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Abstract

With the rapid growth of multimedia applications, spectrum scarcity remains one of the

most important challenges in sixth-generation (6G) wireless communication networks. Due

to its superiority over orthogonal multiple access (OMA) in terms of improved spectral effi-

ciency, Non-orthogonal multiple access (NOMA) has been extensively studied by academia

and industry in recent years. The key idea of NOMA techniques is multiple mobile users

are served at the same time/frequency/code with diverse power levels, where the spectral

efficiency gain is obtained by opportunistically exploiting the users’ dynamic channel condi-

tions or heterogeneous quality of service (QoS) requirements. Resource allocation, as one of

the most important aspects of NOMA, is investigated for various NOMA-enabled networks

in this thesis. In particular, the resource allocation for the unmanned aerial vehicle (UAV)-

reconfigurable intelligent surfaces (RIS)-NOMA networks, wireless power transfer (WPT) in

NOMA networks and backscattering communication-NOMA (BAC-NOMA) are formulated

as different optimization problems and then are solved by convex optimization or machine

learning (ML) based methods.

First, this thesis investigates the combination of UAV downlink networks and RIS-assisted

NOMA. A novel UAV-RIS-NOMA scheme is proposed, in which the strong user’s data rate is

maximized while guaranteeing the weak user’s QoS after the UAV location is pre-optimised.

The beamforming vectors of the base station and the phase shift of the RIS are jointly op-

timized, where the optimal beamforming vectors are derived with closed-form expressions

and the phase shift optimization is performed by applying two algorithms (i.e., semi-definite

relaxation (SDR) and successive convex approximation (SCA)).

Second, if multiple users are taken into account in UAV downlink network with RIS-

14
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assisted NOMA, jointly optimizing beamforming, phase shift and UAV horizontal position

becomes a more difficult problem. In this study, downlink users’ sum rate is maximized

by using a deep reinforcement learning (DRL) method, namely, deep deterministic policy

gradient (DDPG), where the constraints adaptive problem has been analysed and solved in a

proper way.

Third, the application of wireless power transfer (WPT) to the NOMA downlink network

is investigated. A new energy and spectrum cooperation scheme among WPT-deployed de-

vices and NOMA downlink users is proposed. The energy efficiency of WPT devices is

maximized while guaranteeing NOMA downlink users’ QoS. Time switching coefficient and

beamforming vectors are alternatively optimized by the proposed algorithm based on Dinkel-

bach method and the quadratic transform, respectively. The DDPG-based algorithm is also

performed to solve the optimization problem, and compared with the proposed algorithm. To

further demonstrate their respective strengths, robust beamforming designing is also realized

by using the proposed algorithm and the DDPG-based algorithm.

Fourth, a novel energy and spectrum cooperation BAC-NOMA transmission with hybrid

successive interference cancellation (SIC) is proposed. The scenario of backscattering de-

vices transmission to a data fusion centre is viewed as NOMA uplink and hence hybrid SIC

strategy can be used to enhance its performance further. The closed-form optimal backscat-

tering coefficients for one of the decoding cases is provided, and then the beamforming vector

is optimized by applying SDR. For the other decoding case, backscattering coefficients and

beamforming are jointly optimized by the proposed alternating algorithm based on SDR and

SCA.
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Chapter 1

Introduction

1.1 Overview

1.1.1 On the way to 6G

With the maturity of the fifth-generation (5G) system and its rich commercial deployment,

a great number of researchers have pondered new technologies, scenarios and applications

for the coming sixth-generation (6G) cellular networks. Due to the proliferation of new ap-

plications, for example, multisensory extended reality (XR) applications, connected robotics

and autonomous systems (CRAS), wireless brain-computer interactions (BCI) and distributed

ledger technologies (DLT) [1], internet of everything (IoE) will be gradually formed in 6G,

and higher performance will be required. XR is an umbrella term that encompasses vir-

tual reality (VR), augmented reality (AR), and mixed reality (MR). These technologies pro-

vide immersive experiences by blending digital elements with the user’s physical environ-

ment or creating entirely digital worlds, and hence require better ultra-reliable, low latency

communications (URLLC) and enhanced mobile broadband (eMBB). CRAS is another pri-

mary driver behind 6G which includes drone-delivery systems, autonomous cars, autonomous

drone swarms, vehicle platoons, and autonomous robotics. CRAS requires stringent require-

ments across the rate-reliability-latency spectrum. BCI, different from traditional brain im-

plants controlled healthcare scenarios, requires high rates, ultra-low latency and high reliabil-
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ity because it is sensitive to physical perceptions and quality-of-physical-experience (QoPE).

DLT refers to a digital system for recording transactions or other data across a network of

multiple computers, where blockchain is one of the most well-known examples. DLT places

higher demands on agency, reliability and scalability. To guarantee the above-mentioned

applications, the following performances are expected significantly enhanced [2]: 1) The

connection density is ten times that of 5G; 2) The peak data rate is one terabit per second;

3) The energy efficiency is a hundred times that of 5G; 4) The air interface latency is re-

duced to 0.1 milliseconds; 5) The reliability is increased to 99.99999%. To achieve higher

performances and facilitate the aforementioned novel applications, a slew of new disruptive

technologies will be integrated into 6G, including terahertz (THz), reconfigurable intelligent

surfaces (RIS), artificial intelligence (AI) assisted communications, integrated terrestrial, air-

borne, and satellite networks, energy transfer and harvesting, etc.

1.1.2 Multiple Access Techniques for 6G

As one of the most important and fundamental techniques, multiple access (MA) tech-

niques play an irreplaceable role in each generation of wireless communication networks.

Looking back on the history of MA techniques, the first-generation (1G) wireless networks

used frequency division multiple access (FDMA), which split users by assigning different

channels. In the second-generation (2G), time division multiple access (TDMA) is employed

by the global system for mobile communications (GSM) and code division multiple access

(CDMA) which was proposed by Qualcomm in 1991 [3] is applied by Interim Standard 95

(IS-95) and MA started to evolve into a digital modulation manner. In the third-generation

wireless communication (3G) era, CDMA became the dominant MA standard. With the

emergence of a large number of smart devices, the requirements for data rates are also in-

creasing, and the capability of CDMA in terms of data rates has been unable to meet the

requirements. Therefore, orthogonal frequency division multiple access (OFDMA) has dom-

inated the fourth-generation (4G) wireless communication networks and continues to be used

in the 5G. Strictly speaking, except for CDMA, the above-mentioned MA techniques can be
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generally classified as orthogonal multiple access (OMA) as they allocate resources to users

in an orthogonal manner. For CDMA, if it applies orthogonal spreading codes it is a member

of OMA, while if its spreading codes are designed in a non-orthogonal pattern, it can upgrade

to the code-domain NOMA.

The extraordinary proliferation of new Internet-enabled smart devices, applications, and

services is hastening the development of wireless networks, MA technology needs also to

be reconsidered and developed. Non-orthogonal multiple access (NOMA) was proposed for

3GPP Long Term Evolution (LTE) [4], [5] and has been regarded as a potential MA technique

for 6G wireless communication networks [6]. Especially, [7] demonstrated that NOMA is

capable to improve the spectral efficiency significantly for the Internet of Things (IoT). Dif-

ferent from OMA, NOMA allows multiple users to transmit and receive signals using the

same resource block (frequency, time and code), but in different power levels, and hence it

can provide better performance on overall throughput, connection density and spectrum ef-

ficiency. In NOMA networks, another indispensable procedure is successively interference

cancellation (SIC) which is used to remove the co-channel interference and guarantee the

required information can be successfully decoded from the superposition code [8]. Because

NOMA introduces an extra degree of freedom in the power domain, it has piqued the interest

of both academia and industry. Another thing worth being pointed out is NOMA has excel-

lent compatibility. Specifically, it has been deemed to be able to combine with existing MA

schemes (i.e., FDMA, TDMA, CDMA and OFDMA) in future 6G.

1.1.3 Resource Allocation for NOMA

In NOMA networks, resource allocation plays a crucial role in enhancing performance,

especially for power allocation or beamforming designing. In a pure NOMA network where

users are sharing the same resource block (spectrum, time and code), the resource allocation

is only related to power. By precisely controlling the transmit power or carefully designing

beamforming vectors, NOMA networks can significantly be improved in many performance
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metrics, for example, ergodic data rate, energy consumption, energy efficiency, etc [9]–[12].

Another aspect that can prove power allocation and beamforming designing are important

is SIC. In NOMA networks, adjusting the power level of any user will not only affect its

own performance but also change the interference to other users, which will further affect

the SIC procedure. Therefore, with different channel conditions, quality-of-service (QoS)

requirements and power constraints, implementing NOMA with optimal resources allocation

scheme in multi-user networks is a important and challenging subject.

1.1.4 Optimization and Machine Learning with 6G

In terms of resource allocation-related problems, optimization is an unavoidable topic.

Convex optimization has been widely used to solve various wireless communication opti-

mization problems over the past few decades, and certainly, it will continuously play a core

role in the 6G era. On the other hand, convex optimization is the foundation of machine

learning (ML), which further demonstrates the significance of convex optimization. With

the advancement of ML technologies, they have become a class of popular tools for optimiz-

ing the performances of wireless communication systems. Form 5G, due to ML’s powerful

analysis ability, learning ability, optimizing ability and intelligent recognition ability, ML-

enabled wireless communications have been recognized as one of the most promising direc-

tions [13]–[15]. Specifically, ML will be certainly used to solve the following problem in-

cluding, fault/anomaly management, channel estimation, resource allocation, beam selection,

caching/computing, security and so on [16]. Typically, ML technologies are classified into

supervised learning, unsupervised learning, and reinforcement learning, however, some novel

learning-based techniques and concepts, for example, federated learning and meta learning,

have also acquired pursuit in academia and industry. Each of the above is suitable for solving

different problems with different scenarios, and more detailed descriptions will be provided

in the next section.
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1.2 Motivations of Using NOMA

The advantages of NOMA have kept it highly enthusiastic in both academia and industry,

and make it a promising candidate for future 6G networks, which are summarised as following

five aspects:

• High spectral efficiency and capacity: Compare to conventional OMA schemes, NOMA

can provide higher spectral efficiency and achieve better system throughput, which ben-

efits from the fact that NOMA allows multiple users to occupy the same resource block

(e.g., frequency/time/code) by exploiting power domain multiplexing [17]. Further-

more, it has been mathematically proved that, when users’ channels are different, NOMA

exhibits better capacity performance than OMA if optimal resource allocation is em-

ployed.

• Fairness to users: The fairness of NOMA is the weak user (who has the bad channel) is

allocated more power, which is different from the conventional popular power allocation

strategy, such as water filling. By performing so, the tradeoff between users’ fairness

and the system’s throughput can be guaranteed [18], [19].

• Ultra-dense connectivity: The future 6G networks are envisioned to be upgraded to

ultra-dense networks where the connectivity density is ten times larger than 5G (e.g.,

IoE). Fortunately, NOMA has the capability to bear this non-trivial task by fully ex-

ploiting the non-orthogonal communication resources. Unlike in OMA networks, the

number of users corresponds to the number of resource blocks, NOMA does not limit

the number of supportable users strictly, which implies that NOMA has the ability to

increase the number of simultaneous connections by a large number [20].

• Excellent compatibility: Due to NOMA imports a new degree of freedom (i.e., power

domain), NOMA can be combined with any other existing MA technologies (e.g., TDM-

A, FDMA, CDMA and OFDMA), which is named hybrid NOMA. With the mature as-

sistance of superposition coding (SC) and SIC technologies, NOMA has been regarded
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as one of the promising techniques to have excellent compatibility with the existing MA

techniques.

• Low transmission latency and signalling cost: NOMA can achieve lower latency trans-

mission because it does not need scheduling [21]. In contrast, OMA transmission relies

on access-grant requests, where the scheduling requests are initialized by users. When

BS receives a user request, it schedules the user’s uplink transmission and responds with

a clear-to-send signal in the downlink channel.

1.3 Dissertation Organization and Contributions

The remainder of this thesis is organized as follows.

• Chapter 2: In this chapter, the NOMA-related concept, technologies, and models are

present, where some simple mathematical demonstrations are included. Furthermore,

some fundamental concepts with their own basic idea are described including RIS, un-

manned aerial vehicles (UAV), wireless power transfer (WPT) and backscatter commu-

nication (BackCom). In addition, convex optimization and machine learning techniques

are preliminarily discussed in this chapter.

• Chapter 3: This chapter investigates a simple design of RIS based UAV assisted multiple-

input single-output NOMA downlink network. The aim of this chapter is to maximize

the rate of the strong user while guaranteeing the target rate of the weak user given by

the optimized UAV horizontal position. The location of the UAV is pre-optimized first,

and then an iterative algorithm is proposed to optimize the transmit beamforming and

phase shift of RIS alternatively. For the beamforming optimization, the closed-form

expressions of the optimal beamforming vectors are derived. Then, given the obtained

beamforming, we propose two methods to obtain the optimal phase shifting of IRS.

One is the semidefinite relaxation (SDR) based iteration algorithm which provides a

high data rate and the other one is based on the successive convex approximation (SCA)
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technique which has low complexity. Finally, simulation results are provided to show

that the performance of the two proposed algorithms are significantly better than using

random phase shifts and IRS based UAV assisted OFDMA scheme.

• Chapter 4: This chapter investigates the application of deep deterministic policy gra-

dient (DDPG) to the RIS-based UAV-assisted NOMA downlink networks. The deploy-

ment of UAV equipped with RIS is an efficient and wise scheme, as the UAV increases

the flexibility of the RIS significantly, especially for the case of users who have no line-

of-sight (LoS) path to the base station (BS). Therefore, the aim of this study is to maxi-

mize the sum rate by jointly optimizing the power allocation of the BS, the phase shifting

of the RIS, and the horizontal position of the UAV. The formulated problem is non-

convex, and the DDPG algorithm is utilized to solve it. The computer simulation results

are provided to show the superior performance of the proposed DDPG-based algorithm.

• Chapter 5: This chapter proposes a scheme for the envisioned sixth-generation (6G)

ultra-massive Machine Type Communications(umMTC). In particular, WPT-assisted

communication is deployed in non-orthogonal multiple access (NOMA) downlink net-

works to realize spectrum and energy cooperation. This chapter focuses on joint robust

beamforming design to maximize the energy efficiency of WPT-assisted D2D commu-

nications in multiple-input single-output (MISO)-NOMA downlink networks. To effi-

ciently address the formulated non-concave energy efficiency maximization problem,

a pure fractional programming (PFP) algorithm is proposed, where the time switch-

ing coefficient of the WPT device and the beamforming vectors of the base station are

alternatively optimized by applying the Dinkelbach method and quadratic transform re-

spectively. To prove the optimality of the proposed algorithm, the partial exhaustive

search algorithm is proposed as a benchmark. A deep reinforcement learning (DRL)-

based method is also applied to directly solve the non-concave problem. The proposed

PFP algorithm and the DDPG-based algorithm are compared in the presence of differ-

ent channel estimation errors. Simulation results show that the proposed PFP algorithm

outperforms the DDPG-based algorithm if perfect channel state information (CSI) can
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be obtained or just have minor errors, while the DDPG-based algorithm is more ro-

bust when the channel estimation accuracy is unsatisfactory. On the other hand, one

can conclude that the NOMA scheme can provide a higher gain than OMA on the en-

ergy efficiency of the WPT-assisted D2D communication in legacy multi-user downlink

networks.

• Chapter 6: This chapter proposes a BackCom-assisted non-orthogonal multiple ac-

cess (BAC-NOMA) transmission scheme to realize the energy and spectrum coopera-

tion with cellular downlink users, where two backscatter transmitters and a receiver are

admitted to the legacy downlink user’s spectrum and time slot. Due to the transmis-

sion between backscatter devices (BDs) can be regarded as an uplink NOMA scenario,

hybrid successive interference cancellation (SIC) can be applied to further improve the

performance. The data rate of the high quality of service (QoS) requirement BackCom

devices is maximized by jointly optimizing backscatter coefficients and beamforming.

Due to the use of hybrid SIC, two sub-problems are formulated and solved. For the first

sub-problem, the closed-form reflection coefficients are obtained, and then the beam-

forming vector is optimized by using SDR, where the alternating operation is avoided.

For the second sub-problem, the two reflection coefficients and the beamforming vector

are alternatively optimized by the proposed SDR and SCA based algorithm, where the

transcendental function based constraint is approximated by applying first-order Taylor

expansion. Computer simulations demonstrate the superiority of the proposed hybrid

SIC deployed BAC-NOMA scheme.

• Chapter 7: This chapter concludes this thesis and provides some promising direction

for future 6G networks.



Chapter 2

Literature Review

In this chapter, the concepts and technical knowledge used in this thesis are demonstrated.

Some fundamental knowledge of NOMA is introduced first, including basic principles of

NOMA, key technologies of NOMA and downlink and uplink NOMA models, which will

run through the entire thesis. Then, the concept of RIS, UAV-assisted wireless communica-

tion, WPT and BackCom are introduced, which are respectively used in chapters 3-6. In the

last subsection, some basic knowledge about convex optimization and machine learning are

discussed, which will provide technical guidelines for the works in Chapters 3-6.

2.1 Non-orthogonal Multiple Access (NOMA)

NOMA is a series of technologies including low density spreading multiple access (LDS),

sparse code multiple access (SCMA), pattern division multiple access (PDMA), interleave

division multiple access (IDMA) and power-domain NOMA (PD-NOMA) [21]. In both LDS

and SCMA [22]–[24], a single user’s information is spread over multiple subcarriers, but

the difference is that the user-specific spreading sequences are used in LDS networks while

SCMA networks apply multidimensional codebook to efficiently spread multiple users over

subcarriers. PDMA [25] can realize the multiplexing in various ways including spatial, code

or power domain. Particularly, PDMA transmitter designs pattern matrix to determine users’

spreading and meanwhile minimizes the overlapping of users. At PDMA receiver, message

27



28 2.1. NON-ORTHOGONAL MULTIPLE ACCESS (NOMA)

User 𝑚

User n

P
o
w

er

Frequency/Time/Code

Figure 2.1. Illustration of Power Multiplexing NOMA [30].

passing algorithm (MPA) is used to detect the spread information if users are multiplexed

on the spatial domain or MPA-SIC is used if users are multiplexed on both the spatial and

power domain. In IDMA [26], different users are distinguished by inter-leavers. PD-NOMA

is the only one this thesis focused on. In short, PD-NOMA users are multiplexed in the

power domain and are distinguished by different power levels, where the transmit signals

are superposed by assigning optimal power to each user. In PD-NOMA, the detection is

performed by applying SIC. For simplifying notations, we use NOMA to denote PD-NOMA

in this thesis.

2.1.1 Basic NOMA Principles

As shown in Fig. 2.1, the key idea of NOMA is allowing multiple users to share the

same resource block (including frequency, time and code), where different power levels are

multiplexed to each user [4], [27], [28]. Therefore, NOMA can provide higher spectrum

efficiency than conventional OMA techniques [29]. Because NOMA introduces a new de-

gree of freedom (i.e., power domain) and has higher spectrum efficiency performance, it is

viewed as a potentially promising add-on MA technique to be integrated with conventional

MA paradigms.

2.1.2 Key Technologies of NOMA

Thanks to the theoretical and practical development of the two key technologies, namely

SC and SIC, NOMA can be implemented in the next-generation networks without regard for
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implementation concerns.

2.1.2.1 Superposition Coding

In fact, SC was first proposed by Cover in 1972 [31], whose idea behind is to optimally

exploit this channel ordering [32]. From 1973 to 1974, SC was theoretically proven that it has

the capability to achieve the capacities of Gaussian broadcast channel capacity by Bergmans

[33] and to achieve the general degraded broadcast channel capacity by Gallager [34]. The

breakthrough on SC made in [32] promotes its application in practice. In particular, the au-

thors in [32] used a software-radio system to design an experimental platform to further inves-

tigate the performance of SC. In NOMA downlink networks, SC is used at the BS to transmit

the combination of superposition coded signals of all downlink NOMA users’ information.

To implement SC, different users’ signals are allocated different power with constraints on

total transmit power and then superposed together. More particularly, unlike the water-filling

power allocation policy in OMA, NOMA systems assign higher power to the users who have

bad channel gains and lower power to the users who have good channel gains. This policy

guarantees fairness among all users.

2.1.2.2 Successive Interference Cancellation

SIC is a technique used by receivers in NOMA networks to remove co-channel interfer-

ence [35]. Due to the use of SC in NOMA networks, efficient interference management is

necessary to enhance the network capacity and SIC is regarded as the efficient scheme for

performing interference cancellation. The main idea of SIC is successively decoding the su-

perposed signals. To implement SIC, all users are first ordered according to their own quality

of channels, where users with good channel quality are defined as strong users while users

with bad channel quality are defined as weak users. The SIC policy is: a NOMA receiver

always decodes the superposition signal from the strongest one while trying the rest weak

signal as interference until its own signal is successfully decoded. For example, assume that
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a NOMA downlink network contains K users, where the 1-st user is the weakest one and the

K-th user is the strongest one. The k-th user needs to first decode all signals stronger than its

own signal (i.e., from 1-st user’s signals to the k − 1-th user’s signals) and then successively

remove them. However, the signals weaker than the current decoding signal are simply treated

as interference. Under SIC policy, after removing all other users’ signals the strongest user

can implement interference-free decoding while the weakest user decodes its own signal by

treating all other users’ signals as interference. It is worth to point out that SIC can achieve

the region boundaries of the Shannon capacity in both the broadcast channel and multiple

access networks. Due to the low hardware design complexity requirement, various versions

of SIC have been applied in many IEEE 802.15.41-enabled practical systems and some com-

mercial systems [36]–[41]. For example, wireless sensor networks, smart home automation,

industrial automation, health monitoring and smart agriculture.

2.1.3 Downlink and Uplink NOMA

For better illustration, this subsection discusses NOMA from the downlink NOMA per-

spective and uplink NOMA perspective, where two simple system models with their corre-

sponding mathematical demonstrations are provided.

2.1.3.1 Downlink NOMA

Consider a two-user downlink NOMA network with one BS, where each node is equipped

with a single antenna as shown in Fig. 2.2. Assume that the channel gain of user 1 is better

than that of user 2 (i.e., user 1 is the strong user and user 2 is the weak user). According to

the NOMA principle, the BS needs to transmit the superposition signal of user 1 and user 2

by applying SC on the same resource block, but with different power levels. Therefore, the

1IEEE 802.15.4 is a standard that defines the physical layer (PHY) and medium access control (MAC) sublayer for low-rate wireless
personal area networks (LR-WPANs). This standard supports a variety of applications that require low power, low data rate, and low-cost
wireless communication.
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Figure 2.2. An illustration of two-user downlink NOMA networks[4].

transmit signal at the BS is given by

x =
√︁
α1Ps1 +

√︁
α2Ps2, (2.1)

where P is the total transmit power at the BS, α1 and α2 (α1 < α2) are the power allocation

coefficient of user 1 and user 2 respectively, and s1 and s2 are the required signal of user 1

and user 2. The received signal at users then can be represented as

y1 = h1(α1

√
Ps1 + α2

√
Ps2) + n1,

y2 = h2(α1

√
Ps1 + α2

√
Ps2) + n2,

(2.2)

where h1 and h2 (|h1|2 > |h2|2) represent the channel gain of user 1 and user 2, and n1 and n2

denotes the additive white Gaussian noise. As demonstrated in Fig.2.2, user 1 is required to

perform SIC to remove the co-channel interference. In particular, user 1 decodes and subtracts

user 2’s signal first, and then decodes its own signal without any interference. Hence, the data

rate that user 1 to decode user 2’s signal (i.e., R2→1) and the achievable data rate of user 1

(i.e.,R1) are denoted as follows:

R2→1 = log(1 +
α2P |h1|2

α1P |h1|2 + σ2
), (2.3)
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Figure 2.3. An illustration of two-user uplink NOMA networks with two decoding orders [30], i.e., decoding
use 1’s signal first or decoding user 2’s signal first.

R1 = log(1 +
α1P |h1|2

σ2
). (2.4)

For user 2, its signal is directly decoded by treating user 1’s signal as interference. The

achievable data rate of user 2 is given by

R2 = log(1 +
α2P |h2|2

α1P |h2|2 + σ2
). (2.5)

To ensure SIC can be successfully implemented, a basic rule must be satisfied, that is the

interference should be removed before decoding the desired signals. Specifically, in the two-

user downlink NOMA network, the data rate of user 1 to decode user 2’s signal is required to

be higher than or equal to the data rate of user 2 to decode its own signal (i.e., R2→1 ≥R2).

From (2.3) and (2.5), we can observe that if and only if |h1|2 ≥ |h2|2, the basic rule can be

guaranteed, which is also the basis determining the order of users.

2.1.3.2 Uplink NOMA

A two-users uplink NOMA network is shown in Fig.2.3, where each node is equipped

with a single antenna. In uplink NOMA networks, the BS is required to send controlling

signals to users for power allocation first, then user 1 and user 2 transmit their signal to the

BS simultaneously at the same frequency with the same code and different power levels. The
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transmit signals of two users are given by

x1 =
√︁

P1s1,

x2 =
√︁

P2s2,

(2.6)

where P1 and P2 are the BS assigned transmit power of user 1 and user 2. At the BS, the

received signal is

y = h1

√︁
P1s1 + h2

√︁
P2s2 + n, (2.7)

where h1 and h2 respectively represent user 1’s and user 2’s uplink channel gain. Different

from downlink NOMA networks, the decoding order is not unique in uplink NOMA networks.

For example, Fig. 2.3 shows that there are generally two decoding orders that the BS can

perform in the two-users uplink NOMA network (i.e. decoding user 1’s signal first or user

2’s signal first). Although the SIC decoding order is not limited in uplink NOMA, users’

achievable rate is still significantly affected by it. In fact, there are two SIC decoding orders

commonly used in uplink NOMA networks [42], namely, Channel states information (CSI)-

based SIC and Quality of service (QoS)-based SIC. On the other hand, [43] provided a new

strategy by combining CSI-based SIC and QoS-based SIC, named hybrid SIC which can

further improve the outage probability and data rate performance.

