
Degrees of Ambiguity for Parity Tree Automata
Alexander Rabinovich
Tel Aviv University, Israel
https://www.cs.tau.ac.il/~rabinoa/
rabinoa@tauex.tau.ac.il

Doron Tiferet1

Tel Aviv University, Israel
sdoron5.t2@gmail.com

Abstract
An automaton is unambiguous if for every input it has at most one accepting computation. An
automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely
(respectively, countably) many accepting computations. An automaton is boundedly ambiguous if
there is k ∈ N, such that for every input it has at most k accepting computations. We consider Parity
Tree Automata (PTA) and prove that the problem whether a PTA is not unambiguous (respectively,
is not boundedly ambiguous, not finitely ambiguous) is co-NP complete, and the problem whether a
PTA is not countably ambiguous is co-NP hard.
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1 Introduction

Degrees of Ambiguity

The relationship between deterministic and nondeterministic machines plays a central role
in computer science. An important topic is the comparison of expressiveness, succinctness
and complexity of deterministic and nondeterministic models. Various restricted forms of
nondeterminism were suggested and investigated (see [3, 4] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [4]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones, and
nondeterministic automata are exponentially more succinct than unambiguous ones [6, 7].

Some problems are easier for unambiguous than for nondeterministic automata. As shown
by Stearns and Hunt [13], the equivalence and inclusion problems for unambiguous automata
are in polynomial time, while these problems are PSPACE-complete for nondeterministic
automata.
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Figure 1 Finitely ambiguous and 2-ambiguous Büchi automata.

The complexity of basic regular operations on languages represented by unambiguous
finite automata was investigated in [5], and tight upper bounds on state complexity of inter-
section, concatenation and many other operations on languages represented by unambiguous
automata were established. It is well-known that the tight bound on the state complexity
of the complementation of nondeterministic automata is 2n. In [5], it was shown that the
complement of the language accepted by an n-state unambiguous automaton is accepted by
an unambiguous automaton with 20.79n+logn states.

Many other notions of ambiguity were suggested and investigated. A recent paper [4]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every input
it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely many
accepting runs. Hence, every ε-free automaton on finite words and on finite trees is finitely
ambiguous. However, over ω-words there are nondeterministic automata with uncountably
many accepting runs. Over ω-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata.

Weber and Seidl [15] investigated several classes of ambiguous automata on words, and
obtained polynomial time algorithms for deciding the membership in each of these classes.
Their algorithms were derived from structural characterizations of the classes.

In particular, they proved that the following Bounded Ambiguity Criterion (BA) charac-
terizes whether there is a bound k such that a nondeterministic automaton on words has at
most k accepting runs on each word.
Forbidden Pattern for Bounded Ambiguity: There are distinct useful2 states p, q ∈ Q such

that for some word u, there are runs on u from p to p, from p to q and from q to q.

Weber and Seidl [15] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time; hence,
it can be decided in polynomial time whether the degree of ambiguity of an NFA is bounded.

Seidl [12] provided a structural characterization of bounded ambiguity for automata on
finite trees, and derived a polynomial algorithm to decide whether such an automaton is
boundedly ambiguous.

2 A state is useful if it is on an accepting run.
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Löding and Pirogov [8] and Rabinovich [10] provided structural characterizations and
polynomial algorithms for bounded, finite and countable ambiguity of Büchi automata on
ω-words.

Rabinovich and Tiferet [11] provided a structural characterizations and polynomial time
algorithms for bounded, finite and countable ambiguity of Büchi automata on infinite trees.

Over infinite trees, Büchi tree automata are less expressive than Monadic Second-Order
Logic which is equivalent to parity tree automata. Our main result is:

I Theorem 1 (Main).
1. The problem whether a parity tree automaton is not unambiguous (respectively, not

boundedly ambiguous, or not finitely ambiguous) is co-NP-complete.
2. The problem whether a parity tree automaton is not countably ambiguous is co-NP hard.

The paper’s organization. The next section contains standard definitions and notations
about tree automata. The proof of Theorem 1 relies on the complexity of many-dimensional
parity games. In Sect. 3, we first recall many-dimensional parity games, introduced by
Chatterjee, Henzinger, and Piterman in [2]. We provide reductions between the emptiness
problem for multidimensional parity tree automata and multidimensional parity games. Then,
we show that the non-emptiness problem for intersection of PTA is polynomial time reducible
to the non-emptiness problem of multi-dimensional PTA, and therefore is in co-NP.

In Sect. 4, we prove co-NP-hardness for the degrees of ambiguity of a PTA. This establishes
the lower bounds stated in Theorem 1. The proof of the upper bounds of Theorem 1 is
based on structural characterizations of degrees of ambiguity for PTA. In Sect. 5 we lift the
structural characterizations of Büchi ω-word automata [8, 10] to structural characterizations
of parity ω-word automata and provide a polynomial algorithm for the degrees of ambiguity
of parity ω-word automata. In Sect. 6 we present characterizations for the finite and bounded
ambiguity of PTA. Finally, in Sect. 7 we prove the co-NP upper bounds of the Main Theorem.
The last section presents the conclusion.

2 Preliminaries

We recall here standard terminology and notations about trees and automata [14, 9].

Trees. We view the set {l, r}∗ of finite words over alphabet {l, r} as the domain of a
full-binary tree, where the empty word ε is the root of the tree, and for each node v ∈ {l, r}∗,
we call v · l the left child of v, and v · r the right child of v.

We define a tree order “≤” as a partial order such that ∀u, v ∈ {l, r}∗ : u ≤ v iff u is a
prefix of v. Nodes u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u.

We say that an infinite sequence π = v0, v1, . . . is a tree branch if v0 = ε and ∀i ∈ N :
vi+1 = vi · l or vi+1 = vi · r.

If Σ is a finite alphabet, then a Σ-labeled full-binary tree t is a labeling function
t : {l, r}∗ → Σ. We denote by TωΣ the set of all Σ-labeled full-binary trees. We often use
“tree” for “labeled full-binary tree.”

Given a Σ-labeled tree t and a node v ∈ {l, r}∗, the tree t≥v (called the subtree of t,
rooted at v) is defined by t≥v(u) := t(v · u) for each u ∈ {l, r}∗.

A tree language L over an alphabet Σ is a set of Σ-labeled trees.

CSL 2021
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Automata on ω-words and on infinite trees. An automaton on ω-words is a tuple A :=
(QA,Σ, QI , δ, Acc) where Σ is a finite alphabet, QA is a finite set of states, QI ⊆ QA is a
set of initial states, δ ⊆ QA × Σ × QA is a transition relation, and Acc is an acceptance
condition. A run of A on an ω-word y = a0a1 . . . is an infinite sequence ρ = q0, q1, . . . such
that q0 ∈ QI , and for all i ∈ N : (qi, ai, qi+1) ∈ δ.

The Büchi acceptance conditions are given by a set F ⊆ QA. We say that a run ρ is
accepting if there is a state f ∈ F which appears infinitely often in ρ.

The parity acceptance conditions are given by a function C : QA → N. We say that a
run ρ is accepting if the maximal number which appears infinitely often in C(q0),C(q1), . . .
is even.

We denote the set of all accepting runs of A on an ω-word y by ACC(A, y). The language
of A is defined as L(A) := {y ∈ Σω | ACC(A, y) 6= ∅}.

An automaton on infinite trees is a tuple A := (QA,Σ, QI , δ, Acc) where QA, Σ, QI
are as in an automaton on ω-words, δ ⊆ QA × Σ ×QA ×QA is a transition relation, and
Acc is an acceptance condition. A computation of A on a Σ-labeled tree t is a function
φ : {l, r}∗ → QA such that φ(ε) ∈ QI , and ∀v ∈ {l, r}∗ : (φ(v), t(v), φ(v · l), φ(v · r)) ∈ δ.

