31 research outputs found

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word

    Degrees of Ambiguity for Parity Tree Automata

    Get PDF
    An automaton is unambiguous if for every input it has at most one accepting computation. An automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely (respectively, countably) many accepting computations. An automaton is boundedly ambiguous if there is k ? ?, such that for every input it has at most k accepting computations. We consider Parity Tree Automata (PTA) and prove that the problem whether a PTA is not unambiguous (respectively, is not boundedly ambiguous, not finitely ambiguous) is co-NP complete, and the problem whether a PTA is not countably ambiguous is co-NP hard

    Explorable Automata

    Get PDF

    Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondeterminism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata in this context. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard. 1 Introduction Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of automata theory, with countless applications in verification. There is a very active field of research for optimizing or approximating determinisation, or circumventing it in contexts like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as the state space blow-up is in O(2 n) on finite words, O(3 n) for coBüchi automata [16], and 2 O(n log(n)) for Büchi automata [17]. If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to explore only a part of the powerset construction. Other approaches use simulation games to approximate inclusion at a cheaper cost, see for instance [8]. Another approach consists in replacing determinism by a weaker constraint that suffices in some particular context. In this spirit, Good-for-Games automata (GFG for short) were introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs, whether there is a reactive system (transducer) whose behaviour is included in L. The classical solution computes a deterministic automaton for L, and solves a game defined on this automaton. It turns out that replacing determinism by the weaker constraint of being GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic * This work was supported by the grant PALSE Impulsion

    On the Expressiveness of QCTL

    Get PDF
    QCTL extends the temporal logic CTL with quantification over atomic propositions. While the algorithmic questions for QCTL and its fragments with limited quantification depth are well-understood (e.g. satisfiability of QkCTL, with at most k nested blocks of quantifiers, is (k+1)-EXPTIME-complete), very few results are known about the expressiveness of this logic. We address such expressiveness questions in this paper. We first consider the distinguishing power of these logics (i.e., their ability to separate models), their relationship with behavioural equivalences, and their ability to capture the behaviours of finite Kripke structures with so-called characteristic formulas. We then consider their expressive power (i.e., their ability to express a property), showing that in terms of expressiveness the hierarchy QkCTL collapses at level 2 (in other terms, any QCTL formula can be expressed using at most two nested blocks of quantifiers)

    Model Checking and Model-Based Testing : Improving Their Feasibility by Lazy Techniques, Parallelization, and Other Optimizations

    Get PDF
    This thesis focuses on the lightweight formal method of model-based testing for checking safety properties, and derives a new and more feasible approach. For liveness properties, dynamic testing is impossible, so feasibility is increased by specializing on an important class of properties, livelock freedom, and deriving a more feasible model checking algorithm for it. All mentioned improvements are substantiated by experiments

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Bojańczyk to express some asymptotic properties) over ω-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata studied by Bojańczyk and Colcombet, and a lower complexity bound for an alternating variant of ωBS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation σ on tree languages with the property that σ(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least ω square.W niniejszej rozprawie rozważane są języki nieskończonych słów lub drzew definiowane poprzez automaty różnych typów lub formuły różnych logik. Pytamy o najwyższą możliwą pozycję w hierarchii borelowskiej lub rzutowej zajmowaną przez zbiory definiowane w danym formalizmie. Odpowiedź na to pytanie jest nazywana złożonością topologiczną formalizmu.Przedstawiony został dowód, że złożonością topologiczną Logiki Monadycznej Drugiego Rzędu rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Bojańczyka w celu umożliwienia wyrażania własności asymptotycznych) na słowach nieskończonych jest cała hierarchia rzutowa. Obliczone zostały również złożoności topologiczne klas języków rozpoznawanych przez niedeterministyczne ωB-, ωS- i ωBS-automaty rozważane przez Bojańczyka i Colcombet'a, oraz zostało podane dolne ograniczenie złożoności wariantu alternującego ωBS-automatów.Zaprezentowane zostały wyniki dotyczące języków podwójnie jednoznacznych, tzn. języków rozpoznawanych przez jednoznaczne automaty parzystości na drzewach, których dopełnienia również są rozpoznawane przez jednoznaczne automaty parzystości. Podany został przykład podwójnie jednoznacznego języka drzew G, który jest analityczny-zupełny. Została wprowadzona operacja σ na językach drzew taka, że język σ(L) jest topologicznie bardziej złożony niż jakikolwiek język należący do sigma-algebry generowanej przez języki redukujące się w sposób ciągły do języka L. W wyniku zastosowania powyższej operacji do języka podwójnie jednoznacznego otrzymujemy język podwójnie jednoznaczny. Zostało pokazane, że kolejne iteracje aplikacji powyższej operacji dają coraz bardziej złożone języki. Została również wprowadzona druga operacja, która umożliwia krok graniczny iteracji. Używając obydwu powyższych operacji można skonstruować ciąg długości ω kwadrat złożony z języków podwójnie jednoznacznych o coraz większej złożoności

    Fault-injection through model checking via naive assumptions about state machine synchrony semantics

    Get PDF
    Software behavior can be defined as the action or reaction of software to external and/or internal conditions. Software behavior is an important characteristic in determining software quality. Fault-injection is a method to assess software quality through its\u27 behavior. Our research involves a fault-injection process combined with model checking. We introduce a concept of naive assumptions which exploits the assumptions of execution order, synchrony and fairness. Naive assumptions are applied to inject faults into our models. We use linear temporal logic to examine the model for anomalous behaviors. This method shows us the benefits of using fault-injection and model checking and the advantage of the counter-examples generated by model checkers. We illustrate this technique on a fuel injection Sensor Failure Detection system and discuss the anomalies in detail
    corecore