1) CSI-based SIC: With the CSI-based SIC decoding strategy, the SIC decoding order is

decided according to users’ uplink channel gains. At the BS, the signal sent by the user

who has strong channel gain is decoded first, and then the rest signals are decoded in the

same manner. By doing so, the strongest user suffers the strongest interference while

the weakest user can enjoy interference-free transmission. Therefore, the CSI-based

SIC strategy guarantees the fairness of all NOMA users. Take the two-users model as

an example. Assume that the two uses have the same transmit power (i.e., P1 = P2),

then the uplink achievable rate of user 1 is given by

R1 = log(1 +
P1|h1|2

P2|h2|2 + σ2
). (2.8)
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User 2’s achievable rate for uplink is given by

R2 = log(1 +
P2|h2|2

σ2
). (2.9)

2) QoS-based SIC: The main idea of QoS-based SIC is the SIC decoding order is decided

according to users’ QoS. For example, recalling the system model in Fig. 2.3, if user 2

is a low data rate needed device, the SIC decoding then can be adjusted to decode user

2’s signal first and then user 1’s signal to improve the data rate of user 1. Because user

1, in this case, can enjoy the interference-free transmission. It is extremely important

that user 2’s minimum target rate must be guaranteed. With this decoding order, the data

rate of user 2 is given by

R2 = log(1 +
P2|h2|2

P1|h1|2 + σ2
) ≥ Rmin, (2.10)

where Rmin denotes user 2’s QoS requirement. If the above constraint can be satisfied,

user 1’s achievable rate can be denoted as

R1 = log(1 +
P1|h1|2

σ2
). (2.11)

In [43], two benefits that QoS-based SIC can provide are discussed. One is QoS-based

SIC strategy can support the deployment of massive connectivity. Another one is, unlike

CSI-based SIC, QoS-based SIC can still offer an excellent performance gain over OMA,

even if all users have the same channel condition.

3) Hybrid SIC: The hybrid SIC strategy is a straightforward combination of the above two

strategies. By applying hybrid SIC, the outage probability error existing in the CSI- and

QoS-based SIC strategy is overcome, and data rate performance is improved [43].
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2.2 Reconfigurable Intelligent Surface

Compare to the existing techniques in 5G, for example, millimeter-wave (mmWave) com-

munications, massive multi-input multi-output (MIMO) and ultra-dense heterogeneous net-

works, all stand on the transmitter and receiver designing perspective, the reconfigurable

intelligent surface (RIS) (also termed intelligent reflecting surface, IRS) offers a novel idea

to configure the wireless propagation environment [44]–[48]. Without loss of generality, RIS

will be used in the reminder of this thesis. RIS is a planar surface which consists of a large

number of low-cost passive reflecting elements each of which is able to independently adjust

amplitudes and/or phases of the incident signals [49], [50]. Due to the capability of RIS to

configure propagation environment [51], which brings an additional degree of freedom to

fulfill the higher requirements in the future, it has been regarded as one of the 6G enabling

techniques [49], [52]–[54]. Thanks to the use of low-cost passive components, RIS requires

much less energy consumption than some existing technologies, for example, amplify-and-

forward (AF) relays, it has been considered as a promising effective and green solution in

the future wireless communication system [55]. To describe the RIS concept more clearly,

we provide a simple model in this section. Consider a RIS-assisted communication where a

multi-antenna BS and a downlink user are deployed. Due to the deployment of RIS, denote

the user desired signal by s, the received signal at the user is given by

y =

{︄
hΘGωs+ n , if direct link is blocked (2.12a)

hΘGωs+ h0ωs+ n , if direct link is existing (2.12b)

where h denotes the channel gain between the RIS and the user, G is the channel gain from

the BS to the RIS, Θ represents the phase shift matrix of the RIS, ω is the beamforming

vector and h0 denotes the direct link channel gain between the BS and the user. As can be

seen, RIS can either create virtual LoS links for users who can not communicate with the BS,

or improve normal users’ performance. In [46], the authors summarized some typical RIS

applications in wireless networks including users at dead zone, physical layer security, users
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at cell edge, massive D2D communications and wireless information and power transfer in

IoT networks, which have provided various insights on RIS. Liu, Liu, Mu, et al. listed the

advantages of RIS including:

• Easy to deploy: Due to the passive and low-cost features of RIS, it can be deployed on,

including but not limited to, building exteriors, billboards, UAVs and even pedestrians’

clothes.

• Spectral efficiency enhancement: By wisely deploying and designing, RISs are capa-

ble to create virtual LoS links, control interference and compensate for power loss in

long-distance communications and hence significantly improve the received signal-to-

interference-plus-noise ratio (SINR).

• Environment friendly: RISs are energy-efficient and environment friendly because they

passively reflect incoming signals by controlling the phase shift rather than amplifying

power like conventional relays.

• Compatibility: The compatibility of RIS is embodied in it can support full-duplex (FD)

and fullband transmission.

Inspired by the advantages and features of RIS, in chapters 3 and 4, RIS and UAV coopera-

tive transmission schemes are proposed, and their corresponding optimization problems with

solutions are also provided.

2.3 Unmanned Aerial Vehicle assisted Wireless Communication

UAV have recently received wide attention in both academic and industry [57]. Because

of the property of high mobility and flexibility on deployment, UAVs have been expected to

play an important role and be an indispensable complementary technique in future 6G wire-

less networks. For example, in some extremely crowded areas (e.g., sports events), UAVs can
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be rapidly deployed as aerial communication platforms to provide stable wireless communi-

cation services to ground terminals. In addition, UAV-assisted wireless communications are

efficient solutions to recover communications in some urgent scenarios, such as natural haz-

ards. Furthermore, by dynamically adjusting the states or/and parameters of UAVs’ to make

UAVs ingratiate the current environment, performance enhancement can be achieved easily

[58]. For instance, by simply adjusting UAVs’ altitude and positions, the LoS communica-

tion links can be established in most scenarios. A swarm of UAVs can build a flying ad-hoc

network (FANET) with coordination and collaboration to serve terrestrial devices such as

sensing, communication, and computing services thanks to LoS connectivity. Therefore, for

extending terrestrial networks, the integration of UAVs with wireless networks is regarded as

a candidate solution. As above discussed, most UAV-related works apply UAVs as aerial BS,

access points (AP) or relays, but chapters 3 and 4 offer a novel idea that applying an UAV as

a carrier for RIS.

2.4 Wireless Power Transfer

Unlike 4G and 5G are smartphone-centric, more emerging applications and devices, such

as wearable devices enabled smart body and XR, will replace many functions of smartphones

in the future 6G. Therefore, 6G is regarded to offer not only wireless communications but also

control, localization and sensing (3CLS). The above-mentioned trends make 6G predictably

able to provide basic power transfer for devices [1]. On the other hand, improving the en-

ergy efficiency of 6G wireless networks is one of the most important objectives, especially

for energy-constrained or battery-powered devices. Energy harvesting (EH) is an efficient

method of extending the life of a wireless network that has recently attracted a lot of attention

because it is rapidly contributing to green communication [59]–[61]. Terms to ways of EH,

some classic techniques are about water, solar, wind, vibration and thermoelectric effects,

which are limited by the locations, environments, and time. However, WPT is a more flexible

technique to power energy-constrained or battery-powered devices. Another fact that makes
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Figure 2.4. Illustration of the existing SWIPT receivers[62].

WPT a promising enabling technology for 6G is most wireless communication devices are

Exposed to RF Signals. In most cases of wireless communication, WPT and simultaneous

wireless information and power transfer (SWIPT) refer to the same technique. Generally,

WPT/SWIPT receivers are classified into four structures, namely, separated receiver, time

switching receiver, power splitting receiver and antenna switching receiver [62], as shown

in Fig. 2.4. For separated receivers (Fig. 2.4 (a)), the EH circuit and information decoding

(ID) circuit are built with two sets of separated antennas as two separated receivers. For the

time switching type (Fig. 2.4 (b)), the receivers alternate between harvesting energy mode

and transmitting signals or decoding information mode on a regular basis [63]–[65]. The key

idea of power splitting receivers (Fig. 2.4 (c)) is to split the received signal into two power

level streams and allocate them to the EH receiver and the ID receiver, respectively [63],

[66], [67]. For antenna switching receivers (Fig. 2.4 (d)), multiple antennas are divided into

two groups to respectively perform EH and ID, where the low-complexity antenna switching

between decoding/rectifying is users to enable WPT [67]. In chapter 5, the time switching

WPT is applied to D2D communication in the downlink MISO-NOMA network.
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2.5 Backscattering Communication

Another mature energy-efficient solution to realize the basic power transfer for devices in

6G is BackCom [68]–[72]. The concept of backscatter communication was first proposed

in [73] and its main idea is that BackCom devices (BD) are allowed to utilize the signals

transmitted by non-energy-constrained devices (e.g., BS and AP), also termed ambient radio

frequency (RF) signals, to communicate with other BackCom readers. Specifically, a BD’s

circuit is excited by the ambient RF signals, and then the BD modulates its transmit signal

on the ambient RF signals and passively reflects towards the BackCom readers. For example,

consider a simple model where a single antenna BS and a single antenna BD are deployed.

Denote the transmit signal of the BS by s0, then the incident signal at the BD is given by

yB =
√
PhBs0, (2.13)

where P denotes the BS’s transmit power and hB is the channel gain between the BS and the

BD. According to the BackCom principle, the reflected signal by BD is given by

xB =
√︁

ηPhBs0sB, (2.14)

where η ∈ [0, 1] [74] represents the BackCom reflection coefficient and sB denotes the Back-

Com reader required signal. Note that the destination of the reflected signal can be the BS

or other devices. Due to the advantage of high energy efficiency, BackCom is regarded as a

promising technique for future 6G networks to realize energy cooperation [75], especially for

the massive connectivity with energy-constrained devices. On the other hand, the combina-

tion of BackCom and NOMA is a wonderful solution to simultaneously implement spectrum

and energy cooperation [69], and chapter 6 provides a BAC-NOMA scheme for 6G ultra-

massive machine type communications (umMTC) scenarios, where hybrid SIC is used to

further improve the performance.
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2.6 Convex Optimization

2.6.1 Convex Optimization Problems

Generally, an optimization problem can be represented as the following standard form

[76]:

min f0(x), (2.15a)

s.t. fi(x) ≤ 0, i = 1, · · · ,m (2.15b)

hi(x) = 0, i = 1, · · · , p (2.15c)

where x ∈ Rn is the optimization variable, f0(x) : Rn → R is called objective function or

cost function, fi(x) : Rn → R are called inequality constrain functions and hi(x) : Rn → R

are equality constraint functions. m and p denotes the number of inequality and equality con-

straint. The problem (2.15) becomes a standard convex optimization problem if the following

conditions are satisfied

• the objective function is convex,

• the inequality functions are convex,

• the equality constraint functions are affine. [76].

In addition, it is necessary to point out that the local optimal solution is also the global optimal

if the optimization problem is convex. The proof can be found in [76]. Afterwards, several

typical standard forms that can be applied to solve more complicated problems are described,

for instance:

• Linear optimization problems (LP): when the objective and constraint functions are all
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affine.

min
{x}

cTx+ d (2.16a)

s.t. Gx ⪯ h, (2.16b)

Ax = d, (2.16c)

where G ∈ Rm×n, A ∈ Rp×n and d is a real-valued constant that can be ignored as it

does not affect the optimal (or feasible) set.

• Quadratic program (QP): if the objective function is quadratic (convex) and the con-

straint functions are affine then the LP is upgraded to the following problem:

min
{x}

1

2
xTPx+ qTx+ r (2.17a)

s.t. Gx ⪯ h, (2.17b)

Ax = b, (2.17c)

whereP ∈ Sn
+. The QP becomes a quadratically constrained quadratic program (QCQP)

when the inequality constraint functions are in quadratic form, which is very important

for optimizing wireless communication networks, especially for beamforming optimiza-

tion problems. The standard form of QCQP is given by

min
{x}

1

2
xTP0x+ qT0 x+ r0 (2.18a)

s.t.
1

2
xTPix+ qTi x+ ri ≤ 0, i = 1, · · · ,m (2.18b)

Ax = b, (2.18c)

where Pi ∈ Sn
+, i = 1, · · · ,m.
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• Second-order cone programming (SOCP): when the problem has the form of

min fTx, (2.19a)

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, · · · ,m (2.19b)

Fx = g (2.19c)

where Ai ∈ Rni×n and F ∈ Rp×n and (2.19b) is called second-order cone constraint.

Note that SOCP problems will be reduced to QCQP problems if ci = 0, i = 1, · · · ,m

and will be reduced to LP problems if Ai = 0, i = 1, · · · ,m. Therefore, SOCP is a

more general form than QCQP and LP, or in other words, QCQP and LP are two special

cases of SOCP.

• Geometric programming (GP): GP is a set of non-convex problems in their natural form,

but they can be converted into the convex form by, such as a change of variables and a

transformation of the objective and constraint functions. An optimization problem is

called a geometric program if it is in the following form

min f0(x), (2.20a)

s.t. fi(x) ≤ 1, i = 1, · · · ,m (2.20b)

hi(x) = 1, i = 1, · · · , p (2.20c)

x ≻ 0, (2.20d)

where f0, · · · , fm are polynomials and h0, · · · , hp are monomials.

• Semidefinite programming (SDP): The common form of SDP is with linear objective,

linear equality, inequality constraints, and several linear matrix inequality (LMI) con-

straints which can be expressed as

min cTx, (2.21a)

s.t. F (i) = x1F
(i)
1 + · · ·+ xnF

(i)
n +G(i) ⪯ 0, i = 1, · · · , K (2.21b)
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Gx ⪯ h, (2.21c)

Ax = b. (2.21d)

where G,F1, · · · , Fn ∈ Sk are the cone of positive semidefinite k × k matrix and A ∈

Rp×n. (2.21) can be rewritten to the following standard SDP form:

min cTx, (2.22a)

s.t. diag(Gx− h, F (1)(x) + · · ·+ F (K)(x)) ⪯ 0, (2.22b)

Ax = b. (2.22c)

2.6.2 Duality

It is obvious that problems we met cannot be always convex, so the duality is a very helpful

property to convert a non-convex problem to a form that is solvable with convex optimization

theory [76].

Consider an optimization problem in standard form (2.15) without the assumption of convex-

ity. Its dual problem is

max g(λ, ν), (2.23a)

s.t. λ ⪰ 0. (2.23b)

where g(λ, ν) is the Lagrange dual function of the objective function and λ is called Lagrange

multipliers.

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(︄
f0(x) +

m∑︂
i=1

λifi(x) +

p∑︂
i=1

νihi(x)

)︄
(2.24)

where L(x, λ, ν) is called Lagrangian and D =
⋂︁m

i=0 domfi ∩
⋂︁p

i=0 domhi is nonempty.

It is easy to see that the dual function g(λ, ν) is the pointwise infimum of a family of affine

functions of (λ, ν) (i.e. the minimum value of the Lagrangian over x). Thus, (2.23) is concave
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even if the problem (2.15) is not convex. Define p∗ as the optimal value of the problem (2.15).

We know that the dual function is the lower bound on p∗, and hence, for λ∗ ⪰ 0 and ν8 we

have g(λ∗, ν∗) ≤ p∗. Define the optimal value of the dual problem as d∗. We can obtain

d∗ = p∗ only if the strong duality can be held (i.e., if the original problem is convex).

Karush-Kuhn-Tucker (KKT) condition is quite useful to derive the closed-form solution

of a convex optimization problem which is revealed in chapter 3, and to perform some math-

ematical analysis, for example, the rank problem in chapter 6. For a convex optimization

problem (i.e. fi are convex and hi are affine), its optimal x∗, λ∗ and ν∗ are any points that

satisfy the KKT conditions:

fi(x) ≤ 0, i = 1, · · · ,m (primalfeasibility)

hi(x) = 0, i = 1, · · · , p (primalfeasibility)

λi ≥ 0, i = 1, · · · ,m (dualfeasibility)

λifi(x) = 0, i = 1, · · · ,m (complementaryslackness)

∇f0(x) +
m∑︂
i=1

λifi(x) +

p∑︂
i=1

νi∇hi(x) = 0, (stationarity)

(2.25)

2.6.3 Convexity

To judge the convexity of a function, the most straightforward way is using the second-

order derivative for scalar variable functions or using Hessian matrix for vector or matrix

variable functions. Particularly, a scalar variable function is convex (or concave) if its second-

order derivative is equal to or greater than 0 (or is equal to or less than 0), and a vector or

matrix variable function is convex (or concave) if its Hessian matrix is positive semi-definite

(or negative semi-definite). However, many functions in the real world are very complex

and difficult to find their second-order derivative or Hessian matrices. For convenience, [76]

summarised some basic rules that can help to judge the convexity of composite functions.
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For scalar composition, we define two functions h : Rk → R and g : Rn → Rk. Their

composition version is defined by:

f(x) = h(g(x)),domf = {x ∈ domg|g(x) ∈ domh}. (2.26)

With the assumption of h and g are both twice differentiable and n = 1, the following rules

are obeyed:

• f is convex if h is convex and nondecreasing, and g is convex,

• f is convex if h is convex and nonincreasing, and g is concave,

• f is concave if h is concave and nondecreasing, and g is concave,

• f is concave if h is concave and nonincreasing, and g is convex.

Without the assumption of h and g are both twice differentiable and n > 1, the following

rules are obeyed:

• f is convex if h is convex, h̃ is nondecreasing, and g is convex,

• f is convex if h is convex, h̃ is nonincreasing, and g is concave,

• f is concave if h is concave, h̃ is nondecreasing, and g is concave,

• f is concave if h is concave, h̃ is nonincreasing, and g is convex.

Here h̃ denotes the extended-value extension of the function h, which assigns the value ∞

(−∞) to points not in dom h for h convex (concave).

For vector composition, we define two functions h : Rk → R and gi : Rn → R. Their

composition version is defined by:

f(x) = h(g(x)) = h(g1(x), · · · , gk(x). (2.27)
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With the assumption of h and g are both twice differentiable and n = 1, the following rules

are obeyed:

• f is convex if h is convex, h is nondecreasing in each argument, and gi is convex,

• f is convex if h is convex, h is nonincreasing in each argument, and gi is concave,

• f is concave if h is concave, h is nondecreasing in each argument, and gi is concave,

• f is concave if h is concave, h is nonincreasing in each argument, and gi is convex.

Without the assumption of h and g are both twice differentiable and n > 1, the following

rules are obeyed:

• f is convex if h is convex, h̃ is nondecreasing in each argument, and gi is convex,

• f is convex if h is convex, h̃ is nonincreasing in each argument, and gi is concave,

• f is concave if h is concave, h̃ is nondecreasing in each argument, and gi is concave,

• f is concave if h is concave, h̃ is nonincreasing in each argument, and gi is convex.

Here h̃ is still the extended-value extension of h.

2.7 Algorithms

2.7.1 Semi-definite Relaxation

SDR was introduced to the field of signal processing and communications in the early

2000s, and then it sparked widespread interest in and quick development of SDR applications,

for instance, waveform design in radar, phase unwrapping, robust blind beamforming, etc

[77]. In this thesis, we focus on the SDR technique for QCQPs. The key idea of SDR is
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utilizing the equivalent relationship of xTCx = Tr(xTCx) = Tr(CxxT ) and ignoring the

rank-one constraint to convert QCQPs into SDP forms. In particular, for a given QCQP

min
{x}

xTCx (2.28a)

s.t. xTAix ⊵i bi, i = 1, · · · ,m (2.28b)

where x is a n × n matrix, ⊵i can be either =, ≥ or ≤ for each i, C and Ai are symmetric

n × n matrices and bi are real numbers. By introducing a new variable X = xxT with an

added constraint rank(X) = 1, (2.28) can be rewritten as follows:

min{X} Tr(CX) (2.29a)

s.t. Tr(AiX) ⊵i bi, i = 1, · · · ,m (2.29b)

X ⪰ 0, (2.29c)

rank(X) = 1. (2.29d)

Besides the constraint (2.29d), all other constraints and the objective function are convex.

Therefore, by removing the rank-one constraint (2.29) is transformed into an SDP problem.

However, X is not exactly what we need. To retrieve x, the following two cases are needed

to consider:

1) rank = 1: Eigenvalue decomposition is used to retrieve x.

2) rank ̸= 1: Gaussian randomization is used to retrieve x.

2.7.2 Successive Convex Approximation

SCA is used to solve nonconvex problems by iteratively solving the locally tight approx-

imation version of the original optimization problem [78]. The key idea of SCA is finding

a suitable convex surrogate function to replace the original nonconvex one to make it ”more

tractable”. For convex surrogate function selection, [79] summarized five types including the
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first-order Taylor expansion, the second-order Taylor expansion, pointwise maximum, com-

position by a convex function and surrogates based on special inequalities. In this thesis, the

first-order Taylor expansion is used in chapters 3 and 6 and hence we only introduce the SCA

algorithm with the first-order Taylor expansion surrogate function. Considering the following

optimization problem (no need to be convex):

min
x

f0(x), (2.30a)

s.t. fi(x) ⊵i 0, i = 1, · · · ,m. (2.30b)

At x0, the first-order Taylor expansion version of the original problem at t-th iteration can be

represented as

min
x

f0(x
(t)
0 ) +∇f0(x(t)

0 )H(x− x
(t)
0 ), (2.31a)

s.t. fi(x
(t)
0 ) +∇f0(x(t)

0 )H(x− x
(t)
0 ) ⊵i 0, i = 1, · · · ,m. (2.31b)

The problem (2.31) is a convex problem and can be solved by using convex optimization

tools. The update criteria is represented as x(t+1)
0 = x(t). It is worth to point out that if the

original problem is convex the solution obtained via SCA is optimal, on the contrary, only

the suboptimal solution can be obtained for nonconvex problems.

2.7.3 Fractional Programming

Fractional programming plays a key role in communication optimization problems be-

cause the ratio forms are widely existing in this field, for example, SINR and energy effi-

ciency. A classical fractional programming is Dinkelbach’s method [80] and compare to

Charnes-Cooper transform [81] it does not introduce new auxiliary variables to the original

problem. Dinkelbach’s method is suitable for single-ratio concave-convex problems and its

description is given as follows:
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2.7.3.1 Dinkelbach’s Method

Consider an optimization with a single ratio objective function as follows:

max
{x}

A(x)

B(x)
(2.32a)

s.t. x ∈ χ, (2.32b)

where χ ⊆ Rn is a nonempty constraint set X, A(x) : Rn → R+ is a nonnegative function

and A(x) : Rn → R++ is a positive function. The above optimization problem is not

necessarily convex, but its numerator and denominator are required to be concave and convex,

respectively. By applying Dinkelbach’s method, it can be converted to the following concave

form:

max
{x}

A(x)− qB(x) (2.33a)

s.t. x ∈ χ, (2.33b)

where q is an introduced auxiliary variable and is updated outside the optimization problem

by

q[t] =
A(x[t])

B(x[t])
, (2.34)

where t represents the number of iterations. The proof of the convergence and the optimality

of Dinkelbach’s method can be found in [80].

2.7.3.2 Quadratic Transform

For the multiple-ratio case, for example,

max
{x}

M∑︂
m=1

Am(x)

Bm(x)
(2.35a)

s.t. x ∈ χ, (2.35b)
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Dinkelbach’s method is no longer suitable, except in special cases such as the max-min prob-

lems. In order to address such problems, [82] proposes a new technique inspired by Dinkel-

bach’s method, namely, quadratic transform. By using quadratic transform, the multiple-

ration fractional programming is converted to

max
{x}

M∑︂
m=1

(2ym
√︁

Am(x)− y2mBm(x)) (2.36a)

s.t. x ∈ χ, (2.36b)

where ym is an introduced auxiliary variable which is updated by

ym[t] =

√︁
Am(x[t])

Bm(x[t])
. (2.37)

Furthermore, quadratic transform can be used in more cases, which can be found in corol-

laries of [82]. More importantly, can also be used to solve multiple-ratio problems with

multidimensional and complex variables. Given the following problem

max
{x}

M∑︂
m=1

aH
m(x)B

−1
m (x)am(x) (2.38a)

s.t. x ∈ χ, (2.38b)

where am(x) : Cd1→d2 , Bm(x) : Cd1 → Sd2×d2
++ . By applying quadratic transform, the

problem is converted to

max
{x}

M∑︂
m=1

(2ℜ{yHmam(x)} − yHmBm(x)ym) (2.39a)

s.t. x ∈ χ, (2.39b)

where ym in this case is updated by

ym = Bm(x)
−1am(x) (2.40)
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The proof of the convergence and the optimality of quadratic transform can be found in [82].

In chapter 5, Dinkelbach’s method and quadratic transform are used to efficiently design the

beamforming of the BS and time switching coefficient of WPT-assisted D2D communica-

tions.

2.8 Machine Learning

ML models are computer programs that can learn system properties which are hard to

be described by traditional mathematical models. After training on the given training data

set, the model can be efficiently applied to make decisions, output actions and provide so-

lutions based on unknown data. Typically, supervised learning, unsupervised learning and

reinforcement learning are regarded as three major categories of ML.

2.8.1 Supervised Learning

The most common form of machine learning is supervised learning. It is a class of label-

needed learning algorithms, where both the input data and the desired output to be predicted

are awarded. Supervised learning, mostly, required vast amounts of data to improve the pre-

diction accuracy, and was used for classification and regression.

2.8.2 Unsupervised Learning

Unsupervised learning algorithms, in contrast, are trained by unlabeled data sets to create

a compact picture of their environment and generate innovative content from them. Typically,

unsupervised learning is good at clustering and aggregation problems but also has great ca-

pability for regression problems. Representative algorithms for unsupervised learning are

K-means, self-organizing map, and auto-encoders.

To reinforcement learning, since it has been applied in this thesis, we will cover reinforce-
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ment learning (RL) in more detail in the following subsection.

2.8.3 Reinforcement Learning

Different from supervised learning, RL does not need to present the labelled input/output

pairs, or explicitly correct the sub-optimal behaviours. Instead, the key ideal of RL is to find a

balance between exploration (of uncharted territory) and exploitation (of current knowledge)

[83]. In particular, the realization of RL is based on a feedback mechanism, where an agent

takes actions according to current observation (environment) and then obtains a correspond-

ing reward. Therefore, the aim of RL is to find the optimal actions that can maximize the

reward. RL algorithms can be classified into value-based algorithms (e.g., Q-learning and

’state-action-reward-state-action’ (SARSA) and policy-based algorithms (e.g., Policy Gradi-

ent (PG), Proximal Policy Optimization (PPO) and Actor-Critic (A2C)).

2.8.3.1 Value-based Reinforcement Learning

Value-based reinforcement learning algorithms learn a value function that estimates the

expected cumulative reward from each state or state-action pair. The agent makes decisions

based on these value estimates. Some classic value-based algorithms are introduced below:

• Q-Learning: Q-learning is a typical value-based off-policy algorithm, it adopts the

greedy approach to learn. In Q-learning, a Q-table is built in which the states, actions and

reward (i.e., Q value) are included. When all Q values are successfully learned, the agent

can efficiently select the optimal action by given states to obtain the maximum reward.

Note that Q-learning is only suitable for problems with low-dimensional state space.