The Büchi acceptance conditions are given by a set F ⊆ QA. We say that φ is accepting if
for each branch π = v0, v1, . . . there is a state f ∈ F such that the sequence φ(v0), φ(v1), . . .
contains infinitely many occurrences of f . The parity acceptance conditions are given by
a function C : QA → N. We say that φ is accepting if for each branch π = v0, v1, . . . the
maximal number which appears infinitely often in C(φ(v0)),C(φ(v1)), . . . is even.

We denote the set of all accepting computations of A on t by ACC(A, t). The language
of A is defined as L(A) := {t | ACC(A, t) 6= ∅}.

A state q ∈ QA of A is useful if it appears on an accepting computation.
Given an automaton A = (QA,Σ, QI , δ, Acc) and a state q ∈ QA, Aq is defined as

Aq := (QA,Σ, {q}, δ, Acc), by replacing the set of initial states of A by {q}.
We will use PTA for Parity Tree Automata, BTA for Büchi Tree Automata, PWA for

Parity Word Automata, and BWA for Büchi Word Automata.

Degree of Ambiguity of an Automaton. We denote by |X| the cardinality of a set X. An
automaton A is k-ambiguous if |ACC(A, t)| ≤ k for all t ∈ L(A). A is unambiguous if it is
1-ambiguous. A is boundedly ambiguous if there is k ∈ N such that A is k-ambiguous, A is
finitely ambiguous if ACC(A, t) is finite for all t, A is countably ambiguous if ACC(A, t)
is countable for all t. The set ACC(A, t) is definable in the Monadic Second-Order logic
(MSO). The results of Bárány et al. in [1] imply that every uncountable MSO-definable (in
the full-binary tree) set has cardinality 2ℵ0 .

The degree of ambiguity of A (notation da(A)) is defined by da(A) := k if A is k-
ambiguous and either k = 1 or A is not k − 1 ambiguous, da(A) := finite if A is finitely
ambiguous and not boundedly ambiguous, da(A) := ℵ0 if A is countably ambiguous and not
finitely ambiguous, and da(A) := 2ℵ0 if A is not countably ambiguous.

3 Non-Emptiness Problem for Intersection of PTA

In this section we will prove that deciding the non-emptiness of the intersection of k PTA
is in co-NP. Our proof relies on a reduction from k-dimensional parity tree automata to
k-dimensional parity games. We first recall k-dimensional parity games [2] and introduce
k-dimensional parity automata.
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I Definition 2. A k-dimensional parity game is a tuple G = (S1, S2, E,P), where (S1, S2, E)
is a directed bipartite graph: Si the set of states of Player i, E a set of edges such that each
state s ∈ S1 ∪S2 has at least one outgoing edge (s, s′) ∈ E; and P : S1 ∪S2 → Nk a (priority)
function. The game starts at some state s ∈ S. The players construct an infinite sequence
of states (called a play) as follows: Let s be the last state in the sequence. If s ∈ Si, then
Player i chooses an edge (s, s′) ∈ E and the state s′ is added to the sequence. Since each
state has at least one successor, the sequence can always be continued.

Let s1, s2, . . . be the play which is constructed by the selections of the two players, and let
P(s1),P(s1), . . . be a sequence of priorities in (Nk)ω. We say Player 1 wins the play if for
every i ≤ k the maximal value which is seen infinitely often in the i-th coordinates is even.
Otherwise, we say that Player 2 wins the play.

A strategy for Player i specifies for each sequence s1, . . . sm where sm ∈ Si, the next state
s′ such that (sm, s′) ∈ E. A play is consistent with a strategy of Player i if each move of
Player i in the play is according to the strategy.

The winning region of Player 1 is a subset S′ ⊆ S1 ∪ S2, for which there exists a strategy
of Player 1 such that each play from s′ ∈ S′ which is consistent with it is winning for Player
1. The winning region of Player 2 is defined similarly.

Notice that each play s1, s2, . . . could equivalently be represented by a sequence of edges
e1, e2, . . . such that ei = (si, si+1).

I Definition 3 (k-dimensional PTA). A k-dimensional PTA is a tuple A = (Q,Σ, QI , δ,C)
where Q,Σ, QI , and δ are as in PTA, and C : Q → Nk is a function which assigns a
k-dimensional color vector to each state in Q. A computation φ of A on t is accepting if
for each branch π = v0, v1, . . . and each coordinate i ≤ k, the maximal color which occurs
infinitely often in the i-th coordinate of C(φ(v0)),C(φ(v1)), . . . is even.

I Theorem 4 (Chatterjee, Henzinger and Piterman [2]). Let G = (S1, S2, E,P) be a k-
dimensional parity game, for k > 1. The problem of deciding whether a node s ∈ S1 is in the
winning region of Player 1 is co-NP-complete.

We use Theorem 4 to obtain the following result regarding the non-emptiness problem of
k-dimensional parity tree automata:

I Proposition 5. (1) The non-emptiness problem for k-dimensional PTA is in co-NP. (2)
The non-emptiness problem for deterministic 2-dimensional PTA is co-NP-hard.

Proof. (1) We use the standard reduction from the emptiness problem for automata to
games; it works also for k-dimensional parity conditions. Given a k-dimensional PTA
A = (Q,Σ, QI , δ,C), we define a k-dimensional parity game G(A) = (S1, S2, E,P) as follows:

S1 = Q

S2 = δ

(q, (p, a, p1, p2)) ∈ E iff (p, a, p1, p2) ∈ δ and p = q

((p, a, p1, p2), q) ∈ E iff q = p1 or q = p2
∀s ∈ S1 : P(s) := C(s), and ∀s ∈ S2 : P(s) := (0, . . . , 0︸ ︷︷ ︸

k times

)

Recall that for s ∈ Q an automaton As is defined by replacing the set of initial states of A
by {s}. For every state s ∈ Q, L(As) is non-empty iff Player 1 has a winning strategy from
s. Hence, by Theorem 4 we conclude that deciding the non-emptiness of A is in co-NP.

(2) We prove this using a reduction from the problem of deciding whether Player 1 has a
winning strategy from state s ∈ S1 in a 2-dimensional parity game. Since this problem is
co-NP-hard (by Theorem 4), the result will follow.

CSL 2021
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Let G = (S1, S2, E,P) be a 2-dimensional parity game with priority function P : S1∪S2 →
N2. We will assume without restriction that:

The out degree of each node in G is 2.
∀s ∈ S2 : P(s) = (0, 0).

For each node s ∈ S1, we denote one of its successors by Ea(s) and the other by Eb(s), and
for each node s ∈ S2 we denote one of its successors by El(s) and the other by Er(s). We
refer to the selection of edge (s′, Eh(s′)) ∈ E for h ∈ {a, b, l, r} by Player i as the h move
of Player i. Notice that a sequence of states in the game could equivalently be represented
using a sequence of h moves.

We construct a deterministic 2-dimensional parity automaton A := A(G) =
(Q,Σ, QI , δ,C) as follows:

Q := S1
Σ := {a, b}
QI := S1
∀c ∈ Σ,∀q ∈ Q : δ(q, c) = (El(Ec(q)), Er(Ec(q)))
C := P|S1 (the restriction of P onto S1)

We will prove that Player 1 has a winning strategy from a state s ∈ S1 iff As is non-empty.
This implies the co-NP-hardness of deciding whether As is non-empty.
⇒: A strategy of Player 1 from a state s can be represented as a function from a

sequence of moves of Player 2 to a move of Player 1. Assume Player 1 has a winning strategy
strategy1 : {l, r}∗ → {a, b} from a state s. We will use strategy1 to construct a tree t ∈ L(A)
and an accepting computation φ ∈ ACC(As, t).

Define t(d1 . . . dn) := stategy1(d1, . . . , dn). Define a computation φ on t as φ(ε) := s and
φ(v · dn+1) := Edn+1(Et(v)(φ(v)) for v ∈ {l, r}n and dn+1 ∈ {l, r}. It is easy to verify that φ
is a computation of As on t (this holds even for the non-winning strategies of Player 1).

