacing αkTr(Hk,cWk) with the upper bound through the inequality of

arithmetic and geometric means does not work because it is located at the left hand side of

≥ sign, which causes this inequality to be concave not convex. Hence, another method is

proposed to deal with this constraint. First, we introduce a slack variable tk and (3.8b) can

be transformed to

αkTr(Hk,cWk) ≥ t2k (3.25)
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t2k ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c. (3.26)

It can be straightforwardly shown that neither of (3.25) and (3.26) is convex. According to

the Schur complement theory [11], it is known that the sufficient and necessary condition for

a matrix to be PSD is that its Schur complement is greater than zero. Moreover, a PSD matrix

is a convex constraint. After a simple transformation, (3.25) can be rewritten as follows:

αk −
t2k

Tr(Hk,cWk)
≥ 0, (3.27)

which is equivalent to

⎡⎢⎣αk tk

tk Tr(Hk,cWi)

⎤⎥⎦ ≽ 0. (3.28)

Constraints (3.27) and (3.28) are mutually sufficient, and constraint (3.28) is convex. Now,

we deal with the constraint (3.26). It is noted that t2k is on the left hand side of the greater

sign, which makes the whole constraint a non-convex set. SCA is utilised to deal with this,

where the first order Taylor series approximation is adopted to approximate the quadratic form

(3.26) as

t2k,0 + 2tk,0(tk − tk,0) ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c (3.29)

where tk,0 is a fixed point introduced by SCA. The updating rule of tk,0 at the m-th iteration

is given by

t
(m)
k,0 = t

(m−1)
k . (3.30)

The final obstacle to deal with this problem arises from the rank-one constraint (3.14). By

applying SDR, the rank-one constraint is omitted to make the whole problem tractable. Thus,

P1 is eventually transformed to

P2 : min
α,W,t

K∑︂
k=1

Tr(Wk) (3.31a)
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s.t. (αkck)
2 +

(︃
(Tr(Zk,eWk)

ck

)︃2

≤

2
Tr(Zk,eWk)

1 + rk,e
− 2

⎛⎜⎝ K∑︂
i=1
i ̸=k

Tr(Zk,eWi) + σ2

⎞⎟⎠ rk,e
1 + rk.e

, ∀k (3.31b)

(αkdk)
2 +

(︃
(Tr(Hk,cWk)

dk

)︃2

≤

2
Tr(Hk,cWk)

1 + rk,e
− 2

⎛⎜⎝ K∑︂
i=1
i ̸=k

Tr(Hk,cWi) + σ2

⎞⎟⎠ rk,e
1 + rk.e

,∀k (3.31c)

⎡⎢⎣αk tk

tk Tr(Hk,cWi)

⎤⎥⎦ ≽ 0,∀k (3.31d)

t2k,0 + 2tk,0(tk − tk,0) ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c,∀k (3.31e)

0 ≤ αk ≤ 1,∀k. (3.31f)

Algorithm 1 Initial Point Search Algorithm

1: Initialise: c(0)k , d(0)k , t(0)k,0 ∀k, ϵ = 0.00001, i = 0, q(0) = 100.
2: while q(i) > ϵ do
3: i = i+ 1.
4: Update W(i)

k , α(i)
k and q(i) with fixed c

(i−1)
k , d(i−1)

k , t(i−1)
k,0 by solving P3.

5: Update c(i)k , d(i)k , and t
(i)
k,0 based on (3.16), (3.23) and (3.30) respectively.

6: end while
7: Output c(i)k , d(i)k , and t

(i)
k,0.

Since the restriction of rank one is removed, P2 is a convex problem and can be efficiently

solved by convex optimisation toolboxes, for instance, CVX. It is noted that P1 and P2 have

different optimisation valuables. It is crucial to extract the optimal solution of P1 from the

optimal solution of P2. We define the optimal solution of P2 as W∗
k,∀k, and each W∗

k is a

positive semidefinite matrix. However, the optimal solution of P1 will not be obtained from

the optimal solution of P2 unless the rank of W∗
k,∀k is 1. If the rank of W∗

k is not 1, Gaussian

randomization [12] is applied to alternatively obtain a suboptimal solution of P1. Specifically,

several random vectors ξk ∼ N (0,W∗
k) will be generated and stored in a vector set. The one

from this set which can satisfy all the constraints in P1 and also yield the best objective of P1

will be the suboptimal solution of P1.
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Before solving P2, three fixed points, ck, dk and tk,0,∀k need to be initialised. It is noted

that initializing them randomly will make the formulated problem infeasible. Hence, a fea-

sible initial points search algorithm is proposed to find the feasible fixed points to make P2

solvable. From P2, it is noted that the fixed points ck. dk and tk,0 must satisfy the constraints

(3.31b), (3.31c) and (3.31d). An auxiliary variable q, which intentionally relaxes the con-

straints to enlarge the feasible set, is introduced to address this problem. The initial point

search problem can be formulated as follows:

P3 : min
α,W,t,q

q (3.32a)

s.t. (αkck)
2 +

(︃
(Tr(Zk,eWk)

ck

)︃2

− q ≤

2
Tr(Zk,eWk)

1 + rk,e
− 2(

K∑︂
i=1
i ̸=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
,∀k (3.32b)

(αkdk)
2 +

(︃
(Tr(Hk,cWk)

dk

)︃2

− q ≤

2
Tr(Hk,cWk)

1 + rk,e
− 2(

K∑︂
i=1
i ̸=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
, ∀k (3.32c)

⎡⎢⎣αk tk

tk Tr(Hk,cWi)

⎤⎥⎦ ≽ 0,∀k (3.32d)

t2k,0 + 2tk,0(tk − tk,0) + q ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c,∀k (3.32e)

0 ≤ αk ≤ 1,∀k (3.32f)

q ≥ 0. (3.32g)

Specifically, when q equals to 0, all constraints in P3 are exactly the same as the constraints

in P2 and the obtained values of ck, dk and tk,0 can be the initial points of P2, which will

guarantee the feasibility. It is noted that the objective function is an affine function and all

constraints are convex so it can be solved easily by CVX. To solve P3 efficiently, an iterative

algorithm shown as Algorithm 1 is proposed. It is worth to point out that, unlike P2, the

initial points c(0)k , d(0)k and t
(0)
k,0 in P3 can be generated randomly because the feasibility of P3

can be always guaranteed by q.

After deciding the fixed points, the last challenge for solving the beamforming optimi-
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Algorithm 2 The Beamforming Optimisation Algorithm

1: Initialise: fixed feasible points {c∗(0)k , d∗(0)k , t∗(0)k,0 ,} ∀k, ϵ = 0.001, m = 0.

2: while
K∑︁

k=1

Tr(W(m−1)
k )−

K∑︁
k=1

Tr(W(m)
k ) ≥ ϵ do

3: Update beamforming matrix {W(m)
k , α

(m)
k }, ∀k by solving P2 with the fixed feasible point{c∗(m)

k ,
d
∗(m)
k , t∗(m)

k,0 }, ∀k.
4: Update {c∗(m)

k , d∗(m)
k , t∗(m)

k,0 }, ∀k based on (3.16), (3.23) and (3.30) respectively.
5: m = m+ 1.
6: end while
7: Update α∗

k = α
(m)
k ,∀k

8: Update beamforming vector w∗
k,∀k by decomposing W(m)

k ,∀k based on Gaussian Randomization
method.

9: Output {w∗
k, α

∗
k}, ∀k

sation problem has been removed. To solve this problem efficiently, an iterative algorithm

is designed to solve P2 iteratively. The details of the algorithm are shown in Algorithm 2.

Specifically, the fixed initial points {c∗(0)k , d∗(0)k , t∗(0)k,0 } ∀k are obtained from Algorithm 1.

3.3.2 Phase Shifting Optimisation

In this section, we focus on the phase shifting optimisation. The phase shifting optimisation

can be transformed to a feasibility problem since the objective function in the primal problem

does not contain the phase shifting parameter Θk,∀k. Only the constraints (3.7c), (3.7d) and

(3.7e) in the primal problem contain the phase shifting parameter and (3.7c) can be equiva-

lently divided into (3.8c) and (3.8d), where only (3.8c) contains the phase shifting parameter.

Therefore, given the beamforming vectors, the phase shift feasibility problem can be written

as follows:

P4 : find Θ (3.33a)

s.t. log2(1 + SINRk,e) ≥ Rk,e,∀k (3.33b)

0 ≤ θk,n ≤ 2π,∀k, n (3.33c)

|Θk,n,n| = 1, ∀k, n. (3.33d)

It is straighforward to find out that the non-convexity arises from the constraint (3.33b). The

first step is to transform this non-convex constraint to be a convex constraint. Thus, (3.33b)
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can be rewritten as follows:

|hH
k,eΓpk

ek|2(1 + rk,e)αk ≤ |hH
k,eΓpk

ek|2 −
K∑︂
i=1
i ̸=k

|hH
k,eΓpi

ek|2 − σ2rk,e, (3.34)

where Γpi
is a diagonal matrix whose main diagonal elements are from pi = Gkwi and ek is

the phase shifting vector. However, with Wk, αk,∀k already obtained from the beamforming

optimisation problem, the constraint (3.34) is a quartic form with respect to ek. For simplicity,

we substitute hH
k,eΓpi

with riHk,e. From [12], it is known that a quartic form can be equivalently

transformed to a linear form with a rank-one constraint. Thus, (3.34) can be expressed as

follows:

Tr(Rk
k,eVk)(1 + rk,e)αk ≤ Tr(Rk

k,eVk)−
K∑︂
i=1
i ̸=k

Tr(Ri
k,eVi)− σ2rk,e (3.35)

Vk ≽ 0 (3.36)

Rank(Vk) = 1, (3.37)

where Ri
k,e = rik,eriHk,e and Vi = eieHi . Given wk, αk,∀k, (3.35) is an affine constraint. The

rank-one constraint will make the whole problem intractable, thus SDR is adopted again to

remove this rank-one constraint. Then, P4 can be transformed as follows:

P5 : find Vk, ∀k (3.38a)

s.t. (3.35), ∀k (3.38b)

Vk ≽ 0, ∀k (3.38c)

|Vk,n,n| = 1, ∀k, n. (3.38d)

P5 is a convex problem, which can be solved by CVX efficiently. Since the rank-one constraint

is removed, the optimal solution of P5 may not be the optimal solution of P4. Therefore,

Gaussian randomization will be applied to achieve a suboptimal solution for P4.
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Algorithm 3 The Proposed Alternating Algorithm
1: Initialise: ϵ = 0.001, j = 0.

2: while
K∑︁

k=1

Tr(W∗(j−1)
k )−

K∑︁
k=1

Tr(W∗(j)
k ) ≥ ϵ do

3: Searching initial fixed feasible point {c∗(j)k , d∗(j)k , t∗(j)k,0 }, ∀k based on Algorithm 1.
4: Update {W∗(j)

k ,w∗(j)
k , α∗(j)

k }, ∀k based on Algorithm 2.
5: Update V∗(j)

k ,∀k by solving P5 with {w∗(j)
k , α∗(j)

k }, ∀k
6: Update phase shift vector e∗(j)k ,∀k by decomposing V∗(j)

k ,∀k based on Gaussian Randomization
method.

7: j = j + 1
8: end while
9: Output {w∗(j)

k , α∗(j)
k , e∗(j)k }, ∀k.

3.3.3 Algorithm Design

The detail of the proposed alternating algorithm are illustrated in Algorithm 3, where P2 and

P5 are alternately solved until the convergence metric is satisfied. At the i-th iteration of

Algorithm 3, first, the initial points are obtained by Algorithm 1. Then, the algorithm begins

to solve the beamforming optimisation problem by solving P2 through Algorithm 2. Then,

the algorithm starts to solve phase shifting feasibility problem by solving P5 (step 5 and step

6) to obtain a feasible phase shift vector e∗(i)k ,∀k. The feasible phase shifting vector of this

current iteration will be used as a given phase shift for the beamforming optimisation in the

next iteration. It is worth to point out that after each iteration, the channel state will change

with the new obtained phase shifting vector ek,∀k, so it is critical to search new feasible fixed

points (step 3) before solving P2, which necessarily guarantees that P2 is always feasible.

It is worth to point out that there are three optimisation variables coupled together in con-

straints (3.7b) and (3.7c), which are non-convex as well. Therefore, P0 is a NP-hard problem

, i.e., it is difficult to solve it in polynomial time. It is difficult to find the global optimal so-

lution of P0 by applying convex optimisation. In Algorithm 3, the alternating algorithm and

a few approximations are adopted to transform P0 to a solvable convex problem. Therefore,

Algorithm 3 only provides a suboptimal solution for P0.

3.3.4 Complexity analysis

The worst complexity of solving a SDR problem through CVX provided by [12] is

O(max{m,n}4n1/2 log(1/ϵc)), (3.39)
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where n is the problem size, and m is the number of constraints and ϵc is the accuracy of the

algorithm that CVX adopts. It is assumed that the problem size is greater than the number of

constraints, then the complexity of CVX to solve a SDR problem can be expressed as

O(n4.5 log(1/ϵc)). (3.40)

Algorithm 1 is essentially to solve a SDR problem multiple times until the accuracy is satis-

fied. Thus, the complexity of Algorithm 1 is

O
(︃
n4.5
1 log

(︃
1

ϵc

)︃
log
(︃
1

ϵ1

)︃)︃
, (3.41)

where n1 is the problem size of P3 and ϵ1 is the accuracy of Algorithm 1. Algorithm 2 is

similar to Algorithm 1, which is also to solve a SDR problem multiple times and hence P2

has the same size as P3. Thus, the complexity of Algorithm 2 can be expressed as follows:

O
(︃
n4.5
1 log

(︃
1

ϵc

)︃
log
(︃
1

ϵ2

)︃)︃
, (3.42)

where ϵ2 is the accuracy of Algorithm 2. Now, we have the complexities of step 3 and step

4 in Algorithm 3. The last one is the complexity of step 5. It is easy to find out that a single

SDR problem is solved in the step 5, so the complexity is

O(n4.5
2 log(1/ϵc), (3.43)

where n2 is the problem size of P5. Finally, the complexity of the proposed algorithm is given

by

O(O1 log(1/ϵ3)), (3.44)

where

O1 = n4.5
1

(︃
log
(︃
1

ϵc

)︃
log
(︃
1

ϵ1

)︃
+ log

(︃
1

ϵc

)︃
log
(︃
1

ϵ2

)︃)︃
+ n4.5

2 log(1/ϵc).

It is noted that the complexity of the proposed algorithm is quite high. In this case, the

computing time to run the algorithm is long. In a time sensitive system, the algorithm needs

to be simplified to reduce the computing time. In the next section, a partial exhaustive search
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algorithm with lower complexity is proposed.

3.4 Partial Exhaustive Search Algorithm

In this section, a simple algorithm based on partial exhaustive search is proposed, which

can significantly reduce computation complexity. The main idea of this partial exhaustive

search algorithm is to assume that all the clusters share the same power allocation coefficient,

of which the optimal value can be obtained by an exhaustive search within the range [0, 1].

The primal problem can also be divided into the beamforming optimisation problem and the

phase shifting feasibility problem.

Since each cluster shares the same power coefficient, the power coefficient is first fixed in

each searching progress so only the beamforming vector and the phase shifting vector need

to be optimised in these two subproblems. It is noted that these two subproblems can be

reduced to the QCQP problem, which is a classic form in convex optimisation theory. SDR

is widely used as one of the most common methods to efficiently solve the QCQP problem.

Two subprobelms are formulated as P6 and P7. P6 and P7 can be obtained through the basic

SDR theory and some simple algebraic transformations, where the derivation is omitted in

this chapter due to space limitations.

P6 : min
w

K∑︂
k=1

Tr(Wk) (3.45a)

s.t. αTr(Hk,cWk) ≥
K∑︂
i=1
i ̸=k

Tr(Hk,cWi)rk,c + σ2rk,c, ∀k (3.45b)

αTr(Zk,eWk) ≤
Tr(Zk,eWk)

1 + rk,e
− (

K∑︂
i=1
i ̸=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
,∀k (3.45c)

αTr(Hk,cWk) ≤
Tr(Zk,eWk)

1 + rk,e
− (

K∑︂
i=1
i ̸=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
,∀k (3.45d)

Wk ≽ 0,∀k (3.45e)

where Zk,e,Wk,∀k in P6 are the same as those in P2.

P7 : find Vk, ∀k (3.46a)
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s.t. Tr(Rk
k,eVk)(1 + rk,e)α ≤

Tr(Rk
k,eVk)−

K∑︂
i=1
i ̸=k

Tr(Ri
k,eVi)− σ2rk,e,∀k (3.46b)

Vk ≽ 0, ∀k (3.46c)

Vk,n,n = 1, ∀k, n (3.46d)

where Ri
k,e, ∀i, k and Vk,∀k are the same as those in P5. The detail of the partial exhaustive

search algorithm is illustrated in Algorithm 4.

In each search progress, the algorithm will solve two SDR problems with different sizes

n1 and n2, which are the problem sizes of P6 and P7. Therefore, the complexity of Algorithm

4 can be expressed as follows:

O
(︁
I
(︁
n4.5
1 log(1/ϵc) + n4.5

2 log(1/ϵc)
)︁)︁

. (3.47)

I is the number of searches, which depends on the search step α. Obviously, the partial

exhaustive search algorithm has a lower complexity than the complexity of the proposed al-

ternating algorithm. It is worth to point out that the performance of this partial exhaustive

search algorithm is related to the step size ∆α. A smaller step size will yield a better per-

formance. However, according to (3.47), when the step size decreases, the complexity of

the algorithm will increase. It is important to find a balance between performance and com-

plexity. In numerical results, the performance of the partial exhaustive search algorithm with

different step sizes is provided.

3.5 Simulation Results

In this section, we evaluate all simulation results of the proposed algorithms. In simula-

tions, channel gains are generated by

hk,e =
h∗
k,e√︁
dα0
0

Gk =
G∗

k√︁
dα1
1

hk,c =
h∗
k,c√︁
dα2
2

(3.48)
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Algorithm 4 The Partial Exhaustive Search Algorithm
1: Initialization Popt = 10000, αopt = 0,w∗

k, e∗k,∀k
2: for α = 0.1 : 0.1 : 0.9 do
3: Initialization ϵ = 0.001, i = 0, e(0)k

4: while
K∑︁

k=1

Tr(W(i−1)
k )−

K∑︁
k=1

Tr(W(i)
k ) > ϵ do

5: Update W(i)
k ,∀k by solving P6.

6: Update w(i)
k ,∀k by decomposing W(i)

k ,∀k based on Gaussian Randomization method.
7: Update V(i)

k ,∀k by solving P7 based on given w(i)
k ,∀k.

8: Update e(i)k ,∀k by decomposing V(i)
k ,∀k based on Gaussian Randomization method.

9: i = i+ 1.
10: end while
11: if Popt >

K∑︁
k=1

Tr(W(i)
k ) then

12: Popt =
K∑︁

k=1

Tr(W(i)
k ).

13: αopt = α, w∗
k = w(i)

k , e∗k = e(i)k , ∀k.
14: end if
15: end for
16: Output αopt,w∗

k, e∗k,∀k.

where k = 1, 2, ...K, h∗
k,e and h∗

k,c are complex Reyleigh channel coefficients and G∗
k is

complex Rician channel coefficient based on (3.1). d0 = 10 m, d1 = 50 m, d2 = 10 m,

respectively denote the distances between the RIS and the cell edge user, the distance between

the BS and the RIS, and the distance between the BS and the cell center user. α0, α1, α2 are

the path loss exponents of the corresponding links. It is assumed that all the cell central users

are at the same distance from the BS, all the cell edge users are at the same distance from the

related RIS and all the RISs are at the same distance from the BS. We set α0 = α2 = 1.8 and

α1 = 2. The noise power is σ2 = BN0, where the bandwidth B = 100 MHz and the noise

power spectral density is N0 = −80 dBm. The number of clusters is K = 4, which means

there are 8 users in the system. For the OMA benchmark scheme, OFDM is adopted where

each user will occupy a specific spectrum and will not cause interference to other users. It is

assumed that the channel bandwidth is normalised, thus each user in the OFDM scheme can

occupy 1/2K bandwidth.

