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Modellprüfung und modellbasiertes Testen

Höhere Durchführbarkeit durch träge Techniken,
Parallelisierung und weitere Optimierungen

Zusammenfassung (German Summary)
Diese Arbeit verbessert die Qualitätssicherung von (sicherheitskritischer) Software, in-
dem sie die Durchführbarkeit von Modellprüfung (engl.: model checking) und modellba-
siertem Testen steigert. Dadurch können größere Systeme analysiert werden, die Analyse
bedarf weniger Aufwand und Expertise, und das Risiko, Fehler zu übersehen, wird redu-
ziert. Hiermit wird die Wirtschaftlichkeit der Qualitätssicherung erhöht - ein Muss für
die Akzeptanz Formaler Methoden in der Industrie [Hunt, 2011; Weißleder et al., 2011;
Faragó et al., 2013].

Motivation

Software ist heute allgegenwärtig, ihre Komplexität und Sicherheitsanforderungen stei-
gen. Da die Sicherheit für komplexe Software schwierig zu gewährleisten ist, führt dies
zu einem Dilemma zwischen Softwarequalität und Softwarekomplexität und somit zu ei-
nem Problem in der Qualitätssicherung: Mittlerweile werden 50% bis 70% der Software-
Entwicklungskosten in die Qualitätssicherung gesteckt, trotzdem entstehen pro Jahr
weltweit mehrere Zehn-Milliarden Euro Kosten durch Softwarefehler.
Einer der wichtigsten Lösungsansätze sind Formale Methoden: Diese operieren auf

formalen Beschreibungen der Anforderungen an die Software, um die Korrektheit der
Software zu überprüfen, d.h. deren Übereinstimmung mit ihren Anforderungen. Diese
Arbeit beschäftigt sich mit automatisierbaren Formalen Methoden, denn weniger Auf-
wand an Zeit und Expertise durch Automatisierung führt zu höherer Durchführbarkeit
in der Industrie. Die betrachteten automatischen Methoden sind:
• Modellprüfung (MC), z.B. mit SPIN oder LTSmin (siehe Kapitel 5), die auf Sy-

stemen mit endlichem Zustandsraum operiert und durch explizite oder implizite
Aufzählung des Zustandsraumes temporale Eigenschaften verifiziert. MC ist kor-
rekt und vollständig, aber der Benutzer muss meist das System abstrahieren, um
eine Zustandsraumexplosion (engl.: state space explosion) zu vermeiden;
• beschränkte Modellprüfung (BMC) ist eine spezielle Variante der Modellprüfung,
welche den Zustandsraum nur bis zu einer vorgegebenen Tiefe aufzählt. Dies stei-
gert die Durchführbarkeit zu einem gewissen Grad, ist aber nicht immer vollstän-
dig;
• modellbasiertes Testen (MBT) generiert Testfälle aus einer Spezifikation. Vollstän-
digkeit ist zwar theoretisch erreichbar, wird aber für praktische Anwendungen zu
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Gunsten der Durchführbarkeit aufgegeben. Zusätzlich testet MBT das tatsächliche
System.

Abb. 15.1 zeigt eine genauere Positionierung dieser Arbeit.
Trotz ihrer Vorteile werden Formale Methoden in der Industrie nur wenig eingesetzt,

da sie noch nicht hinreichend durchführbar sind [Bienmüller et al., 2000; Kreiker et al.,
2011; Hunt, 2011; Gnesi and Margaria, 2012]. Wird die Durchführbarkeit erhöht, können
Formale Methoden die oben beschriebenen Anliegen der Entwicklung (sicherheitskriti-
scher) Software lösen [DO178C Plenary, 2011; Dross et al., 2011].

Überblick

Das Ziel dieser Arbeit ist die Steigerung der Durchführbarkeit Formaler Methoden: Die
Zeit- und Speicher-Anforderungen sollen gesenkt werden, damit mehr Probleme (neue,
größere oder weniger abstrakte Probleme) geprüft werden können. Zusätzlich soll die
Ausdrucksstärke und Benutzerfreundlichkeit erhöht werden.
Da die Zustandsraumexplosion für MC gravierend ist, haben wir den Algorithmus

DFSFIFO entwickelt; er erhöht die Durchführbarkeit, indem er träge (engl.: lazy) Tech-
niken verwendet und sich auf eine bestimmte Lebendigkeitseigenschaft spezialisiert, die
Abwesenheit von Livelocks. Die Durchführbarkeit wird weiter erhöht durch zusätzliche
Optimierungen: verstärkte Halbordnungsreduktion (engl.: partial order reduction), Par-
allelisierung mit nahezu linearem Speedup und verbesserte Benutzerfreundlichkeit und
Leistung, indem Fortschritt (engl.: progress) durch Transitionen statt Zuständen mo-
delliert wird. Insgesamt wird eine Verbesserung um vier bis fünf Größenordnungen im
Vergleich zu etablierten Livelock-Prüfungen erzielt. Die Prüfung noch größerer Proble-
minstanzen kann durch die Zustandsraumexplosion aber immer noch nicht durchgeführt
werden. Deswegen untersucht diese Arbeit, ob BMC die Prüfung von Sicherheitseigen-
schaften eines großen C-Programms durchführen kann. Diese Fallstudie zeigt, dass auch
für BMC die Zustandsraumexplosion auftritt, wenn die untersuchten Programme kom-
plex sind. Die Durchführbarkeit wird mittels Abstraktion und einem leichtgewichtigeren
Vorgehen über den Testansatz erzielt, was auch den Einsatz von MBT motiviert.
MBT integriert MC-Algorithmen mit dem Testansatz, um Sicherheitseigenschaften zu

prüfen. Vollständigkeit, komplette Überdeckung, sowie bestimmte Ziele sind für große
Programme nach wie vor nicht erreichbar. Die Situation wird etwas verbessert durch un-
sere Erweiterung der ioco-Theorie: ein deterministischer, beschränkter Testgenerierungs-
Algorithmus und Vollständigkeitsschwellen (engl.: exhaustiveness thresholds), ähnlich zu
BMC, verringern die Redundanz und Größe der generierten Testsuite. Die Vollständig-
keitsschwelle ist oft zu Groß, um in der Praxis angewandt zu werden. Unsere ioco-
Erweiterung wird aber auch in unserem neuen Ansatz für MBT, genannt LazyOTF,
verwendet, das auch unvollständiges MBT anbietet. Mittels träger Techniken integriert
LazyOTF offline MBT, welches zuerst alle Testschritte generiert und erst dann ausführt,
und on-the-fly MBT, welches die Generierung und Ausführung von Testschritten streng
verzahnt. LazyOTF führt teile der generierten Testfälle träge on-the-fly auf dem System
aus, zu den sinnvollsten Zeitpunkten, beispielsweise wenn ein Ziel, eine Testtiefe oder
unkontrollierbarer Nichtdeterminismus erreicht wird. Im Gegensatz zu offline MBT wird
bei LazyOTF die Durchführbarkeit nicht durch die Zustandsraumexplosion verhindert.
Im Vergleich zu on-the-fly MBT hat LazyOTF eine bessere Zielsuche, so dass eine bessere
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Überdeckung sowie bestimmte Ziele erreichbar werden. Um die Durchführbarkeit weiter
zu erhöhen, entwickelt diese Arbeit neue Heuristiken, welche durch die träge Technik so-
wohl Rücksetzverfahren (engl.: Backtracking) als auch dynamische Information nutzen
kann. Wir führen zusätzlich Testobjekte ein, welche die Benutzerfreundlichkeit durch
einfache Konfigurierbarkeit und Komposition verbessert. Wir erhöhen die Leistung von
LazyOTF weiter mittels Parallelisierung mit nahezu linearem Speedup sowie weiteren Op-
timierungen. Insgesamt erreicht LazyOTF Überdeckungen sowie bestimmte Ziele mehre-
re Größenordnungen besser als bisherige MBT-Verfahren, was die Durchführbarkeit von
großen und nichtdeterministischen Systeme ermöglicht.
Zusammenfassend hat diese Arbeit einen neuen MBT-Ansatz eingeführt, um die Prü-

fung von Sicherheitseigenschaften durchführbar zu machen. Da Lebendigkeitseigenschaf-
ten nicht durch dynamisches Testen geprüft werden können, wurde für eine wichtige Klas-
se von Lebendigkeitseigenschaften, den Livelocks, ein spezialisierter MC-Algorithmus
entwickelt, der auch diese Prüfungen durchführbar macht.
Alle Verbesserungen im Vergleich zu den besten bisherigen Verfahren werden durch

Messungen belegt:
Für unsere Experimente mit vier etablierten Protokollen ist der Speicherverbrauch von

DFSFIFO 3 bis 200 mal kleiner, die Laufzeit 3.4 bis 16 mal kleiner. Zusätzlich ist sein
on-the-fly-Verhalten (engl.: on-the-flyness) über 150 mal stärker. Leider verschlechtert
sich das on-the-fly-Verhalten vom parallelen DFSFIFO (PDFSFIFO) bei 48 Instanzen auf
einen Faktor von 1.75, allerdings ist die Ursache die starke Verbesserung vom besten
bisherigen Verfahren (cndfs) von 1 auf 48 Instanzen. PDFSFIFO erziehlt nahezu lineares
Speedup, und PDFSFIFO mit Halbordnungsreduktion kann vier bis fünf mal größere
Probleme handhaben als die besten bisherigen Verfahren. Für relevante Livelocks in
unseren Experimenten sind die Gegenbeispiele von PDFSFIFO bis zu 10 mal kürzer.
Für unsere Experimente mit einer akkumulierten Wallclock-Zeit von 14 Jahren sind

LazyOTFs Aussagekraft (engl.: meaningfulness) und Laufzeit exponentiell besser. Zusätz-
lich erzielt verteiltes LazyOTF (engl.: distributed LazyOTF) (super-)lineares Speedup
für die aussagekräftige Testausführung und insgesamt nahezu lineares Speedup. Lei-
der verbessern unsere dynamischen Beschränkungs-Heuristiken das Verhältnis zwischen
Aussagekraft und Generierungszeit der Testfälle nur für manche Situationen und man-
che Parameter. Deswegen sind weitere Untersuchungen und erweiterte Beschränkungs-
Heuristiken mit noch mehr dynamischen Informationen relevante Arbeit für die Zukunft.

Die Beiträge im Einzelnen

Der wichtigste Beitrag zu MC ist der Entwurf, die Implementierung und Analyse des
Algorithmus DFSFIFO, um Livelock-Prüfungen durchführbarer zu machen. DFSFIFO
nutzt on-the-fly MC, traversiert aber Fortschritt träge. Hiermit kann DFSFIFO simultan
in einem Durchlauf den Zustandsraum durchsuchen und auf Nichtfortschritts-Zyklen
prüfen. Dies erhöht die Durchführbarkeit, sowohl direkt als auch indirekt durch bessere
Optimierungsmöglichkeiten (siehe weitere Beiträge). Somit ist DFSFIFO der neue Stand
der Technik zur Livelock-Prüfung.
Der wichtigste Beitrag zu MBT ist der Entwurf, die Implementierung und Ana-

lyse des Verfahrens lazy on-the-fly MBT (LazyOTF), welches die Zielsuche von
on-the-fly MBT verbessert: LazyOTF integriert offline und on-the-fly MBT synerge-
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tisch, indem es zu den sinnvollsten Zeitpunkten zwischen Testgenerierungs-Phasen und
Testausführungs-Phasen hin und her wechselt. Hierdurch kann LazyOTF mit verbesser-
ter Zielsuche effizient aussagekräftige Testfälle selektieren und ausführen, auch für große
und nichtdeterministische Systeme.
Auf der Metaebene bilden träge Techniken und deren Verwendung für Formale

Methoden den wichtigsten Beitrag.
Die weiteren Beiträge dieser Arbeit (siehe Abb. 1.1) sind:
• eine verallgemeinerte automatentheoretische Basis für temporale Logiken, MC,
ioco-Theorie, und MBT. Die ioco-Theorie wurde erweitert um eine ausführliche
Test-Hypothese, eine Verfeinerungsrelation (engl.: refinement relation), mehrere
Fairness-Bedingungen, Überdeckungskriterien, einen abstrakten deterministischen
Testfallgenerierungs-Algorithmus, Vollständigkeitsschwellen und deren Verhältnis
zu Fairness und Überdeckungen;
• Optimierungen und Anpassungen der Halbordnungsreduktion, die für DFSFIFO

verstärkt werden kann im Vergleich zu allgemeinem LTL MC;
• Optimierungen via Parallelisierungen, welche durch unsere trägen Techniken ver-
einfacht werden: unser mehrfädiges (engl.: multi-threaded) DFSFIFO (PDFSFIFO,
in Kollaboration mit Alfons Laarman) erzielt nahezu lineares Speedup, unser ver-
teiltes LazyOTF hat (super-)lineares Speedup für aussagekräftige Testausführung
und insgesamt nahezu lineares Speedup;
• neue Heuristiken, die durch LazyOTF ermöglicht werden und sowohl Rücksetzver-
fahren als auch dynamische Information nutzen können: Phasen- und Beschrän-
kungs-Heuristiken bieten Effizienz und dynamische Informationen; Zielsuch-
Heuristiken und ein Rahmenwerk an Bedingungen bieten flexible Test-Selektion
und Garantien für Vollständigkeit, Überdeckungen oder das Erreichen gewünschter
Zielzustände. Gewichte und Komposition für die Umsetzung der Zielsuch-Heuristik
werden eingeführt;
• die Implementierung und Integration in etablierte Werkzeuge: DFSFIFO (in C
implementiert, primär von Alfons Laarman) ist in LTSmin integriert und verfüg-
bar unter [URL:LTSmin]; LazyOTF (in Java implementiert, mit Hilfe von Felix
Kutzner) ist in JTorX integriert und verfügbar unter [URL:JTorXwiki];
• Untersuchung des praktischen Einsatzes: In DFSFIFO wurde die Benutzerfreund-
lichkeit durch die Modellierung von Fortschritt mittels Transitionen verbes-
sert. Praktische Experimente (durchgeführt zusammen mit Alfons Laarman) be-
legen die theoretischen Vorteile von DFSFIFO in der Durchführbarkeit. In LazyOTF
wurde für bessere Benutzerfreundlichkeit das Konzept derTestobjekte entwickelt,
sowie flexible Heuristiken. Auch hier belegen praktische Experimente (durchge-
führt zusammen mit Felix Kutzner) die theoretischen Vorteile von LazyOTF in der
Durchführbarkeit. Zusätzlich betrachten wir, wie LazyOTF und Verfeinerungen in
der agilen Softwareentwicklung eingesetzt werden können;
• zwei weitere Einsichten auf der Metaebene: Mehrere Kapitel zeigen, dass der pas-
sendste Abstraktionsgrad zu effizienteren Algorithmen und Optimierungen führt.
Zusätzlich zeigt eine Fallstudie zu Testen von Software mit BMC, wie der Test-
ansatz Formale Methoden durchführbarer machen kann.
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1. Introduction

This thesis improves the quality assurance of (safety-critical) software by increasing the
feasibility of model checking and model-based testing. Hereby, larger systems can be
analyzed, with lower effort, expertise and risk of missing a bug. This raises the return
on investment of these formal methods, which is imperative to get adopted broadly in
industry [Hunt, 2011; Weißleder et al., 2011; Faragó et al., 2013].

Roadmap. The next section motivates the importance of software quality, formal meth-
ods to assure it, and the need for more feasible methods. The following section described
this thesis’ goal of increasing the feasibility of FMs, how it is achieved, and the contri-
butions in detail. The last section lists conventions of this thesis.

1.1. Motivation

1.1.1. Motivation for Software Quality

Software today is ubiquitous: embedded and distributed systems have taken over control
in many domains, and many systems are interconnected. Consequently, the complexity
of software has increased, as well as the necessity of its correctness and reliability. This
necessity is strongest for the many applications that human health and lives now de-
pend on, so called safety-critical systems. Many examples can be found in medicine,
transportation and structural health monitoring. Correctness and reliability is also im-
portant for economical reasons: The total annual cost that software bugs cause due to
incidents is in the tens of billions (estimated at $15 billion [Jones and Bonsignour, 2012]
or at $30 billion [Tassey, 2002]). The total annual cost of fixing software bugs is at least
as high (estimated at $30 billion [Tassey, 2002] or $312 billion [Britton et al., 2013]).
This cost increases exponentially with the number of development phases containing the
bug [Beck and Andres, 2004; McConnell, 2004; Weißleder et al., 2011; Shull et al., 2002].
Complexity has increased because software has to offer more features and interact more
with its environment, such as other threads, components and systems. So we now have
a dilemma between software complexity and quality: software should be released
with fewer bugs, yet more and more intricate bugs occur during development.
Industry tries to cope with this dilemma and increased maintainability issues with

a strong shift in software development towards addressing quality concerns with high
priority, but often with limited success [Zhivich and Cunningham, 2009; Tassey, 2002].
Therefore, this thesis helps to improve the quality of software, especially for verifying
and testing safety-critical software. Some techniques can easily be applied to hardware
as well.

1



1. Introduction

1.1.2. Motivation for Formal Methods
Industry often tries to resolve this dilemma between software complexity and quality
by increasing the number of conventional test cases, which are implemented manually
– or even by doing purely manual, exploratory testing. But this no longer scales in the
situation described above: The number of required test cases explodes, forcing testing
to consume over 50% of the development costs for embedded software [Brook, 2004],
and 60% to 70% for safety-critical software [Baker and Habli, 2013]. Still the bug de-
tection rate is too low to prevent frequent bugs and incidents, especially for safety-
critical software [Zhivich and Cunningham, 2009; Wong et al., 2010; Faragó et al., 2014;
URL:REDHATCVE].
Thus the dilemma needs to be resolved differently. Using formal methods is an ap-

proach that has gained strong interest in industry [Woodcock et al., 2009; DO-333 Ple-
nary, 2011; ED-218 Plenary, 2012]. Formal methods (FMs) process formal descrip-
tions, i.e., semantically unambiguous specifications in a formal language to describe
the requirements of the software system, i.e., its intended behavior. Often, functional
requirements are considered, which specify what the system should do, i.e., its function-
ality. But sometimes, non-functional requirements are considered, which state how to
perform the intended functionality. These formal specifications can be used for unam-
biguous human communication and can be processed with mathematical rigor to develop
or analyze the system. Thus FMs are the mathematics of software, and transform soft-
ware development into true engineering [Holloway, 1997; Groote and Mousavi, 2014].
Analyses that do not execute the system are called static, those that do execute it are
called dynamic.
Formal specifications are usually more concise than non-trivial test suites, leading to

easier and more flexible maintenance for these formal specifications than for test cases,
which is important since requirements can often change [Weißleder, 2009; Weißleder
et al., 2011; Hunt, 2011; Mlynarski et al., 2012]. One major application of FMs is
checking the system’s correctness, i.e., that it conforms to its specification. Therefore,
formal specifications help in early bug detection, i.e., in avoiding high costs due to bugs
being removed only in later development phases. Semantic unambiguousness allows
automation, which reduces human labor, is less prone to human errors, and can usually
investigate more relevant cases (such as paths or test cases) in less time, leading to
higher coverage and ultimately higher correctness and quality compared to classical
(i.e., conventional) testing [Holloway, 1997; Kneuper, 1997; Holzmann, 2001; Woodcock
et al., 2009; Naik and Tripathy, 2011; Dross et al., 2011; Jeffery et al., 2015]. Hence this
thesis focuses on fully automatic FMs: model checking and model-based testing. They
(and their feasibility) are described in the next subsection.

1.1.3. Motivation for More Feasible Formal Methods
Depending on the specification, the mathematical method, and to what extent they are
applied, various formal methods exist, listed here from heavyweight to lightweight:
• the most heavyweight FMs use deductive verification to provide a mathemat-
ical proof that the system is correct. Their specification languages are usually very
expressive, e.g., they can express systems with infinite state space. For instance,
the tool KeY [URL:KeY; Beckert et al., 2007] statically analyzes Java source code

2



1.1. Motivation

and design-by-contract specifications in the Java Modeling Language (JML) [Leav-
ens et al., 2008] to show in a rigorous proof the absence of bugs in relation to the
specification (similar to Hoare [1969]). The cost of heavyweight FMs, however, is
high: high expertise, time and computer resources are required. To reduce the
costly requirement of human expertise and time for writing heavyweight specifica-
tions and for interactive theorem proving, research tries to increase heavyweight
FMs’ automation [Hutter, 2003]. But a sound and complete push button solution
cannot exist in general since the problem whether an infinite system is correct is
undecidable [Church, 1936; Turing, 1936; Kleene, 1967]. Furthermore, increasing
the degree of automation quickly causes search-space explosion [Schumann, 2001].
Unfortunately, a low degree of automation restricts the practicality and impact
of deductive verification [DO178C Plenary, 2011] – still successful case studies
exit [Schmitt and Tonin, 2007]. The restricted practicality is stated hyperbolically
by Benjamin Pierce: “Formal methods will never have a significant impact until
they can be used by people that don’t understand them” [Pierce, 2002];
• model checking (MC), e.g., with SPIN or LTSmin (cf. Chapter 5), diminishes

these problems by reducing expressiveness: MC usually operates only on finite
systems, i.e., on finite state spaces, and verifies temporal properties related to
protocols and parallel systems. MC’s expressiveness is sufficient for many industrial
applications, e.g., for chip and protocol design and embedded software [Gnesi and
Margaria, 2012; Margaria and Steffen, 2012]. For these applications, MC is often a
more feasible approach than deductive verification [Schumann, 2001]. Sound and
complete verification is performed fully automatically, but expertise is still required
to come up with good abstractions that avoid the severe state space explosion;
• software bounded model checking (SBMC) (e.g., by CBMC or LLBMC, cf.
Chapter 7) and more generally bounded model checking (BMC) are special cases
of model checking that explore the state space only up to a given depth. They are
sound and still complete if the applied bound is not smaller than a completeness
threshold, but the focus is more on bug finding than on proving that the system
is correct. Though less severe, state space explosion still often causes problems;
• model-based testing (e.g., by JTorX, cf. Chapter 10) automatically generates

test cases from a specification (by using it for test drivers to create the test cases’
inputs, for test oracles to determine the outcome of test cases, and for guidance
to select test cases). Depending on the approach, state space explosion rarely
or never hinders practical application of model-based testing with relevant results.
The test cases inspect the actual system (not only a model) since they are executed
on that system. But due to state space explosion, complete verification is usually
practically impossible. Model-based testing is a suitable advent of FMs into certi-
fied, safety-critical software development in industry [Peleska, 2013]. Other terms
exist for this kind of formal method, e.g., property-based testing [Fink and Bishop,
1997], which focuses on general properties not specific to one program, e.g., array
bounds, race conditions, idempotence, and reflexivity. It often adds static source
code analysis techniques like slicing to improve the process, but not always (e.g.,
not in the tool QuickCheck [Claessen and Hughes, 2000]);
• the following approaches can be considered the most lightweight formal meth-

ods [Woodcock et al., 2009; Weiß, 2010], or already excluded from the field of formal
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methods [Kreiker et al., 2011]: simple static analysis by tools like Findbugs [Hov-
emeyer and Pugh, 2004], pluggable type checking (e.g., Checker Framework, cf.
Subsec. 13.2.4, [Papi et al., 2008; Ernst et al., 2011]) or even static types of stati-
cally typed languages, and finally runtime assertion checking, e.g., via lightweight
variants of design-by-contract [Meyer, 1997], i.e., via preconditions, postconditions,
and invariants.

In spite of their advantages, formal methods have been adopted meagerly in industry
due to issues in feasibility [Bienmüller et al., 2000; Kreiker et al., 2011; Hunt, 2011;
Gnesi and Margaria, 2012]. Low practicality leads to statements like “testing will al-
ways be part of the certification process and formal methods do not get adopted broadly
in industry” [Hunt, 2011]. But formal methods might be the primary source of evi-
dence for the satisfaction of many of the objectives concerned with development and
verification [DO178C Plenary, 2011; Dross et al., 2011]. This is also reflected in the cer-
tification of safety-critical software and their tool qualification: Many safety standards
recommend formal methods for verification of systems with the highest Safety Integrity
Level, e.g., for avionics [DO178C Plenary, 2011; DO-333 Plenary, 2011; ED-218 Ple-
nary, 2012; DO-278 Plenary, 2002; DO-330 Plenary, 2011] and standards based on the
IEC 61508 framework for functional safety [IEC 61508 Plenary, 2010], like ISO 26262
for automotive [URL:ISO26262; Hillenbrand, 2011] and CENELEC EN 50128 for rail
transport [Plenary, 2011].
Due to these issues in feasibility, industry is currently adopting mainly lightweight

FMs in narrow domains such as safety-critical and embedded software. If FMs will
become more feasible, they will be more usable (e.g., with faster and more informative
feedback) and able to verify less abstract (e.g., on the code level) and larger problems
(e.g., realistic data or number of instances). Then industry will likely adopt FMs that
are heavier, and on a broader scale. This is the goal of this thesis, as described next.

1.2. Overview

1.2.1. Goal of This Thesis

The goal of this thesis is to increase the feasibility of FMs: mainly by reducing their
runtime and memory requirements, so that more problems (larger, less abstract, or
new ones) can be handled, but also by increasing their expressiveness and usability.
For practicality, this thesis focuses on relatively lightweight, automated FMs: model
checking (MC) and model-based testing (MBT). (Fig. 15.1 on page 377 gives a more
detailed positioning of this thesis.)
On the meta level, the thesis investigates what methods achieve these improvements.

1.2.2. Achieving The Goal of Increased Feasibility

Since automation increases the applicability of formal methods in industry, we do not
investigate interactive methods. For liveness checks, this thesis considers MC; for safety
checks, testing is also applicable, so MC and MBT are considered.
Since the state space explosion problem is severe for MC, we developed the MC al-

gorithms DFSFIFO, which increases feasibility by specializing on the important liveness
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property of livelock freedom and by using lazy techniques. DFSFIFO’s feasibility is fur-
ther improved by optimizations: stronger partial order reduction, parallelization with
almost linear speedup, and modeling progress via transitions instead of states for better
usability and higher performance. Our overall result is four to five orders of magnitude
better than all currently established livelock detection techniques. But due to the state
space explosion, yet larger problem instances remain infeasible. Therefore, we investi-
gate software bounded MC to check safety properties of a large C program of practical
size and complexity (implementing a wireless sensor network). This case study shows
that state space explosion still renders large practical applications infeasible. Feasibility
is increased by abstraction and by adopting a more lightweight method: integrating the
testing approach, which also motivates model-based testing.
Model-based testing (MBT) combines MC algorithms with the testing approach to

check safety properties. Unfortunately, exhaustiveness, full coverage and specific objec-
tives are often still infeasible for large applications. Our extensions to the ioco theory
slightly improve the situation: our deterministic, bounded test generation algorithm and
exhaustiveness thresholds (similar to completeness thresholds in bounded MC) reduce
the redundancy and size of the generated test suites. The exhaustiveness threshold often
needs to be infeasibly large, but our extensions help for inexhaustive MBT and for imple-
menting a new MBT approach, called LazyOTF: It integrates offline MBT and on-the-fly
MBT using lazy techniques. Unlike offline MBT, state space explosion does not cause
infeasible time and space requirements for LazyOTF, i.e., does not hinder test execution.
Compared to on-the-fly MBT, LazyOTF has better guidance, so achieving high coverage
and specific objectives becomes feasible. To further improve feasibility, we derive new
heuristics that make use of both backtracking and dynamic information. Usability is
provided by designing test objectives, which allow composition and easy configuration of
the heuristics. To further optimize LazyOTF’s performance, parallelization with almost
linear speedup and several technical optimizations are introduced. The result achieves
coverage and specific objectives several orders of magnitude better than classical MBT,
making MBT also feasible for large, nondeterministic systems.
In summary, this thesis focuses on the lightweight formal method of MBT for checking

safety properties, and derives a new and more feasible approach. For liveness properties,
dynamic testing is impossible, so feasibility is increased by specializing on an impor-
tant class of properties, livelock freedom, and deriving a more feasible model checking
algorithm for it. All mentioned improvements are substantiated by experiments (cf.
Subsec. 15.1.2).

1.2.3. Contributions in Detail

Fig. 1.1 depicts the most relevant contributions of this thesis, which are described in
this subsection. More details and further, minor contributions can be found in the
subsections entitled “Contribution” at the end of most chapters.
The main contribution in MC is the design, implementation and analysis of the al-

gorithm DFSFIFO to increase the feasibility of livelock detection, via on-the-fly model
checking: by traversing progress lazily, DFSFIFO simultaneously performs state space
exploration and non-progress cycle checks in one pass, increasing feasibility directly as
well as by being more amendable to optimizations (see further contributions). The result
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Figure 1.1.: Most relevant contributions of this thesis

is the state of the art in livelock detection.
The main contribution in MBT is the design, implementation and analysis of the

approach and corresponding algorithm lazy on-the-fly MBT (LazyOTF) to improve
the guidance of on-the-fly model-based testing: LazyOTF synergetically integrates both
offline and on-the-fly MBT, yielding good guidance to efficiently select and execute
meaningful test cases while still being able to process large and nondeterministic systems,
rendering MBT feasible for those systems.
On the meta level, the main contributions are lazy techniques and the insight where

and how they can improve formal methods and their optimizations and application.
Further contributions of this thesis are:
• generalized theoretical foundations in automata theoretic formalisms that
both MC and MBT are based upon, in temporal logics, and in the ioco theory.
Additions to the ioco theory include an extensive testing hypothesis, a refinement
relation, several fairness constraints and coverage criteria, an abstract deterministic
test case generation algorithm, exhaustiveness thresholds, and their relation to
fairness and coverage;
• optimizations and adaptions in partial order reduction (POR), which can be
strengthened for DFSFIFO compared to general LTL MC (by omitting cycle provi-
sos and enabling progress transitions);
• optimizations via parallelization, facilitated by our lazy techniques: a multi-
threaded DFSFIFO (PDFSFIFO, in collaboration with Alfons Laarman) with
almost linear speedup, and a distributed LazyOTF with (super-)linear speedup
of meaningful test execution and almost linear speedup overall;
• new heuristics, enabled by LazyOTF and making use of dynamic information

and backtracking: phase (and bound) heuristics for efficiency and dynamic in-
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formation, and guidance heuristics with a provisos framework for flexible test
selection, to guarantee exhaustiveness, coverage or discharging. Weights and com-
position are introduced, to implement the guidance heuristics;
• implementations and integration into established tools: of LazyOTF (implemen-

tation in Java, with help from Felix Kutzner, and an integration into JTorX),
available at [URL:JTorXwiki]; and of DFSFIFO (implemented mainly by Alfons
Laarman, in C, with an integration into LTSmin), available at [URL:LTSmin];
• considerations for practical applications: For DFSFIFO, usability was improved
by modeling progress via transitions instead of states, and experiments (con-
ducted together with Alfons Laarman) practically substantiate all theoretical bene-
fits in feasibility. For LazyOTF, usability was improved by introducing test objec-
tives and heuristics; again experiments (conducted together with Felix Kutzner)
practically substantiate the theoretical benefits in feasibility. Furthermore, an out-
look is given on how LazyOTF and refinement can be applied in agile software
development;
• two further insights on the meta level: Firstly, a case study in testing with
software bounded model checking shows how the testing approach can make
FMs more lightweight. Secondly, multiple chapters show how choosing the right
level of abstraction can lead to more efficient algorithms and optimizations,
e.g., finite ∪ infinite trace semantics, specialization on livelocks for DFSFIFO, and
generalized interplay between test generation and test execution for LazyOTF.

1.2.4. Publications

The following publications from the author of this thesis have directly contributed to
this thesis, and are subsumed by it:
• [Laarman and Faragó, 2013]: Alfons Laarman and David Faragó. Improved on-the-fly

livelock detection: Combining partial order reduction and parallelism for DFS-FIFO. Pro-
ceedings of the 5th NASA Formal Methods Symposium (NFM 2013), NASA
Ames Research Center, CA, USA, May 14-16, 2013. LNCS, Springer, 2013.

• [Faragó, 2011]: David Faragó. Nondeterministic coverage metrics as key performance
indicator for model- and value-based testing. In 31. Treffen der GI-Fachgruppe
Test, Analyse & Verifikation von Software (TAV), Softwaretechnik-Trends, 2011.

• [Faragó, 2010]: David Faragó. Improved underspecification for model-based testing in agile
development. In Stefan Gruner and Bernhard Rumpe, editors,FM+AM 2010 - Second
International Workshop on Formal Methods and Agile Methods, 17 September
2010, Pisa (Italy), volume 179 of LNI, pages 63–78. GI, 2010. ISBN 978-3-88579-273-4.

• [Faragó, 2010b]:David Faragó. Coverage criteria for nondeterministic systems. testing ex-
perience, The Magazine for Professional Testers, pages 104–106, September 2010b.
ISSN 1866-5705.

• [Werner and Faragó, 2010]: Frank Werner and David Faragó. Correctness of sensor net-
work applications by software bounded model checking. In Formal Methods for Indus-
trial Critical Systems - 15th International Workshop, FMICS 2010, Antwerp,
Belgium, September 20-21, 2010. Proceedings, LNCS, pages 115–131. Springer, 2010.

• [Faragó, 2010a]: David Faragó. Model-based testing in agile software development. In 30.
Treffen der GI-Fachgruppe Test, Analyse & Verifikation von Software (TAV),
Softwaretechnik-Trends, 2010a.

• [Faragó and Schmitt, 2009]: David Faragó and Peter H. Schmitt. Improving non-progress
cycle checks. In Corina S. Pasareanu, editor, Model Checking Software, 16th In-
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ternational SPIN Workshop, Grenoble, France, June 26-28, 2009. Proceedings,
volume 5578 of LNCS, pages 50–67. Springer, June 2009.

The following publications from the author of this thesis have only indirectly con-
tributed to this thesis, and are not contained in it:
• [Brandes et al., 2015]: Christian Brandes, Benedikt Eberhardinger, David Faragó, Mario

Friske, Baris Güldali, Andrej Pietschker. Drei Methoden, ein Ziel: Testautomatisierung
mit BDD, MBT und KDT im Vergleich. 38. Treffen der GI-Fachgruppe Test, Anal-
yse & Verifikation von Software (TAV), Softwaretechnik-Trends, 2015.

• [Faragó et al., 2014]: David Faragó, Florian Merz, and Carsten Sinz. Automatic heavy-
weight static analysis tools for finding bugs in safety-critical embedded C/C++ code. 36.
Treffen der GI-Fachgruppe Test, Analyse & Verifikation von Software (TAV),
Softwaretechnik-Trends, 2014.

• [Faragó et al., 2013]: David Faragó, Stephan Weißleder, Baris Güldali, Michael Mlynarski,
Arne-Michael Törsel, and Christian Brandes. Wirtschaftlichkeitsberechnung für MBT:
Wann sich modellbasiertes Testen lohnt. OBJEKTspektrum, 4:32–39, 2013.

• [Weißleder et al., 2011]: Stephan Weißleder, Baris Güldali, Michael Mlynarski, Arne-
Michael Törsel, David Faragó, Florian Prester, and Mario Winter. Modellbasiertes Testen:
Hype oder Realität? OBJEKTspektrum, 6:59–65, Oktober, 2011.

The following theses were supervised by the author of this thesis, where [Larysch,
2012; Kutzner, 2014] directly contributed to this thesis (as described in Sec. 13.4 and
Sec. 14.3):
• [Liu, 2015]: Man Liu. SBMC-Based Testcase Generation. Master’s thesis, Karlsruhe

Institute of Technology, 2015.
• [Weber, 2014]: Andreas Weber. Modularization and Optimization for the SBMC-Algorithm

of LLBMC. Bachelor’s thesis, Karlsruhe Institute of Technology, 2014.
• [Kutzner, 2014]: Felix Kutzner. A case study for lazy on-the-fly model-based testing. Bach-

elor’s thesis, Karlsruhe Institute of Technology, 2014.
• [Larysch, 2012]: Florian Larysch. Improved constraint specification and solving for lazy

on-the-fly. Bachelor’s thesis, Karlsruhe Institute of Technology, 2012.
• [Pascanu, 2010]: Alexander Pascanu. Eine Fallstudie zu modellbasiertem Testen von Web-

services. Master’s thesis, Universität Karlsruhe, 2010.