A proof that φ is an accepting computation of As on t is also simple. Let π = v1, v2, . . .

be a tree branch such that v1 = ε and ∀i ∈ N : vi+1 = vi · di where di ∈ {l, r}. By definition
of φ, φ(π) corresponds to the states of Player 1 in a play which is consistent with winning
strategy strategy1, and with Player 2 choosing move di on his i-th turn. This play is winning
for Player 1; hence, it satisfies the 2-dimensional parity condition; therefore, φ(π) satisfies the
acceptance conditions. Since π was an arbitrary branch, this implies that φ ∈ ACC(As, t),
and As is non-empty.
⇐: Assume that As is non-empty. Therefore, there exists φ ∈ ACC(As, t). We use t

to define a strategy strategy1 : {l, r}∗ → {a, b} for Player 1, by strategy1(d1, . . . , dn) :=
t(d1 . . . dn). We leave to the reader the verification that strategy1 is winning for Player 1
from s. J

We will now proceed to show the connection between k-dimensional automata and the
intersection of parity automata.

I Definition 6 (Product of PTA). Given two PTA A = (QA,Σ, QAI , δA,CA) and B =
(QB,Σ, QBI , δB,CB) we define the 2-dimensional PTA A× B := (Q×,Σ, Q×I , δ×,C×) where:

Q× := QA ×QB
Q×I := QAI ×QBI
((p, q), a, (pl, ql), (pr, qr)) ∈ δ× iff (q, a, ql, qr) ∈ δA and (p, a, pl, pr) ∈ δB
∀(q, p) ∈ QA ×QB : C×(q, p) = (CA(q),CB(p))

The product automata of k PTA is defined similarly, as a k-dimensional PTA.

I Lemma 7. Let A1, . . . ,Ak be parity tree automata, and define A× as the k-dimensional
product automaton A1 × · · · × Ak. Then L(A1) ∩ · · · ∩ L(Ak) 6= ∅ iff L(A×) 6= ∅.
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Proof. ⇒: Assume that L(A1) ∩ · · · ∩ L(Ak) 6= ∅. Therefore, there is an infinite tree
t ∈ L(A1)∩· · ·∩L(Ak) and accepting computations φi ∈ ACC(Ai, t) for all 1 ≤ i ≤ k. Define
a computation φ× such that φ×(u) := (φ1(u), . . . , φk(u)) for all u ∈ {l, r}∗. By definition of
A× we conclude that φ× ∈ ACC(A×, t), and therefore t ∈ L(A×) and L(A×) 6= ∅
⇐: Assume that L(A×) 6= ∅. Therefore, there is a tree t ∈ L(A×) and an accepting

computation φ× ∈ ACC(A×, t). For each u ∈ {l, r}∗ there are k states qu1 , . . . , quk such
that φ×(u) = (qu1 , . . . , quk ). Define a computation φi by φi(u) := qui . By definition of A×
it follows that φi ∈ ACC(Ai, t). We conclude that for each automaton Ai there is an
accepting computation φi of Ai on t, and therefore t ∈ L(A1) ∩ · · · ∩ L(Ak) and we obtain
L(A1) ∩ · · · ∩ L(Ak) 6= ∅. J

I Lemma 8. For every k ∈ N, the problem of deciding whether the intersection of k PTA is
non-empty is in co-NP.

Proof. Given k PTA A1, . . . ,Ak, the product automaton A1 × · · · × Ak can be computed
in polynomial time in the size of A1, . . . ,Ak. By Lemma 7 we conclude that deciding
the non-emptiness of L(A1) ∩ · · · ∩ L(Ak) is equivalent to deciding the non-emptiness of
L(A1 × · · · ×Ak). A1 × · · · ×Ak is a k-dimensional PTA and therefore, by Proposition 5(1),
this problem is in co-NP. J

4 co-NP-hardness of Deciding the Degree of Ambiguity of a PTA

In this section we will use the results of Sect. 3 and prove the co-NP hardness lower bounds
stated in Theorem 1. We will first prove the co-NP-hardness of deciding whether a PTA is
ambiguous, and then use a polynomial time reduction to show that co-NP-hardness holds for
other ambiguity degree problems (Proposition 10).

I Lemma 9. The problem of deciding whether a PTA is ambiguous is co-NP-hard.

Proof. We will use a reduction from the problem of deciding the non-emptiness of determ-
inistic 2-dimensional PTA (which is co-NP-hard, by Proposition 5(2)), to the problem of
deciding whether a PTA is ambiguous.

Let D = (Q,Σ, qinit, δ,C) be a deterministic 2-dimensional PTA. Define Di :=
(Q,Σ, qinit, δ,Ci) for i = 1, 2 as the deterministic PTA obtained from D by defining a
coloring function Ci such that Ci(q) returns the i-th coordinate of C(q) for each q ∈ Q.

Let D′2 be an automaton which is isomorphic to D2, and does not share common states
with D1 (this could be achieved by renaming the states of D2). Since D1 and D′2 are
deterministic, it easily follows that L(D) 6= ∅ iff L(D1) ∩ L(D′2) 6= ∅.

Given two PTA A = (QA,Σ, QAI , δA,CA) and B = (QB,Σ, QBI , δB,CB) such that QA ∩
QB = ∅, we define the parity automaton A∪B := (QA ∪QB,Σ, QAI ∪QBI , δA ∪ δB,CA ∪CB).
Notice that L(A ∪ B) = L(A) ∪ L(B).

We will prove that da(D1 ∪ D′2) > 1 iff L(D1) ∩ L(D′2) is non-empty:
⇒: Assume that da(D1 ∪ D′2) > 1. Then, there exist two accepting computations

φ1, φ2 ∈ ACC(D1 ∪D′2, t). Since D1 and D′2 are deterministic, each of them has at most one
accepting computation, and therefore, if φ1 ∈ ACC(D1, t) then φ2 ∈ ACC(D′2, t). Hence,
t ∈ L(D1) ∩ L(D′2).
⇐: Assume t ∈ L(D1) ∩ L(D′2). Therefore, there are computations φ1 ∈ ACC(D1, t),

φ2 ∈ ACC(D′2, t). By definition of D1 ∪D′2 we have φ1, φ2 ∈ ACC(D1 ∪D′2, t). Since D1 and
D′2 have no common states, we have φ1 6= φ2 and therefore da(D1 ∪ D′2) > 1.

We conclude that L(D) 6= ∅ iff da(D1 ∪ D′2) > 1, and therefore deciding whether a PTA
is ambiguous is co-NP-hard. J

CSL 2021
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I Proposition 10. The problem of deciding whether a PTA is not countably ambiguous
(respectively, is not finitely ambiguous, or is not boundedly ambiguous) is co-NP-hard.

Proof. We will prove it using a reduction from the problem of deciding whether a parity
tree automaton is ambiguous, which is co-NP-hard by Lemma 9.

Let A = (Q,Σ, QI , δ,C) be a PTA, and let a ∈ Σ. Construct an automaton B :=
(QB,Σ, QBI , δB,CB), where:

QB := Q ∪ {f} and f 6∈ Q is a new state,
QBI := {f},
δB = δ ∪ {(f, a, f, q) | q ∈ QI},
CB(f) := 0 and for all q ∈ Q : CB(q) := C(q).

B Claim 11. 1. If A is ambiguous, then B is not countably ambiguous.
2. If B is ambiguous, then A is ambiguous.

Proof. (1) Assume that A is ambiguous. Therefore, there is a tree t ∈ L(A) and two
computations φ1, φ2 ∈ ACC(A, t) such that φ1 6= φ2. Let t′ be a tree such that ∀v ∈ l∗ :
t′(v) = a and t′≥v·r = t. For each S ⊆ N, define a computation φS by

φS(u) :=


f u ∈ l∗

φ1(v) u = li · r · v for i ∈ S
φ2(v) u = li · r · v for i /∈ S

It is easy to see that ∀S ⊆ N : φS ∈ ACC(B, t′), and that ∀S1, S2 ⊆ N : S1 6= S2 → φS1 6= φS2 .
Therefore, ACC(B, t′) is not countable, and B is not countably ambiguous.