Fig. 3.2 shows the transmit power at the BS versus the number of each RIS’s reflecting

elements. We provide the performance of the proposed schemes compared with the random

phase scheme in NOMA and OFDM. In Fig. 3.2, the number of antennas at the BS is M = 6,

and the date rate requirement of all the users is 1 bps/Hz. Obviously, the transmit power

at the BS of all schemes decreases with the increasing of the number of RIS’s reflecting

elements. From Fig. 3.2, we can see that both proposed algorithms requires a less transmit

power than the benchmarks. Comparing the two proposed algorithms, the performance gap
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Figure 3.2. The transmit power versus the number of reflecting elements at the RIS.
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Figure 3.3. The transmit power versus the minimum date rate of the central users.

is very small and this gap will get smaller if the step size of the partial exhaustive search

algorithm decreases. The result in Fig. 3.2 demonstrates that the alternating algorithm can

yield the best performance among all the schemes but the partial exhaustive search can also

yield competitive performance.

Fig. 3.3 shows the transmit power at the BS versus the minimum data rate of the central

users. In this figure, it is assumed that each central user has the same date rate requirement,

and all the cell edge users’ date rate requirement is 1bps/Hz. In this figure, we set the number

of antennas at the BS asM = 6 and the number of reflecting elements at each RIS as N = 32,

respectively. According to the Shannon’s capacity formula, it is well known that a higher

date rate requires a higher transmit power at the BS. All schemes in Fig. 3.3 have the same

trend, where the transmit power at the BS increases with the increasing of the central users’

minimum date rate requirement. From Fig. 3.3, it is noted that the proposed alternating
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Figure 3.4. The transmit power versus the number of antennas at the BS.
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Figure 3.5. The transmit power versus the distance between the RIS and the BS.

algorithm needs less power consumption under the same date rate requirement. Although,

the partial exhaustive search algorithm cannot achieve the same performance as the proposed

alternating algorithm, it has low complexity and still yields a better performance than NOMA

with random RIS scheme and OFDM scheme.

Fig. 3.4 shows the transmit power versus the number of antennas at the BS. In this simu-

lation, the relationship between the algorithm performance and the number of antennas at the

BS is illustrated. Fig. 3.4 shows the performances of two proposed algorithms with NOMA

and OFDM with random phase RIS. In Fig. 3.4, we set the number of reflecting elements

at each RIS as N = 32 and the date rate requirement of all the users as 1 bps/Hz. From

Fig. 3.4, it is noted that the alternating algorithm achieves better performance gain than other

algorithms with the number of antennas at the BS increasing.
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Figure 3.7. The transmit power at the BS versus the iterative number.

Fig. 3.5 shows the transmit power versus the distance between the RIS and the BS in each

cluster. In Fig. 3.5, we set the number of antennas at the BS as M = 6, the number of each

RIS’s reflecting elements as N = 32. Each user’s date rate requirement is 1bps/Hz. It has

assumed that the RIS will not cause interference to the central user in each cluster. Since the

central user in each cluster is close to the BS, thus the distance between the RIS and the BS

cannot be short. Therefore, the starting point of the simulation is set as 40m. As expected,

the transmit power of all schemes increases when the distance between the RIS in each cluster

and the BS gets large. Similar to Fig. 3.4, the proposed alternating algorithm consumes less

energy compared with all other schemes.

Fig. 3.6 shows the the value of q in the initial point search algorithm versus the iterative

number. As previous discussion, the q represents the distance between the current problem

and a feasible problem and q can enforce the current problem to be a feasible one. Rc denotes
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the data rate requirement of all the central users. Fig. 3.6 also shows that the value of q in

the Rc = 1.4 bps/Hz scheme is larger than that in the Rc = 1 bps/Hz and Rc = 1.2 bps/Hz

schemes at each iteration. Moreover, the scheme with Rc = 1.4 bps/Hz needs more iterations

to converge, which indicates that a higher date rate requirement makes all constraints more

difficult to be fulfilled.

Fig. 3.7 shows the transmit power at the BS versus the iterative number in Algorithm 2.

Rc denotes the data rate requirement of all the central users. We evaluate the transmit power

in different scenarios with the different data rate requirements of the central user. The data

rate of all the cell edge users is 1 bps/Hz, the number of antennas at the BS is M = 6 and

the number of each RIS is N = 32. From Fig. 3.7, we notice that the transmit power at the

BS decreases with the number of iterations increasing, which also means this algorithm can

converge with the algorithm proceeding.

3.6 Conclusion

The joint optimisation of beamforiming, power allocation and RIS phase shift in a NOMA-

RIS assisted multi-cluster network is investigated in this chapter. By introducing inequality

approximation, SCA and SDR, an alternating algorithm is proposed to minimise the transmit

power by iteratively solving beamforming optimisation and phase shifting feasibility until the

algorithm converges. Furthermore, an initial point search algorithm is proposed to guaran-

tee the feasibility of the beamforming optimisation subproblem. Moreover, a low-complexity

solution is also provided for this scenario based on the partial exhaustive search. The simula-

tion results demonstrated the alternating algorithm outperforms the partial exhaustive search

algorithm but has a higher complexity.

This chapter considered traditional convex optimisation to solve the optimisation problem.

The approximation makes the solution loss optimality. To solve optimisation problems more

efficiently and achieve better optimality, deep learning is considered in the next chapter to

solve a sum rate problem in a RIS-NOMA network.
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Chapter 4

A Reinforcement Learning Approach for

an RIS-assisted NOMA Network
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4.1 Introduction

The ultra-massive machine type communication (umMTC) is a key scenario of the next

generation mobile communication [56]. An umMTC network always consists of massive

communication devices, e.g. mobiles and sensors. Each device will communicate with other

devices and cause massive traffic. Since the spectrum resource is extremely restricted, it is a

challenge to support such heavy traffic. The non-orthogonal multiple access (NOMA) is being

considered as a potential candidate of 6G communication system [32]. The main feature of

NOMA is that it allows multiple devices share the same spectrum resource to communicate

simultaneously, which greatly improves the spectrum efficiency. In particular, to satisfy the

individual quality of service (QoS) requirement, each user or device in a NOMA network

always adopts successive interference cancellation (SIC) to improve the signal to interference

and noise ratio (SINR) and reception reliability [33].

Recently, the intelligent reflective surface (RIS) is proposed as a potential auxiliary device

to improve the channel quality and help users in the area with heavy blockage to receive

signals[42]. A RIS consists of many passive reflecting elements and a smart controller which

can adjust the phase shift of each reflecting element. The RIS can adapt the channel between

the transmitter and the receiver to increase the channel gain. Moreover, the RIS performs as

a mirror to redirect the signal and enlarge the signal prorogation range.

Since the artificial intelligence has achieved great success, especially deep learning (DL),

in wireless communication field [57], many works have studied the application of DL algo-

rithms in a wireless communication network [58]. Deep reinforcement learning (DRL) as

a type of DL has been attracting more and more attentions since there is no training data

requirement [59]. Unlike the supervised learning and unsupervised learning, for which the

training data is crucial, DRL adopts an agent to continuously interact with the environment

and fetch feedbacks and utilizes the feedback to train the agent.

In this chapter, a sum rate maximisation problem is investigated and an algorithm based

on DDPG is proposed. Due to the non-convexity of the formulated problem, it is very chal-

lenging to find the optimal solution via conventional convex optimisation. The DDPG based

algorithm is proposed as an alternative method to efficiently solve this problem. This work

also investigates two types of channels, which are the fixed channel and the time-varying
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channel. The simulation results demonstrate that the DDPG algorithm can adapt both types

of channels and has the superior performance on both cases.

4.2 System Model and Problem Formulation

Figure 4.1. RIS NOMA sytem model.

We consider a NOMA-MISO downlink system comprising a BS and a RIS as shown in Fig.

. The BS is equipped with M antennas and RIS has N reflective elements and a controller.

The BS communicates with K (M ≤ K) single antenna users. We define the user set as

K = {1, 2, ..., K}. We assume that the RIS is deployed on the surface of a building, thus the

distance between the BS and the RIS is fixed. As shown in Fig. 6.1, each user will receive

the reflective signal from the RIS and the direct signal from the BS. The BS will generate an

unique beam for each user and superimpose each user’s signal. The superimposed signal sent

by the BS can be expressed as follows:

y =
K∑︂
i=1

wixi, (4.1)

where y denotes the superimposed signal sent to all users, wi ∈ CM denotes the beamforming

vector for the i-th user and xi denotes the signal symbol of i-th user. We assume the power of

signal symbol is unity which means E(x2
i ) = 1,∀i. There are two links between the BS and

all the users. One is the reflective link where the signal sent by the BS will arrive at the RIS

first and then the RIS reflects it to the users. The other is the direct link where the users can

receive the signal directly from the BS. Thus, the received signal at each user is constructed
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with reflective signal and direct signal.We assume that the channel matrix between the BS

and the RIS, G ∈ CN×M , the channel vector between the BS and the k-th user, hd
k ∈ CM×1

for all k, and the channel vector between the RIS and the k-th user, hr
k ∈ CN×1 for all k

are perfectly known by the BS via ray tracing and channel estimation technology [42]. The

received signal of k-th user can be expressed as follows:

yk = hdH
k y⏞ ⏟⏟ ⏞

direct link

+ hrH
k ΦGy⏞ ⏟⏟ ⏞

reflective link

+wk, k ∈ K, (4.2)

where Φ ≜ diag[φ1, φ2, ..., φN ] denotes the phase shift matrix of the RIS and wk is the zero

mean additive white Gaussian noise (AWGN) with variance σ2
n.

Noted that Φ is a diagonal matrix and each element on the main diagonal describes the

state of a reflective element on the RIS. The element on the main diagonal is expressed as

φn = βne
jθn , where βn ∈ [0, 1] is the reflective coefficient describing the signal energy loss

at the RIS and θn ∈ [0, 2π] is the phase shift introduced by the reflective element. We assume

the RIS performs ideal reflection that we ignore the energy loss caused by reflection. Thus,

the reflective signal has the same power with the original signal which means βn = 1,∀n or

||φn|| = 1,∀n.

Compared with the relaying communication system, RIS only performs as a passive mirror

to reflect signals incident on it without decoding and encoding process. RIS will not consume

power on signal processing. (6.2) indicates that RIS will not introduce any AWGN compared

with relay. (6.2) also points out that the user experience is decided by the composite channel

hdH
k + hrH

k ΦG. We can artificially adjust Φ to adapt to changes in the environment which

means the channel is tunable by changing the phase shift continuously. Compared with the

conventional wireless communication system, RIS-assisted system is more robust against the

channel fading.

Noted that we use power domain NOMA to improve the spectrum efficiency, thus the BS

will superimpose all the users’ signals and broadcast the superimposed signal to all users.

All the users in the NOMA system can share the same frequency channel, the same time slot

and the same channel precode compared with FDMA, TDMA and CDMA and all the users

will also receive the same signal. One of the challenges of NOMA is how each user detects

and decodes their own signal from the superimposed signal. The technique named successive
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interference cancellation (SIC) can assist NOMA users to decode their own signal with less

interference. For the simple notation, we use ĥk to represent the composite channel of k-th

user, thus we have ĥk = hdH
k + hrH

k ΦG. We first decide the weak user and the strong user.

In a two users case, if the composite channel power of the user 1 is larger than the user 2’s

composite channel power, ||ĥ1||2 ≥ ||ĥ2||2, user 1 is the strong user compared with the weak

user, user 2. In NOMA system, the BS will assign different powers to different users based on

their composite channel power levels. Normally, the weak user will be assigned more power

to compensate the worse channel condition. On the contrary, the strong user will be given

less power. The power domain NOMA uses the power allocated to each user to distinguish

users.

To successfully apply SIC, we need to decide the decoding order first. In NOMA system,

the decode order is usually decided by the channel quality. However, in a RIS-assisted net-

work, the channels are tuned by adjusting the phase shift of the RIS. Therefore, we use the

composite channel power, which takes the impact of RIS on the channels into consideration,

to decide the decoding order. We define Ω as the set of all possible decoding orders and ϵ is

a certain decoding order in Ω. Without losing generality, we assume the composite channels

are sorted as ||ĥ1||2 ≤ ||ĥ2||2 ≤ ... ≤ ||ĥK−1||2 ≤ ||ĥK ||2, then we have the decoding order

ϵ̄ = (1, 2, ..., K). Based on ϵ̄, the weakest user, user 1, will decode its own signal directly and

treat other users’ signals as interference. The second weakest user, user 2 will decode user

1’s signal locally and then omit user 1’s signal, an interference to user 2, from the received

signal. After that, user 2 starts to decode its own data without the interference caused by user

1 and meanwhile treats the rest of users’ signals as interference. The SIC will proceed until

the strongest user, user K, finishes the decoding of its own data. The strongest user, user K,

will decode the first K − 1 users’ signals first and then remove all of them from the received

signal. Thus, user K can decode its own data without any interference. To clearly describe

the relationship between NOMA users, we adopt i ≼ϵ j to describe that the user j’s com-

posite channel power is larger than user i’s and they are under the decoding order ϵ. Noted

that the decoding order is decided by the composite channel power and the stronger user will

decode weaker users’ signal first, thus user j needs to decode user i’s signal locally and user

i do not need to decode user j’s signal in ϵ.

In this chapter, we consider to maximize the sum rate of all the users. In order to maintain
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the total energy consumed by the entire system, we have the constraint as follows:

K∑︂
i=1

||wi||2 + Pr ≤ Pt, (4.3)

where
K∑︁
i=1

||wi||2 is the total transmit power at the BS, Pr is the power supplying the RIS to

control the phase shift and Pt is the maximum power threshold. (4.3) indicates that the energy

consumed by the entire system cannot be unlimited. To satisfy the quality of service (QoS)

requirement of each user, we have the constraint

Ri ≥ Rt, i ∈ K, (4.4)

whereRt is the minimum data requirement of each user. Without losing generality, we assume

that all the user in our system have the same minimum data requirement. We also have the

constraints introduced by RIS’s hardware limitation, which are

||Φn,n|| = 1, (4.5)

0 ≤ θn ≤ 2π. (4.6)

Φn,n denotes the n-th element on the main diagonal of the phase shift matrix Φ and (4.5)

indicates that the RIS is an ideal reflective mirror and will not introduce any noise. Noted that

we use NOMA, we need to introduce some constraints to guarantee each user can successfully

finish SIC. The SIC progress points out that the date rate one NOMA user can achieve is

affected by others users. To further explain this, we define the interference set of user k as

κk, which contains the index of all the users cauing interference to user k. For example,

considering the decoding order ϵ̄, user k will decode the first k− 1 users’ singals and remove

them from the received signal. Thus, only users after user k will cause interference to user

k when user k decodes its own data. Therefore, the interference set of user k based on ϵ̄

is {k + 1, ..., K}. It is worth to point out that the interference set of each user is various

according to different decoding orders. We assume i ≼ϵ j, then we use γij to represent the
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user i’s SINR observed at user j, which can be expressed as follows:

γij =
|ĥH

j wi|2∑︁
k∈κi

|ĥH

j wk|2 + σ2
n

, (4.7)

and the user i’s data rate observed at user j is given by:

Rij = log2(1 + γij). (4.8)

The user i’s SINR when it decodes its own data can be expressed as follows:

γi =
|ĥH

i wi|2∑︁
k∈κi

|ĥH

i wk|2 + σ2
n

, (4.9)

and the user i’s data rate is given by:

Ri = log2(1 + γi). (4.10)

From (4.7), we find that one user’s signal may be decoded multiple times at different users.

Thus, one user’s data rate is affected by other users. Then, we introduce the constraint

min(Rij, Ri) ≥ Rt,∀j ∈ κi, i ∈ K (4.11)

to guarantee SIC successful. (4.11) indicates that the signal of user i, i ∈ K can be decoded

successfully at all other NOMA users. If the constraint (4.11) is violated that means one or

some users fail to decode user i’s signal, i ∈ K. Then, SIC cannot proceed smoothly. We

also note that once the constraint (4.11) is satisfies then the QoS constraint (4.4) is definitely

satisfied.

In this chapter, we consider a sum rate maximisation problem where we maximize the sum

rate of all the users. The optimisation problem can be formulated as follows:

P8 : max
{w,Φ}

K∑︂
i=1

Ri (4.12a)

s.t. min(Rij, Ri) ≥ Rt,∀j ∈ κi, i ∈ K (4.12b)
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K∑︂
i=1

||wi||2 ≤ Pt (4.12c)

||Φn,n|| = 1,∀n (4.12d)

0 ≤ θn ≤ 2π, ∀n. (4.12e)

4.3 DDPG-based Joint Optimisation of Phase Shift and Beamforming

4.3.1 Basic knowledge of DDPG

The reinforcement learning (RL) is an area of machine learning that handles with sequential

decision-making [24]. There are two critical parts for a RL system, which are the agent and

the environment. The key idea of RL is to train an agent to generate good actions based on

the environment. A few factors fully characterize the RL processing. Policy π reflects the

probability of an action chosen by an agent. State s is an observation from the environment.

Action a is the decision made by the agent. Reward r is the feedback of an action. There are

two kinds of RL algorithms in the RL family, one is value-based RL and another is policy

gradient RL.

The value-based RL algorithm aims to build a value function and then decide a policy by

minimizing or maximizing this function. The deep Q learning (DQN) is a typical value-based

RL. In DQN, the loss function is defined as follows:

L(θ) = E
[︃(︂

rt + ξ max
a′

Q′ (st+1, a
′|θ′)−Q(st, at|θ)

)︂2]︃
, (4.13)

where Q′ is the target network and Q is the training network. It is worth to point out the

parameters of the target network θ′ are fixed during the training. DQL is designed to address

discrete action problems.

The policy gradient (PG) RL algorithm aims to optimize a performance objective by find-

ing a good policy [24]. PG algorithms are also designed for the continuous action space.

There is one classic PG algorithm named stochastic policy gradient. The parameter updating

rule can be expressed as follows:
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θt+1 = θt + lE[∇aQ(st, at)| ∇θµθ(st)], (4.14)

where l is the learning rate, Qπθ is the Q function to evaluate the current policy and µθ is the

current policy.

The idea of DDPG combines DQN and PG together which can handle with the prob-

lem with a continues action space and also has a better convergence performance. A DDPG

framework is constructed by two training networks and two target networks. The training

actor network performs as a policy to generate actions. The training critic network estimates

the Q function to evaluate the action. The target actor network generates the estimated action

a′ in (4.13). The target critic network generates the estimated Q value Q′ in (4.13). (4.13)

and (4.14) are utilized to train the training critic network and the training actor network, re-

spectively. Note that the target network shares the same structure with its associated training

network. Therefore, the target networks are updated through soft update, which is given by

θ(target) = τθ(train) + (1− τ)θ(target), (4.15)

where τ is the updating rate .

4.3.2 Proposed DDPG framework

The corresponding elements are defined as follows:

• action a(t) =
[︂
w(t)

1 , ...,w(t)
K ,Φ(t)

]︂
• state s(t) =

[︂
γ
(t−1)
1 , ..., γ

(t−1)
K , a(t−1), ||w(t−1)

1 ||2, ..., ||w(t−1)
K ||2

]︂
• reward r(t) =

K∑︁
i=1

R
(t)
i

Note that the state space contains the square norm of each beamforming vector. It is reason-

able because the neural network should take energy consumption into consideration due to

the power control constraint (4.12c). It is worth to point out that the neural network can only

take real number, therefore, the real part and the image part of a complex number should be

separately input into neural networks.
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In this chapter, both the actor network and the critic network are fully connected neural

networks, comprised of input layer, hidden layer, batch normalisation layer and output layer.

The size of the actor network’s input layer is determined by the dimension of the state tuple.

The critic network has two input layers for the action and the state specifically. The outputs

of these two input layers will be horizontally stacked together as the input of the next hidden

layer. The size of the hidden layer is related to the number of antennas at the BS, the number of

reflecting elements at the RIS and the number of users. In this chapter, we adopt 300 neurons

in every hidden layer. The batch normalisation layer is utilized between two hidden layers

to contribute to faster convergence and shorter training time. The active functions utilized in

the proposed DDPG are tanh and relu, which make back propagation and gradient decent

easier. Adam optimizer is utilized for both two networks with the learning rates 0.001 for the

actor network and 0.002 for the critic network, respectively.