1.2.5. Roadmap of This Thesis

The figure on page ix gives a short overview of the chapters of this thesis, and depicts
their dependencies.
In more detail, Part I defines the common theoretical foundation in a generalized

way, so that it can be used as basis for both model checking and model-based testing:
Chapter 2 describes testing and its classification (cf. Sec. 2.2), artifacts (cf. Sec. 2.3),
processes (cf. Sec. 2.4), and techniques (cf. Sec. 2.5). Chapter 3 introduces formal
methods: Propositional, resp. first order logic, (cf. Sec. 3.2, resp. Sec. 3.3), automata
theory (cf. Sec. 3.4), and lazy techniques (cf. 3.6) are the basis used throughout this
thesis. Furthermore, improving FMs via parallelization (cf. Sec. 3.5) and abstraction
(cf. Sec. 3.7) is explained.
Part II about MC and starts with Chapter 4 about temporal logics. It covers gen-

eralized behavioral properties (cf. Sec. 4.2), temporal logics (cf. Sec. 4.3) and their re-
lationships (cf. Sec. 4.4). Chapter 5 about MC introduces various classifications (cf.
Sec. 5.2), algorithms (cf. Sec. 5.3), reductions (cf. Sec. 5.4), and tools (cf. Sec. 5.5).
Livelock detection is considered thoroughly in Chapter 6, where the state of the art is
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introduced (cf. Sec. 6.2, Sec. 6.3) and the more efficient algorithm DFSFIFO is devised
(cf. Sec. 6.4). Its application with progress transitions (cf. Sec. 6.5), improvements to
partial order reduction (cf. Sec. 6.6), and parallelization of the algorithm (cf. Sec. 6.7)
are investigated. Finally, experiments are presented (cf. Sec. 6.8). Chapter 7 investi-
gates software bounded model checking (cf. Sec. 7.1) and its limitations with the help of
a practical case study (cf. Sec. 7.2), which shows how software bounded model checking
can be made more feasible using a testing approach.
Part III about MBT starts with Chapter 8, which lays the theoretical foundations

for MBT by introducing the ioco theory: Firstly, an extensive interface abstraction and
testing hypothesis is given (cf. Sec. 8.1). Then various structures are defined (cf. Sec. 8.2,
Sec. 8.3, Sec. 8.4), which are used by the ioco relation (cf. Sec. 8.5). Thereafter, test cases
(cf. Sec. 8.6) and their execution (cf. Sec. 8.7) are described. Finally, the classical test
case generation algorithm, as well as a new, deterministic variant are devised, for which
we introduce various fairness constraints, coverage criteria and exhaustiveness thresholds
for bounded yet exhaustive test suites (cf. Sec. 8.8). Chapter 9 extends the ioco theory
by generalizing it (cf. Sec. 9.1), introducing variants for underspecification (cf. Sec. 9.2),
for refinement (cf. Sec. 9.3), and for symbolic transition systems (cf. 9.4). Chapter 10
introduces model-based testing (cf. Sec. 10.1), an extended taxonomy (cf. Sec. 10.2), and
tools (cf. Sec. 10.3). Chapter 11 introduces a new algorithm, LazyOTF, and the struc-
tures it uses (cf. Sec. 11.1), classifies it according to our MBT taxonomy (cf. Sec. 11.2),
and then formalizes (cf. Sec. 11.3) and parallelizes (cf. Sec. 11.5) it. Chapter 12 intro-
duces heuristics for LazyOTF: phase heuristics (cf. Sec. 12.2) via inducing states and
bound heuristics, as well as guidance heuristics (cf. Sec. 12.3), which use a provisos
framework to guarantee exhaustiveness, coverage or discharging specific objectives, and
are implemented via weights and composition. Finally, optimizations for these heuristics
are given. Chapter 13 roughly describes the implementation of LazyOTF, covering the
core (cf. Sec. 13.2), the JTorX integration (cf. 13.3), a proof of concept implementation
with symbolic execution (cf. Sec. 13.4), and finally optimizations (cf. Sec. 13.5). Chap-
ter 14 gives an outlook on how LazyOTF and refines can be applied in agile software
development (cf. Sec. 14.2), and covers experiments of LazyOTF (cf. Sec. 14.3) to com-
pare heuristics settings as well as LazyOTF to OTF, and to measure parallel speedup
and the application on industrial web services. Chapter 15 concludes this thesis.

1.3. Conventions

B is the set of the Boolean values true and false, i.e., the truth values. Sometimes
true is identified with 1 and false with 0. Therefore, a function f : M → B with
arbitrary M has the support supp(f(·)) :=

{
m ∈ M

∣∣f(m) = true
}
. As it will not

cause ambiguity in this thesis, we use true, false as both syntactical and semantical
elements. Syntactical true can be defined as p ∨ ¬p for any propositional variable p, in
all our logics, false as ¬true.
Since the definition whether 0 ∈ N varies in literature, we write N≥0 for N ∪ {0} and

N>0 for N \ {0} whenever it is relevant.
Since we also deal with infinite cases, we define a countable set to be a finite or

countably infinite set and additionally use ω := N≥0, the smallest infinite ordinal, and the
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set ω + 1 := N≥0∪{ω} [Cantor, 1897, §15]. Note that for all n ∈ N>0 : ω = n+ω � ω+n.
For i, j ∈ ω + 1, we denote closed and open intervals over ω + 1 by closed and open

brackets, respectively. Thus [i, . . . , j] =
{
i, . . . , j

}
(= ∅ iff j < i), (i, . . . , j) =

{
n ∈

N≥0|i < n < j
}

(= ∅ iff − 1 + j < i + 1) and [0, . . . , 1 + ω) = N≥0. With this, we can
write [0, . . . , 1 + i) for both finite intervals (i ∈ ω) and for N≥0 (i = ω).
This thesis uses the Kleene closure operators [Hopcroft and J.D. Ullman, 1979]:

Let S be a set, ε 6∈ S the empty string, and concatenation noted as product, i.e.,
S0 = {ε} and ∀i ∈ N>0 : Si =

{
s concatenated s′|s ∈ Si−1, s′ ∈ S

}
, then

S+ :=
⋃

i∈N>0

Si; S∗ :=
⋃

i∈N≥0

Si,

whereas Sω only contains the infinite sequences (i.e., Sω 6=
⋃

i∈ω+1
Si).

Since certain meanings can be grasped better if they are expressed concisely, this thesis
uses:
• male pronouns for indeterminate gender;
• the abbreviation “iff” for “if and only if” in continuous text and “⇔” otherwise.
Concise phrases are also chosen for other logical connectives [Kleene, 1967];
• the abbreviations “f.a.” (resp. “ex.”) for “for all” (resp. “exists”) in fluent text
and “∀” (resp. “∃|”) otherwise, to set it apart from the quantifiers “∀” (resp. “∃”)
on the logical level;
• the notation “(xi)i∈I” for the sequence of elements xi with i ranging over I. If I
is clear from the context, “(xi)i” is used for short. If I is not given explicitly, then
without loss of generality (wlog) I = [0, . . . , 1 + j) with j ∈ ω + 1;
• the notation f(·, c) for the function that takes x and returns f(x, c) (i.e., x 7→
f(x, c) or λx.f(x, c)), with c being constant.

Since consistency also increases understandability, this thesis follows some (naming)
conventions:
• We will often generalize from one instance to a set of instances. To indicate this
generalization and close relation, we name a variable for a set similar to the variable
for an instance by using the trema symbol “̈ ” (e.g., from a state s to a superstate
s̈, from a test case T to a test suite T̈);
• the listings for code and algorithms contain type information where this adds
understandability – even in pseudocode. Pseudocode examples where all values
are typed are named “typed” in their caption. Types are always printed in blue;
• all definitions (and their page number in the index) are printed bold.

Furthermore, this thesis follows the Chicago Manual of Style [of Chicago Press, 2010] as
much as possible.
Finally, this thesis strongly structures the text: All chapters except this and the

conclusion contain a roadmap to describe the structure that follows, and a summary
at the end. Most chapters also contain their contributions and future work at the end.
Within sections, we often add markings for paragraphs, e.g., for examples and notes,
and we set off definitions and statements against normal text flow iff they are important
at multiple locations of this thesis. Forward references in parentheses help the reader
connect all the dots, but most forward references are not required to comprehend the
subject at hand.
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2. Introduction to Testing

2.1. Introduction
Many definitions of software testing (testing for short) exist: We define it in a wide
sense (similarly to [Kaner et al., 1993]) as the process of assessing through exemplary
execution (called dynamic testing) or exemplary analysis (called static testing) whether
the system is correct. Besides failure detection, testing can aid risk management and
increases the confidence in the correctness of the system under test.
This general definition, as well as many concepts from this thesis, are also applicable

to other systems besides software, e.g., hardware. A relevant domain for testing and
formal methods are systems where both software and hardware need to be considered,
e.g., embedded systems. In an embedded system, a computer is embedded in a
larger mechanical or electrical system, performing particular tasks to control the system.
Embedded systems that process physical input and output have a strong link between
computational and physical elements, and are thus often called cyber-physical system.
Checking embedded software becomes more and more important since there is a shift in
industry from electrical and mechanical to embedded systems.
Since executions are always finite, dynamic testing can experimentally check safety

properties, but no liveness properties (cf. Subsec. 4.2.2 and Subsec. 11.2.4). But even
for safety properties, the number of experiments needed for an exhaustive check is often
infeasibly large (cf. Sec. 8.8).
Test engineers are the engineers responsible for ensuring high quality of the system

under test, especially its functional correctness and reliability [Naik and Tripathy, 2011].
They still often prefer dynamic testing over static testing via formal verification in prac-
tice [Hunt, 2011], even for safety-critical software: even though dynamic testing is rarely
exhaustive, it is usually more suitable for current accreditation [Peleska, 2013], investi-
gates the real implementation [Fraser et al., 2009], and is more lightweight and simpler
to apply (cf. Chapter 1). For these reasons, testing is still the primary instrument in
industry even though exhaustive exploration is infeasible (i.e., “program testing can be
used to show the presence of bugs, but never to show their absence!” Dijkstra [1970]).
Since testing is a wide field spanning multiple domains, different testing terminolo-

gies evolved. To consolidate them, standards and glossaries were created [Group, 1987;
URL:ISO29119; 829WG, 2008; ISO Information Technology, 1992; URL:ISO26262; Board),
2012; URL:ETSIglossaryHP; URL:BS79251]. Unfortunately, they are not fully consis-
tent; but with their introduction, terms differ much less. Thus the definitions in this
chapter are based on these standards.

Roadmap. Sec. 2.2 shows several dimensions of the wide field of testing, and positions the
testing methods covered in this thesis. Sec. 2.3 introduced the testing artifacts required
in this thesis. Sec. 2.4 briefly embeds testing in software engineering, depicting the
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process, test case generation and test case execution. Sec. 2.5 describes meaningfulness
of tests and heuristics to measure and increase meaningfulness. Finally, Sec. 2.6 gives a
summary.

2.2. Classification of Testing

Since testing is such a wide field, we introduce a taxonomy of testing to span the field
and to enable positioning of this thesis’s testing methods in the field.
These aspects are taken from various sources, most of them from the standards men-

tioned above and from [Weißleder, 2009]:
• static versus dynamic testing: dynamic testing assesses the system through ex-
emplary execution, whereas static testing assesses the system through exemplary
analysis [Myers, 2004; Kaner et al., 1993]. In this thesis, the term “testing” always
refers to dynamic testing, unless stated otherwise, e.g., by calling it testing with
software bounded model checking (cf. Chapter 7);
• the disclosure of the system: In black-box testing, the system under test is a

black-box, i.e., its internals are not disclosed to the test engineer. So his only
information is the inputs he gave to the black-box and the outputs he observed
from the black-box (or absence thereof, cf. Sec. 8.1). This approach is the most
general and investigated in this thesis for model-based testing (cf. Part III). In
white-box testing (aka glass-box testing), the test engineer has full insight
into the system and its source code, which he can use for testing, e.g., for test
case generation and code coverage in dynamic testing, but also for static testing,
e.g., for static code analysis (static analysis for short), which we define as
automated static testing, excluding manual variants like reviews (cf. Chapter 7);
• the kind of testing: whether functional or non-functional requirements are tested,
resulting in functional testing respectively non-functional testing (see Sec. 2.4
for details). Similar to most other work [Ghidella and Mosterman, 2005; Whalen
et al., 2006; Fraser and Wotawa, 2006; Utting and Legeard, 2007; Langer and
Tautschnig, 2008; Lackner and Schlingloff, 2012], this thesis mainly deals with
functional testing (though non-functional correctness tests are also considered, e.g.,
in Chapter 7 and Chapter 14, but also for static testing in Chapter 6). Furthermore,
there are various properties that can be tested, e.g., specific safety properties (cf.
Sec. 4.2) or overall conformance (cf. Chapter 8) for functional testing, robustness
or performance for non-functional testing;
• who is executing the system: in active testing, a test driver (cf. Sec. 2.3) that

executes the test is included. Conversely, passive testing does not control test
execution, but only deals with test oracles (cf. Sec. 2.3), so the system is executed
in the productive environment or in some experiment defined elsewhere. A main
approach to passive testing is the instrumentation of the system to enable moni-
toring the behavior of the program while it is executed. Therefore, this approach is
called program monitoring (monitoring for short). If monitoring uses formal
methods, the term “runtime verification” is often used instead [Bauer et al.,
2010; Giannakopoulou and Havelund, 2001; Arcaini et al., 2013]. The oracles are
often expressed with assertions Floyd [1967], which are Boolean expressions at
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locations in the source code to check for conditions, i.e., an assertion must hold
at the location it is given. Assertions are frequently formulated in the same pro-
gramming language and are now used widely within most programming languages
(the code of Microsoft Office contained over one quarter of a million assertions in
2003 Hoare [2003]). Since this thesis also covers test driver, it deals with active
testing;
• the level at which the test is performed: testing can be performed at all levels of
software development, resulting in acceptance tests, system tests, integration tests
or unit tests (cf. Sec. 2.4). Some, but not all, aspects vary depending on the level,
e.g., unit tests are mostly functional tests, whereas acceptance tests usually also
cover many non-functional requirements. Testing with software bounded model
checking (cf. Chapter 7) deals mainly with system testing, whereas model-based
testing (cf. Part III) covers all levels;
• automation for test execution: manual testing is a labor-intensive, error-prone
and hardly manageable activity (for instance, a case study on a commercially
available test suite found errors in 15% of its test cases [Jard et al., 2000]). Hence
automated testing should be preferred wherever possible. Therefore, this thesis
focuses on automated testing;
• automation for test case generation: Automated testing in industry mainly uses
manual test case generation, especially for unit tests, e.g., via test-driven de-
velopment (cf. Subsec. 14.2.2). But lacking automated generation, too few ex-
emplars are tested, especially for higher levels than unit testing. Furthermore,
test suite maintenance must be performed manually, which is time-consuming and
error-prone. Using automated test case generation, it is possible to cover the
system under test more thoroughly, and only the concise specifications need to be
maintained. For (semi-)automated test case generation, many more aspects can
be differentiated, as investigated in Sec. 10.2. To achieve higher coverage, Part III
deals with automated test case generation. Chapter 7 shows an alternative, where
abstract test cases are created manually, but higher coverage is also achieved since
a test case fully analyzes general scenarios with the help of nondeterminism .

Often, there are shades of gray between two extremes. For instance between black-box
and white-box, there is gray-box testing [Zander et al., 2011; Weißleder, 2009], which
has some knowledge of the internals and thus combines black-box testing with some
techniques from white-box testing, mainly for test case generation. A typical example is
a web application, where the interfaces are specified (e.g., as WSDLs, cf. Subsec. 14.3.8),
but the source code is not available. Another example is measuring coverage for the
source code, not only for the specification.

Notes. Static testing is white-box testing because insights into the system under test
must be available to analyze the system without execution.
Passive and active testing are both part of dynamic testing.

2.3. Artifacts

This section defines all major artifacts of black-box testing, depicted in Fig. 2.1.
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Figure 2.1.: Artifacts of black-box testing

The system that is tested is called system under test (SUT); we define SUT as
the set of all SUTs.
A system is closed [Kupferman et al., 2001; Kupferman and Vardi, 2006] iff its be-

havior is completely determined by the system’s own state. Contrarily, the behavior
of an open system depends on interaction with an environment (e.g., a human) only
partially known in advance. Therefore, there is a trade-off between open and closed
systems: An open system gives some control and decisions to the environment, making
the system itself less complex and more flexible by allowing the environment to change
within the decisions and behaviors left open. But it gives up some control and becomes
dependent on the environment for the parts left open.
If the SUT is a closed system, the environment is preferably the same as for the live

deployment.
The test adapter is the environment around the SUT that performs two tasks:
• it executes the SUT via inputs (from the set LI of possible inputs): this part of

the test adapter is called test driver (abstr. def.);
• it derives verdicts from the execution by observing outputs (from the set LU of
possible outputs), or quiescence δ (i.e., absence of output): this part of the test
adapter is called oracle.

The interaction points of the interface between the test adapter and the SUT are
called points of control and observation (PCOs).
To perform its tasks, a test adapter contains a test suite (TS), which is a set of test

cases (TCs): finite sequences (or other structures, cf. Subsec. 10.2.4) of test steps that
either aid the test driver or the oracle (or both for quiescence, cf. Subsec. 8.2.3).
The testware contains all testing artifacts that are created during the testing pro-

cess [Graham and Fewster, 2012; Board), 2012].
Specifications specify some desired results, such as the final product or TS; so they
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define certain functional or non-functional aspects on some level of abstraction. Thus
multiple specifications are often created over multiple layers of abstraction (see the fol-
lowing section). Besides determining the desired aspects, they help in communicating.
Even though writing specifications is costly, a dime spent on specification is a dollar
saved on verification [Avizienis, 1995]. Formal specifications, i.e., specifications with
formal descriptions avoid ambiguity and thus potential misunderstanding, and can be
processed automatically for static or dynamic testing. Specifications not created by test
engineers are usually not considered as part of the testware. The more a specification is
simultaneously used in the software development process to specify the final product and
the TS, the less the TS can verify the final product: for lack of redundancy, the system
and TS are both based on the specification, so specification errors are not detected by
the TS [Pretschner and Philipps, 2005; Faragó et al., 2013].
Traceability manages the relationships between different specifications, mainly re-

quirements specifications, e.g., over different versions and over different abstraction lay-
ers, or between specifications and other artifacts from design, implementation, and test-
ing. The relationships are usually described by adding trace links, i.e., bi-directional
references between the artifacts (backward and forward, describing, for instance, how
a requirement evolves, is refined by other requirements, satisfied by the system de-
sign, implemented by source code, or verified by test artifacts (see the following section
or [Eide, 2005; Utting and Legeard, 2007; Mlynarski, 2011; Gotel et al., 2012]). There-
fore, the changes of requirements and traces left by requirements on other artifacts,
and vice versa, can be captured and followed [Pinheiro and Goguen, 1996]. If this cap-
turing and the addition of trace links is performed automatically, we have automatic
traceability [Banka and Kolla, 2015]. Traceability also helps to satisfy certification
guidelines [Rajan, 2009; DO178C Plenary, 2011]. So the word “traceability” originates
from tracing a requirement throughout the software development process, as described
in the next section.

2.4. Software Engineering

A test engineer creates and executes test suites within a software development process,
which describes the phases of software development and the order in which those phases
are executed. The process is also called software engineering process [Boehm, 1984], and
is part of the software life cycle process [JTC 1/SC 7, 2008]. Test creation (especially
automated generation of test suites, cf. Sec. 2.2) is covered in Part III. Test execution,
processes and other software engineering aspects are introduced in this section.
The V-model [Spillner and Linz, 2005; Langer and Tautschnig, 2008; JTC 1/SC 7,

2008] is the most prominent model to embed testing over several layers and phases
of the software development process [Boehm, 1984; Royce, 1970]. The V-model
is depicted in Fig. 2.2, taken from [Weißleder, 2009]. The axis downward moves to
more and more detailed layers; the axis in the right direction resembles the processing
sequence. The left branch describes how the product is constructed:
• requirements: Firstly, the needs of the customers and users are gathered, spec-

ified and approved; thus these requirements are often called user requirements
or business requirements (or business requirements on top of user require-
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ments [Westfall, 2005; Banka and Kolla, 2015]), and focus on conditions and capa-
bilities the stakeholder wants the system to achieve. Each requirement (REQ for
short) is a need that the final product must meet: either functional, i.e., about
the system’s behavior, specified in a functional requirement specification or
non-functional, i.e., how well the system carries out its functions (e.g., its per-
formance or energy consumption or robustness), specified in a non-functional
requirement specification [Utting and Legeard, 2007; Langer and Tautschnig,
2008; ISO/IEC/IEEE, 2011; Turban, 2011];
• system requirements: The user requirements are translated to a technical level.
They are often called system requirements, for software also software require-
ments. The system requirements specification (system specification for
short) specifies a finite list of behaviors and features, is written to be verifiable
and focuses on how the system will achieve the user requirements [Hayhurst et al.,
2001];
• system design: A system architecture is established: it defines the system’s
structure by decomposing the system into subsystems, called units, and the sys-
tem’s behavior by specifying interfaces between units, as well as towards the en-
vironment, i.e., between the system and other systems. The system requirements
are mapped to units;
• unit design: The system design is refined for each unit, describing in detail the
unit’s structure and behavior;
• implementation: builds all units.

The right branch describes how the product is tested, i.e., how to check whether the
implementation conforms (cf. Chapter 8) to the specification:
• unit testing: tests for each unit whether it has been implemented according to
the unit design; if not, either the unit design specification must be adapted, or the
implementation. Often each test is performed in isolation [Fowler, 2007];
• integration testing: incrementally the subsystems are integrated, i.e., linked
together, and tested whether they work with each other as described in the system
design (and according to the interface to the external environment in system
integration testing);
• system testing: once the entire system has been built and integrated, it is tested
against the system specification;
• acceptance testing: finally, the system is tested against the user requirements,
changing the focus from a technical to a user perspective and from verification to
validation, i.e., from checking that the system is built in the right way to checking
that the right system is built (see Subsec. 14.2.2 or [Boehm, 1984; Balzert, 1997;
Pezzé and Young, 2007]).

The cost of fixing software bugs increases exponentially with the number of development
phases containing the bug (cf. Subsec. 1.1.1); in case a bug is introduced in the require-
ments phase and fixed only after acceptance testing, i.e., after delivery of the system,
the cost is often 100 times higher than fixing the bug in the design phase already [Shull
et al., 2002].
Traceability can be implemented in the V-model for instance by using trace links
• between each artifact and the corresponding requirements, or
• between corresponding artifacts on one layer of the V-model (i.e., horizontal trac-
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ing) and additionally between corresponding artifacts on two consecutive levels on
the left branch of the V-model (i.e., vertical tracing) [Fisher, 2007; Utting and
Legeard, 2007; Mlynarski, 2011; Turban, 2011; Gotel et al., 2012].

Many refinements and extensions to the V-model exist [Hillenbrand, 2011], for in-
stance the current V-Modell XT [mbH, 2006]. By not interpreting the processing
sequence as one single pass, and allowing gaps, the V-model becomes more flexible than
waterfall [Royce, 1970; JTC 1/SC 7, 2008]. For instance, it allows checking the system
specification’s consistency by enhancing system testing with model checking (cf. Chap-
ter 5, Chapter 7, and [Sijtema et al., 2014]) and iterative and incremental processes like
Scrum (cf. Sec. 14.2 and [Turner, 2007]). An iteration can break a feature that worked
before, which is called regression bug [Nir et al., 2007]. They can often be caught by
old tests that already passed, so old tests should be executed in later iterations, too,
which is called regression testing [Juzgado et al., 2004].

Requirements

System 
Specification

System  
Design

Unit  
Design

Implementation

Unit  
Testing

Integration 
Testing

Acceptance 
Testing

System  
Testing

Processing Sequence
Influence of Test Results

Figure 2.2.: The V-model

The execution of a test suite (resp. test case, resp. test step) on the SUT is called
test run (resp. test case execution, resp. test execution step or just test step).
A test run can follow along happy paths, i.e., paths that exhibit the intended behavior

of the SUT. Tests that follow other paths, e.g., exceptional behavior, are sometimes called
negative tests, the corresponding behavior bad weather behavior. A robust SUT
should be able to handle both cases, a thorough TS test for both.
The purpose of executing tests is to detect incorrectness, which can be differentiated

into different stages according to fault/failure models [Ammann and Offutt, 2008;
Beizer, 1990]: A root cause [Abran et al., 2004; Sommerville, 2010] (sometimes also
called human error or just error [Board), 2012; IEEE, 1999]) is a human mistake, an
action that produces a static defect in the SUT, called fault (or defect or bug). Ex-
emplary faults are an incorrect data definition or an incorrect statement in the system’s
source code. If a fault is activated, i.e., encountered during execution, it may cause a
failure of the SUT: deviation of the SUT’s observed behavior from its specification, or
more generally its expected delivery, service or result [Fenton, 1991; Board), 2012]. In
summary, the main goal of testing is activating yet undetected faults (so called dormant
faults).
Note. Some literature [Dubrova, 2013] swap the meaning of error and fault. Yet other
literature [Weißleder, 2009; Ammann and Offutt, 2008; Offutt and Untch, 2001] define
an error as an unintended internal state that is the manifestation of a fault in a running
system. If such an error is propagated, i.e., influences the observed behavior, it leads to
a failure – unless the resulting behavior happens to conform to the specification, too.
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If executing a TC leads to the verdict fail , it indicates that a failure during the
execution of the SUT has occurred. If the TC has the verdict pass, it indicates that no
failure has been found. In some approaches, the execution of a TC might be terminated
before fail or pass occurs (e.g., when the TC was not designed to consider all uncon-
trollable nondeterministic choices). This case leads to the verdict inconclusive, telling
the test engineer that executing the TC neither yielded a bug nor raised the confidence
in the SUT’s correctness. Termination with inconclusive is often used when a particular
functionality or aspect (e.g., a test purpose or test objective, cf. Chapter 12) should be
investigated, but testing departs from this aspect due to nondeterminism or technical rea-
sons. In these cases, inconclusive can also be called miss, and the more detailed verdicts
(miss, fail ) respectively (miss,pass) can be used to indicate that the departure from the
aspect occurred at a fail respectively not at a fail . The set of allowed verdicts is defined
as V and is { fail , pass} or { fail , pass, inconclusive} or { fail , pass, (miss, fail ), (miss, pass)}
or, indicating a verdict within the given aspect with hit, {(hit, fail ),(hit,pass), (miss, fail ),
(miss,pass)}.

Note. If a test fails, the cause can either be a fault in the software, or a fault in the
test itself. A test failure is often called an anomaly to avoid falsely concluding a fault
in the software must be the reason [Black et al., 2012].

A test that fails should do so reproducibly, to enable the investigation of the cor-
responding fault so that the tests can also be used for regression testing. Therefore,
repeating passing tests is a repeatable evidence of correctness. For SUTs that behave
nondeterministically (cf. Subsec. 8.2.5), reproducibility is a challenge that is covered in
Subsec. 12.4.3.

2.5. Meaningfulness and Heuristics
To efficiently perform software testing, the chosen test steps, test cases, and test suites
should be meaningful, i.e., they should have a high potential of revealing many and
relevant faults (thus the terms “fault finding effectiveness” or “revealing” are some-
times used equivalently) [Hamon et al., 2005; Weißleder, 2009; Gay et al., 2015]. The
meaningfulness of a test step or TC depends on the previously executed TCs. In sum-
mary, the meaningfulness of a TS is a quality measure describing its failure detection
capability. Therefore, the meaningfulness of the executed TS influences the confidence
in the system, i.e., the probability of faults remaining in the system undetected.
For automation, meaningfulness is often approximated by standard heuristics, most

prominently coverage criteria, as defined in Def. 2.1.

Definition 2.1. Let T̈ be a test suite. Then
• a coverage task comprises one or more artifacts that T̈ should cover, i.e., visit;
• a coverage criterion is a set C of coverage tasks;
• the coverage level of T̈ for C is the percentage of coverage tasks that have been
covered, i.e., the ratio (achieved coverage tasks)/|C|.

On the lowest level, there are coverage criteria with artifacts from the source code,
called code coverage criteria. Thus they can only be used for white-box (and gray-
box) testing. Examples are C =all statements, C =all branches in the control flow graph
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or similarly C = all decisions (i.e., top-level Boolean expressions, aka predicates) with
both outcomes, or C = all conditions (i.e., atomic Boolean expressions like a Boolean
variable or relational expression) with both outcomes, or C = all paths through the
control flow graph. Sometimes, the constraints are adapted [Weißleder, 2009], for in-
stance additionally demanding that every point of entry and exist is covered. If some
constraint is not feasible for each coverage task, a coverage level of 100% is not possible.
Alternatively, a coverage criterion can be weakened to only consider feasible coverage
tasks. Often, one coverage criterion subsumes another (cf. Subsec. 12.3.5 and [Chilen-
ski and Miller, 1994; Ammann and Offutt, 2008; Weißleder, 2009]). Depending on the
use of coverage criteria, the subsuming coverage criterion can lead to more meaningful
TSs [Zhu, 1996; Kapoor and Bowen, 2003; Yu and Lau, 2006]. Many complex code cov-
erage criteria exist, but no single one is best for all scenarios [Yu and Lau, 2006; Kapoor
and Bowen, 2005; Utting and Legeard, 2007; Jorgensen, 2013].

Example. Modified Condition/Decision Coverage (MC/DC) [Chilenski and Miller, 1994;
Hayhurst et al., 2001] strengthens condition coverage by demanding that the TS shows
for each condition c within a decision d that c independently impacts the outcome of d
(so c is not masked in d). The precise definition of MC/DC depends on what independent
impact precisely means [Chilenski and Miller, 1994; Yu and Lau, 2006; Gay et al., 2015]).
MC/DC is an efficient to compute while often more reliable and stable coverage criterion
than many others [Kapoor and Bowen, 2003; Kandl and Kirner, 2010] and thus highly
recommended for safety-critical software [DO178C Plenary, 2011; URL:ISO26262].
MC/DC is more efficient than many other coverage criteria, but still often does not

yield sufficiently meaningful TSs [Whalen et al., 2013; Gay et al., 2015]: an exemplary
case study on automotive software [Kandl and Kirner, 2010] using MC/DC led to a TS
that revealed all erroneous values in the source code, but missed 8% of erroneous opera-
tors and 22% of erroneous variable names. Furthermore, MC/DC is very sensitive to the
structure of the source code [Rajan et al., 2008a], where inlining a Boolean expression
already has an effect on the coverage level. To avoid these deficits, Observable MC/DC
(OMC/DC) [Gay et al., 2015] improves MC/DC by additionally demanding that the TS
also reveals the outcome of the decision d: d must not be masked but affects a PCO, i.e.,
must be observable. Using OMC/DC reveals up to 88% more faults than using MC/DC,
is less sensitive to program structure [Whalen et al., 2013], but more complex.

In short, coverage criteria are still evolving and should be chosen according to the
situation, so formal methods should ideally be able to apply arbitrary criteria.
The described code coverage criteria all focused on control flow, i.e., on statements,

decisions and control constructs. Hence they are called control flow coverage criteria.
There are also data flow coverage criteria that focus on the status of variables (or
data objects): on a path, a variable v can be defined (d), used in a computation (c) or
used in a predicate (p). Certain sequences of such statuses, e.g., multiple definitions of
v without a use in between (called dd anomaly), have a high probability of containing
a fault and should thus be covered by tests. Typical coverage tasks for v are def-use
pairs: a path in the control flow from a definition of v to a use of v without further
definitions of v in between (a so called def-clear path). Typical data flow coverage criteria
are: all-defs = f.a. variables v f.a. definitions of v: at least one def-use pair, i.e., all
definitions get used; all-uses = f.a. variables v: all def-use pairs, i.e., all uses affected by
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a definition are exercised; all-def-use-paths = f.a. variables v f.a. def-use pairs: all def-
clear paths (modulo loops) from the def to the use, i.e., all uses affected by a definition
are exercised via all possible paths. Many more criteria exist, especially differentiating
c and p [Frankl et al., 1997; Juzgado et al., 2004; Utting and Legeard, 2007].

Note. Most specifications used in this thesis (e.g., LTSs, see Subsec. 3.4.1) contain no
variables, so data flow coverage criteria are of no use. For more complex specifications
with variables, strong data flow coverage criteria often become difficult due to alias-
ing, the high amount of coverage tasks, bad scalability, path explosion, and infeasible
paths [Frankl et al., 1997; Pezzé and Young, 2007; Naik and Tripathy, 2011; Su et al.,
2015b,a]. Consequently, “practical data flow testing remains a significant challenge” [Su
et al., 2015a], so industry usually focuses on control flow coverage criteria instead of data
flow coverage criteria [Hayhurst et al., 2001; DO178C Plenary, 2011], which we will also
do in this thesis.

Typical coverage criteria on the specification level, called specifications coverage,
are C = all states of the model specification, C = all transitions of the specification, or
C = all paths of the specification (cf. Def. 8.56 and [Weißleder, 2009; Peleska, 2013]).
Many complex coverage criteria and combinations exist [Abdurazik et al., 2000; Friske
et al., 2008; Ammann and Offutt, 2008]. Some are the same as on the lowest level, for
instance decision-based coverage criteria, but their meaningfulness can vary depending
on the level [Yu and Lau, 2006; Krishnan et al., 2012].
On the highest level, there is requirements coverage, for instance C = all require-

ments [Ghidella and Mosterman, 2005; Whalen et al., 2006; Fraser and Wotawa, 2006;
Rajan et al., 2008b; Rajan, 2009; Lackner and Schlingloff, 2012]. Generating tests for
high requirements coverage is often called requirements-based testing. If these tests
directly check the conformance of the implementation to the requirements, or use trace-
ability to indicate which requirements might be violated if a test fails, the term require-
ments conformance testing can also be used.

Notes. Often a mix of coverage criteria on multiple levels are used, e.g., tests are
generated to maximize specifications coverage and requirements coverage.
The process of applying coverage criteria on multiple levels is according to the V-

model, i.e., reverse to the didactical order listed here.
The coverage criteria on different levels complement one another; for instance using

requirements coverage when producing tests reveals if there are requirements without
corresponding implemented functions, while code coverage reveals if there are imple-
mented functions without corresponding requirements.
Most coverage criteria on the source code and specification level focus on the structure

of the artifacts and are hence called structural coverage criteria. Non-structural
coverage criteria on those levels are input coverage criteria; requirements coverage criteria
are non-structural coverage criteria on a higher level [Hayhurst et al., 2001].
For black-box testing, the used coverage criteria should be implementation indepen-

dent and not include code coverage. Therefore, the generated TS can be applied to
multiple SUTs, e.g., when the source code is modified.
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A coverage criterion can be used as
• exit criterion, i.e., to decide when to stop testing;
• similarly as adequacy metric, i.e., feedback of the coverage level to the test

engineer to show the quality and progress of testing, especially whether some func-
tionality has not yet been tested;
• guidance of which choices to take during testing or test generation, to find more
meaningful test cases (cf. Chapter 12);
• test suite reduction, which is usually inefficient and ineffective post-processing
as firstly generating a huge test suite and only thereafter applying heuristics is often
too costly, and often leads to weak meaningfulness [Fraser et al., 2009; Heimdahl
and Devaraj, 2004].

Meaningfulness of a TS, TC or test step is highly dependent on the domain and
the way the SUT was developed. Therefore, it also varies how well a coverage criterion
approximates meaningfulness [Weyuker and Jeng, 1991; Horgan et al., 1994; Frankl et al.,
1997; Gutjahr, 1999; Juzgado et al., 2004; Heimdahl and Devaraj, 2004; Heimdahl et al.,
2004; Fraser and Wotawa, 2006; Weißleder, 2009; Mockus et al., 2009; Derderian et al.,
2006; Ali et al., 2010; Utting and Legeard, 2007; Cadar et al., 2008b; Staats et al., 2012;
Pretschner et al., 2013; Godefroid et al., 2005; Gay et al., 2015] (see also Subsec. 12.3.1).
Consequently, it is concerning that several test engineers use some coverage criterion as
though it universally guarantees effective testing [Rajan et al., 2008a; Kandl and Kirner,
2010; Gay et al., 2015]. Therefore, testing methods and tools should be sufficiently
generic to apply different coverage criteria as well as other heuristics.

Notes. In the extreme case of exhaustiveness (cf. Sec. 8.8), meaningfulness can, however,
be strictly related to a suitable coverage criterion: By considering exhaustiveness as
maximal meaningfulness of a TS, meaningfulness relates to fully achieving a specific
coverage criterion, as shown in Subsec. 8.8.4.
The term directed test generation sometimes denotes that tests are generated

specifically to satisfy a coverage criterion, sometimes that no (purely) random guidance
is used for test generation.
Mutation testing (aka fault-based testing) [Offutt and Untch, 2001] is an alter-

native to coverage criteria that is often more meaningful [Jia and Harman, 2011; Baker
and Habli, 2013]. The main reason is that mutation testing emulates earlier common
mistakes by fault injections: the source code is changed slightly, according to some
syntactic rule for a mistake, described by a mutation operator; the modified source
code is called a mutant. Typical mutation operators add, delete or replace program-
ming language operators, object oriented language constructs or statements, or replace
variables or constants. Therefore, mutation operators are language dependent. Since
the C language already has over 70 mutation operators [Richard et al., 1989; Jia and
Harman, 2008], and each can be applied at multiple locations, the overall set of mutants,
M , can become huge. A TC or TS kills a mutant m ∈ M if the TC or a TC from the
TS fails on m [Weißleder, 2009; Grün et al., 2009; Jia and Harman, 2011]. Since a TC
can check for the internal state of a program, this is weak mutation testing, in con-
trast to strong mutation testing where the outputs of the original program and m
must differ, not only the internal state [Offutt and Untch, 2001; Jia and Harman, 2011;
Krishnan et al., 2012] (there are, however, other definitions of weak and strong mutation
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testing [Juzgado et al., 2004]). A mutant that is functionally equivalent to the original is
called equivalent mutant. The mutation kill ratio (aka mutation score) k of a TS
is the number of killed mutants divided by |M |, which is a metric for the meaningfulness
of the TS. Occasionally, the mutation score is considered as coverage level, and mutation
testing as one form of coverage testing, which we will not adopt. If the mutation oper-
ators reflect typical mistakes made by the software developers, relative values of k for
different TSs accurately reflect their meaningfulness. The absolute value k for a TS usu-
ally has little informative value since an unknown but usually high amount of mutants
are equivalent (about 10% to 50% [Grün et al., 2009; Aichernig et al., 2011; Krishnan
et al., 2012; Baker and Habli, 2013; Madeyski et al., 2014]). Just as for coverage metrics,
mutation testing must be restricted to feasible situation to get a more informative value;
but this requires detecting and excluding equivalent mutants, which is hard in practice
and in general undecidable [Frankl et al., 1997; Grün et al., 2009; Madeyski et al., 2014;
Aichernig et al., 2014] (i.e., the check for equivalence is non-computable). Like coverage
metrics, mutation testing can be used as adequacy metric and test suite reduction. If the
number of equivalent mutants is known, mutation testing can also be used as exit crite-
rion. Since M can become huge and the whole TS has to be executed for each mutant
m ∈ M , mutation testing unfortunately has a high time complexity [Jia and Harman,
2011; Baker and Habli, 2013], especially for guidance of test case generation [Aichernig
et al., 2011; Jia and Harman, 2011; Aichernig et al., 2014]. The execution time can be
reduced to some extent [Jia and Harman, 2011], for instance by using structural cov-
erage criteria to individually select the mutants each TC should execute [Grün et al.,
2009]. But test execution, especially due to the high amount of equivalent mutants, still
often hinders the application of mutation testing in practice [Frankl et al., 1997; Jia and
Harman, 2011; Baker and Habli, 2013]. Therefore, mutation testing is only considered
in a few notes in this thesis.