To address those high-dimensional state spaces problems, deep Q Network (DQN) is a

better choice.

• DQN: DQN is an extension of Q-Learning that uses deep neural networks as function

approximators to handle high-dimensional state spaces. DQN introduces techniques
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like experience replay and target networks to stabilize training and improve learning

efficiency.

• State-action-reward-state-action (SARSA): SARSA is a value-based on-policy learn-

ing algorithm because it chooses an action following the same current policy and up-

dates its Q-values. Note that both Q-learning and SARSA select actions from a Q table,

and hence they are only suitable for problems with discrete and small actions and state

spaces.2.8.3.2 Policy-based Reinforcement Learning

Policy-based reinforcement learning algorithms focus on directly learning a policy, which

is a mapping from states to actions, without explicitly learning a value function. The objective

is to find the optimal policy that maximizes the expected cumulative reward over time. Policy-

based methods can handle both discrete and continuous action spaces, making them suitable

for a wide range of problems.

• Policy gradient (PG): PG takes actions by inputting the current state to a random net-

work (policy), and the policy (parameters of the network) is learned (updated) by per-

forming gradient descent for the long-term reward function and backpropagation. It can

be noted that the action that PG outputs can be continuous. However, PG usually can

only achieve the local optimal with a slow convergence rate.

• Proximal Policy Optimization (PPO): PPO is another popular policy optimization al-

gorithm that balances exploration and exploitation by using a surrogate objective func-

tion and clipped probability ratios. It’s simpler to implement and more sample-efficient

than other policy gradient methods.

2.8.3.3 Actor-Critic:

Another very important model is actor-critic learning. Different from the aforementioned

RL algorithms, the actor-critic learns both the policy and the value function, where the actor

is to decide actions (learns policies that map from states to actions) and the critic is to judge
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the actions (learns the value function). To find the optimal policy, the actor is updated by

performing gradient ascend for the Q-value function while the critic is trained by minimizing

the temporal difference (TD) error. Although actor-critic is a powerful model, it still has a

non-negligible drawback of slow convergence. Here are three classic and popular actor-critic-

based algorithms.

• Advantage Actor-Critic (A2C): A2C is a synchronous, on-policy actor-critic reinforce-

ment learning algorithm. It combines elements of both value-based and policy-based

methods. A2C maintains an actor that learns the policy (mapping from states to actions)

and a critic that learns the value function (evaluating the actor’s actions). The algorithm

uses the advantage function, which estimates how much better an action is compared to

the average action in a given state, to update the policy. A2C is known for its stability

and efficiency during training.

• Asynchronous Advantage Actor-Critic (A3C): A3C is an extension of A2C that in-

troduces asynchrony to the learning process. It utilizes multiple parallel agents, each

with their own copy of the actor and critic networks, interacting with their own envi-

ronment. The agents asynchronously update the global network parameters using their

local gradients, which reduces the correlation between agents’ experiences and leads to

more diverse exploration. A3C is known for its faster training and improved stability

compared to A2C.

• Deep Deterministic Policy Gradient (DDPG): DDPG is an off-policy, model-free

actor-critic algorithm designed for continuous action spaces. It extends the Deep Q-

Network (DQN) algorithm to handle continuous actions by using an actor-critic archi-

tecture. Besides the actor network and the critic network, however, DDPG includes the

target actor network and the target critic network. The actor learns the policy (mapping

from states to actions), and the critic learns the value function (evaluating the actor’s

actions). The aim of using target networks is to further stabilize training and improve

learning efficiency. DDPG is particularly suitable for problems with high-dimensional
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state and action spaces [84], and hence is widely applied for wireless communications-

related research. Chapter 4 and 5, describes the DDPG technique and investigates the

application of DDPG to NOMA networks.



Chapter 3

Joint Beamforming and Phase Shift

Design in Downlink UAV Networks with

RIS-Assisted NOMA

3.1 Introduction

With the increasing number of new applications in next-generation wireless communi-

cation, such as vehicle networks, remote medical services, IoT and so on, 5G itself is still

in evolution to provide higher capacity, flexibility, lower energy consumption and latency to

fulfill the specific requirements of these emerging applications [1], [85]. Due to the aforemen-

tioned potential advantages of UAV-assisted communications and RIS technology, industrial

and academic have both offered a huge amount of contributions in this area [86], [87].

3.1.1 Related works

Among the numerous newly proposed techniques, RIS is considered as one promising

solution to overcome the power consumption challenges in massive MIMO and millimeter-

wave communications (mmWave) [88]. In [89], the related challenges and future research

56



3.1. INTRODUCTION 57

directions of using RIS in NOMA have also been investigated, for example, developing low-

complexity algorithms for optimizing the RIS coefficients and Making it easier for the entire

network to achieve the best reflection coefficients. In 2015, the authors of [90] proposed the

UAV-assisted wireless network is a quite promising scheme, especially for the area without

infrastructures such as mountainous terrain or someplace where infrastructures are destroyed

by natural disasters or man-made. [91] provided overviews of the challenges and opportuni-

ties of UAV-assisted wireless networks, and emphasized two key UAV-oriented technologies

that can improve the performance of the mobile network. In addition, [91] also reveals that

UAV-assisted wireless communications have features of fast deployment, flexible configura-

tion and better communication channel LoS link, compared with general wireless communi-

cation such as terrestrial communications or high-altitude platforms-based communication.

The authors in [92] investigated the interplay between the UAV-assisted mmWave, indicating

that most deficiencies of terrestrial mmWave communication system can be compensated by

the proposed scheme thanks to the unique capabilities of UAV such as fast deployment and

flexible configuration. Although implementing RIS and UAV cooperation faces challenges,

for example, the weight, size and energy consumption limitation [88], it still demonstrates

attractive advantages. [86] has reported the fact that with the help of UAV the RIS can be

deployed more flexibly with an elevated position, where the LoS Links between RIS and the

transceiver ends can be easily established especially in the crowded urban scenario. While

from the aspect of UAV, as RIS requires only phase shifting to reflect the signal from BS to

users in a passive manner, it requires tiny transmitter module, which may lower the cost of

communication-enabled UAV and even potentially reduce the communication related power

cost and equipment loads of UAV [87]. the authors in [93] investigated two-users MISO-

NOMA downlink systems and gave the optimal beamforming vectors in closed-form expres-

sion to minimize the transmission power. Based on the work in [93], the authors in [12]

optimized the beamforming vectors and phase shift matrix jointly in a two-users RIS-assisted

MISO-NOMA downlink system for the same objective (i.e. to minimize the transmission

power). Paper [94] and [55] optimized sum rate in a RIS-assisted MISO-NOMA downlink
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system in two different ways respectively, but closed-form expressions for beamforming vec-

tors and phase shift matrix were not provided.

3.1.2 Contributions

In most of the existing works, UAV and RIS are deployed separately. Particularly, con-

sidering the flexibility of UAV, it is ususally used as the moving BS/relay node to improve

the coverage with LoS transmission. However, the power constraints may be the bottleneck

of the performance, as UAVs are usually battery-powered without a constant energy supply.

Moreover, due to the size and computation capability of UAVs, it is also impractical to per-

form high-complexity transmission. On the other hand, RIS is usually used as a fixed device

[95]–[97], for example equipping a RIS on the exterior wall of buildings, which restricts the

RIS’s capability. In order to improve the aforementioned drawbacks and breakthrough the

limitation, we dexterously bind a RIS with a UAV. The main contributions of this chapter can

be listed as follows:

• A novel and more balanced RIS and UAV based cooperative downlink transmission

scheme is proposed, where a RIS-equipped UAV acts as the relay node between the BS

and multiple downlink users. By doing so, the RIS and the UAV can complement each

other. To further improve the spectrum efficiency NOMA technique is considered in this

network.

• The data rate of the strong user is maximized by optimizing the horizontal position of

the UAV, beamforming vectors of the BS and the phase shift matrix of the RIS. After

pre-optimizing the UAV’s position, the close-formed optimal beamforming vectors are

derived as two functions of the phase shift matrix by applying KKT conditions.

• For the phase shift optimization, two algorithms are proposed. The first one is the SDR-

based alternating algorithm. Another one is the SCA-based algorithm, which is carried

out after the closed-form beamforming vectors are substituted in the original problem.
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Figure 3.1. UAV-RIS NOMA system model.

• Simulation results demonstrate that the proposed scheme outperforms the conventional

NOMA downlink network, and the proposed two algorithms can significantly improve

the strong user’s data rate. Another conclusion that can be obtained from simulations is

that the NOMA technique outperforms OFDMA.

3.2 System Model

We consider a downlink RIS based UAV-assisted NOMA network shown in Fig. 3.1.

In this system, one BS equipped with M antennas serves two single-antenna users. a RIS-

equipped UAV is deployed as a relay node to provide an extra link to the downlink users.

The RIS module with N passive phase shift elements is implemented on the UAV to flexibly

assist the signal transmission by adjusting the location of UAV and the phase shifting of

the RIS. Thus, both users are served by two links including a direct link and a reflection

link. According to the NOMA principle, the BS simultaneously transmits the superposition

coding to those two users on the same spectrum. Hence the received signal at each user can
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be represented as

yk = hH
k (ω1s1 + ω2s2) + nk, k = 1, 2. (3.1)

where sk is the transmission signal for user k with the expectation ofE[|sk|] = 1, and ωk is the

M×1 vector which denotes the complex beamforming vector for user k and nk ∼ CN (0, σ2)

is the additive white Gaussian noise (AWGN) with mean zero and variance σ2. hH
k ∈ C1×M

denotes the channel gain from the BS to user k, which can be written as

hH
k = gH

1kΘg + gH
k , (3.2)

where gH
1k ∈ C1×N and g ∈ CN×M denote the channel gain between the RIS-UAV and

user k, and the channel gain between the RIS-UAV and the BS respectively. gHk ∈ C1×M is

the channel gain between the BS and user k. In general, we consider the propagation path

between the BS and users is Non-line-of-sight (NLoS). However, in practice, there exists an

LoS between the aerial platform (i.e. the UAV) and ground nodes (i.e. the BS and users) in

high possibility. Hence, we assume that g1k and g follow the Rician distribution and gk is

the Rayleigh fading channel gain. Thanks to the flexible deployment of the UAV, the position

can be easily optimized to improve the performance of the system. For example, we can set

the altitude of the UAV as the BS to minimize the distance between BS and RIS-UAV. Define

Θ = diag(ejθ1 , · · · , ejθN ) as the phase shift matrix of RIS and θn ∈ [0, 2π] represents the

phase shifting.

In NOMA systems, SIC is applied to the strong users to remove interferences caused by

the weak users. Without loss of generality, the channel gains of these two users can be sorted

as |h1| > |h2|. We assume that the SIC decoding order is fixed, from user 2 to user 1. In

other words, user 1 is a strong user and user 2 is a weak user. By applying SIC, user 1 decodes

the signal of user 2 and removes it first, i.e., user 1 has no interference when it decodes its

own signal. On the other hand, user 2 decodes its own signal by simply treating the signal of
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user 1 as interference. Therefore, the achievable data rate of these two users are

⎧⎪⎨⎪⎩ R1 = log2(1 + SNR1),

R2 = log2(1 + min{SINR2,1,SINR2,2}),
(3.3)

where

SNR1 =
hH

1 ω1ω
H
1 h1

σ2
, (3.4)

SINR2,1 =
hH

1 ω2ω
H
2 h1

hH
1 ω1ωH

1 h1 + σ2
, (3.5)

and

SINR2,2 =
hH

2 ω2ω
H
2 h2

hH
2 ω1ωH

1 h2 + σ2
, (3.6)

respectively represent the signal-to-noise ratio (SNR) of user 1 to decode its own signal, the

signal-to-interference-plus-noise ratio (SINR) of user 1 to decode user 2’s signal and the

SINR of user 2 to decode its own signal. This chapter aims to maximize the data rate of the

strong user i.e. user 1’s data rate. In the following, we provide the problem formulation and

solutions.

3.3 Problem Formulation

In this work, we assume that the BS knows the perfect CSI. We can simply formulate

and solve this problem in two steps. Firstly, we optimize the horizontal position for any

given altitude of the UAV, which is based on the following considerations: (1) Generally, the

flying altitudes of UAVs are strictly controlled by the government; (2) If the flying altitude

is optimized, UAVs will prefer to lower altitude to reduce path loss; (3) Usually, the array

antenna of the base station is tilted downward, and hence it is inefficient if RIS-equipped UAVs

fly above the height of the base station. Secondly, we optimize the beamforming vectors of the

BS and phase shift of the RIS-UAV. According to Fig. 3.2, we first formulate the UAV position

optimization problem. hBS and hUAV are the altitudes of the BS and the UAV respectively,
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Figure 3.2. Relative position model.

and dBU denotes the distance between the BS and users. We use the same notation rule for

dBI and the dIU . With the consideration of the path loss, equation (3.2) can be rewritten as

hH
k =

gH
1kΘg

PLBIPLIU

+
gH
k

PLBU

(3.7)

where PLBI = C0d
αBI
BI denotes the path loss between the BS and the RIS-UAV, and we use

the same notation rule for PLIU and PLBU . C0 denotes the path loss at reference distance

D0 = 1 meter. dBI and αBI represent the distance and the path loss exponent between the

BS and RIS-UAV, respectively. Obviously, only the first term of (3.7) is related to the UAV

position (the second term can be treated as a constant). Hence, for any given user’s position

w = [xu1, yu1], there always exists a UAV horizontal position q = [xUAV , yUAV ] to minimize

the path loss from the BS to the RIS-UAV then to the strong user (i.e. UE1). Due to the

propagation paths from BS to RIS-UAV and from RIS-UAV to users are both LoS, the path

loss coefficients are assumed as αBI = αIU = α. Therefore, the position optimization

problem can be formulated as:

min
{q}

PLBIPLIU . (3.8)

For any given w and the corresponding optimized q, we aim to improve the data rate of the

strong user, thus considering the QoS constraint of the weak user, the optimization problem
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can be formulated as

max
{Θ,ω1,ω2}

R1, (3.9a)

s.t. R1 ≥ Rmin
1 , (3.9b)

R2 ≥ Rmin
2 , (3.9c)

∥ω1∥2 + ∥ω2∥2 ≤ Pt, (3.9d)

0 ≤ θn ≤ 2π, n = 1, · · · , N. (3.9e)

where Rmin
1 and Rmin

2 are respectively the minimum target rate of two users. Pt is the trans-

mission power of the base station. Constraints (3.9b) and (3.9c) guarantee the QoS of two

users. (3.9d) is the total transmission power constraint. Constraint (3.9e) considers the RIS

phase shift matrix Θ = diag(ejθ1 , · · · , ejθN). Since maximizing the data rate of one user is

equivalent to maximizing its SINR, thus the log function can be omitted, and problem (3.9)

can be rewritten as

max
{Θ,ω1,ω2}

hH
1 ω1ω

H
1 h1

σ2
, (3.10a)

s.t. rmin
1 σ2 − hH

1 ω1ω
H
1 h1 ≤ 0, (3.10b)

rmin
2 hH

1 ω1ω
H
1 h1 + rmin

2 σ2 − hH
1 ω2ω

H
2 h1 ≤ 0, (3.10c)

rmin
2 hH

2 ω1ω
H
1 h2 + rmin

2 σ2 − hH
2 ω2ω

H
2 h2 ≤ 0, (3.10d)

∥ω1∥2 + ∥ω2∥2 − Pt ≤ 0, (3.10e)

(3.9e). (3.10f)

where rmin
i = 2R

min
i − 1. According to the fact that ∥ωk∥2 = ωH

k ωk = Tr(ωkωk), it can be

simply found that the constraint (3.10e) is equivalent to

Tr(ω1ω
H
1 ) + Tr(ω2ω

H
2 )− Pt ≤ 0. (3.11)

Note that the problem is nonconvex and challenging to solve. Therefore, we divide it into two
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sub-problems. That means we can fix one of the variables (phase shifting or beamforming) to

solve another one. For example, the beamforming vectors are optimized by any given phase

shifting matrix Θ. In the next section, all details on how to solve our original problem is

provided.

3.4 Optimal Beamforming vectors and Phase Shift Matrix

In this section, the UAV position is optimized first. Then the closed-form optimal beam-

forming vectors are derived, based on which two algorithms are proposed to optimize the RIS

phase shift matrix. The first one is an alternating algorithm based on SDR and the second

one is based on SCA.

3.4.1 Optimal RIS-UAV horizontal position

According to Fig. 3.2, we can easily obtain dBI and dIU by

dBI =
√︁

(hUAV − hBS)2 + ||q||2,

dIU =
√︂
h2
UAV + ||q − w||2.

(3.12)

Then the problem (3.8) can be written as

min
{q}

C2
0((hUAV − hBS)

2 + ||q||2)(h2
UAV + ||q − w||2))

α
2 . (3.13)

By observing and analyzing Fig. 3.2, as [86] proved, the minimum value of ||q||2 and ||q−w||2

can be obtained when the horizontal position of RIS-UAV is located at its projection point on

the straight line connecting the origin point with the users’ position (i.e. the x-axis).

Lemma 1. The horizontal placement of the RIS-UAV is

q∗ = ξ∗(ρ)w. (3.14)
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with

ξ∗(ρ) =

⎧⎪⎨⎪⎩
1
2
, if ρ ≥ 1

2

1
2
−
√︂

1
4
− ρ2 or 1

2
+
√︂

1
4
− ρ2, otherwise

(3.15)

where ρ = hUAV

dBU
and ξ is called the ratio coefficient.

Proof. Please see the proof of lemma 1 in [86].

3.4.2 Optimal beamforming vectors

First assume that the RIS phase shift is given, which means theΘ related constraint (3.10f)

can be ignored. Additionally, we introduce two new variables Qk = ωkω
H
k , k = 1, 2. Then

the problem (3.10) can be rewritten as

max
{Q1⪰0,Q2⪰0}

hH
1 Q1h1

σ2
, (3.16a)

s.t. rmin
1 σ2 − hH

1 Q1h1 ≤ 0, (3.16b)

rmin
2 hH

1 Q1h1 + rmin
2 σ2 − hH

1 Q2h1 ≤ 0, (3.16c)

rmin
2 hH

2 Q1h2 + rmin
2 σ2 − hH

2 Q2h2 ≤ 0, (3.16d)

Tr(Q1) + Tr(Q2)− Pt ≤ 0 (3.16e)

rank(Qk) = 1, k = 1, 2. (3.16f)

The problem (3.16) is still a nonconvex problem due to the rank constraint (3.16f). Hence, we

use SDR [77] to relax the rank constraint. Then the rank constraint can be reduced directly

and the problem is still tight.

Proposition 1. Without the rank constraint (3.16f), the optimal solutions Q∗
k of problem

(3.16) still always satisfies the constraint rank(Q∗
k) = 1, k = 1, 2.

Proof. Please see appendix A.1.
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The reduced problem now becomes

max
{Q1⪰0,Q2⪰0}

hH
1 Q1h1

σ2
,

s.t. (3.16b)− (3.16e).

(3.17)

Problem (3.17) is a homogeneous quadratically constrained quadratic program (QCQP). Thus

we can use convex optimization tools, for example, CVX to solve this problem to obtain the

optimal solution[76], [77]. However, the phase shifting matrix Θ is actually unknown. We

need to find the expression of Θ, and ωk, k = 1, 2. In the next, we provide the closed-form

optimal beamforming vectors with respect to Θ by using the KKT conditions.

Proposition 2. The closed-form optimal solution of the problem (3.17) is

ω∗
1 =

⌜⃓⃓⎷ PthH
2 ˜︁ω2˜︁ωH

2 h2 − rmin
2 σ2Tr(˜︂W2)

rmin
2 Tr(˜︂W2)hH

2 ˜︁ω1˜︁ωH
1 h2 + Tr(˜︂W1)hH

2 ˜︁ω2˜︁ωH
2 h2

˜︁ω1,

ω∗
2 =

⌜⃓⃓⎷ Ptrmin
2 hH

2 ˜︁ω1˜︁ωH
1 h2 + rmin

2 σ2Tr(˜︂W1)

rmin
2 Tr(˜︂W2)hH

2 ˜︁ω1˜︁ωH
1 h2 + Tr(˜︂W1)hH

2 ˜︁ω2˜︁ωH
2 h2

˜︁ω2,

(3.18)

where

˜︁ω1 =
(IM + rmin

2
h2hH

2

hH
2 h2

)−1h1

|(IM + rmin
2

h2hH
2

hH
2 h2

)−1h1

|, (3.19)

˜︁ω2 =
h2

|h2|
. (3.20)

Proof. please see appendix A.2.

3.4.3 Optimal phase shift by applying the SDR-based iteration algorithm

Given the derived beamforming vectors, we now focus on RIS phase shift matrix optimiza-

tion. Assuming that we have the initialized beamforming vector ωk, k = 1, 2. Additionally,
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rewrite the channel gain (i.e. the equation (2)) into a more tractable form as follows:

hH
k = gH

0kΘg1k + gH = ˜︁vHGk, (3.21)

where ˜︁v = [v, 1]H , Gk = [diag(gH
0k)g1k; g

H ] and v = [ejθ1 · · · ejθN ]. Hence, we have

hH
k ωkω

H
k hk = ˜︁vHGkωkω

H
k GH

k ˜︁v = ˜︁vHxkkx
H
kk˜︁v = Tr(Xkk

˜︁V ), where xkk = Gkωk.

Thus, according to the SDR technique [77], and omitting the rank-one constraint the problem

can be reformulated as

max
{ ˜︁V }

Tr(X11
˜︁V ), (3.22a)

s.t. rmin
1 σ2 − Tr(X11

˜︁V ) ≤ 0, (3.22b)

rmin
2 Tr(X11

˜︁V ) + rmin
2 σ2 − Tr(X12

˜︁V ) ≤ 0, (3.22c)

rmin
2 Tr(X21

˜︁V ) + rmin
2 σ2 − Tr(X22

˜︁V ) ≤ 0, (3.22d)

Tr(ω1ω
H
1 ) + Tr(ω2ω

H
2 )− Pt ≤ 0, (3.22e)

0 ≤ |vn|2 ≤ 1, n = 1, .., N + 1, (3.22f)

˜︁V ⪰ 0. (3.22g)

where vn is the diagonal elements of ˜︁V . Now problem (3.22) is a standard SDP and can be

solved by optimization solvers simply like CVX. Then we apply the eigenvalue decomposition

(EVD) as ˜︁V = UΛUH to obtain the solution, where U = [e1, ...eN+1] is a unitary matrix

and Λ = diag(λ1, · · · ,ΛN+1) is a diagonal matrix. Then we have

˜︁v = [
˜︁v1˜︁vN+1

, · · · ,
˜︁vN˜︁vN+1

, 1], (3.23)

where ˜︁v = UΛ
1
2r and r ∈ C(N+1)×1 is generated randomly vector which satisfying r ∈

CN(0, IN+1).

Remark 1. Here we need to check whether the rank of the solved ˜︁V is one. If not, the Gaussian

randomization technique can be used to generate a set of rank-one solutions [77].
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Algorithm 1 Obtain the optimal phase shift ˜︁v
1: Initialize two feasible value of ωk to initialize the Xkk.

Or initialize a phase shift vector ˜︁v to get two feasible ωk by using (18) to initialize the Xkk.
2: Repeat: Solving the SDR problem (3.22) by CVX to obtain ˜︁V .
3: Obtain ˜︁v by applying EVD.
4: Update hk by using the equation (21).
5: Update ωk by using equations (3.18), (3.19) and (3.20).
6: Until: The value of objective function in (3.22a) converges.

Remark 2. To implement this algorithm, one challenge is to find two feasible initialized ωk

or one initialized ˜︁v. For the simulation carried out in this chapter. We allocated a half power

to each user and used randomly generated phase shifts to initialize the ωk or used a randomly

generated complex vector with the modulus of 1 to initialize the ˜︁v.

Complexity analyzing: In Algorithm 1, we solve an SDP and then use an EVD for each iter-

ation. Hence, we follow the method of [77] to analyze the complexity. In general, the convex

optimization toolboxes apply the interior-point algorithm to solve SDP problems. Therefore,

the complexity of algorithm 1 isO(Iitemax{6, N +1}4(N +1)(1/2)log(1
ϵ
)) where ϵ denotes

the predefined accuracy of SDR solution and Iite is the number of outer layer iterations.

3.4.4 Optimal phase shift by applying SCA

By using the closed-form optimal beamforming vectors (3.18) to problem (3.10), the phase

optimization problem can be written by

max
{Θ}

hH
1 ω

∗
1ω

∗H
1 h1

σ2
, (3.24a)

s.t. rmin
1 σ2 − hH

1 ω
∗
1ω

∗H
1 h1 ≤ 0, (3.24b)

rmin
2 hH

1 ω
∗
1ω

∗H
1 h1 + rmin

2 σ2 − hH
1 ω

∗
2ω

∗H
2 h1 ≤ 0, (3.24c)

(3.10f). (3.24d)

Due to constraints (3.10d) and (3.10e) have been included in our closed-form beamforming

(3.18)-(3.20). These two constraints can be removed directly. Furthermore, we can obtain
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the two expressions below by some manipulation.

hH
1 ω

∗
1ω

∗H
1 h1 =

Pt|h2|2|h1|4 − rmin
2 σ2|h1|4

rmin
2 |hH

1 h2|2 + |h1|2|h2|2
, (3.25)

hH
1 ω

∗
2ω

∗H
2 h1 =

Ptr
min
2 |hH

1 h2|4 + rmin
2 σ2|h1|2|hH

1 h2|2

rmin
2 |h2|2|hH

1 h2|2 + |h1|2|h2|4
. (3.26)

The proof of (3.25) and (3.26) can be found in appendix A.3. Substitute hk by using the

equation (3.21), then (3.25) and (3.26) becomes

hH
1 ω

∗
1ω

∗H
1 h1 =

Ptχ|Φ|2 − rmin
2 σ2|Φ|2

rmin
2 |η|2 + Φχ

, (3.27)

hH
1 ω

∗
2ω

∗H
2 h1 =

Ptr
min
2 |η|4 + rmin

2 σ2Φ

rmin
2 χ|η|2 + Φ|χ|2

. (3.28)

where Φ = ˜︁vHG1G
H
1 ˜︁v, χ = ˜︁vHG2G

H
2 ˜︁v and η = ˜︁vHG1G

H
2 ˜︁v.

We note that the problem (3.24) is non-convex with respect to ˜︁v. Hence, we apply SCA

to obtain the suboptimal solution of the phase shift vector with very low complexity.