(2) Assume that B is ambiguous. Therefore, there is a tree t ∈ L(B) and computations
φ′, φ′′ ∈ ACC(B, t) such that φ′ 6= φ′′. Let v ∈ {l, r}∗ such that φ′(v) 6= φ′′(v). By definition
of B we have ∀u ∈ l∗ : φ′(u) = φ′′(u) = f , and therefore, v /∈ l∗. Hence, there is w ∈ l∗ · r
such that v ≥ w. Let φ′≥w and φ′′≥w be the restrictions of φ′ and φ′′, respectively, on t≥w.
It is clear that φ′≥w 6= φ′′≥w. By definition of B we obtain φ′≥w, φ′′≥w ∈ ACC(A, t≥w), and
therefore A is ambiguous. C
The parity tree automaton B can be constructed in a polynomial time in the size of A. By
Claim 11 we obtain that the following conditions are equivalent:
A is not unambiguous
B is not countably ambiguous
B is not finitely ambiguous
B is not boundedly ambiguous

Therefore, there are polynomial time reductions from the problem of deciding whether a PTA
is not unambiguous (which is co-NP-hard, by Lemma 9), to the problems of deciding whether
a PTA is not countably ambiguous/not finitely ambiguous/not boundedly ambiguous. Hence,
those problems are co-NP-hard. J

5 Degree of Ambiguity for Parity Automata on ω-words

In this section we will present structural characterizations and polynomial algorithms for
deciding the degree of ambiguity of parity automata on ω-word (PWA). These character-
izations and algorithms are derived from similar characterizations for Büchi automata on
ω-words (BWA) given in [8, 10]. Throughout this section we will assume all states of the
automata are useful (it is computable in polynomial time whether a state of a PWA/BWA is
useful).
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p q
u (ρ2)

u (ρ1) u (ρ3)

Figure 2 Forbidden Pattern for Finite Ambiguity of PWA. The runs ρ1 and ρ2 are distinct, C(q)
is even, and C(q) is maximal among the colors which C assigns to the states in ρ3.

The next definition and theorem are taken from [8, 10]. They provide a forbidden pattern
characterization of the degrees of ambiguity of BWA.

I Definition 12 (Forbidden pattern for BWA). Let B be a BWA such that all its states are
useful.
B contains a forbidden pattern for countable ambiguity, if there is a final state f and
there are two distinct runs of Bf on the same word u from f to f .
B contains a forbidden pattern for finite ambiguity, if it contains the forbidden pattern
for countable ambiguity or there is a final state f , a state q 6= f , and a word u such that
there are runs of Bq on u from q to q and from q to f , and a run of Bf on u from f to f .
B contains a forbidden pattern for bounded ambiguity, if there are distinct states p, q
such that for a (finite) word u, there are runs of Bp on u from p to p and from p to q,
and there is a run of Bq on u from q to q.

I Theorem 13 (Structural characterization). Let B be a BWA.
1. B has uncountably many accepting runs on some ω-word iff B contains the forbidden

pattern for countable ambiguity.
2. B has infinitely many accepting runs on some ω-word iff B contains the forbidden pattern

for finite ambiguity.
3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.
Now, we define forbidden patterns for PWA. Then, Proposition 16 proves their correctness.

I Definition 14 (Forbidden pattern for PWA). Let A be a PWA such that all its states are
useful.
A contains a forbidden pattern for countable ambiguity, if there is a state q such that
C(q) is even, and two distinct runs ρ1 and ρ2 of Aq from q to q on the same finite word
y such that ∀p ∈ ρ1 : C(q) ≥ C(p) and ∀p ∈ ρ2 : C(q) ≥ C(p).
A contains a forbidden pattern for finite ambiguity, if there is a state q such that C(q) is
even, a state p (which can be equal to q), and a word y such that there is a run ρ1 of Ap
on y from p to p, a run ρ2 of Ap on y from p to q, and a run ρ3 of Aq on y from q to q
such that max{C(p′) | p′ ∈ ρ3} is even, and ρ1 6= ρ2.
A contains a forbidden pattern for bounded ambiguity, if there are two states p 6= q and
a finite word y such that there are runs of Ap on y from p to p and from p to q, and a
run of Aq on y from q to q.

First, we prove that the forbidden patterns provide sufficient conditions for the corres-
ponding ambiguity.

I Lemma 15 (Sufficient conditions for degrees of ambiguity). Let A be a PWA.
1. If A contains the forbidden pattern for countable ambiguity, then it is not countably

ambiguous.
2. If A contains the forbidden pattern for finite ambiguity, then it is not finitely ambiguous.
3. If A contains the forbidden pattern for bounded ambiguity, then it is not boundedly

ambiguous.
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Proof. (1) Let y be a finite word, and let q be a state of A such that C(q) is even and there
are two distinct runs ρ1 and ρ2 of Aq from q to q on y where ∀p ∈ ρ1 : C(q) ≥ C(p) and
∀p ∈ ρ2 : C(q) ≥ C(p).

We will show that there are infinitely many accepting runs of Aq on yω. Denote by ρ′1
and ρ′2 the runs ρ1 and ρ2, respectively, with the last state removed. For each B ⊆ N, let
ρB := ρB0 · ρB1 · · · ∈ Qω, where ρBi := ρ′1 if i ∈ B, and ρBi := ρ′2 otherwise. It is clear that
ρB is a computation of Aq on yω. Notice that q occurs infinitely often in ρB, and by the
definition of ρ1 and ρ2 we conclude that C(q) is the maximal color which is assigned to a
state in ρB .

Let B1, B2 ⊆ N such that ∃b ∈ B1 \B2. We obtain ρB1
b = ρ′1 6= ρ′2 = ρB2

b , and therefore
ρB1 6= ρB2 . There are uncountably many subsets of N, and therefore there are uncountably
many accepting computation of Aq on yω. Since q is a useful state we conclude that A is
uncountably ambiguous.

(2) Let y be a finite word, q a state such that C(q) is even, and p a state such that there
are three runs on y: a run ρ1 of Ap from p to p, a run ρ2 of Ap from p to q, and a run ρ3 of
Aq from q to q such that max{C(p′) | p′ ∈ ρ} is even and ρ1 6= ρ2.

We will show that there are infinitely many accepting runs of Ap on yω. Denote by ρ′1,
ρ′2 and ρ′3 the runs ρ1, ρ2 and ρ3, respectively, with the last state removed. For each k ∈ N,

define a computation ρk := ρk0 · ρk1 . . . , where ρki :=


ρ′1 i < k

ρ′2 i = k

ρ′3 i > k

It is easy to verify that ρk is a run of Ap on yω. Notice that q occurs infinitely often in
ρk. Since each state which occurs infinitely often in ρk is in ρ′3, we conclude that C(q) is the
maximal color among the colors which are assigned to states which occurs infinitely often in
ρk; hence, ρk is accepting. Let k1 < k2 ∈ N. We obtain ρk1

k1
= ρ′2 6= ρ′1 = ρk2

k1
, and therefore,

ρk1 6= ρk2 and we conclude that A is not finitely ambiguous.
(3) Let y be a finite word such that there are two states p 6= q, and three runs: a run ρ1

of Ap on y from p to p, a run ρ2 of Ap from p to q, and a run ρ3 of Aq from q to q.
Since q is a useful state, there is an ω-word ŷ ∈ L(Aq), and an accepting run ρ̂ of Aq on

ŷ. We will prove that for each k ∈ N, there are at least k accepting runs of Ap on yk · ŷ.
Denote by ρ′1, ρ′2 and ρ′3 the runs ρ1, ρ2 and ρ3, respectively, with the last state removed.