In summary, meaningfulness cannot be deduced at large by the specification in iso-
lation, or by a single metric in practice; thus heuristics need to be chosen carefully
for each domain and hence are best supplied by the user (cf. [Feijs et al., 2002] and
Subsec. 11.2.4).
For SUTs that behave nondeterministically (cf. Subsec. 8.2.5), new aspects arise for

coverage criteria: The static coverage level of T̈ (static coverage for short), which
is measured without executing T̈ on the SUT, does not yield reliable results. Instead,
the dynamic coverage level of T̈ (dynamic coverage for short), measured while
executing T̈ on the SUT, gives the accurate results that reflect the dynamic information
about the SUTs nondeterministic behavior (cf. Subsec. 11.1.2). Furthermore, new cov-
erage criteria that measure the SUT’s nondeterminism are possible (cf. Subsec. 12.3.1,
[Faragó, 2011]).

2.6. Summary
This chapter gave an overview of testing. To briefly span the wide field and position the
testing methods used in this thesis, a taxonomy was introduced. After defining the arti-
facts used for testing, the relevant software engineering aspects for testing were covered,
including the V-model, fault/failure models, meaningfulness, and coverage criteria.
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3.1. Introduction

Formal methods are mathematically rigorous techniques using formal languages, logics
or automata theory, for developing, specifying and verifying (cf. Def. 3.1) software and
hardware systems.

Definition 3.1. Verification is the process of mathematically proving or disproving
the correctness of a system with respect to the formally given properties.

Note. In the domain of (model-based) testing, verification is often defined wider by
including testing [Ammann and Offutt, 2008], in which case it is often called dynamic
verification. This thesis does not include testing in the term “verification”, but uses
the term “formal verification” where misunderstanding could occur.
Many terms introduced in the last chapter for testing can be transferred to verification,

e.g., (non-) functional verification, software verification, manual verification,
which is usually called interactive verification, and system under verification
(SUV) for the system being checked by verification.

Def. 3.2 about soundness and completeness [Kleene, 1967] is sufficiently general to
cover all formal methods within this thesis. We will give more precise instances of this
definition for all formal methods in their respective chapters.

Definition 3.2. LetM be a formal method. Then:

M is sound :⇔ ∀ systems under consideration S
∀ relevant property statements P about S :(
M deduces P about S ⇒ P holds for S

)
M is complete :⇔ ∀ systems under consideration S

∀ relevant property statements P about S :(
M deduces P about S ⇐ P holds for S

)
Notes. So if a sound method M deduces a property P about S, then P really holds
for S, i.e., M never gives false positives (called false alarms for P describing bad
behavior). Conversely, a complete method M eventually does deduce property P if
P really holds for S. So M never gives false negatives, i.e., misses a property (cf.
[Neyman and Pearson, 1933]).
The more heavyweight sound and complete methods are in general not computable

(cf. Chapter 1), i.e., represent a function or set that is not computable by a Turing
machine [Turing, 1936].
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3.2. Propositional Logic
Propositional logic is a basic core used throughout this thesis. This section firstly de-
scribes its syntax, then its semantics.

3.2.1. Syntax

Def. 3.3 uses the operator basis {¬,∨} to define propositional formulas. Thereafter, for-
mulas with other operators are covered by considering those operators as abbreviations.

Definition 3.3. Let Σ be a countable set, called signature, whose elements are called
propositional variables.
Then PROPΣ (shortly PROP if Σ is clear) is the set of all propositional formulas,

defined by

〈prop〉 ::= p
∣∣ (〈prop〉 ∨ 〈prop〉)

∣∣¬〈prop〉; with p ∈ Σ

Secondary Operators. Besides the operator basis
{
∨,¬

}
, the following operators can be

expressed within our operator basis, with fi ∈ PROP:
•
(
f1 ∧ f2

)
as abbreviation for ¬

(
¬f1 ∨ ¬f2

)
;

•
(
f1 → f2

)
as abbreviation for

(
¬f1 ∨ f2

)
;

•
(
f1 ↔ f2

)
as abbreviation for

(
(f1 → f2) ∧ (f2 → f1)

)
.

Note. Round brackets are used to determine the priority of the operators (i.e.,
how the formula’s abstract syntax tree looks like). Often they are omitted and an implicit
precedence is fixed: ¬ before ∧ before ∨ before → before ↔. Amongst the same binary
operator, precedence is irrelevant for ∧, ∨ and ↔ (i.e., they are associative); for →, we
fix the precedence right to left (i.e., right-associativity).

3.2.2. Semantics

Def. 3.4 defines terminology, so that Def. 3.5 can inductively define the semantics of
PROPΣ .

Definition 3.4. Let Σ be given and F ∈ PROPΣ. Then:

• I : Σ→ B is called an interpretation over Σ;
• valI : PROPΣ → B is the evaluation function for PROP, which

extends I to PROPΣ, describing PROPΣ’s semantics;
• I satisfies F :⇔ valI(F ) = true (written I|=F )

⇔: I is a model of F ;
• F is valid :⇔ f.a. interpretations I over Σ : I |= F.

Definition 3.5. Let Σ be given and fi ∈ PROPΣ. Then:

•I |= ¬f1 :⇔ I 6|= f1;
•I |= (f1 ∨ f2) :⇔ I |= f1 or I |= f2.
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3.2.3. SAT Solvers

Before defining SAT and SAT solvers in Def. 3.6, we introduce the general case, which of-
ten occurs in practice and is also applicable to SMT and SMT solvers (cf. Subsec. 3.3.3):
a constraint satisfaction problem (CSP) [Kroening and Strichman, 2008; Petke,
2015] is a finite set of constraints over a finite set of variables. A program or algorithm
that solves CSPs is called a constraint solver. Restricting the constraints and variable
domains to Boolean values, we get propositional formulas as constraints and SAT solvers
to solve them, as defined in Def. 3.6.

Definition 3.6. Let Σ be given and F ∈ PROPΣ. Then:
• the Boolean satisfiability problem (SAT) for F determines if there exists an
interpretation I with I |= F ;
• a SAT solver determines whether F is satisfiable. If so, the SAT solver returns
the string “SAT” and an interpretation, otherwise the string “UNSAT”.

SAT is NP-complete [Cook, 1971], so the worst case time complexity is in O(2|Σ|).
Yet modern SAT solvers are efficient for many practical applications [Clarke et al., 2009;
Järvisalo et al., 2012; Balint et al., 2013; URL:SATChallenge2012; Belov et al., 2014;
URL:SATcompetition2014HP]. A prominent Boolean decision procedure applied by SAT
solvers for formulas in conjunctive normal form is DPLL [Davis, 1962], also used for SMT
solvers (see Subsec. 3.3.3). An exemplary SAT solver based on DPLL is Minisat2 [Eén
and Sörensson, 2003; Sörensson, 2008], which is popular and often used as basis or
reference [URL:SATChallenge2012; Belov et al., 2014; URL:SATcompetition2014HP].

Note 3.7. Usually only sound and complete SAT solvers are considered. As determined
by Def. 3.2, a SAT solverM is:

sound :⇔ ∀ signatures Σ ∀ formulas F ∈ PROPΣ ∀ statements P ∈ {SAT ,UNSAT} :(
M deduces P about F ⇒ P holds for F

)
complete :⇔ ∀ signatures Σ ∀ formulas F ∈ PROPΣ

∀ statements P ∈ {SAT ,UNSAT} :(
M deduces P about F ⇐ P holds for F

)
In this definition [Maric, 2009], the property statements are from {SAT ,UNSAT} and

the systems under consideration from PROPΣ, which corresponds to the typical use of
SAT solving for verification, where the system is encoded as formula (cf. Chapter 7).
IfM terminates, soundness and completeness of SAT and UNSAT are related; sound-

ness of both imply their completeness.
Alternatively (as for model checking, cf. Chapter 5), the unsatisfiability of some for-

mula in PROPΣ can be considered as the property statement, and the interpretations
are the systems under consideration.

3.2.4. BDD-based Techniques

Binary decision diagrams are data structures to efficiently represent propositional for-
mulas and perform operations on them. They are often used for model checking (cf.
Chapter 5).
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Definition 3.8. An ordered binary decision diagram (OBDD) over the ordered
propositional variables Σ = (pi)i∈[0,...,k] is a single-rooted, connected, finite, directed,
acyclic graph where:
• an inner node n is labeled with a propositional variable pj , where j > i if n has a
direct predecessor labeled with pi;
• an inner node has two outgoing edges labeled true and false;
• a terminal node is labeled with true or false.

The label of the outgoing edge from an inner node labeled with pi determines its
Boolean assignment, i.e., I(pi). Thus each interpretation I over Σ leads to a maxi-
mal path πI in the OBDD. The OBDD represents the propositional logic formula f iff
∀ interpretations I : valI(f) = label of πI ’s terminal node.

Note. The size |B| of an OBDD B representing a formula f , i.e., its number of nodes,
strongly depends on the variable order on Σ, with up to exponential difference. Unfor-
tunately, improving the variable order is NP-complete [Bollig and Wegener, 1996], so
heuristics are used. Besides domain-specific solutions, there are general approaches us-
ing dynamic reordering, which optimizes the order during runtime by lazily repositioning
one variable at a time, e.g., using the sifting algorithm [Rudell, 1993].

Definition 3.9. A reduced ordered binary decision digram (ROBDD) is a normal
form for OBDDs where the following transformations can no longer be applied:
• if two terminal nodes have the same label, then remove one and redirect incoming
edges to the other one;
• if two inner nodes n1, n2 have the same label, the same successor for their outgoing
edge true and the same successor for their outgoing edge false, then remove n1
and redirect its incoming edges to n2;
• if an inner node has the same direct successor twice, then remove the inner node
and redirect its incoming edges to the direct successor.

Lemma 3.10 from [Bryant, 1986] shows that ROBDDs are very useful for MC. Two
ROBDDs are isomorphic if the graph has the same structure and same labels [Clarke
et al., 1999b].

Lemma 3.10. For all propositional formulas f1, f2 : f1 ≡ f2 iff ROBDD of f1 is iso-
morphic to ROBDD of f2.

If multiple ROBDDs are used, sub-graphs are also shared amongst them, leading to the
multi-rooted shared reduced ordered binary decision diagrams (often shortened
to BDD). All propositional operators can be implemented on BDDs with polynomial
worst case time complexity: for BDDs B1, resp. B2, representing f1, resp. f2, and a
binary operator ◦ (e.g., f1 ◦ f2 = f1 ∧ f2 or f1 ◦ f2 = ¬f2), a BDD for f1 ◦ f2 can be
computed by operating directly on B1 and B2 with a worst case time complexity linear
in |B1| · |B2| [Bryant, 1986].

3.3. First Order Logic
First order logic (FOL) extends propositional logic with functions, predicates, and
quantified variables; again, the syntax is described before the semantics.
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3.3.1. Syntax
Def. 3.11 defines the syntax of FOL using the operator basis {¬,∨,∃} to define formulas.
Thereafter, Def. 3.12 defines free variables of formulas. Finally, formulas with other
operators are introduced by considering those operators as abbreviations.

Definition 3.11. For FOL, a signature ΣFOL = (F, P, α) consists of
• a countable set F of function symbols;
• a countable set P of predicate symbols, with F ∩ P = ∅;
• a function α : F ∪̇ P → N≥0, mapping each symbol to its arity.

Var is the countable set of variables.
TERMΣFOL(Var) (shortly TERMΣFOL or TERM if the context is clear) is the

set of all terms over Var for ΣFOL, defined by

α(f) parameters

〈term〉 ::= v
∣∣ f(

︷ ︸︸ ︷
〈term〉, . . . , 〈term〉); with f ∈ F, v ∈ Var

FORMΣFOL(Var) (shortly FORMΣFOL or FORM if the context is clear) is the
set of all first order formulas (with equality) over Var for ΣFOL, defined by

〈form〉 ::= 〈atomic〉
∣∣ ¬〈form〉 ∣∣ (〈form〉 ∨ 〈form〉)

∣∣
∃x 〈form〉; with x ∈ Var

α(p) parameters

〈atomic〉 ::= p(
︷ ︸︸ ︷
〈term〉, . . . , 〈term〉)

∣∣ (〈term〉=̇〈term〉); with p ∈ P

Definition 3.12. Let ΣFOL, x ∈ Var , f ∈ F , ti ∈TERM, a, p ∈ P with α(a) = 0 6= α(p),
and Fi ∈ FORM be given.
Then the function free: TERMΣFOL∪̇FORMΣFOL → 2Var maps each first order term

or formula X to the set of free variables in X, inductively defined as:

•free(x) := {x};
•free(f(t1, . . . , tα(f))) := free(t1) ∪ · · · ∪ free(tα(f));
•free(t1=̇t2) := free(t1) ∪ free(t2);
•free(a) := ∅;
•free(p(t1, . . . , tα(p))) := free(t1) ∪ · · · ∪ free(tα(p));
•free(¬F1) := free(F1);
•free(F1 ∨ F2) := free(F1) ∪ free(F2);
•free(∃xF1) := free(F1) \ {x}.

A variable x 6∈ free(F1) that occurs in F1 is called bound (by a quantifier) in F1.
F1 is called a closed formula iff free(F1) = ∅, i.e., it only contains bound variables.

Secondary Operators. Besides the operator basis
{
¬,∨, ∃

}
, the following operators can

be expressed within our operator basis, with fi ∈ FORM:
•
(
f1 ∧ f2

)
as abbreviation for ¬

(
¬f1 ∨ ¬f2

)
;

•
(
f1 → f2

)
as abbreviation for

(
¬f1 ∨ f2

)
;

•
(
f1 ↔ f2

)
as abbreviation for

(
(f1 → f2) ∧ (f2 → f1)

)
.
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• ∀xf1 as abbreviation for ¬∃x¬f1.

Note. Round brackets are used to determine the priority of the operators. Often
they are omitted and an implicit precedence is fixed: {¬, ∃, ∀} before ∧ before ∨ before
→ before ↔.

3.3.2. Semantics

Def. 3.13 defines terminology, so that Def. 3.14 can inductively define the semantics of
FORMΣFOL(Var) .

Definition 3.13. Let ΣFOL, t ∈ TERM, and F ∈ FORM be given. Then:
• a first order structure DΣFOL = (DΣFOL , IΣFOL) over ΣFOL (shorty D = (D, I)

if the context is clear) consists of:
– a nonempty set DΣFOL , called universe;
– a function IΣFOL , called interpretation, that maps every f ∈ F to a function
IΣFOL(f) : D

α(f)
ΣFOL → DΣFOL and every p ∈ P to a relation IΣFOL(p) ⊆

D
α(p)
ΣFOL ;

• a variable assignment (first order logic) β (also called valuation) is a function
β : Var → DΣFOL . Furthermore, with x ∈ Var and d ∈ DΣFOL , we define

βdx : Var → DΣFOL , y 7→
{
d if y = x

β(y) if y 6= x
• the evaluation function for FOL for the first order structure DΣFOL and variable

assignment β is valD,β: TERMΣFOL∪̇ FORMΣFOL → D ∪ B. It extends IΣFOL , β
to TERMΣFOL and FORMΣFOL , describing their semantics;
• D, β satisfies F :⇔ valD,β(F ) = true (written D, β|= F );
• for β′ = β|Var ′ with free(F ) ⊆ Var ′, we also write D, β′ |= F ;
• D|= F :⇔ f.a. β : Var → D : D, β |= F ; we then say D is a model of F ;
• F is valid :⇔ f.a. first order structures D : D |= F .

Definition 3.14. Let ΣFOL, first order structure D, variable assignment β, x ∈ Var ,
f ∈ F , ti ∈ TERM, a, p ∈ P with α(a) = 0 6= α(p), and Fi ∈ FORM be given. Then:

•valD,β(x) := β(x);
•valD,β(f(t1, . . . , tα(f))) := I(f)(valD,β(t1), . . . , valD,β(tα(f)));
•D, β |= (t1=̇t2) :⇔ valD,β(t1) = valD,β(t2);
•D, β |= a :⇔ valD,β(a) = true;
•D, β |= p(t1, . . . , tα(p)) :⇔ (valD,β(t1), . . . , valD,β(tα(p))) ∈ I(p);
•D, β |= ¬F1 :⇔ D, β 6|= F1;
•D, β |= (F1 ∨ F2) :⇔ D, β |= F1 or D, β |= F2;
•D, β |= ∃xF1 :⇔ ∃|d ∈ D : D, βdx |= F1.

3.3.3. SMT Solvers

Since FOL is undecidable [Church, 1936; Turing, 1936; Kleene, 1967], many automatic
solvers consider some predetermined background theory: a set A of axioms, i.e., closed
formulas in FORMΣFOL that should hold. The solvers hence only consider the subset
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of all first order structures over ΣFOL that are models of each axiom, and operate on
subsets of FORMΣFOL . These constraint solvers are called SAT modulo theories
(SMT) solvers [Biere et al., 2009].
Various subsets of FORMΣFOL , theories and combinations are possible, which are

assembled and standardized in the SMT-LIB 2.0 standard [URL:SMT-LIB; Barrett et al.,
2010]. Exemplary theories are given in Table 3.1, together with their decidability, for the
corresponding subset of closed formulas in FORMΣFOL , and for its subset of quantifier-
free formulas, also called unquantified formulas. Fortunately, many practically relevant
problems can be solved efficiently (cf. [Barrett et al., 2013] and Subsec. 3.2.3).

Table 3.1.: Exemplary theories and their decidability
theory quantified subset quantifier-free

of closed FORMΣFOL subset (QF)
core theory undecidable decidable
Presburger arithmetic decidable decidable
Ints theory decidable decidable
ArraysEx theory undecidable decidable
FixedSizeBitVectors theory decidable decidable

Common subsets of FORMΣFOL for some theory (or multiple theories) are defined as
so-called SMT logics (logics for short) [URL:SMT-LIB; Barrett et al., 2010; Kroening
and Strichman, 2008], e.g.,
• QF UF, using quantifier-free uninterpreted sort and function symbols over the

core theory;
• QF LIA, using quantifier-free linear integer arithmetic over the Ints theory;
• QF AX, using quantifier-free formulas with arrays over the ArraysEx theory;
• QF BV, using quantifier-free formulas with bitvectors over the FixedSizeBitVec-

tors theory;
• QF AUFBV, using quantifier-free formulas with uninterpreted sort and function
symbols, integer arithmetic via bitvectors, and arrays mapping bitvectors to bitvec-
tors, over the theory combination core, FixedSizeBitVectors, and ArraysEx;
• AUFLIA, using closed formulas with uninterpreted sort and function symbols,
linear integer arithmetic and arrays with integer indices and values over the theory
combination core, Ints and ArraysEx.

The SMT-LIB also offers a uniform interface for SMT solvers. SMT solvers lift SAT
solving (e.g., via DPLL [Nieuwenhuis et al., 2006]) to the level of SMT (cf. Subsec. 3.6.2
or [Sebastiani, 2007; Biere et al., 2009]:
• either eagerly by translating the SMT formula to an equisatisfiable propositional

formula F in a first step, and then solve F with a SAT solver;
• or lazily by integrating theory solving and SAT solving that treats theory atoms
as propositional atoms.

To simultaneously use multiple theories, they have to be combined by the solvers [Kroen-
ing and Strichman, 2008] (e.g., using the Nelson and Oppen approach [Nelson and Op-
pen, 1979], or delayed theory combination [Bozzano et al., 2005], or model-based theory
combination [de Moura and Bjorner, 2008a]).
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One of the most powerful and popular SMT solvers is Z3 [de Moura and Bjorner,
2008b]: it offers many theories of the SMT-LIB 2.0 standard [Barrett et al., 2010], ex-
tensions such as algebraic data types, the combination of these, and quantified formulas.

Notes. The definition of soundness and completeness is the same for SMT solvers as
for SAT solvers (cf. Note 3.7), except that signatures, formulas and structures are no
longer from propositional logic, but some SMT logic. The corresponding theory (com-
bination) is decidable iff the SMT logic has a terminating, sound, and complete SMT
solver [Kroening and Strichman, 2008].

3.4. Automata Theory
Automata theory is another basic core in this thesis besides propositional logic, since
most formal methods in this thesis apply automata theoretic structures and concepts,
mainly based on various kinds of transition systems. The terminology and details of these
transition systems differ in literature, especially between different fields, such as model
checking and model-based testing. Thus, transition systems are described and motivated
thoroughly in this section, uniting the common parts – partly through generalizations.

Roadmap. Subsec. 3.4.1 introduces transition systems, Subsec. 3.4.2 relates them to
finite state machines (which are often excluded when talking about general transition
systems). Finally, Subsec. 3.4.3 introduces specification languages for our transition
systems.

3.4.1. Transition Systems
This subsection introduces four kinds of transition systems, as depicted in Fig. 3.1 on
page 37, formalisms over them, and how they relate to FSMs.

Transition Systems. A system being inspected by automata theoretic methods describes
a real world system that has states as well as behavior, i.e., state changes. So an atomic
behavior is a transition from one state to another, and often called action. The change
in state is called side effect of the action. Therefore, a real world system can be modeled
by a transition system (TS), as defined in Def. 3.15.

Definition 3.15. A transition system S =(S, T ) has
• a nonempty, countable set S of states;
• a relation T ⊆ S2 of transitions.

STSSTSSTS denotes the set of all transition systems, STS ,finiteSTS ,finiteSTS ,finite its subset of transition systems
with finite S.

S is often also called an (unlabeled) state transition system or (unlabeled)
Kripke frame. Usually some starting states or default states are given. Therefore, a
transition system can additionally specify a subset S0 ⊆ S of initial states – either im-
plicitly or as an additional annotation: (S, T, S0). Therefore, all following structures that
contain (S, T ) and implicit initial states can instead contain (S, T, S0) (cf. (S, T,Σ, I, S0)
in Def. 3.18, (S,T, L, S0) in Def. 3.19, (S,T, L,Σ, I, S0) in Def. 3.25). Often we have a
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unique initial state (i.e., |S0| = 1), which we call initS or just init if S is clear from the
context.
Notes. S0 should not be confused with {ε} (cf. Sec. 1.3).
STS includes transition systems with countable sets of states S, to be sufficiently

general for model-based testing, covered in Part III. For other chapters, e.g., Chapter 5
and Chapter 7, we need the restriction to STS ,finite.
For many continuous systems, e.g. most real-time systems, the set of states can be

reduced to a countable set by abstractions, e.g. via time regions [Alur and Dill, 1990;
Bouyer and Laroussinie, 2010].
Definition 3.16. Let S = (S, T, S0) ∈ STS , l ∈ ω + 1, π := (si)i∈[0,...,1+l) a sequence of
states, and s ∈ S.
If ∀i ∈ [1, . . . , 1 + l) : (si−1, si) ∈ T , then π is called a path in S of length l starting

from s0. For the length l, we write |π|. Furthermore:
• paths(S, s) := the set of all paths in S starting in s;
• pathsfin(S, s) := {π ∈ paths(S, s)

∣∣|π| ∈ N≥0}, the subset of
paths(S, s) with all finite paths;

• pathsω(S, s) := paths(S, s) \ pathsfin(S, s);
• pathsfinmax(S, s) := {π ∈ pathsfin(S, s)

∣∣ 6 ∃|s′ ∈ S : (s|π|, s′) ∈ T}, the
subset of pathsfin(S, s) with all maximal paths;

• pathsmax(S, s) := pathsfinmax(S, s) ∪̇ pathsω(S, s);
• paths<max(S, s) := paths(S, s) \ pathsmax(S, s), the set of all

(finite) non-maximal paths.
Without the state given as parameter, all initial states are used:
paths(S) := paths(S, S0), likewise with pathsfin(S), pathsω(S), pathsmax(S),
paths<max(S), pathsfinmax(S).
The source of π ∈ paths(S, s) is source(π) := s; the destination of π ∈ pathsfin(S, s)

is dest(π) := s|π|.
For k ∈ N≥0, π≤k := (si)i∈[0,..,1+min(k,|π|)) is called a prefix of π, similarly π≥k :=

(si)i∈[min(k,|π|)),..,1+|π|) a suffix of π.
For π′ = (s′i)i ∈ pathsfin(S, s) and π′′ = (s′′i )i ∈ paths(S, dest(π′)), the concatenated

path π′ · π′′ ∈ paths(S, s) is the path π with π≤|π′| = π′ and π≥|π′| = π′′.
A path π ∈ pathsω(S, s) is called a cycle iff ∃|i ∈ N>0 : π = (π≤i)ω, and more generally

a lasso iff ∃|j ∈ N≥0 : π≥j is a cycle. A single unwinding of a lasso π is the path π≤k
for the smallest k ∈ N>0 such that ∃|j ∈ [0, . . . , k−1] : π = π≤j · ((π≤k)≥j)ω. If sk occurs
more than twice in π≤k, the size of the cycle, i.e., k − j, has to be given as additional
information to reconstruct π from π≤k.
Note. For path π and j > |π| : π≥j = (s|π|). If |π| = 0, it contains exactly one state.

Definition 3.17. Let S = (S, T, S0) ∈ STS , s, s
′ ∈ S and π ∈ paths(S, s). Then we

define for simpler notation (similar to Kleene’s closure operators):
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• s→s′ :⇔ (s, s′) ∈ T ;
• s→s′ := {(s, s′)} ∩ T, but only when unambiguous to the previous line;
• s π−→

∗
s′ :⇔ π ∈ pathsfin(S, s) and dest(π) = s′;

• s→∗s′ :⇔ ∃|π ∈ pathsfin(S, s) : s π−→∗ s′(the reflexive, transitive closure for T );
• s→∗s′ := {π ∈ pathsfin(S, s)

∣∣ s π−→∗ s′}, but only when unambiguous;
• s π−→

+
s′ and (transitive closure) s→+s′ analogously, but with |π| > 0;

• s→ :⇔ ∃|s′ ∈ S : s→ s′;
• s π−→

+
:⇔ ∃|s′ ∈ S : s π−→+

s′;
• dest(s,→) :=

{
s′ ∈ S | s→ s′

}
, the states directly reachable from s;

• dest(s,→∗) and dest(s,→+) analogously, the states reachable from s;
• destS(·, ·) is used instead if S is not clear from the context;
• branchS := supremum

s∈S
(|dest(s,→)|);

• depthS := supremum
π∈pathsmax(S)

(|π|);

• s→ s′ → s′′ :⇔ s→ s′ and s′ → s′′;
• s→ s′ → s′′ := {(s, s′) · (s′, s′′) ∈ paths(S, s)}, but only when unambiguous;
• all combinations with →,→∗,→+,

π−→∗, π−→+ analogously.

For each of these relations, s is called its source and s′ its destination. For s → s′,
the sibling transitions are {(s, s′′) ∈ T |s′′ ∈ dest(s,→)}, the sibling states of s′ are
dest(s,→).
The state space of S = (S, T, S0) ∈ STS refers to the states s ∈ S that are considered;

depending on the approach (cf. Chapter 5), this is the set S, dest(S0,→∗) ⊆ S, also
written S→∗ , or some subset thereof. Likewise, we restrict T to T→∗ := T ∩ S2

→∗ .
Finally, S→∗ := (S→∗ , T→∗ , S0).
|S| is called size or complexity of S, and is defined as |S|+ |T |. Therefore, |S→∗ | =
|S→∗ |+ |T→∗ |, which is in Θ(|T→∗ |).

(S, T ) ∈ STS is deterministic iff T is a partial function (i.e., right-unique or uniquely
defined): ∀s ∈ S :

∣∣dest(s,→)
∣∣ ≤ 1. Then ∀s ∈ S : |pathsmax(S, s)| = 1 and T (s) is the

element s′ if s→ s′, and undefined if s 6→.

Note. A transition system is often called a model because it models the functional
behavior of a system from the real world. This thesis does not use this terminology to
avoid ambiguity with the logical meaning of the term “model”.

Kripke Structures. States of a system from the real world exhibit various properties,
which we also want to model. We formalize such a property with a propositional
variable whose interpretation depends on the state. To reflect this, we extend TSs to
(unlabeled) Kripke structures:

Definition 3.18. A Kripke structure (S, T,Σ, I) has
• a transition system (S, T ) ∈ STS ;
• a signature Σ, which is a countable set of propositional variables;
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• an interpretation function I : Σ× S → B.
SKripkeSKripkeSKripke denotes the set of all Kripke structures, SKripke,1 the subset of Kripke structures
with |S0| = 1, SKripke,finiteSKripke,finiteSKripke,finite the subset of Kripke structures with S and Σ finite.

For ease of use, we regard true as 1, false as 0 and thus the support of the function
I(p, ·) as supp(I(p, ·)) :=

{
s ∈ S|I(p, s) = true

}
; likewise, supp(I(·, s)) :=

{
p ∈

Σ|I(p, s) = true
}
.

Labeled Transition Systems. To be able to determine what a transition t describes,
e.g., what condition or action of the real world system, t can be labeled with informa-
tion. If multiple labels apply, t can be replicated. Often actions are defined by (basic)
statements in a specification language (cf. Subsec. 3.4.3), which are frequently used as
labels. Extending TSs with labels results in LTSs:

Definition 3.19. A labeled transition system (LTS) (S,T, L) has
• a nonempty, countable set S of states;
• a countable set L of labels;
• a set T ⊆ S × L× S of labeled transitions.

SLTSSLTSSLTS denotes the set of all LTSs, SLTS ,finiteSLTS ,finiteSLTS ,finite its subset of LTSs with S and L finite.

A TS (S, T ) without labels is a special case of an LTS with L = {ε}. Conversely, an
LTS is a TS if the labels are ignored. More formally, we can perform a transformation
as given in Def. 3.20.

Definition 3.20. FL : SLTS → STS , (S,T, L) 7→ (S, ∪
l∈L
{(s, s′)|(s, l, s′) ∈ T}) is called

the forgetful transformation for labels .
The notations →,→+,→∗, dest(s,→), dest(s,→+), dest(s,→∗), S→∗ , T→∗ , |S| defined

in Def. 3.17 can hence also be applied for LTSs, meaning that arbitrary labels are allowed
for the transitions.

Definition 3.21. Let S = (S,T, L) ∈ SLTS , l ∈ L, s, s′ ∈ S. Then
• s l−→ s′ :⇔ (s, l, s′) ∈ T;
• s l−→ :⇔ ∃|s′′ ∈ S : (s, l, s′′) ∈ T;
• label l is enabled in s iff s l−→, otherwise l is blocked in s;
• enabledS(s) :=

{
l ∈ L|s l−→

}
; If S is clear from the context, enabled(s) :=

enabledS(s);
• T→∗ := T ∩ (S→∗ × L× S→∗).

Definition 3.22. Let (S,T, L) ∈ SLTS , l ∈ ω+1, π := (si−1
li−→ si)i∈[1,...,1+l) a sequence

of labels, each with its source state and destination state. Then π is called a path in
(S,T, L) of length l starting from s0. For the length l, we write |π|.
All terminology of Def. 3.16 can be inherited: paths, pathsfin, pathsω, pathsmax,

paths<max, pathsfinmax, source(π) := s0, dest(π) := s|π|, prefix π≤k, suffix π≥k,
concatenation π · π′, cycle, and lasso.

Definition 3.23. Let (S,T, L) ∈ SLTS and π = (si−1
li−→ si)i∈[1,...,1+|π|) a path in

(S,T, L). The trace of π, trace(π), is the sequence (li)i∈[1,...,1+|π|). Its length is
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|trace(π)| := |π|. All terminology in Def. 3.22 except source, dest, cycle, and lasso can
be lifted from paths to traces: traces, tracesfin, tracesω, tracesmax, traces<max,
tracesfinmax (also called complete traces), prefix (li)i≤k, suffix (li)i≥k, and con-
catenation t · t′ (which no longer makes restrictions via source and dest).

Definition 3.24. Let S = (S,T, L, S0) ∈ SLTS , s, s′, s′′ ∈ S, and σ, σ′ ∈ L∗ ∪ Lω. Then
we define for simpler notation (similar to Def. 3.17):

• s σ−→
∗

:⇔ σ ∈ traces(S, s);
• s σ−→

+
:⇔ s

σ−→∗ and σ 6= ε;
• s σ−→

∗
s′ :⇔ ∃|π ∈ pathsfin(S, s) : trace(π) = σ and dest(π) = s′;

the reflexive, transitive closure for T,
• s σ−→

+
s′ :⇔ s

σ−→∗ s′ and σ 6= ε, the transitive closure for T;
• branchS := max

s∈S
(
∣∣{(l, s′) ∈ L× S | s l−→ s′}

∣∣);
• s σ−→∗ s′ σ′−→

∗
s′′ :⇔ s

σ−→∗ s′ and s′ σ′−→
∗
s′′;

• all combinations with σ−→∗ and σ−→+ analogously.

Notes. In Def. 3.22, a path of length 0 starting from s is the empty sequence. Alterna-
tively, we can define that path, as for TSs, to be the singleton sequence (s).
For S = (S,T, L) ∈ SLTS , s0 ∈ S, path π ∈ pathsfin(S, s0) can now also be written as

s0
l1−→ s1

l2−→ . . .
l|π|−→ s|π|.

(S,T, L) ∈ SLTS is deterministic iff ∀l ∈ L : l−→ is a partial function. Then l(s) is
the element s′ for s l−→ s′, and undefined if s l−→ .
Let S be a deterministic LTS. Then FL(S) need not be a deterministic unlabeled TS.

Fig. 4.2 on page 84 is a counterexample.

Labeled Kripke Structures. Finally, transition systems with both interpretations on
states and labels on transitions are considered:

Definition 3.25. A labeled Kripke structure (S,T, L,Σ, I) is the integration of an
LTS (S,T, L) and a Kripke structure (S, T,Σ, I) with (S, T ) = FL(S,T, L).
SKripke,labeledSKripke,labeledSKripke,labeled denotes the set of all labeled Kripke structures, SKripke,labeled,finiteSKripke,labeled,finiteSKripke,labeled,finite its

subset of labeled Kripke structures with both their LTS and Kripke structure finite.

Note. All mentioned structures are transition systems: they have a set of states S
and a set of transitions T (or labeled transitions, which can be forgetfully transformed
into T ). Hence this thesis uses the general terminology transition system for all
TS, Kripke structures, LTS and labeled Kripke structures, the terminologies Kripke
frame to exclude interpretation functions and unlabeled to exclude labels. These
relationships are depicted in Fig. 3.1. As has been defined, further predicates like fi-
nite, 1, and deterministic restrict these sets, e.g., SKripke,labeled,deterministic =

{
S ∈

SKripke.labeled
∣∣ S is deterministic

}
. If a predicate is allowed but not required, we write it

in round brackets, e.g., S(L)TS .
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Kripke frames
(S(L)TS)

Kripke frames
(S(L)TS)

with interpre-
tation function
(SKripke,(labeled))

with interpre-
tation function
(SKripke,(labeled))

unlabeledunlabeled labeledlabeled

STS SLTS

SKripke SKripke,labeled

Figure 3.1.: Relationships between various transition systems

Example. Fig. 4.2 on page 84 shows a simple graphical representation of a Kripke
structure if transitions t1 and t2 are not labeled. If they are labeled (e.g. t1 with skip
and t2 with toggle), we have a labeled Kripke structure. If the states are not annotated
(i.e., ¬q and q are omitted), we have a transition system or labeled transition system,
respectively.

3.4.2. Finite State Machines

Def. 3.26 defines finite automata, also called finite state machines (FSMs). Thereafter,
the relation between transitions systems (cf. Subsec. 3.4.1) and FSMs is shown.

Definition 3.26. A finite state machine A = (Q,∆, A,Q0, F ) has
• a finite, nonempty set of states Q;
• a finite, nonempty alphabet set A;
• a transition relation ∆ ⊆ Q×A×Q;
• a nonempty set of initial states Q0 ⊆ Q;
• a set of final states (or accepting states) F ⊆ Q.

SFSMSFSMSFSM denotes the set of all FSMs.

Example. Fig. 3.2 shows an example for a FSM with Q = {q0, q1}, A = {l0, l1, l2},∆ =
{(q0, l0, q1), (q1, l1, q0), (q1, l2, q0)} and Q0 = F = {q0}.

q0 q1

l0

l1

l2

Figure 3.2.: FSM

Using the canonical embedding c from Def. 3.27, we can relate FSMs to finite la-
beled Kripke structures and thus transfer many definitions for transition systems (cf.
Subsec. 3.4.1) to FSMs.
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Definition 3.27. The canonical embedding c: SFSM 
 (SKripke,labeled,finite with |Σ| =
1) maps (Q,∆, A,Q0, F ) 7→ (S,T, L,Σ, I, S0) with S = Q,S0 = Q0, L = A,T = ∆ and
supp(I(accept, ·)) = F (for Σ = {accept}).
Using the canonical embedding yields the following definitions for FSMs:
• paths and all the sets defined on them, source and destination of (finite) paths,
concatenation, prefix and suffix of paths, cycle and lasso (cf. Def. 3.22);
• traces and all the sets defined on them, as well as prefix, suffix and concate-
nation on traces (cf. Def.3.23);
• the relations →, →+, and →∗ on paths, as well as dest(s,→) and analogously
for→+ and→∗, the relations σ−→

∗
and σ−→

+
on traces, and finally branchS and

|S| (cf. Def. 3.24 and Def. 3.20).

Often, embeddings of unlabeled finite Kripke structures with finite Σ into FSMs is
required (cf. Subsec. 5.3.2 and [Clarke et al., 1999b, Fig. 9.2]), for which we define
Kfin2FSM in Def. 3.28.

Definition 3.28. The embedding Kfin2FSM : SKripke,finite ↪→ SFSM maps (S, T,Σ, I, S0)
7→ (Q,∆, A,Q0, F ) with Q = S ∪̇ {initA }, A = 2Σ, Q0 = {initA}, F = Q, and ∆
=
{

initQ
supp(I(·,s))−→ s|s ∈ S0} ∪̇ {s supp(I(·,s′))−→ s′|(s, s′) ∈ T

}
.

Note. Kfin2FSM : SKripke,finite ↪→ SFSM is not surjective since the transformation be-
tween T and ∆ cannot handle states of FSMs having multiple incoming transitions with
different labels, e.g., as in Fig. 3.2.

Kfin2FSM can be extended to SKripke,labeled,finite by adding (further) labels to the
Kripke structure and to the FSM.