Define the equation (3.27) and (3.28) to be f1(˜︁v) and f2(˜︁v) respectively. Define the numerator

and denominator of (3.27) and (3.28) as f1n(˜︁v), f2n(˜︁v), f1d(˜︁v) and f2d(˜︁v) respectively. The

first derivation of f1n(˜︁v), f2n(˜︁v), f1d(˜︁v) and f2d(˜︁v) are (3.31)-(3.34) respectively. The first

derivative of f1(˜︁v) and f2(˜︁v) are given by

▽f1(˜︁v) = ▽f1n(˜︁v)f1d(˜︁v)− f1n(˜︁v)▽ f1d(˜︁v)
f 2
1d(˜︁v) , (3.29)

▽f2(˜︁v) = ▽f2n(˜︁v)f2d(˜︁v)− f2n(˜︁v)▽ f2d(˜︁v)
f 2
2d(˜︁v) . (3.30)

where▽f1n(˜︁v),▽f2n(˜︁v),▽f1d(˜︁v),▽f2d(˜︁v) are given as follows:

▽f1n(˜︁v) =2PtG2G
H
2 ˜︁v(˜︁vHG1G

H
1 ˜︁v)2 + 4(˜︁vHG2G

H
2 ˜︁v)(˜︁vHG1G

H
1 ˜︁v)G1G

H
1 ˜︁v

− 4rmin
2 σ2(˜︁vHG1G

H
1 ˜︁v)G1G

H
1 ˜︁v, (3.31)
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▽f2n(˜︁v) =2Ptr
min
2 |˜︁vHG1G

H
2 ˜︁v|2[(G1G

H
2 +G2G

H
1 )˜︁v(˜︁vHG2G

H
1 ˜︁v)

+ (˜︁vHG1G
H
2 ˜︁v)(G2G

H
1 +G1G

H
2 )˜︁v] + rmin

2 σ2[2G1G
H
1 ˜︁v|˜︁vHG1G

H
2 ˜︁v|2

+ (˜︁vHG1G
H
1 ˜︁v)((G1G

H
2 +G2G

H
1 )˜︁v(˜︁vHG2G

H
1 ˜︁v)

+ (˜︁vHG1G
H
2 ˜︁v)(G2G

H
1 +G1G

H
2 )˜︁v)],

(3.32)

▽f1d(˜︁v) =rmin
2 [(G1G

H
2 +G2G

H
1 )˜︁v(˜︁vHG2G

H
1 ˜︁v) + (˜︁vHG1G

H
2 ˜︁v)(G2G

H
1 +G1G

H
2 )˜︁v]

+ 2G1G
H
1 ˜︁v(˜︁vHG1G

H
2 ˜︁v) + 2(˜︁vHG1G

H
1 ˜︁v)G2G

H
2 ˜︁v,

(3.33)

▽f2d(˜︁v) =rmin
2 (2G2G

H
2 ˜︁v|˜︁vHG1G

H
2 ˜︁v|2 + (˜︁vHG2G

H
2 ˜︁v)((G1G

H
2 +G2G

H
1 )˜︁v(˜︁vHG2G

H
1 ˜︁v)

+ (˜︁vHG1G
H
2 ˜︁v)(G2G

H
1 +G1G

H
2 )˜︁v))) + 2G1G

H
1 ˜︁v(˜︁vHG2G

H
2 ˜︁v)2

+ 4(˜︁vHG1G
H
1 ˜︁v)(˜︁vHG2G

H
2 ˜︁v)G2G

H
2 ˜︁v.

(3.34)

By applying the Taylor expansion to the problem (3.24) at a feasible point ˜︁v0, the optimization

problem (3.24) can be approximated as:

max
{˜︁v} t, (3.35a)

s.t. f1(˜︁v0) + [▽f1(˜︁v0)]
H(˜︁v − ˜︁v0) ≥ t, (3.35b)

f1(˜︁v0) + [▽f1(˜︁v0)]
H(˜︁v − ˜︁v0) ≥ rmin

1 σ2, (3.35c)

f2(˜︁v0)− rmin
2 f1(˜︁v0)

+ [▽f2(˜︁v0)− rmin
2 ▽ f1(˜︁v0)]

H ≥ rmin
2 σ2, (3.35d)

0 ≤ |˜︁vn| ≤ 1, n = 1, ..., N + 1. (3.35e)

Now the problem (3.35) is a convex problem and can be solved very easily by a convex opti-

mization solver, such as CVX [76].
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3.5 Simulation Results

In this section, we provide our simulation results to analyze and demonstrate the perfor-

mance of the proposed algorithms. As shown in Fig. 3.2, considering a downlink MISO RIS-

NOMA system model assisted by UAV, we assume the BS is located at the point (0, 0, 20), and

the RIS based UAV is located at (xUAV , yUAV , 50). User 1 and user 2 are located at (50, 0, 0)

and (100, 0, 0) respectively. Reviewing our system model, we set the Rician fading channel

for the channel between the BS and the RIS-UAV and between the RIS-UAV and users (i.e.

g and g1k) as [98]

G = H

√︃
Ω

Ω + IM
+HR

√︃
1

Ω + IM
, (3.36)

where H denotes the deterministic component and HR represents the Rayleigh fading com-

ponent respectively. Ω is the Rician K- factor. It is clear that the channel model (3.36) above

is reduced to the pure LoS channel when Ω → ∞ or to the Rayleigh channel when Ω = 0.

For path loss related parameters we set C0 = −30dB, αBU = 2.5 and αBI = αIU = 21.

For other simulation parameters, we set as follow: σ2 = −70dB, the minimum target rate for

user 1 is Rmin
1 = 1(bits/s/Hz), the minimum target rate for user 2 is Rmin

2 = 1.2(bits/s/Hz)

and the convergence threshold is ϵ = 0.001. From Fig. 3.3 to Fig. 3.7, with the UAV lo-

cated at the optimal position, we first demonstrate the performance improvement brought by

RIS. Subsequently, we show the data rate performance of the strong user with different UAV

positions.

Fig. 3.3 shows the achieved data rate versus the transmission power for the strong user in

three different scenarios. Here we set the number of antennas M = 4 and the number of RIS

elements N = 10. It is obvious that the data rate of the strong user increase for all considered

scheme with the transmission power increasing. As we expected, the RIS-NOMA system

is significantly better than the conventional NOMA system even we use the random phase

shift. Furthermore, the performance of the proposed algorithm significantly outperforms the
1In order to highlight the advantage that UAV-RIS is capable to establish the LoS propagation between the base station and RIS and

between RIS and users, the path loss coefficients of these two links are set to the free-space one (i.e.,2). However, for practical simula-
tions, the path loss coefficients should be set to greater than 2.
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Figure 3.3. The maximized spectral efficiency of the strong user versus transmission power, M = 4, N = 10.

Figure 3.4. Comparison between RIS-NOMA and RIS-OFDMA, M = 4, N = 10.

“random phase shift” scheme.

Fig. 3.4 depicts the fact that RIS-NOMA is much better than the RIS-OFDMA. On the

other hand, it shows that the performance of the proposed SDR based iteration algorithm is

slightly better than the SCA based algorithm. This is because the SCA based algorithm is

to use the first-order Taylor expansion to do approximation, which converts a function to an

affine function at a certain point. That becomes inaccurate when the power of the objective

function is high.

Fig. 3.5 illustrates the increasing trend of data rate with the increasing transmission power



3.5. SIMULATION RESULTS 73

Figure 3.5. Comparison between RIS-NOMA and RIS-OFDMA for all users, M = 4, N = 10.

Figure 3.6. Spectral efficiency of the strong user versus the number of antennas.

for all users. The data rate of each RIS-NOMA user is much higher than that of RIS-OFDMA

user. Especially, the gap between RIS-NOMA user 2 and RIS-OFDMA user 2 becomes larger

when the transmission power increases, which indicates that applying RIS to NOMA can

improve the data rate for two NOMA users but applying RIS to OFDMA can only improve

the strong user significantly. The good performance benefits from the superior performance

of NOMA i.e. allow all users to use the same communication resources simultaneously.

From Fig. 3.6 and Fig. 3.7, we can see that our proposed algorithm for UAV and RIS

assisted NOMA improves the data rate dramatically for the strong user. Furthermore, we can



74 3.5. SIMULATION RESULTS

Figure 3.7. Spectral efficiency of the strong user versus the number of RIS elements.

Figure 3.8. Spectral efficiency of the strong user versus BS-UAV horizontal distance.

find that the slopes of the curves in Fig.3.7 are all bigger than them of Fig.3.6. Additionally,

we assume all RIS elements are passive, which means increasing RIS elements to improve

rate performance is a great energy-saving scheme.

In Fig. 3.8, we compare the achievable data rate for user 1 with different UAV positions for

RIS-NOMA and RIS-OFDMA. Here we set the number of antennas M = 4 and the number

of RIS elements N = 10. As we analyzed in Section 3.1, the optimal horizontal position

can be found when the horizontal position of the UAV is located at its projection point on

the line of connecting the origin point with the users’ position. In other words, because we
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set that the BS is located at (0, 0, 20) and users are located at (50, 0, 0) and (100, 0, 0), the

optimal UAV horizontal position can be obtained when it is on the x-axis. Hence, we set

the UAV to move on the x-axis from 15 meters to 40 meters to observe where the optimal

position is. We simulate the transmission power Pt = 0dBm and Pt = 5dBm scenarios.

As we expected, wherever the UAV is, our proposed algorithm for UAV and RIS assisted

NOMA always significantly outperforms the benchmark scheme. Moreover, the RIS-NOMA

scheme can achieve the peak we can observe when the horizontal distance from BS to UAV

is 26.928m. This matches with the result calculated by the equation (3.15).

3.6 Conclusion

In this chapter, we first find the optimal horizontal position of the UAV, then jointly opti-

mized beamforming vectors and RIS phase shift matrix to maximize the data rate of the strong

user in the downlink UAV and RIS assisted MISO-NOMA system. To solve the beamforming

and phase shift optimization problem, we first decoupled it into two subproblems to tackle

the non-convex problem. Secondly, we derived the closed-form expression of optimal beam-

forming under any given RIS phase shift matrix. Then we proposed the SDR based iteration

algorithm which has better performance but higher complexity. Furthermore, we derived the

SCA based algorithm which has lower complexity. Finally, simulation results validate the

effectiveness of our proposed algorithm and show that the UAV and RIS assisted NOMA sys-

tem can significantly improve the data rate performance. The addition of the UAV further

promotes the RIS-NOMA network and provides better flexibility. This is preliminary work

for UAV and RIS assisted NOMA network. More complex designs, including UAV trajectory

planning, beamforming designing and power consumption optimization will be investigated

in our future work.
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3.7 Appendix

Proof of Proposition 1

According to [77], we know that there exists a solution {Q∗
k}, k = 1, 2 of the SDR problem

(3.17) such that
k∑︂

i=1

rank2(Q∗
i ) ≤ m, (37)

where m is the number of constraints. In prmblem (3.17), m = 4 and k = 2. Thus we

have rank2(Q∗
1) + rank2(Q∗

2) ≤ 4. On the other hand, Q∗
k can never be 0 to satisfy the

QoS constraint, or says Q∗
k ≥ 0. Hence, there alway exist an optimal solution such that

rank(Q∗
1) = rank(Q∗

2) = 1.

Proof of proposition 2

The Lagrangian function of the problem (3.17) is

L(Q1,Q2, λ1, λ2, λ3, λ4)

=
hH

1 Q1h1

σ2
− λ1(r

min
1 σ2 − hH

1 Q1h1)− λ2(r
min
2 σ2 + rmin

2 hH
1 Q1h1 − hH

1 Q2h1)

− λ3(r
min
2 σ2 + rmin

2 hH
2 Q1h2 − hH

2 Q2h2)− λ4(Tr(Q1 +Q2)− Pt),

(38)

where λi ≥ 0, i = 1, ..., 4 are the Lagrangian multipliers. According to the KKT conditions,

we first let the two partial derivations of Q1 and Q2 equal to

∂L

∂Q1

=
1

σ2
h1h

H
1 + λ1h1h

H
1 − λ2r

min
2 h1h

H
1 − λ3r

min
2 h2h

H
2 − λ4Im = 0, (39)

∂L

∂Q2

= λ2h1h
H
1 + λ3h2h

H
2 − λ4Im, (40)
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where Im is the M ×M identity matrix. The complement slackness constraints are

λ1(r
min
1 σ2 − hH

1 Q1h1) = 0, (41)

λ2(r
min
2 σ2 + rmin

2 hH
1 Q1h1 − hH

1 Q2h1) = 0, (42)

λ3(r
min
2 σ2 + rmin

2 hH
2 Q1h2 − hH

2 Q2h2) = 0, (43)

λ4(Tr(Q1) + Tr(Q2)− Pt) = 0. (44)

Here multiplying a Q1 both sides of the (39) and a Q2 both sides of the (40) respectively.

Then we have

1

σ2
h1h

H
1 Q1 + λ1h1h

H
1 Q1 − λ2r

min
2 h1h

H
1 Q1 − λ3r

min
2 h2h

H
2 Q1 − λ4Q1 = 0, (45)

λ2h1h
H
1 Q2 + λ3h2h

H
2 Q2 − λ4Q2 = 0. (46)

Now we have already knew that Qk = ωkω
H
k ,ωk ̸= 0, k = 1, 2 and the SDR problem is tight

as we proved in Appendix A. Hence, equations (45), (46) and complement slackness (41) -

(44) can be written as

1

σ2
h1h

H
1 ω1 + λ1h1h

H
1 ω1 − λ2r

min
2 h1h

H
1 ω1 − λ3r

min
2 h2h

H
2 ω1 − λ4ω1 = 0, (47)

λ2h1h
H
1 ω2 + λ3h2h

H
2 ω2 − λ4ω2 = 0, (48)

λ1(r
min
1 σ2 − hH

1 ω1ω
H
1 h1) = 0, (49)

λ2(r
min
2 σ2 + rmin

2 hH
1 ω1ω

H
1 h1 − hH

1 ω2ω
H
2 h1) = 0, (50)

λ3(r
min
2 σ2 + rmin

2 hH
2 ω1ω

H
1 h2 − hH

2 ω2ω
H
2 h2) = 0, (51)

λ4(Tr(ω1ω
H
1 ) + Tr(ω2ω

H
2 )− Pt) = 0. (52)
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Obviously, there are many combinations of λi = 0 and λi > 0, i = 1, ..., 4. We will discuss

these as follows: in this problem, according to the equation (49), λ1 can only be 0. Because

λ1 > 0 means rmin
1 σ2−hH

1 ω1ω
H
1 h1 must be 0 to satisfy the complement slackness condition.

Then ω1 is always the value that makes user 1’s data rate to be the minimum data rate. Under

this premise, applying equations (47) and (48), there are three possible cases:

case 1 : λ1 = 0, λ2 > 0, λ3 > 0, λ4 = 0;

case 2 : λ1 = 0, λ2 > 0, λ3 = 0, λ4 > 0;

case 3 : λ1 = 0, λ2 = 0, λ3 > 0, λ4 > 0;

1) For the case 1 of λ1 = 0, λ2 > 0, λ3 > 0, λ4 = 0: According to equations (50) and (51),

we obtain

rmin
2 σ2 + rmin

2 hH
1 ω1ω

H
1 h1 − hH

1 ω2ω
H
2 h1 = 0, (53)

rmin
2 σ2 + rmin

2 hH
2 ω1ω

H
1 h2 − hH

2 ω2ω
H
2 h2 = 0, (54)

Let (53) minus (54) we have

rmin
2 hH

1 ω1ω
H
1 h1 − hH

1 ω2ω
H
2 h1 − (rmin

2 hH
2 ω1ω

H
1 h2 − hH

2 ω2ω
H
2 h2)

=hH
1 (r

min
2 ω1ω

H
1 − ω2ω

H
2 )h1 − hH

2 (r
min
2 ω1ω

H
1 − ω2ω

H
2 )h2

=Tr((rmin
2 ω1ω

H
1 − ω2ω

H
2 )(h1h

H
1 − h2h

H
2 )).

(55)

Because of our assumption of |h1| > |h2|, thus (h1h
H
1 − h2h

H
2 ) ̸= 0 and based on (53) or

(54) we can know that rmin
2 ω1ω

H
1 − ω2ω

H
2 ̸= 0 as well. Therefore, the equation (55) is not

zero, which means case 1 cannot satisfy KKT conditions.

2) For the case 2 of λ1 = 0, λ2 > 0, λ3 = 0, λ4 > 0: From equations (47) and (48), we obtain

1

σ2
h1h

H
1 ω1 − λ2r

min
2 h1h

H
1 ω1 − λ4ω1 = 0 (56)

λ2h1h
H
1 ω2 − λ4ω2 = 0. (57)
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Therefore, we can have further

ω1 = (IM +
λ2

λ4

rmin
2 h1h

H
1 )

−1h1
1

λ4

σ2hH
1 ω1, (58)

ω2 = h1
λ2

λ4

hH
1 ω2. (59)

According to Lemma 2 of [93], here the ω1 and ω2 can be treated as the parallel vectors

to (IM + λ2

λ4
rmin
2 h1h

H
1 )

−1h1 and h1, respectively. Since 1
λ4σ2h

H
1 ω1 and λ2

λ4
hH

1 ω2 are both

scalars. Hence the optimal beamforming vectors can be represented as the form of amplitude

multiplied by the normalized beamforming directions ω1 =
√
p1˜︁ω1 and ω2 =

√
p2˜︁ω2, where

˜︁ω1 =
(IM + λ2

λ4
rmin
2 h1h

H
1 )

−1h1

|(IM + λ2

λ4
rmin
2 h1hH

1 )
−1h1|

, (60)

˜︁ω2 =
h1

|h1

|, (61)

and λ2

λ4
= 1

hH
1 h1

which can be obtained from equations (56) and (57). In this case (i.e.λ1 =

0, λ2 > 0, λ3 = 0, λ4 > 0), and according equations (50) and (52), we have

rmin
2 σ2 + rmin

2 p1h
H
1 ˜︁ω1˜︁ωH

1 h1 − p2h
H
1 ˜︁ω2˜︁ωH

2 h1 = 0, (62)

p1Tr(˜︂W1) + p2Tr(˜︂W2)− Pt = 0, (63)

where ˜︂Wi = ˜︁ωi˜︁ωH
i , i = 1, 2. Then, we can obtain the optimal power p1 and p2 as

p1 =
Pth

H
1 ˜︁ω2˜︁ωH

2 h1 − rmin
2 σ2Tr(˜︂W2)

rmin
2 Tr(˜︂W2)hH

1 ˜︁ω1˜︁ωH
1 + Tr(˜︂W1)hH

1 ˜︁ω2˜︁ωH
2 h1

, (64)

p2 =
Ptr

min
2 hH

1 ˜︁ω1˜︁ωH
1 h1 − rmin

2 σ2Tr(˜︂W1)

rmin
2 Tr(˜︂W2)hH

1 ˜︁ω1˜︁ωH
1 h1 + Tr(˜︂W1)hH

1 ˜︁ω2˜︁ωH
2 h1

. (65)

Nevertheless, the two optimal beamforming vectors are actually infeasible in this case, be-

cause constraint (3.16d) in problem (3.17) can not be satisfied. Let’s prove it in the following.
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Rewriting equation (60) by applying the Sherman-Morrison equation to get rid of the

inverse, we have

˜︁ω1 =
(IM + λ2

λ4
rmin
2 h1h

H
1 )

−1h1

|(IM + λ2

λ4
rmin
2 h1hH

1 )
−1h1|

=
Λh1

|Λh1|
, (66)

where

Λ = (IM +
λ2

λ4

rmin
2 h1h

H
1 )

−1

= IM +

rmin
2

hH
1 h1

h1h
H
1

1 + rmin
2

.

(67)

According to the constraint (3.16d) of problem (3.17), we have

rmin
2 σ2 + rmin

2 hH
2 ω1ω

H
1 h2 − hH

2 ω2ω
H
2 h2

= rmin
2 σ2 + p1r

min
2 hH

2 ˜︁ω1˜︁ωH
1 h2 − p2h

H
2 ˜︁ω2˜︁ωH

2 h2

=
1

σ2

(Pth
H
1 ˜︁ω2˜︁ωH

2 h1 − rmin
2 σ2Tr(˜︂W2))h

H
2 ω1ω

H
1 h2

rmin
2 Tr(˜︂W2)hH

1 ˜︁ω1˜︁ωH
1 h1 + Tr(˜︂W1)hH

1 ˜︁ω2˜︁ωH
2 h1

+ 1

− 1

rmin
2 σ2

(Ptr
min
2 hH

1 ˜︁ω1˜︁ωH
1 h1 + rmin

2 σ2Tr(˜︂W1))h
H
2 ˜︁ω2˜︁ωH

2 h2

rmin
2 Tr(˜︂W2)hH

1 ˜︁ω1˜︁ωH
1 h1 + Tr(˜︂W1)hH

1 ˜︁ω2˜︁ωH
2 h1

=
Pt

σ2 (h
H
1 ˜︁ω2˜︁ωH
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(68)

For the numerator of the first term in equation (68), we have
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where A =
rmin
2

hH
1 h1(1+rmin

2 )
. Let |h1|2 = α, hH

2 h1 = β and hH
1 h2 = γ, then we have

α2(β + Aβα)(γ + Aγα)− (α + Aα2)(α + Aα2)βγ

α2βγ + 2Aβγα3 + Aβγα4 − α2βγ − 2Aβγα3 − Aβγα4 = 0.

(70)

Hence the first term of equation (68) is zero. Due to our assumption of |h1| > |h2|, we can

easily find that the last term of (68) is less than 1. Thus the equation (68) is greater than zero,

which is contradictory to our constraint (3.16d). This case is infeasible.

3) For the case 3 of λ1 = 0, λ2 = 0, λ3 > 0, λ4 > 0: according to equations (47) and (48),

we have
1

σ2
h1h

H
1 ω1 − λ3r

min
2 h2h

H
2 ω1 − λ4ω1 = 0, (71)

λ3h2h
H
2 ω2 − λ4ω4 = 0. (72)

Then we can have
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H
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−1h1
1

λ4σ2
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1 ω1, (73)

ω2 = h2
λ3

λ4

hH
2 ω2. (74)

Again according to the Lemma 2 of [93], we know that the optimal ω1 is parallel to (Im +

λ3

λ4
rmin
2 h2h

H
2 )

−1h1 and optimal ω2 is parallel to h2. Because ( 1
λ4σ2h

H
1 ω1) and λ3

λ4
hH

2 ω2 can

be both treated as salars. Hence, we can represent the beamforming vector again as the form

of amplitude multiplied by the normalized beamforming directions ω1 =
√
p1˜︁ω1 and ω2 =

√
p2˜︁ω2. Furthermore, we have the two normalized beamforming directions as
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˜︁ω2 =
h2

|h2

|. (76)

where the λ3

λ4
= 1

hH
2 h2

which can be acquired from (73) and (74). Additionally, applying (51)
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and (52) with λ3 > 0 and λ4 > 0, i.e.

rmin
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then we can have
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The proof is completed.

Proof of equations (3.25) and (3.26)

We use the closed-form beamforming expression (3.18) intohH
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∗H
1 h1 andhH
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respectively. We obtain
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Then applying (3.19), (3.20) and Tr(˜︁ωk˜︁ωH
k ) = ˜︁ωH

k ˜︁ωk, equation (81) and (82) become
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where Λ = (IM + λ2

λ4
rmin
2 h2h
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2 )

−1 = IM +
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2 h2

h2hH
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1+rmin
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. After some manipulation, we can

derive equations (3.24) and (3.25). The proof is completed.



Chapter 4

Deep Reinforcement Learning-Based

Optimization for RIS-Based UAV-NOMA

Downlink Networks

4.1 Introduction

Chapter 3 proposed a UAV-RIS cooperative scheme in two-user NOMA downlink net-

works, where the strong user’s data rate is maximized by jointly optimizing beamforming

vectors and phase shift matrix. However, in practical wireless communications, multiple

users scenarios are more common. Therefore, this chapter transfers the UAV-RIS cooperative

scheme into a multi-user NOMA downlink network. Furthermore, UAV flight is restricted

within a certain area which is added one more degree of freedom compared to the model of

the previous chapter.

On the other hand, AI, such as DL and DRL based methods have been successfully ap-

plied to a variety of wireless communication problems [99], [100]. Unlike supervised learn-

ing which needs a huge number of training labels, DRL-based methods allow wireless com-

munication systems to learn by interacting with the environment which follows the Markov

decision process (MDP). Hence, DRL is more appropriate for this chapter, and the reasons

84
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are as follows: 1) training labels are very hard to obtain in real-time wireless communica-

tion systems. 2) RIS-equipped UAV as an agent observing the environment reproduces the

MDP. Generally, reinforcement learning is classified into two types, one is value-based and

the other is policy-based. Q-learning, as one representative of the value-based reinforce-

ment learning method, chooses action from the state-action table by using ϵ-greedy policy.

In terms of policy-based reinforcement learning, policy gradient (PG) has the capability to

solve problems with continuous actions but its convergence is poor (e.g., convergence slowly

and commonly to the local optimal). DQN is proposed by integrating deep neural networks

and Q-learning, which can solve high-dimensional discrete actions problem [84]. Whereas,

DQN can not be straightforwardly used in continuous space because it finds the action that

maximizes the Q-function, which demands an iterative optimization process at each step.

This is hard to realize when the action is continuous [84]. DDPG is applicable to the case

with the high-dimension continuous action space since DDPG outputs actions with a deter-

ministic policy. Thus, this chapter adopts DDPG to solve the formulated problem. In the

following, the related works are listed and the contributions of this chapter are described.

4.1.1 Related works

Due to the discussed advantages in previous chapters, many researchers combined RIS and

UAV with the NOMA transmission protocol and then derived various optimization problems.

In [101], a DRL-based approach is proposed to solve the continuous optimisation problem

with time-varying channels in a centralised manner, where the energy efficiency of the net-

work is maximized. To further reduce the latency of information transmission requirement

of the centralised approach, a parallel learning approach is also used in [101]. The authors in

[102] proposed two DRL-based algorithms to maximize the sum-rate performance of a RIS-

assisted UAV communication for IoT, where SWIPT is in consideration. In [103], a RIS-aided

air-to-ground NOMA uplink transmission is investigated. In particular, a sample-efficient

DRL algorithm is proposed to simultaneously realize trajectory design, RIS configuration,

and uploading power control. To achieve higher energy efficiency for a RIS and NOMA sup-
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ported multi-UAV networks, DDPG is applied by [104]. In [105], RIS is integrated with the

UAV-enabled NOMA network to further improve the service quality of the UAV. A decaying

deep Q-network (D-DQN) based algorithm is proposed to design the movement of the UAV,

phase shifts of the RIS, power allocation policy from the UAV to MUs, as well as determining

the dynamic decoding order.