The experience replay is adopted in this DDPG framework to reduce the correlation of

different training samples. A replay bufferMwith the capacity C is implemented at the begin-

ning of training. The training sample of each step, which is constructed by {a(t), r(t), s(t), s(t+1)},

is stored into the replay buffer. The training progress will only start until the replay buffer

is full. If the replay buffer is full, the newest training sample will replace the earliest one.

In each training step, a mini-batch training samples are randomly selected from the replay

buffer as the training data, which guarantees that the DDPG model has a good view of every

training step.

A constraint fulfil layer is implemented as the output layer of the actor network, which

guarantees that the action output from the actor network must satisfy all the constraints in

(4.12). The next subsection introduces how this layer handles with all constraints.

4.3.3 Constraint handling

In the conventional optimisation algorithms, for instance the SDR algorithm and the alter-

nating algorithm, we usually convert a non-convex problem to a convex problem and then

solve it via convex optimisation solver, like CVX in Matlab. CVX can directly handle with

convex constraints. However, this is not acceptable in deep neural networks. We manipulate

the output layer of the actor network to make the action satisfy all the constraints in (4.12).
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It is known that power and the data rate are positively related from Shannon’s Theory.

Higher data rate requires more energy consumption. Note that the maximum transmit power

at the BS is Pt from (4.12c). Therefore, only letting the total transmit power at the BS as

the maximum power allowed by the system can obtain the maximum sum rate. Hence, the

constraint (4.12c) becomes an equality, which is given by:

K∑︂
i=1

||wi||2 = Pt. (4.16)

w(l)
i denotes the beamforming vector for i-th user obtained by the actor network in the l-th

training step. Since there is no constraint handling inside the neural network, thus w(l)
i ,∀i

may not satisfy the constraint (4.16). Therefore, normalisation is utilized to guarantee that

constraint (4.16) is not violated. In the l-th step, we first calculate the total transmit power

directly obtained by the actor network, which is

P (l) =
K∑︂
i=1

||w(l)
i ||2. (4.17)

Then, we reassign power to user i’s beam based on the following rule:

w∗(l)
i = w(l)

i

√︃
Pt

P (l)
. (4.18)

The key idea of (4.18) is reassigning the power based on the ratio |w(l)
i |2

P (l) and setting the total

transmit power as Pt. Meanwhile, the new beamforming vector w∗(l)
i has the same direction

with w(l)
i . After the operation of (4.18), all the new beamforming vector satisfy

K∑︂
i=1

||w∗(l)
i ||2 = Pt. (4.19)

As for the constraint (4.12d), normalisation is used again to handle it. (l) = {φ(l)
1 , φ

(l)
2 , ..., φ

(l)
N }

containing all the elements on the main diagonal of the phase shift matrix denotes the opti-

mized result directly obtained by the actor network in the l-th step. To satisfy the constraint

(4.12d), each element can be normalized by the following

φ
∗(l)
i =

φ
(l)
i

||φ(l)
i ||

, i = {1, 2, ..., N}. (4.20)
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It is known that the function f(θ) = ejθ is a periodic function with a period of 2π. Therefore,

the phase can be always mapped within [0, 2π].

In the conventional optimisation, it is difficult to handle with the constraint (4.12b) since

it is non-convex and contains two optimisation valuables coupled together. Conventionally,

SDR is utilized to approximate it and then the alternating algorithm is applied to find a sub-

optimal solution. In this DPL-based algorithm, we have w∗l
i ,∀i and Θ∗(l) from (4.18) and

(4.20), respectively. It is known that one user has an original data rate and several observed

date rates in a NOMA system. Once a specific decoding order ϵ′ , w∗l
i ,∀i and Θ∗(l) are de-

cided, the original data rate and the observed data rates can be calculated via (4.10) and (4.8)

for each user, respectively. Then, we check if each user’s original data rate and observed data

rates satisfy the constraint (4.12b). If the constraint (4.12b) is violated, it means the actor

networks outputs an invalid action. In order to reduce the invalid output as much as possible,

a punishment mechanism is adopted on the reward. If the constraint (4.12b) is violated, the

reward is set as

r(l) =
K∑︂
i=1

R
(l)
i

∑︂
i∈K

∑︂
j∈κi

min(min(R(l)
ij , R

(l)
i )−Rt, 0) (4.21)

instead of the sum rate. Note that the reward is negative when constraint (4.12b) cannot be

satisfied in the l-th training step. Meanwhile, if the action seriously violates the (4.12b), the

reword will be assigned a smaller negative value, which is a more severe punishment to the

neural network. Hence, the neural network will adjust the output in the following training

steps to avoid such invalid action as much as possible.

4.3.4 Algorithm

The detail of the algorithm is shown in Algorithm 5. At the beginning of the algorithm,

four networks and the replay buffer are initialized. At the beginning of each training episode,

CSI, beamforming vectors and phase shift matrix are initialized. We simply adopt an identity

matrix to initialize all the beamforming vectors. Note that CSI in each episode is various,

which indicates that this DDPG model is compatible with the varying channel scenario. In

each training step, a random process Nt is adopted to enlarge the action exploration. Nt in

Algorithm 5 is a complex Gaussian noise vector with the same size of the action a. It is worth
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Algorithm 5 DDPG-based Joint Beamforming and Phase Shift Optimisation
1: Initialisation: Generate two actor networks and two critic networks. Make the training network and the

target network have the identical parameters, θ(train)a = θ
(target)
a and θ

(train)
c = θ

(target)
c .

Initialize the experience replay buffer M with the storage capacity C and the mini-batch size Nb.
2: Output: Optimal beamforming vector wk, k ∈ K and phase shift matrix Φ.
3: for episode i = 1, 2, ..., I do
4: Randomly generate CSI G(i), hd(i)

k ,hr(i)
k , k ∈ K and the phase shift matrix Φ(i). The beamforming

vectors are initialized by a M ×K identity complex matrix.
5: Calculate the decoding order ϵ0 according the the composite channel power.
6: Obtain the initial state s1
7: for step t = 1, 2, ..., T do
8: Initialize a random process Nt.
9: Choose an action from the actor training network at = µ(train)(st|θ(train)a ) +Nt.

10: Normalisation the beamforming vectors and the phase shift matix by (4.18) and (4.20).
11: Calculate the new decoding order ϵt.
12: If constraint (4.12b) is not violated, the reward rt is set as the sum of all users’ original data rate.

Otherwise, rt is given by (4.21). Obtain the new state st+1.
13: Store {st, at, rt, st+1} to the buffer M.
14: Sample a minibatch with the batch size Nb from M to train networks.
15: Given reword discount factor ξ, set the target Q value based on (4.13).
16: Update Q(train)(s, a|θ(target)c ) by minimizing the loss function.
17: Update µ(train)(s|θ(train)a ) by the policy gradient.
18: Update two target networks by using soft update.
19: st = st+1.
20: end for
21: end for
22: Output {w∗(j)

k , α∗(j)
k , e∗(j)k }, ∀k.

to point out that the composite channel of each user is changing due to various phase shifts in

one training episode. As mentioned before, the decoding order is decided by the composite

channel gain, therefore, the new decoding order needs to be calculated based on the current

phase shift, which is shown in step 11.

4.4 Simulation Results

This section demonstrates the performance of the proposed algorithm. It is assumed that

the channels between the BS and all the users are Rayleigh channel, which indicates that the

line-of-sight (LoS) signal is blocked and the users mainly receive signals through the RIS.

This channel is model as follows:

hd
k = ˜︁hd

k/
√︂
dαd,k, k ∈ K, (4.22)

where ˜︁hd,k ∈ CM×1 contains M independent and identical elements following complex

CN (0, 1) distribution. dd,k denotes the distance between the BS and the k-th user, which

is generated randomly within the range (45,50). α denotes the path loss exponent, which is
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set as 2. The channel between the BS and the RIS and the channels between the RIS and all

the users are assumed to be Rician channel, which can be modelled as follows:

G =

(︄√︃
υ

1 + υ
GLoS +

√︃
1

1 + υ
GnLoS

)︄
/
√
dα, (4.23)

hr
k =

(︄√︃
υ

1 + υ
hrLoS
k +

√︃
1

1 + υ
hrnLoS
k

)︄
/
√︂

dαr,k, k ∈ K, (4.24)

where υ denotes the Rician factor, GLoS and hrLoS
k are the LoS component, GnLoS and hrnLoS

k

are the non-LoS component and d and dr,k denote the distance between the BS and the RIS

and the distance between the RIS and the k-th user. In this chapter, the Rician factor is set as

1 and the LoS components GLoS and hrLoS
k are assumed to be 1. The non-LoS components

GnLoS and hrnLoS
k follow the Rayleigh fading. d is set as 50 and dr,k is randomly generated

within the range (5,10).
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Figure 4.2. The accumulative reward in the varying channel scenario
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Figure 4.3. The accumulative reward in the fixed channel scenario
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Figure 4.4. The sum rate as a function of the transmit power at the BS
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Figure 4.5. The sum rate as a function of the number of elements at the RIS

Fig. 4.2 and Fig. 4.3 show how the accumulative reward changes during training. In this

simulation, the number of users is 4, the number of RIS elements is 32 and the number of

anteenas at the BS is 4. The noise power is σ2 = −10 dBm. The total transmit power is set

as 10dB and 5dB. The RIS with random phase shift serves as the benchmark of the DDPG

algorithm. Fig. 4.2 illustrates the scenario that the channel is varying. In particular, the

channel is randomly generated before each training episode. It shows the accumulative reward

converges with the training proceeds, which indicates that the proposed DDPG algorithm has

a good adaptation to time-varying channels. Fig. 4.3 illustrates the scenario that the channel

is fixed, which means the channel is remain the same during the whole training process.

Compared with the varying channel case, the reward is more stable. Note that the training

samples are randomly selected from the replay buffer at the beginning of each episode. If the

selected samples are not good experience, i.e., action violates the constraint, the reward will
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drop suddenly at this episode. It is noted that solving a optimisation problem by DDPG is a

online progress especially when the channel is time-varing because the DDPG model needs

to constantly interact with the environment to update the action in time. The updated channel

information needs to be input into the DDPG model once it is obtained.

Fig. 4.4 and Fig. 4.5 show the performance of the proposed algorithm. In these two

figures, the X-axis represents the total transmit power at the BS and the number of the RIS

elements, respectively. The Y-axis represents the sum rate of all the users for both two figures.

It is obvious that the perforce is getting better with the increasing of total transmit power and

the number of RIS elements. It also shows that the beamforming and the phase shift optimized

through DDPG outperform the random beamforming and phase shift.

4.5 Conclusion

In this chapter, a sum rate maximisation problem in an RIS assisted NOMA downlink

network was investigated. A DDPG based algorithm was proposed to jointly optimize beam-

forming and phase shift. The proposed DDPG algorithm can not only achieve competitive

performance but also adapt to the varying channel scenario, however, the conventional con-

vex optimisation is mainly suitable for the fixed channel scenario. More specifically, machine

learning provided a new solution for wireless communication problems and also can be ap-

plied for more complicated scenarios, which could be a powerful tool for developing the next

generation communication network.

The performance improvement from the RIS has been proven. The RIS reflects the in-

cident signal and meanwhile reconfigure the channel. However, another technique named

backscattering can module a new signal onto the incident signal and then reflect it to the

receiver, which enables passive devices to send their own signals without any energy con-

sumption. The next two chapters mainly investigated how to improve the performance of a

backscattering-NOMA system.
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Chapter 5

Backscatter-Assisted NOMA Network for

the Next Generation Communication
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5.1 Introduction

Recently, technological innovations in wireless communication have driven emerge rapidly,

Internet of Things (IoT) has been considered as the next generation network [60]–[62]. One

IoT network promises to support massive IoT devices[63], which provides opportunities to

develop novel applications. However, there are still many challenges to operating an IoT net-

work. An IoT network usually consists of massive devices, and massive spectrum resources

will be consumed when many devices transmit signals simultaneously [64]. Therefore, one

challenge is to support the massive IoT devices within a limited spectrum resource block. An-

other challenge arises from the energy constraint because most IoT devices are passive and

cannot be equipped with a battery [65]. Thus, energy cooperation among different devices

has become an important topic in IoT networks.

In recent years, non-orthogonal multiple access (NOMA) has emerged as a promising mul-

tiple access technique for the next generation of wireless communication because it allows

multiple devices to share the same resource block simultaneously and increases spectrum ef-

ficiency [66]. In a particular NOMA downlink network, the base station (BS) superimposes

signals for different users and broadcasts the superimposed signal. Typically, successive in-

terference cancellation (SIC) is adopted to remove interference caused by other users’ signals

at each user’s end [33], [67], [68].

Various energy cooperation techniques have been proposed to address the energy con-

straint. For example, simultaneous wireless information and power transfer (SWIPT) enables

an energy-limited device to be powered by harvesting energy from the signal sent by the BS

or other non-energy-constrained devices [69], [70]. Backscatter (BAC) is a more mature and

practised technique for achieving energy cooperation among different devices [71]. Backscat-

ter devices (BDs) transmit their own signals through backscatter circuits, which can be excited

by signals from another device [72]–[74].

In this study, a legacy downlink NOMA system containing two NOMA users is considered,

and an uplink device equipped with a backscatter circuit is added to this existing system.

A full-duplex (FD) model BS is deployed to support the uplink and downlink transmission

simultaneously[75]–[77]. This study aims to maximise the uplink device’s data rate at the

BS while guaranteeing the quality of service (QoS) of two NOMA users. The closed-form
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solution of the proposed system model is provided.

5.1.1 Related works

Recently, backscatter studies have emerged due to the benefit of enabling energy-limited de-

vices to transmit signals without consuming extra energy. Ambient backscatter communica-

tion (AmBC), as a family member of backscatter technology, is attracting increasing research

interest [78]–[80]. The key idea of AmBC is to adjust the amplitude and phase of the received

signal to make this signal carry information before backscattering. In recent works, the com-

bination of AmBC and NOMA achieved a promising performance by fully utilizing the spec-

trum and greatly improving energy efficiency. The authors in [81], [82] introduced a novel

application based on backscatter, which generates multi-path signals to make the device-to-

device (D2D) communication more reliable. Particularly, [81] considered a backscatter com-

munication network containing multiple backscatter transceivers, powered by a power beacon

station. This work aims to maximise the throughput performance by cooperative transmis-

sion. The results showed that backscatter radios and cooperative transmission significantly

improve the throughput performance. In [82], authors considered an IoT network containing

several devices and a power beacon station. These IoT devices can switch two modes: ac-

tive radio frequency mode and passive backscatter mode. They receive signals from the BS

in the first phase and then backscatter their own signals to the receiver in the second phase.

The quality of the received signal is improved due to multi-path. The results indicate that the

backscatter scheme can significantly improve the throughput of the system.

NOMA has been introduced to the backscatter network to ensure that multiple backscatter

devices can mutually communicate with one access point in the same resource block. A novel

system model was proposed in recent work, which contains both the uplink and the downlink

[71]. Particularly, this system model consists of multiple BDs and a downlink user. The FD

base station can transmit and receive signals simultaneously. The BS transmits the signal to

the downlink user, whereas all BDs backscatter their own signals based on the received signal

to the BS. Signals from all BDs will be superimposed together, and then the uplink NOMA

technique will be applied to decode them individually. However, the system only contains

one downlink user, and NOMA is applied to the uplink. The algorithm proposed in this work

cannot be used to solve a downlink NOMA scenario. The authors in [83] considered an IoT
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network containing one transmitter, multiple BDs and one backscatter receiver. Each BD

receives the same signal from the transmitter and backscatters its own signal to the receiver.

The receiver receives signals from multiple BDs, which can be treated as an uplink NOMA

scenario. Thus, the algorithm proposed in this work cannot be applied to a downlink NOMA

scenario. Although a simple two-user downlink NOMA system was proposed in [84], BAC

realised communications between these two users. However, the author only analysed the

outage performance among different scenarios but did not provide an optimal solution. In

[85], imperfect SIC was investigated in a backscatter-enabled NOMA network, and two read-

ers received signals from a source and a backscatter tag. Although, the closed-form solutions

of the power allocation coefficient and the backscatter coefficient were provided, the QoS

constraint of the backscatter tag was not considered in the optimisation problem.

5.1.2 Motivations and Contributions

The motivation of this study is to enlarge the capacity of an existing network. Each of the pre-

vious works proposed a new system specifically designed for backscatter devices. However,

this study investigates how a BD can be added to a legacy NOMA system while maintain-

ing the original system’s performance. In contrast to [71] and [83], the downlink NOMA is

adopted, and the BD’s excitation is a superimposed signal, posing additional challenges to

SIC. Although [84] and [85] studied a downlink NOMA system, they did not consider any

uplink device. In this study, the downlink user and the uplink device co-exist in one system.

First, a novel IoT system model is proposed, which is transformed from a legacy system by

adding an uplink BD. Then, an uplink data rate maximisation problem is formulated, which is

non-convex and difficult to be solved. The originally formulated problem is first transformed

into two convex sub-problems by successive convex approximation (SCA). An alternating

algorithm is proposed to solve the two sub-problems iteratively, and a sub-optimal solution

is obtained. To further study, we derive closed-form solutions of the power allocation and the

backscattering coefficients by analysing the monotonicity of the objective function and all

the constraints. Finally, an exhaustive search algorithm is applied to verify the closed-form

solution. The contributions are summarised as follows:

• A novel concept that an uplink BD is added into a legacy NOMA network is proposed.
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The performance of legacy users is not affected, however, the total throughput of the

new system is improved because a new uplink device is introduced. This concept is

important to IoT networks, as it allows more IoT devices to be deployed into existing

networks without extra bandwidth consumption.

• An uplink data rate maximization problem is formulated. Since two optimisation vari-

ables, the power allocation and the backscattering coefficients, are highly coupled to-

gether, the original optimisation problem, which is non-convex and NP hard, is difficult

to be solved. The non-convex problem is split into two sub-problems and convex trans-

formation is applied to both two sub-problems. An alternating algorithm is proposed to

iteratively solve two sub-problems and a suboptimal solution is achieved.

• The study also provides a closed-form optimal solution of the power allocation and the

backscattering coefficients. It is very difficult to obtain the closed-form of a non-convex

optimisation problem, where two optimisation variables are coupled together, by directly

using Karush–Kuhn–Tucker (KKT) conditions. A novel strategy to find the closed-form

solution is proposed. The optimality is validated by an exhaustive search algorithm.

5.1.3 Organisation

The rest of the chapter is organised as follows. In Section II, a BAC-NOMA system is intro-

duced and an uplink data rate maximisation problem is formulated. In Section III, an alter-

nating algorithm is proposed to solve the problem iteratively and a sub-optimal solution is

acquired. In Section IV, the closed-form solution is derived. In Section V, simulation results

are provided. Finally, a conclusion is summarised in Section VI.

5.2 System Model and Problem Formulation

We consider a legacy NOMA network, where two NOMA users simultaneously receive

signals from the BS. Meanwhile, a backscatter device is added to the existing NOMA system

to communicate with the BS. It is assumed that the BS operates in FD mode, which allows the

BS to receive and transmit signals simultaneously. The entire system is a single-input-single-

output (SISO) system, which means every node has a single antenna. The BS broadcasts the
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Figure 5.1. The system model.

superimposed signal, which is given by:

sd =
√︁

αP0s1 +
√︁
(1− α)P0s2, (5.1)

where α denotes the power allocation coefficient, P0 denotes the maximum transmit power

at the BS and s1 and s2 denote the signal sent to user 1 and user 2, respectively. We assume

that the uplink device is energy limited, thus, the backscatter technique is adopted to support

the communication with the BS. The uplink signal received at the BS can be expressed as

follows:

yu = |hu|2
√
ηsdsu + sSI + nb, (5.2)

where hu denotes the channel coefficient between the BS and the uplink device, η denotes the

backscattering coefficient, which is intelligently decided by the backscatter circuit, and su de-

notes the uplink signal sent to the BS, which is assumed to be normalised, i.e., E(|su|2) = 1,

where E(·) denotes an expectation operation. sSI denotes the self-interference and is as-

sumed to follow the complex Gaussian distribution CN (0, βP0|hSI|2) [86], where hSI de-

notes the self-interference channel and is assumed to be complex Gaussian distributed, i.e.,

sSI ∼ CN (0, 1) and 0 ≤ β ≤ 1 denotes FD residual self-interference coefficient[71]. nb is

the noise at the BS, which is assumed to follow the complex Gaussian distribution CN (0, σ2
b ).