Example. Fig. 3.3 shows the FSM Kfin2FSM (S) for the unlabeled finite Kripke struc-
ture S from our example in Fig. 4.2 on page 84 (i.e., for t1 = t2 = ε).

initA

s0s1 s2

∅
∅ {q}

Figure 3.3.: FSM Kfin2FSM (S) of the unlabeled finite Kripke structure from Fig. 4.2

3.4.3. System Specification Description Languages for Transition Systems

Subsec. 3.4.2 defined various kinds of transition systems, which are used as system spec-
ifications. System specification description languages (specification language
for short) describe such specifications and should efficiently model states, transitions,
and nondeterminism [Frappier et al., 2010; ETSI, European Telecommunications Stan-
dards Institute, 2011]. From such descriptions, unlabeled transition systems, Kripke

38



3.4. Automata Theory

structures, LTSs or labeled Kripke structures can be derived. Depending on the pre-
ferred transition system and its utilization, different language paradigms are used. We
describe the most popular paradigms, which are direct enumeration, process calculus,
and programming languages. Often a mix of paradigms and variables are used for concise
modeling, as the examples below in this subsection show.
Further paradigms exists, for instance graphical modeling [ETSI, European Telecom-

munications Standards Institute, 2011], which must be combined with another paradigm
and is only marginally considered in this thesis. Another example is design-by-contract
(DbC), which is mainly applied to specify program functions – in this thesis, too, in
a syntax similar to JML [Leavens et al., 2008; Schmitt and Tonin, 2007]. But DbC is
also used occasionally to specify transition systems [Große-Rhode, 2001; Nebut et al.,
2003; de Oliveira Jr et al., 2007]. Similar to a Hoare triple Hoare [1969], a code con-
tract (contract for short) [Meyer, 1992] specifies (usually in FOL) how a transition or
function t changes the state: an assertion PRE, called precondition, defines when t is
applicable, another assertion POST, called postcondition, defines t’s effect. Further-
more, assertions INV, called invariants, define constraints that must always hold (at
specific, visible states). Contracts thus define a formal interface: t’s caller guarantees
that it only calls t if PRE holds. In this case, the implementation of t guarantees that
POST holds upon t’s termination; otherwise, no guarantee is given. Invariants define
invariant properties of the system’s states and are preserved by the implementation.

Roadmap. Firstly, specification languages based on direct enumeration of all elements of
the transition system are introduced. Then we give an overview of symbolic transition
systems, which are based on direct enumeration and achieve compact descriptions with
the help of variables as well as constraints and updates formulated in first order logic.
They are the main specification language used for model-based testing in this thesis (cf.
Part II). Thereafter, specification languages based on process algebra are introduced,
mainly covering channels, processes, and their composition. Finally, specification lan-
guages that are syntactically similar to common programming languages are introduced,
covering procedural and guarded command languages. Having covered these language
paradigms, we describe PROMELA, which is based on process algebra, the procedural
programming language C and the guarded command language. It is the main specifica-
tion language used for model checking in this thesis (cf. Part III).

Specification Languages Based on Enumeration

Specification languages based on enumeration describe the specification by enumerating
the states and transitions, either explicitly or implicitly, e.g., with the help of variables
and how they change. If the state space is infinite, its specification must still be finite to
be processable (e.g., lazily via OPEN/CAESAR [Garavel, 1998; Garavel et al., 2011]).

Example 3.29. The Binary Coded Graph (BCG) format from CADP [Bowman
and Gómez, 2006; URL:CADP; Garavel et al., 2011] can describe unlabeled as well as
labeled (and probabilistic) transition systems. The transition system is enumerated
explicitly, e.g., by firstly enumerating all states and then for each state all transitions.
Because of this enumeration, only finite state spaces can be described; but with the help
of minimization and compression, up to 1013 states and transitions can be stored.
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An example for an implicit enumeration is theExtended Table Format (ETF) [Blom
et al., 2010]: It is the symbolic labeled Kripke structure format that PINS (see Sub-
sec. 5.5.2) can read and write. Because of PINS’s design, ETF needs only enumerate all
short vectors for all groups, resulting in efficient compression, e.g. 0.57 billion states in
a 1.6 KiB ETF file.
Another example for an implicit enumeration is a symbolic transition system, used

frequently in this thesis and described in detail in the next subsection.

Symbolic Transition Systems, a Specification Language Based on Enumeration

A symbolic transition system (STS) extends an LTS with variables and conditions in
FOL [Frantzen et al., 2006; Frantzen, 2016] (cf. Fig. 9.1 on page 232 and Fig. B.1 on
page 386). The variables, respective conditions, explicitly add data, respective data-
dependent control flow, to LTSs. STSs can be considered a specification language for
LTSs based on enumeration.

Syntax.
Def. 3.30 defines the syntax of STSs, with Σ being a signature for first order logic.

Definition 3.30. A symbolic transition system (S,→, L,V, I, S0) has
• a nonempty, countable set S of abstract states, also called locations;
• a countable set L of labels, also called gates. We define type : L→ 2I ;
• a countable set V of state variables, also called location variables;
• a countable set I of interaction variables, with V ∩ I = ∅ and Var := V ∪̇ I;
• a relation→⊆ S×L×FORMΣ(Var)×TERMΣ(Var)V×S, called switch relation.
An element (s, l, F, ρ, s′) ∈→ is called switch and must meet F ∈ FORMΣ(V ∪̇
type(l)) and ρ ∈ TERMΣ(V ∪̇ type(l))V ; we write s l,F,ρ−→ s′ or s l<type(l)>,[F ],ρ−−−−−−−−−−→ s′

or s l<type(l)>.[F ]{ρ}−−−−−−−−−−−→ s′, and call F switch restriction or guard and ρ update
mapping or just update. Tautological guards and empty updates can be omitted;
• a set of initial states S0 ⊆ S.

SSTSSSTSSSTS denotes the set of all STSs.

Notes. This thesis defines the codomain of type(·) as set, not as sequence, leaving
open how arguments are mapped to interaction variables (e.g., via positional or named
arguments [Rytz and Odersky, 2010]).
It is irrelevant whether bound variables are in Var ; for simplicity and to be consistent

with other literature [Frantzen, 2016], we define them to be.
Some literature deviates from Def. 3.30 when defining STSs, e.g., input output sym-

bolic transition systems (IOSTS) in [Rusu et al., 2000], where the set S of locations must
be finite.

Semantics. Def. 3.31 defines the semantics of an STS S by expanding S to an LTS,
depending on a variable initialization.

Definition 3.31. Let S = (S,→, L,V, I, S0) ∈ SSTS and D = (D, I) a first order
structure. Then:
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• a variable initialization for S is a function V0 : V → D, which initializes all state
variables in all states of S0. Vd is the default variable initialization, which
initializes each variable with null (e.g., 0 if D ⊆ N and ε if D are strings);
• the interpretation (also called expansion) of S for the variable initialization V0

is the (usually infinite) LTS [[SV0]] := (S ×DV , LLTS ,→LTS , S
0
LTS) with

– LLTS := ∪
l∈L
{l} ×D|type(l)|;

– →LTS :⊆ (S ×DV)×LLTS × (S ×DV), with →LTS :=
{
(s, ξ, l, ζ, s′, ξ′)

∣∣ s, s′ ∈
S, ξ, ξ′ ∈ DV , (l, ζ) ∈ LLTS , s

l,F,ρ−→ s′, D, ξ ∪̇ ζ |= F , and ξ′ = x 7→
valD,ξ∪̇ζ(ρ(x))

}
;

– S0
LTS := {(s0,V0)|s0 ∈ S0}.

A state (s, ξ) ∈ S ×DV is called an instantiated state.

Many methods and tools that use STSs expand them into LTSs as described in
Def. 3.31 (cf. Sec. 9.4). Hence STSs can be considered as specification language for
LTSs based on implicit enumeration. They are the main specification language used for
model-based testing in this thesis (cf. Part II).

Specification Languages Based on Process Algebra

Formal methods (especially model checking) often analyze concurrent behaviors, which
are hard for humans to understand, but are becoming more and more ubiquitous, and
therefore error-prone [Groote and Mousavi, 2014]. Process algebraic languages (aka
process calculi) are able to concisely formalize concurrent systems. A process algebraic
expression can be defined via and translated into an LTS [Pierce, 1997; Palamidessi, 2003;
Tretmans, 2008; Gorla, 2008, 2010]. Such an expression is a precise and abstract de-
scription of how concurrent components communicate and interact with one another. As
basic construct for a component, a process is defined, which is a free-standing compu-
tational activity, running in parallel with other processes and possibly containing many
independent sub-processes (cf. [Pierce, 1997]). As basic construct for communication and
interaction, channels are defined, which are used for sending and receiving messages.
Channels are named, i.e., messages are passed over named locations (so-called interac-
tion points). This communication via messages is called message passing [El-Rewini
and Abd-El-Barr, 2005; Siegel and Gopalakrishnan, 2011; Raynal, 2013]. Channels with
capacity greater zero are called buffered channels and transmit asynchronously,
i.e., temporally decoupled. Messages are stored in a channel, usually in a first in, first out
(FIFO) manner. Channels with capacity zero do not have a buffer and therefore provide
synchronous transmission, i.e., sending and receiving is executed concurrently in one
atomic synchronous communication step. Some but not all process algebras support
mobility, i.e., dynamic evolutions of the systems [Gorla, 2010], e.g., link mobility
where the topology of communication is dynamic [Milner et al., 1992]. This can for
instance be achieved by allowing channels to be passed over channels.
The following list shows the basic operators for process algebras, with P,Q being

two processes. The basic operators and their syntax varies between process algebras;
we focus on a variant of the π-calculus [Milner et al., 1992] that is small (yet Turing
complete) [Pierce, 1997]:
• the inert process, often written as 0, does nothing;
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• the input prefix, often written x(y), waits to read a value y from named channel
x;
• the output prefix, often written x〈y〉, waits to send value y along named channel
x;
• the parallel composition of P and Q, often written P | Q, results in simulta-
neous computation of P and Q: If an execution step of a process has synchronous
communication, the processes synchronize, i.e., execute concurrently in one atomic
step. Otherwise, the execution step is independent of all other processes, so parallel
execution of processes with independent execution steps can yield any interleaving,
i.e., any possible order of these independent steps;
• the replication of P , often written !P , denotes an infinite number of copies of P,
all running in parallel;
• the restriction of P for x, often written as (νx);P restricts the visibility of x
to P , therefore guaranteeing that communication within P can be performed in
isolation.

Besides these basic operators, there are several other operators. Whether they increase
expressivity depends on the requirements on encoding these operators with the basic
operators, and on the precise definition of the operators and of equivalence [Palamidessi,
2003; Gorla, 2008, 2010]. With P,Q being two processes, the most common further
operators are:
• the sequential composition of P and Q, often written as P ;Q, means that Q
is executed only after successful termination of P ;
• the polyadic communication prefix x < y1, . . . , yn >;P helps send the tu-
ple < y1, . . . , yn > over the channel with interaction point x. This is the same
as (νp)xp; p; y1; . . . ; pyn;P . Likewise, x(y1, . . . , yn);Q helps receive the tuple <
y1, . . . , yn >;
• the choice (or sum) between P and Q, often written P +Q, behaves like either
P or Q;
• the silent prefix, often written τ performs the silent action, i.e., does not send

or receive a value;
• the replication of P by renaming, often written as P [y/z];

The following parallel composition operators are secondary operators implemented
with the help of restriction and renaming. They are particularly helpful for our thesis
since they determine the degree of synchronization for the parallel composition:
• the restricted parallel composition of P and Q on channels c1, . . . , cn, often
written as P | [c1, . . . , cn] | Q is the parallel composition where P and Q only
synchronize on the channels c1, . . . , cn but not on other channels, i.e., input and
output actions over the channels c1, . . . , cn synchronize between P and Q;
• the synchronous parallel composition (aka full parallel composition or
synchronous product or cross product) of P and Q, often written as P || Q,
is the parallel composition where P and Q synchronize on all common channels,
i.e., P |[C]|Q with C being all common channels of P and Q;
• the asynchronous product (aka asynchronous parallel composition) of P
and Q, often written as P ||| Q, is the parallel composition where P and Q do not
synchronize on any channel, i.e., P |[∅]|Q, so the execution steps of P and Q are
all interleaved.
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Composition is used frequently since it reduces complexity by modularization, i.e.,
splitting up a problem into components, e.g., with each one dealing with a different
concern (see also Sec. 3.6). This modularization enables abstraction (cf. Sec. 3.7), flex-
ible scheduling of tasks (cf. Sec. 3.6), parallelization (cf. Sec. 3.5), fault-tolerance (cf.
Note 8.36 and [Cristian, 1993; Lynch, 1996; Engel et al., 2010; Dubrova, 2013]) and is
thus helpful to verification and safety-critical applications.

Example. As example of a parallel composition, we define the synchronous parallel
composition of two LTSs (also called component automata) in Def. 3.32. This is for
instance used by SPIN for verification, with one component automata for the system
specification and one for the property to verify (cf. PROMELA below and Subsec. 5.5.1),
or for test execution, with a component automata for the system specification and one
for the test case (cf. Subsec. 8.7.1).

Definition 3.32. Let S1 = (S1,T1, L1, S
0
1), S2 = (S2,T2, L2, S

0
2) ∈ SLTS .

Then the synchronous parallel composition S1||S2 := (S,T, L, S0) with
• S := S1 × S2;
• S0 := S0

1 × S0
2 ;

• L := L1 ∪ L2;
• T :=

{
((s1, s2), l, (s′1, s′2)) ∈ S × L× S

∣∣(s1, l, s
′
1) ∈ T1and (s2, l, s

′
2) ∈ T2,

or (s1, l, s
′
1) ∈ T1 and s2 = s′2 and l 6∈ L2,

or (s2, l, s
′
2) ∈ T2 and s1 = s′1 and l 6∈ L1

}
.

Example. Most prominent process algebraic languages are CSP [Hoare, 1985], the π-
calculus [Milner et al., 1992; Pierce, 1997], mCRL2 [Cranen et al., 2013; Groote and
Mousavi, 2014] and LOTOS [SC 7, JTC 1, 1989; Bowman and Gómez, 2006]. The core
concepts, however, are also applied in many other languages and tools, for instance the
programming language occam (cf. [URL:occam]) and APIs for Java (cf. URL:JCSP) and
C++ (cf. URL:C++CSP). Many specification languages for model checking integrate
process algebraic concepts, for instance the languages for PRISM (cf. [URL:PRISM])
and SPIN (cf. Subsec. 5.5.1), which even supports link mobility. They will be described
below in this subsection.

Specification Languages Based on Programming Languages

Using a different paradigm for specification and implementation can increase design
diversity [Avizienis, 1995] and thus reduce the probability of having the same fault in
the specification and implementation [Avizienis, 1995]; but it is more convenient for
developers and software engineers to stick to a paradigm they are familiar with. Hence
specification languages based on programming languages are very popular.
For specification languages describing transition systems, imperative languages are a

good match since they are designed to efficiently describe state changes, which can be
used to describe transitions. Most specification languages are based on procedural pro-
gramming languages. Another class of imperative languages are based on the guarded
command language [Dijkstra, 1975]: Its main construct is the guarded command,
which has the syntax 〈guard〉 → 〈statement〉, where 〈guard〉 is a Boolean expression
without side effects and 〈statement〉 is a command that may have side effects and is
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executed only if its 〈guard〉 evaluates to true. The guarded command is often used
within control flow constructs and enables nondeterminism.

Example. A specification languages based on C is PROMELA (see below in the subsec-
tion), specification languages based on Java are JML [Leavens et al., 2008; URL:JML]
and Conformiq Designer (cf. Subsec. 10.3.4).
The model checkers PRISM and DiVinE (cf. Sec. 5.5) bring their own specification

languages based on guarded commands (and process algebras). PROMELA, which is
based on the C language as well as guarded commands (and process algebra) is described
below in this subsection.

PROMELA, a Specification Language Based on Process Algebra as well as
Programming Languages

PROMELA [Holzmann, 2004; URL:PROMELAHP; URL:PromelaDatabase; Faragó,
2007] stands for process meta language and is based on process calculi, the guarded
command language and the C programming language. It is the system specification
description language of the model checker SPIN (cf. Subsec. 5.5.1).
System specification descriptions in PROMELA consist of variable declarations and

process declarations. To give an overview, the language constructs are given here, with
details only where it deviates from the C language. For compactness, we describe syntax
and semantics together, not in separate paragraphs.
Process type declarations have the form
proctype proc name (formal parameters)
{ sequence }

where sequence contains local variable declarations and commands in imperative style,
as described below.
If the declaration never { sequence } is present in the model specification, a special

process called never claim is instantiated once at the beginning. It is used for monitor-
ing every execution step of the system (mainly via user-supplied assertions or acceptance
cycle detections, see Subsec. 5.5.1). sequence can reference special functions and variables
(e.g., np_, see below), and contains commands that should not have side effects.
If the declaration init { sequence } is present, the special process init is instantiated

once at the beginning.
Variable declarations outside of all process declarations have a global scope, variable

declarations within a process declaration or as formal parameters have a scope local
to that process. Variables are declared as bounded integers via primitive types or as
complex, composed types. The primitive types are bit, bool, byte, short, unsigned
of given bit-width, pid (see below), or enumerations (i.e., symbolic constants declared
by mtype). A bounded integer value is equivalent to false iff it is 0, and otherwise
equivalent to true, also called executable (see below). Complex types are:
• structs (i.e., records), using a globally defined typedef type;
• arrays, with their size given as constant;
• channels of some primitive or complex type, i.e., what messages the channel can
store (including channels, see process calculi above).

Variable declarations may contain an initializer expression:
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• for a primitive type, it evaluates to a value of the same primitive type;
• for an array, it evaluates to the same primitive type that the array is based on, in
which case all array elements are assigned that value;
• for a channel, it evaluates to its capacity and an appropriate channel contents.

If no initializer is given, all types but channels are initialized with the value zero (for
each of its primitive types). For details and exceptions, see [Holzmann, 2004].
The basic commands of PROMELA (called basic statements in Holzmann [2004])

are expressions that evaluate to a bounded integer value. An expression blocks if it
evaluates to false. Otherwise it is enabled ([Holzmann, 2004] uses the notion executable
instead. The main basic commands are:
• a variable assignment with var === expr , which always evaluates to true and has

as side effect that variable var is assigned the evaluation of the expression expr ;
• skip, which always evaluates to true and has no side effect;
• else , which can be the first expression in at most one choice of a control flow
construct and evaluates to true iff all other choices evaluate to false (see sequences
and guards below);
• run proc name (actual parameters) , which evaluates to false and has no side effect
if the maximum number of processes is already running; otherwise, it has the side
effect of dynamically creating a new process p of type proc name and evaluates to
p’s process instantiation number. p’s local variables are instantiated and initialized;
• println (), which always evaluates to true without any side effects for model check-

ing (during simulation, however, it has the side effect of printing a string on the
standard output stream, interpreting its parameters similarly to the programming
language C);
• a send or receive command on a channel c:

For default settings (in SPIN), the standard send command c!message evaluates
to false and has no side effect if c is full or not initialized; otherwise, it evaluates
to true with the side effect of inserting message at the end of the FIFO buffer of
c. If c is a buffered channel, a sorted send command inserts the new message
according to its (numerical and lexicographical) ordering.
The standard receive command c?x evaluates to false and has no side effect
if c is empty or not initialized; otherwise, it evaluates to true and has the side
effect of fetching the oldest message from the FIFO buffer of c and assigning it
to the variable x. If c is a buffered channel, variations of the command can fetch
an arbitrary element from the buffer, which is called random receive command,
and read a message without removing it from the buffer.

PROMELA’s compound commands (named compound statements in Holzmann
[2004]) are composed of other commands via one of the following control flow con-
structs:
• sequential composition (aka concatenation) of other commands via ; to se-
quences of the form 〈command〉 {; 〈command〉}∗. Sequences are also expressions
that evaluate to the bounded integer value of their first basic command, called
guard. This can be indicated more obviously by replacing the first ; by the equiv-
alent −> operator. Thus a sequence is executable iff its guard is executable;
• selection of the form if {:: 〈sequence〉}+ fi , which selects nondeterministically
among all executable sequences;
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• repetition of the form do {:: 〈sequence〉}+ od, which repeatedly selects nondeter-
ministically among all executable sequences;
• break within a repetition terminates the innermost repetition, i.e., jumps to the
command directly after the repetition;
• exception handling of the form 〈sequence1〉 unless 〈sequence2〉, which succes-
sively executes each command from 〈sequence1〉, but beforehand always checks
whether 〈sequence1〉 is executable. If it is, 〈sequence1〉 is no longer executed and
control transfers to 〈sequence2〉. Otherwise execution of 〈sequence1〉 continues. If
〈sequence1〉 terminates, the second sequence is ignored.
• goto label name to jump to a label set by label name:.

Note. Besides the described essential features, PROMELA additionally offers a lot
of further features [URL:PROMELAHP; Natarajan and Holzmann, 1997; Weise, 1997;
Holzmann, 2004], which can be very helpful in certain situations, but are not frequently
used and thus not further covered in this thesis.

The LTS semantics of PROMELA are very elaborate if all technical details are
considered [URL:PROMELAHP; Natarajan and Holzmann, 1997; Weise, 1997; Holz-
mann, 2004; Suprapto and Pulungan, 2011; van der Berg and Laarman, 2012]; hence
we will not go into those details. By transforming a PROMELA system specification
description to an LTS, the overall semantics of PROMELA can be described. Simi-
larly, a labeled Kripke structure can be constructed by using Boolean expressions in
PROMELA’s syntax, via user-supplied symbol definitions and predefined propositional
variables that SPIN offers. For instance, PROMELA labels starting with the string
“end”, “progress”, or “accept” are special, as they mark valid end states, progress
states (encoded in SPIN by variable np_), or acceptance states, respectively.
For a process p of type proc name (inclusive never claim), a local LTS is created: the

values of the global variables and p’s local variables form p’s local states. In each local
state, the enabled basic commands of proc name, which manipulate the local state, form
the labeled transitions in the local LTS. The flow of control in p’s execution is guided
by the control flow constructs in proc name, so they help to structure the transitions.
Since PROMELA is imperative, p contains a local program counter variable (pc

that indicates the current position of p’s execution, e.g., pc is incremented when exe-
cuting a basic command in a sequence. Consequently, p’s basic commands are implicitly
parametrized with its pc .
To instantiate this local LTS the appropriate number of times, copies are created for

each process that is an instance of type proc name. p terminates when its program
counter reaches the end of the body of proc name. Only processes that have already
terminated can be deconstructed, which undoes the construction steps (cf. command
run) in reversed order.
All copies of the local LTSs are then combined to form the global LTS: the local

variables of all copies are combined with the global variables (forming the so called state
vector), resulting in global states. The global transitions update the state vector; they
are constructed by restricted parallel composition of the local LTSs (exclusive never
claim) on the unbuffered channels. If in a global state s of the LTS two processes p and
q can execute the basic statement println("foo"), the result is not the same since the pc
being increased differs. Therefore, using solely the basic commands as statements for the
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LTS can result in nondeterministic statements. To guarantee deterministic statements,
we need to make each pc an explicit argument for the transition labels, i.e., to index
the basic commands accordingly, e.g., println("foo")pc of p and println("foo")pc of q.
When a never claim is present, its declared sequence is interpreted as a series of condi-

tions on the system state, which must all become true for a path in the computation tree
to be reported as undesired behavior. Theoretically, the never claim and the global LTS
are interpreted as labeled Kripke structures, transformed into FSMs (see Subsec. 3.4.2)
and the synchronous parallel composition is taken (cf. Def. 4.33 for details). Practically,
this is implemented by interleaving transitions from the never claim and from the system
in lockstep, where the never claim has capabilities to inspect the systems current state.
Consequently, a blocking never claim aborts the current exploration of the S, i.e., prunes
the state space.
Therefore, asynchronous execution of the processes is simulated by nondeterministi-

cally scheduling the running processes; in the LTS this corresponds to multiple transi-
tions being enabled, and interleaving the transitions generated by the enabled state-
ments in all possible orders. d_step or atomic restrict the interleaving by constraining
execution elsewhere in the system: A sequence within d_step{ ... } is executed indivis-
ibly, i.e., without any interleaving. A sequence within atomic{ ... } is executed with
exclusive privilege whenever possible.

Note. In detail, many further technical tasks need to be performed, e.g., for run, timeout,
user-supplied assertions, and for the atomic and deterministic execution mode [Natarajan
and Holzmann, 1997; Suprapto and Pulungan, 2011].

3.5. Improving Formal Methods by Parallelization
3.5.1. Introduction
Until about the year 2000, the sequential processing speed of CPUs increased expo-
nentially over time. This is related to Moore’s law, which states that the number
of transistors available in CPUs and memory doubles every 18 months [Moore, 1965].
Although Moore’s law still applies, “the free lunch is over” [Sutter, 2005; Tzannes et al.,
2014]: Moore’s law stopped benefiting the sequential processing speed (via CPU’s clock
speed and straight-line instruction throughput) because of physical limitations. Con-
sequently, to make use of current advances of CPUs, programs must be parallelized,
i.e., modularized into multiple instances, called processes (cf. Subsec. 3.4.3), that work
concurrently to solve a problem [Lynch, 1996]. Parallelization is also the trend in for-
mal methods: many model checkers (cf. Sec. 5.5) and SAT solvers (cf. Subsec. 3.2.3
and [Hölldobler et al., 2011]), and now also SMT solvers (cf. Subsec. 3.3.3 and [Bar-
rett et al., 2013; URL:SMTCOMPHP] are being parallelized. This thesis also considers
parallel computing for both model checking and model-based testing.

3.5.2. Foundation of Parallel Computing
This subsection shortly introduces the main aspects of parallel computing and difficulties
they cause.
The architecture of the hardware determines how parallelization can be implemented:
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• at the finest granularity, we have multi-core computing, i.e., CPUs have multi-
ple cores. We focus on multiple instruction streams, multiple data streams [Flynn,
1972] since “the vast majority of modern parallel systems use the MIMD architec-
ture” [URL:IntelMIMDHP; URL:ParCompHP];
• on a coarser granularity, we have multiprocessing, i.e., multiple CPUs connected
over a bus;
• on the coarsest granularity, we have distributed computing [Raynal, 2013] where
the processes are distributed and communicate over a network.

Many hardware architectures mix the granularities of parallelism, e.g., multi-core multi-
processing with a non-uniform memory architecture (NUMA) [Herlihy and Shavit, 2008],
which is an increasing trend [Sutter, 2009].
A main aspect for the implementation of parallelism is whether shared memory ar-

chitecture is used, i.e., memory that is simultaneously accessible by multiple processes.
Shared memory programming is often performed in multi-core computing and multi-
processing, using multi-threading, i.e., the processes are asynchronous independent
sequential programs, so-called threads. In contrast, systems that do not share memory
(or more strictly share no common state in memory or on disk, called shared-nothing
architecture (SNA)) are often used in distributed computing and communicate via
message passing [El-Rewini and Abd-El-Barr, 2005; Siegel and Gopalakrishnan, 2011;
Raynal, 2013] (formalized by process calculi, cf. Subsec. 3.4.3, or the Actor Model [He-
witt, 2012]). So each process owns its private resources (memory, disk, and input output
devices), is independent, and is usually called distributed component (or parallel
instance or distributed node or node for short). So the memory architecture deter-
mines how processes can interact, i.e., how they communicate and synchronize. This
has a consequence on the paradigm for parallel programming and on performance.
For shared memory, own implementations or APIs such as OpenMP [Dagum and

Enon, 1998] can be used for multi-threading. For message passing, the message pass-
ing interface (MPI) [Message Passing Interface Forum, 2012] is a popular choice,
but there are also own implementations. For mixed hardware architectures, MPI and
OpenMP can be combined [Rabenseifner et al., 2009]. Since accessing shared memory
is a convenient programming paradigm, distributed shared memory (DSM) hides
the message passing and the fact that the memory is physically separate. So DSM is
convenient for programming, but the programmer looses control. DSM is implemented
(in hardware or software) with a shared memory abstraction on top of message
passing, called distributed shared memory system (DSM system for short) [Ray-
nal, 2013]. So data is stored on the local (i.e., physically separate) memories of the
distributed nodes, but addressed as one. Messages are passed by the DSM system for
distribution and communication. In an object-based DSM system, objects can be stored
in the DSM and used concurrently, called concurrent objects, e.g., using Hazelcast
(see below).
To measure the consequence of the architecture on the performance of interaction,

three main performance measures are used [Goetz et al., 2006; Lewis and Berg, 2000;
McCool et al., 2012]:
• latency: the response time, i.e., the time between when a request is submitted

(e.g., a method is called) and when the request is fulfilled (e.g., the method has
fully executed and returned);
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• throughput: the rate of progress, e.g., the amount of method calls fully executed
within a given time period;
• power consumption: the power consumed by all processes to compute a solution.

The overall parallel performance of parallel computing is the degree to which a problem
is solved in parallel (cf. Amdahl’s law [Amdahl, 1967]). It is often measured in:
• parallel speedup, i.e., the ratio SP := t1/tP between the sequential time t1

and the parallel time tP when P processes are used; so for linear speedup,
SP = P (and for super-linear speedup SP > P ). The relative speedup takes
t1 from the parallel algorithm, the absolute speedup of the fastest sequential
algorithm [Bader et al., 2000];
• parallel efficiency (sometimes called parallel scalability or horizontal scala-
bility), which is the ratio SP /P between the parallel speedup and the number P
of processes.

More generally, speedup can be any dependent metric SP with the explicit influencing
variable P , e.g., SP being WC time, CPU time, or number of test execution steps (cf.
Subsec. 14.3.7); likewise, efficiency can be any dependent metric E = SP /P [Reussner
and Firus, 2005]. These parallel performance metrics show how good a parallel program
scales, i.e., how effectively an increase of parallelism can handle larger problems [Nicol
and Willard, 1988; Hager and Wellein, 2011]. In high performance computing [Hager
and Wellein, 2011; Eijkhout, 2014; Kaminsky, 2015] the two standard ways to measure
scalability are:
• strong scaling, where the parallel runtimes (or speedups or efficiencies) are mea-

sured for increasingly large parallelization degrees P , for one fixed (and sufficiently
large [Bader et al., 2000]) problem size. This approach focuses on achieving better
runtimes and is suitable for parallel programs that are CPU bound, i.e., where the
CPU is the bottleneck (which is usually the case in this thesis);
• weak scaling, where the parallel runtimes (or speedups or efficiencies) are mea-
sured for increasingly large parallelization degrees P , for a fixed workload, i.e., a
fixed problem size per process, so the overall problem size increases proportionally
to P . This approach focuses on achieving higher problem sizes and is suitable for
parallel programs that are memory bound, i.e., where the memory is the bottle-
neck.

The parallel program is scalable (or scales well or scales linearly) when it sustains a
constant efficiency. So to be strong scalable, the runtime must decrease proportionally
to P ; to be weak scalable, the runtime must stay fixed. Scalability becomes hard for
large P since the communication cost often increases proportionally to p and eventually
the workload per process becomes too small for the process to operate efficiently [Culler
et al., 1998; Bader et al., 2000; El-Rewini and Abd-El-Barr, 2005; Müller-Hannemann
and Schirra, 2010; Hager and Wellein, 2011; Eijkhout, 2014]. Hence one often talks about
scalability up to a certain P and has to choose problems that are sufficiently large
to outweigh constant parallel overhead, especially for strong scaling.
To increase portability and parallel performance without overburdening the software

developers, several general techniques have evolved [Herlihy and Shavit, 2008; McCool
et al., 2012]:
• flexible and high-level synchronization constructs, e.g., futures and promises [Baker

Jr and Hewitt, 1977; Herlihy and Shavit, 2008; URL:FuturesPromisesScalaHP;
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Mohr et al., 1991]: a future F is a read-only proxy for a result not yet available,
which is computed potentially in parallel (synchronously or asynchronously) via
a corresponding promise, a single assignment container that sets the value of F ,
changing F ’s state from promise pending to promise kept or promise broken.
Futures and promises are concise language constructs for parallelism, and are flex-
ible because they allow efficient blocking and non-blocking communication, can be
used for multi-core computing, multiprocessing, and distributed computing, and
make little restrictions on parallel schedulings (see Sec. 3.6);
• many variants and performance optimizations exist for parallel schedulings: In
this thesis, the focus is on task parallelism (aka function parallelism or con-
trol parallelism), which schedules tasks (e.g., processes, promises) onto parallel
instances. For instance, when a thread pool is used, tasks are distributed onto a
limited pool of long-lived threads to reduce overhead [Herlihy and Shavit, 2008; Lee,
2006]. Another important optimization is load balancing, i.e., performing work
distribution such that ready tasks are efficiently assigned to idle instances [Her-
lihy and Shavit, 2008; Tzannes et al., 2014, 2010];
• lock-free and wait-free data structures (cf. Subsec. 6.7.3 and [Herlihy and Shavit,
2008]) lead to better work distribution and less contention, which is the amount
that processes compete for a resource (e.g., try to acquire a lock at the same time).
Contention is the main impediment to parallel scalability and predictability [Sutter,
2009; Al-Bahra, 2013], so it is important to avoid it.

For parallel programs with a large amount of global communication, shared mem-
ory programming has much higher performance of interaction than message passing
programming [Chorley, 2007]. Contrarily, distributed computing in a shared-nothing
architecture has low coupling where all nodes only coordinate via asynchronous message
passing, leading to less complexity of the communication, less nondeterminism [Lee,
2006] and better reliability and predictability.

Multi-threaded Shared Memory Programming

Two main aspects of interaction in multi-threaded shared memory programming are its
use for synchronization and optimizations.
Non-blocking synchronization often yields higher performance than blocking synchro-

nization, and is often based on some primitive synchronization operation, called univer-
sal synchronization primitive if it is sufficiently expressive (cf. universal construction
in Subsec. 6.7.3 and [Herlihy, 1991]). This thesis uses Compare-And-Swap (CAS) op-
erations, which atomically updates a memory location only conditionally by comparing
values [Herlihy, 1990]. CAS is currently the most established universal synchronization
primitive (e.g., via Intel’s CMPXCHG [Millind Mittal and Eval Waldman, 1999]).

Note. This thesis uses CAS for synchronization because it is the prevalent universal
synchronization primitive, even though it has to deal with the ABA problem, i.e., that a
process assumes no change when the synchronization primitive compares A to A, when
in fact other processes have changed the value A to the value B and back to A [Michael,
2004]. Transactional memory [Herlihy and Moss, 1993] will likely replace CASs eventu-
ally, e.g., the hardware transactional memory primitives Load-Linked, Store-Conditional,
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Validate (LL/SC/VL) [Michael, 2004] or Intel’s Transactional Synchronization Exten-
sions (TSX) [Intel, 2012; Maciej Swiech, Kyle C. Hale, 2012]), or software transactional
memory as in the GNU Compiler Collection (gcc) since version 4.7 [Boehm et al., 2012],
possibly via easy conversions such as Hardware Lock Elision (HLE) [Rajwar et al., 2013;
Maciej Swiech, Kyle C. Hale, 2012].

Since accessing shared memory is slow, optimizations are installed:
• CPUs and compilers cause out-of-order execution (often called reordering
optimizations for compilers), i.e., the instructions are not execute in the order
given by the program code. Instead, an instruction may be executed lazily when
its input data is available and the result of the instruction is required, hereby
increasing throughput. Reordering is performed according to the specified memory
consistency model [Berg, 2014; Adve and Gharachorloo, 1996] (causing further
combinatorial and state space explosion during verification);
• the hardware architecture uses caching, i.e., it additionally stores data locally, to
achieve lower latency. Usually, memory is stacked over many levels, resulting in
steep memory hierarchies.

Out-of-order execution and reordering optimizations of multi-threaded programs can
break memory consistency, e.g., sequential consistency (or some other consistency,
depending on the memory model), i.e., exhibit linear time behavioral properties (cf.
Chapter 4) differing from any interleaving of the threads’ sequential programs [Herlihy
and Shavit, 2008]. To avoid this, we need to add memory barriers (also called mem-
ory fences) to inhibit reorderings that break memory consistency; memory barriers are
instructions that guarantee that certain memory operations are performed before the
barrier, and certain others after the barrier.

Note. An exemplary memory barrier is the full fence, which forbids any memory
operation to cross it. An acquire memory barrier only forbids any following memory
operation to cross it (also called read-acquire since it is used for read operations);
conversely, a release memory barrier forbids any preceding memory operation to
cross it (also called write-release since it is used for write operations). Memory barriers
are strongly hardware or compiler dependent; for instance, volatile in C++ does not
guarantee sequential consistency, whereas in Java, it does by preventing certain compiler
as well as hardware reorderings.

Caching in shared memory architectures calls for a cache coherency protocol to
propagate a change of a value in one cache throughout the system, so that the value
is coherently updated everywhere. A cache line is the finest-grained memory block in
cache at which coherency is maintained. Its size, often 64 byte, is called coherency
granularity.
Caching in multi-threaded programs can lead to contention, with a major cause being

false sharing, which occurs when the cache coherency protocol forces a core to reload a
cache line albeit only irrelevant data in the cache line has been altered by another core.
So the effect on reloads is the same as for truly shared data [Al-Bahra, 2013]. To avoid
false sharing, we can use padding, i.e., we add dummy variables so that each cache line
only comprises logically related data.
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Distributed Computing with Message Passing

Two main aspects of distributed computing is its architecture and the implementation
of message passing.
Distributed architectures follow one of the two fundamental communication mod-

els [Subramanian and Goodman, 2005; Vogel et al., 2011]:
• in a master/slave network (aka client/server network or centralized net-
work), a dedicated node, called master has the authority over the network and
hence initiates communication with all other nodes, called slaves. Often the mas-
ter controls behavior of the slaves and slaves do not communicate with each other;
• in a peer-to-peer network (aka decentralized network), all nodes have equal
authority, functionality and behavior, and can potentially communicate with any
other instance. Each node is self-sustaining and coordinates with other via asyn-
chronous message passing, to supply as well as consume messages and tasks. Thus
nodes need no initial knowledge of the distributed environment other than the
communication address.

Example. A prominent programming model that uses a master/slave network is Map-
Reduce [Dean and Ghemawat, 2004], with Hadoop [URL:HADOOP; White, 2012] being
an established implementation. A MapReduce Master (called NameNode in Hadoop)
distributes each task as a job to a slave, via a map function, and a reduce function
collects and combines the results.

Master/slave networks have some disadvantages:
• complexity of efficient task distribution (cf. work distribution above and lazy tech-
niques for parallelization in Subsec. 3.6.2);
• a single point of failure, i.e., they are not fault-tolerant;
• a considerable overhead [Duarte et al., 2006] by the communication for coordination
since the server has to send all tasks to clients and receive all their results. This
can lead to contention for the network resource, i.e., network congestion.