4.1.2 Contributions

• A multi-user RIS-UAV-based cooperative NOMA downlink transmission is investigated.

Specifically, a RIS-equipped UAV is deployed to serve multiple NOMA downlink users

whose direct links to the BS are blocked.

• The NOMA downlink sum-rate is maximized by jointly optimizing the position of the

UAV, power allocation coefficients of the BS and the phase shift matrix of the RIS. To

efficiently solve the formulated non-convex problem, this chapter proposes a DDPG-

based algorithm which is not only suitable for the time-invariant situation but also for

the time-variant one.

• Because the phase shifts brought by the RIS constantly change channel gains between

the BS and users, deciding the decoding order of NOMA downlink users during training

is challenging. To tackle this challenge, we propose a dynamic decoding order decision

strategy. Simulation results are provided to demonstrate the superior performance of the

proposed algorithm on sum rate and robustness.

4.2 System Model and Problem Formulation

Consider a RIS-UAV-NOMA network as shown in Fig.4.1. It is assumed that each node

is equipped with a single antenna. The BS serves K users (denote the users set by K) who

are randomly distributed in a certain area A. Assume that downlink users’ direct links to

the BS are blocked, for example, buildings and mountains. Hence, the UAV-equipped RIS is
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Figure 4.1. UAV based RIS-assisted NOMA downlink system.

deployed to create reflection links between the users and the BS, where the RIS is equipped

with N passive phase shift elements. Assume that the UAV flies at a fixed altitude over area

A autonomously, and starts at a fixed charge point. The channels are assumed as the Rician

fading channel because the UAV-to-ground links are LoS [106], and the CSI is assumed to

be known perfectly (i.e., CSI estimation errors are not considered) at the BS and the UAV-

equipped RIS, where the energy consumption and flight duration issues of the UAV [107] are

neglected. Note that due to the used DDPG method, the proposed algorithm is applicable to

the case, where the channels are time-varying between time slots, but remain constant within

one time-slot. Denote the channel vectors between the BS and the RIS by g ∈ CN×1 and the

channel vectors between the RIS and the k-th user by hrk ∈ CN×1, respectively. The small

scale fading and the path loss are both considered. According to the NOMA principle, the

BS transmits the superposition coding to all users. Hence, the received signal at each user is

given by

yk = hH
rkΦg

K∑︂
i=1

ρisi + nk, k = 1, · · · , K, (4.1)

where Φ = diag(ejθ1 , ejθ2 , · · · , ejθN ) is the RIS diagonal phase shift matrix, θn ∈ [0, 2π]

is the phase shift of the n-th element, ρi ∈ [0, 1] is the BS transmitted power allocation

coefficient and
∑︁K

i=1 ρi = 1, si is the transmitted signal for the i-th user that satisfyingE[s2i ] =
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1 and nk is the noise which follows CN (0, σ2). Since the UAV is deployed, we use v(x, y) to

denote the RIS-UAV horizontal position and hI for its height. The BS is located at the original

point (0,0) and the BS height is hB. uk(xk, yk), k = 1, · · · , K denotes the horizontal

position of the k-th user. Hence, the distance between the BS and the RIS can be derived

as dBI =
√︁
x2 + y2 + (hB − hI)2 and the distance between the RIS and the k-th user is

dIuk
=
√︁

(x− xk)2 + (y − yk)2 + h2
I . Considering the path loss, the channel gain for the

k-th user can be rewritten as

hk =
hH

rkΦg

(dBIdIuk
)α
, (4.2)

where the α is the path loss coefficient.

To implement the SIC for NOMA users, the channels’ quality should be obtained first.

Assume that the weakest user (who has the worst channel) is the 1-st user and the strongest

user (who has the best channel) is the K-th user. According to the SIC principle, the j-th

(1 ≤ j ≤ K) user needs to decode the signals of all j − 1 weaker users so that the j-th

user can remove those signals from the superposed received signal. Therefore, the signal-to-

interference-plus-noise ratio (SINR) for the j-th user to decode the t-th (t ≤ j − 1 ≤ K)

user’s signal as follows:

SINRt→j =
|hj|2Pmaxρt∑︁K

i=t+1 |hj|2Pmaxρi + σ2
. (4.3)

Afterwards, the user j can decode its own signal by simply treating the signal of all the rest

users as interference. The SINR for the j-th user to decode its own signal is given by

SINRj→j =
|hj|2Pmaxρj∑︁K

i=j+1 |hj|2Pmaxρi + σ2
, (4.4)

where Pmax is the maximum transmission power. Note that the data rate for each user to de-

code its own signal can be calculated by (4.4) and R = log(1+SINR). Denote the minimum

target data rate by Rmin. To make sure SIC can be successfully implemented, the data rate

of the j-th user decoding the t-th user’s signal is required no smaller than the data rate of the
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t-th user decoding its own signal, which means Rt→j ≥ Rt→t ≥ Rmin,∀t < j. The problem

formulation will be described next in detail.

Our aim is to maximize the sum rate by jointly optimizing the power allocation ρi at the

BS, the phase-shifting Φ of the RIS and the horizontal position v(x, y) of the UAV. Hence,

the optimization problem can be formulated as follows:

(P1) : max
{ρ,Φ,v}

K∑︂
t=1

Rt→t (4.5a)

s.t. Rt→t ≥ Rmin,∀t ∈ K, (4.5b)

Rt→j ≥ Rt→t ∀t, j ∈ K, t > j, (4.5c)
K∑︂
k=1

ρk ≤ 1, (4.5d)

v(x, y) ∈ A, (4.5e)

0 ≤ θn ≤ 2π, n = 1, · · · , N. (4.5f)

Constraint (4.5b) is to guarantee the QoS for all users, and (4.5c) ensures that the SIC process-

ing can be implemented successfully. Constraint (4.5d) is the BS total transmission power

constraint and (4.5e) is to restrict the UAV flies in a feasible certain area. The last constraint

(4.5f) is the angle constraint for each element of the RIS. The problem (P1) is non-convex

and hard to find the global optimal solution due to the coupled variables {ρ,Φ, v}. Hence, in

this chapter, we propose a robust DRL-based framework to solve the problem (P1).

4.3 Deep Reinforcement Learning-Based Optimization

In this section, the DDPG algorithm is first briefly introduced. Afterwards, actions, states,

and reward are defined respectively. Finally, we discuss how can the DDPG framework be

applied to solve the formulated problem and what is the working procedure of DDPG.
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4.3.1 Introduction to Deep Deterministic Policy Gradient

DDPG is a model-free, off-policy actor-critic algorithm by applying deep function ap-

proximators. Generally speaking, similar to DQN the aim of DDPG is to find an action that

maximizes the output Q value according to the current state. However, unlike the DQN al-

gorithm can only be used for discontinuous action scenario, DDPG allows the agent learns

policies in high-dimension, continuous action space [84]. On the other hand, although the

policy gradient method is suitable for continuous action, it is unsatisfactory under wireless

communication context [108] because of its drawback of slow convergence. Specifically,

DDPG has the following four neural networks that need to be trained

• An evaluation actor network µ(s|θµ). θµ denotes its parameters. It outputs actions at by

taking state st as its input.

• A target actor network µ′(s|θµ′). This neural network is parametrized by θµ′ . The in-

put is previous state st−1, but the output action is used to update the parameters of the

evaluation critic network.

• An evaluation critic network Q(s, a|θq). θq denotes its parameters. It inputs the current

state st and action at and output the Q value.

• A target critic network Q′(s, a|θq′). This neural network is parametrized by θq′ . The

input is the previous state st−1 and the corresponding actions from the target actor net-

work, and the output is the target Q value.

4.3.2 DDPG Working Procedure

Before the training starts, there are two important mechanisms have to be clarified:

(1) Exploration: In order to make the agent obtain better exploration, the randomly gener-

ated noise is added to the output action of the evaluation actor network which can be expressed
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as follows:

µ′(st) = µ(st; θµ) +N , (4.6)

where N is the Gaussian noise which has the same dimension with the output action.

(2) Experience replay: To avoid the strong correlation among different samples, similar

to DQN, DDPG also uses experience replay. In detail, an experience replay buffer D with

capacity C is created to store multiple transitions (st, at, rt, st+1), then these past experiences

will be randomly selected with a fixed quantity to train the networks. The set of selected

experiences is called mini-batch with batch size NB.

In DDPG, the training stage starts when the experience replay buffer is full. NB transitions

(st, at, rt, st+1) are selected as a mini-batch to train the four neural networks. As mentioned

before, the goal of DDPG algorithm is to find an action that can maximize the Q value (i.e., the

output of Q(st, at|θq) where at = µ(st|θµ)). Therefore, to train the evaluation actor network

the following objective function needs to be maximized:

J(θµ) = Q(st, at = µ(st|θµ)|θq). (4.7)

To maximize the objective function above, gradient ascent with chain rule is applied:

∇θµJ =
1

NB

NB∑︂
t=1

(∇aQ(st, µ(st|θµ)|θq)∇θµµ(st|θµ)). (4.8)

While it is more complicated for critic network training. First, the target Q value is obtained

by inputting the output of the target actor network according to state st+1:

yt = rt + λQ′(st+1, µ
′(st+1|θµ′)|θq′), (4.9)

where λ is the discount factor. Secondly, the Q value calculated by the evaluation critic

network is obtained according to st and at, i.e., Q(st, at|θq). Finally, the evaluation critic
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Figure 4.2. Framework of DDPG.

network is updated by minimizing the loss function

L(θq) =
1

NB

NB∑︂
t=1

(yt −Q(st, at|θq))2. (4.10)

For target actor network and target critic network updating, DDPG uses soft updating [84] to

avoid the unstable and divergence trend that appeared in Q-learning.

θ′ ← τθ + (1− τ)θ′, (4.11)

where τ ≪ 1 is the soft updating coefficient. Note that this updating strategy means updat-

ing the target network’s parameters by slowly tracking the learned evaluation network. The

framework of DDPG is illustrated in Fig.4.2.

4.3.3 The DRL Processing

In the communication system model Fig.4.1, we define the time-varying channels as the

environment and treat the RIS-UAV as the agent. The rest corresponding elements are defined

as follows
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• State space: The state of time step t is defined as

st =
[︂
R

(t−1)
1 , · · · , R(t−1)

K , θ
(t−1)
1 , · · · , θ(t−1)

N , (4.12)

ρ
(t−1)
1 , · · · , ρ(t−1)

k , x(t−1), y(t−1)
]︂
,

where {R(t−1)
1 , · · · , R(t−1)

K } are all users’ data rate at time t− 1, {θ(t−1)
1 , · · · , θ(t−1)

N } denotes

the angle of the RIS phase shift, {ρ(t−1)
1 , · · · , ρ(t−1)

k } denotes the power allocation to each

user’s signal and {x(t−1), y(t−1)} represents the UAV’s horizontal position.

• Action space: According to optimization needed variables, the action of time step t is

defined as

at =

[︃
θ
(t)
1 , · · · , θ(t)N , ρ

(t)
1 , · · · , ρ(t)k , x(t), y(t)

]︃
. (4.13)

At the time step t, the agent inputs the state st to obtain the corresponding action at according

to current environment. Then the agent obtains the new phase shiftΦ, power allocation ρi, i =

1, · · · , k and horizontal position v.

• Reward: Because the objective is to maximize downlink users’ sum-rate, intuitively we

use the sum-rate as the reward, which is consistent with the aim of DDPG to maximize the

accumulated reward.

rt = R(t)
sum =

K∑︂
k=1

R
(t)
k , k = 1, · · · , K. (4.14)

4.3.4 Processing to Satisfy Constraints

To satisfy the constraints of the problem (P1), the following manipulations are carried out:

To guarantee QoS constraint (4.5b), calculate the data rate R
(t)
k of each user at each step t to

check if it can achieve the minimum target rate. If all the calculated rates satisfy the constraint

(4.5b), store this experience into the replay buffer directly. In contrast, a punishment mecha-

nism will be carried out (e.g., set rt = 0) for those experiences that can not satisfy (4.5b) to

avoid the agent taking bad actions. In order to ensure the SIC is successfully implemented
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(i.e. the constraint (4.5c)), conventional optimization methods, such as convex optimization,

have to do a large amount of mathematical processing. However, in the proposed algorithm,

the constraint (4.5c) can be always satisfied if the channel quality dependent decoding order

is re-decided after the action at is outputted at each step t (see Remark 1 and Proposition 1).

Note that, as aforementioned, the perfect CSI can be obtained by the BS and UAV.

Remark 3. Note that channel vectors are randomly generated at the beginning of each episode.

Hence the generated channels are fixed within one episode. However, recall the equation

(4.2), the overall channel is changing during each episode because the output phase shifts

are different at each step.

Proposition 3. The SIC constraint (4.5c) will always be satisfied if the decoding order is

decided by the current channels.

Proof. Recall equation (4.3), its numerator and denominator are divided by |hj|2 simultane-

ously (where the case for the weaker t-th user shown in (4) can be obtained similarly), then

we have

SINRt→j =
Pmaxρt∑︁K

i=t+1 Pmaxρi +
σ2

|hj |2
, (4.15)

SINRt→t =
Pmaxρt∑︁K

i=t+1 Pmaxρi +
σ2

|ht|2
. (4.16)

Under the given |hj| ≥ |ht|, we have SINRt→j ≥ SINRt→t that satisfies the SIC constraint.

Therefore, the problem (P1) becomes

(P2) : max
{ρ,Φ,v}

K∑︂
t=1

Rt→t (4.17a)

s.t. Rt→t ≥ Rmin, ∀t ∈ K, (4.17b)

(4.5d)− (4.5f). (4.17c)

For the constraint (4.5d), we found that the output from the neural network highly possible
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Algorithm 2 Proposed DDPG-based algorithm
1: Initialization: Randomly initialize the critic evaluation network Q(s, a; θq) and the actor evaluation

network µ(s; θµ) with their corresponding parameters θq and θµ. Initialize the critic target network
Q′(s, a; θq′) and the actor target network µ′(s; θµ′) with parameters θq ← θq′ and θµ ← θµ′ .
Initialize the experience replay buffer D with capacity C.
Initialize the learning rate β, the discount factor λ, the soft update coefficient τ and the minibatch size
NB .

2: for episode j = 1, · · · , J do
3: Randomly initialize the phase shift matrix Φ(j) and obtain channel vectors G(j) and h

(j)
rk , users’ po-

sition uk(xk, yk). Initialize the UAV’s position v(x, y) at a fixed point. Average initializing the power
allocation coefficient ρk = 1

K , k = 1, · · · ,K.
4: Decide the decoding order according to (4.2).
5: Calculate each user’s data rate by using (4.4).
6: Obtain the initial observed state s1 (4.12).
7: Initialize the random process N for action exploration.
8: for step t = 1, · · · , T do
9: Choose action at = µ(s; θµ) +Nt.

10: Extract corresponding actions to obtain phase shift Φ(t), power allocation coefficients ρ(t), UAV po-
sition v(t) .

11: Decide the current decoding order according to the current channel quality.
12: Calculate each user’s date rate according to (4.4) and the sum rate to obtains the reward rt and the

new state st+1.
13: Set rt to 0 if (4.5b) can not be satisfied.
14: Store transition {st, at, rt, st+1} into the replay buffer D.
15: Sample NB minibatch transitions from D to train.
16: Calculate target Q value by the equation (4.9).
17: Update the critic evaluation network Q(s, a; θq) by minimizing the loss function (4.10).
18: Update the actor evaluation network µ(s; θµ) by using the sampled policy gradient in (4.8) .
19: Update two target networks by using soft update (i.e.(4.11)).
20: Transfer state st to st+1.
21: end for
22: end for

exists negative values. To solve this, some functions (e.g. exponential function) can be used

to map the output values to the feasible range, and this trick is also valid for the constraint

(4.5e) and (4.5f). Based on all discussions above the algorithm 2 is summarized to show the

proposed algorithm in detail.

4.4 Simulation Results

4.4.1 Channel environment and hyper parameters

In this section, we carry out the proposed DDPG-based algorithm and present the results

to analyse its performance. As Fig. 4.1 shown, the BS is deployed at the origin point (0,0), the
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Figure 4.3. DNN framework for Actor network and Critic network.

RIS-UAV starts at the point (50,0), and users are randomly distributed in the areaA which is

(45,45), (55,45), (55,55) and (45,55). In each episode, users’ positions are assumed fixed. As

assumed before, the channels between the BS and the RIS, and the channels between the RIS

and users are all LoS. The Rician fading channel is used according to the following equation:

G = H

√︃
Ω

Ω + IN
+HR

√︃
1

Ω + IM
, (4.18)

where H represents the deterministic component, HR denotes the Rayleigh fading compo-

nent and Ω is the Rician K-factor. In our simulations, we set Ω = 10. For the large scale

fading, the path loss coefficient is α = 2. According to the channel assumption in section

4.2, the channels are randomly generated for each episode, but they are fixed within each

episode. On the other hand, the altitude of the BS is hB = 20 and the RIS-UAV is deployed

at hU = 30. For other parameters, we set noise power as σ2 = −70dBm.
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4.4.2 Deep neural network structure and parameters

The whole framework for DDPG is shown in Fig.4.2 where Actor and Critic use different

structures respectively. The depth of the neural network and the number of neurons (i.e. the

dimension of each layer) affect the learning efficiency and effect. In our experiments, for

the actor network, we use two layers fully connected network (i.e. two-layered deep neural

network (DNN)) for both of actor evaluation network and actor target network (see Fig.4.3

left). The dimensions of the input layer and the output layer are determined by the dimensions

of state and action. Hence, the dimension of the input layer is set as N + 2(K + 1) and the

dimension of the output layer is set as N + K + 2. Note that a complex number should be

treated as a two-dimension array because of its real part and imaginary part. On the other

hand, the first layer uses the ReLU function as the activation function while the output layer

uses tanh(·) function to gain enough gradient and the batch normalization is applied between

two hidden layers. For the critic network, similarly, two layers fully connected network is

used. However, the structure becomes the following: input the state data to one layer and

input the action state to another layer, then add these two layers’ output together and follow the

ReLU function as the input of the output layer (see Fig.4.3 right). As the setting of the Actor,

there is a batch normalization layer behind the first hidden layer as well. The hyper-parameters

are set as follows: learning rate for training evaluation network β = 0.001, discount factor

λ = 0.95, learning rate for soft update τ = 0.005, experience replay buffer size C = 50000,

number of episodes J = 1000, number of steps for each episode T = 500, size if sampled

mini-Batch NB = 16. Additionally, the added noise in equation (4.6) for exploration is set as

complex Gaussian noise with zero mean and 0.1 variance.

4.4.3 Simulation results

In Fig.4.4 and Fig.4.5, the number of episodes versus accumulated reward is shown re-

spectively under different RIS and users setup, where their first 100 episodes are the random

data collection stage. The number of neurons for each hidden layer is 300. Fig.4.4 illustrates
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Figure 4.4. Number of episodes versus accumulated reward for different number of RIS elements Pt = 10dB,
K =4.
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Figure 4.5. Number of episodes versus accumulated reward for different number of users Pt = 10dB,
N = 64.

that the more RIS elements are used, the higher the accumulated reward can be obtained. In

addition, comparing these three cases, the RIS = 4 case converges before 200 episodes, the

RIS = 16 case converges before 400 episodes and the RIS = 64 case converges at around 800

episodes. Hence, for the same DDPG framework training, the fewer the number of RIS ele-

ments, the faster the convergence. Hence, increasing the number of neurons can improve the

convergence speed, but more neurons lead to more calculations. Therefore, it is crucial that

build a neural network depending on the actual situation. Fig.4.5 reveals what will happen

when a BS serves a different number of users. It is clear that these five scenarios start at
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Figure 4.6. Transmit power versus sum rate K = 4.

different levels at the random initialization stage, but converge at the same level after around

800 episodes. In consequence, in this system when the transmit power and the number of RIS

elements are fixed, increasing the number of users does not guarantee the sum rate improve-

ment, as the degrees of freedom available for resource allocation is limited in a downlink

system[109]. Hence, it is important to consider the tradeoff between the number of users

and the data rate when designing the system. On the other hand, no matter how many RIS

elements or users there are, the proposed algorithm is convergent and stable (i.e. it is robust

to the number of RIS elements and users).

Fig.4.6 illustrates the sum rate versus maximum transmit power Pt. Consider two cases of

system parameters setup, one is RIS elements N = 50 and the other one is N = 100. As can

be seen, the proposed algorithm outperforms the random case significantly for all considered

transmit power, even the optimized case for N = 50 is much better than the random case for

N = 100.

To further demonstrate the proposed algorithm’s performance, we carried out the algo-

rithm for scenarios of the different number of RIS elements, as Fig.4.7 shown. It can be seen

that the sum rate increases with the increase of RIS elements quantity. Therefore, increasing

RIS elements is a good way to enhance the sum rate. Nevertheless, the more RIS elements

are equipped the size of the training data is larger, which will need more neurons and increase
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Figure 4.7. Number of RIS elements versus sum rate, K = 4.

the training duration. Too many training data and neurons will cause higher calculation com-

plexity then make non-negligible output latency. Hence, the tradeoff between sum rate and

complexity has to be considered in practical construction.

4.5 Conclusion

This chapter investigated the sum rate maximizing problem in a RIS-UAV-NOMA down-

link network. Power allocation of the BS, the RIS phase shift and the UAV position are jointly

optimized by applying the proposed DDPG-based algorithm. Dynamically deciding the de-

coding order according to the current channel environment in each step is an efficient way to

guarantee the SIC implementation successfully. Computer simulations have shown that the

proposed algorithm can be applied in the time-varying channel environment to enhance the

sum-rate performance significantly, as well as is robust to the number of RIS elements and

users.



Chapter 5

Joint Robust Beamforming Design for

WPT-assisted D2D Communications in

MISO-NOMA: Fractional Programming

and Deep Reinforcement Learning

5.1 Introduction

With the development of wireless communication from 5G to 6G, the demand for mMTC

is raised to umMTC [110]. The emergence of new usage scenarios and applications, such as

the IoT, dramatically drove this upgrade. However, simultaneously serving massive devices

by utilizing the limited spectrum resource is challenging. In the meanwhile, the ultra-dense

networks formed by massively connected devices lead to huge power consumption, which

significantly increases the operating cost of wireless communication networks. Thus, a spec-

trum and energy efficient solution that enables ultra-dense networks is urgent and critical.

To support the ultra-dense scenario in 5G and 6G, D2D communication has still been

regarded as a promising scheme and will be gradually appended to existing cellular networks

101
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[111]–[113]. D2D communication was introduced in 4G LET as a kind of peer-to-peer short

wireless transmission between devices without relaying by BS or AP [114], [115], which can

mitigate the load on the BSs. Generally, D2D communication is classified into two categories:

Inband D2D and Outband D2D[115]. Inband D2D communication utilizes the same licensed

spectrum in cellular networks with cellular devices such as mobile phones. For outband

D2D communication, it occurs in Ad-hoc networks such as Wi-Fi, Bluetooth etc., which

is out of the scope of this chapter. In terms of licensed spectrum utilization, there are two

ways to assign the spectrum to D2D devices, namely Underlay and Overlay [116], [117].

The Underlay type allows the licensed spectrum to be shared with both D2D devices and

original cellular devices while the Overlay type divides the licensed spectrum into two parts

and allocates them to cellular devices and D2D devices respectively. Although D2D has

been widely studied in existing works [118]–[120], it still has many challenges that demand

prompt solutions [112], [114]. For example, if deploying battery-powered D2D pairs in a

legacy cellular network, resource allocation, interference controlling and energy efficiency

improvement, etc., are required to enhance the network’s performance and prolong the D2D

pair’s battery life.

With the consideration of the advantages of D2D communications, WPT and NOMA tech-

nique, in this chapter, we naturally combine them together and then propose a spectrum and

energy cooperation scheme. In particular, the WPT-assisted Inband-Underlay D2D commu-

nication is deployed into NOMA downlink networks, of which WPT-assisted devices can

harvest energy from NOMA downlink signal and can share the same spectrum with NOMA

downlink users. Since energy efficiency is a very important performance index for WPT de-

vices, this chapter aims to improve the energy efficiency of the WPT-assisted D2D communi-

cation. Due to the fraction form of the problem, fractional programming is naturally selected.

On the other hand, inspired by many works on applying learning-based methods to commu-

nication optimization problems, for example, [121] has performed the online energy-efficient

power control in wireless networks by deep neural networks, this chapter uses a DRL-based

approach to solve the problem.
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5.1.1 Related Works

In literature, D2D, NOMA and WPT were combined and studied in pairs or all together for

different scenarios. The authors in [72] analysed the performance of a NOMA uplink network

consisting of a single non-energy-constrained device and multiple energy-constrained WPT

supported devices, which provides the research directions for WPT-NOMA. The long-term

throughout of an energy-constrained WPT supported secondary user was maximized by op-

timizing its transmit power and the time-sharing coefficient, where convex optimization and

deep reinforcement learning are employed together [122]. The authors in [123] maximized

the uplink sum rate of multiple WPT-assisted devices in a single user downlink NOMA net-

work, where the time switching coefficient and power allocation were alternatively optimized.

In [124], the energy efficiency of a downlink SWIPT-enabled NOMA system with TS-based

terminals was maximized by jointly optimizing the time switching coefficients of terminals

and the power allocation strategy of the BS. The authors in [125] obtained the optimal power

allocation scheme for a single-carrier single-uplink-user NOMA-enabled network by using

convex optimization, where one D2D transmitter and two D2D receivers are taken into ac-

count. [126] optimized the resource allocation and channel assignment scheme in a NOMA

downlink cellular network, where multiple D2D devices are deployed. A recent work [127]

applied WPT to two NOMA uplink users groups to improve energy efficiency and spectrum

efficiency, where users in these two groups perform energy harvesting and signal transmission

alternatively.

5.1.2 Contributions

To realize the spectrum and energy cooperation aforementioned, there are challenges that

need to be overcome [114]. First, due to the spectrum sharing protocol, severe co-channel

interference to NOMA downlink users will be introduced when the D2D devices are appended

to cellular networks. Therefore, interference control has to be carried out to guarantee the

original cellular users’ QoS when D2D devices are deployed. Second, the inaccuracy of



104 5.1. INTRODUCTION

channel estimation in practical systems makes the beamforming more challenging to design,

and hence the robust beamforming design is important. Different from [128] maximizing the

energy efficiency of a D2D pair in a single-antenna BS NOMA uplink network, this chapter

maximizes the energy efficiency of the WPT-assisted D2D communication in a MISO-NOMA

downlink system. The main contributions are summarised as follows:

• In this chapter, we propose a novel scheme that can realize spectrum and energy co-

operation, where a WPT-enabled D2D pair is inserted into a multi-user MISO-NOMA

downlink network. Assume that the D2D transmitter adopts the harvesting energy then

transmitting information strategy. This scenario can be extended to the legacy user-

clustered hybrid NOMA networks [129] and is bound to appear in the process of future

cellular networks upgrade to ultra-dense networks.