Given that multiple devices will work cooperatively within one IoT network, transmitting

resources such as time, frequency, and space is always a challenge for such a dense network.

NOMA is highly appreciated by resource-limited networks. We must admit that adopting

OMA in this model may decrease the complexity and also obtain a competitive outcome.

However, this study examines how to enlarge the system capacity, particularly by adding
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another uplink device into an existing NOMA network, when the current resources cannot

satisfy the OMA scheme. It is also a valuable research direction to investigate the OMA’s

performance on this system model when sufficient transmit resources exist. This will be

discussed in our future studies.

The uplink data rate achieved by this system can be expressed as follows:

Ru = log2

(︃
1 +

|hu|4η|sd|2

βP0|hSI|2 + σ2
b

)︃
. (5.3)

Two NOMA users receive signals from the BS and the BD; however, the signal from the BD

is treated as interference. The received signal of the NOMA user i, i ∈ {1, 2}, is denoted by

yi, which can be expressed as follows:

yi = hisd +
√
ηgihusdsu + ni (5.4)

The channel gain between the BS and NOMA user i is denoted as hi, gi denotes the channel

gain between the uplink device and NOMA user i and ni is assumed to be Gaussian dis-

tributed, i.e., CN (0, σ2
i ), additive white Gaussian noise (AWGN). In this study, we assume

that all the perfect channel information (CSI) between every two nodes is fixed and well known

by the BS. For a NOMA system, applying successful SIC based on a certain decoding order

is critical. We must admit that CSI and SIC, as two necessary factors in a NOMA network,

cannot be perfectly estimated and proceeded. Imperfect CSI and SIC will introduce extra

interference when signals are being decoded, thereby further degrading system performance.

Some existing works [85], [87] have already investigated the performance of a backscatter-

NOMA system under imperfect CSI and SIC. The investigation of the case with imperfect

CSI and SIC is beyond the scope of this work, but it is a promising direction for future re-

search. Without loss of generality, it is assumed that user 1 is closer to the BS than user 2, and

user 1 has a better channel quality than user 2, i.e., |h1|2 ≥ |h2|2. Under this assumption, the

decoding order is defined as follows: user 1 decodes user 2’s signal first, then its own signal,

whereas user 2 decodes its own signal directly while treating user 1’s signal as interference.

Referring to (5.4), the received signal at user 1 can be expressed as follows:

y1 = h1

√︁
αP0s1 + h1

√︁
(1− α)P0s2 +

√
ηg1husdsu + n1. (5.5)
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Given the decoding order above, user 2’s achievable data rate observed at user 1 can be ex-

pressed as follows:

R12 = log2

(︃
1 +

(1− α)P0|h1|2

αP0|h1|2 + η|g1hu|2|sd|2 + σ2
1

)︃
. (5.6)

User 2’s signal can be removed from user 1’s received signal after user 1 successfully decodes

user 2’s signal. User 1 can further decode its own signal without interference caused by user

2. User 1’s data rate can be expressed as follows:

R1 = log2

(︃
1 +

αP0|h1|2

η|g1hu|2|sd|2 + σ2
1

)︃
. (5.7)

Referring to (5.4) again, the received signal at user 2 can be expressed as follows:

y2 = h2

√︁
αP0s1 + h2

√︁
(1− α)P0s2 +

√
ηg2husdsu + n2. (5.8)

User 2 directly decodes its own signal by treating user 1’s signal as interference so that user

2’s data rate is given by

R2 = log2

(︃
1 +

(1− α)P0|h2|2

αP0|h2|2 + η|g2hu|2|sd|2 + σ2
2

)︃
. (5.9)

In this system model, the uplink device enjoys the premium service, which requires the

maximum data rate, whereas two NOMA users take basic service where only a basic data rate

is guaranteed. Hence, the objective function is the uplink device’s data rate, which needs to

be maximised. The optimisation problem is formulated as follows:

P9 :max
{α,η}

Ru (5.10a)

s.t. min(R12, R2) ≥ Rt2 (5.10b)

R1 ≥ Rt1 (5.10c)

0 ≤ α ≤ 1 (5.10d)

0 ≤ η ≤ 1 (5.10e)

Constraint (5.10b) ensures the success of SIC, where Rt2 is the target data rate of user 2.
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Constraint (5.10c) guarantees the QoS requirement of user 1, where Rt1 denotes user 1’s data

rate. Constraints (5.10d) and (5.10e) are the range limitation of the power allocation and the

backscattering coefficients, respectively.

The formulated problem is difficult to be solved due to the non-convexity of objective

function (5.10a) and constraints (5.10b) and (5.10c). In the next section, a transformation is

provided to make the original problem convex.

5.3 Convex Transformation and Algorithm

As the discussion above, the formulated problem (5.10) is non-convex. The main challenge

arises from the non-convexity in the objective function (5.10a) and constraints (5.10b) and

(5.10c). Convex transformation is necessary to solve this problem efficiently. In this section,

we first transform the original problem into a convex problem and then provide an algorithm

to solve it.

The uplink device uses sd as the excitement to backscatter its signal so that su is modulated

onto sd. From (5.6), (5.7) and (5.9), it is noted that |sd|2 is treated as a type of fading affecting

su. Note that sd is the superimposed signal of user 1 and user 2 which is given by (5.1), the

expression of |sd|2 is

|sd|2 = P0 + P0

√
α− α2(s2s

∗
1 + s1s

∗
2). (5.11)

|sd|2 consists of two terms and the second tern is conditioned on the choice of s1 and s2. Note

that s2s∗1 is conjugate with s1s
∗
2, the sum of these two terms is a real number denoted by Ps

Symbols of s1 and s2 affect the energy of sd which further affect the throughput capacity of

the system. The ingenious design of symbols will positively contributes to the performance

of the system. However, the symbol design is beyond the scope of this study, which is still

a very critical research direction for future studies. This study only focuses on optimising

power allocation and backscattering coefficients. Therefore, it is assumed that the optimal

choice of s1 and s2 has already been decided. |sd|2 can be further written as

|sd|2 = P0(1 + Ps

√
α− α2). (5.12)
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The original problem consists of two coupled variables. The alternating algorithm is an

efficient way to solve multi-variable optimisation problems, whose key idea is to optimise

only one variable and fix others in each iteration. Following this idea, we first fix α to obtain

a sub-problem with an assumption that σ1 = σ2 = σ.

P10 : max
{η}

η (5.13a)

s.t. (1− α)P0|h1|2 ≥ ϵ2(αP0|h1|2 + η|g1hu|2|sd|2 + σ2) (5.13b)

(1− α)P0|h2|2 ≥ ϵ2(αP0|h2|2 + η|g2hu|2|sd|2 + σ2) (5.13c)

αP0|h1|2 ≥ ϵ1(η|g1hu|2|sd|2 + σ2) (5.13d)

0 ≤ η ≤ 1, (5.13e)

where ϵ1 denotes 2Rt1−1 and ϵ2 denotes 2Rt2−1. Sinceα is fixed, |sd|2 is also fixed. Since the

log function is a monotonously increasing function, the objective function can be equivalently

replaced by η. All constraints and the objective function in P10 are affine; therefore, P10 is

a convex problem. It is easy to be solved via a convex optimisation tool box, such as CVX in

Matlab. η∗ is assumed to be the optimal solution of P10.

The second sub-problem is obtained by fixing η, which can be formulated as follows:

P11 : max
{α}

√
α− α2 (5.14a)

s.t. (1− α) ≥ ϵ2(α + ηA1P0(1 + Ps

√
α− α2) + ˜︁σ2

1) (5.14b)

(1− α) ≥ ϵ2(α + ηA2P0(1 + Ps

√
α− α2) + ˜︁σ2

2)) (5.14c)

α ≥ ϵ1(ηA1P0(1 + Ps

√
α− α2 + ˜︁σ2

1) (5.14d)

0 ≤ α ≤ 1, (5.14e)

where Ak = P0|hk|2
|gkhu|2 , ˜︁σ2

k = σ2

P0|hk|2
and k ∈ {1, 2}. The term

√
α− α2 is concave when α is

between 0 and 1 because its second-order derivative is negative. The objective function is a

max-concave form, which gives convexity. However, constraints (5.14b), (5.14c) and (5.14d)

are concave because a concave term located at the right-hand side of a greater sign gives

concavity. As a result, problem P11 is non-convex and cannot be solved by CVX directly.
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The main obstacle arises from the term
√
α− α2, which exists in three constraints. One

short-cut to handle the non-convex term is SCA, which approximates the non-convex term by

its first-order Taylor series. The first-order Taylor series of
√
α− α2 is expressed as

T (α) =
√︂
α0 − α2

0 +
1− 2α0

2
√︁
α0 − α2

0

(α− α0), (5.15)

where α0 is a fixed point initialised before solving the problem. By substituting
√
α− α2

with T (α), a new sub-problem is obtained as follows:

P12 : max
{α}

√
α− α2 (5.16a)

s.t. (1− α) ≥ ϵ2(α + ηA1P0(1 + PsT (α)) + ˜︁σ2
1) (5.16b)

(1− α) ≥ ϵ2(α + ηA2P0(1 + PsT (α)) + ˜︁σ2
2)) (5.16c)

α ≥ ϵ1(ηA1P0(1 + PsT (α) + ˜︁σ2
1) (5.16d)

0 ≤ α ≤ 1. (5.16e)

Since T (α) is a linear term of α, all constraints in P12 are affine. As a result, problem P12 is

a convex problem, which CVX can efficiently solve.

The next step is to optimise both sub-problems P10 and P12 iteratively. Assuming η(t)∗

and α(t)∗ are the optimal solution of P10 and P12 at the t-th iteration, respectively, η(t)∗ is

the fixed value adopted by P12 in the current iteration, and α(t)∗ is the fixed value adopted by

P10 in the next iteration. As for the fixed point α0, it is also updated iteratively. The updating

rule is given by

α
(t+1)
0 = α(t)∗ . (5.17)

Remark 1. The alternating algorithm’s performance is sensitive to the target data rate of two

NOMA users because sub-problem P12 is sensitive to the target data rate of two NOMA users.

Since the Taylor series T (α) substitutes the original term
√
α− α2, the size of the feasible

set greatly depends on ϵ1T (α) and ϵ2T (α). The approximate accuracy of SCA depends on

the fixed point, specifically α0 in P12. According to (5.17), α0 is equal to the optimal α in the

previous iteration, which is related to ϵ1 and ϵ2; thus, P12 is sensitive to the target data rate

of two NOMA users.

Remark 2. The initialisation is critical to the alternating algorithm. When constraints are
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stringent, randomly choosing initial points may make the optimisation problem infeasible.

The details of finding feasible initial points were discussed in another work [88], and an

algorithm was proposed.

Algorithm 6 The alternating algorithm

Initialization α
(0)
0 , t = 1, R(0)

u = 0 and td

while R(t)
u −R

(t−1)
u ≥ td do

Obtain η(t)
∗

by solving the sub-problem P10
Update η(t)0 = η(t)

∗

Obtain α(t)∗ by solving the sub-problem P12
Update α(t)

0 = α(t)∗

Calculate R(t)
u according to η(t)

∗
and α(t)∗

Update t = t+ 1
end while

The algorithm is summarised in Algorithm 6, where td is the threshold to determine when

the loop stops and η
(t)
0 denotes the fixed value used to solve P12. Notably the initial α(0)

0 may

not be the feasible choose of P10. In this case, more iterations are necessary until a feasible

one is found.

5.4 Closed-form Derivation

In this section, the closed-form solution is derived. As discussed above, the original prob-

lem consists of two coupled optimisation variables. A common method to deal with a problem

containing two variables is to fix one variable first and then find the optimal solution for an-

other one. Note that the objective function and all constraints only contain the linear term of

η, which indicates that an optimisation problem is a simple form with respect to η. For any

given α, the optimisation problem only has one variable. We first fix α and find the optimal

solution of η.

Once α is fixed, the objective function is a logarithmic function with the form of log2(1+

x), which is a concave and monotonic function. We further notice that the objective function

monotonously increases with η for any given α. Thus, the maximal value of the objective

function is achieved when η reaches its upper bound. After some algebraic manipulations of

constraints (5.10b) and (5.10c), there are three upper bounds of η as follows:

η ≤ P0|h2|2

|g2hu|2|sd|2

(︃
1− α

2Rt2 − 1
− α− σ2

P0|h2|2

)︃
≜ B1, (5.18)
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η ≤ P0|h1|2

|g1hu|2|sd|2

(︃
1− α

2Rt2 − 1
− α− σ2

P0|h1|2

)︃
≜ B2, (5.19)

and

η ≤ P0|h1|2

|g1hu|2|sd|2

(︃
α

2Rt1 − 1
− σ2

P0|h1|2

)︃
≜ B3. (5.20)

It is noted that the largest value of η is the smallest upper bound among the inequalities above,

which is related to Rt1, Rt2, α and channel gains. We first note that (5.18) and (5.19) have

the same form, which indicates that only the channel gains, i.e., |h1|2, |h2|2, |g1|2 and |g2|2,

affect the upper bound of η. For example, if |h1|2 is greater than |h2|2 and |g1|2 is smaller

than |g2|2, than B2 is larger than B3. Thus, B3 is the upper bound compared to B2. Since the

perfect CSI is well known by the BS, it is easy to decide the upper bound of η from (5.18)

and (5.19). Without loss of generality, we first assume B2 is smaller than B3. Then, the next

step is to compare B2 and B3. If B2 ≤ B3, we have

α ≥ ϵ1
ϵ1 + ϵ1ϵ2 + ϵ2

. (5.21)

In this case, the upper bound of η is B2 and the optimal solution

η∗ = min(B2, 1). (5.22)

Since the constraint (5.10e) limits the range of η, η∗ also should be located in this range.

To make the optimisation problem feasible, the constraint B2 ≥ 0 is necessary. After some

algebraic manipulations, we have

α ≤ P0|h1|2 − ϵ2σ
2

P0|h1|2(1 + ϵ2)
. (5.23)

Remark 3. (5.23) defines the upper bound of α whereas α is non-negative according to

(5.10d). If P0|h1|2− ϵ2σ
2 ≤ 0, the optimisation problem is non-feasible. Note that the higher

transmit power and the better channel quality will enlarge the feasible set. However, the

higher noise power and the higher data rate requirement will narrow down the feasible set.
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If η∗ = B2, the original problem will be written as

P13 :max
{α}

log2

⎛⎝1 +
|hu|4A1

(︂
1−α
ϵ2

− α− ˜︁σ2
1

)︂
βP0|hSI|2 + σ2

b

⎞⎠ (5.24a)

s.t.
(1− α)A2

αA2 + A1

(︂
1−α
ϵ2

− α− ˜︁σ2
1

)︂
+ σ2

|g2hu|2

≥ ϵ2 (5.24b)

α ≥ ϵ1

(︃
1− α

ϵ2
− α

)︃
(5.24c)

ϵ1
ϵ1 + ϵ1ϵ2 + ϵ2

≤ α ≤ 1− ϵ2˜︁σ2
1

1 + ϵ2
(5.24d)

B2 ≤ 1, (5.24e)

by substituting η∗ = B2 into the original problem.

Proposition 1. The problem P13 can be equivalently transferred to P14 if B2 is the smallest

upper bound of η.

P14 :min
{α}

α (5.25a)

s.t. (5.24d) (5.24e)

Proof. We first define f(α) = log2

(︂
1 + C

(︂
1−α
ϵ2

− α− ˜︁σ2
1

)︂)︂
, where C = |hu|4A1

βP0|h|2SI+σ2
b
. The

first derivative of f(α) is expressed as

f ′(α) =
−C − ϵ2

ϵ2 + C(1− α− ϵ2α− ϵ2˜︁σ2
1)

(5.26)

According to constraint (5.24d) α ≤ 1−ϵ2˜︁σ2
1

1+ϵ2
, the minimum value of the liner term 1 − α −

ϵ2α − ϵ2˜︁σ2
1 is greater than 0. Therefore, f ′(α) ≤ 0, which indicates f(α) is monotonously

decreasing with α. The maximum value of f(α) is achieved when α arrives at its minimum

value. Therefore, finding the minimum α is equivalent to finding the optimal solution of P13.

For constraint (5.24b), we first rewrite it as follows:

(1− α)A2

αA2 + A1

(︂
1−α
ϵ2

− α− ˜︁σ2
1

)︂
+ A2˜︁σ2

2

≥ ϵ2. (5.27)
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After some algebraic manipulations,

A1(1− α− ϵ2α− ϵ2˜︁σ2
1) ≤ A2(1− α− ϵ2α− ϵ2˜︁σ2

2) (5.28)

is obtained. Dividing the left-hand side and the right-hand side of (5.28) with |sd|2 gives

the result that B2 ≤ B1, which is the assumption of this case. As a result, the constraint is

satisfied under the assumption that B2 ≤ B1.

Constraint (5.24c) is the same as the left-hand side of constraint (5.24d); therefore, it can

be removed. Finally, the proposition is proved.

Constraint (5.24e) can be rewritten as

(A1 + A1ϵ2)α + P0Psϵ2
√
α− α2 ≥ A1 − A1ϵ2˜︁σ2

1 − P0ϵ2. (5.29)

Proposition 2. The inequality (5.29) constructs a convex set.

Proof. We first define f(α) =
√
α− α2. The second derivative of f(α) is expressed as

follows:

f
′′
(α) = − 1

4(α− α2)
√
α− α2

. (5.30)

As 0 ≤ α ≤ 1, f ′′
(α) ≤ 0 and P0Psϵ3 ≥ 0, the term P0Psϵ2

√
α− α2 is concave. (A1 +

A1ϵ2)α is an affine term. Therefore, the linear combination of those two terms is concave.

According to the convex optimisation, a concave term located at the left-hand side of a greater

sign constructs convexity. Finally, the proposition is proved.

The objective function of P14 and constraint (5.24d) are affine and constraint (5.24e) is

convex. Therefore, problem P14 is a convex problem. Solving it using a convex optimisation

toolbox, such as CVX in Matlab, is easy. Thus, the optimal solution for this case has been

obtained. However, it is noted that the objective function is the optimisation variable itself.

Therefore, P14 is a linear programming (LP) problem. The aim is to find the minimal value of

the optimisation problem. Once the feasible set is settled, the minimum value can be obtained.

The new target is to define the feasible set.

We further notice that the intersection of two sets, i.e., (5.24d) and (5.24e), is the feasible
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set of P14. S1 and S2 denote the feasible set of (5.24d) and (5.24e), respectively. S1 is a line

segment which has been decided. The next step is to analyse constraint (5.24e) and find S2.

Since A1 and ϵ2 are greater than 0 and α is located in the range of (0,1), the left-hand side of

(5.29) is greater than 0. Therefore, if A1−A1ϵ2˜︁σ2
1 −P0ϵ2 ≤ 0, constraint (5.29) holds on the

domain of α. If A1 − A1ϵ2˜︁σ2
1 − P0ϵ2 ≥ 0, constraint (5.29) can be rewritten as follows:

K1α
2 −K2α +K3 ≤ 0, (5.31)

whereK1 = (A1+A1ϵ2)
2+(P0Psϵ2)

2, K2 = (P0Psϵ2)
2+2(A1+A1ϵ2)(A1−A1ϵ2˜︁σ2

1−P0ϵ2)

and K3 = (A1 − A1ϵ2˜︁σ2
1 − P0ϵ2)

2. The function f(α) = K1α
2 −K2α +K3 is a quadratic

function with u-curve becauseK1 ≥ 0. According to the knowledge of the quadratic function,

if K2
2 − 4K1K3 ≤ 0, f(α) ≥ 0 holds under all circumstances, which means constraint (5.29)

cannot be satisfied. Then, P14 is infeasible. If K2
2 − 4K1K3 ≥ 0, the equation f(α) = 0 has

two roots, which are

X1 =
K2 −

√︁
K2

2 − 4K1K3

2K1

and

X2 =
K2 +

√︁
K2

2 − 4K1K3

2K1

.