These problems can be avoided by using a peer-to-peer network: It is more flexi-
ble and has no single point of failure or contention. But under heavy communication
load, they have decreased communication performance. Hence communication must be
implemented efficiently.
Many implementations of message passing exist, directly on some standard pro-

tocol, or more elaborate implementations with higher level interfaces and more features.
The Internet Protocol Version 4 (IPv4) offers broadcasts via the User Datagram

Protocol (UDP), which is a lightweight, real-time, one-to-all communication [Mogul,
1984a,b]: it efficiently sends a datagram via a single Internet Protocol (IP) transmission
(i.e., over each link of the network only once) to all receivers (i.e., network-attached
hosts). Since the receivers are not known to the sender and no handshake is made,
broadcasts via UDP are unreliable, i.e., datagrams may be lost or delivered out of order.
A multicast via UDP is a lightweight, scalable, real-time, one-to-many or many-

to-many communication [Deering, 1989; Deering and Hinden, 1998]: like broadcasts, it
efficiently sends a datagram via a single IP transmission to all receivers that have joined
the corresponding multicast group. Like broadcasts, multicasts via UDP are unreliable.
The Internet Protocol Version 6 (IPv6) no longer offers IPv4’s (layer 3) broadcasts; but
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multicasts subsume broadcasting and are more selective, scalable and efficient [Graziani,
2012]. Therefore, multicasts are future-proof for the Internet [Deering, 1989; Deering and
Hinden, 1998; Graziani, 2012], for cloud computing [Rothenberg, 2010; URL:GOGRID;
URL:RACKSPACE; URL:DIMENSIONDATA] and for data centers [McBride, 2013].
Hazelcast [Johns, 2013; URL:Hazel] is an open source object-based DSM system en-

abling shared memory programming for distributed systems. It offers collections (e.g.,
lists, sets, and maps), observers, synchronization primitives, concurrency utilities (Atom-
icNumber and IdGenerator), and a scheduler, called distributed executor service, to
create and run tasks anywhere on the cluster (see below). It is also called an in-memory
data grid to reflect its database capabilities, especially persistence and transactions. It is
a peer-to-peer embedded, in-memory database that is based on distributed hash tables
and is self-discovering, self-clustering and elastic: contributing nodes automatically and
dynamically form a cluster to almost evenly distribute all data across all nodes for high
parallel scalability [Zhang et al., 2013]. For fault-tolerance, data is stored redundantly,
so there is no single point of failure. The cost for these powerful features is high runtime
and communication cost for setup and cleanup of the Hazelcast cluster, especially for
discovery and for repartitioning and new backups when an instance leaves the Hazel-
cast cluster (cf. Appendix B.1.4). To avoid repetitive setup and cleanup, Hazelcast’s
distributed executor service and elasticity can be used.
A major application of distribution on the Internet is via web services (WSs),

which are software systems for interoperable machine-to-machine interaction over a
network [URL:WS] (cf. Subsec. 14.3.2). There are many architectures (covered by
service-oriented architecture) and protocols (like SOAP and REST) that can be used
for WSs. For machines to automatically determine what operations are available on
some server, the interfaces of its web services are formally specified, e.g., in the Web
Services Description Language (WSDL) [URL:WSDL], and their behavior, e.g., in the
WSDL-S [URL:WSDLS] or WS-BPEL [URL:WSBPEL]. Since only the specifications of
the web services are available, but not their implementation, web services are black-box
systems. Thus the machines depending on black-box systems that have formal specifi-
cations. Therefore, much work in formal methods have been dedicated to WSs [Bozkurt
et al., 2010; Wang, 2013].

3.5.3. Roadmap

The last subsection has shown that parallel programming is difficult. This thesis con-
siders multiple aspects of parallel computing and ways to cope with these difficulties:
• Subsec. 3.4.3 shortly introduced models for parallelism via composition, helping to

cope with the complexity by modularization;
• Chapter 5 describes the parallel computing capabilities of several model checkers,
to improve their feasibility. Model checkers also help prove correctness of parallel
programs;
• Chapter 6 covers the parallelization of our model checking algorithm DFSFIFO to
further improve the feasibility of livelock detection, which is an important property
in parallel programs. Since DFSFIFO requires a large amount of global communi-
cation, multi-threaded shared memory programming is used;
• Chapter 7 covers the application of software BMC on a distributed system of low
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energy wireless sensor networks. It copes with the complexity by abstraction and
selection of exemplary parallel scenarios;
• Chapter 11, Chapter 13, and Chapter 14 cover the parallelization of our MBT al-
gorithm LazyOTF for integrating on-the-fly and offline MBT. As for model check-
ing, MBT and parallelization benefit from each other. Since the parallelization of
LazyOTF requires little communication and decouples processes via own private
resources for test execution, distributed computing with message passing is used.

3.6. Improving Formal Methods by Lazy Techniques
3.6.1. Introduction
Often problems are solved by splitting them up into smaller problems (for instance
modularization [Parnas, 1972; Hughes, 1989; Abelson et al., 1996] by divide and con-
quer [Bentley, 1980; Smith, 1985; McCool et al., 2012], or for parallelization [Milner
et al., 1992; Baker Jr and Hewitt, 1977; Tzannes et al., 2014]). This yields multiple
tasks to be processed, e.g., the execution of multiple function calls or the evaluation of
multiple expressions.
The simplest approach is to execute these tasks as soon as they arise. This scheduling

of tasks is called eager or greedy and is the only possible scheduling iff all currently
unfinished tasks cannot advance the moment a new task t arises, until the result of t
is available, i.e., until t terminates. But often this is not required, so a task can be
executed at a later point in time than it arises, i.e., it can be executed lazily. Hence
schedulings that differ from eager scheduling are called lazy. The most extreme lazy
technique postpones the execution of each task until no longer possible, i.e., until the
result is demanded by some other task.
Example. The most prominent lazy techniques are from the field of programming, e.g.,
lazy initialization and lazy evaluation, but other areas of software development can also
benefit from lazy techniques, for instance modeling and testing.
Lazy initialization of a variable v initializes v lazily only when it is read in an

execution. So the initialization expression is not evaluated when it is bound to v, but
only the moment v is read by some later expression. If the initialization is costly but v is
read only in few execution paths, lazy initialization of v can strongly spare initialization
tasks and memory on average. But lazy initialization is complex and thus error-prone,
especially in concurrent systems [Bloch, 2008]. Therefore stronger checks are now often
offered by static typing [Dietl et al., 2011; Klepinin and Melentyev, 2011; URL:Lombok;
URL:LazyInitCSharpHP].
More generally, functional programming languages often have lazy evaluation [Watt

and Findlay, 2004; Hughes, 1989; Asperti and Guerrini, 1998], which also covers ex-
pressions for actual function parameters [URL:ScalaByNameHP] besides expressions for
assignments. Lazy evaluation can avoid some evaluations altogether and avoid repeating
an evaluation if expressions are shared [Asperti and Guerrini, 1998]. Besides decreas-
ing time and space requirements, lazy evaluation offers expressivity, e.g., for modularity
and to efficiently operate on (potentially) infinite data structures using recursive
types [Bird and Wadler, 1988; Watt and Findlay, 2004; Hughes, 1989; Abelson et al.,
1996].
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For agile software development (cf. Sec. 14.2), modeling should also be agile, i.e., avoid
a big design up front, but evolve lazily, e.g., spread over sprints. Many terms are used for
this: lazy specification [Simons, 2007; Simons et al., 2008], document late and it-
eration modeling in agile modeling [Ambler, 2002]. Refinement of specifications (e.g.,
via the refines relation, cf. Sec. 14.2) is one example of lazy specification. Since tests are
often used as specification in agile software development, test-driven development is a
prominent example for lazy specification and lazy testing, since tests are only developed
in the same sprint as the code for each user story. Another example of lazy specifica-
tion and lazy testing is lazy systematic unit testing [Simons, 2007; Simons et al.,
2008], where the specification evolves lazily by inferring it on-the-fly by dynamic anal-
ysis with interaction from the test engineer: the state space is explored systematically
by automatically generating test drivers up to a given depth, test oracles are generated
by user interaction as well as automatic, heuristic rules over previous oracles. So for
software engineering processes, various tasks are scheduled, and the examples above are
lazy schedulings.

3.6.2. Current Lazy Techniques for Formal Methods
Lazy techniques are often used for formal methods, for instance in SAT solvers, SMT
solvers, model checking, model-based testing and in the parallel algorithms they apply.
One lazy technique that many SAT solvers use is two literal watching: literal as-

signments are updated lazily for checking unit/conflicting clauses, improving perfor-
mance [Mahajan et al., 2004]. In its core, SAT solvers often use further lazy techniques,
e.g., for the data they generate [Alsinet et al., 2004; Ohrimenko et al., 2007].
SMT solvers also use eager or lazy techniques, depending on whether theory infor-

mation is processed eagerly or lazily (cf. Subsec. 3.3.3 or [Sebastiani, 2007; Biere et al.,
2009]): The tasks for SMT solving are partitioned into processing specific theories and
processing the propositional part, i.e., SAT solving. Eager SMT employs eager en-
coding for some theory T , i.e., all the expressions in T are translated from the beginning
into SAT problems before SAT solving starts; then the SAT solver is invoked once with
no further interaction with a decision procedure of theory T . Lazy SMT employs
lazy encoding for some theory T , i.e., each expression t in T is processed lazily by a
T -solver during SAT-solving, i.e., dynamically whenever the SAT solver demands the
evaluation of t. If different theories are present and handled differently, an interesting
mix of lazy and eager techniques may occur. For instance in [Falke et al., 2013c], the
theory of uninterpreted functions and lambdas are eagerly encoded into either theory of
quantifiers or arrays and bitvectors. The used SMT solvers STP and Booleactor in turn
use an eager encoding of the theory of bitvectors into SAT using bitblasting. Arrays are
mostly solved lazily [Brummayer and Biere, 2009].
Many formal methods algorithms in this thesis use a transition system S as specifi-

cation and perform checks in certain states or transitions of S. Then tasks and their
(sequential or parallel) scheduling can be divided as defined in Def. 3.33.

Definition 3.33. For algorithms performing checks in certain states or transitions of a
transition system, their tasks can be partitioned into:
• transition tasks: taking a transition during graph traversal of the specification;
• check tasks: performing some check for a state in the graph of the specification.
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Then schedulings of tasks can be partitioned into:
• offline techniques, which firstly perform all transition tasks and thereafter all

check tasks;
• on-the-fly techniques (OTF for short), which perform the transition tasks lazily
with respect to the check tasks, i.e., both kinds of tasks are intertwined.

Note. Def. 3.33 shows that at one point in time, several new tasks can arise (e.g., one
check task and many transition tasks). Furthermore, the order that constitutes “greedy”
depends on the design of the algorithm. Offline techniques are the default design, so
executing the transition tasks later is called “lazy”.
Similar to Def. 3.33, the tasks of other algorithms can also be partitioned into two

classes, e.g., for SMT solvers as described above. Then offline techniques schedule the
tasks of these two classes separately, while on-the-fly techniques pick the tasks on-the-fly,
i.e., intertwine the tasks of both classes.

For model checking, offline techniques separate tasks into state space construction and
the actual checks on the state space. So for on-the-fly model checking, also called lazy
model checking, the state space is only constructed on demand, i.e., dynamically during
the checks. Both offline and on-the-fly schedulings are applied broadly (cf. Chapter 5).
Some eager check tasks (e.g., via the synchronous product of the system specification
and property to be checked, cf. Note 4.34) help to prune the parts of the state space
irrelevant for the property to be checked (cf. Subsec. 3.4.3 and Subsec. 5.3.2). This is
sometimes called level 0 OTF [Barnat et al., 2009]. If more check tasks are scheduled
earlier, model checking can achieve early termination: the model checking algorithm
• may terminate before the state space is fully constructed, for level 1 OTF [Barnat
et al., 2009];
• terminates as soon as an error is reached during traversal (i.e., no further state is
traversed), for level 2 OTF [Barnat et al., 2009].

This categorization was in relation to the state space. If the property to be checked is
described as transition system P, model checking that performs traversal tasks on P
lazily is sometimes called truly OTF [Hammer et al., 2005].
The degree of laziness for on-the-fly techniques (especially for model checking) is

often measured by its time and space requirements in case a fault is found, since these
requirements are strongly influenced by the amount of transition tasks that have been
performed; this performance measure is often called on-the-flyness (cf. Subsec. 6.8.6).
On-the-flyness is quite relevant in practice: Checking a property P is reasonable only if
there is the possibility that P does not hold, in which case strong on-the-flyness detects
that P does not hold significantly faster than weaker on-the-flyness [Barnat, 2010]. So
often on-the-flyness for level 0 OTF is much smaller than for level 1 OTF, and for level
1 OTF it is much smaller than for level 2 OTF.
Bounded model checking with a bound check (cf. Subsec. 5.2.3) also applies lazy

scheduling: a completeness threshold is not computed a priori for a Kripke structure
and property; instead, bound checks are performed lazily.
For model-based testing, checks are usually performed dynamically during runtime;

then offline techniques perform transition tasks statically and check tasks dynamically.
Separation of these phases can cause high time and space requirements (e.g., high test
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case complexity, cf. Def. 10.4). The early algorithms for model checking and model-based
testing use offline techniques; newer algorithms often use on-the-fly techniques.
If multiple phases are involved, the situation becomes even more complex. Examples

are the mix of lazy and eager SMT solving described above, and the MBT tool TGV
(cf. Subsec. 10.3.1), which uses offline techniques with respect to model-based testing,
but on-the-fly techniques with respect to model checking.
Many lazy techniques exist for parallelization, which can also be used by formal meth-

ods if they are parallelized (cf. Sec. 3.5). Exemplary lazy techniques are:
• using a future F when its state is promise pending, e.g., as an actual parameter; this

corresponds to lazy evaluation or lazy computation. F ’s promise can be computed
eagerly or lazily, depending on the available resources and use of F ;
• for parallel schedulings: lazy task creation, which inlines a future F by default
and creates a costly task for F only lazily when processing resources become avail-
able [Mohr et al., 1991]. Similarly, lazy threads only expose an entry point for
work that can be performed remotely. When the work ends up being performed
locally, it is simply inlined into the local thread as a sequential call, i.e., remote
work is generated only lazily [Goldstein et al., 1996]. Modern work distribution is
supported by implicit synchronization, implicit scheduling, and task-parallel lan-
guages, which offer high-level constructs for task parallelism via nested parallelism,
i.e., more parallelism created from an already parallel context. This necessitates
dynamic scheduling for work distribution, which is implemented mainly by work
stealing [Herlihy and Shavit, 2008; Faxén, 2008; Tzannes et al., 2014, 2010; Mc-
Cool et al., 2012; van Dijk et al., 2012; Laarman and Faragó, 2013]: each instance
has a local queue to add new tasks and work off tasks; an idle instance lazily tries
to steal a task from the queue of another instance, usually chosen randomly (cf.
Subsec. 6.7.3 and [Tzannes et al., 2010]). Alternatives to work stealing are: Firstly,
synchronous random polling [Sanders, 1997; Laarman et al., 2010; Laarman,
2014], where a thread that becomes idle lazily polls another random thread for
work, which splits its problem into two sub-problems. This results in low over-
head tree shaped computations. Secondly, lazy scheduling [Tzannes et al., 2014]
firstly exposes all available parallelism and only lazily restricts it to not exposing
too short and too many tasks for the current load conditions and target platform.
This minimizes scheduling overheads without manual tuning. Similar lazy tech-
niques for dynamic load-balancing, to adapt dynamically to load conditions, also
exist for work stealing [Tzannes et al., 2010];
• lock-free and wait-free data structures (e.g., for work distribution) also profit from
lazy techniques, for instance lazy removal of entries from a list (cf. Subsec. 6.7.3
and [Herlihy and Shavit, 2008; Heller et al., 2005]).

3.6.3. Advantages and Disadvantages of Lazy Techniques

Some disadvantages of lazy techniques, which are also present for formal methods, are:
• the problem needs to be modularized into fine-grained tasks;
• lazy schedulings of these tasks is more complex and thus error-prone. Complexity
is caused by having to decide how long a task should be postponed. Further-
more, phases that are separate in eager scheduling often get intertwined in lazy
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schedulings;
• laziness impedes debugging because tasks that were originally performed statically
are postponed to dynamic phases (i.e., the fail fast design concept is often no longer
followed [Gray, 1986; Bloch, 2006]).

Note. When applying formal methods, laziness rarely impedes debugging because the
tasks that move from static to dynamic phases rarely fail. One exception is lazy pro-
cessing of specifications (e.g., for on-the-fly MBT) since specifying is error-prone. Con-
sequently, test engineers should perform on-the-fly MBT as soon as they formulated the
specification. If no SUT is yet available, it can be simulated (cf. Subsec. 10.3.3).

Some of the common advantages of lazy techniques, which are also applicable to formal
methods, are:

1. avoiding performing tasks that are not required later on, leading to better perfor-
mance in space and time; or even rendering some method feasible, e.g., processing
of infinite data structures;

2. avoid performing tasks that have already been performed, by reusing the results
of old tasks;

3. avoid space and time required for decoupling the phases;
4. the availability of new, dynamic information that just arose (e.g., some nondeter-

ministic choice). The information can help avoid tasks (see item 1), or prioritize
tasks, or increase comprehension;

5. comprehension is also improved by higher expressiveness and simplicity;
6. ease of use by higher expressiveness, better comprehension and higher feasibility;
7. reduce parallel contention and improve work distribution and parallel performance.
Further advantages that laziness yields for our algorithms DFSFIFO and LazyOTF are

mentioned in the following subsection and are investigated in later chapters.

3.6.4. Roadmap

In this thesis, new algorithms with lazy techniques are designed for model checking
and model-based testing: while on-the-fly model checking and on-the-fly model-based
testing intertwine transition tasks and check tasks, they do so rigidly (cf. Sec. 6.3 and
Subsec. 10.2.5). Our new algorithms will intertwine the tasks more elaborately to achieve
many advantages, those from the previous subsection and more:
In Chapter 6, the algorithm DFSFIFO checks livelocks on-the-fly in one pass. For this,

it schedules the transition tasks that make progress maximally lazily, i.e., only after
all transition tasks without progress, as well as their check tasks, have been scheduled.
DFSFIFO is a level 2 truly OTF algorithm and shows two further advantages of lazy
schedulings: The order of tasks entails correctness of DFSFIFO, i.e., a sound and com-
plete livelock detection, while other schedulings do not. Furthermore, DFSFIFO enables
strong optimizations, especially partial order reduction, where the lazy scheduling allows
weaker provisos, and parallelization, where low contention leads to almost linear parallel
speedup.
In Chapter 11, lazy on-the-fly MBT is a level 1 OTF algorithm that leads to feasible

testing of large and nondeterministic systems. For this, it offers a framework to schedule
some transition tasks eagerly and some lazily. This mix yields another advantage of lazy
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schedulings: The transitions that are eagerly scheduled need not be executed on the
SUT, enabling backtracking, i.e., undoing of choices, such that better choices can be
executed on the SUT. To decide which choices are better, so-called guidance heuristics
are used, which exploit dynamic information, enabled by lazy scheduling of transition
tasks.
Chapter 12 introduces heuristics for scheduling of tasks, to decide which transition

tasks to schedule lazily. Thereafter, guidance heuristics are investigated, which are on-
the-fly heuristics that process static and dynamic information.

3.7. Improving Formal Methods by Abstraction

3.7.1. Introduction

Abstractions are methods that discard or hide details (called Verkürzungsmerkmal in
general model theory [Stachowiak, 1973]) to get results that are simpler, uniform, more
formal. These results are called models, or also abstractions. So models simplify a
system for a certain goal [Prenninger and Pretschner, 2005].
The general goals of the simpler, uniform, and more formal structures are: to under-

stand, communicate, validate and manage facts, to analyze the system, or to generate
further artifacts, e.g., tests or other checks for the system, or to generate the system
itself. Without abstractions, which reduce complexity, these goals would not be feasible
at all, e.g., due to state space explosion [Fraser et al., 2009], or at least more costly, e.g.,
with a lower degree of automation. For formal methods, models are used for uniform
and automated checks on a system to analyze it – mainly its correctness using system
specifications as models (cf. Subsec. 3.4.3). In model checking, models are used to de-
scribe the functional behavior of the SUT and to specify the desired abstract behavior
of the SUT. In model based testing, models are used to describe the desired functional
behavior of the SUT, and to specify what kind of tests should be performed. Further-
more, to formalize conformance testing, a mental model is used to directly abstract the
SUT.
We differentiate abstractions by two aspects: what details are omitted, and how:
The first aspect differentiates whether the omitted details are functional or non-

functional. Functional abstraction leaves out details of the behavior, e.g., special
cases or the order of events or by comprising implementation details. Non-functional
abstraction leaves out other details, mainly on data, e.g., implementation details and
bounds for some data type, or data no longer required due to functional abstraction.
Other non-functional abstractions are often related to performance or resource consump-
tion.
The second aspect differentiates whether the omitted details are discarded or hid-

den: Lossy abstractions (also called abstractions with actually missing informa-
tion [Prenninger and Pretschner, 2005]) are abstractions where the details are discarded,
e.g., details that cannot be processed (e.g., too many possibilities), cannot be controlled
(e.g., behavior of lower layers), or cannot be determined yet (e.g., implementation de-
tails of future work). Hence the missing information cannot be inserted automatically
to reconstruct the original situation. The strongest benefits are reduced complexity and
hence less resources for processing the models. Lossless abstractions are faithful,
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so the details are still available somewhere or somehow, e.g., moved or compressed, so
that the original system can be reconstructed [Prenninger and Pretschner, 2005]. This
mainly increases understandability, but can also improve performance. The reconstruc-
tion, i.e., the opposite of abstraction, is called refinement [van der Bijl et al., 2005], or
contraction in this context.
If some check does not take all relevant details into account, e.g., some relevant detail

was lossy abstracted, the check can become unsound or incomplete.

Example. Compilers and macro mechanisms such as keywords in keyword driven test-
ing [Brandes et al., 2015] are lossless abstractions, usually functional.
Abstraction from concrete entries in an underlying database is lossy data abstraction.
Abstracting from floating points to real numbers is lossy data abstraction on imple-

mentation details and bounds, and often results in unsound or incomplete checks.
UML models that describe the architecture are usually lossy functional and non-

functional abstractions.
Multiple levels of abstraction are often helpful [Faragó, 2010; Ulbrich, 2014; Abrial,

2010]. A popular example are the ISO-OSI levels: an abstraction hierarchy where higher
levels are lossless abstractions of lower levels, replacing some functional behavior of
communication into one more abstract element.
This thesis contains many more examples, enumerated in the roadmap below.

3.7.2. Roadmap
In this thesis, several lossy abstractions are performed:
• in this chapter, systems are described formally by mathematical structures, loosing
(mainly non-functional) details from real systems;
• the interface abstractions and testing hypothesis (cf. Sec. 8.1) formalize the func-
tional and non-functional gap (i.e., the lost details) that always exists between a
real system and a formal description. For instance, abstractions from the precise
timing of certain events is a non-functional abstraction that is lossy and often
results in unsound or incomplete checks on performance properties;
• this thesis frequently uses various kinds of nondeterminism (cf. Subsec. 8.2.5); non-
determinism abstracts by comprising multiple possibilistic choices – functional
or non-functional. These choices are made at nondeterministic choice points,
the choices are called nondeterministic choices. A sequence that determines
the choices for all encountered choice points is called nondeterministic resolu-
tion [Bienmüller et al., 2000; Lawrence, 2002; Bowman and Gómez, 2006]. Often
nondeterminism covers more variants than occur in reality and it is not possible to
reconstruct exactly the real variants, i.e., the abstraction is truly underspecified
and hence lossy. Nondeterminism in the specification of the SUT is uncontrollable
for the test engineer, whereas nondeterminism in the specification of the SUT’s
environment is controllable (cf. Subsec. 8.2.5), which is utilized in the next item;
• nondeterminism is often applied to abstract from the full system: by only consid-
ering a module of the full system, we modularize and leave the remaining modules
(e.g., the user, network or library) open, as environment. Thus we only have to
specify an open systems. But if a formal method should process such a systems
rigorously and automatically, no control and input to the formal method must
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be supplied via interaction with the environment. Thus the specification for the
formal method should describe a closed system, which includes some environment
to contain all information required for automatic processing. The specification can
transform the open system into a closed system by
– either taking the maximal environment, i.e., nondeterministically allowing

all possibilities (cf. Subsec. 7.1, demonic completion in Def. 8.24, [Godefroid
et al., 2005; Cadar et al., 2008a]);

– or taking only expected environments, i.e., allowing only certain possibility
that expected environments exhibit, by generating a more restrictive environ-
ment specification (cf. angelic completion in Def. 8.23, [Parizek et al., 2009]),
e.g., using a tool like Java Pathfinder [URL:JPF]). This aims to make the
environment specification sufficiently restrictive for the formal method to be
more feasible, yet still general enough to cover relevant cases.

So for environment abstractions, we reduce details by making certain assumptions
on the environment that the software is embedded into, e.g., that it follows the
assumed interfaces. Another example of environment abstraction is our abstract
behavior model (cf. Subsec. 7.2.3), which uses nondeterminism to consider multiple
behaviors within one scenario, and to abstract from details such as probabilistic
values and hardware;
• underspecification and nondeterminism (via our refines relation, cf. Sec. 9.3) to
postpone implementation decisions for iterative software development (cf. Sec. 14.2);
• the refinement hierarchy via our refines relation (cf. Sec. 9.3 and Sec. 14.2), the
V model (cf. Sec. 2.4, [Borgida et al., 1982]), and the abstractions from the SUT
to the model to the specification to the test cases (cf. Chapter 8) are examples for
multiple levels of abstraction;
• in Chapter 5, several reductions with lossy abstractions are introduced: mainly
partial order reduction, which groups together interleavings that have the same
property. Furthermore, symmetry reduction, program slicing, abstract interpreta-
tion and statement merging are introduced, and finally bitstate hashing and hash
compaction, which are often incomplete or unsound;
• in Chapter 12, weights as lossy abstraction from meaningfulness.

In this thesis, also lossless abstractions are used:

• in Sec. 5.4, several state space compression techniques for model checking are
introduced: symbolic techniques, tree compression and collapse compression;
• for test adapters (cf. Subsec. 8.7.2), an abstract test step can comprise multiple
concrete test steps;
• many programming APIs and frameworks we use offer simplifications, e.g., Hazel-
cast to abstract from distributed memory and from message passing, and task
parallel languages to abstract from dynamic scheduling and creating parallelism
dynamically (cf. Subsec. 3.5.2).
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3.8. Conclusion
3.8.1. Summary
This chapter introduced formal methods in a general way, applicable to model checking
and model-based testing, covering propositional logic, first order logic, automata theory,
parallelization for formal methods, and abstractions for formal methods (cf. positioning
in Fig. 15.1 on page 377.

3.8.2. Contributions
Sec. 3.6 derived a model to describe lazy techniques in formal methods, considered their
advantages and disadvantages, as well as various instances.
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4. Temporal Logics

4.1. Introduction

This chapter discusses temporal properties and temporal logics. They can be used as
basis for model checking, covered in this part of this thesis, and several related formal
methods, e.g., model-based testing, covered in Part III.
Having such a broad view, this thesis deviates in some aspects from standard liter-

ature [Clarke et al., 1999b; Baier and Katoen, 2008]: Since software is frequently and
effectively specified as Kripke structures, we will use them as semantic structure as much
as possible, e.g., also as basis for behavioral properties. Having the same structures im-
proves interchangeability and reuse amongst techniques, as well as their comparison and
understanding by verification engineers.
We also restrict their kind as little as possible, e.g., by allowing infinitely many states

wherever possible, as well as final states, i.e., end states, and adapting the semantics of
temporal logics accordingly. This improves how termination as well as non-termination
can be handled. Behavioral properties, temporal logics and their relations are also intro-
duced in a more general, formal and consistent way. Therewith, we can better compare
various classes of behavioral properties, temporal logics and their expressiveness.

Roadmap. To be able to talk about behavior, Sec. 4.2 defines the semantics of behavioral
properties over Kripke structures (cf. Subection 3.4.1) and classifies them. Sec. 4.3 shows
how these classes of properties can be described formally by defining several temporal
logics. Sec. 4.4 further investigates the relationships between behavioral properties and
various temporal logics.

4.2. Behavioral Properties

Subsec. 3.4.1 introduced properties of single states in isolation by extending a transition
system (S, T ) to a Kripke structure (S, T,Σ, I) (cf. Def. 3.18).
Behavioral properties usually do not only consider a single state s in isolation, but the

whole Kripke structure (e.g., the complete path that led to s). They are sometimes also
called temporal properties. In practice, even the simplest ones that do only consider s in
isolation, additionally investigate whether s is reachable from init, and are hence called
reachability properties.
For properties of states in isolation, we did not consider the states themselves, but their

interpretation I over Σ. We take the same model theoretical approach for behavioral
properties, as defined in Def. 4.2. For this, Def. 4.1 firstly abstracts from a state s to
I(·, s), then lifts the abstraction to paths and finally to SKripke (resulting in a kind of
complete trace equivalence [Bonchi et al., 2012] in relation to I(·, s)).
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Definition 4.1. Let both S1 = (S1, T1,Σ, I1) and S2 = (S2, T2,Σ, I2) be in SKripke,
S = S1 ∪ S2 (wlog, S1 ∩ S2 = ∅).
Then ≈Σ is the equivalence relation defined

• over S with ∀s, s′ ∈ S : s ≈Σ s′ :⇔ I(·, s) = I(·, s′), with
I being either I1 or I2, i.e.,∀s ∈ S : I(·, s) = Ii(·, s) for s ∈ Si;
• over paths(S1) ∪ paths(S2) with ∀(si)i, (s′i)i ∈ paths(S1) ∪ paths(S2) :

(si)i ≈Σ (s′i)i :⇔ |(si)i| = |(s′i)i| and ∀j ∈ [0, . . . , 1 + |(si)i|) : sj ≈Σ s′j ;
• over SKripke with S1 ≈Σ S2 :⇔ pathsmax(S1)/≈Σ = pathsmax(S2)/≈Σ.

Definition 4.2. Let the signature Σ be given. Then

• a behavioral property P is a subset of SKripke/≈Σ;
• [S] ∈ SKripke/≈Σ satisfies P :⇔ [S] ∈ P (written [S]|=P );
• S ∈ SKripke satisfies P :⇔ [S] |= P (written S|=P )

⇔: S is a model for P.

Roadmap. This section covers the classification of behavioral properties as depicted
in Fig. 4.1: Subsec. 4.2.1 defines branching time behavioral properties, Subsec. 4.2.2
linear time behavioral properties. The focus is on linear time properties, which are the
most suitable properties for software verification (cf. Subsec. 5.2.5). Therefore Fig. 4.1
already depicts further details: the corresponding temporal logics LTL (introduced in
Subsec. 4.3.2) and Büchi automata (introduced in Subsec. 4.3.2).

branching timebranching time

BüchiBüchi
LTLLTL

linear timelinear time
safetysafety

livenessliveness

Psafety∧
Pliveness

Psafety∧
Pliveness

truetrue

Figure 4.1.: Classification of linear time properties

4.2.1. Branching time properties
Definition 4.3. A branching time property is an arbitrary behavioral property in
2SKripke/≈Σ .

Note. By Def. 4.3, branching time properties cover structures that can branch, i.e.,
need not be deterministic. The kind of Kripke structures S = (S, T,Σ, I) on which

66



4.2. Behavioral Properties

satisfaction of branching time properties are evaluated is not constrained in this thesis,
in contrast to most literature, where T is restricted to transitive, asymmetric, or total
relations, for example. Totality, which is the only constraint in [Clarke et al., 1999b]
and [Baier and Katoen, 2008], is not required in this thesis, where S is only restricted
to the reachable states where necessary (cf. Def. 3.17). Therefore a real end state s can
be used without the workaround of self-loops (i.e., s→ s, cf. page 71).

If some state s ∈ S needs to be distinguished on different paths, copies of s can be
used on the different paths, i.e., S can be unwound. For instance if q3 of S on the left
in Fig. 11.1 (page 255) should be reachable from q1 only for i > 0, but i should not be
observable, a copy of q1 can be used, leading to S ′ on the right. Completely unwinding
S this way results in its computation tree, as defined in Def. 4.4.

Definition 4.4. Let S ∈ SKripke with S0 = {init}.
Then the computation tree of S (computationTree(S) is the unique tree with the

root init and the children of a node s are exactly a copy of each element in dest(s,→)
of S.

Therefore, ∀π1, π2 ∈ pathsfin(computationTree(S)) : dest(π1) = dest(π2) =⇒ π1 =
π2 and S ≈Σ computationTree(S). SKripke/≈Σ can be represented with the (potentially)
infinite data structure tree(node) := (node× tree(node)N) ∪̇ {∅}, with each node from
S/≈Σ.

4.2.2. Linear time properties
Definition 4.5. A Kripke structure (S, T,Σ, I, S0) is linear iff it is deterministic and
|S0| = 1. SKripke,linearSKripke,linearSKripke,linear denotes the set of all linear Kripke structures.

Definition 4.6. A linear time property is a behavioral property in 2SKripke,linear/≈Σ .

Notes. Since Slin ∈ SKripke,linear is deterministic, computationTree( Slin) (i.e., Slin’s
complete unwinding) is graph isomorphic to the unique path in pathsmax(Slin, {init}),
denoted π(Slin,{init}) (or πSlin for short). Slin has finite length :⇔ |πSlin | ∈ N≥0 (which
is not equivalent to S being finite). If, conversely, Sarbitrary = (S, T,Σ, I) ∈ SKripke,
s ∈ S and a path π = (si)i ∈ paths(Sarbitrary, s) are given, a linear Kripke structure
S(Sarbitrary ,π) (or Sπ for short) with π(Sπ) graph isomorphic to π can be constructed:
Sπ := (S′, T ′,Σ, I ′) with S′ := [0, . . . , 1 + |π|), T ′ := {(i − 1, i)|0 < i < 1 + |π|} and
∀p ∈ Σ : I ′(i, p) := I(si, p). For a lasso π = πprefix · (πloop)ω, we can alternatively choose
the finite linear Kripke structure with S′ restricted to [0, . . . , |πprefix|+ |πloop| − 1] and
T ′ additionally containing (|πprefix| + |πloop| − 1, |πprefix|). As specialization from the
previous section, we then have Slin ≈Σ S(πSlin ), and SKripke,linear/≈Σ can be represented
with the (potentially) infinite data structure sequence(node) := node∗ ∪̇ nodeω, with
each node from S/≈Σ. Hence, such a sequence can be considered as finite or infinite
word with letters from 2Σ. With this and k ∈ N≥0, (Slin)≥k := S(πSlin )≥k and (Slin)≤k
:= S(πSlin )≤k can be defined.
This thesis uses SKripke,linear/≈Σ as default structure for linear time properties, since

this is a subset of SKripke/≈Σ and abstracts from irrelevant details of other represen-
tations (e.g., whether unwounded), and the thesis represents as much as possible via
Kripke structures.
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Definition 4.7. A counterexample to a linear time property P is an element S ∈
SKripke,linear/≈Σ (or S ∈ SKripke,linear or its path πS) with S 6|= P .
A witness to a linear time property P is an element S ∈ SKripke,linear/≈Σ (or S ∈

SKripke,linear or its path πS) with S |= P .

As depicted in the Euler diagram in Fig. 4.1, linear time properties (except for
P = SKripke,linear/≈Σ, denoted in temporal logic as true, cf. Sec.4.3) are partitioned
into safety properties, liveness properties, and Psafety ∧ Pliveness, with the following
definitions, similar to [Baier and Katoen, 2008]:

Definition 4.8. A safety property P is a linear time property for which all coun-
terexamples have a prefix causing refutation, i.e., for all counterexamples to P , it can
be determined after finitely many transitions that P does not hold: With Σ given, ∀S ∈
SKripke,linear :

(
S 6|= P =⇒ ∃|i ∈ N (∀S ′ ∈ SKripke,linear with S ′≤i ≈Σ S≤i) : S ′ 6|= P

)
.

Definition 4.9. A liveness property P is a linear time property for which no coun-
terexample has a prefix causing refutation: With Σ given, ∀S ∈ SKripke,linear ∀i ∈
N ∃|S ′ ∈ SKripke,linear : (S ′≤i ≈Σ S≤i and S ′ |= P ).

Example. A descriptive safety property is P1 :=the program does not terminate within
42 steps. A safety property often describes the reachability property that some bad state
property, p, never happens ([]!p, cf. Subsec. 4.3). A liveness property often describes that
some good state property, p will eventually happen (<> p, cf. Subsec. 4.3), e.g., P2 :=the
program eventually terminates.

Safety and liveness properties are disjoint (except for true), but there are also other
linear time properties: those for which some but not all refuting traces have a prefix
causing refutation, e.g., the property P1 ∧ P2. Because of the following lemma, given in
Baier and Katoen [2008], this thesis describes such properties as Psafety ∧ Pliveness.

Lemma 4.10. A linear time property that is neither a safety nor a liveness property
can be specified as a conjunction of a safety and a liveness property.

4.3. Temporal Logics

A behavioral property is usually not given explicitly as subset of SKripke/≈Σ, but im-
plicitly using some temporal logic formalism, e.g., a formula or an automaton.

Definition 4.11. Temporal logics are formalisms that specify behavioral properties.
TL denotes the set of all property descriptions in temporal logics for behavioral
properties.

Def. 4.12 describes when a system specification satisfies a property description, Def. 4.13
relates property descriptions to behavioral properties. Def. 4.14 and Def. 4.15 define con-
cise formalisms in relation to semantics.
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Definition 4.12. Let S = (S, T,Σ, I, S0) ∈ SKripke, s ∈ S, temporal logic L ⊆ TL and
F ∈ L. Then:

• val(S,s) : L → B is the evaluation function, which
extends I to L, describing L’s semantics;

• (S, s) satisfies F :⇔ val(S,s)(F ) = true (written (S, s)|=F );
• S satisfies F :⇔ ∀s ∈ S0 : (S, s) |= F (written S |= F )

⇔: S is a model for F.