For each 0 ≤ j < k we define a run ρj := ρj0 · ρ
j
1 . . . ρ

j
k, where

ρji :=


ρ′1 i < j

ρ′2 i = j

ρ′3 i > j

It is easy to verify that ρj is a run of Ap on yk from p to q, and therefore, ρj · ρ̂ is an
accepting run of Ap on yk · ŷ. Moreover, for each j1 < j2 < k we have ρj1

j1
= ρ′2 6= ρ′1 = ρj2

j1
,

and therefore, ρj1 6= ρj2 . We conclude that for each k ∈ N there are at least k different
accepting computation of Ap on yk · ŷ, and therefore Ap is not boundedly ambiguous. Since
p is useful, we conclude that A is not boundedly ambiguous. J

I Proposition 16 (Structural characterization). Let A be a PWA.
1. A has uncountably many accepting runs on some ω-word iff A contains the forbidden

pattern for countable ambiguity.
2. A has infinitely many accepting runs on some ω-word iff A contains the forbidden pattern

for finite ambiguity.
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3. A is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.
The ⇐ direction of the proposition was proved in Lemma 15. To prove the ⇒ direction of
Proposition 16 we will use the standard reduction of PWA to BWA.

Let A = (Q,Σ, QI , δ,C) be a PWA, and let Ceven := {C(q) | q ∈ Q and C(q) is even}.
Define a BWA B := (Q′,Σ, Q′I , δ′, F ), where:
Q′ := Q ∪ {(c, p) ∈ Ceven ×Q | c ≥ C(p)}
Q′I := QI ∪ {(c, p) ∈ Q′ | p ∈ QI}
δ′ is the union of the following sets:
δ

{(p, a, (c, p′)) | (p, a, p′) ∈ δ,C(p) > c and (c, p′) ∈ Q′}
{((c, p), a, (c, p′)) | (p, a, p′) ∈ δ and (c, p′) ∈ Q′}

F := {(c, q) | C(q) = c}

Proposition 16 immediately follows from Theorem 13, Lemma 17 and Lemma 18.

I Lemma 17. |ACC(A, y)| ≤ |ACC(B, y)|

Proof. By the definition of PWA, for each accepting run ρ := p0, . . . pi, . . . of A on y there is
i ∈ N such that pi occurs infinitely often in ρ, c := C(pi) is even and ∀j > i : C(pi) ≥ C(pj).

If C(pi) ≥ C(p) for all p ∈ ρ then define g(ρ) := (c, p0), (c, p1), . . . . Otherwise, let k be such
that C(pk) > c and ∀j > k : c ≥ C(pj), and define g(ρ) := p0, . . . pk, (c, pk+1), (c, pk+2), . . . .
By the definition of B we conclude that g(ρ) is an accepting computation of B on y, since
(c, pi) occurs infinitely often in g(ρ). It is easy to verify that g is injective, and therefore, we
obtain |ACC(A, y)| ≤ |ACC(B, y)|. J

I Lemma 18. 1. If B contains the forbidden pattern for countable ambiguity (of BWA)
then A contains the forbidden pattern for countable ambiguity (of PWA).

2. If B contains the forbidden pattern for finite ambiguity (of BWA) then A contains the
forbidden pattern for finite ambiguity (of PWA).

3. If B contains the forbidden pattern for bounded ambiguity (of BWA) then A contains the
forbidden pattern for bounded ambiguity (of PWA).

Proof. The lemma is proved by inspecting the transition relations of A and the corresponding
Büchi automaton B.
1. By definition of the forbidden pattern of countable ambiguity we conclude that there

is a final state f and two distinct runs ρ1 and ρ2 of Bf on the same finite word y from
f to f . By the definition of B there is a state q ∈ Q with even color c := C(q) such
that f = (c, q), the run ρ1 is of the form (c, p0), . . . , (c, pn) and the run ρ2 is of the form
(c, q0), . . . , (c, qn), where p0 = pn = q0 = qn = q.
The runs ρ1 and ρ2 are distinct, and therefore there is 0 < i < n such that pi 6= qi. We
conclude that q0, . . . , qn and p0, . . . , pn are two distinct runs of A on y from q to q such
that C(q) is even, ∀p ∈ ρ1 : C(q) ≥ C(p) and ∀p ∈ ρ2 : C(q) ≥ C(p). Therefore, A has a
forbidden pattern for countable ambiguity.

2. If B contains the forbidden pattern for countable ambiguity, then by (1) we conclude
that A contains the forbidden pattern for countable ambiguity. Hence, there is a state q
such that C(q) is even, and there are two distinct runs ρ1 and ρ2 of Aq from q to q on
the same finite word y, and for the run ρ3 := ρ1 we have ∀p ∈ ρ3 : C(q) ≥ C(p). That is,
A contains the forbidden pattern for finite ambiguity.
Otherwise, B has a final state f , a state q 6= f , and a finite word y such that there are
runs ρ1 of Bq on y from q to q, ρ2 of Bq on y from q to f , and ρ3 of Bf on y from f to f .
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Since f ∈ F , we conclude that there is a state q′ ∈ Q with even color c := C(q′)
such that f = (c, q′). The run ρ3 is therefore of the form (c, p0), . . . , (c, pn) where
p0 = pn = q′. Hence, p0, . . . , pn is a run of A on y from q′ to q′ such that C(q′) is even
and ∀i ≤ n : c ≥ C(pi).
Case 1: q ∈ Q′ \Q. By the definition of Q′ we have q = (c′, p′) for c′ ∈ Ceven and p′ ∈ Q.

Notice that the run ρ2 is from (c′, p′) to (c, q′). By the definition of δ′ we conclude
that c = c′, and since q 6= f we obtain p′ 6= q′. By the definition of ρ1 and ρ2 we
conclude that there are runs of Ap′ on y from p′ to p′ and from p′ to q′, where p′ 6= q′.
Along with the run p0, . . . , pn from q′ to q′, we conclude that A contains the forbidden
pattern for finite ambiguity.

Case 2: q ∈ Q. Notice that the run ρ2 of B is from q to (c, q′). Therefore, by the
definition of δ′, there is a run ρA of A on y from q to q′ which passes through a state
with priority greater than c. If q = q′, then we conclude that there are two distinct
runs of Aq on y from q to q: The run ρ′1 := ρA, which visits a state with a color
greater than c, and the run ρ′2 := p0, . . . , pn which only visits states of color at most c.
Taking ρ′3 := ρ2, we conclude that A has the forbidden pattern for finite ambiguity.
Otherwise, q 6= q′ and by the definition of ρ1 and ρ2 we conclude that there are runs
of Aq from q to q and from q to q′, and together with the run p0, . . . , pn from q′ to q′,
we conclude that A contains the forbidden pattern for finite ambiguity.

3. B contains the forbidden pattern for bounded ambiguity. Therefore, there are distinct
states p 6= q and a finite word y such that there are runs of Bp on y from p to p and from
p to q, and there is a run of Bq on y from q to q.
Case 1: q ∈ Q. Notice that there is a run of B from p to q, and by the definition of δ′

we obtain p ∈ Q. Therefore, there are runs of Ap on y from p to p and from p to q,
and a run of Aq on y from q to q. Hence, A contains a forbidden pattern for bounded
ambiguity.