• The formulated energy efficiency maximization problem is not concave and the two

variables (beamforming vectors of the BS and time switching coefficient of the WPT

device) are highly coupled in both the fractional objective function and constraints. To

efficiently solve the non-concave problem, it first is simplified, and then an alternating

algorithm, namely, PFP is proposed. Specifically, the proposed problem is split into

two subproblems to decouple the coupled variables. Afterwards, the time switching

coefficient is optimized by applying the Dinkelbach method. For robust beamforming

designing, the multi-dimension complex quadratic transform is used. Simulation re-

sults reveal that the proposed algorithm can converge perfectly for different schemes

and channel assumptions.

• A partial exhaustive search algorithm which can bypass the alternating operation is pro-

posed as a benchmark to verify the PFP algorithm’s optimality. Additionally, a DRL

approach (i.e., DDPG) is applied to directly solve the non-concave energy efficiency

maximization problem. Simulation results reveal a fascinating finding: the proposed

PFP algorithm can provide better performance when channel estimation is accurate (per-

fect CSI or only minor error exists), while the DDPG-based algorithm has the capability
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Figure 5.1. System model.

to mitigate the adverse impact caused by channel estimation error.

• Simulations are also performed for the scenario when OMA is applied. Simulation

results illustrate that the proposed algorithm is also applicable to OMA. However, one

can conclude is, in the examined system model, the WPT-assisted D2D communication

in MISO-NOMA downlink networks can obtain higher energy efficiency enhancement

than that in MISO-OMA downlink networks.

5.2 System Model

Consider a MISO-NOMA downlink network with WPT-assisted D2D communications as

shown in Fig. 5.1. This network consists of a BS, K NOMA downlink users and a pair of

D2D devices which are denoted by Dt (the D2D signal transmitter) and Dr (the D2D signal

receiver) respectively, where the BS is equipped with M antennas while all other nodes are

equipped with a single antenna. This system can further be extended to the legacy user-

clustered hybrid NOMA networks [129]. Assume that Dt is a WPT-assisted device and apply

the harvest-energy-then-transmit strategy. In detail, Dt performs the energy harvesting and

then stores it during the first τT seconds by utilizing the BS transmitted downlink signal.
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During the rest (1− τ)T seconds, Dt sends its signal sD to Dr by using the harvested energy.

τ represents the time-switching coefficient (0 ≤ τ ≤ 1) and T is the duration of one time slot.

For simplicity, we set T = 1 in this chapter. Downlink users required signals during τ and

1− τ seconds are respectively denoted as s(1)k and s
(2)
k , E{|s(1)k |2} = E{|s(2)k |2} = 1, where

E{·} is the expectation operator. The add-on WPT-D2D pair is admitted to share the same

communication resource with NOMA downlink users. Due to the channel estimation is not

always perfect in practice, this chapter model the channels with estimation errors as follows

[130]:

h = ĥ+ ϵ, (5.1)

where h is the actual channel, ĥ is the estimated channel ϵ represents the channel estimation

error with variance σ2
ϵ .

During the first stage (i.e., τ seconds), the BS transmits the superposition signal s(1) =∑︁K
k=1ωks

(1)
k to all K downlink users while Dt harvests energy from the BS with broadcast

signal s(1). Therefore,Dt does not interfere with downlink users receiving their signals during

this stage. The Uk’s received signal at this stage is given by

y
(τ)
k = ĥ

H

k

K∑︂
k=1

ωks
(1)
k + ϵHk

K∑︂
k=1

ωks
(1)
k + nk, (5.2)

where hk ∈ CM×1 is the channel vector from the BS to the Uk, ωk ∈ CM×1 is the beam-

forming vector for the Uk, ϵk denotes the Uk’s channel estimation error and nk ∼ CN (0, σ2)

denotes the AWGN.

In this chapter, U1 is defined as the weakest user whereas UK is the strongest user (i.e.,

1 ≤ k < t ≤ K for (5.3)). In other words, the channel gains are sorted as |h1|2 ≤ |h2|≤ · · · ≤

|hK |2. According to the SIC principle, a stronger user (who has better channel gain) can

decode the signal of weaker users (who has worse channel gain). Therefore, the data rate of
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Ut to decode k weaker users is given by

R
(τ)
k→t = τ log(1 +

|hH
t ωk|2∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

), (5.3)

where Θt =
∑︁K

i=1 |ϵHt ωi|2 is the interference caused by channel estimation errors. After

removing the weaker users’ signal, Ut can decode its own signal by simply treating other

stronger users’ signal as interference. Therefore, the data rate that Ut to decode its own signal

in this stage is given by

R
(τ)
t→t = τ log(1 +

|hH
t ωt|2∑︁K

j=t+1 |hH
t ωj|2 +Θt + σ2

). (5.4)

In the considered MISO-NOMA downlink system, assume that all the energy beams can be

harvested and linear energy harvest strategy is applied [131]. Therefore, the received power

at Dt is given by

Pr =
K∑︂
k=1

|hH
Dt
ωk|2, (5.5)

where hDt is the channel vector from the BS to Dt. Denote the BS maximum transmit power

byPmax. We have
∑︁K

k=1 |ωk|2 ≤ Pmax. Assume that the harvested energy will be totally used

to transmit the signal, whereas the circuit needed energy is provided by the battery. Therefore,

the transmit power of Dt can be represented by

Pt =
ητPr

1− τ
, (5.6)

where 0 ≤ η ≤ 1 is the RF energy conversion coefficient.

During the second stage (i.e., the rest 1 − τ seconds), downlink users receive s(2) while

Dt transmits its signal to Dr. The transmitted signal from Dt to Dr is denoted by sD. Since

the D2D pair shares the same frequency band, the signal sD sent by Dt will interfere with

downlink users to receive the signal s(2)k . Therefore, the Uk’s received signal in the second
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stage is given by

y
(1−τ)
k =

√︁
PthdksD + ĥ

H

k

K∑︂
k=1

ωks
(2)
k + ϵHk

K∑︂
k=1

ωks
(2)
k + nk, (5.7)

where hdk is the channel between the Dt and the Uk. For the D2D pair, the received signal at

the Dr is given by

y
(1−τ)
Dr

=
√︁

PtĥddsD +
√︁

PtϵddsD + hH
Dr

K∑︂
k=1

ωks
(2)
k + nD, (5.8)

where hdd denotes the channel gain from Dt to Dr, ϵdd represents the channel estimation

error, hDr ∈ CM×1 is the channel vector between the BS and Dr and nD ∼ CN (0, σ2) is the

AWGN at Dr.

Due to the double-fading effect and the fact that Dt’s transmitted signal is introduced

unexpectedly, directly decoding the BS signal by treating sD as interference is an appropriate

decoding strategy for downlink users. Hence, the data rate of Ut to decode Uks’ signal can be

written as
R

(1−τ)
k→t = (1− τ)×

log(1 +
|hH

t ωk|2

Pt|hdt|2 +
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

),
(5.9)

where hdt denotes the channel gain between Dt and the Ut. After removing those weaker

users’ signal, the downlink data rate of the Ut to decode its own signal is

R
(1−τ)
t→t = (1− τ)×

log(1 +
|hH

t ωt|2

Pt|hdt|2 +
∑︁K

j=t+1 |hH
t ωj|2 +Θt + σ2

).
(5.10)

For the D2D receiver, all the downlink users’ signals from the BS are treated as interfer-

ence because it is not practical for a battery-powered devices to perform the SIC with high
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complexity. The data rate that Dr to decode sD is given by

RD = (1− τ) log(1 +
Pt|hdd|2∑︁K

k=1 |hH
Dr
ωk|2 + Pt|ϵdd|2 + σ2

). (5.11)

The downlink data rate of the Uk to decode its own signal and the data rate of Ut to decode

weaker Uk’s signal during a whole time slot are respectively denoted by

Rk = R
(τ)
k→k +R

(1−τ)
k→k , (5.12)

Rk→t = R
(τ)
k→t +R

(1−τ)
k→t . (5.13)

Denote the power to drive the Dt’s circuit by Pc. The total energy consumption of Dt during

one time slot can be represented as follows:

Ec = (1− τ)Pt + Pc = ητPr + Pc. (5.14)

5.3 Problem Formulation

For WPT devices, utilizing energy effectively is extremely essential. Hence, the aim of this

chapter is to maximize energy efficiency of the WPT-assisted D2D pair while guaranteeing

the NOMA downlink user’s data rate by jointly optimizing the time switching coefficient τ

and beamforming vectors ω. The optimization problem can be formulated as:

P1: max
{τ,ω}

RD

Ec

(5.15a)

s.t. min{Rk→t, Rk→k} ≥ Rmin, 1 ≤ k ≤ t ≤ K (5.15b)
K∑︂
k=1

|ωk|2 ≤ Pmax, 1 ≤ k ≤ K (5.15c)

0 ≤ τ ≤ 1, (5.15d)
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where Rmin denotes the minimum target date rate of NOMA downlink users. (5.15b) is the

QoS constraint which also guarantees that downlink users can implement SIC successfully.

(5.15c) is the total power constraint of the BS, and (5.15d) is to restrict the time-switching

coefficient in the feasible range. τ = 0 indicates that the D2D transmitter transmits the signal

in the whole time slot. In contrast, τ = 1 means the D2D transmitter harvests energy in the

whole time slot.

Lemma 2. Rk→k ≥ Rmin is equivalent to 1
1−τ

R
(1−τ)
k→k ≥ Rmin, and (5.18) can also be recast

in the same way.

Proof. Define A = log(1 +
|hH

k ωk|2∑︁K
j=k+1 |hH

k ωj |+σ2
), B = log(1 +

|hH
k ωk|2

Pt|hdk|2+
∑︁K

j=k+1 |hH
k ωj |+σ2

) and

R = Rmin. Substitute (5.4) and (5.10) into (5.19). We have

τA+ (1− τ)B ≥ R, (5.16)

which is equivalent to

τ(A−R) ≥ (τ − 1)(B −R). (5.17)

It can be observed that τ−1 ≤ 0 andA ≥ B are always held. Therefore, (5.17) can be always

satisfied if B ≥ R is held.

According to lemma 1, it can be observed that the constraint (5.15b) is equivalent to the

following two constraints:
1

1− τ
R

(1−τ)
k→t ≥ Rmin, (5.18)

1

1− τ
R

(1−τ)
k→k ≥ Rmin. (5.19)

In particular, the constraint (5.15b) is equivalent to the following two inequations:

log(1 +
|hH

t ωk|2

Pt|hdt|2 +
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

) ≥ Rmin (5.20)
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and

log(1 +
|hH

k ωk|2

Pt|hdk|2 +
∑︁K

j=k+1 |hH
k ωj|2 +Θk + σ2

) ≥ Rmin, (5.21)

where Θk =
∑︁K

i=1 |ϵHk ωi|2, 1 ≤ k ≤ K. By defining τ̄ ≜ τ
1−τ

, (5.14) then can be recast

as Ec = τ̄(ηPr + Pc) + Pc. After some simple manipulation, the problem P1 can be further

reduced to

P2: max
{τ̄ ,ω}

log(1 + τ̄ ηPr|hdd|2∑︁K
k=1 |hH

Dr
ωk|2+Pt|ϵdd|2+σ2

)

τ̄(ηPr + Pc) + Pc

(5.22a)

s.t.
|hH

t ωk|2

τ̄ ηPr|hdt|2 +
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

≥ γmin, (5.22b)

1 ≤ k < t ≤ K,

|hH
k ωk|2

τ̄ ηPr|hdk|2 +
∑︁K

j=k+1 |hH
k ωj|2 +Θk + σ2

≥ γmin, (5.22c)

1 ≤ k ≤ K − 1, j < K

K∑︂
k=1

|ωk|2 ≤ Pmax, 1 ≤ k ≤ K (5.22d)

τ̄ ≥ 0, (5.22e)

where γmin = 2Rmin−1. P2 is not a concave problem due to the non-concave objective func-

tion (5.22a) and two non-convex constraints (5.22b) and (5.22c). Because the time switching

dependent variable τ̄ and the beamformingω are highly coupled in the problem, P2 is difficult

to obtain the optimal solution directly. In the next section, P2 is divided into two subproblems

and a fractional programming based alternating algorithm is proposed to iteratively optimize

τ̄ and ω.
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5.4 Joint Optimization for Time Switching Coefficient and Beamforming

vectors

In this section, an alternating algorithm is proposed to tackle the non-concave problem. In

particular, the problem is divided into two subproblems, one is the time switching coefficient

τ optimization by applying the Dinkelbach method [80], and the other is robust beamforming

vectors designing by applying the complex multi-dimension quadratic transform [82]. Each

subproblem is analysed and converted from a non-concave form to a concave form. Following

that, these tractable subproblems can be addressed in Matlab using convex optimization tools

like CVX and fmincon.

5.4.1 Time Switching Coefficient Optimization

For given beamforming vectors ω = [ω1, · · · ,ωk], 1 ≤ k ≤ K, the problem P2 can be

reduce to

P3: max
τ̄

log(1 + τ̄A
τ̄B+C

)

τ̄D + E
(5.23a)

s.t. τ̄ at + bk,t ≤ 0, 1 ≤ k < t ≤ K, (5.23b)

τ̄ ck + dk ≤ 0, 1 ≤ k ≤ K, (5.23c)

τ̄ ≥ 0, (5.23d)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = η|hdd|2
∑︁K

k=1 |hH
Dt
ωk|2,

B = η|ϵdd|2
∑︁K

k=1 |hH
Dt
ωk|2,

C =
∑︁K

k=1 |hH
Dr
ωk|2 + σ2,

D = η
∑︁K

k=1 |hH
Dt
ωk|2 + Pc,

E = Pc,

at = η|hdt|2
∑︁K

k=1 |hH
Dt
ωk|2,

bk,t =
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2 − |hH

t ωk|2
γmin

,

ck = η|hdk|2
∑︁K

k=1 |hH
Dt
ωk|2,

dk =
∑︁K

j=k+1 |hH
k ωj|2 +Θk + σ2 − |hH

k ωk|2
γmin

.

(5.24)

Lemma 3. (5.23a) is a concave-convex function of τ̄ , regardless of whether channel estima-

tion errors are existing.

Proof. 1) For the case imperfect CSI is obtained: Define g(τ̄) = log(1 + τ̄A
τ̄B+C

), h(τ̄) is a

concave function of τ̄ and its second-order derivative is given by

∂2g(τ̄)

∂2τ̄
= −AC(2B2τ̄ + 2ABτ̄ + AC + 2BC)

ln 2((A+B)τ̄ + c)2(Bτ̄ + C)2
. (5.25)

2) For the case perfect CSI is obtained: For this case, the numerator of (5.23a) is reduced to

ĝ(τ̄) = log(1 + τ̄ Â), where Â = ηPr|hdd|2
Pi+σ2 . The second-order derivative of ĝ(τ̄) is given by

∂2ĝ(τ̄)

∂2τ̄
= − Â

2

ln 2(1 + Â)2
(5.26)

With non-negative A, B, C and Â, the second-order derivative of g(τ̄) and ĝ(τ̄) are both

non-positive. Therefore, g(τ̄) and ĝ(τ̄) are both concave function of τ̄ .
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According to lemma 2 and the fact that the denominator of (5.23a) is a linear function with

respect τ̄ . It can be observed that (5.23a) is a single-ratio concave-convex function of τ̄ , and

hence Dinkelbach method can be applied to transform it into a concave function [80].

Proposition 4. The maximum EE can be achieved when F (q∗) = 0, where F (q) is defined

as follows

P4:F (q) = max
τ̄

log(1 +
τ̄ ∗A

τ̄ ∗B + C
)− q∗(τ̄ ∗D + E) (5.27a)

s.t. (5.23b)− (5.23d), (5.27b)

where

q∗ =
log(1 + τ̄∗A

τ̄∗B+C
)

τ̄ ∗D + E
. (5.28)

Proof. Please refer to [80].

For a given q the objective function (5.27a) is a concave function minus a convex function

with respect to τ̄ , which yields a concave maximization problem. Therefore, the problem is

reduced to a linear constraints concave problem and can be solved by convex optimization

tools. In the end, the optimized time switching coefficient τ ∗ can be obtained by τ ∗ = τ̄∗

1+τ̄∗
.

5.4.2 Robust Beamforming Design

The last subsection developed the Dinkelbach method to optimize the time switching coef-

ficient τ under fixed beamforming vectorsω. This section focuses on the robust beamforming

design by regarding τ as a constant.



5.4. JOINT OPTIMIZATION FOR TIME SWITCHING COEFFICIENT AND BEAMFORMING
VECTORS 115

For a given time switching coefficient τ , the problem P2 can be recast as follows

P5: max
{ω}

log(1 + τ̄ ηPr|hdd|2
Pi+Θdd+σ2 )

τ̄(η
∑︁K

k=1 |hH
Dt
ωk|2 + Pc) + Pc

(5.29a)

s.t.
|hH

t ωk|2

τ̄ η|hdt|2Pr +
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

≥ γmin, (5.29b)

1 ≤ k < t ≤ K,

|hH
k ωk|2

τ̄ η|hdk|2Pr +
∑︁K

j=k+1 |hH
k ωj|2 +Θk + σ2

≥ γmin, (5.29c)

1 ≤ k ≤ K − 1, j < K

K∑︂
k=1

|ωk|2 ≤ Pmax, 1 ≤ k ≤ K, (5.29d)

Note that Pr =
∑︁K

k=1 |hH
Dt
ωk|2, Pi =

∑︁K
k=1 |hH

Dr
ωk|2 and Θdd = τ̄ η

∑︁K
k=1 |hH

Dt
ωk|2|ϵdd|2.

The problem P5 is not a concave optimization problem as the existing of the non-concave

objective function (5.29a) and the two non-convex constraints (5.29b), (5.29c). Note that

the Dinkelbach’s method is no longer applicable as the objective function is not a concave-

convex fractional form. In order to transform P5 to a tractable convex optimization problem,

the multidimensionnal and complex quadratic transform [82] is applied.

Lemma 4. For two functions Am(ω) : Cd1 → Cd2 and Bm(ω) : Cd1 → S++
d2×d2 , m ∈ N+,

the following equivalent can be established

M∑︂
m=1

AH
m(ω)B−1

m (ω)Am(ω)

= max
z

M∑︂
m=1

(2Re{z†mAm(ω)} − z†mBm(ω)zm),

(5.30)

where zm are introduced auxiliary variables.

Proof. Define f(zm) = 2Re{z†mAm(ω)}− z†mBm(ω)zm, where z†m represents the conjugate

of zm. Note that f(zm) is a linear function minus a quadratic function with respect to zm (i.e.,

a concave function in terms of zm). Therefore, the maximum value of f(zm) can be achieved



116
5.4. JOINT OPTIMIZATION FOR TIME SWITCHING COEFFICIENT AND BEAMFORMING

VECTORS

when ∂f(zm)
zm

= 0. The optimal z∗m that can maximize f(zm) is z∗m = Bm(ω)−1Am(ω).

Hence, the maximum value of f(zm) can be obtained by substitute z∗m into f(zm) (i.e.,

f(z∗m) = Am(ω)HBm(ω)Am(ω)). The equivalence of (5.30) now is established.

Proposition 5. The objective function (5.29a) is equivalent to the following concave form in

terms of ω,

fqq(W , y, z) =2y(log(1 + τ̄ η|hdd|2
K∑︂
k=1

(2Re{z†kh
H
Dt
ωk}

− z†k(Pi +Θdd + σ2)zk)))
1
2

− y2(τ̄ ηPr + (1 + τ̄)Pc)

(5.31)

if the introduced auxiliary variables y and z = {z1, · · · , zk} can satisfy (5.33) and (5.32)

respectively.

z∗k =
hH

Dt
ωk

Pi +Θdd + σ2
, 1 ≤ k ≤ K. (5.32)

y∗ =

√︁
R(W )

E(W )
, (5.33)

where R(W ) is given by (5.35) and E(W ) = τ̄(ηPr + Pc) + Pc. W refers to the collection

of {ωk}.

Proof. First, we prove the equivalence between (5.29a) and (5.31). In order to decouple

the numerator and denominator of (5.29a), the single-ratio quadratic transform [82] is first

applied.

fq(W , y) = 2yR̂(W )
1
2 − y2E(W ), (5.34)

where R̂(W ) = log(1 + τ̄ ηPr|hdd|2
Pi+Θdd+σ2 ). (5.34) is equivalent to (5.29a) if fq(W , y) can achieve

the maximum value with optimal y∗. The first-order derivative of (5.34) with respect to y

is ∂fq(y))

∂y
= 2

√︂
R̂(W ) − 2yE(W ). Since (5.34) is a quadratic function of y, its optimal

y∗ can be obtain by letting ∂fq(y)

∂y
= 0, which yields (5.33). Substitute (5.33) into (5.34) the

objective function (5.29a) is retrieved and the equivalence is established. Although−E(W )

is concave due to its minus quadratic form with respect ω, (5.34) is still non-concave in terms

of W , because the concavity of R̂(W ) is unprovable. To restore the concavity of R(W ),
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lemma 3 is applied. Thus, R̂(W ) can be recast to

R(W ) = log(1 + τ̄ η|hdd|2
K∑︂
k=1

(2Re{z†kh
H
Dt
ωk}

− z†k

K∑︂
k=1

|hH
Dr
ωk|2zk)),

(5.35)

Similarly, (5.35) is equivalent to the numerator of (5.29a) when (5.35) can achieve its max-

imum value with optimal z∗ (i.e., when zk satisfies (5.32)), where z denotes the collection

of zk. By combining (5.31), (5.32), (5.33), (5.34) and (5.35), the equivalence from (5.31) to

(5.29a) is proved.

Second, we show the concavity of (5.31) in terms of W . To show (5.31) is a concave func-

tion ofW , it is sufficient to prove (5.35) is concave. Define f(W ) =
∑︁K

k=1(2Re{z†khH
Dt
ωk}−

z†k
∑︁K

k=1 |hH
Dr
ωk|2zk), its Hessian matrix is given by

∇2f(W ) = −2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z∗1
2HDr 0 · · · 0

0 z∗2
2HDr

...
... . . . 0

0 · · · 0 z∗k
2HDr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.36)

Note that HDr = hDrh
H
Dr

is a positive semidefinite matrix and z∗k
2 ≥ 0, therefore,∇2f(W )

is negative semidefinite. As a result, f(W ) is a concave function. On the other hand, it can

be observed that log(x), x ≥ 0 is non-decreasing and concave. According to operations that

preserve convexity for vector composition in [76], it can be proved that (5.35) is concave.

Furthermore, it is worthy to mention that the function f(x) = x
1
2 is also concave and non-

decreasing. Hence, the first term of (5.31) is concave with respect to W . Due to the negative

quadratic form of ω, the second term of (5.31) is also concave. The concavity of (5.31) in

terms of W has been proved.

Similarly, Lemma 3 is also applicable to attain the concavity of constraints (5.29b) and
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(5.29c). They can be transformed into two concave sets with ω which are shown as follows:

|hH
t ωk|2

τ̄ η|hdt|2Pr +
∑︁K

j=k+1 |hH
t ωj|2 +Θt + σ2

=max
νt,k

2Re{ν†
t,kh

H
t ωk} − ν†

t,kαt,kνt,k ≥ γmin,

(5.37)

|hH
k ωk|2

τ̄ η|hdk|2Pr +
∑︁K

j=k+1 |hH
k ωj|2 +Θk + σ2

=max
µk

2Re{µ†
kh

H
k ωk} − µ†

kβkµk ≥ γmin,

(5.38)

whereαt,k = |hdt|2τ̄ ηPr+
∑︁K

j=k+1 |hH
t ωj|2+Θk+σ2 and βk = |hH

dk|2τ̄ ηPr+
∑︁K

j=k+1 |hH
k ωj|2+

σ2. νt,k and µk are two introduced auxiliary variables which can be updated by

ν∗
t,k =

hH
t ωk

αt,k

, (1 ≤ t < k ≤ K), (5.39)

µ∗
k =

hH
k ωk

βk

, (1 ≤ k ≤ K). (5.40)

Denote the collection of {νt,k} and {µk} by ν and µ respectively. By using (5.31), (5.32),

(5.33), (5.37) and (5.38), the problem P5 can be reformulated as

P6: max
{W ,y,z,ν,µ}

fqq(W , y, z) (5.41a)

s.t. 2Re{ν†
t,kh

H
t ωk} − ν†

t,kαt,kνt,k ≥ γmin, 1 ≤ t < k ≤ K, (5.41b)

2Re{µ†
kh

H
k ωk} − µ†

kβkµk ≥ γmin, 1 ≤ k ≤ K − 1 (5.41c)
K∑︂
k=1

|ωk|2 ≤ Pmax, 1 ≤ k ≤ K. (5.41d)

(5.33), (5.32), (5.39), (5.40). (5.41e)

For given y, z, ν, andµ, the (5.41a) is a concave function and constraints (5.41b) - (5.41e) are

all convex set in regard to ω. Hence, problem P6 is a concave optimization problem [76], and

therefore can be solved by convex optimization tools such as CVX or Matlab fmincon. The

original con-concave energy efficiency maximization problem P1 has been solved by tackling
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Algorithm 3 Proposed PFP algorithm
1: Initialization: Initialize W and τ to a feasible value.
2: repeat
3: Update zk by using (5.32).
4: Update y by using (5.33).
5: Update νt,k by using (5.39).
6: Update µk by using (5.40).
7: With fixed zk, y, νt,k and µk, solve the problem P6 and obtain the optimized W .
8: With optimized W , update q by using (5.28).
9: With fixed q, solve the problem P4 and obtain the optimized τ̄

10: until The value of (5.31) is convergent.

Algorithm 4 Partial Exhaustive Search (PES) for τ
1: Initialization: Initialize W and τ to a feasible value. Initialize the step size ξ.
2: for τ = 0.001 : ξ : 0.999 do
3: repeat
4: Update zk by using (5.32).
5: Update y by using (5.33).
6: Update νt,k by using (5.39).
7: Update µk by using (5.40).
8: With fixed zk, y, νt,k and µk, solve the problem P6 and obtain the optimized W .
9: until The value of (5.31) is convergent.

10: end for
11: Select the τ corresponding to the maximum (5.31).

the subproblems P4 and P6 alternately. The quadratic transform and Dinkelbach method

based alternating algorithm, namely, PFP is proposed to maximize the energy efficiency of

WPT-assisted D2D communications in MISO-NOMA downlink networks. The proposed

algorithm is summarised in Algorithm 3.