Definition 4.13. Let temporal logic L ⊆ TL, F ∈ L and behavioral property P ⊆
SKripke/≈Σ. Then:

P is specified by F :⇔ ∀S ∈ SKripke : (S |= P ⇔ S |= F ).

Definition 4.14.

Prop : TL→ 2SKripke/≈Σ , F 7→ Prop(F ) :={
[S] ∈ SKripke/≈Σ

∣∣S |= F
}
;

Proplin : TL→ 2SKripke,linear/≈Σ , F 7→ Proplin(F ) :=
Prop(F ) ∩ SKripke,linear/≈Σ;

Models : TL→ 2SKripke , F 7→ Models(F ) :={
S ∈ SKripke

∣∣S |= F
}
;

Modelslin : TL→ 2SKripke,linear , F 7→ Modelslin(F ) :=
Models(F ) ∩ SKripke,linear .

Definition 4.15. Let F1, F2 ∈ TL.
Then F1≡ F2 :⇔ ∀S ∈ SKripke : (S |= F1 ⇔ S |= F2).
We say F1 and F2 are equivalent.

Notes. Since a temporal logic L ⊆ TL specifies behavior, its semantics must be de-
termined by extending I to val(S,s) by only considering I(·, s) and not s itself. So the
requirement on temporal logics is that ≈Σ is a congruence relation with respect to |=,
i.e., f.a. F ∈ L f.a. S1,S2 ∈ SKripke with S1 ≈Σ S2 : (S1 |= F ⇔ S2 |= F ). Therefore |=
is well defined on SKripke/≈Σ (i.e., [S1]≈Σ |= F ⇔ S1 |= F ) and so is Prop and Models.
Put differently, P is specified by F iff P = Prop(F ) and F1 ≡ F2 :⇔ Prop(F1) =

Prop(F2).
Originating from philosophy and linguistics, [Pnueli, 1977] transferred temporal logics

to computer science to specify behavioral properties for reactive systems, and to reason
about them.
Though property descriptions in temporal logics are often formulas (e.g., CTL∗ ⊆ TL,

cf. Subsec. 4.3.1), this is not necessarily so (e.g., Büchi automata ⊆ TL are also allowed,
cf. Subsec. 4.3.2).

Closure of a temporal logic, see Def. 4.16, is an interesting and useful property since
it simplifies some tasks and proofs (e.g., Lemma 5.8).

Definition 4.16. Let temporal logic L ⊆ TL and n-ary operator O be given. Then:
• L is closed under O :⇔ ∀F1, . . . , Fn ∈ L : ∃|F ∈ L with F ≡ O(F1, . . . , Fn);
• L is closed :⇔ L is closed under all its operators;
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4. Temporal Logics

• the smallest set S ⊆ TL that is closed under some operators is called the closure
of those operators.

The semantics of temporal logics are defined differently here than in the standard
literature, e.g., [Clarke et al., 1999b]: they can be interpreted in Kripke structures with
finitely many states and end states, too (cf. page 71).

Roadmap. Subsec. 4.3.1 describes temporal logics for branching time properties (branch-
ing time logics for short), and its most prominent representatives CTL∗ and CTL.
Subsec. 4.3.2 considers temporal logics for linear time properties, and gives LTL and
(extended) Büchi automata as examples.
The Euler diagram in Fig. 4.3 gives an overview over these and further temporal logics

and their relationships (discussed in Sec. 4.4).

4.3.1. Temporal Logics for Branching Time Properties

CTL∗

CTL∗ is the propositional temporal logic that extends propositional logic with the ex-
istential path quantifier E, the unary modality X, called next time operator, and the
binary modality U, called until operator, to express properties about the whole Kripke
structure, i.e., about behavior.

Syntax. The distinction between linear time and branching time properties is reflected
in the syntactic structure of CTL∗ and its subsets CTL (see Subsec. 4.3.1) and LTL (see
Subsec. 4.3.2): they are all defined by linear time and branching time formulas.
To handle branching time aspects, branching time formulas (called state formulas

in [Clarke and Draghicescu, 1988]) are able to existentially quantify over pathsmax(S, s)
for a given state s using the existential path quantifier E (also denoted by ∃):

〈branching〉 ::= 〈atomic prop〉
∣∣ (〈branching〉 ∨ 〈branching〉) ∣∣

¬〈branching〉
∣∣ E 〈linear〉;

〈atomic prop〉 ::= p; where p ∈ Σ

To handle linear time aspects, linear time formulas (called path formulas in [Clarke
and Draghicescu, 1988]) use the next time operator X and the until operator U:

〈linear〉 ::= 〈branching〉
∣∣ (〈linear〉 ∨ 〈linear〉) ∣∣ ¬〈linear〉 ∣∣(

〈linear〉 U 〈linear〉
) ∣∣ X 〈linear〉;

Definition 4.17. Computation Tree Logic∗ (CTL∗ ) is the set of all branching time
formulas.

Note. For all formulas, parentheses can be inserted for disambiguation.
The syntax of CTL∗ shows that it is closed under all its operators.
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Semantics. To specify the semantics of CTL∗ , Def. 4.18 inductively defines |= over its
syntactic structure.

Definition 4.18. Let S = (S, T,Σ, I) ∈ SKripke, s ∈ S, π ∈ pathsmax(S, s), bi branching
time formulas and li linear time formulas. Then:

• (S, s) |= p :⇔ I(p, s) = true (p ∈ Σ)
• (S, s) |= ¬b1 :⇔ (S, s) 6|= b1

• (S, s) |= b1 ∨ b2 :⇔ (S, s) |= b1 or (S, s) |= b2

• (S, s) |= E l1 :⇔ ∃|π ∈ pathsmax(S, s) : (S, π) |= l1

• (S, π) |= b1 :⇔ (S, source(π)) |= b1

• (S, π) |= ¬l1 :⇔ (S, π) 6|= l1

• (S, π) |= l1 ∨ l2 :⇔ (S, π) |= l1 or (S, π) |= l2

• (S, π) |= X l1 :⇔ |π| > 0 and (S, π≥1) |= l1

• (S, π) |= l1U l2 :⇔ ∃|k ∈ [0, . . . , 1 + |π|) :
(
(S, π≥k) |= l2 and

∀j ∈ [0, . . . , k) : (S, π≥j) |= l1
)

Notes. For CTL∗, linear time formulas can express more than linear time properties:
because of the syntactic definition 〈linear〉 ::= 〈branching〉

∣∣ . . . , the linear time aspects
and branching time aspects are intertwined and the linear time formulas contain all of
CTL∗.
Both the syntax and semantics of CTL∗ allow formulas with directly cascaded path

quantifiers, i.e., without linear time operators between them (e.g., A E A X p). Since all
but the last quantifier are irrelevant for the semantics, they can be ignored. Hence this
thesis does not consider such formulas, but also does not forbid them.
The semantics of CTL∗ show that the propositional logic operators have set theoretic

semantics for SKripke,1 : Let b1, b2 ∈ CTL∗, then

• Models(b1 ∧ b2) = Models(b1) ∩Models(b2)
• Models(b1 ∨ b2) = Models(b1) ∪Models(b2)
• Models(¬b1) = SKripke,1 \Models(b1).

Termination. Let SKripke,≥ω :=
{
S ∈ SKripke

∣∣∀π ∈ pathsmax(S) : |π| = ω
}

and
SKripke,<ω :=

{
S ∈ SKripke

∣∣∀π ∈ pathsmax(S) : |π| < ω
}
.

Usually, temporal logics use infinite trace semantics, i.e., paths with finite length
are not allowed. Instead, a self-loop is added to an originally final end state s ∈ S
(cf. [Clarke et al., 1999b] or [Holzmann, 2004]), resulting in an infinite path where the
last state is repeated (called stuttering in [Lamport, 1983]) infinitely. So instead of
having an end state, i.e., s6→, dest(s,→) = {s} is used, and only SKripke,≥ω is consid-
ered. Avoiding finite paths in this way results in fewer case distinctions in proofs about
some temporal logic properties (e.g., Theorem 4.46). But the approach has multiple
disadvantages:
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1. S needs to be modified, i.e., the kind of Kripke structures allowed are restricted
(e.g., by requiring totality, cf. Subsec. 4.2.1);

2. termination is not directly expressible in such a temporal logic. Instead, termi-
nation needs to be specified individually for each Kripke structure S: each valid
terminating state is specified manually, for instance in [Manna and Pnueli, 1995,
Properties of Terminating Programs, page 61ff] by introducing a propositional
variable ei that is set in exactly that state; if S has n valid terminating states,
e := e1∨· · ·∨en specifies being in a valid terminating state. This approach quickly
becomes infeasible, especially since some optimizations and reductions (e.g., pro-
gram slicing, see Subsec. 5.4.3) are incompatible with this solution;

3. an end state with a self-loop is indistinguishable from an originally already present
self-loop. If distinction is required, e.g., for several safety checks and for livelock
detection (cf. Chapter 6), originally final end states again need to be specified
individually, as in Item 2, or handled by some workaround;

4. it is not suitable when traces need to stay finite (e.g., for testing and bounded
model checking);

5. unintuitive next-time operator, e.g., X p might hold in an end state;
6. counterexamples need not be shortest because of the self-loops.
To avoid item 2 and 3 in infinite trace semantics, a state⊥ 6∈ S with dest(⊥,→) = {⊥}

can be added into S, and a transition s→ ⊥ from every originally final end state s ∈ S
(similarly to Def. 4.44, see also [Baier and Katoen, 2008]. But the other disadvantages
still hold, and
• modularity becomes more difficult, since ⊥ must either be shared when modules
are combined, or multiple ⊥ exist, which must be handled or checked for;
• the stronger the Kripke structures must be modified, the more error-prone and
costly it gets to create and handle them;
• formulas become more complex, since they need to take ⊥ with its meaning in all
situations into account. If they do not, item 5 from above still holds.

Hence we avoid the workaround of transforming Kripke structures and rather take
the more general approach of allowing finite paths, too. So we cover arbitrary Kripke
structures (but can still restrict ourselves in certain situations or use self-loops if we want
to). Our semantics, which we call finite ∪ infinite trace semantics (explained below),
do not have the disadvantages listed above. Simultaneously allowing both finite and
infinite traces were also covered in [Kamp, 1968] for the linear case, where the finite case
is investigated on the last few pages, and in [Baier and Katoen, 2008] for CTL. We use
it consistently throughout this chapter, up to ECTL∗ [Dam, 1994].
With finite ∪ infinite trace semantics, the semantics of the operator X differs for finite

paths from the usual approach: If s ∈ S with s 6→, then in this thesis (S, s) 6|= X p, which
models X more intuitively, closer to the diamond operator of modal logics (cf. [Fitting
and Mendelsohn, 1999]), and makes corner cases more explicit. These semantics were
introduced for the linear case by the philosophical dissertation [Kamp, 1968], used for
CTL in [Baier and Katoen, 2008] and adapted in [Manna and Pnueli, 1995; Bauer et al.,
2010] by introducing the runtime trace semantics FLTL (by adding the weak next
operator Xw, cf. Def. 4.24) for runtime verification (cf. Sec. 2.2), i.e., when considering
finite traces only. They are sometimes also referred to as finite trace semantics,
e.g., in [Bauer and Haslum, 2010], where several variants exist [Manna and Pnueli,
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1995; Eisner et al., 2003; Fraser and Wotawa, 2006]. Finite trace semantics only cover
finite but extensible traces, i.e., only consider SKripke,<ω. In this thesis, however, we
allow both finite traces for termination as well as infinite traces, which we call finite
∪ infinite trace semantics. This is more than the finite and infinite cases combined,
i.e., SKripke ) SKripke,<ω ∪̇ SKripke,≥ω. For instance, a reactive system that is waiting for
input in a potentially endless loop and only terminates upon a specific input exposes
self-loops, end states and infinite traces. These cases all having different meaning and
are treated appropriately with finite ∪ infinite trace semantics.
As consequence of our semantics, the formula Ffin = ¬X true can be used to detect

end states. Using a self-loop in s results in (S, s) 6|= Ffin. Furthermore, when a formula
with top-level operator E or U is interpreted in an end state, the algorithms for our
semantics may only choose the shortest path, of length 0, as solution or counterexample.
On the mathematical level, this chapter shows how the general approach of allowing

finite paths can be carried through consequently up to Büchi automata (cf. Def. 4.29),
translations from LTL to Büchi (cf. Def. 4.44), and statements about the expressiveness
of temporal logics (cf. Theorem 4.49): some of the following proofs about temporal logic
properties have to consider more cases, but definitions and structures become simpler
and more general, leading to richer statements. In practice, though, many formulas are
free of the next time operator (cf. page 76), for which the semantics are the same for
finite, infinite and finite ∪ infinite trace semantics.

Secondary Operators. Up to now, we have only considered the operator basis
{
∨,¬, E,

X, U
}
. Just like other binary Boolean operators, the following temporal operators can

be expressed within our operator basis, with li being linear time formulas.

• the universal path quantifier A l1 (or ∀ l1), as abbreviation for ¬E¬l1. So the
semantics is:
(S, s) |= A l1 :⇔ ∀π ∈ pathsmax(S, s) : (S, π) |= l1;

• the sometimes operator F l1 (or ♦ l1, also called diamond or eventually
operator), as abbreviation for

(
trueU l1

)
. So the semantics is:

(S, π) |= F l1 :⇔ ∃|k ∈ [0, . . . , 1 + |π|) :
(
(S, π≥k) |= l1;

• the always operator G l1 (or � l1, also called box operator or globally op-
erator), as abbreviation for ¬ F ¬ l1. So the semantics is:
(S, π) |= G l1 :⇔ ∀k ∈ [0, . . . , 1 + |π|) :

(
(S, π≥k) |= l1;

• the release operator
(
l1R l2

)
, as abbreviation for ¬(¬l1U¬l2). So the semantics

is:
(S, π) |= l1 R l2 :⇔ min

{
i ∈ [0, . . . , 1 + |π|)

∣∣(S, π≥i) |= l1
}

�
min

{
i ∈ [0, . . . , 1 + |π|)

∣∣(S, π≥i) |= ¬l2}, or G l2;

• theweak until operator
(
l1W l2

)
, or

(
l1Uweak l2

)
(also called unless operator),

as abbreviation for (l1 U l2) ∨G l1. So the semantics is:
(S, π) |= l1 W l2 :⇔ ∃|k ∈ [0, . . . , 1 + |π|) :

(
(S, π≥k) |= l2 and ∀j ∈ [0, . . . , k) :

(S, π≥j) |= l1
)
, or ∀k ∈ [0, . . . , 1 + |π|) : (S, π≥k) |= l1.
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Computation Tree Logic

Computation Tree Logic (CTL) is the main representative for a logic describing
branching time properties.

Syntax. CTL is a subset of CTL∗ that strongly restricts CTL∗’s linear time aspects by
only allowing one linear time aspect (operator X or U) per branching time aspect (op-
erator E). So CTL restricts CTL∗’s linear time formulas, but retains CTL∗’s branching
time formulas:

〈branching〉 ::= 〈atomic proposition〉
∣∣ (〈branching〉 ∨ 〈branching〉) ∣∣

¬〈branching〉
∣∣ E 〈linear〉;

〈linear〉 ::= X 〈branching〉 |
(
〈branching〉 U 〈branching〉

)
|

¬( X 〈branching〉) | ¬(〈branching〉 U 〈branching〉)

Definition 4.19. Computation Tree Logic (CTL) is the set of all branching time
formulas.
This results in the following temporal operators of CTL (CTL operators for

short), which intertwine branching time and linear time aspect (and are sometimes
confusingly denoted as branching time operators): EX b1, E¬X b1, E(b1 U b2),
E(¬ (b1 U b2)).

Semantics. Since CTL is a subset of CTL∗, its semantics is determined by the definition
of |= in Def. 4.18. So a CTL formula is interpreted over arbitrary Kripke structures.
Note. The syntax of CTL shows that it is closed under propositional logic operators
and CTL operators.
The semantics of CTL show that the propositional logic operators have set theoretic

semantics for SKripke,1 .

Secondary Operators. We may use the following abbreviations in CTL, with bi being
branching time formulas: EF b1, E¬ F b1, EG b1, E¬G b1, E(b1 R b2), E(¬ (b1 R b2),
and all CTL operators with the universal instead of the existential path quantifier.
This is possible since substituting A, F, G, R with their definition (given in the previous
subsection) in these abbreviations directly results in formulas that are conform to CTL’s
syntax.
We can also use the weak until operator in CTL:
• E(b1 W b2) as abbreviation for E (b1 U b2) ∨ EG b1;
• A(b1 W b2) as abbreviation for ¬E

(
¬b2 U ¬(b1 ∨ b2)

)
since

¬E ¬
(
b1 W b2

)
= ¬E

(
¬(b1 U b2) ∧ ¬(G b2)

)
=

¬E
(
(G b2 ∨ (¬b2 U ¬(b1 ∨ b2))) ∧ ¬(G b2)

)
.

4.3.2. Temporal Logics for Linear Time Properties
Linear Time Logic

Linear Time Logic (LTL) restricts CTL∗ to purely linear time properties (cf. Sub-
sec. 4.4) and is the main representative of a logic for linear time properties.
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Syntax. LTL strongly restricts CTL∗’s branching time formulas, but retains CTL∗’s
linear time formulas:

〈branching〉 ::= 〈atomic proposition〉;
〈linear〉 ::= 〈branching〉

∣∣ (〈linear〉 ∨ 〈linear〉) ∣∣ ¬〈linear〉 ∣∣(
〈linear〉 U 〈linear〉

) ∣∣ X 〈linear〉;
Definition 4.20. Linear Time Logic (LTL) is the set of all linear time formulas.

Semantics. An LTL formula L is interpreted over linear Kripke structures (cf. Def. 4.5)
as L describes a linear time property. The semantics of L is determined by |= for CTL∗,
defined in Def. 4.18, because for Slin ∈ SKripke,linear : Slin ≈Σ S(πSlin ), and CTL∗’s
semantics does not consider the states themselves but their interpretation I. Therefore
(Slin, init) |= L :⇔ (Slin, πSlin) |= L in CTL∗.
An LTL formula L can be identified with ¬E¬L (i.e., with A L, see abbreviations in

Subsec. 4.3.1). This does not change the semantics of L for linear Kripke structures,
because of Lemma 4.21. But with this universal path quantification, LTL formulas can
also be interpreted over arbitrary Kripke structures, as defined in Def. 4.22. Therefore
LTL is really a subset of CTL∗.

Lemma 4.21. Let S = (S, T,Σ, I) be a deterministic Kripke structure, state s ∈ S,
formula L ∈ LTL and path quantifier Q ∈ {E, A}.
Then (S, s) |= Q L ⇔ (S, πS) |= L.

Proof. (S, s) |= Q L
⇔ for the unique path π ∈ pathsmax(S, s) : (S, π) |= L
⇔ (S, π(S,s)) |= L.

Definition 4.22. Let S = (S, T,Σ, I) ∈ SKripke, s ∈ S and L ∈ LTL.
Then (S, s) |= L :⇔ ∀π ∈ pathsmax(S, s) : (Sπ, s) |= L.

Notes. The syntax of LTL shows that it is closed under all its operators.
For temporal logics for linear time properties, the propositional logic operators do not

have set theoretic semantics for SKripke,1 (cf. Def. 4.22): A counterexample is the CTL∗
formula A ¬ X q ∈ LTL. Its complement is the CTL∗ formula E X q, which is not
expressible in LTL (cf. Lemma 4.52). But LTL’s semantics show that its propositional
logic operators have set theoretic semantics for SKripke,linear .

Secondary Operators. The secondary linear-time operators F, G, R and W of CTL∗ can
also be used in LTL since they can all be reduced to until operators, which can be used
in LTL in arbitrary nesting.

Sometimes, we restrict the set of formulas we consider: only formulas in negation
normal form, as defined in Def. 4.23, or next-free formulas, as defined in Def. 4.25.

Definition 4.23. A formula in negation normal form contains the negation only
directly in front of atomic propositions.
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To transform a formula L into an equivalent formula LNNF in negation normal form,
we need dual operators, i.e., the ability to move negation outside in (i.e., top down from
the highest level to the lowest in L’s abstract syntax tree). Since ¬ X ¬p 6≡ X p for end
states, we need to introduce another operator, Xw, defined in Def. 4.24.

Definition 4.24. The weak next operator is defined as

Xw〈linear〉 := ¬X¬〈linear〉.

Thus LNNF contains the operators U, R, X, Xw,∧,∨, and in front of atomic propo-
sitions also the operator ¬.

Definition 4.25. LTL−X is the set of next-free LTL formulas, i.e., constructed from
the operator basis

{
∨,¬, U

}
.

LTL−X is an important subclass of LTL since LTL−X is sufficiently expressive in
practice and those formulas exactly expresses the linear time properties that are closed
under stuttering (cf. Def. 4.26 and Lemma 4.27), i.e., those formulas are insensitive
to stuttering: finitely repeating a state s (or [s]/≈Σ) on a path [Clarke et al., 1999b;
Holzmann, 2004; Baier and Katoen, 2008].

Definition 4.26. Let S,S ′ ∈ SKripke,linear , π := πS , π
′ := πS′ . Then

• π →stutter π
′ :⇔ ∃|k ∈ N≥0 : [π≤k]/≈Σ = [π′≤k]/≈Σ and [π>k]/≈Σ = [π′>k+1]/≈Σ

and source([π′>k]) = source([π′>k+1]); we say [π′] stutters at k;
• ≈st, called stutter equivalence, is the reflexive, transitive and symmetric closure

of →stutter over paths;
• likewise, ≈st is an equivalence relation over SKripke,linear and SKripke,linear/≈Σ;
• F is invariant under stuttering :⇔ ∀S1,S2 ∈ SKripke,linear with S1 ≈st S2 :

(S1 ∈ Modelslin(F )⇔ S2 ∈ Modelslin(F )).

Lemma 4.27. Let F ∈ LTL−X . Then Proplin(F ) is closed under stuttering (i.e., P ∈
Proplin(F ), P ′ ∈ [P ]/≈st ⇒ P ′ ∈ Proplin(F )).

Proof. The proof is a simple induction on the complexity of F , cf. [Baier and Katoen,
2008].

Note. Lemma 4.27 is important for partial order reduction on LTL−X (cf. Subsec. 5.4.1).
Though this thesis makes no use of it, the converse of Lemma 4.27 also holds: If linear

time property P ∈ 2SKripke,linear/≈Σ is closed under stuttering, then there is F ∈ LTL−X
with Proplin(F ) = P [Clarke et al., 1999b].

Büchi Automata

More complex linear time properties are either not practically expressible in LTL and
CTL∗, or not at all. Hence we use an automaton A to specify linear time properties:
The structure of A is identical to an FSM, but the condition of a path in pathsmax(A)
being accepting is modified, resulting in ω-automata, defined in Def. 4.28.

Definition 4.28. Let signature Σ be fixed and A = (Q,∆, A,Q0, F ) ∈ SFSM with
A = 2Σ.
Then A is an ω-automaton. Sω−automatonSω−automatonSω−automaton denotes the set of all ω-automata.
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Depending on how acceptance is defined, different classes of ω-automata arise. Büchi
automata are one of the most prominent ω-automata. They use the acceptance condition
given in Def. 4.29. This definition deviates from the usual one (cf. [Clarke et al., 1999b;
Baier and Katoen, 2008]) in that maximal finite paths may be accepted, too.

Definition 4.29. Let the signature Σ be fixed, A ∈ Sω−automaton and π ∈ pathsmax(A).
Then A is a Büchi automaton iff the following acceptance is used: A accepts π :⇔{

dest(π) ∈ F if π ∈ pathsfinmax(A);∣∣{i ∈ N|si ∈ F}∣∣ = ω if π ∈ pathsω(A).
Büchi denotes the set of all Büchi automata.

Def. 4.30 lifts acceptance for an ω-automaton A from pathsmax(A) to SKripke,linear ,
defining satisfiability.

Definition 4.30. Let the signature Σ be fixed, S ∈ SKripke,linear and A ∈ Sω−automaton.
Then

(S, init) satisfies A (written (S, init)|=A) :⇔
∃|π ∈ pathsmax(A) : A accepts π and both π and S describe the same linear behavior:
|π| = 1 + |πS | and for (si

li−→ si+1) := π and (s′i)i := πS we have ∀i ∈ [0, . . . , 1 + |πS |) :
li = supp(I(·, s′i)).

Def. 4.31 in turn lifts satisfiability from SKripke,linear to SKripke by universal path quan-
tification, similarly to Def. 4.22 for LTLs. With this and the more general definition of
Büchi acceptance in Def. 4.29, this thesis again allows arbitrary Kripke structures, as
for the previous temporal logics.

Definition 4.31. Let S = (S, T,Σ, I) ∈ SKripke, s ∈ S and A ∈ Sω−automaton.
Then (S, s) |= A :⇔ ∀π ∈ pathsmax(S, s) : (Sπ, s) |= A.

For some classes of ω-automata and acceptance conditions, the FSM (Q,∆, A,Q0, F )
must be generalized, for instance such that F is a subset of Q2 (Streett automata, Rabin
automata), a subset of 2Q (Muller automata), cf. [Farwer, 2001], or a finite set of subsets
of Q (extended Büchi automata), cf. Def. 4.32. Except for the acceptance conditions,
all properties of Sω−automaton apply for these automata, too.

Definition 4.32. Let the signature Σ be fixed, A = (Q,∆, 2Σ, Q0,F) with n ∈ N>0,F =
(Fi)i∈[1,...,n] and ∀i ∈ [1, . . . , n] : Fi ⊆ Q. Let π ∈ pathsmax(A).
Then A is an extended Büchi automaton iff the following acceptance is used:
A accepts π :⇔

∀j ∈ [1, . . . , n] :
{

dest(π) ∈ Fj if π ∈ pathsfinmax(A);∣∣{i ∈ N|si ∈ Fj}∣∣ = ω if π ∈ pathsω(A).
Extended-Büchi denotes the set of all extended Büchi automata.

For given Büchi automata A1 and A2, a new one can be constructed that reflects
a combination of A1,A2; the intersection (cf. Def. 4.33) of A1,A2 is particularly im-
portant, since this construction can be used to emulate extended Büchi automata (cf.
Lemma 4.43), to emulate LTL formulas (cf. Lemma 4.46) and to perform LTL model
checking (cf. Subsec. 5.3.2).
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Definition 4.33. Let Σ be fixed andA1 = (Q1,∆1, 2Σ, Q0
1, F1),A2 = (Q2,∆2, 2Σ, Q0

2, F2)
∈ Büchi.
Then the conjunctive Büchi automaton is A1 ∩ A2 :=

(
Q,∆, 2Σ, Q0, F

)
with

• Q := Q1 ×Q2 × {1, 2};
• Q0 := Q0

1 ×Q0
2 × {1};

• ∆ :=
{
((q1, q2, x), a, (q′1, q′2, x′)) ∈ Q× 2Σ ×Q

∣∣(q1, a, q
′
1) ∈ ∆1,

(q2, a, q
′
2) ∈ ∆2 and x′ =


2 if x = 1 and q1 ∈ F1;
1 if x = 2 and q2 ∈ F2;
x otherwise;

}
;

• F := ({q1 ∈ F1|q1 6→} × {q2 ∈ F2|q2 6→} × {1, 2}) ∪̇
({q1 ∈ F1|q1 →}× {q2 ∈ Q2|q2 →}× {1}).

Notes 4.34. For the special case of F1 = Q1 (or F2 = Q2), the construction of A1 ∩A2
can be simplified by collapsing the third dimension {1, 2} of Q, resulting in the syn-
chronous product (cf. Def. 3.32), in this case:
• Q := Q1 ×Q2;
• Q0 := Q0

1 ×Q0
2;

• ∆ :=
{
((q1, q2), a, (q′1, q′2)) ∈ Q× 2Σ ×Q

∣∣(q1, a, q
′
1) ∈ ∆1

and (q2, a, q
′
2) ∈ ∆2

}
;

• F := ({q1 ∈ F1|q1 6→} × {q2 ∈ F2|q2 6→}) ∪̇
({q1 ∈ F1|q1 →}× {q2 ∈ F2|q2 →}).

Since ∆ uses the synchronous product, i.e., requires corresponding transitions in both
∆1 and ∆2 with the same label, a restriction of the enabled labels in Ai also restricts
the enabled labels in A1 ∩A2, hence its state space often has much fewer states than Q.
Restrictions of the enabled labels can yield new end states, which necessitate worka-

rounds [Baier and Katoen, 2008] unless our finite ∪ infinite trace semantics are used (cf.
page 71).

Lemma 4.35. Let A1,A2 ∈ Büchi.
Then Modelslin(A1 ∩ A2) = Modelslin(A1) ∩ Modelslin(A2).

Proof. Let S ∈ Modelslin(A1 ∩ A2) with π ∈ pathsmax(A1 ∩ A2) the path accepted by
A1∩A2 with the same linear behavior as S. Let ((q1

i , q
2
i , xi)

li−→ (q1
i+1, q

2
i+1, xi+1))i := π.

Then by construction, (q1
i

li−→ q1
i+1)i is a path accepted by A1 with the same linear

behavior as S, and (q2
i

li−→ q2
i+1)i is a path accepted by A2 with the same linear behavior

as S: If these paths are finite, they all end in accepting end states; if the paths are infinite,
they must all visit infinitely many accepting states since π infinitely often alternates
between traversing a state in {q1 ∈ F1|q1 →} × {q2 ∈ Q2|q2 →} × {1} and one in
{q1 ∈ Q1|q1 →}× {q2 ∈ F2|q2 →}× {2}.
Let now S ∈ Modelslin(A1) ∩Modelslin(A2) with (q1

i
li−→ q1

i+1)i the path accepted by
A1 with the same linear behavior as S, and (q2

i
li−→ q2

i+1)i the path accepted by A2 with
the same linear behavior as S.
Then ((q1

i , q
2
i , xi)

li−→ (q1
i+1, q

2
i+1, xi+1))i := π with x0 = 1 and all other xi determined

by ∆ is a path accepted by A1 ∩ A2 with the same linear behavior as S.
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The proof also shows that for the special cases of F1 = Q1 or F2 = Q2, the third
dimension of Q can really be collapsed.
Notes. Besides the conjunctive Büchi automaton, we define Büchi automata for other
propositional logic operators for SKripke,linear : The disjunctive Büchi automaton (cf.
Def. 4.36 and Lemma 4.37) and the complement Büchi automaton (cf. Lemma 4.38).
These are far less important than the conjunctive Büchi automaton since they are not re-
quired in practice, but still interesting and theoretically helpful (e.g., for defining ECTL∗
below). These automata show that Büchi automata are closed under propositional logics
operators.
Being a temporal logics for linear time properties, the propositional logic operators do

not have set theoretic semantics for SKripke,1 (cf. Def. 4.31), only for SKripke,linear . As for
LTL, the CTL∗ formula A ¬ X q is a counterexample for SKripke,1 (cf. Corollary 4.50).
Definition 4.36. Let Σ be fixed andA1 = (Q1,∆1, 2Σ, Q0

1, F1),A2 = (Q2,∆2, 2Σ, Q0
2, F2)

∈ Büchi.
Then the disjunctive Büchi automaton is A1 ∪ A2 :=

(
Q,∆, 2Σ, Q0, F

)
with

• Q := Q1 ∪̇Q2 ∪̇ {init};
• Q0 := {init};
• ∆ := ∆1 ∪̇∆2 ∪̇

{
(init, a, q) ∈ Q× 2Σ ×Q

∣∣ ∃|i ∈ {1, 2}
∃|q0 ∈ Q0

i : (q0, a, q) ∈ ∆i
}
;

• F := F1 ∪̇ F2.
Lemma 4.37. Let A1,A2 ∈ Büchi.
Then Modelslin(A1 ∪ A2) = Modelslin(A1) ∪ Modelslin(A2).

Proof. An accepting path in pathsmax(A1 ∪ A2) has accepting states either in F1 or
in F2, and F = F1 ∪̇ F2. Furthermore, paths in paths(A1 ∪ A2) are equal to paths in
paths(Ai)∪̇paths(Ai) except for the first state. Therefore, the linear behaviors described
by accepting paths in pathsmax(A1 ∪A2) are equal to the linear behaviors described by
accepting paths in pathsmax(A1) ∪ pathsmax(A2).

Lemma 4.38. Let A ∈ Büchi.
Then there exists a complement Büchi automaton Ac such that Ac is the comple-

ment to A in relation to SKripke,linear : Modelslin(Ac) = SKripke,linear \Modelslin(A).

Proof. Let A ∈ Büchi and A ⊆ pathsmax(A) be its accepting paths. Since we use
infinite and finite trace semantics, we transform A to nondeterministically distinct at
the beginning between finite and infinite accepting paths; for this, we construct two
Büchi automata:
• Aω is a copy of A with Fω := {f ∈ F |f→}, so its accepting paths are exactly
A ∩ pathsω(A);
• Afin is a copy of A with Ffin := {f ∈ F |f 6→}, so its accepting paths are exactly
A ∩ pathsfinmax(A).

Thus A ≡ Afin ∪ Aω. We construct complements A′ω for the infinite accepting paths
and A′fin for the finite accepting paths, such that Ac = A′ω ∪ A′fin: As in [Sistla et al.,
1985], we construct A′ω = (Q′,∆′, 2Σ, Q0′, F ′) with ∀f ∈ F ′ : f→ and Modelslin(A′ω) =
SKripke,linear ,≥ω \ Modelslin(A). As in [Hopcroft and J.D. Ullman, 1979], we deter-
minize Afin and then complement it, resulting in A′det = (Q′det,∆′det, 2Σ, Q0

det
′
, F ′det).
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We duplicate each state f ∈ F ′det together with all its incoming and outgoing transi-
tions, but do not put the duplicate in F ′det. We remove all outgoing transition of f .
The result is a Büchi automaton A′fin with ∀f ∈ F ′fin : f 6→ and Modelslin(A′fin) =
SKripke,linear ,<ω \ Modelslin(A). Thus Ac = A′fin ∪ A′ω has the required properties:
Modelslin(Ac) = Modelslin(A′fin) ∪Modelslin(A′ω) = (SKripke,linear ,≥ω \Modelslin(A)) ∪
(SKripke,linear ,<ω \Modelslin(A)) = SKripke,linear \Modelslin(A).

4.4. Relationships
Definition 4.39. Let temporal logics L1,L2 ⊆ TL and F2 ∈ L2. Then:

• F2 is expressible in L1 :⇔ ∃|F1 ∈ L1 : F1 ≡ F ;
• L1≥L2 :⇔ ∀F2 ∈ L2 : F2 is expressible in L1,

we say L1 is at least as expressive as L2;
• L1L2 :⇔ L1 ≥ L2 and L2 6≥ L1,

we say L1 is more expressive than L2;
• L1≡L2 :⇔ L1 ≥ L2 ≥ L1,

we say L1 and L2 are equally expressive.
Definition 4.40. Let temporal logic L ⊆ TL and property P ⊆ SKripke/≈Σ . Then:

• P is specifiable in L :⇔ ∃|F ∈ L : P = Prop(F );
• Prop(L) ⊆ 2SKripke/≈Σ is the set of properties that are specifiable in L.

Lemma 4.41. Let temporal logics L1,L2 ⊆ TL. Then:
L1 ≥ L2 ⇔ Prop(L1) ⊇ Prop(L2).

Proof. Let L1 ≥ L2, P ∈ Prop(L2). Thus ∃|F ∈ L2 : ∀S ∈ SKripke :
(
S |= P ⇔ S |= F

)
and ∃|F ′ ∈ L1 : F ′ ≡ F . Hence ∀S ∈ SKripke :

(
S |= P ⇔ S |= F ′

)
, so P is specified by

F ′ and P ∈ Prop(L1).
Let Prop(L1) ⊇ Prop(L2) and F ∈ L2. Thus Prop(F ) ∈ Prop(L2) ⊆ Prop(L1) and so
∃|F ′ ∈ L1 : F ′ ≡ F .

Lemma 4.42. Let Σ = {p} and even(p) :=
{
S ∈ SKripke,linear

∣∣(si)i := πS and |πS | =
ω and ∀j ∈ N≥0 : (j is even ⇒ I(p, sj) = true)

}
/ ≈Σ.

Then even(p) 6∈ Prop(LTL), but even(p) ∈ Prop(Büchi).
Proof. [Wolper, 1983, Corollary 4.2] proved that even(p) 6∈ Prop(LTL) by showing that
any F ∈ LTL over Σ = {p} with n next operators has the same truth value for all

{
S ∈

SKripke,linear |(si)i := πS and ∃|j > n : supp(I(¬p, ·)) = {sj}
}
. Furthermore, even(p) is

specified by Aeven, the Büchi automaton in Fig. 3.2 on page 37 with l0 = l1 = {p} and
l2 = ∅, which exactly restricts every even step to be p.

Lemma 4.43. Extended-Büchi ≡ Büchi.
Proof. Since every Büchi automaton is also an extended Büchi automaton, Extended-
Büchi ≥ Büchi. Let n ∈ N>0,Aext = (Q,∆, 2Σ, Q0, (Fi)i∈[1,...,n]) ∈ Extended-Büchi and
π ∈ pathsmax(Aext).
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Then Aext accepts π

⇔ ∀j ∈ [1, . . . , n] :
{

dest(π) ∈ Fj if π ∈ pathsfinmax(A);∣∣{i ∈ N|si ∈ Fj}∣∣ = ω if π ∈ pathsω(A).
⇔ ∩

i∈[1,...,n]
(Q,∆, 2Σ, Q0, Fi) accepts π (cf. Def. 4.33).

Thus Büchi ≥ Extended-Büchi, too.

For Theorem 4.46 about the relationship between Büchi and LTL, we construct a
special Büchi automaton ALTL as defined in Def. 4.44, which has the property given
in Lemma 4.45. Theorem 4.46 is a generalization of [Wolper, 2000; Schmitt, 2012b], as
it allows Kripke structures with end states, too. It is more general than the German
[Walther, 2011], as it also allows Kripke structures with infinite length, and is more thor-
ough since it proves its propositions, which [Walther, 2011] forgets to do, besides the fact
that for his propositions, a normal form for LTL and the adapted transformation from
Extended-Büchi automata to Büchi automata are missing. Theorem 4.46 is also more
general than [Giannakopoulou and Havelund, 2001], which only considers the temporal
operator U, not X, and finite traces, which are then translated to FSMs.