Case 2: q ∈ Q′ \Q. By the definition of Q′, there are c ∈ Ceven and q′ ∈ Q such that
q = (c, q′). If p ∈ Q′ \Q then there are c′ ∈ Ceven and p′ ∈ Q such that p = (c′, p′).
Notice that there is a run from (c′, p′) to (c, q′) and by the definition of δ′ we have
c = c′. Since p 6= q we conclude that p′ 6= q′. Therefore, there are runs of Ap′ on y
from p′ to p′ and from p′ to q′, and a run of Aq′ on y from q′ to q′. We conclude that
A contains the forbidden pattern for bounded ambiguity.
If p ∈ Q and p 6= q′, then there are runs of Ap on y from p to p and from p to q′, and
a run of Aq′ on y from q′ to q′. We conclude that A contains the forbidden pattern
for bounded ambiguity. Otherwise, we have p = q′. The run ρ2 is from a state in
Q to a state in Q′ \Q. By the definition of δ′ we conclude that there is a run ρ′ of
Ap on y from p to p which passes though a state with color greater than C(q). The
run ρ3 is from a state in Q′ \ Q to a state in Q′ \ Q, and by the definition of δ′ we
conclude that there is a run ρ′′ of Ap on y from p to p which only visits states with
color not greater than C(q). Let ρ′ = p0, . . . , pn and ρ′′ = q0, . . . , qn. We conclude
that p0 = pn = q0 = qn = p, and ρ′ 6= ρ′′. Therefore, there is 0 < i < n such that
pi 6= qi. Let y1, y2 be two finite words such that y1 is the prefix of y of length i, and
y1 · y2 = y. We conclude that there are runs of Api

on y2 · y1 from pi to pi and from
qi to qi, and there is a run of Aqi on y2 · y1 from qi to qi. Therefore, A contains the
forbidden pattern for bounded ambiguity, as requested. J

We will now show that the problem of deciding the degree of ambiguity of PWA is in PTIME
(in fact, this problem is even in NL).
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I Definition 19. Given a PWA A = (Q,Σ, QI , δ,C) and k > 0, we define a graph GkA where
the set of nodes is Qk, and there is an edge from (q1, . . . , qk) to (p1, . . . , pk) iff there is a ∈ Σ
such that (qi, a, pi) ∈ δ for all 1 ≤ i ≤ k.

The following lemma supplies equivalent conditions to the forbidden patterns presented in
Definition 14:

I Lemma 20.
A contains a forbidden pattern for countable ambiguity iff there is a state q such that C(q)
is even, and G2

A contains a path from (q, q) to itself which passes through a node (p, p′)
where p 6= p′, and for each node (p1, p2) in the path, C(q) ≥ C(p1) and C(q) ≥ C(p2).
A contains a forbidden pattern for finite ambiguity iff there are states q and p such
that C(q) is even, and G3

A contains a path from (p, p, q) to (p, q, q) such that C(q) is the
maximal color which is assigned to a state in the third coordinate of each node in the
path, and the path contains a node (p1, p2, p3) where p1 6= p2.
A contains a forbidden pattern for bounded ambiguity, if there are two states p 6= q such
that G3

A contains a path from (p, p, q) to (p, q, q).

I Proposition 21. There is a polynomial time algorithm for deciding the degree of ambiguity
of PWA.

Proof. Let A = (Q,Σ, QI , δ,C) be a PWA. By Lemma 20, it is sufficient to show that the
equivalent conditions on G2

A and G3
A are decidable in polynomial time.

Indeed, each of the conditions in Lemma 20 can be reduced to polynomially many
reachability problems in G2

A and G3
A. Constructing G2

A and G3
A can be done in polynomial

time in the size of A, and the proposition follows. J

6 Finite Ambiguity and Bounded Ambiguity of PTA

In this section we will provide characterizations for finite ambiguity and bounded ambiguity
of PTA. These characterizations are similar to the characterizations for finite ambiguity and
bounded ambiguity of BTA (see Propositions 17 and 18 in [11]).

I Definition 22 (Projection of a computation on a branch). Let φ ∈ ACC(A, t) and let
π := v0, v1, . . . be a tree branch. We say that φ(π) := φ(v0), φ(v1), · · · ∈ QωA is the projection
of φ on π, and define ACC(A, t, π) := {φ(π) | φ ∈ ACC(A, t)}.

I Definition 23 (Branch ambiguity). A is at most n branch-ambiguous if |ACC(A, t, π)| ≤ n
for every t and branch π. A is bounded branch ambiguous if it is at most n branch ambiguous
for some n. A is finitely (respectively, countably) branch ambiguous if |ACC(A, t, π)| is finite
(respectively, countable) for every t and π.

Let A be a PTA. We define a PWA AB which has the same ambiguity as the branch ambiguity
of A:

I Definition 24 (Branch automaton). For a PTA A = (Q,Σ, QI , δ,C), the corresponding
branch automaton is a PWA AB := (Q,ΣB , QI , δB ,C), where
1. ΣB := Σ× Σd × Σcons with

a. Σd := {l, r} - directions alphabet (left/right).
b. Σcons := {S ⊆ Q | ∩

q∈S
L(Aq) 6= ∅} - sets of states, which we consider “consistent.”

2. (q, a, q′) ∈ δB iff a = (σ, l, S) and ∃p ∈ S : (q, σ, (q′, p)) ∈ δ or a = (σ, r, S) and
∃p ∈ S : (q, σ, (p, q′)) ∈ δ.
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The following lemma reduces the branch ambiguity to the ambiguity of branch automaton.

I Lemma 25. The branch ambiguity of a PTA A is bounded (respectively, finite, countable)
iff the ambiguity of the corresponding branch ω-automaton AB is bounded (respectively, finite,
countable).

The proof of the lemma, which appears in the appendix, is a minor modification of the
proof of Lemma 11 in [11] which reduces the branch ambiguity of BTA to the ambiguity of
the corresponding branch automaton.

I Definition 26 (Ambiguous Transition Pattern). Let A = (Q,Σ, QI , δ,C) be a PTA with cor-
responding branch automaton AB = (Q,ΣB , QI , δB ,C). A has a q-ambiguous transition
pattern if q ∈ Q and there are p1, p2 ∈ Q and y1 ∈ Σ∗B, y2 ∈ Σ+

B with runs of AB from q to
p1 on y1 and from p2 to q on y2 such that at least one of the following holds:
1. There are two transitions (p1, (a, d, {q1}), p2), (p1, (a, d, {q2}), p2) ∈ δB with q1 6= q2 and

L(Aq1) ∩ L(Aq2) 6= ∅, or
2. There is a transition (p1, (a, d, {q1}), p2) ∈ δB with da(Aq1) > 1.
A q-ambiguous transition pattern is said to be fine if C(q) is even, and C(q) ≥ C(p) for each
state p in the runs of AB from q to p1 on y1 and from p2 to q on y2.
A is said to have an ambiguous transition pattern if there is q ∈ Q such that A has

a q-ambiguous transition pattern. A is said to have a fine ambiguous transition pattern
if there is q ∈ Q such that A has a fine q-ambiguous transition pattern.

We are now ready to provide the characterization of finite and bounded ambiguity of parity
tree automata.

I Proposition 27 (Bounded ambiguity of parity automata). The following are equivalent:
1. A PTA A is not boundedly ambiguous.
2. At least one of the following conditions holds:

a. A is not bounded branch ambiguous.
b. A has an ambiguous transition pattern.

I Proposition 28 (Finite ambiguity of parity automata). The following are equivalent:
1. A PTA A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finitely branch ambiguous.
b. A has a fine ambiguous transition pattern.
The proofs of Propositions 28 and 27 are simple variations of the proofs of Propositions

17 and 18 of [11], which deal with the characterization of bounded and finite ambiguity of
Büchi tree automata. See the appendix for the proof of Prop. 28.

In Section 7 we use Propositions 27 and 28 to show that the problems of deciding whether
a PTA is not boundedly ambiguous/not finitely ambiguous are in co-NP.

7 co-NP Upper Bound of Theorem 1

Let A = (Q,Σ, QI , δ,C) be a PTA. Deciding whether a state q ∈ Q of a PTA is useful is
reducible to the emptiness problem of PTA, and can be tested in NP∩ co-NP as follows:
Let Qnon−empty := {p | L(Ap) 6= ∅}. If q /∈ Qnon−empty, then q is not useful. Otherwise, let
B be the restriction of the branch automaton AB to the transitions over one state letters
in Σ× Σd × {{p} | p ∈ Qnon−empty}. Now, q is reachable from an initial state of B iff it is
useful.
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Therefore, we will assume in the rest of the proof that all states in A are useful.
It is easy to verify that A is ambiguous iff there exist two states p, q ∈ QI such that

L(Ap) ∩ L(Aq) 6= ∅ or there exist two transitions (q, a, q1, q2), (q, a, q′1, q′2) ∈ δ from a state q
such that L(Aq1) ∩ L(Aq′

1
) 6= ∅ and L(Aq2) ∩ L(Aq′

2
) 6= ∅.