5.4.3 A Partial Exhaustive Search based Algorithm

To further demonstrate the optimality of the proposed algorithm, this subsection provides

a partial exhaustive search based algorithm to optimize τ for comparison. As discussed in the

last subsection, the energy maximization problem can be transformed into a concave problem

with respect to beamforming vectors ω for a given time-switching coefficient τ . Therefore,

the solution can be obtained by solving P6 for all τ and selecting the one that corresponds

to the maximum energy efficiency. The partial exhaustive search algorithm is summarised in

Algorithm 4.
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5.5 A Deep Reinforcement Learning based Approach to Maximize the

Energy Efficiency

In this section, a DRL based algorithm, DDPG, is first introduced. Afterwards, the struc-

ture of neural networks and training procedures are provided. At the end of this section, we

discuss the application of DDPG to the proposed problem including the setup of action, state

and reward, as well as constraints handling.

5.5.1 Application DDPG to the Problem

In this chapter, the original problem P1 is solved directly1 by DDPG. Suppose that the BS

is the agent and it can observe the CSI and downlink users’ data rate.

1) Action Space: As the optimization needed variables, beamforming and time switching

coefficient are naturally defined as the action. Note that all elements of beamforming

vectors are complex numbers and the input vectors of neural networks should be real

numbers. Hence, we need to split beamforming vectors into real parts and imaginary

parts. The action at the t-th training step is given by

at = [ τ̄ (t),Re{ω(t)
1 },

· · · ,Re{ω(t)
k }, Im{ω

(t)
1 }, · · · , Im{ω

(t)
k } ] .

(5.42)

2) State Space: The state vector is designed to represent as much information as possi-

ble about the current environment and the impact of the action on the system. For the

proposed optimization problem, the state vector should include all CSI and all NOMA

1There is no any further processing to the variables highly coupled non-convex problem including the objective function and con-
straints.
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downlink users’ data rates. The state vector at the t-th training step is defined as follows:

st = [ |h(t)
1 |2, · · · , |h

(t)
k |

2, |h(t)
Dt
|2, |h(t)

Dr
|2, |h(t)

dd |
2,

|h(t)
d1 |

2, · · · , |h(t)
dk |

2, R
(t)
1 , · · · , R(t)

k ,R(t)
t,k,

|ω(t)
1 |2, · · · , |ω

(t)
k |

2 ] ,

(5.43)

where R(t)
t,k denotes the collection of the data rate of user t to decode user k, 1 ≤ k <

t ≤ K.

3) Reward: Our aim is to maximize the energy efficiency which can fit the goal of the

DDPG algorithm is to maximize the reward. Therefore, the objective function (5.15a)

is naturally defined as the reward.

rt =

(︃
RD

Ec

)︃(t)

(5.44)

4) Constraint Handling: For optimization problems, it is necessary to make optimized

variables satisfy all constraints. Terms to DRL, it means the actions of the agent is

needed to be restricted in a perspective region. How to let output actions efficiently

satisfy constraints is a very important problem. To the best of our knowledge, the simple

and brutal punishment mechanism is not an efficient method. Therefore, we combine the

punishment mechanism and normalization processing to guarantee that all constraints

can be satisfied. In particular, for (5.15a), we rewrite the reward (5.44) as follows:

rt =

⎧⎪⎪⎨⎪⎪⎩
(︂

RD

Ec

)︂(t)
∀Rk→t ≥ Rmin

−ζ|R(t)
k→t −Rmin| ∃R(t)

k→t < Rmin,

(5.45)

where ζ is punishment factor. As can be seen, if all NOMA downlink users’ data rate

at t-th step can achieve the minimum target rate, the agent obtains a positive reward,

otherwise, the agent is punished by a negative value which depends on how bad the
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action is. Inspired by the fact that all the PFP optimized beamforming vectors meet the

equivalence of (5.15c), we apply normalization to the output beam vectors in each step

to guarantee the power constraint (5.15c) can be guaranteed. At t-th training step, the

normalized beamforming vectors can be represented as:

ω̂
(t)
k =

√︂
ρ
(t)
k

ω
(t)
k

|ω(t)
k |2

, (5.46)

where ρ
(t)
k is the power allocation coefficient and ω

(t)
k represents the beamforming vec-

tors outputted by action network. ρ(t)k is given by

ρ
(t)
k = Pmax

|ω(t)
k |2∑︁K

k=1 |ω
(t)
k |2

. (5.47)

By this normalizing, the summation of all new beamforming vectors can always meet∑︁K
k=1 ω̂

(t)
k = Pmax, and hence the (5.15c) is guaranteed. Meanwhile, ω̂(t)

k remains the

same direction with ω
(t)
k . For (5.15d), because the time switching coefficient τ has been

converted to τ̄ whose feasible range is synchronously shifted, we only need to map the

first element of (5.42) to the non-negative field by using some functions, such as abs(x).

The detail of the DDPG algorithm is shown in Algorithm 5 and the framework of neural

networks with their parameters setup is provided in the simulation section.

Remark 4. As we mentioned in section 5.2, the solution obtained via PFP and DDPG for

the considered system model can also be applied to the legacy user-clustered hybrid NOMA

downlink networks [129]. For example, if multiple D2D pairs are added into a user-clustered

hybrid NOMA downlink system, where one D2D pair is assigned to each cluster, the solution

that this chapter provided can be used for each cluster. If multiple D2D transmitters and a

single receiver are deployed, where one transmitter is assigned to each cluster, the proposed

algorithms are still applicable and the D2D communication can be viewed as NOMA uplink.
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Algorithm 5 DDPG-based algorithm
1: Initialization: Randomly initialize the critic evaluation network θq and the actor evaluation network θµ.

Initialize the critic target network θq′ = θq and the actor target network θµ′ = θµ.
Initialize the experience replay buffer D with capacity C.
Initialize the learning rate β, the discount factor λ, the soft update coefficient ξ and the minibatch size
NB .

2: for episode j = 1, · · · , J do
3: Randomly initialize the time switching coefficient τ the beamforming vectors ω(j).
4: Decide the NOMA downlink users’ decoding order according to current channel gains.
5: Obtain the initial state s1 (5.43).
6: for step t = 1, · · · , T do
7: Initialize the random process N for action exploration.
8: Choose action at = µ(st−1|θµ) +Nt.
9: Extract corresponding actions to retrieve beamforming vectors and normalize them.

10: Obtain the current state st.
11: Set rt according to (5.45).
12: Store transition {st, at, rt, st+1} into the replay buffer D.
13: Sample NB minibatch transitions from D to train.
14: Calculate target Q value by the equation (4.9).
15: Update the critic evaluation network Q(s, a|θq) by minimizing the loss function (4.10).
16: Update the actor evaluation network µ(s|θµ) by using the sampled policy gradient in (4.8) .
17: Update two target networks by using soft update (i.e.(4.11)).
18: Transfer state st to st+1.
19: end for
20: end for

5.6 Simulation Results

In this section, we study the performance of the proposed algorithm and DDPG-based

algorithm to maximize the energy efficiency of WPT-assisted D2D communications in MISO-

NOMA downlink networks. The simulation results for the same communication scenario in

MISO-OMA networks are also provided.

5.6.1 Deep Neural Networks Parameters and Structure Setup

Fully connected neural networks are used for both actor networks and critic networks.

In actor networks, one input layer, two hidden layers and one output layer are employed,

where the rectified linear activation function (ReLU) is used after the first hidden layer and

the hyperbolic tangent function (tanh) is used for both the second hidden layer and the output

layer. Due to there are two inputs (i.e., state and action) in critic networks, two parallel

individual hidden layers are also needed to receive the two input layers’ output. Then, the
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two outputs are concatenated and connected to another hidden layer. In critic networks, only

ReLU is applied after all the layers. The number of neurons is 500 for both actor networks

and critic networks. Batch normalization is also used for both actor and critic networks with

NB = 32 to improve the training performance. Adam optimizer is selected and the learning

rate is set to 0.001 for actor networks and 0.002 for critic networks. The soft update coefficient

is set to 0.01.

5.6.2 Hyper Parameters Setup

In simulations, we assume that the positions of all D2D devices and downlink users are

randomly distributed with the region x, y ∈ [3, 8]. The BS is deployed at (0, 0). Channels

are assumed to be the Rayleigh fading and the path loss is also considered. Therefore, the

channels can be expressed as

hsim =
hRay√
dα

, (5.48)

where hRay represents the Rayleigh channel vector, and d and α are the corresponding dis-

tance and path loss coefficients, respectively. We set the path loss coefficient between the BS

and downlink users to α0 = 2.5 and the path loss coefficient between Dt and Dr is α1 = 2.

α2 = α3 = 3.5 are the path loss coefficient between the BS and Dt, and between Dt and

downlink users, respectively. For all simulations, the noise power is set to σ2 = −94 dBm

and the RF energy conversion coefficient is η = 0.1.

5.6.3 Simulation Results Demonstration

Fig. 5.2 shows the convergence of the proposed algorithm for both the NOMA and OMA

schemes, of which the transmit power Pmax = 20 dBm, number of antennas M = 16 and

number of downlink users K = 3. It can be observed that the proposed algorithm can con-

verge very fast for both NOMA and OMA schemes, regardless of whether the channel estima-

tion error is existing. In particular, the maximum value of energy efficiency can be achieved
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Figure 5.2. Convergence of PFP algorithm for NOMA and OMA with different channel estimation errors.
Pmax = 20 dBm, K = 3, M = 16 and Rmin = 0.1 bps/Hz.
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within 5 iterations. On the other hand, this figure preliminary demonstrates the superiority

of NOMA.

Fig. 5.3 presents the energy efficiency versus transmit power of the BS by applying dif-

ferent algorithms and multiple access schemes. In this figure, we assume that the perfect

CSI can be obtained (i.e.,σϵ = 0). The number of users and antennas are set to K = 3 and

M = 16, respectively. The minimum target data rate is set as Rmin = 0.1 bps/Hz. The

randomness caused by the randomly generated positions and channels is averaged by per-
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Figure 5.4. Performance comparison between PFP and DDPG for different channel estimation accuracy,
where K = 3, M = 16 and Rmin = 0.1 bps/Hz.

forming Monte Carlo simulations. It can be observed that the energy efficiency of the WPT

supported D2D pair increases with the increase of the BS’s transmit power for all algorithms.

However, the performances that different schemes can provide are significantly different. In

this simulation, we choose the step size of exhaustive search ξ = 0.1. It can be seen that the

performance of the partial exhaustive search for τ is slightly worse than the proposed algo-

rithm, which further verified the optimality of the proposed PFP algorithm. The gap between

the partial exhaustive search and the proposed algorithm becomes larger when the transmit

power increases. This figure also shows the comparison between the proposed PFP and the

DDPG-based optimization. It can be observed that, with perfect CSI, the proposed PFP al-

gorithm outperforms the DDPG-based algorithm. Furthermore, Fig. 5.3 shows that under

the same algorithm optimisation and network framework, the energy efficiency performance

of the WPT-assisted D2D communication in the MISO-NOMA system outperforms in the

MISO-OMA system significantly. This benefits from the characteristic of the NOMA system

that allows all communication resources to be shared.

Fig. 5.4 illustrates the different performances that can provide by the proposed PFP algo-

rithm and DDPG when the channel estimation accuracy is various. In these simulations, we

set K = 3, M = 16 and Rmin = 0.1 bps/Hz. Channels (i.e., hk and hdd) and channel estima-
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Figure 5.5. Impact of the number of antenna on the performance of the proposed PFP algorithm with NOMA
and OMA in different channel estimation errors. K = 3 Pmax = 30 dBm and Rmin = 0.1 bps/Hz

tion errors (i.e., ϵk and ϵdd) are used the same for both the proposed algorithm and DDPG. An

interesting and important observation is that if channel estimation is perfect or only has slight

errors (i.e., σϵ = 0 and σϵ = 0.001), the proposed algorithm outperforms DDPG-based algo-

rithm, however, when channel estimation error is severe (i.e., σϵ = 0.005 and σϵ = 0.01), the

DDPG-based algorithm can provide its better robustness to mitigate the channel estimation

error caused performance degradation. On the other hand, unlike the scenario where channel

estimation is perfect, the slope decreases with the increase of channel estimation error. This

is because when the BS’s transmit power increases, the power of channel estimation error

caused interference increases as well. Therefore, communication resources will need to be

tilted toward downlink users more to guarantee their QoS, which hinders the improvement of

the energy efficiency of the D2D pair.

Fig. 5.5 shows the energy efficiency versus the number of antennas. In this simulation,

the parameters are set as follows: K = 4 and Rmin = 0.1 bps/Hz. To clearly demonstrate

differences between different simulations, we plot curves separately into three sub-figures. It

can be observed that the NOMA scheme significantly outperforms OMA scheme, even severe

channel estimation error is introduced. Benefiting from the spatial diversity, deploying more

antennas results in higher D2D pair energy efficiency. However, simply increasing the number
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Figure 5.6. Impact of the number of downlink users on the performance the proposed algorithm with NOMA
and OMA in different channel estimation errors, where M = 64 Pmax = 30 dBm and Rmin = 0.1 bps/Hz

of antennas is might not a wise and efficient scheme to improve energy efficiency. Hence, the

trade-off between cost and performance improvement is crucial and needs to be considered

when designing the system.

Fig. 5.6 illustrates how the number of downlink users impacts the energy efficiency per-

formance of WPT-assisted D2D devices. In this simulation, the number of antennas is M =

64, transmit power is Pmax = 30 dBm and the minimum QoS is Rmin = 0.1 bps/Hz. As can

be seen, for the NOMA scheme, with the increase of the number of users the average energy

efficiency slightly increases first and then decrease, which can be observed for all σ2
ϵ cases. It

is worth to point out that the slight decrease of the case σ2
ϵ = 0 starts from K = 4. Due to the

plotting scale, the decrease is not obvious. On the other hand, for OMA scheme, dramatic

energy efficiency degradation occurs in all cases. This is because, in OMA networks, more

OMA devices result in fewer resources being allocated to each device.

In Fig. 5.7, the impact of increased downlink users’ QoS on the average energy efficiency

of WPT-assisted D2D communication is studied. In the MISO-NOMA downlink network, if

downlink users’ require higher QoS, the energy efficiency of WPT-assisted D2D communica-

tions will significantly decrease and the more accurate the channel estimation, the higher the

percentage of performance degradation. However, for MISO-OMA downlink networks, the
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Figure 5.7. Impact of the downlink users’ QoS on the performance the proposed algorithm with NOMA and
OMA in different channel estimation errors, where K = 3, M = 64 and Pmax = 30 dBm

increase of downlink users’ QoS impacts the energy efficiency performance of WPT-assisted

D2D communications slightly. In particular, when channel estimation is perfect or only has

small errors (e.g., σ2
ϵ = 0 or 0.001), there is no performance degradation if the minimum tar-

get rate required by OMA downlink users is increased from 0.1 bps/Hz to 1.5 bps/Hz. When

channel estimation is not accurate (i.e.,σ2
ϵ = 0.005 or 0.01) the increase of OMA downlink

users QoS also decreases the energy efficiency of the WPT-assisted D2D communication.

Overall, although the increased downlink users’ QoS severely affects the WPT-assisted D2D

communication in the NOMA downlink network, the NOMA scheme is still a better choice.

5.7 Conclusion

In this chapter, the proposed PFP algorithm and DDPG-based algorithm are both ap-

plied to do the joint robust beamforming design for the WPT-assisted D2D communication

in MISO-NOMA downlink networks. The goal is to maximize the energy efficiency of the

WPT-enabled D2D devices. To solve the proposed non-concave optimization problem, the

PFP algorithm has been proposed to alternatively optimize the beamforming vectors and time

switching coefficient. Furthermore, a partial exhaustive search based algorithm has been pro-
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posed to prove the PFP algorithm’s optimality. The DDPG-based algorithm was performed

directly to solve the proposed non-concave problem. Simulations were carried out for both

NOMA and OMA schemes with different channel estimation accuracy. In the considered

communication scenario, one can conclude is WPT-assisted D2D communication can provide

higher energy efficiency if the NOMA scheme is adopted. Another intriguing and important

finding is that the proposed PFP algorithm is superior to the DDPG-based algorithm when the

perfect CSI can be obtained or just minor errors exists. However, when channel estimation

is unsatisfactory, the DDPG-based algorithm is more robust than the PFP algorithm. Based

on the finding above, investigating deeper into the causes will be an important direction for

our future work. Furthermore, linear energy harvesting has been assumed, and the impact of

the energy used for radio frequency circuits and signal processing has not been considered,

which prompts us to gain more insight into a more practical model. Alternatively, for realiz-

ing battery-less D2D communication, backscattering communication (BackCom) is another

mature and efficient scheme that will be another direction for future research.



Chapter 6

A BAC-NOMA Design for 6G umMTC

with Hybrid SIC

6.1 Introduction

To adapt the umMTC scenarios in the envisioned 6G networks [132], this chapter proposes

another new BAC-NOMA scheme to realize spectrum and energy cooperation among cellular

users and other add-on devices. Specifically, two backscatter transmitters and one backscatter

receiver are allowed to share the same resource blocks with a cellular downlink user, where

the downlink signal sent by the BS is used by BDs as their information carrier. Because the

proposed BAC-NOMA scheme can be viewed as uplink NOMA transmission, the hybrid SIC

technique is applied to further improve the high data rate required BD. Due to the superiorities

of BackCom and the NOMA technique, they have been widely studied for future 6G networks.

6.1.1 Related Works

In [72] analysed and compared the outage probability and ergodic data rate of the Back-

Com and WPT in uplink NOMA. The application of BackCom in downlink NOMA was

investigated by [70], where one BD transmits its signal to two downlink NOMA users by us-

ing their superposed signal sent by the BS. The authors in [133] investigated the application

131
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of BAC-NOMA in legacy space division multiple access (SDMA) and legacy OFDMA sys-

tems and demonstrated the advantages of BAC-NOMA. In [134], a TDMA and BAC-NOMA

combined scheme was applied to further improve the uplink capacity of a green IoT network.

In 2020, [135] provided a survey about NOMA-enabled BackCom in various battery-free IoT

networks. [136] investigated Backscatter cooperation in NOMA communications systems

where its expected rate is maximized by optimizing power allocation coefficients. The pro-

posed BAC-NOMA was compared with non-cooperation-NOMA scheme, the conventional

relaying-NOMA scheme, and the incremental relaying-NOMA scheme on perspectives of the

outage performance, the expected rate and the diversity-multiplexing trade-off.

6.1.2 Contributions

The implementation of the proposed BAC-NOMA scheme with hybrid SIC is challenging.

For example, the pre-existing user is interfered by BDs and hence interference control is nec-

essary, and due to the use of hybrid SIC and variables coupling, two non-concave optimization

sub-problems are formulated and need to be efficiently solved. The main contributions of this

chapter are listed as follows:

• A novel spectrum and energy cooperation scheme is proposed by combining BackCom

and NOMA techniques. In particular, two backscatter transmitters and one receiver are

admitted to a cellular downlink user’s spectrum and time slot. The BackCom between

BDs is treated as uplink NOMA transmission and hybrid SIC is used to further improve

the performance. It is worth to point out that the proposed scheme can be transplanted

to multi-user TDMA legacy networks.

• The aim of this chapter is to maximize the high QoS required BD’s data rate by opti-

mizing beamforming at the BS and two reflecting coefficients at two BDs. The use of

hybrid SIC causes two decoding orders which correspond to two optimization problems.

Due to the coupling variables, the formulated two optimization are both not convex. To

address the first problem, the optimal closed-form reflecting coefficients are obtained by
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Figure 6.1. System model.

analyzing its monotonic features, which decouples the three variables. Afterwards, the

SDR technique is applied to optimize the beamforming vector. In the second problem,

the closed-form solution can not be derived because of the untraceable transcendental

function constraint. To tackle this, an SCA and SDR based alternating algorithm is pro-

posed, where first-order Taylor expansion is utilized to approximate the transcendental

function.

• In simulations, it is observed that most beamforming solutions obtained via SDR can

meet the rank-one condition, which motivates us to explore its reasons. The explanation

for the reasons is obtained by analyzing the problems’ KKT conditions and is provided

at the end of section 6.3.

• Simulation results demonstrate that the proposed BAC-NOMA scheme with hybrid SIC

outperforms that with CSI-based and QoS-based SIC. It can be also observed that BAC-

NOMA can provide higher data rate gain than BAC-TDMA.
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6.2 System Model and Problem Formulation

As shown in Fig. 6.1, this chapter considers a communication scenario with one BS,

two BackCom transmitters denoted by B1 and B2, one data fusion centre denoted by Br and

a downlink user U0, where B1 is assumed to be a high data rate required device, such as

high definition (HD) cameras, and B2 only requires low data rate. Assume that the BDs are

admitted to share U0’s communication resources1. In this network, the BS is equipped with

M antennas while BDs and downlink users are equipped with a signal antenna. Because B1

and B2 transmit their own data simultaneously on the same spectrum to Br, it can be viewed

as an uplink BAC-NOMA scenario [69]. For BAC-NOMA, BDs’ circuit will be excited by

the signal sent from the BS i.e., x0 = ω0s0, where s0 is the desired signal of U0, and ω0 is

the corresponding beamforming vector. According to ambient backscatter communication’s

principle, BDs will modulate and reflect their own information over the incident signal x0.

Therefore, the BackCom signal reflected by Bn,∀n ∈ {1, 2} can be represented as xn =

hH
n ω0s0sn, where hn denotes the channel from the BS to Bn and sn is the transmit signal of

Bn. Due to the spectrum sharing mechanism, the admitted BAC-NOMA transmission and

the original downlink transmission will mutually interfere with each other. Therefore, the

received signal at Br is given by

yBr =
2∑︂

n=1

√
ηngnh

H
n ω0s0sn + hH

Bω0s0 + nB, (6.1)

where ηn is Bn’s BackCom reflection coefficient, gn denotes the channel gain between Br

and Bn, hB denotes the channel vector from the BS to Br and nB denotes the noise which

follows CN (0, σ2) distribution. The received signal at U0 is denoted as follows

y0 = hH
0 ω0s0 +

2∑︂
n=1

√
ηngn,kh

H
n ω0s0sn + n0, (6.2)

1The proposed system can be simply extended to a multi-user scenario, where BDs can be allocated to share the frequency and/or
time slot, such as [122].
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where h0 is the channel vector between the BS and U0 and gn,k is the channel between Bn and

U0. Since sn is unknown at U0, the second term of (6.2) is treated as interference. Therefore,

U0’s data rate is given by

R0 = log

(︄
1 +

|hH
0 ω0|2∑︁2

n=1 ηn|gn,k|2|hH
n ω0|2 + σ2

)︄
. (6.3)

Due to the double fading effect, the direct link signal is much stronger than the backscatter

link signal, a proper decoding order at Br is to decode s0 before the BackCom signals[70].

The data rate of s0 observed at Br is given by

Rk,t→B = log

(︄
1 +

|hH
Bω0|2∑︁2

n=1 ηn|gn|2|hH
n ω0|2 + σ2

)︄
. (6.4)

At this stage, the transmission between Br and BDs can be treated as an uplink NOMA sce-

nario, hybrid SIC can be applied to further improve the performance [43]. According to the

hybrid SIC strategy, the following two decoding orders need to be considered:

1) If s1 is decoded first, B1’s achievable rate is given by

R
(1)
1 = log

(︃
1 +

η1|g1|2|hH
1 ω0|2|s0|2

η2|g2|2|hH
2 ω0|2|s0|2 + σ2

)︃
. (6.5)

After implementing SIC, the B2’s achievable rate is given by

R
(1)
2 = log

(︃
1 +

η2|g2|2|hH
2 ω0|2|s0|2

σ2

)︃
. (6.6)

2) If s2 is decoded first, the achievable rate of B1 and B2 can be respectively represented

as

R
(2)
1 = log

(︃
1 +

η1|g1|2|hH
1 ω0|2|s0|2

σ2

)︃
, (6.7)

R
(2)
2 = log

(︃
1 +

η2|g2|2|hH
2 ω0|2|s0|2

η1|g1|2|hH
1 ω0|2|s0|2 + σ2

)︃
. (6.8)
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In BackCom, the signal s0 is perfect known at Br from (6.4) can be viewed as the fast-fading

channel component [137] when decoding sn. Therefore, optimizing the average data rate (i.e.,

the expectation of the uplink data rate with respect to |s0|2) is a more appropriate choice, as

discussed in [69]. The average data rate of B1 of the first decoding order can be represented

by

R̄
(1)
1 = Es0{R

(1)
1 } =

∫︂ ∞

0

R
(1)
1 (|s0|2)f|s0|2(x)dx, (6.9)

where f|s0|2(x) is the probability density function (pdf) of |s0|2. The average data rate of

B1 and B2 for other cases can be obtained in the same way. Assume that s0 and sn both

follow complex Gaussian distribution with zero mean and unit variance, the pdf of |s0|2 is

f|s0|2(x) = e−x. R̄(1)
1 ,R̄(1)

2 ,R̄(2)
1 and R̄

(2)
2 can be derived as follows:

R̄
(1)
1 = log2(e)

[︄
−e

σ2∑︁2
n=1 ηn|gn|2|hH

n ω0|2Ei

(︄
− σ2∑︁2

n=1 ηn|gn|2|hH
n ω0|2

)︄

+e
σ2

η2|g2|2|hH
2 ω0|2Ei

(︃
σ2

η2|g2|2|hH
2 ω0|2

)︃]︃
,

(6.10)

R̄
(1)
2 = − log2(e)e

σ2

η2|g2|2|hH
2 ω0|2Ei

(︃
− σ2

η2|g2|2|hH
2 ω0|2

)︃
, (6.11)

R̄
(2)
1 = − log2(e)e

σ2

η1|g1|2|hH
1 ω0|2Ei

(︃
− σ2

η1|g1|2|hH
1 ω0|2

)︃
, (6.12)

R̄
(2)
2 = log2(e)

[︄
−e

σ2∑︁2
n=1 ηn|gn|2|hH

n ω0|2Ei

(︄
σ2∑︁2

n=1 ηn|gn|2|hH
n ω0|2

)︄

+e
σ2

η1|g1|2|hH
1 ω0|2Ei

(︃
− σ2

η1|g1|2|hH
1 ω0|2

)︃]︃
,

(6.13)

where Ei denotes an exponential integral function [138]. Since B1 demands high data rate,

this chapter aims to maximize B1’s uplink data rate. By using hybrid SIC, the optimization

problem can be formulated as follows:

P1: max
{η1,η2,ω0}

1s1R̄
(1)
1 + (1− 1s1)R̄

(2)
1 (6.14a)

s.t. 1s1R
(1)
2 + (1− 1s1)R

(2)
2 ≥ R2,t, (6.14b)
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min{R0, Rk,t→B} ≥ R0,t, (6.14c)

0 ≤ ηn ≤ 1, n = 1, 2 (6.14d)

|ω0|2 ≤ Pt, (6.14e)

where 1s1 denotes the indicator function. Specifically, when s1 is decoded first, 1s1 = 1;

otherwise 1s1 = 0. (6.14b) is to guarantee B2’s QoS and (6.14c) is to guarantee U0’s QoS

and the implementation of SIC. R2,t and R0,t denote the target rate of B1 and U0, respectively.