Definition 4.44. Let signature Σ and LNNF ∈ LTL in negation normal form (cf.
Def. 4.24) be given.
Then we define ALNNF := (Q,∆, 2Σ, Q0,F) with:

• subF(LNNF ) := the set of all sub-formulas of LNNF ;
• Q :=

{
q ⊆ subF(LNNF )

∣∣((C1 ∨ C2) ∈ q =⇒ C1 ∈ q or C2 ∈ q)
and ((C1 ∧ C2) ∈ q =⇒ C1, C2 ∈ q) and false 6∈ q

}
;

• Q⊥ := {⊥} ∪̇Q (with ∀F ∈ LTL : F 6∈ ⊥);
• Q0 :=

{
q ∈ Q

∣∣LNNF ∈ q};
• ∆ ⊆ Q× 2Σ ×Q⊥ with(q1, a, q2) ∈ ∆ :⇔

∀A,B ∈ subF(LNNF ) all 5 cases apply :
1. ∀p ∈ Σ : (p ∈ q1 =⇒ p ∈ a) and (¬p ∈ q1 =⇒ p 6∈ a);
2. XA ∈ q1 =⇒ A ∈ q2;
3. XwA ∈ q1 =⇒ (A ∈ q2 or q2 = ⊥);
4. A U B ∈ q1 =⇒ (B ∈ q1 or (A ∈ q1 and A U B ∈ q2));
5. A R B ∈ q1 =⇒ (A ∈ q1 or A R B ∈ q2 or q2 = ⊥)

and B ∈ q1;
• (Ai U Bi)i := the finite sequence of all A U B ∈ subF(LNNF )

with k := |(Ai U Bi)i| and ∀i ∈ [1, . . . , k] : Ui := Ai U Bi;
• Fi :=

{
q ∈ Q⊥

∣∣X false 6∈ q and (Ui 6∈ q or Ui ∈ q and Bi ∈ q)
}

with i ∈ [1, . . . , k];
• F := {F1, . . . ,Fk} if k > 0, otherwise F :=

{
{q ∈ Q⊥

∣∣X false 6∈ q}
}
.

Lemma 4.45. Let signature Σ and LNNF ∈ LTL in negation normal form be given.
Then ALNNF ≡ LNNF .

Proof. To prove ∀S ∈ SKripke,linear : S |= ALNNF =⇒ S |= LNNF , let S ∈ Modelslin(
ALNNF ) and (si

li−→ si+1)i ∈ pathsmax(ALNNF ) the accepting path describing the same
linear behavior (cf. Def.4.30).
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We prove ∀C ∈ subF(LNNF )∀i ∈ [0, . . . , 1 + |(si)i|) :

C ∈ si ⇒ S≥i |= C (4.1)

via induction on the complexity of C:

• C is a literal l :
Because of case 1 of ∆’s definition, l ∈ label li. Since S and (si

li−→ si+1)i
describe the same linear behavior, S≥i |= C.

• C = (C1∧C2) or C = (C1∨C2) : By Q’s definition, (C1∧C2) ∈ si =⇒ C1 and C2 ∈
si (respectively (C1 ∨ C2) ∈ si =⇒ C1 or C2 ∈ si). S≥i |= C follows by the
induction hypothesis.

• C = XC1 :
Then C1 ∈ si+1 and, by the induction hypothesis, S≥i+1 |= C1, so S≥i |= C.

• C = XwC1 :
Then C1 ∈ si+1 or si+1 = ⊥. If C1 ∈ si+1, then S≥i+1 |= C1, so S≥i |= C.
If si+1 = ⊥, then S ends with si

li−→ si+1, so S≥i |= XwC1 because of Xw’s
semantics.

• C = C1 U C2 :
Then by ∆’s definition, only two cases may occur: either C2 ∈ si, so S≥i |= C2
by the induction hypothesis, and thus S≥i |= C1 U C2. In the second case,
C1 ∈ si and C1 U C2 ∈ si+1, so si+1 6= ⊥. The same argumentation can now
be applied inductively to si+j for subsequent j ∈ N: If this induction on i+ j
would not terminate, the result were the infinite sequence (sj)j∈[i,...,ω) with
∀j ∈ [i, . . . , ω) : C1 ∈ sj , C1 U C2 ∈ sj and C2 6∈ sj . But this contradicts
(si

li−→ si+1)i being an accepting path because of the definition of F : with
Uh = C1 U C2, the infinite sequence must eventually reach an element in Fh,
which may not contain C1 U C2 without containing C2. If the induction on
si+j terminates for k > i, the result is: ∀j ∈ [i, . . . , k) : C1 ∈ sj and C2 ∈ sk,
so ∀j ∈ [i, . . . , k) : S≥j |= C1 and S≥k |= C2 by our induction hypothesis.
Hence S≥i |= C1 U C2.

• C = C1 R C2 :
Then by ∆’s definition, C2 ∈ si and only three cases may occur: Firstly, C1 ∈
si, so S≥i |= C1 by the induction hypothesis, thus S≥i |= C1 R C2. Secondly, if
si+1 = ⊥, Si |= G C2 by the induction hypothesis, so Si |= C1 R C2. Finally,
if C1 R C2 ∈ si+1, the same argumentation can now be applied inductively to
i+ j for subsequent j ∈ N: If this induction on i+ j does not terminate, then
∀s ∈ (sj)j∈[i,...,ω) : C2 ∈ s. Hence, Si |= G C2 by the induction hypothesis, so
Si |= C1 R C2. If this induction on i + j terminates for k > i with sk = ⊥,
then likewise ∀(sj)j∈[i,...,k) : C2 ∈ s leads to Si |= C1 R C2. If this induction on
i+ j terminates for k > i with C1 ∈ sk, then ∀(sj)j∈[i,...,k] : C2 ∈ s. Therefore
by the induction hypothesis, ∀j ∈ [i, . . . , k] : S≥j |= C2 and S≥k |= C1, so
S≥i |= C1 R C2.

Since LNNF ∈ s0 ∈ Q0, equation 4.1 implies S |= LNNF . To now prove ∀S ∈
SKripke,linear : S |= LNNF =⇒ S |= ALNNF , let S ∈ Modelslin(LNNF ), k := |πS |, (s′i)i :=
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πS and j ∈ [0, . . . , 1 + k).
We construct an accepting path (si

li−→ si+1)i∈[0,...,1+k) ∈ pathsmax(ALNNF ) that
describes the same linear behavior as S:

• lj := supp(I(·, s′j)). Thus S and the accepting path describe the same linear
behavior by construction.

• sj :=
{
C ∈ subF(LNNF )

∣∣S≥j |= C
}
; since S≥j 6|= false and S≥j |= C1 ∧ C2 =⇒

S≥j |= C1,S≥j |= C2 and S≥j |= C1 ∨ C2 =⇒ S≥j |= C1 or S≥j |= C2, sj
must be in Q.

• s1+k := ⊥ if k ∈ N.

Since ∆’s definition is according to LTL’s semantics, (sj , lj , sj+1) ∈ ∆. If k ∈ N,
then π := (sj , lj , sj+1)j∈[0,...,1+k) is accepting since s1+k = ⊥. Otherwise, k = ω and
if π were not accepting, then ∃|h∃|n such that ∀i > n : si 6∈ Fh. Since k = ω and
∀C ∈ subF(LNNF ) : S≥j |= C, X false 6∈ si. Therefore ∀i > n : Uh ∈ si and Bh 6∈ si,
contradicting S≥n+1 |= Ah U Bh.

Note. If q ∈ Q in Def. 4.44 is an accepting end state, then q = ⊥ because q → according
to ∆ unless X false ∈ q, but then q is not accepting.
The function subF lin(·) can be used to indicate that linear subformulas are taken.

Theorem 4.46. Büchi  LTL.

Proof. By Lemma 4.42, LTL 6≥ Büchi. To show that Büchi ≥ LTL, we construct A ∈
Büchi for a given signature Σ and L ∈ LTL such that A ≡ L. For this, we

1. transform L into a negation normal form LNNF such that LNNF ≡ L, by the use
of Xw, see Def. 4.24;

2. construct an extended Büchi automaton ALNNF from LNNF such that ALNNF ≡
LNNF , by the use of Lemma 4.45;

3. transform ALNNF into a Büchi automaton A such that A ≡ ALNNF , by the use of
Lemma 4.43.

The following Def. 4.47 and Lemma 4.48 are required for Theorem 4.49 about the
detailed relationship between CTL∗, Büchi and LTL. It has (partly) been proved in
[Clarke and Draghicescu, 1988] for LTL and simplified in [Schmitt, 2012a]. The proof
in this thesis is a further simplification (caused by allowing infinite Kripke structures).
Furthermore, the transfer to Büchi automata alternatively to LTL is new and results in
Corollary 4.50.

Definition 4.47. For F ∈ CTL∗, F d denotes the LTL formula obtained from F by
deleting all its path quantifiers.

Note. For instance, (A F A G p)d = F G p. Since F d only has operators that are part
of LTL, and LTL allows them in arbitrary nesting, F d is really in LTL.

Lemma 4.48. Let S = (S, T,Σ, I) ∈ SKripke be deterministic, s ∈ S and F ∈ CTL∗ .
Then (S, s) |= F ⇔ (S, π(S,s)) |= F d.
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Proof. Via Lemma 4.21 and a simple induction on the complexity of F .

Theorem 4.49. Let F ∈ CTL∗.
Then F is expressible in LTL ⇔ F ≡ F d ⇔ F is expressible as Büchi automaton.

Proof. Assuming for F ∈ CTL∗ that F ≡ F d, then Def. 4.47 and Theorem 4.46 show
the two required expressibilities.
Assuming F ∈ CTL∗ is expressible in LTL or as Büchi automaton, let B ∈ LTL ∪

Büchi such that F ≡ B, S = (S, T,Σ, I) ∈ SKripke, s ∈ S.
Then (S, s) |= F

F≡B⇐⇒ (S, s) |= B
Def. 4.22 or 4.31⇐⇒ ∀π ∈ pathsmax(S, s) : (Sπ, s) |= B
F≡B,Sπ det.⇐⇒ ∀π ∈ pathsmax(S, s) : (Sπ, s) |= F

Lemma 4.48,Sπ det.⇐⇒ ∀π ∈ pathsmax(S, s) : (Sπ, s) |= F d
semantics of LTL⇐⇒ ∀π ∈ pathsmax(S, s) : (S, π) |= F d

Def. 4.22⇐⇒ (S, s) |= F d.

Applying this equivalence chain to all s ∈ S0 proves the theorem.

To relate CTL∗ to LTL and Büchi automata, one could argue that CTL∗’s path
quantifiers are “orthogonal” to the constraints that Büchi automata can pose on paths
to be accepted. With Theorem 4.49, a more formal corollary and proof are possible:

Corollary 4.50. Prop(Büchi) ∩ Prop(CTL∗) = Prop(LTL).

Proof. For the non-trivial direction: Let property P ∈ Prop(Büchi) ∩ Prop(CTL∗).
Hence ∃|F ∈ CTL∗, ∃|A ∈ Büchi: F and A specify P , so F ≡ A. By using Theorem 4.49
twice, F is equivalent to F d and expressible in LTL.

Lemma 4.51. Property even(p) ∈ Prop(Büchi)\Prop(CTL∗).

Proof. Lemma 4.42 shows that even(p) ∈ Prop(Büchi)\ Prop(LTL). Because of Corol-
lary 4.50, even(p) 6∈ Prop(CTL∗).

Lemma 4.52. LTL 6≥ CTL.

Proof. FCTL := (EX q) ∈ CTL but Prop(FCTL) 6∈ Prop(LTL): If it were, then ∃|L ∈LTL:
Prop(L) = Prop(FCTL). So the Kripke structure S in Fig. 4.2 satisfies L. Because of
LTL’s semantics Def. 4.22, S ′ := S without s2 also satisfies L, contradicting [S ′]≈Σ 6∈
Prop(FCTL).

s0s1 s2t1 t2

¬q¬q q

Figure 4.2.: Kripke structure S showing LTL 6≥ CTL

Lemma 4.53. CTL 6≥ LTL.
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Proof. FLTL := (FG q) ∈ LTL but Prop(FLTL) 6∈ Prop(CTL). This is shown in [Clarke
and Draghicescu, 1988] using fairness constraints (cf. Subsec. 5.2.5).

Lemma 4.54. Prop(CTL∗) ) Prop(CTL) ∪ Prop(LTL).

Proof. FCTL∗ := FCTL ∨ FLTL = A(FG q) ∨ EX q ∈ CTL∗, but Prop(FCTL∗) 6∈
Prop(CTL) and Prop(FCTL∗) 6∈ Prop(LTL): Assuming Prop(FCTL∗) ∈ Prop(CTL),
then ∃|C ∈CTL: Prop(C) = Prop(FCTL∗). Therefore, Prop(C∧¬FCTL) = Prop(FLTL) ∈
Prop(CTL), contradicting Lemma 4.53. Likewise assuming Prop(FCTL∗) ∈ Prop(LTL),
then ∃|L ∈LTL: Prop(L) = Prop(FCTL∗). Therefore, Prop(L∧¬FLTL) = Prop(FCTL) ∈
Prop(LTL), contradicting Lemma 4.52.

Fig. 4.3 gives an overview over the temporal logics that we introduced in this chapter,
and their relationships.

only linear time also branching time
ECTL∗ECTL∗

CTL∗CTL∗

CTLCTL

BüchiBüchi
E Aeven(p)E Aeven(p)

A F G p ∧ E X ¬pA F G p ∧ E X ¬p

E X pE X p

AevenAeven

LTLLTL
F G pF G p

CTL∩
LTL
CTL∩
LTL
A G pA G p

Figure 4.3.: Classification of temporal logics

Since CTL∗ does not contain Büchi, nor the other way around (Corollary 4.50, Lemmas
4.51 and 4.52), Fig. 4.3 additionally shows the closure of Büchi and CTL∗: the Extended
Computation Tree Logic∗ (ECTL∗ ) [Dam, 1994].

Syntax. ECTL∗’s syntax allows automata as temporal operators and is defined by:

〈branching〉 ::= 〈atomic prop〉
∣∣ (〈branching〉 ∨ 〈branching〉) ∣∣

¬〈branching〉
∣∣ A 〈Büchi〉(〈branching〉, . . . , 〈branching〉);

〈atomic prop〉 ::= p; where p ∈ Σ
〈Büchi〉 ::= A; where A ∈ Büchi such that A(b1, . . . , bn) uses

the signature Σ = {b1, . . . , bn}.

Definition 4.55. Extended Computation Tree Logic∗ (ECTL∗ ) is the set of all
〈branching〉 formulas.
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Semantics. Our ECTL∗ semantics again deviates from the standard definition (cf. [Dam,
1994]) by allowing finite ∪ infinite trace semantics. It is determined by the semantics of
CTL∗ and of Büchi automata over formulas, given in Def. 4.56 (similarly to Def. 4.30),
resulting in Def. 4.57.

Definition 4.56. Let Σ = {b1, . . . , bn} ( ECTL∗, S ∈ SKripke,linear and A a Büchi
automaton for signature Σ. Then:
• A is a Büchi automaton over the formulas b1, . . . , bn, written A(b1, . . . , bn);
• (S, init) satisfies A(b1, . . . , bn) (written (S, init)|=A(b1, . . . , bn)) :⇔
∃|π ∈ pathsmax(A) : A accepts π and both π and S describe the same linear
behavior: |π| = 1 + |πS | and for (si

li−→ si+1) := π and (s′i)i := πS we have
∀i ∈ [0, . . . , 1 + |πS |) : li =

{
bj ∈ Σ

∣∣ (S, s′i) |= bj
}
.

Definition 4.57. Let S = (S, T,Σ, I) ∈ SKripke, s ∈ S, p ∈ Σ,A ∈Büchi and bi ∈ECTL∗.
Then:

• (S, s) |= p :⇔ I(p, s) = true
• (S, s) |= ¬b1 :⇔ (S, s) 6|= b1

• (S, s) |= b1 ∨ b2 :⇔ (S, s) |= b1 or (S, s) |= b2

• (S, s) |= A A(b1, . . . , bn) :⇔ (S, s) |= A(b1, . . . , bn)

Secondary Operator. As secondary operator for ECTL∗, we define the existential path
quantifier E A1(b1, . . . , bn) (or ∃ A1(b1, . . . , bn)) as abbreviation for ¬AAc1(b1, . . . , bn),
i.e., with the help of complementation for Büchi automata (cf. Lemma 4.38).

Notes. The syntax of ECTL∗ shows that it is closed under all its operators.
ECTL∗’s semantics show that its propositional logic operators have set theoretic se-

mantics for SKripke,1 .

The relationship of ECTL∗ with the other temporal logics of this chapter are shown
in the following lemmas.

Lemma 4.58. Let Σ = {p} and Eeven(p) :=
{
S ∈ SKripke

∣∣∃|π ∈ pathsmax(S) :
[Sπ]≈Σ ∈ even(p)}/ ≈Σ.
Then Eeven(p) 6∈ Prop(CTL∗) ∪ Prop(Büchi), but Eeven(p) ∈ Prop(ECTL∗).

Proof. Eeven(p) ∈ Prop(ECTL∗) since Prop(E Aeven(p)) = Eeven(p).
Assume ∃|F ∈ CTL∗: Prop(F ) = Eeven(p). Let S ∈ SKripke,linear . Because S is

deterministic, S |= F iff [S]≈Σ ∈ even(p) (analogously to Lemma 4.21). Lemma 4.48
shows that S |= F d iff [S]≈Σ ∈ even(p), contradicting Lemma 4.42 because F d ∈ LTL.
Similarly to the proof of Lemma 4.52, we assume ∃|A ∈ Büchi: Prop(A) = Eeven(p)

and give Se that satisfies A: see Fig. 4.4. Because of Def. 4.31, S ′e := Se without s1 must
also satisfy A, contradicting [S ′e]≈Σ 6∈ Eeven(p).

Lemma 4.59. ECTL∗  Büchi.
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s0s1 s2 s3

pp ¬p ¬p

Figure 4.4.: Kripke structure Se showing Büchie 6≥ ECTL∗

Proof. By Lemma 4.58, Büchi 6≥ ECTL∗. To show that ECTL∗ ≥ Büchi, let S =
(S, T,Σ, I) ∈ SKripke with Σ = {p1, . . . , pn}, s ∈ S and A ∈ Büchi. Then (S, s) |= A ⇔
(S, s) |= A A(p1, . . . , pn). Thus ECTL∗ ≥ Büchi.

Lemma 4.60. ECTL∗  CTL∗.

Proof. By Lemma 4.58, CTL∗ 6≥ ECTL∗. To show that ECTL∗ ≥ CTL∗, let F ∈CTL∗.
Analogously to LNNF for LTL (cf. Def. 4.23), F can be transformed into a normal

form FNF that contains no existential path quantifiers and no conjunctions, by replacing
E with ¬ A ¬, b1 ∧ b2 with ¬(¬b1 ∨ ¬b2)), and collapsing multiple A into one.
Then FNF can be transformed into an ECTL∗ formula FECTL∗ such that FNF ≡

FECTL∗ : From the inside out (i.e., bottom up from the lowest level to the top-level
in the abstract syntax tree), sub-formulas Fsub = A Flin (i.e. Fsub starts with top-
level operator A followed by Flin that does not start with a top-level operator A) are
successively replaced with A AFlin(b1, . . . , bn), where bi is in Σ or started with top-
level operator A (i.e., is an ECTL∗ sub-formula as result from a prior replacement).
These Büchi automata exist because of Theorem 4.46. So all linear temporal parts of
FNF have been replaced by equivalent Büchi automata. Hence a simple induction on
the complexity of FNF shows that any CTL∗ formula can be written as an equivalent
ECTL∗ formula; thus ECTL∗ ≥ CTL∗.

Example. F = E G (p U A F q) ∧ r results in FNF = ¬
(
A ¬ G (p U A F q) ∨¬r

)
and FECTL∗ = ¬

(
A A¬ G (b1 U b2)(p, A A F b1(q)) ∨ ¬r

)
.

4.5. Conclusion
4.5.1. Summary
This chapter has introduced a generalized theoretical foundation for behavioral proper-
ties and temporal logics for branching time properties as well as linear time properties.
Finally, their relationships were investigated thoroughly (cf. Fig. 4.3 on page 85).

4.5.2. Contributions
The theoretical foundation was introduced in a generalized way by using the general
automata theory from Chapter 3, so that new definitions are based on few common
formalisms, and are not restricted. Therefore,
• temporal properties and temporal property descriptions like CTL∗, Büchi and LTL

can be compared more consistently since all have been based on Kripke structures;
• being able to compare them, their relationships have been thoroughly investigated,
extending existent theorems and lemmas, and introducing new ones;
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• since these Kripke structures were defined more flexibly with our finite ∪ infi-
nite trace semantics, no workarounds are required, reductions (such as program
slicing) are not restricted, and system specifications can simultaneously express
termination, reactive systems that run forever, and self-loops (e.g., for waiting).

4.5.3. Future
Possible future work and open questions include:
• finding a more efficient translations from LTL to Büchi (cf. [URL:LTL2BUECHI;
Wolper, 1987; Babiak et al., 2012]);
• finding and investigating a suitable case study for showing the benefits of finite ∪
infinite trace semantics. For instance, a protocol which exhibits practical use cases
for all of the following situations: termination, running indefinitely, and performing
a self-loop (e.g., for busy-waiting, i.e., repeatedly checking whether a condition is
true, such as the availability of some resource);
• integrating further logics, such as the µ−calculus, into this framework to enable
further detailed comparisons between logics; it would be interesting to see whether
and how easily finite ∪ infinite trace semantics can be transferred to those other
logics.
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5.1. Introduction
Model checking is a sound and complete formal method that checks whether a finite sys-
tem specification S given as Kripke structure (or description thereof, cf. Subsec. 3.4.3)
meets a property description F , usually given in some temporal logic. Diverse be-
havioral properties of the system can be verified by model checking; they depend on the
kind of Kripke structure, temporal logic, and algorithm employed by the model checker.
Model checking can be used as the basis for several tasks for verifying correctness:
• pure model checking at the abstract level of the system specification to verify an

algorithm or protocol, or on the implementation level to verify some source code
or hardware design (cf. Chapter 6);
• checking some aspects of correctness for a piece of hardware design or source code
using the more lightweight formal methods of bounded model checking (cf. Chap-
ter 7);
• for model-based testing (cf. Part III), to generate test sequences automatically.

Example. Pure model checking at the abstract level is often used in the field of protocols
and concurrent systems, since parallelization is complex and difficult to grasp and thus
error-prone, calling for automated checks [Groote and Mousavi, 2014]. For example,
deadlock freedom and livelock freedom are occasionally not met and hence prevalent
properties to verify: A deadlock occurs when the whole system halts because each
process is blocked, i.e., waits for an unsharable resource currently held by another
process. Several countermeasures are possible to avoid deadlocks: For instance, a process
can release the resources it is holding when it is blocked, and acquire it again later on. If
this is enforced by the scheduler, it is called preemption. These countermeasures often
become complex and lead to livelocks, i.e., executions where the processes are not all
blocked, but they starve. This means no process ever acquires all resources it needs to
make progress, i.e., to advance in the problem it has to solve. Deadlock detection
is a safety property, which model checkers can check relatively efficiently; contrarily,
livelock detection is a liveness property (cf. Subsec. 4.2.2) and thus harder to check
(cf. Chapter 6).

Chapter 3 and Chapter 4 have introduced the theoretical foundations in a general
way, allowing infinitely many states and end states in Kripke structures. For exhaustive
model checking (cf. Subsec. 5.2.3), this and the following chapter mainly focus on what
existing tools currently support: model checking of finite Kripke structures for infinite
trace semantics with one initial state, i.e., S ∈ SKripke,1 ,finite,≥ω. Finite traces are ig-
nored by using the classical approach of adding self-loops to end states. Thus, we get
infinite traces but loose the information of which states have originally been end states.
Subsec. 4.3.1 explained this on page 71 and showed that it has multiple disadvantages
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(e.g., in Subsec. 5.4.3). Fortunately, for the most relevant model checking algorithms in
this thesis (on-the-fly LTL, cf. Subsec. 5.3.2, and DFSFIFO, cf. Chapter 6, without and
with partial order reduction), finite ∪ infinite trace semantics can be integrated easily
(cf. Note 5.11, Subsec. 5.6.3 and Subsec. 6.9.3); hence we use S ∈ SKripke,1 ,finite.
Unless mentioned otherwise, we only refer to sound, complete and computable model

checking methods. Def. 5.1 refines the general Def. 3.2 of sound and complete formal
methods to model checking. Model checking is defined in Def. 5.2, Listing 5.1 determines
its input, output and contract.
Definition 5.1. We consider system specifications in SKripke,1 ,finite, temporal logics L ⊆
TL, and a model checkerM for L. Then:

M is sound :⇔ ∀S ∈ SKripke,1 ,finite∀F ∈ L :(
M states that S 6|= F

)
⇒
(
S 6|= F

)
M is complete :⇔ ∀S ∈ SKripke,1 ,finite∀F ∈ L :(

M states that S 6|= F
)
⇐
(
S 6|= F

)
Definition 5.2. Let S ∈ SKripke,1 ,finite be a system specification, L ⊆ TL a temporal
logic and F ∈ L a property description.
Then model checking (MC) (for L) is a (sound and complete) formal verification

method that checks whether S |= F .
For this, MC fully automatically and exhaustively (symbolically or explicitly) enumer-

ates S’s state space and all its behaviors that are relevant for F .

1// PRE: S is a well-formed system specification in SKripke,1 ,finite (or
2// description thereof); F is a well-formed property description in L.
3// POST: modelChecking(S, F ) always terminates and gives as result
4// a Boolean output that is true iff S |= F .
5// Optionally, a counterexample can be output if S 6|= F .
6B modelChecking (S, F )

Listing 5.1: Contract for model checking

The counterexample (cf. Def. 4.7) that MC optionally outputs is a path π ∈ paths(S)
that refutes the property described by F . If it is a safety property, π can be a finite
path; if it is a liveness property, π can be a single unwinding of a lasso (cf. Lemma 5.9
and Note 5.10). π is also called an error path in S for the property description F .
Consequently, if MC should generate a path that exhibits F , we check for the property
¬F , called trap property since it functions as a trap to catch such a path. This is also
often used for model-based testing (cf. Subsec. 10.2.3).
Notes. So a false positive from an unsound model checker is a counterexample (i.e., a
witness for the property ¬F ) that is actually not a counterexample in S. Conversely,
a false negative from an incomplete model checker is the statement that L holds for S
when in fact a counterexample to L does exist.
As for SAT solvers (cf. Note 3.7), soundness and completeness of |= and 6|= are related

for terminating model checkers; soundness of both imply their completeness.
For linear time logics, universal path quantification (as in Def. 4.22 and Def. 4.31) is

used to lift model checking from SKripke,linear ,finite to full SKripke,1 ,finite.
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Note 5.3. Analogously to linear time property descriptions, branching time property
descriptions in ACTL∗ can be refuted: These are formulas whose negation normal form
does not contain existential path quantifiers, so CTL∗ ) ACTL∗ ) LTL. Thus refutation
can pick any one of the available paths.

Often MC operates on Kripke structures and does not require their transitions being
labeled, hence this thesis defines MC on Kripke structures and only talks about labeled
Kripke structures when the labels become relevant. When MC does use labels, the
system specification description’s basic commands, which update the state vector, are
used (cf. PROMELA in Subsec. 3.4.3).

Usually states of the Kripke structure are not enumerated directly but given by a
system specification description that uses a finite set of variables that resemble the data
of the real world system (cf. PROMELA in Subsec. 3.4.3). These variables together
form the state vector, which hence describes the states. For S ∈ SKripke,finite, the
state vector and domain of the variables can always be chosen finite. In case of S being
infinite, but its state space finite, we ignore unreachable states and thus identify S with
its state space.
When MC uses a finite state vector, let Σsv be a set of propositional variables that

encode it, and Isv the corresponding interpretation. Then MC uses state vector semantic
Σsv, as defined in Def. 5.4, since Σsv fully describes the states.

Definition 5.4. Let Ssv = (2Σsv , T,Σsv, Isv) ∈ SKripke,finite. Then:
• Ssv is called a Kripke structure with state vector semantics Σsv, with
Isv(·, s) = s;
• SKripke,ΣsvSKripke,ΣsvSKripke,Σsv is the set of all Kripke structures with state vector semantics Σsv.

Since Isv(·, s) = s, we have Ssv = [Ssv]/≈Σsv , so SKripke,linear ,Σsv = SKripke,linear/≈Σsv ,
i.e., linear Kripke structures with state vector semantics are the linear time properties.
Unfortunately, modelChecking(S, F ) often does not terminate normally because time or

space runs out due to the state space explosion, i.e., the number of states that have
to be examined becomes too large to handle: The state space grows exponentially in the
number of components being specified because model checking uses the asynchronous
product of the system’s component automata to cover all possible interleavings, i.e., all
execution orders (cf. Subsec. 3.4.3, [Peleska, 2013]). Therefore, state space explosion is
caused by combinatorial explosion. State space explosion becomes particularly severe for
domains with a high degree of parallelization (like protocols), where many components
with little synchronization are involved.
If MC does not terminate due to state space explosion, the contract for model checking

allows any behavior, and most model checkers do not give useful information. Hence
conditional model checking (CMC) has been introduced [Beyer et al., 2012], which
strengthens MC’s contract, as given in Listing 5.2, to always terminate normally and
summarize as much of the performed work as possible. For this, the conditions Cinput,
resp. Coutput, describe for which parts of the state space the property description F has
been proved to hold, for which parts F has been proved not to hold, and which parts
have not yet been investigated – before, resp. after, the conditional model checking
call (similar to pre- and post-conditions). For instance, state predicates can be used as
conditions, with the special case Coutput = true iff S |= F . If CMC detects S 6|= F ,
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then Coutput shows a counterexample to F and additionally for which parts of the state
space CMC has verified F to hold. Therefore, if full MC fails, CMC still gives the user
some information. Coutput can be used as feedback for the user or as Cinput for another
CMC call, which can then prune parts of the state space for which F has already been
verified. So for the first run, Cinput = false indicates that no part of the state space has
been verified yet. But Cinput 6= false is also possible, to prune the state space (similarly
to never claims, cf. Subsec. 3.4.3 on page 47) or as guidance for test case generation (cf.
Chapter 11).

1// PRE: S is a well-formed system specification in SKripke,1 ,finite (or description
2// thereof); F is a well-formed property description in L;
3// Cinput is a well-formed description which part of S has already been verified;
4// POST: modelChecking(S, F, Cinput) always terminates normally
5// and gives as result a condition Coutput that gives
6// the parts of the state space where F has been proved to hold,
7// the parts where F has been proved not to hold,
8// and the parts not yet proven.
9// SIGNALS no exceptions.
10Coutput modelChecking (S, F, Cinput )

Listing 5.2: Contract for conditional model checking

Roadmap. Sec. 5.2 describes various classifications of model checking: explicit vs. im-
plicit, on-the-fly vs. offline, exhaustive vs. bounded, finite vs. infinite, and ends with a
practical comparison between CTL and LTL. Sec. 5.3 introduces various model checking
algorithms: CTL∗ and CTL shortly, on-the-fly LTL in depth for later chapters. Sec. 5.4
describes reduction methods to cope with state space explosion: partial order reduction
in depth for later chapters, symbolic techniques, and briefly other reductions. At the
end, Sec. 5.5 introduces model checkers: SPIN, LTSmin, PRISM, and roughly DiVinE
and PRISM.

5.2. Classifications of Model Checking

5.2.1. Explicit versus Implicit

MC can enumerate all states of the state space either explicitly (also called explicit
state model checking) by traversing each one individually [Barnat, 2015], or im-
plicitly (also called implicit state model checking) with the help of symbolic
techniques (cf. Subsec. 5.4.2 or [Clarke et al., 1999b, Chapter 6]), where states and
transitions are encoded in formulas (or representations thereof, like BDDs), which can
be operated on and solved (e.g., using SAT or SMT solvers, cf. Chapter 3).

Note. Often symbolic MC is used synonymously for implicit state MC, but symbolic
techniques can also be used for each state separately during explicit state enumeration,
e.g., SPIN’s minimized automaton compression (cf. Subsec. 5.4.2).
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5.2.2. On-the-fly versus Offline
As opposed to offline model checking, on-the-fly model checking avoids an a priori
construction of the entire state space, but rather builds it incrementally from a system
specification description while checking the property description F (cf. Def. 3.33). This
is done by starting in init and recursively traversing the transitions in enabled(·), which
only requires states to be stored, not transitions. Since F is checked during traversal, a
fault can be found while only parts of the entire state space have been constructed. The
degree of saved space and time is called on-the-flyness (cf. Subsec. 6.8.6).

Notes. Explicit state MC is usually performed on-the-fly, since it is a big improvement
and implemented easily. But implicit state MC can be implemented on-the-fly, too, cf.
Subsec. 5.5.2.
Some offline MC algorithms can perform globalMC: They not only determine whether
S |= F , but compute {s ∈ S|(S, s) |= F}. Hence S ∈ SKripke,finite with |S0| > 1 can also
be checked. Some applications require these global results (e.g., CTL∗ MC by employing
a global LTL MC).

5.2.3. Exhaustive versus Bounded
Classical MC considers the full state space, i.e., does an exhaustive (explicit or implicit)
search. Many current MC approaches still do; they aim at rigorously proving that any
S ∈ SKripke,1 ,finite meets some property F .
Alternatively, the state space can be pruned by some bound b, resulting in bounded

model checking (BMC) [Biere et al., 1999; Clarke et al., 2004b], as defined in Def. 5.5.
For small bounds, only part of the state space is considered, and the aim shifts to bug
finding [Clarke et al., 2004b], i.e., not performing complete MC to prove correctness,
but incomplete, lightweight checks that are more feasible and efficiently find some but
not all bugs. This incomplete BMC is already useful in practice, especially since the
small scope hypothesis usually holds when no complex data is involved [Jackson,
2006; Udupa et al., 2011], i.e., faults usually occur already with small values and after
short runs. Another application of incomplete BMC is conditional model checking.

Definition 5.5. Let S ∈ SKripke,1 ,finite be a system specification, L ⊆ TL a temporal
logic for linear time properties, F ∈ L a property description and b ∈ N.
Then bounded model checking (for L) is a (computable, sound and within b com-

plete) formal verification method that checks whether ∀π ∈ pathsmax(S) : π |=b F , where

π |=b F :⇔
{
π |= F if π is within b : |π| ≤ b or π = π1 · (π2)ω with |π1|+ |π2| ≤ b
π≤b |= F otherwise.

For this, BMC fully automatically and exhaustively enumerates the state space and
behaviors up to depth b.

Notes. There exist extensions of BMC to temporal logics for branching time proper-
ties [Tao et al., 2007].
For π≤b |= F , various semantics are possible: variations of finite trace semantics (cf.

the paragraph on termination at page 71, or [Manna and Pnueli, 1995; Eisner et al., 2003;
Fraser and Wotawa, 2006; Bauer et al., 2010]), or our finite ∪ infinite trace semantics,
or infinite trace semantics by adding a self loop in sb. Using finite trace semantics for
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runtime [Biere et al., 1999] helps for some encodings (see first one in Subsec. 5.4.2) to
detect too small bounds via counterexamples, as described below.

For the temporal logics L used for BMC (mainly L ⊆ Büchi), we have: ∀S ∈
SKripke,1 ,finite ∀F ∈ L ∃|b ∈ N :

(
S |= F ⇔ ∀π ∈ pathsmax(S) : π |=b F

)
(cf.

Lemma 5.9). Therefore, ∀S ∈ SKripke,1 ,finite ∀F ∈ L ∃|b ∈ N : BMC for S |= F is sound
and complete. Such a bound b is called a completeness threshold (CT ) for S and F .
Finding the smallest completeness threshold is as hard as the model checking problem
itself, therefore approximations are used.
Many BMC tools (e.g., CBMC, LLBMC, cf. Chapter 7) do not approximate CT , but

instead lazily do a bound check, i.e., check on-the-fly whether the user-supplied bound
b is sufficiently large to cover all of S relevant to F . Thus a BMC tool with a bound
check always reports one of three possible results:

1. a counterexample π ∈ paths(S) to F when π is within b;
2. a counterexample π ∈ paths(S) to b being sufficiently large: a path π with
|π| = b that can be extended in S to π′ with |π′|  b and relevant to F ;

3. it is detected that b is sufficiently large to cover all of S, and that S |= F .
Successively, b can be increased until a shortest counterexample is found, or b has risen
to a completeness threshold, i.e., become sufficiently large for BMC with a bound check
to determine that there exists no counterexample of arbitrary length.
If BMC with a bound check is used to verify software, it is called software bounded

model checking (SBMC). Usually, it uses Kripke structures S ∈ SKripke,(labeled),1 ,finite,<ω
that directly specify the source code. Thus its states correspond to program states of
the source code, the transitions to updates of the states (similarly to PROMELA, cf.
Subsec. 3.4.3). Therefore, a state of S contains the value of the heap, the call stack,
all registers, and a program counter; so a counterexample has the form of a concrete
program execution.
The major BMC tools encode the problem in SAT (as described in Subsec. 5.4.2) or

SMT (cf. Subsec. 3.3.3), for instance the SBMC tools CBMC and LLBMC (cf. Chap-
ter 7). But alternatives that do not transform the problem to SAT or SMT also exist
(DFSincremental, cf. Subsec. 6.4.1, can be considered as such).