As a result, α is located in the range of (X1, X2). Finally, the feasible set of constraint (5.29)

is summarised as follows:

S2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[0, 1] If c1 holds;

[X1, X2] If c2 holds;

∅ If c3 holds,

(5.32)

where c1 denotes A1 − A1ϵ2˜︁σ2
1 − P0ϵ2 ≤ 0, c2 denotes A1 − A1ϵ2˜︁σ2

1 − P0ϵ2 ≥ 0 and K2
2 −

4K1Kc ≥ 0 and c3 denotes A1 − A1ϵ2˜︁σ2
1 − P0ϵ2 ≥ 0 and K2

2 − 4K1Kc ≤ 0. The feasible
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set of P14 is defined as S ≜ S1 ∩ S2, which is

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 If c1 holds;

S1 If c2 holds and X1 ≤ b1 and X2 ≥ b2;

[X1, X2] If c2 holds and X1 ≥ b1 and X2 ≤ b2;

[X1, b2] If c2 holds and X1 ≥ b1 and X2 ≥ b2;

[b1, X2] If c2 holds and X1 ≤ b1 and X2 ≤ b2;

∅ If c3 holds,

(5.33)

where b1 = ϵ1
ϵ1+ϵ1ϵ2+ϵ2

and b2 =
1−ϵ2˜︁σ2

1

1+ϵ2
denote the lower bound and the upper bound of

(5.24d), respectively. Then, the optimal solution is α∗ = min(S), whose expression is given

as follows:

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
b1 If S = S1 or S = [b1, X2];

X1 If S = [X1, X2] or S = [X1, b2];

null If S = ∅.

(5.34)

We further discuss the case that η∗ = 1

Proposition 3. The original problem can be equivalently transferred to P15 if η∗ = 1.

P15 :max
{α}

√
α− α2 (5.35a)

s.t. (5.24d)

B2 ≥ 1 (5.35b)

Proof. If η∗ = 1, we have 1 ≤ B2 ≤ max(B1, B3). Note that R1, R2 and R12 are increasing

with η decreasing. Therefore, R1, R2 and R12 are monotonically decreasing functions with

respect to η. We further note that R12(η = B2) = Rt2, R2(η = B1) = Rt2 and R1(η =

B3) = Rt1. As a result, R12(η = 1) ≥ Rt2, R2(η = 1) ≥ Rt2 and R1(η = 1) ≥ Rt1.

Constraints (5.10b) and (5.10c) are satisfied.

P15 is difficult to be solved due to the non-convexity of (5.35b) and the non-convex ob-
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jective function. After applying the algebraic transformation to (5.35b), we have

K1α
2 −K2α +K3 ≥ 0, (5.36)

Similar to analysis above, if K2
2 − 4K1K3 ≤ 0, the function f(α) ≥ 0 holds on the domain

of α, which means constraint (5.35b) has already been satisfied. If K2
2 − 4K1K3 ≥ 0, X1

and X2 are the two roots of f(α) = 0. As a result, (5.35b) can be equivalently transformed

to α ≤ X1 and α ≥ X2 when K2
2 − 4K1K3 ≥ 0 holds. P15 is eventually transformed to

P16 :max
{α}

√
α− α2 (5.37a)

s.t. (5.24d)

α ≤ X1 (5.37b)

α ≥ X2 (5.37c)

Remark 4. Constraints (5.37b) and (5.37c) only exist only when K2
2 − 4K1K3 ≥ 0. If

K2
2 − 4K1K3 ≤ 0, the constraint (5.35b) is always satisfied, therefore, constraints (5.37b)

and (5.37c) can be removed.

It is noted that P16 is still a non-convex problem, but all linear constraints make P16 an

LP problem. To address this problem, we first to find the feasible set of P16, which is given

as follows:

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 If K2
2 − 4K1K3 ≤ 0

or X2 ≤ b1 or X1 ≥ b2;

[b1, X1] ∪ [X2, b2] If X1 ≥ b1 and X2 ≤ b2;

[b1, X1] If b1 ≤ X1 ≤ b2 and X2 ≥ b2;

[X2, b2] If X1 ≤ b1 and b1 ≤ X2 ≤ b2;

∅ If X1 ≤ b1 and X2 ≥ b2.

(5.38)

The next step is to find the optimal solution of α, which can minimise the objective function.

From the proof of proposition 2, we know the objective function is concave. The optimal point

is reached when its first-order derivative equals 0. By letting f ′(α) = 0, we have α∗ = 0.5

without any other constraints. If 0.5 ∈ S , the optimal solution of P16 is 0.5; otherwise, there
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are some cases.

Figure 5.2. Several cases of the optimal solution.

Fig. 5.2 illustrates the optimal solution of α in different cases when 0.5 ̸∈ S . Note that the

optimal solution is always reached at the boundary of S. Therefore, the boundary of S that

can minimise the objective function is the optimal solution. The expression of the optimal

solution of α is given by

If 0.5 ∈ S

α∗ = 0.5;

If S = S1 = [b1, b2]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
b2 If b2 ≤ 0.5

b1 If b1 ≥ 0.5;
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If S = [b1, X1] ∪ [X2, b2]

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 If b2 ≤ 0.5

b1 If b1 ≥ 0.5

X1 If |X1 − 0.5| ≤ |X2 − 0.5|

X2 If |X1 − 0.5| ≥ |X2 − 0.5|;

If S = [b1, X1]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
X1 If X1 ≤ 0.5

b1 If b1 ≥ 0.5;

If S = [X2, b2]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
b2 If b2 ≤ 0.5

X2 If X2 ≥ 0.5.

We next assume B3 is smaller than B2, which indicates the upper bound of η is B3 and

the optimal solution

η∗ = min(B3, 1). (5.39)

Considering the same reason that η is positive, the constraintB3 ≥ 0 is necessary. If η∗ = B3,

the original problem will be written as

P17 :max
{α}

log2

⎛⎝1 +
|hu|4A1

(︂
α
ϵ2
− ˜︁σ2

1

)︂
βP0|hSI|2 + σ2

b

⎞⎠ (5.40a)

s.t.
(1− α)A2

αA2 + A1

(︂
α
ϵ1
− ˜︁σ2

1

)︂
+ σ2

|g2hu|2

≥ ϵ2 (5.40b)

α ≤ ϵ1

(︃
1− α

ϵ2
− α

)︃
(5.40c)

ϵ1˜︁σ2
1 ≤ α ≤ ϵ1

ϵ1 + ϵ1ϵ2 + ϵ2
(5.40d)

B3 ≤ 1 (5.40e)

Similar to the proof of Proposition 1, P17 can be equivalently transferred to P18, which is

P18 :max
{α}

α (5.41a)
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s.t. (5.40d) (5.40e).

The constraint (5.40e) can be rewritten as

A1α− P0Psϵ1
√
α− α2 ≤ A1ϵ1˜︁σ2

1 + ϵ2P0. (5.42)

According to the proof of Proposition 2, constraint (5.42) constructs a convex set. As a result,

P18 is a convex problem that the convex optimisation toolbox can solve. Constraint (5.42)

needs to be simplified to obtain the closed-form solution. To obtain the closed-form solution,

constraint (5.42) needs to be simplified. It is noted that the right-hand side of (5.42) is greater

than 0; however, it cannot determine the sign of the left side because of α. Since recklessly

squaring both sides will change the direction of the inequality sign, it is important to decide

on the sign on the left-hand side.

Given the fact that the right-hand side of (5.42) is positive, the inequality holds under all

circumstances if the right-hand side is negative. By letting A1α − P0Psϵ1
√
α− α2 ≤ 0, the

set

0 ≤ α ≤ (P0Psϵ1)
2

A2
1 + (P0Psϵ1)2

(5.43)

is obtained. For the simple notation, b3 and b4 are used to denote (P0Psϵ1)2

A2
1+(P0Psϵ1)2

and ϵ1˜︁σ2
1 ,

respectively. If α is from this set, constraint (5.42) is always satisfied. P18 can be split into

two sub-problems based on (5.43), which are as follows:

P181 :max
{α}

α (5.44a)

s.t. (5.40d) (5.43),

and

P182 :max
{α}

α (5.45a)

s.t. (5.40d) (5.42)

α ≥ b3. (5.45b)

All constraints in P181 are linear, and the optimal solution is the maximal value of the feasible
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set. Therefore, the optimal solution α∗
1 of P181 are

α∗
1 =

⎧⎪⎪⎨⎪⎪⎩
min(b1, b3) If b4 ≤ b3;

null If b4 ≥ b3.

(5.46)

For the P182, the constraint (5.42) can be rewritten as

K4α
2 −K5α +K6 ≤ 0, (5.47)

where K4 = A2
1 + (P0Psϵ1)

2, K5 = 2A1(A1ϵ1˜︁σ2
1 + ϵ2P0) + (P0Psϵ1)

2 and K6 = (A1ϵ1˜︁σ2
1 +

ϵ2P0)
2, by squaring both sides of (5.42) because of the restriction that forces both sides of

(5.42) to be positive from constraint (5.45b). The function g(α) = K4α
2 −K5α +K6 is a

quadratic function with u-curve because K4 ≥ 0. If K2
5−4K4K6 ≥ 0, the equation g(α) = 0

has two roots, which are

X3 =
K5 −

√︁
K2

5 − 4K4K6

2K4

and

X4 =
K5 +

√︁
K2

5 − 4K4K6

2K4

.

The following analysis is similar to the above. We only provide the result due to space limi-

tations.

α∗
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X4 If b4 ≤ b3 ≤ b1 and b4 ≤ X4 ≤ b3;

b3 If b4 ≤ b3 ≤ b1 and X3 ≤ b3 ≤ X4;

X4 If b3 ≤ b4 and b4 ≤ X4 ≤ b1;

b1 If b3 ≤ b4 and X3 ≤ b1 ≤ X4;

null others.

(5.48)

Note that α∗
2 only exists when K2

5 −4K4K6 ≥ 0, otherwise α∗
2 is null. Therefore, the optimal

solution of P18 is

α∗ = max(α∗
1, α

∗
2). (5.49)

When η∗ = 1, the original problem can be equivalently transferred to

P19 :max
{α}

√
α− α2 (5.50a)
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s.t. (5.40d)

B3 ≥ 1. (5.50b)

Constraint (5.50b) is non-convex, which can be rewritten as

A1α− P0Psϵ1
√
α− α2 ≥ A1ϵ1˜︁σ2

1 + ϵ2P0. (5.51)

Note that if A1α−P0Psϵ1
√
α− α2 is negative, the problem is infeasible. Therefore, P19 can

be transformed to

P20 :max
{α}

√
α− α2 (5.52a)

s.t. (5.40d)

α ≥ b3 (5.52b)

K4α
2 −K5α +K6 ≥ 0. (5.52c)

Two liner constraints (5.40d) and (5.52b) construct a set which is

S3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[b4, b1] If b3 ≤ b4

[b3, b1] If b4 ≤ b3 ≤ b1

∅ If b3 ≥ b1.

(5.53)

Following the strategy solving P16, the feasible set of P20 is given by

If S3 = [b4, b1],

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S3 If K2
5 − 4K4K6 ≤ 0

or X4 ≤ b4 or X3 ≥ b1

[b4, X3] ∪ [X4, b1] If X3 ≥ b4 and X4 ≤ b1

[b4, X3] If b4 ≤ X3 ≤ b1 and X4 ≥ b1

[X4, b1] If X3 ≤ b4 and b4 ≤ X4 ≤ b1

∅ If X3 ≤ b4 and X4 ≥ b1;

(5.54)
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If S3 = [b3, b1],

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S3 If K2
5 − 4K4K6 ≤ 0

or X4 ≤ b3 or X3 ≥ b1

[b3, X3] ∪ [X4, b1] If X3 ≥ b3 and X4 ≤ b1

[b3, X3] If b3 ≤ X3 ≤ b1 and X4 ≥ b1

[X4, b1] If X3 ≤ b3 and b3 ≤ X4 ≤ b1

∅ If X3 ≤ b3 and X4 ≥ b1.

(5.55)

Then, the strategy described in Fig. 5.2 is applied to obtain the optimal solution of α. The

optimal solution of α∗ can be summarised as follows:

If 0.5 ∈ S

α∗ = 0.5;

If S = S3 = [b4, b1]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
b1 If b1 ≤ 0.5

b4 If b4 ≥ 0.5;

If S = [b4, X3] ∪ [X4, b1]

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 If b1 ≤ 0.5

b4 If b4 ≥ 0.5

X3 If |X3 − 0.5| ≤ |X4 − 0.5|

X4 If |X3 − 0.5| ≥ |X4 − 0.5|;

If S = [b4, X3]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
X3 If b3 ≤ 0.5

b4 If b4 ≥ 0.5;
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If S = [X4, b1]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
b1 If b1 ≤ 0.5

X4 If X4 ≥ 0.5;

If S = S3 = [b3, b1]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
b1 If b1 ≤ 0.5

b3 If b3 ≥ 0.5;

If S = [b3, X3] ∪ [X4, b1]

α∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 If b1 ≤ 0.5

b3 If b3 ≥ 0.5

X3 If |X3 − 0.5| ≤ |X4 − 0.5|

X4 If |X3 − 0.5| ≥ |X4 − 0.5|;

If S = [b3, X3]

α∗ =

⎧⎪⎪⎨⎪⎪⎩
X3 If X3 ≤ 0.5

b3 If b3 ≥ 0.5.

Finally, the closed-form of the optimal solution is obtained.

Remark 5. If a network contains multiple users, it is impossible to apply the NOMA technique

to all users in practice because the complexity of SIC is very high, especially for the last

decoded user. One efficient strategy is to divide users into different clusters and NOMA is

only applied within a cluster. By assuming one cluster only contains two users, the closed-

form solution above is valid in this cluster.

5.5 Simulation Results

In this section, simulation results are provided for the alternating algorithm, the closed-

form solution and the random selection strategy. Monte Carlo method is adopted to ensure the

fairness of the simulation. The total number of experiments is set as 50. The theoretical and
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experimental results of the alternating algorithm and random selection strategy are calculated

by sharing the same CSI in each experiment. All curves are generated by calculating the mean

of all theoretical results and experimental results of the alternating algorithm and the random

selection strategy. In the simulation, all the channels between every two nodes follow the

Rician fading distribution, which can be modelled as follows:

f =
√︃

κ

1 + κ
fLoS +

√︃
1

1 + κ
fnLoS, (5.56)

where κ is the Rician factor, fLoS denotes the line-of-sight (LoS) component and fnLoS denotes

the non-LoS (nLoS) component. In our simulation, fLoS is a fixed constant 1, fnLoS is generated

from a Rayleigh fading distribution and κ is set as 1. The impact of distance on the channel

gain is also considered. The channel gains are generated by

hk =
h∗
k√︂
dδkk

, k ∈ {1, 2, u}, (5.57)

where h∗
k follows the distribution described by (5.56), dk denotes the distance between every

two nodes and δk denotes is the path loss exponent. In the simulation, the path loss exponents

of each link are set to be fixed, which is δ1 = δ2 = 1.6 and δu = 1.3. The noise power is set

as −80 dBm.
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Figure 5.3. The uplink data rate as a function of the minimal data rate requirement of the NOMA users.

Fig. 5.3 indicates the uplink data rate as a function of the minimal data rate requirement

of two NOMA users. The transmit power P0 is set as 5 dBm and 10 dBm, respectively. The

minimal data rate requirements of two NOMA users are assumed to be identical. From the
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figure, we notice that the optimal solution is not sensitive to the minimal data rate require-

ment, which means improving the QoS of two NOMA users will not scarify the uplink data

rate. However, the alternating algorithm and the random benchmark are more sensitive to the

minimal data rate requirement of the NOMA users. When the QoS requirement increases,

the uplink data rate will decrease accordingly.
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Figure 5.4. The uplink data rate as a function of the transmit power at the BS.

Fig. 6.2 shows the uplink data rate as a function of the transmit power at the BS. The target

data rate of two NOMA users’Rt is set as 0.6 bps/Hz and 0.7 bps/Hz, respectively. The uplink

data rate increases with increasing the transmit power at the BS in all schemes. However, it is

noted that the uplink data rate will enter a plateau when the transmit power reaches a certain

level. This figure shows that the benefit of high transmit power may be marginal, resulting in

energy waste. In practice, it is critical to choose a transmit power wisely which can guarantee

the best performance without causing energy waste.

Fig. 5.5 shows the uplink data rate as a function of the distance between the uplink device

and the BS. The transmit power P0 is set as 5 dBm and 10 dBm, respectively. In this simula-

tion, we assume that the distance between the uplink device and two NOMA users is the same

and only the distance between the BS and the uplink device changes. The results show that

when the uplink device is closer to the BS, the uplink data rate improves. When the uplink

device is too far from the BS, the data rate is nearly 0. Therefore, the uplink device should

be deployed to a location close to the BS. The results also show that the optimal solution is

better than all benchmarks.

Fig. 5.6 shows the uplink data rate as a function of the distance between the BS and two
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Figure 5.5. The uplink data rate as a function of the distance between the uplink device and the BS.
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Figure 5.6. The uplink data rate as a function of the distance between the BS and two NOMA users.

NOMA users. The transmit power P0 is set as 5 dBm and 10 dBm, respectively. In this sim-

ulation, the distances between the BS and two NOMA users are assumed to be the same. The

target data rate of two NOMA users is set as 0.7 bps/Hz. The results show that this distance

will not affect the uplink data rate in all schemes. The reason is that the backscattering coeffi-

cient η can always reach the maximum value of 1 under the current QoS condition of NOMA

users. In other words, the QoS condition of two NOMA users is still satisfied when the uplink

device fully backscatters its signal. Since the objective function (5.3) is only related to η and

η is always equals to 1, the uplink data rate remains the same. Although the uplink data rate

will not be affected by this distance, the longer distance between two NOMA users and the

BS will bring difficulty in satisfy the QoS requirement. Hence, this distance cannot be too

large in practice.

Fig. 5.7 compares the grid search result and the optimal result to verify the authenticity of
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Figure 5.7. The optimal solution versus grid search solutions.

the optimal solution. We first choose many different values of α from 0 to 1 and calculate the

corresponding value of η. Then, theseα-η pairs are used to calculate the corresponding uplink

data rate. The desired outcome is the maximum uplink data rate. In this simulation, three step

sizes are adopted. When the step size is set to 0.000001, the grid search is nearly upgraded

to an exhaustive search, whose performance nearly coincides with the optimal solution. If

the step size increases, the performance will decrease; however, the time complexity will also

decrease.
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Figure 5.8. The relationship between α and η.

Fig. 5.8 shows the relationship between α and η under different transmit power P0. The

figure shows that the large value of α will cause η to become 0, which means some QoS

constraints are violated. Three curves represent the α−η relationship under different transmit

power levels. A large transmit power will cause a larger η.
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The optimal result significantly outperforms the alternating algorithm. One reason is that

SCA scarifies optimality because the Taylor series substitutes the original non-convex term.

Another reason is that the initialisation of the fixed point introduced by SCA also affects the

performance of the alternating algorithm. A wiser strategy of initialising the fixed point can

generate better performance. The coefficients in the random strategy are not optimised; thus,

its performance is the worst.

5.6 Conclusion

This study investigated a backscatter-assisted NOMA network, consisting of two downlink

NOMA users and one uplink device. This chapter aimed to maximise the data rate of the

uplink device while also ensuring the QoS requirements of two NOMA users. The alternating

algorithm was proposed to solve this problem efficiently, and it can be extended to solve a

scenario containing multiple downlink NOMA users. Then, the closed-form solution of a

two-user case was derived. The study has practical significance because it allows an extra

IoT device to be added to an existing NOMA network, significantly improving the legacy

system’s capacity.

In order to solve optimisation problems in a backsttering-NOMA network efficiently, the

deep learning will be introduced in the next chapter. The comparison of the deep learning

algorithm and the traditional convex algorithm is investigated as well.
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Chapter 6

BAC-NOMA for Secondary Transmission
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6.1 Introduction

Ultra-massive machine type communications (umMTC) as a key technique of the envi-

sioned sixth-generation (6G) communication system is the focus of research [89]. The main

feature of umMTC is that massive low-power devices, e.g., energy-constrained Internet of

Things (IoT) sensors, are connected. It is challenging to serve a huge number of devices

simultaneously due to the spectrum constraint.