(6.14e) is the power constraint of the BS.

6.3 Data Rate Maximization for a BackCom Device

The original problem P1 can be divided into two optimization problems according to two

different decoding orders, which are denoted by P2 and P3 respectively in the following. First,

we focus on the first decoding order (i.e., P2).

P2: max
{η1,η2,ω0}

R̄
(1)
1 (6.15a)

s.t. R̄
(1)
2 ≥ R2,t, (6.15b)

min{R0, Rk,t→B} ≥ R0,t, (6.15c)

0 ≤ ηn ≤ 1, n = 1, 2, (6.15d)

|ω0|2 ≤ Pt, (6.15e)

Lemma 5. f(x) ≜ −e
1

a+xEi(− 1
a+x

) + e
1
xEi(− 1

x
), a ≥ 0, x ≥ 0 is a monotonically decreas-

ing function of x.

Proof. Proving f(x) is a monotonically decreasing function of x is equivalent to proving df(x)
dx

is non-positive when x ≥ 0. With the knowledge of dEi(− 1
x
)

dx
= − e−

1
x

x
[69], [138], the first
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order derivative of f(x) is given by

df(x)

dx
=

e
1

a+x

(a+ x)2
Ei(−

1

a+ x
) +

1

a+ x
−

(︄
e

1
x

x2
Ei(−

1

x
) +

1

x

)︄
. (6.16)

Defining a new function that g(x) ≜ e
1
x

x2 Ei(− 1
x
) + 1

x
. Note that (6.16) can be recast to

df(x)
dx

= g(a+x)− g(x),∀a, x ≥ 0. Hence, to prove (6.16) is non-positive with non-negative

x, it is sufficient to prove g(x) is a monotonically decreasing function of x. Because the

monotonically decreasing g(x) implies g(a+x)−g(x) ≤ 0 can always hold, which guarantees

the non-positivity of df(x)
dx

. The first order derivative of g(x) can be derived as follows

dg(x)

x
= − 1

x4

(︃
e

1
x (1 + 2x)Ei(−

1

x
) + x+ x2

)︃
. (6.17)

Similarly, proving h(x) ≜ e
1
x (1 + 2x)Ei(− 1

x
) + x + x2 ≥ 0 is equivalent to proving (6.17)

is non-positive when x ≥ 0. To show h(x) is non-negative, the following function of x is

defined

H(x) = Ei(−
1

x
) +

x

1 + 2x
e−

1
x +

x2

1 + 2x
e−

1
x . (6.18)

It is noted that proving H(x) ≥ 0 is equivalent to showing the non-negativity of h(x). The

first derivative of H(x) is given by

dH(x)

dx
= e−

1
x (−1

x
+

2x2 + 2x+ 1

(1 + 2x)2
+

1 + x

(1 + 2x)x
)

= e−
1
x

2x2

(1 + 2x)2
≥ 0.

(6.19)

(6.19) means H(x) is a monotonically increasing function of x. The lower bound of H(x)

can be obtained by following the approximation of Ei(x) ≈ ex

x
when x→ −∞ [138]. Hence,

H(x) ≥ H(0) = 0 can be obtained, which implies df(x)
dx

is a monotonically decreasing func-

tion with respect to x, and the lemma is proved.

Remark 5. According to Lemma 1, (6.10) is a monotonic decreasing function of η2, which

means R̄(1)
1 can achieve the maximize value when η2 is located at its lower bound. In other
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words, if B2’s QoS is not guaranteed, B1 can achieve its maximum data rate if B2 is not

permitted to backscatter its signal (i.e., η2 = 0), which is not possible in practice. This is

further proved in (6.20).

For given η1 and ω0, the feasible range of η2 can be obtained by (6.15b), (6.15c) and

(6.15d):

max
{︃
0,

β

|g2|2|hH
2 ω0|2

}︃
≤ η2 ≤ min{e1, e2, 1}, (6.20)

where e1 =
|hH

0 ω0|2−γ0,tη1|2g1,k|2|hH
1 ω0|

γ0,t|g2,k|2|2hH
2 ω0|2

, e2 =
|hH

Bω0|2−γ0,tη1|g1|2|hH
1 ω0|

γ0,t|g2|2|hH
2 ω0|2

, γ0,t = 2R0,t − 1 and β

is obtained by −e
σ2

β Ei(−σ2

β
) = ln(2)R2,t. Because (6.10) is a monotonically decreasing

function of η2, (6.15a) can achieve its maximum value if η2 is located at its lower bound.

Therefore, the optimal η2 can be expressed in closed-form as follows:

η∗2 =
β

|g2|2|hH
2 ω0|2

≤ 1. (6.21)

By substituting η∗2 , (6.15a) can be rewritten as follows:

R̄
(1)
1 =− log2(e)e

σ2

η1|g1|2|hH
1 ω0|2+β × Ei

(︃
− σ2

η1|g1|2|hH
1 ω0|2 + β

)︃
−R2,t. (6.22)

Due to the fact that R0 and Rk,t→B are partially decided by ηn, η1 should be adjusted to satisfy

constraint (6.15c). As a result, the following inequalities can be obtained:

η1 ≤
|hH

0 ω0|2 − γ0,t(
|g2,k|2
|g2|2 β + σ2)

γ0,t|g1,k|2|hH
1 ω0|2

, (6.23)

η1 ≤
|hH

Bω0|2 − γ0,t(β + σ2)

γ0,t|g1|2|hH
1 ω0|2

. (6.24)

By defining b1 =
|hH

0 ω0|2−γ0,t(
|g2,k|2

|g2|2
β+σ2)

γ0,t|g1,k|2|hH
1 ω0|2

and b2 =
|hH

Bω0|2−γ0,t(β+σ2)

γ0,t|g1|2|hH
1 ω0|2

, since (6.22) is an in-

creasing function of η1, the closed-form optimal η1 will reach to its upper bound, i.e.,

η∗1 = min{b1, b2, 1}. (6.25)
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By substituting η∗2 and η∗1 , P2 can be rewritten as follows:

P2-1: max
{ω0}

η∗1|g1|2|hH
1 ω0|2 (6.26a)

s.t. 0 ≤ min{b1, b2, 1}, (6.26b)
β

|g2|2|hH
2 ω0|2

≤ 1, |ω0|2 ≤ Pt. (6.26c)

Considering the constraint (6.26b), the following three cases need to be discussed:

1) η∗1 = b1, b1 ≤ b2 and 0 ≤ b1 ≤ 1.

2) η∗1 = b2, b2 ≤ b1 and 0 ≤ b2 ≤ 1.

3) η∗1 = 1, 1 ≤ b1 and 1 ≤ b2.

Based on the above cases, three optimization problems can be obtained. Note that all three

cases can be solved in the similar way, and case 1 is described here as an example. By using

SDR method to ignore the rank one constraint [77], P2-1 can be recast as

P2-2: max
{W }

Tr(H0W ) (6.27a)

s.t. Tr(H0W )|g1|2 − Tr(HBW )|g1,k|2 + a ≤ 0, (6.27b)

Tr(H0W )− γ0,t|g1,k|2Tr(H1W ) + b ≤ 0, (6.27c)

Tr(H0W )− b ≥ 0, (6.27d)

β − |g2|2Tr(H2W ) ≤ 0, (6.27e)

Tr(W ) ≤ Pt, (6.27f)

W ⪰ 0, (6.27g)

whereH0 = h0h
H
0 andW = ω0ω

H
0 are two rank one symmetric positive semidefinite (PSD)

matrix, a = γ0,t(β(|g1,k|2− |g1|2|g2,k|2
|g2|2 )+σ2(|g1,k|2−|g1|2)) and b = γ0,t(

|g2,k|2
|g2|2 β+σ2). P2-2 is

a SDP and can be solved by convex optimization tools. Afterward, ω0 can be reconstructed by

applying Gaussian randomization procedure if rank(W ) ̸= 1 [77] or by EVD if rank(W ) =
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1. Finally, the solution corresponding to the maximum R̄
(1)
1 is chosen as the optimal solution

of P2.

In the following, the problem related to the second decoding order is presented:

P3: max
{η1,η2,ω0}

R̄
(2)
1 (6.28a)

s.t. R̄
(2)
2 ≥ R2,t, (6.28b)

(6.14c), (6.14d) and (6.14e). (6.28c)

P3 is a non-concave problem even SDR is applied, because a convex function (i.e.,R̄(2)
2 (ηn,W ))

greater than or equal to zero is not a convex set, i.e., (6.28b). Additionally, unlike the con-

straint (6.15b) of P2, the relationship among η1, η2 and ω0 is difficult to derive in P3, because

(6.28b) is a transcendental function. Therefore, SDR is combined with SCA to iteratively

approximate (6.28b). A detailed discussion for solving P3 is provided in the following.

First, backscattering coefficient optimization is studied. Denote [η1, η2]T by η, (6.11) and

(6.13) can be rewritten as:

R̄
(2)
1 = − log2(e)

[︃
−e

σ2

ηTBEi

(︃
− σ2

ηTB

)︃]︃
, (6.29)

R̄
(2)
2 =− log2(e)

[︃
e

σ2

ηTAEi

(︃
− σ2

ηTA

)︃
+e

σ2

ηTBEi

(︃
− σ2

ηTB

)︃]︃
, (6.30)

where A = [|g1|2|hH
1 ω0|2, |g2|2|hH

2 ω0|2]T = [|g1|2Tr(H1W ), |g2|2Tr(H2W )]T and B =

[|g1|2|hH
1 ω0|2, 0]T = [|g1|2Tr(H1W ), 0]T . Similarly, by applying the fact that f( 1

x
) = −e 1

xEi(− 1
x
)

is a monotonically increasing function of x, for a given W , P3 can be recast as follows:

P3-1: max
{η}

ηTB (6.31a)

s.t. f(η0) + (η − η0)f
′(η0) ≥ R2,t ln(2), (6.31b)

Tr(H0W )− γ0,t(η
TC + σ2) ≥ 0, (6.31c)
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Tr(HBW )− γ0,t(η
TA+ σ2) ≥ 0, (6.31d)

0 ⪯ η ⪯ 1, (6.31e)

whereC = [|g1,k|2Tr(H1W ), |g2,k|2Tr(H2W )]T and f ′(η0) represents the first-order deriva-

tive of f(η) at η0. Now (6.31b) is a linear function of η greater than or equal to zero, which

is a convex set. P3-1 is an LP and can be solved by convex optimization tools.

Afterwards, the SDR and SCA are used to design the beamforming. With the given η, P3

can be reduced to

P3-2: max
{W }

η1|g1|2Tr(H1W ) (6.32a)

s.t. f(W0) + Tr((W −W0)f
′(W0)) ≥ R2,t ln(2), (6.32b)

(6.31c) and (6.31d), (6.32c)

Tr(W ) ≤ Pt, W ⪰ 0, (6.32d)

where f ′(W0) is the first-order derivative of f(W ) at W0. P3-2 is a concave optimization

problem with respect to W . As a result, P3 can be resolved by alternatively solving P3-1

and P3-2. In the end, the same as P2-2, Gaussian randomization or EVD can be applied to

retrieve the beamforming vector ω0. The maximum data rate of B1 with its corresponding

solution can be obtained by simultaneously solving P2 and P3 and selecting the optimum one.

In our simulations, almost all experiments can meet the rank-one constraint even if SDR is

used, which motivates us to explore when the optimality of the obtained SDR solution can

be established.

Proposition 6. With the randomly generated complex-valued channels, the obtained solution

of P2-1 is optimal if (6.26b) is strictly satisfied and the obtained W of P3-2 via SDR can

satisfy the rank-one constrain if (6.32c) is strictly satisfied.

Proof. Without loss of generality, P2-2 is considered as an example. The proof for other

problems can be derived in the similar way. After neglecting the rank-one constraint, the
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Lagrange function of P2-2 is given by

L(W , λi,λ) =− Tr(H0W ) + λ1(Tr(H0W )|g1|2 − Tr(HBW )|g1,k|2 + a) + λ2(Tr(H0W )

− γ0,t|g1|2 × Tr(H1W )− γ0,t(
|g2,k|2

|g2|2
β + σ2)) + λ3(b− Tr(H0W ))

+ λ4(β − |g2|2Tr(H2W )) + λ5(Tr(W )− Pt)− Tr(λW ),

(6.33)

where λi and λ are Lagrange multipliers. Without the rank-one constraint, P2-2 is a concave

problem and the KKT can be satisfied, which leads to the following two equations:

λ = λ5I + (λ1|g1|2 + λ2)H0 −∆, (6.34)

λW = 0, (6.35)

where∆ = λ1HB|g1,k|2+λ2H1+(λ3+1)H0+λ4H2. Due to the channels’ randomness, the

possibility that the channels-determined matrix∆ has two or more identical eigenvalues tends

to zero. Denote the first two maximum eigenvalues of ∆ by δ1 and δ2, δ1 > δ2. According

to slackness complementary, if (6.26b) is strictly satisfied in case 1), λ1 and λ2 are both zero

and hence the second term of (6.34) is 0, which leads to the following discussion to establish

the rank-one conclusion.

• If λ5 = δ1 and λ5 > δ2, the dimension of the null space of λ is one. Further according to

(6.35), rank(W ) = 1 can be concluded.

• If λ5 > δ1, λ is a full rank matrix and hence W = 0, which is not reasonable in practice.

• If λ5 ≤ δ2,λ has at least one negative value and henceλ is not a PSD matrix which contradicts

with KKT.

The proposition is proved.

Remark 6. Under the case that Proposition 6 is met, the overall solution of P1 is optimal if

P2’s solution is selected, otherwise is suboptimal. The reason is as follows: the solution of P3
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Figure 6.2. B1’s achievable rate for different schemes as a function of the transmit power.

is still suboptimal even if the obtained beamforming vector of P3-2 in each iteration via SDR

can meet the rank-one constraint, because the non-convex constraint (5.23b) is approximated

by the first-order Taylor expansion. However, although the solution of P3-2 is suboptimal,

the number of times to choose the solution of P2 is still not low (see the simulation part). This

further demonstrates the superiority of the hybrid SIC strategy.

6.4 Simulation Result

In this section, computer simulations are provided to demonstrate the superiority of the

proposed BAC-NOMA with the hybrid SIC scheme. Time division multiple access (TDMA)

scheme is included as the benchmark, where backscatter coefficients and beamforming vec-

tors are also optimized for fair comparison. The path loss exponent is set to 3 and σ2 = −94

dBm. The BS is located at (0, 0), and downlink users and BDs are randomly distributed

within xi, yi ∈ [3, 15].

Fig. 6.2 evaluates B1’s achievable rate versus the BS’s transmit power for different schemes,

where the target rate of the downlink users and B2 is set to 2 bps/Hz and 1 bps/Hz, respec-
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Figure 6.3. B1’s achievable rate for different scheme as a function of U0’s target rate. M=8.

tively. This figure can demonstrate three dominating results: 1) BAC-NOMA significantly

outperforms BAC-TDMA (even if random RA is applied in BAC-NOMA), which benefits

from that the BAC-NOMA scheme allows multiple BDs to transmit their signals within the

same time slot; 2) compare to CSI-based and QoS-based SIC (denoted by C-SIC and Q-SIC),

NOMA with hybrid SIC (denoted by H-SIC) always provides the best performance; 3) the

proposed algorithm significantly improves the data rate of B1; On the other hand, in addition

to increasing the BS’s transmit power, increasing the number of antennas is also a way to

enhances B1’s data rate.

In Fig. 6.3, B1’s average data rate offered by all schemes are shown as functions of U0’s

QoS, where B2’s QoS is set to 1 bps/Hz. It can be observed that NOMA with hybrid SIC

always achieves the highest performance gain among the four schemes. Another interesting

observation is that different schemes offer different resistance to performance degradation

with the increasingU0’s QoS requirement. In particular, the slope of TDMA curves is quickly

decreasing with the increase of U0’s QoS requirement, whereas the slope of NOMA with

hybrid SIC is decreasing extremely slowly.

Fig.6.4 demonstrates how the QoS requirement of B2 impacts B1’s data rate, where U0’s
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Figure 6.5. Decoding order selection probability. M=8, Pt = 30 dBm.

target rate is set to 2 bps/Hz. It can be observed that, for BAC-NOMA with hybrid SIC, B1’s

achievable data rate is inversely proportional to B2’s QoS requirement for all transmit power

setups. However, BAC-TDMA scheme provides a constant data rate for B1 when the transmit

power is kept within a high level (e.g., 30 dBm and 20 dBm). On the other hand, when the

transmit power is low (e.g., 10 dBm), B1’s data rate performance decreases significantly once

B2’s QoS requirement exceeds a threshold (e.g., 1.5 bps/Hz). Fig. 6.5 shows the impact of
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the B2’s target rate on decoding order selection. First, it can be observed that the probability

of choosing decoding order 2 is not low even if its solution is suboptimal, which further

demonstrates the superiority and necessity of hybrid SIC. Second, it can be observed that,

with fixed power budget, the system will be more inclined to choose to decode s2 first as the

QoS of B2 increases.

6.5 Conclusion

In this letter, a novel BAC-NOMA D2D transmission scheme with hybrid SIC has been

proposed to enable 6G umMTC networks. The data rate of the high QoS demanding devices

has been maximized by optimizing its reflection coefficient and designing the beamforming

vector. Moreover, the scalability of the proposed scheme and the corresponding solution have

been both discussed. Furthermore, an optimality analysis of the proposed scheme has also

been provided. Simulation results have shown the superiority of hybrid SIC assisted BAC-

NOMA.



Chapter 7

Conclusions and Future Works

7.1 Conclusions of This Thesis

This thesis investigated the resource allocation problems for several NOMA-enabled net-

works, including UAV-RIS-NOMA, WPT-assisted D2D communication in NOMA and BAC-

NOMA. In order to improve the data rate or energy efficiency performance of the proposed

networks, convex optimization, SDR, SCA, fractional programming, DRL-based and mono-

tonic analyzing have properly been applied. Simulation results have demonstrated that the

proposed schemes and algorithms are able to improve the performances. The main contribu-

tions and insights of the thesis are summarized as follows.

In chapter 3, a novel RIS and UAV cooperative scheme was proposed to support down-

link NOMA transmissions. Specifically, an RIS is integrated with a UAV, where the UAV

can adjust its horizontal position on its default trajectory to reduce the path loss and the RIS

is able to adjust the propagation environment by designing its phase shift of each element.

Simultaneously, beamforming of the BS is another optimization degree of freedom to further

improve the performance. To maximize the strong user’s data rate, the optimal closed-form

beamforming vectors of two users are derived first by analysing the KKT conditions. After-

wards, the SDR-based alternating algorithm is proposed to jointly optimize the phase shift

of the RIS and the beamforming vectors of the BS. Furthermore, by substituting the closed-

form beamforming, the phase shift optimization is formulated and solved by applying the

148



7.1. CONCLUSIONS OF THIS THESIS 149

SCA algorithm. Simulations demonstrated that the deployment of the RIS-UAV can signifi-

cantly improve the strong user’s data rate. It was also demonstrated that the RIS-UAV-NOMA

protocol outperforms the RIS-UAV-OFDAM protocol.

In chapter 4, the RIS and UAV cooperative scheme was applied to a multi-user downlink

NOMA network. Different from the UAV flight is a straight line in the last chapter, the UAV of

this chapter can fly within a certain area which means it can dynamically adjust its horizontal

position in two dimensions. The aim of this chapter was to maximize the sum rate of all

downlink NOMA users by jointly optimizing three sets of coupled variables, including power

allocation coefficients of the BS, phase shifts of the RIS and horizontal position of the UAV.

By treating the RIS-deployed UAV as an agent and regarding the optimizing process as MDP,

a DDPG-based algorithm was proposed to solve the formulated problem. By doing so, the

more complicated time-varying channel can be adapted. Simulation results demonstrated that

the proposed DDPG-based algorithm can significantly enhance the sum rate performance and

show the excellent robustness of the DDPG-based algorithm.

In chapter 5, the application of WPT-assisted D2D communication in a multi-user down-

link NOMA network was investigated. A new spectrum and energy cooperation scheme be-

tween downlink NOMA users and D2D communications has been proposed, in which the

D2D communication device is allowed to share the same communication resource blocks

and can harvest the energy of downlink NOMA signals. The energy efficiency maximiza-

tion problem has been investigated under either perfect CSI or imperfect CSI scenarios. To

implement the joint robust beamforming design with the D2D transmitter’s time-switching

coefficient, the PFP algorithm and a DDPG-based algorithm were proposed. Simulation re-

sults demonstrated as follows: 1) if the perfect CSI can be observed or only small errors exist,

the proposed FPF algorithm outperforms the DDPG-based algorithm, otherwise, the latter

can offer better performance. 2) deploying WPT-assisted D2D communication in downlink

NOMA networks is superior to in downlink OMA networks.

In chapter 6, a BAC-NOMA scheme that can realize spectrum and energy cooperation
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was proposed to support 6G umMTC. Specifically, two BDs were allowed to re-modulate

their own signal to the incident downlink signal and then reflect it to a data fusion center.

To further improve the data rate of the high QoS required BD, the hybrid SIC technique

was applied. On the other hand, because of the use of hybrid SIC, two sub-problem were

formulated. The aim of this chapter is to maximize the data rate of the high QoS required

BD by jointly optimizing BDs’ reflecting coefficient and the BS’s beamforming vector. In the

first sub-problem, the optimal closed-form reflecting coefficients were derived and then the

beamforming was designed by using the SDR technique. For the second sub-problem, closed-

form expressions are difficult to obtain, because of the existence of transcendental function

dependent constraint. To tackle the transcendental function, first-order Taylor expansion was

used to iteratively approximate it. Afterwards, the SCA and SDR based alternating algorithm

was proposed to jointly optimize reflecting coefficients and beamforming. It is worth pointing

out that the proposed BAC-NOMA scheme can be simply extended to the legacy multi-user

TDAM networks. Simulation results demonstrated that the use of hybrid SIC brings data rate

performance gain and applying NOMA protocol outperforms TDMA protocol among BDs.

7.2 Future Works

7.2.1 NOMA with Imperfect SIC

The current works in this thesis are all under the assumption of perfect SIC can be im-

plemented. However, in real-world NOMA systems, the SIC might not be performed always

perfectly because of the incorrectly weaker users’ signal decoding or the mismatching be-

tween decoding order and users’ index, which further causes incorrect interference cancella-

tion. When imperfect SIC occurs, not only the computation time is affected, but also security

threats might appear, for example, users might speculate the reason that causes longer de-

coding duration is a third-party attack or intentional fraud [139]. Therefore, it is important

and interesting to extend the current works to the imperfect SIC versions to meet practical
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scenarios. In simulations, the imperfect SIC can be implemented by distorting the signal in-

formation of all users by adding the effects of the Rayleigh fading channel and AWGN [140].

7.2.2 Resource Allocation in THz-NOMA Networks

Another consideration for future work is Terahertz (THz)-NOMA. The current works in

previous chapters only consider the sub-6 GHz bands which is already a congested area [141].

THz has been recognised as a promising technology to avoid the congestion problem as well

as to improve the data rate and latency performance. However, the channel models will totally

change if those proposed systems are moved to THz bands, which might be some challenging

and fascinating tasks and will be another direction in the future.

7.2.3 Hybrid Multiple Access Design

It is anticipated that future cellular networks will be developed employing many MA ap-

proaches. The NOMA and other MA techniques combination schemes have been studied

for several years, for example, downlink multiuser superposition transmission (MUST) has

been implemented in LTE-A systems [142]. The key idea of MUST is combining OFDMA

with NOMA together, where NOMA is applied to users when they have different channel

gains, such as a central user and a cell edge user can be allocated on the same sub-carrier via

NOMA. Hybrid NOMA is also a promising scheme, especially for mobile edge computing

(MEC) scenarios, where users with different demanding deadlines are assigned to the same

time slot via NOMA. Therefore, combining NOMA with other MA techniques including con-

ventional MA techniques and new emerging MA techniques in 5G will be another important

research direction in the future.
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7.2.4 Cluster-based MIMO-NOMA

In this thesis, the beamformer-based multi-antenna NOMA is only considered, where each

NOMA user’s signal is interfered by all other co-channel users. In this circumstance, the joint

beamforming and decoding order design are necessary and the computation complexity is ex-

ponential growth with respect to the number of users which causes systems to be overloaded.

To improve this situation, a cluster-based MIMO-NOMA scheme was proposed [143], where

users are clustered into different groups according to their own channel quality or QoS re-

quirement, and the beamformer can be shared among users of one cluster. By doing so, the

following two benefits can be achieved: 1) the inter-cluster interference can be significantly

reduced or even eliminated if appropriate beamformers for clusters can be designed. 2) SIC

is performed within clusters and hence the decoding order decision becomes more easily

and the computation complexity is significantly decreased. In reality, a BS/AP usually si-

multaneously serves a large number of users/devices. Thus, employing MIMO-NOMA in

a cluster-based manner is an efficient and wise scheme, which will be another direction in

future studies.

7.2.5 CoMP for Multi-cell NOMA

Multi-cell is a more realistic scenario in mobile communications, which pays more atten-

tion to the transmission quality of cell-edge users because they may suffer severe inter-cell

interference. Coordinated multi-point (CoMP) techniques, as one of the promising solutions

for multi-cell scenarios, have received more interest in both academia and industry. CoMP

utilizes the coordination among multiple spatially distributed BSs to improve cell-edge users’

transmission. Conventional CoMP techniques are performed with the OMA principle, where

the BS allocates a resource block for a cell-edge user, and other users are not authorized to

access, which is spectrum inefficient. Note that the cell-center user and cell-edge user model

is a very suitable scenario for using NOMA. By applying CoMP-NOMA, cell-edge users are

served by multiple BSs via CoMP techniques and traditional cell-center users are served by
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the BS to which they belong on the same resource block allocated to cell-edge users (CoMP

users). Therefore, compared with the conventional OMA-based CoMP, the NOMA-based

CoMP enlarges the connectivity and improves spectral efficiency. As such, the application

of CoMP-NOMA in multi-cell scenarios can be an interesting research topic in the future.[9]

[10]
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