Since deciding whether L(Ap) ∩ L(Aq) 6= ∅ is in co-NP (by Lemma 8), and the number
of pairs p, q ∈ Q is polynomial in |A|, we conclude:

I Lemma 29. Deciding whether a PTA is ambiguous is in co-NP.
The following Lemma easily follows from Definition 24 of the branch automaton.

I Lemma 30. Let AB be the branch automaton of A. Assume that ri ∈ Ql+1 for i = 1, . . . , k
are runs of AB on u = (σ1, d1, S1) . . . (σl, dl, Sl) ∈ Σ∗B. Then, for i = 1, . . . , l there are S′i ⊆ Si
such that |S′i| ≤ k and ri for i = 1, . . . , k are runs of AB on u = (σ1, d1, S

′
1) . . . (σl, dl, S′l).

A letter (σ, d, S) ∈ ΣB is called a k-state letter if S has at most k states. If A has n states,
then the alphabet ΣB of the branch automaton AB might be of size 2|Σ| × 2n, yet the
number of k-state letters is bounded by 2|Σ| ×

∑k
i=1
(
n
i

)
≤ 2|Σ|nk. To test whether a k-state

letter (σ, d, S) is in ΣB, we can check whether the intersection of the tree languages L(Aq)
for q ∈ S is non-empty. By Lemma 8, this is in co-NP for every fixed k ∈ N. We denote by
A(k)
B the restriction of the branch automaton AB to k-state letters.

I Lemma 31 (Computability of branch ambiguity). The problem whether the branch ambiguity
of A is not bounded (respectively, not finite, not countable) is in co-NP.

Proof. By Lemma 25 and Proposition 16, deciding whether AB is not finitely/not boundedly
ambiguous is equivalent to deciding whether AB has a forbidden pattern for finite/bounded
ambiguity. The forbidden patterns involve conditions on at most three runs on the same
word. By Lemma 30, we conclude that AB has a forbidden pattern for finite/bounded
ambiguity iff A(3)

B has a forbidden pattern for finite/bounded ambiguity. Finding A(3)
B

requires deciding the non-emptiness of L(Aq1)∩L(Aq2)∩L(Aq3) for all triplets q1, q2, q3 ∈ Q.
This problem is in co-NP by Lemma 8; hence, A(3)

B can be constructed in co-NP and its size
is polynomial in the size of A. The problem of deciding if A(3)

B has a forbidden pattern for
bounded/finite/countable ambiguity is in PTIME in the size of A(3)

B (by Lemma 21). All
these imply the co-NP bound of Lemma 31. J

I Lemma 32 (Computability of q-ambiguous pattern). Deciding whether A has a q-ambiguous
(respectively, fine q-ambiguous) transition for a state q ∈ Q is in co-NP.

Proof. Deciding if item (1) or (2) of Definition 26 holds for a fixed pair of states requires
testing the non-emptiness of PTA intersection, which is in co-NP by Lemma 8. A has a
q-ambiguous transition pattern iff there is a path in AB from q to p1 and from p1 to q, such
that items (1) or (2) hold for (p1, p2). If, additionally, C(q) is even and all states in the paths
have a color which is not greater than C(q), then A has a fine q-ambiguous transition. Both
these cases are reducible to the reachability problem in A(1)

B . Assuming all states are useful,
finding A(1)

B can be done in polynomial time. J

Lemmas 25, 31 and 32 imply that deciding whether condition 2(a) and 2(b) of Propositions
28 and 27 are in co-NP. Therefore, the problem whether a PTA is not boundedly (respectively,
finitely) ambiguous is in co-NP. This together with Lemma 29 prove the upper bounds of
Theorem 1.
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8 Conclusion

We investigated the complexity of deciding the degree of ambiguity for PTA. The co-NP
hardness lower bound was obtained by reductions from multi-dimensional parity games [2].
The co-NP upper bound was obtained by structural characterizations of degrees of ambiguity
for PTA which is similar to the corresponding characterizations for BTA [11]. Unfortunately,
we have not succeeded to find a characterization and an upper bound for countable ambiguity.
It is also interesting to find natural problems for PTA/BTA which are easier for PTA/BTA
with small degrees of ambiguity than for arbitrary PTA/BTA.
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A Selected Proofs

A.1 Proof of Lemma 25
I Lemma 25. The branch ambiguity of a PTA A is bounded (respectively, finite, countable)
iff the ambiguity of the corresponding branch ω-automaton AB is bounded (respectively, finite,
countable).

The proof will make use the following two lemmas, which deals with the connection
between computations of A and runs of AB :

I Lemma 33. Let t ∈ L(A), and let π = v0, v1, . . . be a tree branch. Then there exists
y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y).

Proof. Let y := (a1, d1, S1) . . . (ai, di, Si) . . . be an ω-word over alphabet ΣB , such that:
di ∈ {l, r} and di := l iff vi is the left child of vi−1
ai := t(vi−1)
Si := {φ(v′i) | φ ∈ ACC(A, t)} where v′i is the child of vi−1 which is not vi

Let φ ∈ ACC(A, t). We will prove that ρ := φ(π) is a run of AB on y. Assume that
ρ = p0, p1, . . . . For each 1 ≤ i ≤ n we have pi−1 = φ(vi−1) and pi = φ(vi). If vi is
the left child of vi−1 then we obtain (φ(vi−1), t(vi−1), φ(vi), φ(v′i−1)) ∈ δ, and otherwise
(φ(vi−1), t(vi−1), φ(v′i−1), φ(vi)) ∈ δ. By definition of Si we obtain φ(v′i−1) ∈ Si. Notice
that ai = t(vi−1), and di = l iff vi is the left child of vi−1. Therefore, by definition of AB,
we conclude that (φ(vi−1), (ai, di, Si), φ(vi)) = (pi−1, (ai, di, Si), pi) ∈ δB, and the lemma
follows. J

I Lemma 34. Let A be a PTA with corresponding branch automaton AB. If y = (a1, d1, S1)
. . . (ai, di, Si) . . . is an ω-word over alphabet ΣB such that y ∈ L(AB), then there exist a tree
t ∈ L(A) and a tree branch π = v0, v1, . . . such that:

t(vi) = ai+1
vi+1 is the left child of vi iff di = l

For each run ρ ∈ ACC(AB , y) there is a computation φ ∈ ACC(A, t) such that φ(π) = ρ.

Proof. For each Si, let ti ∈ ∩
q∈Si

L(Aq) (there is such ti, since Si ∈ Σcons).

Let π := v0, v1, . . . where v0 := ε and ∀i ∈ N : vi+1 := vi · di; and denote by v′i be the
child of vi which is not vi+1.

We define a Σ-labeled full-binary tree t by t(u) :=
{
ai+1 ∃i : u = vi

ti+1(w) ∃i : u = v′i · w
Let ρ := p0, p1, . . . be an accepting run of AB on y. By definition of AB , for each i ∈ N

there is a state qi ∈ Q such that (pi, ai, pi+1, qi) ∈ δ if di = l or (pi, ai, qi, pi+1) ∈ δ if di = r.
Recall that ti ∈ L(Aqi), and therefore there is a computation φi ∈ ACC(Aqi , ti). We use ρ
and φi to define a computation φ of A on t, as follows:

φ(u) :=
{
pi ∃i : u = vi

φi+1(w) ∃i : u = v′i · w
It is easy to see that φ is a computation of A on t. We will show that φ is accepting.

For each tree branch π′, if π′ = π then φ(π′) = φ(π) = ρ and since ρ ∈ ACC(AB , y) we
conclude that the maximal color which is assigned infinitely often to a state in φ(π′) is even.
Otherwise, by definition of t, there is i ∈ N such that v′i ∈ π′. By the definition of φ we
obtain φ(u) = φi(w) for all nodes u = v′i · w, and since φi is accepting we conclude that
the maximal color which is assigned infinitely often to a state in φ(π′) is also even. Hence,
φ ∈ ACC(A, t) as requested. J
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Figure 3 The tree t.