To tackle this spectrum challenge, non-orthogonal multiple access (NOMA) has been pro-

posed as a promising technique to promote spectrum cooperation between wireless users and

devices [66]. NOMA allows different users to share the spectrum resource simultaneously,

where successive interference cancellation (SIC) is adopted to partially remove co-channel

interference. The energy constraint is another challenge in umMTC networks, since it is diffi-

cult to equip small IoT devices with batteries. One way to achieve energy cooperation among

energy-constrained devices is backscatter communication (BackCom), where a backscatter

(BAC) circuit of a BAC device can be excited by the signal from another device[90].

The combination of NOMA and BAC can further improve resource efficiency. Some ex-

isting works have investigated NOMA-BAC scenarios [84], [91]–[93]. The system models

considered in [91]–[93] contain two NOMA users, one backscatter device (BD) and a single-

antenna base station (BS). The work [84] investigated the system model which contains a

single-antenna BS and two NOMA users equipped with backscatter circuit. Unlike the ex-

isting works above, the BS in this work is equipped with multiple antennas and the result

shows that the a multiple-antenna BS can help to improve the performance. This chapter also

has a different focus compared with the aforementioned works. The aim of this work is to

find the optimal beam vectors and backscattering coefficient for maximising the sum rate of

two NOMA users while aforementioned works focused on performance analysis. First, a sum

rate of two NOMA users maximisation problem is formulated. A closed form expression of

the optimal backscattering coefficient is provided, and then a learning based algorithm and

a semi-definite relaxation (SDR) based algorithm are proposed to design beamforming vec-

tors. The computer simulation results show both algorithms have their own advantages and

disadvantages, which provides flexible strategy options.
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6.2 System Model and Problem Formulation

Figure 6.1. The system model.

The system model shown in Fig. 6.1 consists of one BS equipped with M antennas, one

signal-antenna passive BD and two signal-antenna NOMA users. The BD only communicates

with user 1 by backscattering its signal, while the reflected signal also interferes with user

2. Since the BD is a passive device, all energy consumed to backscatter signals is from

the received signal from the BS. The reflecting coefficient of the BD, denoted by η, can be

optimized to balance the achievable data rate and the interference. The channels of user 1,

user 2 and the BD are denoted by h1 ∈ CM×1, h2 ∈ CM×1 and hBD ∈ CM×1, respectively. The

channels between the BD and two users are denoted by g1 and g2, respectively. In this paper,

the Rician fading model is considered for all channels. The BS transmits the superposed

signal, as shown in follows

x = w1s1 + w2s2, (6.1)

where w1 ∈ CM×1 and w2 ∈ CM×1 denote the beamforming vectors for two users and s1 and

s2 denote the signals sent to two users, satisfying E{|s1|2} = E{|s2|2} = 1, where E{·} is

the expectation operation. As a result, the received signal at two users can be expressed as

follows:

yi = hH
i x +

√
ηgihH

BDxc+ wi, i ∈ {1, 2}, (6.2)

where H is the Hermitian transpose, c denotes the device-to-device (D2D) signal from the

BD to user 1 and w denotes the additive white Gaussian noise (AWGN). It is worth pointing

out that the meaning of the second term in (6.2) is different for user 1 and user 2. Specifically,

it is the desired signal for user 1 and the interference signal for user 2.
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The SIC technique is performed at the user with the strong channel gain to remove extra

interference. 1 In this paper, it is assumed that user 1 first decodes user 2’s signal followed

by its own signal and then BD’s signal. The data rate for decoding user 2’s signal at user 1 is

given by

R1,2 = log2

(︄
1 +

|hH
1 w2|2

|hH
1 w1|2 +

∑︁2
k=1 η|g1|2|hH

BDwk|2 + σ2
1

)︄
, (6.3)

where σ2
1 denotes the noise power at user 1. The signal for user 2 can be removed after

successfully decoding it. The achievable data rate of user 1 for decoding s1 is given by

R1 = log2

(︄
1 +

|hH
1 w1|2∑︁2

k=1 η|g1|2|hH
BDwk|2 + σ2

1

)︄
. (6.4)

At this stage, both s1 and s2 are known by user 1, which enables the decoding of c. When

decoding c, the superposed signal x plays the role of fast-varying channel components [71],

making the fast channel ĥBD = hH
BDx. The achievable data rate of c under the fast fading is

given by

R1,c = log2

(︄
1 +

η|g1|2|ĥBD|2

σ2
1

)︄
. (6.5)

ĥBD varies by the two symbols, including s1 and s2, and thus the average rate for decoding c

can be written as

R̄1,c = E|ĥBD|2

[︄
log2

(︄
1 +

η|g1|2|ĥBD|2

σ2
1

)︄]︄
. (6.6)

For user 2, it decodes the desired signal directly by treating other terms as interference. The

achievable data rate of user 2 is given by

R2 = log2

(︄
1 +

|hH
2 w2|2

|hH
2 w1|2 +

∑︁2
k=1 η|g2|2|hH

BDwk|2 + σ2
2

)︄
, (6.7)

where σ2
2 is the noise power at user 2.

The aim of this paper is to maximise the sum rate of two users while guaranteeing the qual-

ity of service (QoS) for BD. Therefore, a sum rate maximisation problem can be formulated

as follows:
1A passive device will cause time synchronisation error to a NOMA user during SIC [94]. It is assumed synchronisation error is

ignored and this work can be considered as an upper bound of the practical result.
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P21 max
{w1,w2,η}

R1 + min{R1,2, R2} (6.8a)

s.t. R̄1,c ≥ Rtc, (6.8b)

||w1||2 + ||w2||2 ≤ P0, (6.8c)

0 ≤ η ≤ 1, (6.8d)

where Rtc denotes the target data rate of BD. It is worth pointing out that the achievable data

rate for decoding s2 is determined by both R1,2 and R2 because s2 needs to be decoded twice

in user 1 and user 2 in SIC. Thus, the achievable data rate for decoding s2 is denoted by

min{R1,2, R2}. The formulated problem P21 is non-convex and the non-convexity exists in

both the objective function and constraints, which is difficult to be solved directly.

6.3 The Proposed Algorithms

In this section, the non-convex problem is mathematically transformed to a simple version.

A SDR-based algorithm from convex optimisation and a learning based algorithm from data

science are proposed to solve this problem.

The first step is to deal with constraint (6.8b) which currently is a form with expectation

E|ĥBD|2

[︄
log2

(︄
1 +

η|g1|2|ĥBD|2

σ2
1

)︄]︄
≥ Rtc. (6.9)

By assuming that s1(n) and s2(n) are complex Gaussian distributed with zero mean and

unit variance, ĥBD follows complex Gaussian distribution CN (0, λ), where λ = |hH
BDw1|2 +

|hH
BDw2|2.

Lemma 2. The squared envelope of ĥBD follows the exponential distribution and the proba-

bility density function (PDF) is f(x) = 1
λ
e−λx.

Proof. First, we have:

ĥBD = hH
BDx = hH

BDw1s1 + hH
BDw2s2. (6.10)

Let us assume hH
BDw1 = a1 + jb1, hH

BDw2 = a2 + jb2, s1 = x1 + jy1 and s2 = x2 + jy2.
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Therefore, hBDˆ can be expressed as follows:

ĥBD = (a1x1 − b1y1 + a2x2 − b2y2) + j(a1y1 + b1x1 + a2y2 + b2x2). (6.11)

As the assumption that s1 and s2 follow the complex Gaussian distribution with zero mean

and unit variance, i.e. CN (0, 1), and hence, the real random variables x1, y1, x2 and y2 are

distributed with N (0, 1
2
). R(ĥBD) and I(ĥBD) are the linear combination of four Gaussian

distributed random variables. Therefore, R(ĥBD) and I(ĥBD) are also Gaussian distribu-

tion random variables and have the same mean and variance. The mean and the variance of

R(ĥBD) and I(ĥBD) are 0 and 1
2
(a21+b21+a22+b22). Therefore, ĥBD follows a complex Gaussian

distribution CN (0, λ), where λ = |hH
BDw1|2 + |hH

BDw2|2 = a21 + b21 + a22 + b22. Then, we can

have the conclusion that the square envelope of ĥBD follows an exponential distribution with

the parameter λ = |hH
BDw1|2 + |hH

BDw2|2. The lemma is proofed.

Thus, the average rate of c(n) can be rewritten as follows:

R̄1,c =

∫︂ ∞

0

1

λ
e−

x
λ log2(1 + βx) dx, (6.12)

where β = η|g1|2
σ2
1

. With some algebraic manipulation, R̄1,c can be expressed as follows:

R̄1,c = − log2(e)e
1
βλEi(−

1

βλ
), (6.13)

where Ei(x) ≜
∫︁ x

−∞(1/u)eu du, x ≤ 0 denotes the exponential integral function. Although

the expectation is omitted, Ei(·) introduces new challenging to the problem. To tackle the

obstacle, a new function f(x) ≜ −e
1
xEi(− 1

x
) is constructed. Referring to the proof in [71],

f(x) is a monotonically increasing function of x. It is assumed that there exists a ŷ satisfying

that f(ŷ) = Rtc

log2(e)
, then the constraint (6.8b) can be expressed as follows:

f(βλ) ≥ f(ŷ). (6.14)

f(x) is a monotonically increasing function of x, and thus the constraint (6.8b) can be refor-

mulated into a compact way, i.e.,

βλ ≥ ŷ. (6.15)
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As an efficient algorithm to solve multi-variable optimisation problems, the alternating

algorithm is adopted in this paper. Specifically, η is optimized with given beamforming vec-

tors. Consider a function gi(x) = log2(1 +
Ai

Bix+Ci
), it can be easily proved by the first-order

derivative that gi(x) is monotonically decreasing with x if Ai, Bi and Ci are non-negative.

Therefore, the objective function, as a sum of two decreasing functions, is also monotonically

decreasing. Thus, (6.8a) can be equivalently transformed to find the lower bound of η. The

range of η can be found in constrains (6.8d) and (6.15), as shown in follows:

ŷσ2
1

|g1|2
∑︁2

k=1 |hH
BDwk|2

≤ η ≤ 1. (6.16)

According to the monotonicity of the objective function, the optimal solution of η is its lower

bound

η∗ =
ŷσ2

1

|g1|2
∑︁2

k=1 |hH
BDwk|2

. (6.17)

By substituting η in P21 with η∗, P21 is transformed as follows:

P22 : max
{w1,w2}

log2

(︃
1 +

|hH
1 w1|2

ŷσ2
1 + σ2

1

)︃
+ min{log2 (1 + A1) , log2 (1 + A2)} (6.18a)

s.t.
|hH

1 w2|2

|hH
1 w1|2 + ŷσ2

1 + σ2
1

≥ ϵ2, (6.18b)

ŷσ2
1

|g1|2
∑︁2

k=1 |hH
BDwk|2

≤ 1, (6.18c)

(6.8c),

where A1 =
|hH

2 w2|2

|hH
2 w1|2+ |g2|2

|g1|2
ŷσ2

1+σ2
2

, A2 =
|hH

1 w2|2
|hH

1 w1|2+ŷσ2
1+σ2

1
and ϵ2 = 2Rtc − 1.

Constraint (6.18b) is obtained from (6.8b) and constraint (6.18c) is obtained from (6.16),

which guarantees that the BD can receive enough power to transmit its signal. It is worth

mentioning that constraint (6.8b) is always satisfied by η∗

Note that problem P22 is difficult to be solved because there exists non-convexity in the

objective function and the constraints. Two algorithms are provided in the following to solve

P22 by conventional convex optimisation and deep learning, respectively.
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6.3.1 SDR-based Algorithm

In this case, auxiliary variables can be utilized to transform P22 into a convex problem. By

introducing the auxiliary variable t, the original problem is expressed as follows:

P23 : max
{w1,w2,t}

log2

(︃
1 +

|hH
1 w1|2

ŷσ2
1 + σ2

1

)︃
+ log2(1 + t) (6.19a)

s.t. A1 ≥ t, (6.19b)

A2 ≥ t, (6.19c)

(6.8d), (6.18b), (6.18c).

The objective function is still non-convex due to R1. Another auxiliary variable α is intro-

duced for further transformation. By substituting α to the first logarithmic function, P23 is

equivalently transformed to

P24 : max
{w1,w2,α,t}

log2(1 + α) + log2(1 + t) (6.20a)

s.t.
|hH

1 w1|2

ŷσ2
1 + σ2

1

≥ α, (6.20b)

(6.8d), (6.18b), (6.18c), (6.19b), (6.19c).

However, P24 is still a non-convex problem because of the non-convex constraints (6.18b),

(6.18c), (6.19b), (6.19c) and (6.20b). A square norm can be equivalently transformed into a

trace form as shown below

|hH
i wj|2 = Tr(HiWj), i, j ∈ {1, 2,BD}, (6.21)

where Hi = hihH
i and Wj = wjwH

j . It is indicated that beamforming matrix Wj is positive

semi-definite and the rank is 1. By applying this transformation, P24 can be equivalently

transformed into

P25 : max
{W1,W2,α,t}

log2 (1 + α) + log2 (1 + t) (6.22a)

s.t. Tr(H1W1) ≥ αc1, (6.22b)
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Tr(H2W2) ≥ tTr(H2W1) + c2t, (6.22c)

Tr(H1W2) ≥ tTr(H1W1) + c1t, (6.22d)

Tr(H1W2)− ϵ2Tr(H1W1) ≥ c1ϵ2, (6.22e)

Tr(HBDW1) + Tr(HBDW2) ≥
ŷσ2

1

|g1|2
, (6.22f)

Tr(W1) + Tr(W2) ≤ P0, (6.22g)

Wi ⪰ 0, i ∈ {1, 2}, (6.22h)

rank(Wi) = 1, i ∈ {1, 2}, (6.22i)

where c1 = ŷσ2
1 + σ2

1 and c2 = |g2|2
|g1|2 ŷσ

2
1 + σ2

2 . All constraints except (6.22c), (6.22d) and

(6.22i) construct a convex set. To deal with the non-convexity of constraints (6.22c) and

(6.22d), a basic inequality is considered below

a2 + b2

2
≥ ab. (6.23)

By adopting (6.23), the upper bound of tTr(HiWj) is given by t2+Tr(HiWj)
2

2
. By introducing

this relaxation, the constraints (6.22c) and (6.22d) are respectively transformed into

Tr(H2W2) ≥
t2 + Tr(H2W1)

2

2
+ c2t (6.24)

and

Tr(H1W2) ≥
t2 + Tr(H1W1)

2

2
+ c1t. (6.25)

It is noted that when inequalities (6.24) and (6.25) are satisfied, constraints (6.22c) and (6.22d)

must be satisfied. The last obstacle is the non-convex rank-one constraint (6.22i). A common

method, namely, SDR, is adopted, where the rank one constraint is temporally ignored and the

problem becomes a SDP problem. By dropping the rank-one constraint, P25 can be rewritten

as follows:

P26 : max
{W1,W2,α,t}

log2 (1 + α) + log2 (1 + t) (6.26a)

s.t. Tr(H2W2) ≥
t2 + Tr(H2W1)

2

2
+ c2t (6.26b)
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Tr(H1W2) ≥
t2 + Tr(H1W1)

2

2
+ c1t (6.26c)

(6.22b), (6.22e) − (6.22h).

P26 is a convex problem , which can be solved by convex optimisation tool boxes such as

CVX. If the rank of the obtained solution W∗
1 and W∗

2 is not 1, Gaussian randomisation stated

in [12] is required to regenerate feasible suboptimal solution of w∗
1 and w∗

2 from W∗
1 and W∗

2.

6.3.2 Learning based Algorithm

For the learning based algorithm, a five-layer fully connected neural network is adopted to

directly solve P22. It is worth to point out that the aim of this algorithm is to use an existing

network for solving a constrained optimisation problem and to compare with the conventional

SDR-based algorithm.

Dataset Generation

The training dataset is constructed with different channel sets. Denote

s(i) = {h(i)
1 ,h(i)

2 ,h(i)
bd , g

(i)
1 , g

(i)
2 } (6.27)

as a channel sample, which describes the channel condition at moment i. The training dataset

should collect as much channel samples as possible. These collected channel samples are

per-stored in a memory buffer and then grouped into several mini-batches for training. In this

chapter, the size of the training dataset is 50000.

Neural Network Design

A five-layer full connected neural network, consisting of one input layer, two hidden layers,

one output layer and an additional normalisation layer, is constructed. According to the chan-

nel sample si, the dimension of the input layer is 6M+2. Two hidden layers have 256 neurons

and 512 neurons, respectively. The output layer’s dimension is decided by the dimension of

two beams, i.e., 4M . The Relu function is inserted between every two adjacent layers to en-

hance the non-linearity of the network and efficiently avoid overfitting. The normalisation
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layer normalizes the result based on

w∗(i)
j =

√︄
P0

||w(i)
1 ||2 + ||w(i)

2 ||2
w(i)

j , j ∈ {1, 2}, (6.28)

where w(i)
1 and w(i)

2 denote the output of the output layer and w∗(i)
1 and w∗(i)

2 denote the output

of the normalisation layer corresponding to s(i). Hence, the output after normalisation always

satisfies constraint (6.8c).

Loss Function Design

A wise design of the loss function can locate the output of the neural network within the

feasible set of P22. In other words, the output of the network cannot violate the constraints

of P22. Constraint (6.8c) has been handled by the normalisation layer. We introduce two

activation functions

C1
(︂

w∗(i)
1 ,w∗(i)

2

)︂
= I

(︄
|h(i)H

1 w∗(i)
2 |2

|h(i)H
1 w∗(i)

1 |2 + ŷσ2
1 + σ2

1

− ϵ2

)︄
(6.29)

and

C2
(︂

w∗(i)
1 ,w∗(i)

2

)︂
= I

(︄
1− ŷσ2

1

|g1|(i)2
∑︁2

k=1 |h
(i)H
BD w∗(i)

k |2

)︄
, (6.30)

where an indicator function is denoted by

I(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x ≥ 0,

|x|, if x < 0,

(6.31)

to handle constraint (6.18b) and constraint (6.18c), respectively. The third activation function

denoted by F corresponds to the objective function, which is expressed as follows:

F
(︂

w∗(i)
1 ,w∗(i)

2

)︂
= log2

(︄
1 +

|h(i)H
1 w∗(i)

1 |2

ŷσ2
1 + σ2

1

)︄
(6.32)

+ log2

(︂
1 + min(A∗(i)

1 , A
∗(i)
2 )
)︂
,
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where A
∗(i)
1 denotes |h(i)H

2 w∗(i)
2 |2

|h(i)H
2 w∗(i)

1 |2+ |g2|(i)2

|g1|(i)2
ŷσ2

1+σ2
2

and A
∗(i)
2 denotes |h(i)H

1 w∗(i)
2 |2

|h(i)H
1 w∗(i)

1 |2+ŷσ2
1+σ2

2

. The cus-

tomized loss function is given by

L
(︂

w∗(i)
1 ,w∗(i)

2

)︂
= −F + γ1C1 + γ2C2, (6.33)

where γ1 and γ2 are punishment coefficients. Note that when the output from the network

satisfies constraints (6.18b) and (6.18c), C1 = C2 = 0 and the minimal value of C1 and C2 is

0 because of (6.31). Because the loss function is minimized, the network will try to make

C1 and C2 equal to 0. In this way, the loss function can lead the network to output a feasible

solution. A mini-batch usually serves as the training data in each epoch, thus the network

is trying to minimize the mean of the loss functions over the mini-batch. The average loss

function is given by

L̃ =
1

|P|
∑︂
i∈P

L
(︂

w∗(i)
1 ,w∗(i)

2

)︂
, (6.34)

where P denotes the mini-batch and |P| denotes the batch size. The network will avoid

infeasible outputs violating any constraint by minimizing (6.34).

Note that it is challenging to define an activation function for each constraints when an

optimisation problem contains a lot of constraints. We can simplify the original optimisation

problem with the help from the traditional optimisation method. In this paper, the closed-

form expression of η is derived and the original optimisation problem is simplified, which is

possible to be solved by deep learning algorithms.