We are now ready to prove Lemma 25.
⇒: By Lemma 33, for each tree t ∈ L(A) and a tree branch π there is an ω-word

y ∈ L(AB) such that ACC(A, t, π) ⊆ ACC(AB , y). Therefore, if A is not boundedly
(respectively, finitely, countably) branch ambiguous then AB is not boundedly (respectively,
finitely, countably) ambiguous.
⇐: By Lemma 34, for each y ∈ L(AB) there is a tree t ∈ L(A) and a tree branch π such

that ACC(AB , y) ⊆ ACC(A, t, π). Therefore, if AB is not boundedly (respectively, finitely,
countably) ambiguous then A is not boundedly (respectively, finitely, countably) branch
ambiguous. J

A.2 Proof of Proposition 28
I Proposition 28 (Finite ambiguity of parity automata). The following are equivalent:
1. A PTA A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finitely branch ambiguous.
b. A has a fine ambiguous transition pattern.

We will first prove the following auxiliary lemma:

I Lemma 35. If a PTA A has a fine ambiguous transition pattern then its ambiguity degree
is not countable.

Proof. Let AB = (Q,ΣB , QI , δB , F ) be the corresponding branch automaton of A, and let
q be a state such that A has a fine q-ambiguous transition pattern. Therefore, there exist
p′1, p

′
2 ∈ Q and z1 ∈ Σ∗B, z2 ∈ Σ+

B such that there is a run ρ1 of (AB)q on z1 from q to p′1,
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and a run ρ2 of (AB)p′
2
on z2 from p′2 to q; C(q) is even, and C(q) > C(p) for each state p in

the runs ρ1 and ρ2.
We choose z′ ∈ ΣB as follows:
If there are transitions (p′1, (a′, d′, {q1}), p′2), (p′1, (a′, d′, {q2}), p′2) ∈ δB with L(Aq1) ∩
L(Aq2) 6= ∅, then by definition of AB there exists a transition (a′, d′, {q1, q2}) ∈ δB . Let
z′ := (a′, d′, {q1, q2}).
Otherwise, by definition of fine q-ambiguous transition, there exists a transition:
(p′1, (a′, d′, {q1}), p′2) ∈ δB with da(Aq1) > 1. In this case, let z′ := (a′, d′, {q1}).

Define a word y := z1 · z′ · z2 over alphabet ΣB, and let ρ := ρ1 · ρ2. Notice that ρ is a
run of AB on y from q to q.

yω is an ω-word in ΣωB . Denote by ρ′ the run ρ without the last state. By definition of ρ
we conclude that (ρ′)ω is a run of (AB)f on yω. Notice that ρ′ contains a final state, and
therefore (ρ′)ω is an accepting run, and yω ∈ L((AB)f ).

yω is of the form (a1, d1, S1) . . . (ai, di, Si) . . . where ai ∈ Σ, di ∈ {l, r} and Si ⊆ Q.
Assume z′ = (az, dz, Sz), and let tz ∈ ∩

q′∈Sz

L(Aq′) such that there are two accepting

computations φ1 and φ2 on tz, where φ1(ε), φ2(ε) ∈ Sz (there is such tz by definition of z′).
By Lemma 34, there is a tree t ∈ L(Aq), a computation φ ∈ ACC(Aq, t) and a tree

branch π = v0v1 . . . such that φ(π) = (ρ′)ω; and for each i ∈ N we have t(vi) = ai, and vi+1
is the left child of vi iff di = l.

Let J := {i | the i-th transition of (ρ′)ω is from p′1 to p′2 over z′}. By definition of ρ we
conclude that J is an infinite subset of N.

Define a tree t′ by t′(u) =
{
tz(w) ∃i : u = v′i · w
t(u) otherwise

For each B ⊆ A, we define a computation φB by:

φB(u) =


φ1(w) ∃i : u = v′i · w and v′i ∈ A \B
φ2(w) ∃i : u = v′i · w and v′i ∈ B
φ(u) otherwise

It is routine to verify that φB is an accepting computation of Aq on t′, and that
B1 6= B2 → φB1 6= φB2 . Since the number of subsets of A is uncountable, and each subset B
yields a unique accepting computations φB of Aq on t′, it follows that ACC(Aq, t′) is not
countable, and since q is useful, we conclude that A is not countably ambiguous. J

We are now ready to proceed with the proof of Prop. 28. The (2)⇒ (1) direction follows
from Lemma 25 and Lemma 35. Below we prove the (1) ⇒ (2) direction.

Let t be a tree such that ACC(A, t) is not finite. We define a branch π := v0, . . . , vi, . . .

in t and an ω-sequence of states q0 . . . qi . . . such that for every i:
1. From qi there are infinitely many accepting computations of Aqi

on the subtree t≥vi
.

2. There is an accepting computation φi on t such that φi(vj) = qj for every j ≤ i.
Define v0 as the root of t and q0 as an initial state from which there are infinitely many
accepting computations.

Assume that vi and qi were defined. Since there are infinitely many accepting computations
from the state qi on the subtree t≥vi , infinitely many of them take the same first transition
from qi to 〈ql, qr〉 and either there are infinitely many accepting computations from state ql
on the subtree rooted at the left child of vi, or from state qr on the subtree rooted at the
right child of vi. Define vi+1 and qi+1 according to these cases.

If |ACC(A, t, π)| is infinite, then by the definition of branch ambiguity we have that A is
not finitely branch ambiguous, and 2(a) holds. Otherwise, there exist φ1, . . . , φk ∈ ACC(A, t)
such that ACC(A, t, π) = {φi(π) | 1 ≤ i ≤ k}. Choose n such that for all 1 ≤ i < j ≤ k :
φi(v0) . . . φi(vn) 6= φj(v0) . . . φj(vn).
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There is 1 ≤ j ≤ k such that φj(v0) . . . φj(vn) = q0 . . . qn. Notice that by definition of
n, each computation φ ∈ ACC(A, t) which assigns q0, . . . , qn to the nodes v0, . . . , vn must
also agree with φj on each node vi for i ∈ N. Therefore, again by the definition of π and
q0, . . . qi, . . . , we conclude that φj(π) = q0, q1, . . . .

Let q be a state which occurs infinitely often in φj(π) such that C(q) is even, and C(q) is
maximal among the colors which C assigns to states which occurs infinitely often in φj(π).

Choose N > n such that φj(vN ) = qN = q, and each state qi where i ≥ N occurs infinitely
often in φj(π). By selection of qN , there are infinitely many accepting computations of Aq
on t≥vN

. Take two different accepting computations φ′, φ′′ ∈ ACC(Aq, t≥vN
). Note that

∀i ≥ N : φj(vi) = φ′(vi) = φ′′(vi) = qi. Therefore, φ′ and φ′′ differ at some node w /∈ π, and
there exists M > N such that φj(vM ) = q = φ′(vM ) = φ′′(vM ) and vM ⊥ w.

Let u be the node of maximal depth on the path from vN to vM such that w > u. Let u′,
u′′ be the children of u such that w ≥ u′. Assume w.l.o.g. that u′ is the left child of u.

Look at the transitions (φ′(u), t(u), φ′(u′), φ′(u′′)), (φ′′(u), t(u), φ′′(u′), φ′′(u′′)) ∈ δ. Since
u′′ ∈ π, we have φ′(u′′) = φ′′(u′′). If φ′(u′) = φ′′(u′) then the restriction of φ′ and φ′′

on t≥u′ are two different computations in ACC(Aφ(u′), t≥u′) and therefore da(Aφ(u′)) > 1
and condition 2 of q-ambiguous transition pattern definition applies. Otherwise, we have
φ′(u′) 6= φ′′(u′) and t≥u′ ∈ L(Aφ(u′)) ∩ L(Aφ′(u′)) and therefore condition 1 of q-ambiguous
transition pattern definition applies. By selection of q we conclude that A has a fine
q-ambiguous transition pattern, and condition 2(b) of Prop. 28 holds. J
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