6.3.3 Complexity Analysis

Referring to [12], the worst-case complexity of solving a general SDR problem by CVX can

be expressed as follows:

O
(︃
n4.5 log(

1

ϵ
)

)︃
, (6.35)

where n denotes the problem size and ϵ denotes the solution accuracy. In particular, n is

related to the number of antennas and users in wireless communication field.

For the learning based algorithm, we only consider the forward propagation since the

model is pre-trained. The forward propagation consists of matrix multiplication and activa-
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tion functions. By assuming the i-th layer has i neurons and the j-th layer has j neurons, from

the i-th layer to the j-th layer, the calculation of this operation is

Sj×t
j = Wj×i ∗ Zi×t

i , (6.36)

where t denotes the number of training samples and Zi×t
i , Wj×i and Sj×t

j denote the input

matrix, the weight matrix and the output matrix of the i-th layer, respectively. The operation

(6.36) has O(jit). Then, the activation function

Zj×t
j = f(Sj×t

j ) (6.37)

is applied, where Zj×t
j denotes the input matrix of the j-th layer and the time complexity of

this operation is O(jt). In total, the time complexity of forward propagation for a 4-layer

network is

O(t(ij + jk + kl)), (6.38)

where i, j, k and l are the numbers of neurons for the input layer, two hidden layers and the

output layer, respectively.

6.4 Simulation Results
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Figure 6.2. Sum rate versus transmit power.

In this section, simulation results of two proposed algorithms and benchmarks are pro-

vided. Rician fading model and Rayleigh fading model are utilized. The path loss exponent
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Figure 6.3. Sum rate versus the target rate of BD.
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Figure 6.4. Sum rate versus channel error.

is set as 2.5. The distance between the BS and users is set as 2 m, and the noise power at two

users is set to −96 dBm. Time-division multiple access (TDMA) and zero-forcing (ZF) are

included as the benchmarks.

Fig. 6.2 and Fig. 6.3 show how the transmit power at the BS and the target rate of BD

impact the sum rate of two NOMA users. We set the target rate of BD as 2 bps/Hz in Fig. 6.2

and the transmit power at the BS as 10 dbm in Fig. 6.3, respectively. The sum rate increases

with the increasing of the transmit power at the BS, however, it decreases when the target

rate of BD increases. It is noted that the performance gap between two algorithms is smaller

when the BS is equipped with more antennas and the BD requires a smaller data rate. Two

simulation sets with different numbers of antennas, M = 5 and M = 10, are conducted in

both figures. The number of antenna can help improve the performance.
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Figure 6.5. The performance under different channel error.

According to experimental experiences, (6.38) is usually great smaller than (6.35). When

a well-trained network is operated in the evaluation mode, t in (6.38) equals to 1 because

the real-CIS is just one sample. Therefore, the network can instantly predict beam vectors,

and hence beam vectors can be frequently updated in a time slot. However, the SDR-based

algorithm is time-consuming so it is impossible to optimize beam vectors every time even the

real-time CSI is available. As a result, beam vectors calculated by the SDR-based algorithm

are fixed in a time slot. Fig. 6.4 shows the performance of two proposed algorithms when

the CSI is changing. σϵ is a channel error unit to describe how fast the channel changes.

The target rate of BD is set as 2 bps/Hz and the transmit power at the BS is set as 10 dBm.

This figure shows the learning based algorithm is more robust than the SDR-based algorithm

under a large channel error. Fig. 6.5 shows the learning based algorithm can achieve a better

performance than the SDR-based algorithm if a channel error exists and the performance gap

increases when the channel error becomes larger. The reason is that beam vectors calculated

by the SDR-based algorithm is outdated but the learning based algorithm can timely update

beam vectors when the channel changes fast.

6.5 Conclusion

In this chapter, an add-on BAC-NOMA network was investigated to comprehensively im-

prove the spectral efficiency. The sum rate of two NOMA users was maximised while guaran-

teeing the QoS of the BD. Both algorithms based on convex optimisation and deep learning
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can achieve competitive performance compared to the benchmarks. The SDR-based algo-

rithm is able to outperform the learning based algorithm when the channel is unchanged

or changes slowly. When the channel changes fast, the learning based algorithm, as a low-

complexity algorithm, is more robust than the SDR-based algorithm. Based on the proposed

algorithms, a dynamic strategy selection mechanism can be constructed. Since only a fully

connected neural network is adopted, the performance of the learning based algorithm can by

further improved by particularly designer the network structure for this optimisation problem.

How to design a neural network is a promising research direction for the future work.

142



Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis investigated the optimisation problems on how to allocate resource in different

NOMA scenarios, including RIS-NOMA and BAC-NOMA. Convex optimisation, alternating

algorithm, SDR, SCA and machine learning are applied to solve aforementioned optimisation

problems to improve the efficiency and the sum rate of the system. The simulation results

demonstrated that the optimised network with the optimal resource allocation scheme can

achieve the best performance. The specific conclusions of each chapter are summarised as

follows.

In chapter 3, the joint optimisation of beamforiming, power allocation and RIS phase shift

in a NOMA-RIS assisted multi-cluster network was investigated. A transmit power minimi-

sation problem was formulated. The primal problem was split into two subproblems and

these two subproblems were transformed to convex problems by inequality approximation,

SDR and SCA. An alternating algorithm was proposed to minimise the transmit power by it-

eratively solving beamforming optimisation and phase shifting feasibility until the algorithm

converges. Additionally, a low-complexity solution is provided for this scenario based on a

partial exhaustive search approach. The simulation results demonstrated that the alternating

algorithm outperforms the partial exhaustive search algorithm but exhibits higher complexity.

In chapter 4, a sum rate maximization problem in a RIS-assisted NOMA downlink network

was investigated. A DDPG based algorithm was proposed to jointly optimise beamforming

and phase shift. The proposed DDPG algorithm not only achieves competitive performance

but also adapts to varying channel scenarios. However, conventional convex optimisation
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is primarily suitable for fixed channel scenarios. More specifically, machine learning pro-

vides a new solution for wireless communication networks and also can be applied for more

complicated scenarios, which will be a powerful tool for developing 6G network.

In chapter 5, a backscatter-assisted NOMA network, consisting of two downlink NOMA

users and one uplink device, was investigated. This work achieved the maximum data rate of

the uplink device and meanwhile QoS requirements of two NOMA users are met. The pro-

posed alternating algorithm efficiently addressed this problem and can be extended to handle

scenarios involving multiple downlink NOMA users. Moreover, a closed-form solution for

a two-user case was derived. This study holds practical significance as it enables the addi-

tion of an extra IoT device to a legacy NOMA network, resulting in a substantial capacity

enhancement for the legacy system.

In chapter 6, an add-on BAC-NOMA network was investigated to comprehensively im-

prove the spectral efficiency. The sum rate of two NOMA users was maximised and mean-

while the QoS of the backscatter device was guaranteed. Two algorithms based on convex op-

timisation and unsupervised learning were proposed to solve the primal problem, respectively.

The simulation results show that the SDR-based algorithm outperforms the learning-based

algorithm when the channel remains unchanged or changes slowly. However, in scenarios

with fast-changing channels, the learning-based algorithm, as a low-complexity approach,

exhibits greater robustness compared to the SDR-based algorithm. This study provided a

dynamic strategy selection mechanism, which can select different algorithms based on the

environment.

In summary, NOMA enhances spectrum efficiency in wireless networks, RIS offers ad-

vanced signal manipulation for improved wireless communication, and backscattering is a

low-power communication technique often used in IoT applications. These technologies rep-

resent important advancements in the wireless communication field, each with its unique

benefits and applications. With the combination of NOMA with RIS and backscattering be-

coming more and more mature, it has become a protential solution for the next generation

communication system.

144



7.2 Future Works

7.2.1 STAR-RIS and Active RIS

All the works related to RIS in this thesis is about the conventional passive RIS, which can

only reflect the incident signal to the destination. Recently, simultaneously transmitting and

reflecting (STAR) RIS and active RIS were proposed to introduce more benefits. The STAR-

RIS can simultaneously transmit and reflect the incident signals. In particular, two phases

named the transmission phase and the reflection phase are introduced [95]. The STAR-RIS

allows users with different requirements to be served simultaneously. The STAR-RIS assisted

NOMA network has been investigated in some works [96]–[98]. However, the topic on multi-

user scenario in a STAR-RIS network is still a valuable research direction in the future.

Active RISs introduce a new feature compared with the conventional RIS. The active RIS

can amplify the incident signal while reflecting the signal [99], [100]. Both the amplitude

coefficient and the phase shift of each reflecting unit can be adjusted. Therefore, more algo-

rithms can be properly designed to find the optimal amplitude coefficients and phase shifts.

7.2.2 Optimisations in THz-NOMA Networks

Due to the severe congestion observed in the sub-6 GHz bands, utilizing the Terahertz (THz)

band has emerged as a promising solution to meet the demands of emerging applications

that necessitate super-fast broadband speeds and ultra-low latencies. THz-NOMA can fur-

ther improve the spectrum efficiency in a THz transmission environment [101]–[103]. Some

advantages of THz-NOMA are summarised as follows.

• High data rate: Since the super high frequency of the THz channel, the data rate for each

device can be extremely high. Numerous bandwidth-intensive applications, such as live

streaming and 8K videos, can greatly benefit from the implementation of THz-NOMA

networks.

• Massive connectivity: The THz-NOMA network can accommodate massive devices

because of its extremely large capabilities. This caters for the requirement of IoT and

Internet of Everything (IoE) networks.
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However, there are still many challenges in THz-NOMA networks. For example, the chan-

nel model in a THz network is completely different to conventional channel model. A new

mathematical model is necessary to describe the channel in THz-NOMA networks. More-

over, high frequency requires complex hardware.

7.2.3 Federated Learning

Federated learning is a distributed machine learning approach that enables multiple dis-

tributed devices collaboratively train a shared model [104], [105]. In federated learning,

each device trains its model locally and transmits the model parameters to a central point.

The central point then collects the parameters from all devices and updates the shared model

accordingly. Federated learning offer a lot of benefits.

• Data Privacy: Privacy is the most important advantage of federated learning since data

is only trained locally and there is no data sharing between different devices.

• Low Communication Costs: Only the updated model parameters need to be transmitted

between the central point and distributed devices, which is suitable for low-bandwidth

or unstable network environments.

• Decentralisation: The decentralised stature enables data can be trained locally, which

protects the privacy of the user who cannot or do not want to share their data.

The research of federated learning from the wireless communication perspective focuses on

how the quality of wireless communication impacts the model’s performance, given that wire-

less channels are the link between the central point and all the devices [106], [107]. There

are several aspects the wireless communication should consider.

• Bandwidth efficiency: The wireless communication channel has a bandwidth limit,

which means it may not have the capability to transmit parameters of a large size model.

Therefore, some wireless communication techniques are necessary to be utilised to im-

prove the bandwidth efficiency.

• Low latency: Updating models timely is crucial for efficient federated learning. Low-

latency wireless communication is important for the real-time coordination between
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distributed devices and the central point. Therefore, how to reduce the latency is an

important topic in federated learning.

• Reliability: Bit errors will occur when signals are being transmitted by wireless commu-

nication channels. Therefore, error correction mechanisms and robust data transmission

techniques need to be considered to guarantee a reliable transmission.

7.2.4 Age of Information

Age of information (AoI) is a concept to describe the timeliness or freshness of information

at the destination [108]. Some works have considered to use NOMA to decrease AoI [109],

[110]. The most interesting question is how to use NOMA to reduce AoI. In this topic, we

can investigate the resource allocation and beamforming design. It is expected to provide

valuable insights into the advantages and challenges of using NOMA techniques to optimise

information freshness in future communication networks. Introducing NOMA into AoI has

the potential to significantly enhance the performance and efficiency of real-time applications

in various scenarios, which can be a perfect research direction in the future.

147



References

[1] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A compre-

hensive survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–

366, 2021 (cited on pp. 16, 17).

[2] C.-X. Wang, X. You, X. Gao, et al., “On the road to 6G: Visions, requirements, key

technologies and testbeds,” arXiv preprint arXiv:2302.14536, 2023 (cited on pp. 16,

17).

[3] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and

J. M. Lopez-Soler, “A survey on 5G usage scenarios and traffic models,” IEEE Com-

munications Surveys & Tutorials, vol. 22, no. 2, pp. 905–929, 2020 (cited on p. 17).

[4] B. Artmann, Euclid—the creation of mathematics. Springer Science & Business Me-

dia, 2012 (cited on p. 17).

[5] S. Kiranyaz, T. Ince, and M. Gabbouj, Multidimensional particle swarm optimization

for machine learning and pattern recognition. Springer, 2014 (cited on p. 18).

[6] M. Vaezi, Z. Ding, and H. V. Poor, Multiple access techniques for 5G wireless net-

works and beyond. Springer, 2019 (cited on pp. 19, 53).

[7] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-

orthogonal multiple access (NOMA) for cellular future radio access,” in 2013 IEEE

77th vehicular technology conference (VTC Spring), IEEE, 2013, pp. 1–5 (cited on

p. 27).

[8] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent

reflecting surface aided wireless network,” IEEE Commun Mag, 2019 (cited on pp. 30,

54).

148



[9] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via

joint active and passive beamforming,” IEEE Transactions on Wireless Communica-

tions, vol. 18, no. 11, pp. 5394–5409, 2019 (cited on p. 30).

[10] C. Boyer and S. Roy, “—invited paper—backscatter communication and RFID: Cod-

ing, energy, and MIMO analysis,” IEEE Transactions on Communications, vol. 62,

no. 3, pp. 770–785, 2013 (cited on p. 33).

[11] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge univer-

sity press, 2004 (cited on pp. 35, 67).

[12] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic

optimization problems,” IEEE Signal Process Mag, vol. 27, no. 3, pp. 20–34, 2010

(cited on pp. 42, 43, 68, 71, 72, 136, 138).

[13] M. Razaviyayn, “Successive convex approximation: Analysis and applications,” Ph.D.

dissertation, University of Minnesota, 2014 (cited on p. 43).

[14] Z.-H. Zhou, Machine learning. Springer Nature, 2021 (cited on p. 43).

[15] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The

MIT press, 2016, 800 pp, isbn: 0262035618,” Genetic programming and evolvable

machines, vol. 19, no. 1-2, pp. 305–307, 2018 (cited on pp. 43, 45).

[16] S. Russell and P. Norvig, “Artificial intelligence: A modern approach,” 2002 (cited on

p. 47).

[17] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning.[sl],

2012 (cited on p. 47).

[18] G. E. Hinton, T. J. Sejnowski, T. A. Poggio, et al., Unsupervised learning: foundations

of neural computation. MIT press, 1999 (cited on p. 47).

[19] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987 (cited on p. 47).

149



[20] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoencoders,” in Ma-

chine learning, Elsevier, 2020, pp. 193–208 (cited on p. 47).

[21] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,

“Generative adversarial networks: An overview,” IEEE signal processing magazine,

vol. 35, no. 1, pp. 53–65, 2018 (cited on p. 47).

[22] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm,”

Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1,

pp. 100–108, 1979 (cited on p. 48).

[23] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996 (cited on p. 48).

[24] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An in-

troduction to deep reinforcement learning,” arXiv preprint arXiv:1811.12560, 2018

(cited on pp. 48, 50, 88).

[25] K. Feng, Q. Wang, X. Li, and C.-K. Wen, “Deep reinforcement learning based in-

telligent reflecting surface optimization for MISO communication systems,” IEEE

Wireless Communications Letters, vol. 9, no. 5, pp. 745–749, 2020 (cited on p. 50).

[26] Z. Zhang, Y. Xiao, Z. Ma, et al., “6G wireless networks: Vision, requirements, archi-

tecture, and key technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3,

pp. 28–41, 2019 (cited on p. 53).

[27] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications,

trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–

142, 2019 (cited on p. 53).

[28] F. Tariq, M. Khandaker, K.-K. Wong, M. Imran, M. Bennis, and M. Debbah, “A spec-

ulative study on 6G,” arXiv preprint arXiv:1902.06700, 2019 (cited on p. 53).

150



[29] V. Jamali, A. Tulino, G. Fischer, R. Müller, and R. Schober, “Intelligent reflecting

and transmitting surface aided millimeter wave massive MIMO,” arXiv e-prints, 2019

(cited on p. 53).

[30] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next

generation wireless systems,” IEEE Commun Mag, vol. 52, no. 2, pp. 186–195, 2014

(cited on p. 53).

[31] Y. Guo, Method and apparatus of small cell enhancement in a wireless communica-

tion system, US Patent 9,295,077, Mar. 2016 (cited on p. 53).

[32] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal

multiple access,” EEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 537–552, 2015 (cited

on pp. 53, 82).

[33] K. Saito, A. Benjebbour, Y. Kishiyama, Y. Okumura, and T. Nakamura, “Performance

and design of SIC receiver for downlink NOMA with open-loop SU-MIMO,” in 2015

IEEE International Conference on Communication Workshop (ICCW), IEEE, 2015,

pp. 1161–1165 (cited on pp. 53, 82, 98).

[34] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network: Joint

active and passive beamforming design,” in 2018 IEEE Global Communications Con-

ference (GLOBECOM), IEEE, 2018, pp. 1–6 (cited on p. 53).

[35] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface aided

wireless communications: A tutorial,” arXiv preprint arXiv:2007.02759, 2020 (cited

on pp. 53, 58).

[36] X. Sun, N. Yang, S. Yan, et al., “Joint beamforming and power allocation in down-

link NOMA multiuser MIMO networks,” EEE Trans. Wirel. Commun., vol. 17, no. 8,

pp. 5367–5381, 2018 (cited on p. 54).

[37] F. Fang, H. Zhang, J. Cheng, S. Roy, and V. C. Leung, “Joint user scheduling and

power allocation optimization for energy-efficient NOMA systems with imperfect

151



CSI,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2874–2885, 2017 (cited on

p. 54).

[38] G. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded

OTFS modulation in doubly-dispersive channels,” EEE Trans. Wirel. Commun., vol. 18,

no. 6, pp. 3049–3063, 2019 (cited on p. 54).

[39] W. Tang, M. Z. Chen, J. Y. Dai, et al., “Wireless communications with programmable

metasurface: New paradigms, opportunities, and challenges on transceiver design,”

arXiv preprint arXiv:1907.01956, 2019 (cited on p. 54).

[40] F. Fang, H. Zhang, J. Cheng, and V. C. Leung, “Energy-efficient resource allocation for

downlink non-orthogonal multiple access network,” IEEE Trans. Commun., vol. 64,

no. 9, pp. 3722–3732, 2016 (cited on p. 54).

[41] M. Di Renzo, M. Debbah, D.-T. Phan-Huy, et al., “Smart radio environments empow-

ered by reconfigurable AI meta-surfaces: An idea whose time has come,” EURASIP

J Wirel. Commun. Netw., vol. 2019, no. 1, pp. 1–20, 2019 (cited on p. 54).

[42] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via

joint active and passive beamforming,” IEEE Transactions on Wireless Communica-

tions, vol. 18, no. 11, pp. 5394–5409, 2019. doi: 10.1109/TWC.2019.2936025

(cited on pp. 54, 82, 84).

[43] W. Tang, M. Z. Chen, X. Chen, et al., “Wireless communications with reconfig-

urable intelligent surface: Path loss modeling and experimental measurement,” arXiv

preprint arXiv:1911.05326, 2019 (cited on p. 54).

[44] J. Zhu, Y. Huang, J. Wang, K. Navaie, and Z. Ding, “Power efficient IRS-assisted

NOMA,” arXiv preprint arXiv:1912.11768, 2019 (cited on p. 54).

[45] Z. Ding, R. Schober, and H. V. Poor, “On the impact of phase shifting designs on

IRS-NOMA,” IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1596–1600,

2020 (cited on p. 54).

152

https://doi.org/10.1109/TWC.2019.2936025


[46] M. Fu, Y. Zhou, and Y. Shi, “Reconfigurable intelligent surface empowered downlink

non-orthogonal multiple access,” arXiv preprint arXiv:1910.07361, 2019 (cited on

pp. 54, 59, 62).

[47] X. Liu, Y. Liu, Y. Chen, and H. V. Poor, “RIS enhanced massive non-orthogonal mul-

tiple access networks: Deployment and passive beamforming design,” arXiv preprint

arXiv:2001.10363, 2020 (cited on pp. 54, 60).

[48] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent reflecting

surfaces in multi-antenna aided NOMA systems,” arXiv preprint arXiv:1910.13636,

2019 (cited on p. 54).

[49] J. Zuo, Y. Liu, Z. Qin, and N. Al-Dhahir, “Resource allocation in intelligent reflecting

surface assisted NOMA systems,” arXiv preprint arXiv:2002.01765, 2020 (cited on

p. 54).

[50] M. Zeng, X. Li, G. Li, W. Hao, and O. Dobre, “Sum rate maximization for IRS-assisted

uplink NOMA,” arXiv preprint arXiv:2004.10791, 2020 (cited on p. 54).

[51] Y. Li, M. Jiang, Q. Zhang, and J. Qin, “Joint beamforming design in multi-cluster

MISO NOMA intelligent reflecting surface-aided downlink communication networks,”

arXiv preprint arXiv:1909.06972, 2019 (cited on pp. 55, 56, 61, 62).

[52] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for multi-cell irs-

aided NOMA networks,” arXiv preprint arXiv:2006.11811, 2020 (cited on pp. 55,

56).

[53] Z. Ding and H. V. Poor, “A simple design of IRS-NOMA transmission,” IEEE Com-

munications Letters, vol. 24, no. 5, pp. 1119–1123, 2020 (cited on p. 58).

[54] S. Yan, X. Zhou, D. W. K. Ng, J. Yuan, and N. Al-Dhahir, “Intelligent reflecting sur-

face for wireless communication security and privacy,” arXiv preprint arXiv:2103.16696,

2021 (cited on p. 59).

153



[55] X. Zhou, S. Yan, Q. Wu, F. Shu, and D. W. K. Ng, “Intelligent reflecting surface

(IRS)-aided covert wireless communication with delay constraint,” arXiv preprint

arXiv:2011.03726, 2020 (cited on p. 60).

[56] X. You, C. Wang, J. Huang, et al., “Towards 6G wireless communication networks:

Vision, enabling technologies, and new paradigm shifts,” Science China Information

Sciences, vol. 64, no. 1, pp. 1–74, 2021 (cited on p. 82).

[57] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface assisted multiuser

MISO systems exploiting deep reinforcement learning,” IEEE Journal on Selected

Areas in Communications, vol. 38, no. 8, pp. 1839–1850, 2020 (cited on p. 82).

[58] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised learning for passive

beamforming,” IEEE Communications Letters, vol. 24, no. 5, pp. 1052–1056, 2020

(cited on p. 82).

[59] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-

forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,

pp. 26–38, 2017 (cited on p. 82).

[60] B. Lyu, Z. Yang, H. Guo, F. Tian, and G. Gui, “Relay cooperation enhanced backscat-

ter communication for Internet-of-Things,” IEEE Internet of Things Journal, vol. 6,

no. 2, pp. 2860–2871, 2018 (cited on p. 98).

[61] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of things

(IoT) for next-generation smart systems: A review of current challenges, future trends

and prospects for emerging 5G-IoT scenarios,” Ieee Access, vol. 8, pp. 23 022–23 040,

2020 (cited on p. 98).

[62] L. Chen, S. Thombre, K. Järvinen, et al., “Robustness, security and privacy in location-

based services for future IoT: A survey,” Ieee Access, vol. 5, pp. 8956–8977, 2017

(cited on p. 98).

154



[63] T. O. Timoudas, R. Du, and C. Fischione, “Enabling massive IoT in ambient backscat-

ter communication systems,” in ICC 2020-2020 IEEE International Conference on

Communications (ICC), IEEE, 2020, pp. 1–6 (cited on p. 98).

[64] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for massive

IoT,” in 2018 IEEE international conference on future IoT technologies (future IoT),

IEEE, 2018, pp. 1–8 (cited on p. 98).

[65] D. A. L. Galappaththige, F. Rezaei, C. Tellambura, and S. Herath, “Link budget anal-

ysis for backscatter-based passive IoT,” IEEE Access, vol. 10, pp. 128 890–128 922,

2022 (cited on p. 98).

[66] Z. Ding, Y. Liu, J. Choi, et al., “Application of non-orthogonal multiple access in

LTE and 5G networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–

191, 2017 (cited on pp. 98, 128).

[67] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A

survey on non-orthogonal multiple access for 5G networks: Research challenges and

future trends,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10,

pp. 2181–2195, 2017 (cited on p. 98).

[68] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance

of downlink non-orthogonal multiple access (NOMA) under various environments,”

in 2015 IEEE 81st vehicular technology conference (VTC Spring), IEEE, 2015, pp. 1–

5 (cited on p. 98).

[69] A. S. Parihar, P. Swami, V. Bhatia, and Z. Ding, “Performance analysis of SWIPT

enabled cooperative-NOMA in heterogeneous networks using carrier sensing,” IEEE

Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10 646–10 656, 2021 (cited

on p. 98).

[70] E. M. Shaheen and M. R. Soleymani, “Performance analyses of SWIPT-NOMA en-

abled IoT relay networks,” in 2022 International Symposium on Networks, Computers

and Communications (ISNCC), IEEE, 2022, pp. 1–6 (cited on p. 98).

155



[71] Z. Ding and H. V. Poor, “On the application of BAC-NOMA to 6G umMTC,” IEEE

Communications Letters, 2021 (cited on pp. 98–100, 102, 130, 132).

[72] Z. Ding, “Harvesting devices’ heterogeneous energy profiles and QoS requirements in

IoT: WPT-NOMA vs BAC-NOMA,” IEEE Transactions on Communications, vol. 69,

no. 5, pp. 2837–2850, 2021 (cited on p. 98).

[73] R. Long, Y.-C. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new

communication paradigm for passive Internet of Things,” IEEE Internet of Things

Journal, vol. 7, no. 2, pp. 1350–1363, 2019 (cited on p. 98).

[74] C. Yao, Y. Liu, X. Wei, G. Wang, and F. Gao, “Backscatter technologies and the fu-

ture of Internet of Things: Challenges and opportunities,” Intelligent and Converged

Networks, vol. 1, no. 2, pp. 170–180, 2020 (cited on p. 98).

[75] Y. You, C. Qin, and Y. Gong, “Resource allocation for a full-duplex base station aided

OFDMA system,” in 2017 IEEE 18th International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), IEEE, 2017, pp. 1–4 (cited on p. 98).

[76] C. Zhong and Z. Zhang, “Non-orthogonal multiple access with cooperative full-duplex

relaying,” IEEE Communications Letters, vol. 20, no. 12, pp. 2478–2481, 2016 (cited

on p. 98).

[77] Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, “Full-duplex device-to-device-aided

cooperative nonorthogonal multiple access,” IEEE Transactions on Vehicular Tech-

nology, vol. 66, no. 5, pp. 4467–4471, 2016 (cited on p. 98).

[78] C. Zheng, W. Cheng, and H. Zhang, “Optimal resource allocation for two-user and

single-DF-relay network with ambient backscatter,” IEEE Access, vol. 7, pp. 91 375–

91 389, 2019 (cited on p. 99).

[79] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient

backscatter: Wireless communication out of thin air,” ACM SIGCOMM computer

communication review, vol. 43, no. 4, pp. 39–50, 2013 (cited on p. 99).

156



[80] N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient

backscatter communications: A contemporary survey,” IEEE Communications sur-

veys & tutorials, vol. 20, no. 4, pp. 2889–2922, 2018 (cited on p. 99).

[81] S. Gong, X. Huang, J. Xu, W. Liu, P. Wang, and D. Niyato, “Backscatter relay com-

munications powered by wireless energy beamforming,” IEEE Transactions on Com-

munications, vol. 66, no. 7, pp. 3187–3200, 2018 (cited on p. 99).

[82] J. Xu, J. Li, S. Gong, K. Zhu, and D. Niyato, “Passive relaying game for wireless pow-

ered Internet of Things in backscatter-aided hybrid radio networks,” IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 8933–8944, 2019 (cited on p. 99).

[83] G. Yang, X. Xu, and Y.-C. Liang, “Resource allocation in NOMA-enhanced backscat-

ter communication networks for wireless powered IoT,” IEEE Wireless Communica-

tions Letters, vol. 9, no. 1, pp. 117–120, 2019 (cited on pp. 99, 100).

[84] W. Chen, H. Ding, S. Wang, D. B. da Costa, F. Gong, and P. H. J. Nardelli, “Backscat-

ter cooperation in NOMA communications systems,” IEEE Transactions on Wireless

Communications, vol. 20, no. 6, pp. 3458–3474, 2021 (cited on pp. 100, 128).

[85] W. U. Khan, X. Li, M. Zeng, and O. A. Dobre, “Backscatter-enabled noma for future

6G systems: A new optimization framework under imperfect SIC,” IEEE Communi-

cations Letters, vol. 25, no. 5, pp. 1669–1672, 2021 (cited on pp. 100, 103).

[86] D. W. K. Ng, Y. Wu, and R. Schober, “Power efficient resource allocation for full-

duplex radio distributed antenna networks,” IEEE Transactions on Wireless Commu-

nications, vol. 15, no. 4, pp. 2896–2911, 2016 (cited on p. 102).

[87] W. U. Khan, M. A. Jamshed, E. Lagunas, S. Chatzinotas, X. Li, and B. Ottersten,

“Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X

communications under imperfect CSI,” IEEE Transactions on Intelligent Transporta-

tion Systems, 2022 (cited on p. 103).

157



[88] X. Xie, F. Fang, and Z. Ding, “Joint optimization of beamforming, phase-shifting

and power allocation in a multi-cluster IRS-NOMA network,” IEEE Transactions on

Vehicular Technology, vol. 70, no. 8, pp. 7705–7717, 2021 (cited on p. 108).

[89] G. Kirubasri, S. Sankar, D. Pandey, B. K. Pandey, H. Singh, and R. Anand, “A recent

survey on 6G vehicular technology, applications and challenges,” in 2021 9th Inter-

national Conference on Reliability, Infocom Technologies and Optimization (Trends

and Future Directions)(ICRITO), IEEE, 2021, pp. 1–5 (cited on p. 128).

[90] A. Khazali, D. Tarchi, M. G. Shayesteh, H. Kalbkhani, and A. Bozorgchenani, “En-

ergy efficient uplink transmission in cooperative mmwave NOMA networks with wire-

less power transfer,” IEEE Transactions on Vehicular Technology, vol. 71, no. 1,

pp. 391–405, 2021 (cited on p. 128).

[91] Q. Zhang, L. Zhang, Y.-C. Liang, and P.-Y. Kam, “Backscatter-noma: A symbiotic

system of cellular and Internet-of-Things networks,” IEEE Access, vol. 7, pp. 20 000–

20 013, 2019 (cited on p. 128).

[92] X. Li, H. Liu, G. Li, Y. Liu, M. Zeng, and Z. Ding, “Effective capacity analysis of

AmBC-NOMA communication systems,” IEEE Transactions on Vehicular Technol-

ogy, vol. 71, no. 10, pp. 11 257–11 261, 2022 (cited on p. 128).

[93] X. Li, Q. Wang, M. Zeng, et al., “Physical-layer authentication for ambient backscatter-

aided NOMA symbiotic systems,” IEEE Transactions on Communications, vol. 71,

no. 4, pp. 2288–2303, 2023 (cited on p. 128).

[94] M. W. Akhtar, S. A. Hassan, S. Saleem, and H. Jung, “STBC-aided cooperative NOMA

with timing offsets, imperfect successive interference cancellation, and imperfect chan-

nel state information,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10,

pp. 11 712–11 727, 2020 (cited on p. 130).

[95] Y. Liu, X. Mu, J. Xu, et al., “STAR: Simultaneous transmission and reflection for

360° coverage by intelligent surfaces,” IEEE Wireless Communications, vol. 28, no. 6,

pp. 102–109, 2021 (cited on p. 145).

158



[96] Q. Gao, Y. Liu, X. Mu, M. Jia, D. Li, and L. Hanzo, “Joint location and beamforming

design for STAR-RIS assisted NOMA systems,” IEEE Transactions on Communica-

tions, vol. 71, no. 4, pp. 2532–2546, 2023. doi: 10.1109/TCOMM.2023.3247753

(cited on p. 145).

[97] P. Wang, H. Wang, and Y. Fu, “Average rate maximization for mobile STAR-RIS-

Aided NOMA system,” IEEE Communications Letters, vol. 27, no. 5, pp. 1362–1366,

2023. doi: 10.1109/LCOMM.2023.3261442 (cited on p. 145).

[98] F. Fang, B. Wu, S. Fu, Z. Ding, and X. Wang, “Energy-efficient design of STAR-RIS

aided mimo-noma networks,” IEEE Transactions on Communications, vol. 71, no. 1,

pp. 498–511, 2023. doi: 10.1109/TCOMM.2022.3223706 (cited on p. 145).

[99] Z. Zhang, L. Dai, X. Chen, et al., “Active RIS vs. passive RIS: Which will prevail in

6G?” IEEE Transactions on Communications, vol. 71, no. 3, pp. 1707–1725, 2022

(cited on p. 145).

[100] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive

RIS: Which is superior with the same power budget?” IEEE Communications Letters,

vol. 26, no. 5, pp. 1150–1154, 2022. doi: 10.1109/LCOMM.2022.3159525 (cited on

p. 145).

[101] Z. Ding and H. V. Poor, “Design of THz-NOMA in the presence of beam misalign-

ment,” IEEE Communications Letters, vol. 26, no. 7, pp. 1678–1682, 2022 (cited on

p. 145).

[102] O. Maraqa, S. Al-Ahmadi, A. S. Rajasekaran, H. U. Sokun, H. Yanikomeroglu, and

S. M. Sait, “Energy-efficient optimization of multi-user NOMA-assisted cooperative

THz-SIMO MEC systems,” IEEE Transactions on Communications, vol. 71, no. 6,

pp. 3763–3779, 2023. doi: 10.1109/TCOMM.2023.3265123 (cited on p. 145).

[103] H. Zhang, Y. Duan, K. Long, and V. C. M. Leung, “Energy efficient resource alloca-

tion in Terahertz downlink NOMA systems,” IEEE Transactions on Communications,

159

https://doi.org/10.1109/TCOMM.2023.3247753
https://doi.org/10.1109/LCOMM.2023.3261442
https://doi.org/10.1109/TCOMM.2022.3223706
https://doi.org/10.1109/LCOMM.2022.3159525
https://doi.org/10.1109/TCOMM.2023.3265123


vol. 69, no. 2, pp. 1375–1384, 2021. doi: 10.1109/TCOMM.2020.3037597 (cited on

p. 145).

[104] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization: Distributed op-

timization beyond the datacenter,” arXiv preprint arXiv:1511.03575, 2015 (cited on

p. 146).

[105] P. Singh, M. K. Singh, R. Singh, and N. Singh, “Federated learning: Challenges, meth-

ods, and future directions,” in Federated Learning for IoT Applications, Springer,

2022, pp. 199–214 (cited on p. 146).

[106] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, “Federated learning for

6G communications: Challenges, methods, and future directions,” China Communi-

cations, vol. 17, no. 9, pp. 105–118, 2020. doi: 10.23919/JCC.2020.09.009 (cited

on p. 146).

[107] P. Behmandpoor, P. Patrinos, and M. Moonen, “Federated learning based resource

allocation for wireless communication networks,” in 2022 30th European Signal Pro-

cessing Conference (EUSIPCO), 2022, pp. 1656–1660. doi: 10.23919/EUSIPCO55093.

2022.9909708 (cited on p. 146).

[108] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of

information: An introduction and survey,” IEEE Journal on Selected Areas in Com-

munications, vol. 39, no. 5, pp. 1183–1210, 2021 (cited on p. 147).

[109] Z. Ding, O. A. Dobre, P. Fan, and H. Vincent Poor, “A new design of CR-NOMA and

its application to AoI reduction,” IEEE Communications Letters, pp. 1–1, 2023. doi:

10.1109/LCOMM.2023.3292859 (cited on p. 147).

[110] S. Wu, Z. Deng, A. Li, J. Jiao, N. Zhang, and Q. Zhang, “Minimizing Age-of-Information

in HARQ-CC aided NOMA systems,” IEEE Transactions on Wireless Communica-

tions, vol. 22, no. 2, pp. 1072–1086, 2023. doi: 10.1109/TWC.2022.3201115 (cited

on p. 147).

160

https://doi.org/10.1109/TCOMM.2020.3037597
https://doi.org/10.23919/JCC.2020.09.009
https://doi.org/10.23919/EUSIPCO55093.2022.9909708
https://doi.org/10.23919/EUSIPCO55093.2022.9909708
https://doi.org/10.1109/LCOMM.2023.3292859
https://doi.org/10.1109/TWC.2022.3201115

	Front matter
	Title page
	Contents
	List of figures
	List of publications
	Terms and abbreviations
	Abstract
	Declaration of originality
	Copyright statement
	Acknowledgements

	1 Introduction
	1.1 Overview
	1.1.1 The Evolution of 6G
	1.1.2 Optimisation in a Wireless Communication Network
	1.1.3 The Development of Multiple Access Techniques

	1.2 Organisation of the thesis

	2 Background Information
	2.1 Orthogonal Multiple Access Techniques
	2.2 Non-orthogonal Multiple Access Technique
	2.2.1 Downlink NOMA
	2.2.2 Uplink NOMA

	2.3 Reconfigurable Intelligent Surface
	2.4 Backscattering Communication
	2.5 Convex Optimisation
	2.5.1 Basic Concepts of Convex Optimisation
	2.5.2 Definition of Convex Problem
	2.5.3 Classic Optimisation Problems
	2.5.4 Duality and KKT Condition

	2.6 Algorithms
	2.6.1 Semidefinite Relaxation
	2.6.2 Successive Convex Approximation

	2.7 Machine Learning
	2.7.1 Neural Networks
	2.7.2 Loss Function
	2.7.3 Supervised Learning
	2.7.4 Unsupervised Learning
	2.7.5 Reinforcement Learning


	3 Joint Optimisation of Beamforming, Phase-Shifting and Power Allocation in a Multi-cluster RIS-NOMA Network
	3.1 Introduction
	3.1.1 Related Works
	3.1.2 Motivation and Challenges
	3.1.3 Contributions
	3.1.4 Organisation

	3.2 System Model and Problem Formulation
	3.2.1 System Model
	3.2.2 Problem Formulation

	3.3  Optimisation Solution
	3.3.1 Beamforming Optimisation
	3.3.2 Phase Shifting Optimisation
	3.3.3 Algorithm Design
	3.3.4 Complexity analysis

	3.4 Partial Exhaustive Search Algorithm
	3.5 Simulation Results
	3.6 Conclusion

	4 A Reinforcement Learning Approach for an RIS-assisted NOMA Network
	4.1 Introduction
	4.2 System Model and Problem Formulation
	4.3 DDPG-based Joint Optimisation of Phase Shift and Beamforming
	4.3.1 Basic knowledge of DDPG 
	4.3.2 Proposed DDPG framework
	4.3.3 Constraint handling
	4.3.4 Algorithm

	4.4 Simulation Results
	4.5 Conclusion

	5 Backscatter-Assisted NOMA Network for the Next Generation Communication
	5.1 Introduction
	5.1.1 Related works
	5.1.2 Motivations and Contributions
	5.1.3 Organisation

	5.2 System Model and Problem Formulation
	5.3 Convex Transformation and Algorithm
	5.4 Closed-form Derivation
	5.5 Simulation Results
	5.6 Conclusion

	6 BAC-NOMA for Secondary Transmission
	6.1 Introduction
	6.2 System Model and Problem Formulation
	6.3 The Proposed Algorithms
	6.3.1 SDR-based Algorithm
	6.3.2 Learning based Algorithm
	6.3.3 Complexity Analysis

	6.4 Simulation Results
	6.5 Conclusion

	7 Conclusions and Future Works
	7.1 Conclusions
	7.2 Future Works
	7.2.1 STAR-RIS and Active RIS
	7.2.2 Optimisations in THz-NOMA Networks
	7.2.3 Federated Learning
	7.2.4 Age of Information


	References