5.2.4. Finite versus Infinite

There are extensions to MC that deal with infinite state space, i.e., S ∈ SKripke,infinite,
which are called infinite state model checking (infinite model checking for short).
To be able to process the system, its relevant properties must still be representable
finitely. For example, if the state space contains an unbounded integer domain for
variable x, exhaustive model checking of a given property description is only possible if
it does not need to consider infinite many properties on x, e.g., not all {x == i|i ∈ N},
but only {x < 0, x == 0, x > 0}. Then Σ can be reduced to a finite set, and S/≈Σ
becomes finite, too. Thus, these abstractions are lossy (cf. Sec. 3.7); they can cause MC
to no longer be complete, sound, or computable (e.g., fix-points in symbolic computations
might diverge, cf. [To, 2010]).
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5.2.5. Practical Relationship between CTL and LTL MC

Choosing the right temporal logics is crucial: It should be sufficiently expressive for the
properties to be investigated, but if it is more powerful, the required MC algorithms
become unnecessarily complex or even unfeasible. Furthermore, reductions (cf. Sec. 5.4)
become harder and weaker. This subsection explains why this thesis focuses on the
temporal logics LTL and Büchi.
To be able to find the sweet spot between expressiveness and complexity, practical

criteria need to be considered, too: Both LTL and CTL are easy to understand, more
efficient to model check than more complex temporal logics, easier for reductions like
partial order reduction and abstractions, and many properties in practice are covered by
both CTL and LTL – many of the rest still by either CTL or LTL. Thus we restrict our
investigation in this section to these logics, similarly to [Holzmann, 2004; Vardi, 2001].
Table 5.1 below summarizes the comparison of CTL and LTL.
Their expressibilities are depicted in Fig. 4.3 on page 85. Compared to LTL, CTL

can additionally express branching time properties, for instance that from a state, at
least one execution has some property (like returning to an initial state, called reset
property). These kind of specifications are often used for hardware. LTL, in contrast,
can additionally express certain important liveness properties like recurrence properties
(i.e., �♦), e.g., fairness properties as given in Def. 5.6, or livelocks, i.e., that specific types
of states must be visited infinitely often (see Lemma 4.53 and Chapter 6). These kind of
properties are often required for software, in particular algorithms and protocols, e.g.,
�♦taken(a) that a scheduler is not starving object a, i.e., continuously denying a some
necessary resource. They will occur throughout this thesis since its focus is on software
verification.

Definition 5.6. Let Σa = {enabled(a), taken(a)}.
The liveness property of weak fairness (aka justice) describes that an action a that

is continuously enabled must recurrently be taken. Formally, fairnessweak(a) :=
{
S ∈

SKripke,linear
∣∣S |= ♦�enabled(a)→ �♦taken(a)

}
/≈Σa .

The liveness property of strong fairness (aka compassion) describes that an action
a that is recurrently enabled must recurrently be taken. Formally, fairnessstrong(a)
:=
{
S ∈ SKripke,linear

∣∣S |= �♦enabled(a)→ �♦taken(a)
}
/≈Σa .

The worst case time and space complexities of CTL are O(|S| · |F |), of LTL roughly
O(|S→∗ | · 2|F |) (cf. Sec. 5.3). So theoretically, CTL model checking is faster than LTL
model checking. In practice, however, LTL model checkers are often faster than CTL
model checkers for properties specifiable in CTL∩LTL since
• LTL formulas are often small and simple in practice, i.e., the factor in 2O(|subFlin(F )|)

is negligible;
• good converters from LTL to Büchi automata are for most relevant cases sub-
exponential in |subFlin(F )|;
• the dominating factor for the runtime is the number of states that are really visited
by the MC algorithm, which strongly varies and depends on the formula being
checked.

Thus it is often hard in practice to tell in advance whether a given property is more
efficiently checked by a CTL or an LTL model checker.
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Besides the aforementioned advantages of LTL over CTL in software verification, this
thesis uses linear time behavioral properties described via LTL or Büchi automata be-
cause:

• model checking them can easily combine explicit state and symbolic methods (cf.
Subsec. 5.4.2 and [Vardi, 2001]) and be performed on-the-fly (cf. Subsec. 5.3.2).
Though on-the-fly MC is possible even for CTL∗ and µ-calculus, they are much
more complex algorithms (cf. Sec. 5.3 and Sec. 5.5);
• software verification analyzes execution traces, which have linear time behavior,
where LTL and Büchi automata are more expressive than CTL (cf. Fig. 4.3). Fur-
thermore, MC can be implemented by language containment of transition systems
(cf. Subsec. 5.3.2); hence verification engineers need only employ one conceptual
model for verification [Vardi, 2001]). In contrast, branching time behavioral prop-
erties can lead to an “impedance mismatch” for execution traces of software, i.e.,
the branching and linear structures are not compatible, cannot be fully matched
and thus can lead to unnatural or impossible transformations, e.g., for branching
time behavioral properties that have no linear counterexamples. So the above is
even more severe for lightweight formal methods that search for counterexamples
(cf. Chapter 7) or that really execute the SUT, as MBT (cf. Part III) or runtime
verification (cf. Sec. 2.2);
• MC via language containment is also compatible with the following techniques
that are relevant for software verification: Firstly, with abstractions, such as re-
ducing the state space (cf. Sec. 5.4). Secondly, with MBT’s ioco relations (cf.
Chapter 8). Finally, with composition of system specifications (cf. Subsec. 3.4.3
or [Manna and Pnueli, 1988]) and of property descriptions in an assume-guarantee
methodology [Pnueli, 1985; Flanagan and Qadeer, 2003], where the system is de-
composed into the components C1|| . . . ||Cn, and then a property Pi for component
Ci is verified modularly, similar to design-by-contract.

In summary, Table 5.1 compares these aspects for CTL and LTL; the remainder of this
thesis focuses on linear time properties, especially the temporal logics LTL (and Büchi).

Table 5.1.: Comparison of CTL and LTL
CTL LTL
can express branching time properties can express more complex linear time

properties

worst case time and space complexities
O(|S| · |F |)

worst case time and space complexities roughly
O(|S→∗ | · 2|F |

mainly for hardware verification mainly for software verification
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5.3. Model Checking Algorithms

5.3.1. CTL

As this thesis focuses on linear time properties, this subsection only briefly describes
CTL model checking algorithms.
To model check whether S |= F for F ∈ CTL and S = (S, T,Σ, I) ∈ SKripke,finite, the

following labeling algorithm can be performed: iterate inside out over the sub-formulas
f ∈ subF(F ), i.e., over the syntactic structure of F , and label each s ∈ S with f iff
(S, s) |= f . This can be decided using the sub-formulas processed already and a traversal
algorithm on T : a backward traversal and decomposition into strongly connected
components (SCCs); an SCC of S is a maximal sub-graph Sc = (Sc, T |S2

c
,Σ, I) such

that ∀s, s′ ∈ Sc : s ∈ dest(s′,→∗) and s′ ∈ dest(s,→∗); for this decomposition, Tarjan’s
DFS [Tarjan, 1972]) is often used, which requires O(|S|) time and space to decompose
S. Finally, S |= F iff ∀s ∈ S0 : s contains the label F [Clarke et al., 1999b].
With each reachable state and its outgoing transitions processed up to |subF (F )| ∈

O(|F |) times, the worst case time and space complexities of CTL model checking
are in O(|S| · |F |) [Clarke et al., 1999b; Schnoebelen, 2002; Baier and Katoen, 2008].
Better worst case space complexities can be achieved, but on the cost of the worst case
time complexity [Schnoebelen, 2002]. For practical considerations, see Subsec. 5.2.5.
NuSMV [URL:NuSMV] is one of the most prominent CTL model checkers.

5.3.2. On-the-fly LTL

Two main approaches exist for LTL MC: Firstly, offline LTL MC, for instance tableau-
based, similar to CTL MC [Clarke et al., 1997, 1999b]. It can be used for symbolic
MC and if global MC is necessary (cf. Subsec. 5.3.3). Secondly, on-the-fly LTL MC,
which is a more direct and simpler algorithm, more efficient (see Subsec. 5.2.2 and time
complexity paragraph below) and more popular [Vardi and Wolper, 1986]. Thus this
thesis focuses on on-the-fly LTL MC.
Fig. 5.1 describes the work-flow of on-the-fly LTL MC: When a desired property

description F ∈ LTL is given, we can use Def. 4.44 (or more efficient translations [Babiak
et al., 2012]) to construct a Büchi automaton Anever ≡ A¬F ≡ ¬F . Alternatively, an
undesired property description can be given as Büchi automaton Anever directly, which
is more expressive (cf. Theorem 4.46).
For composition with Anever, we transform the given system specification S = (S, T,Σ,

I) ∈ SKripke,1 ,finite into a Büchi automaton AS := Kfin2FSM (S) (cf. Def. 3.28). AS
embodies the same linear Kripke structures as S, as Lemma 5.7 shows. Alternatively to
operating on Büchi automata, all operations could be performed on Kripke structures as
well (cf. Def. 3.27), but using Büchi automata is the standard approach. Since AS only
has accepting states, the conjunctive Büchi automaton AS ∩ Anever can be constructed
in the simplified way (cf. Note 4.34), which can be performed on-the-fly. This often
leads to checks where only parts of the state space are constructed (cf. Subsec. 5.2.2).
Furthermore, as Subsec. 4.3.2 has described for the conjunctive Büchi automaton, the
property being checked can help prune the state space to its relevant part, such that
late or no fault detection often still yields a smaller state space than offline MC (cf.
Subsec. 5.5.1). Lemma 5.8 shows that on-the-fly LTL MC can now be implemented by
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an emptiness check of Modelslin(AS ∩Anever), for instance via the nested DFS algorithm
described below. If an undesired property occurs in S, a witness can be given (i.e., a
counterexample to F ).

Lemma 5.7. Let S ∈ SKripke. Then
Modelslin(Kfin2FSM (S)) =

{
Sπ ∈ SKripke,linear

∣∣π ∈ pathsmax(S)
}
.

Proof. For S ∈ SKripke,Modelslin(Kfin2FSM (S)) =
{
Slin ∈ SKripke,linear

∣∣∃|π ∈ pathsmax(
Kfin2FSM (S)) : Kfin2FSM (S) accepts π and both Slin and π describe the same linear
behavior (cf. Def. 4.30)

}
=
{
Sπ ∈ SKripke,linear

∣∣π ∈ pathsmax(S)
}
since Kfin2FSM (S)

only has accepting states and exactly embeds Slin’s paths, encoding I(·, si) via labels.

Lemma 5.8. Let S ∈ SKripke,1 ,finite and Anever ∈ Büchi (or F ∈ LTL with Anever ≡
A¬F ) be given. Then S |= Acnever (or S |= F ) ⇔ Modelslin(AS ∩ Anever) = ∅.

Proof. S |= Acnever (or S |= F )
Def. 4.31⇐⇒ ∀π ∈ pathsmax(S) : (Sπ, init) |= Acnever

Lemma 5.7⇐⇒ Modelslin(AS) ⊆ Modelslin(Acnever)
(called language containment check)

⇐⇒ Modelslin(AS) ∩
(
SKripke,linear \Modelslin(Acnever)

)
= ∅

Lemma 4.38⇐⇒ Modelslin(AS) ∩Modelslin(Anever) = ∅
Lemma 4.35⇐⇒ Modelslin(AS ∩ Anever) = ∅ (called emptiness check)

system specification S
(or description thereof)

Büchi automaton AS
(all states accepting)

undesired property description
LTL ¬F

undesired property description
Büchi automaton Anever ≡ ¬F

NDFS checks on-the-fly whether
Modelslin(AS ∩ Anever) = ∅?

undesired property
never occurs in AS

witness to Anever
in Modelslin(AS ∩ Anever)

(Def. 3.28) (Def. 4.44)

yes no

Figure 5.1.: Overview of on-the-fly LTL or Büchi MC

Nested DFS. Since Modelslin(A) 6= ∅ iff ∃|π ∈ pathsmax(A) that is accepting (using
Def. 4.29 and Sπ), emptiness checking of Modelslin(A) is equivalent to finding an ac-
cepting path π ∈ pathsmax(A). As S ∈ SKripke,1 ,finite, the conjunctive Büchi automaton
AS ∩Anever is also finite. Because of Lemma 5.9, emptiness checking is reducible to the
graph problem of acceptance cycle checks, i.e., to searching for a reachable cycle in
AS ∩ Anever that contains a state s ∈ F . This is sufficient if end states are forbidden.
Otherwise, the case π ∈ pathsmax(A) with |π| ∈ N applies in Lemma 5.9, and we must
additionally search for a reachable accepting end state.

98



5.3. Model Checking Algorithms

Lemma 5.9. Let A ∈ Büchi. Then Modelslin(A) 6= ∅ ⇔
∃|π ∈ pathsmax(A) : Sπ ∈ Modelslin(A) with π being a lasso or |π| ∈ N.

Proof. If S ∈ Modelslin(A), then πS is accepted by A, i.e., ends in an accepting end state
or visits an acceptance state a infinitely often. If |π| ∈ N, Sπ ∈ Modelslin(A). Otherwise,
let πS = πprefix ·πmiddle ·πsuffix with source(πmiddle) = dest(πmiddle) = a. Then A accepts
the lasso π′ := πprefix · (πmiddle)ω, thus Sπ′ ∈ Modelslin(A).

Note 5.10. The proof is valid for temporal logics that specify linear time behavioral
properties that are ω-regular; then A really accepts the lasso. This is the case for
all temporal logics we consider [Fisler et al., 2001; Ehlers, 2011]. Exemplary temporal
logics that go beyond ω-regularity use non-regular automata as temporal operators (just
as ECTL∗ used Büchi automata), for instance visibly push-down automata to enable
counting [Demri and Gastin, 2012]. But this leads to undecidable model checking (and
satisfiability checking), e.g., already for one operator based on the context-free language
{ak1, a2, a

k
3, a4|k ∈ N} [Demri and Gastin, 2012].

Acceptance cycle detection can be performed on-the-fly by the nested depth-
first search (NDFS) algorithm [Courcoubetis et al., 1992], implemented amongst oth-
ers in SPIN [Holzmann et al., 1996] and LTSmin [Evangelista et al., 2012] (cf. Sec. 5.5).
As depicted in Listing 5.3, NDFS is based on the basic depth-first search (DFS),
whose worst case time complexity is in O(S→∗) since it traverses S, its worst case space
complexity is in O(|S→∗ |) since transitions need not be stored. NDFS extends the DFS
with the statement if accepting(s) then innerDFS(s) fi; in line 7: Before the basic DFS
backtracks from an accepting state s and removes it from the stack, a second, inner DFS
routine innerDFS() is started, to check whether s can reach itself by reaching the path
from init to s (stored on the stack), thus resulting in an acceptance cycle.
The basic DFS models the trace from init to the currently visited state via a stack,

used for backtracking. To avoid redundant work of re-exploring states already visited
(those on the stack as well as those that have already been backtracked from), they
need to be stored and looked up efficiently, which is usually done with a hash table.
Avoiding revisits is essential, since the Kripke structures of typical specifications have a
lot of states with many incoming transitions. Avoiding revisiting states can hence lead
to an exponential speedup, for instance in leader election algorithms (cf. Subsec. 6.8 and
[Faragó, 2007, Table 6.3], which shows a speedup from 176 hours to 70 seconds).
Also innerDFS() should avoid revisiting states, since a state can be reachable from

many acceptance states (which would lead to worst case time complexity quadratic in
the number of states). Therefore, innerDFS() uses a global hash table, too. The same
hash table as for the outer DFS can be used by adding two bit to the state vector
to indicate whether a state has been visited by the outer DFS and by the inner DFS.
Immediately after DFS(s) has backtracked from all direct successors dest(s,→) of s, we
have for all acceptance states t ∈ dest(s,→) :
• either t is on the stack, in which case innerDFS(t) will be called later;
• or innerDFS(t) has already been called, terminated and thus inductively excluded

that t is on an acceptance cycle.
So for all t with {t, 0} ∈ hash table, either no acceptance cycle is reachable from t or for
each path π from t to an acceptance state of a reachable acceptance cycle, a state from
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1proc DFS(S→∗ s)
2add {s ,0} to hash tab l e ;
3push s onto s tack ;
4for each s u c c e s s o r t o f s do
5i f {t ,0} 6∈ hash tab l e then DFS(t) f i
6od ;
7i f accept ing (s) then innerDFS (s) f i ;
8pop s from stack ;
9end
10

11proc innerDFS (S→∗ s) /∗ the nes ted search ∗/
12add {s ,1} to hash tab l e ;
13for each s u c c e s s o r t o f s do
14i f {t ,1} 6∈ hash tab l e
15then innerDFS (t)
16else i f t ∈ s tack then r epo r t cy c l e f i
17f i
18od ;
19end

Listing 5.3: Nested DFS

π is on the stack. Therefore NDFS eventually finds an acceptance cycle if there exists
one. More detailed proofs can be found in [Holzmann, 2004; Baier and Katoen, 2008].

Notes 5.11. Depending on how S is represented (cf. Subsec. 3.4.3), a basic DFS might
require additional space for bookkeeping of the outgoing transitions that are iterated over
for each state on the stack. Exemplary worst case space complexities, depending on S’s
representation and the implementation of the DFS, are in O(S→∗+depthS ·log(branchS))
or in O(S→∗ · log(S→∗)), but of course always in O(S→∗).
The original NDFS implementation in SPIN [Holzmann and Peled, 1994] performed

a simpler check for the states visited in innerDFS(): Instead of checking if t ∈ stack (cf.
line 16 of Listing 5.3), it only checked whether t equals the accepting state that initiated
innerDFS(). Holzmann et al. showed in [1996] that checking within the complete stack
(i.e., if t ∈ stack) instead of only with the seed is required for correctness of the NDFS
algorithm in combination with partial order reduction (see Subsec. 5.4.1). Checking
within the complete stack also has better overall performance since the NDFS algorithm
aborts earlier and hence avoids traversing possibly further, large parts of the graph.
The NDFS is not on-the-fly in a strict sense: only after the outer DFS(s) for an

acceptance state s has explored all new reachable states in dest(s,→∗), innerDFS(s)
searches for an acceptance cycle containing s. In the extreme case of s = init being
the only accepting state, the full state space is explored before acceptance cycles are
searched for, so NDFS is fully offline. More generally, if there are multiple accepting
states, but all at a shallow depth in the state space, still a large part of the state space
is explored before acceptance cycles are searched for. For the LTL subclass of livelock
detection, Subsec. 6.3.2 shows a concrete walk-through of the described work-flow and
NDFS. Chapter 6 then covers a better algorithm that is on-the-fly in the strict sense.
For finite ∪ infinite trace semantics, l.7 of Listing 5.3 must additionally check if s is
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an accepting end state, in which case the finite path described by the stack can simply
be reported.

Time and Space Complexities of NDFS. Since a NDFS algorithm over S = (S, T,Σ, I)
visits each reachable state at most twice, its worst case time complexity is O(|S→∗ |).
Since only two bit per state are required to indicate whether a state has yet been visited
by the outer DFS and by the inner DFS, the worst case space complexity is the same as
for the DFS: in O(|S→∗ |) (see also Note 5.11).

Notes. Tarjan’s DFS [Tarjan, 1972] could be used instead of the NDFS to detect all
SCCs in S→∗ and then check whether they contain an accepting state. It has the same
worst case time and space complexity as the NDFS, but the factors are higher, and some
transitions between states need to be stored. It is able to produce all accepting paths,
though, and to implement also strong fairness.

Time and Space Complexities of LTL MC.When F ∈LTL is given and translated to a
Büchi automaton A¬F (cf. Def. 4.44), A¬F ’s states are subsets of subF (F ), so A¬F has
O(2|subF (F )|) = O(2|F |) states in the worst case. Thus AS ∩A¬F has O(|S| · 2|F |) states
and O(|T | · 2|F |) transitions in the worst case.
In total, on-the-fly LTL MC has a worst case time complexity in O(|S→∗ | ·

2|F |) [Baier and Katoen, 2008], and a worst case space complexity in O(|S→∗ | ·2|F |).
Contrarily, global LTL MC has a worst case time complexity of |S| · 2O(|F |) [Clarke
et al., 1999b; Schnoebelen, 2002]. For practical considerations, see Subsec. 5.2.5.

SPIN [URL:Spin], LTSmin [URL:LTSmin] and DiVinE [URL:DIVINE] are prominent
on-the-fly LTL model checkers (cf. Sec. 5.5), SAL [URL:SAL] and SMV [URL:SMV]
offline tableau-based global LTL model checkers [Clarke et al., 1997].

5.3.3. CTL∗

As Corollary 4.50 shows, CTL∗ cannot express stronger linear time properties than
LTL, but Büchi can. As this thesis focuses on linear time properties, this subsection
only briefly describes CTL∗ model checking algorithms.
The labeling algorithm for CTL MC can be lifted to CTL∗ by treating sub-formulas f

that are not in CTL as LTL formulas and using a global LTL MC (e.g., tableau based)
to label all s ∈ S with f iff (S, s) |= f . The complexity of CTL∗ model checking is the
maximum of the complexity of CTL MC and global LTL MC, |S| · 2O(|L|) [Clarke et al.,
1999b]. ARC [URL:ARC] and LTSmin [URL:LTSmin] (via µ-calculus) are CTL∗ model
checkers (cf. Sec. 5.5).

Note. Explicit state, on-the-fly MC, as described in the previous subsection, can also
be lifted from LTL to CTL∗ model checking: [Visser and Barringer, 2000] shows how
SPIN could use hesitant alternating automata for this instead of Büchi automata, and
non-emptiness games instead of the NDFS. But this is much more complex than Büchi
MC and has therefore not been implemented in SPIN.
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5.4. Reductions

Because of state space explosion, MC quickly becomes infeasible. To increase the maxi-
mal problem size that can still be model checked, this section covers the possibilities of
reducing space requirements of MC by abstraction: either lossy by reducing the state
space, or lossless by compressing it. Since these reductions require computations, the to-
tal runtime can increase, for instance for SPIN’s minimized automata (cf. Subsec. 5.5.1).
But for strong lossy abstractions, considering fewer states can strongly outweigh the
additional computations, resulting in drastically reduced total runtime. This can be the
case even if the reduction sustains completeness, e.g., for partial order reduction (cf.
Subsec. 5.4.1 and Table 6.8).
Although manual reductions, like problem specific abstractions, can yield large im-

provements, they are highly individual and therefore not covered in this thesis, which
only considers fully automatic methods. Many reductions abstract from the original
state space, which needs to preserve the relevant behaviors for the property under inves-
tigation, otherwise the reduction would not be sound and complete. For MC, this thesis
focuses on sound and complete techniques. Examples of sound and complete abstrac-
tions are certain abstract interpretations, i.e., abstractions from the concrete system
specification description by subsuming or eliminating values of parts of the state vec-
tor. Examples are selective data hiding via program slicing (cf. Subsec. 5.4.3), whereas
general data type abstraction can become unsound or incomplete, e.g., CBMC’s (cf.
Chapter 7) predicate abstraction [Clarke et al., 1986], which maps larger data to a
set of Boolean variables by only keeping track of certain relevant predicates over the
original variables, which are discarded.

Roadmap. For lossy abstractions, one of the most effective and prominent state space
reduction techniques is partial order reduction, introduced in Subsec. 5.4.1 (and also
taken into account in Subsec. 6.6). Other techniques like symmetry reduction, program
slicing and statement merging will be covered briefly by Subsec. 5.4.3.
For lossless abstractions, one of the most compact and prominent representations of

the state space is by symbolic techniques, covered in Subsec. 5.4.2: Firstly SAT- and
SMT-based, then BDD-based (cf. Chapter 3). Other symbolic techniques for compres-
sion, like minimized automata and ETF, and non-symbolic techniques like tree compres-
sion and the incomplete bitstate hashing and hash compaction, will be covered briefly
in Subsec. 5.4.3.

Notes. For MC hardware, BDD-based techniques perform well (since bit-vectors and
synchronizing clocks are heavily used). For MC software, partial order reduction of-
ten yields the strongest reductions, especially when complex data structures and many
asynchronously executing processes are involved [Holzmann, 2004].
The strength of most of these reduction methods have been considered and compared

roughly in [Faragó, 2007; Laarman, 2014; Barnat, 2015]. Most reduction methods can
be combined (cf. Subsec. 5.5.2), but their factors of improvement often do not multiply.
Thus, combinations are often researched, e.g., partial order reduction in combination
with symmetry reduction in [Bosnacki et al., 2002] and partial order reduction in com-
bination with parallelization, hash compaction and tree compression in Subsec. 6.8.
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5.4.1. Partial Order Reduction

Covering all execution orders of the system’s component automata is the cause for state
space explosion (cf. Sec. 5.1). But often statements of concurrent processes are commu-
tative, i.e., their execution orders lead to the same state (see Def. 5.13). Partial order
reduction (POR) does not consider all possible interleavings of concurrent statements,
only a subset relevant to the currently checked property F . This often reduces the size of
the state space exponentially, and is hence one of the most powerful reduction methods
in MC linear time properties.
So POR (more precisely, the dependency relation D below) requires information about

which component automaton provides the update of a transition. This information can
be deduced from transitions labeled with basic statements, which cause deterministic
updates (cf. page 47). Hence POR operates on SKripke,labeled,finite,deterministic,1 .
All variants of partial order reduction choose a subset of enabled(s) in each reachable

state s to select only few of the interleavings that have the same effect with respect to the
checked property F [Peled, 1993]. This thesis uses the technique of ample sets [Clarke
et al., 1999a,b], which is implemented in the model checker SPIN [Holzmann et al., 1996].
Similar variants are: the stubborn set method [Valmari, 1989], implemented in the model
checker LTSmin [Pater, 2011]; the persistent set and sleep set methods [Godefroid,
1996], which all weaken the provisos C0 and C1 of Table 5.2; the cartesian POR [Gueta
et al., 2007], which is fully dynamic, i.e., needs no static approximations; the probe
set method [Kastenberg and Rensink, 2008], which is a more flexible dynamic POR;
the guard-based method [Laarman et al., 2013a], which is a language-agnostic stubborn
set method that uses guards as enabling as well as disabling conditions; the peephole
method [Wang et al., 2008], which allows POR of implicit symbolic MC based on SAT-
and SMT-solving; and monotonic POR [Kahlon et al., 2009], which is an optimal POR for
implicit symbolic MC based on SAT- and SMT-solving and can also be used for explicit
MC. There are also methods that stem from POR but differ more (in the method or field)
and are no longer called POR. For instance confluence reduction [Timmer et al., 2011] for
Markov decision processes (cf. Subsec. 5.5.4), and statement merging (cf. Subsec. 5.4.3).
The ample set technique chooses in each reachable state s ∈ S→∗ not the whole set

enabled(s), but the set ample(s) ⊆ enabled(s), called the ample set of s. If ample(s) =
enabled(s), we say s is fully expanded. S→∗ is reduced to SPOR, as defined in Def. 5.12.

Definition 5.12. Let S = (S,T, L,Σ, I) ∈ SKripke,labeled,finite,deterministic,1 .
Then • TPOR :=

{
(s, α, s′) ∈ T

∣∣ α ∈ ample(s)
}
;

• s α−→PORs
′ :⇔ (s, α, s′) ∈ TPOR;

• SPOR := dest(init,−→∗POR);
• SPOR := (SPOR,TPOR, L,Σ, I).

For model checking to retain completeness, Table 5.2 lists various provisos on ample(·).
They do not fully determine ample(·), so any subset of T satisfying the provisos retains
completeness. Depending on what kind of property is being checked, not all provisos have
to hold, though: For deadlock detection, ample(·) only needs to fulfill the emptiness
proviso C0, which forbids invalid end states, and the dependency proviso C1 (also called
ample decomposition proviso), which forbids ignoring depending transitions. To
check C1, the ample set selection has to determine which statements are independent, as
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defined in Def. 5.13. Model checkers like SPIN and LTSmin (cf. Sec. 5.5) conservatively
approximate this dependency by static analysis, resulting in the dependency relation
D ⊆ L× L [Katz and Peled, 1988]. By using D, C1 can be checked locally.

Definition 5.13. Let (S,T, L,Σ, I) ∈ SKripke,labeled,finite,deterministic,1 and statements
α, β ∈ L.
Then α, β are independent iff ∀s ∈ S : α, β ∈ enabled(s) =⇒

•α ∈ enabled(β(s)) and β ∈ enabled(α(s)) (enabledness)
• and α(β(s)) = β(α(s)) (commutativity)

α, β are dependent :⇔ α, β are not independent, in which case (α, β) ∈ D.

To check a formula F ∈ LTL−X , the remaining two provisos also need to hold: The
visibility proviso C2 (also called invisibility proviso) guarantees that transition from
not fully expanded states are invisible. So as long as transitions from not fully expanded
states are taken, all propositions relevant to F stutter, i.e., S and SPOR are stuttering
equivalent related to F . So C2 guarantees that transitions from not fully expanded
states do not influence whether F holds (cf. Lemma 4.27), and C1 guarantees that the
visible transitions can still be taken afterwards. Consequently, POR is correct only for
formulas in LTL−X , but this is not a severe problem: as the LTS contains all possible
interleavings, very little is known about the next state, so the next operator is rarely used.
Finally, the cycleClosing proviso C3 (also called cycle proviso) prevents the so-called
ignoring problem, i.e., that some transition is postponed indefinitely [Evangelista and
Pajault, 2010]. C3 considers all cycles that the current state s is on, which is too
costly to enforce. Thus the notInStack proviso C3’ (also called cycle implementation
proviso) is used: It implies C3, but can be checked without considering all those cycles.
Since it enforces full expansion of a state on the cycle, it is stronger than C3. Since
C3’ checks the stack, i.e., it depends on the path leading to s, it is not a local proviso.
Consequently, C3’ complicates MC: Considering the full stack impedes parallelization
(cf. Sec. 6.7), and additional constraints and bookkeeping is required to ensure identical
ample(s) for NDFS’s (outer) DFS(s) and innerDFS(s). These additional constraints can
strongly weaken POR [Holzmann et al., 1996].
Since all provisos C0, C1 via D, C2 and C3’ can be checked on-the-fly, these provisos

can be used for on-the-fly LTL−X MC with POR [Peled, 1994].

Notes 5.14. Besides the different POR versions mentioned above, many minor vari-
ations exist, for instance transparent POR [Siegel, 2012], where C2 is relaxed to
C2transparent: for a literal l that does not occur negated in F (e.g., for l = ¬p, F does
not contain p without negation), α is visible iff α swaps l from false to true. Chapter 6
shows further variations.
POR can easily be applied for our finite ∪ infinite trace semantics (cf. page 71, just

as for finite trace semantics [Baier and Katoen, 2008]): C0 guarantees that S and SPOR
have the same end states, and all other provisos do not conflict with end states.

5.4.2. Symbolic Techniques
Symbolic techniques [Clarke et al., 1999b, Chapter 6]) use formulas (or representations
thereof) to encode states and transitions: all s ∈ S can be encoded by Σsv, T by a
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Table 5.2.: Provisos on ample(s)

emptiness (C0) ∀s ∈ SPOR : (ample(s) = ∅⇔ enabled(s) = ∅).

dependency
(C1)

∀s ∈ SPOR ∀α ∈ L \ ample(s) :
(
∃|β ∈ ample(s) : (α, β) ∈

D
)

=⇒ ∀π ∈ paths(S, s) : if α occurs on π, some statement in
ample(s) occurs earlier on π.

visibility (C2)
∀s ∈ SPOR : ample(s) 6= enabled(s) =⇒ ∀α ∈ ample(s) : α is
invisible to F (α does not swap any p ∈ Σ that occur in F ).

cycleClosing
(C3)

∀s ∈ SPOR ∀ cycles π ∈ paths(SPOR, s) ∀α ∈
enabled(s) ∃|s′ on π : α ∈ ample(s′).

notInStack (C3’)
∀s ∈ SPOR

(
∃|α ∈ ample(s) : α(s) is in the DFS stack while s is

the last element on the stack
)

=⇒ ample(s) = enabled(s).

propositional formula representing the function fT : Σ2
sv → B, (Isv(s), Isv(s′)) 7→ (s →

s′), for s, s′ ∈ S. Then MC does not operate on Kripke structures and sets of states, but
on the formulas. Two main approaches are described below: the BDD-based approach,
using BDD-like data structures as representations for propositional formulas, and the
SAT- and SMT-based approach, using propositional formulas (plus optional theories)
directly.

BDD-based

BDD-like data structures are mainly used for implicit state model checking of branching
time logics and in hardware verification. Since this thesis focuses on linear time logics
and software verification, BDD-based techniques are only described briefly.
Instead of explicitly traversing the state space, symbolic implicit state model

checking via BDDs performs operations on BDDs, as described in Subsec. 3.2.4.
For this, a Kripke structure is represented by a BDD encoding of fT , called BDDT .
Furthermore, a temporal logic operator can be described as a least or greatest fix-
point of a function f , i.e., a least or greatest set S′ ⊆ S such that f(S′) = S′ [Emerson
and Clarke, 1980]. The function f can be expressed using only the operators from
propositional logic, AX and EX. For instance, similar to Def. 4.44, the CTL operator
A (b1 U b2) (with branching time formulas bi) can be described as µZ.b2 ∨ (b1∧AX Z),
i.e., as the least fix-point of Z for the function f := b2 ∨ (b1∧ AX Z). Thus a smallest
set Z ⊆ S such that f(Z) = Z contains the states s with (S, s) |= A (b1 U b2).
Since all these functions f are monotonic and S is finite, their least fix-point is

µZ.f(Z) = ∪
i∈N

f i(∅), their greatest fix-point is νZ.f(Z) = ∩
i∈N

f i(S) [Clarke et al., 1999b].
Using BDD representations and operations, f(Z) can be computed from Z and BDDT

using the operations described by f . So by performing at most |S| iterations of those
BDD-based operations, a fix-point BDD emerges that represents the states satisfying
the property description. To construct counterexamples in implicit state model check-
ing, extra work has to be performed [Clarke et al., 1999b].
BDD encodings are also applicable for implicit state LTL MC by using offline tableau-

based LTL MC. Symbolic techniques can also be used for explicit state model checking by
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replacing the hash table used for the set of visited states with a symbolic representation.
Examples are LTSmin’s ETF and SPIN’s minimized automata (cf. Sec. 5.5).

SAT- and SMT-based

Reducing MC to a SAT or SMT problem (cf. Chapter 3) is mainly used if a linear
time property description L needs to be checked. The most prominent approaches use
bounded model checking (cf. Subsec. 5.2.3). Many propositional encodings [[S, L]]b for
BMC of S |= L with a user-supplied bound b do not use fix-point operations on some
function f (see BDD-based technique above), but only unwind f and the transition
relation T for b times [Biere et al., 1999]. In more detail, the encodings can take on
many forms [Kroening et al., 2011]:
All encodings need to reason about paths π = (si)i∈[0,...,b] ∈ paths(S) of length b, for

which versioned Σsv (cf. SSA in Sec. 7.1) encode the states on π (and thus also encode
Isv). Propositional formulas ensure:
• that π starts in S0, via formula FS0 ;
• that π is an unwinding of T of length b, via formula F bT ;
• that π is a lasso with a cycle of length i ∈ N≥0, via F bi . Since S is finite, searching
for a lasso is sufficient, analogously to Lemma 5.9.

For a property L ∈ LTL, several encodings have been published [Clarke et al., 2005]:
The cases where π of length b with a cycle of length i fulfill L can be encoded as propo-
sitional formula F bL,i directly, making use of the encodings F bL′,i for L′ ∈ subF (L) [Biere
et al., 1999], similar to Subsec. 5.3.1. With this, [[S, L]]b = FS0 ∧ F bT ∧

(
∨i∈[0,...,b] (F bi ∧

F b¬L,i)
)
. More complex encodings distinguish finite and infinite witnesses to achieve lower

completeness thresholds for finite witnesses; this was the original encoding in [Biere et al.,
1999]. Alternatively, for a property Anever ∈ Büchi, the Büchi automaton AS ∩ Anever
(cf. Subsec. 5.3.2) can be propositionally encoded similarly to how S was encoded [Clarke
et al., 2004b, 2005]). Then the formulas F bL,i check (similar to L = �♦ accept) whether
the cycles corresponding to F bi contain accepting states.

[[S, L]]b is checked for satisfiability using a SAT-solver. If a propositional model exists,
it is a counterexample to L (a witness for Anever) that has length ≤ b.
Let X be some structure, C(X) the size of a circuit defining X, and Σsv(X) a

propositional signature required for X (so usually |Σsv(X)| ∈ O(log(|X|)). Then the
worst case size of the original encoding is O(b · C(S) + b3 · |L|), with the worst case
number of propositional variables in O(b · |Σsv(S)|+ (b+ 1)2 · |L|) [Clarke et al., 2004b,
2005]. The worst case size of the simpler encoding for (Q,∆, A,Q0, F ) = AS ∩Anever is
in O

(
b · (C(AS ∩Anever) + |Σsv(S)|+ |Σsv(L)|+C(F ))

)
, with the worst case number of

propositional variables in O(b · (|Σsv(S)|+ |Σsv(L)|)) [Clarke et al., 2004b, 2005]. Many
other and more efficient encodings are possible, e.g., by not simply unwinding T but
using fix point encodings [Latvala et al., 2004], or by encoding into SMT instead of
SAT [Armando et al., 2009].
If no models exist for the Büchi automaton encoding up to the number b of states in
AS ∩ Anever + 1, i.e., b ∈ O(|Q|), there exists no counterexample of any length, i.e., L
holds [Clarke et al., 2004b]. Thus a completeness threshold CT is in O(|S| · 2|L|), with
S being the set of states of S and ¬L the LTL formula transformed into Anever. There
are lower estimates for CT , but finding the smallest completeness threshold is as hard
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as the model checking problem itself [Kroening et al., 2011].
Since CT is in O(2|Σsv(S)|), an encoding has a worst case number of propositional

variables in O(2|Σsv(S)|). In summary, SAT-based BMC has a worst case time complex-
ity in O(2(2|Σsv(S)|)). In practice, the runtime is often much better and can be lower
than for other LTL MC approaches, and the encodings are often smaller than BDD
encodings [Clarke et al., 2004b, 2005].
BMC can check ACTL∗ in the same way. Similarly, BMC of safety properties for sys-

tem specification descriptions in the programming language C is possible (cf. Chapter 7).

5.4.3. Other Reductions

This subsection covers reductions that are usually less powerful and thus less prominent.
State space reductions besides partial order reduction can also be performed by

symmetry reduction, program slicing and statement merging:
Symmetry reduction identifies global states that are equivalent for the property P

being checked, due to some given symmetry of P [Baier and Katoen, 2008]. Two types
of symmetry occur frequently: full symmetry between all n processes, i.e., arbitrary
permutations, and rotation when the processes form an appropriate topology. For
instance in leader election on a ring with n processes (cf. Sec. 6.1), P = ♦

(
nr Leaders

= 1 ∧ nr Passive = n − 1
)
is symmetric under rotation of the ring. Thus symmetry

reduction partitions the state space into classes of states modulo rotation, and only
considers the classes (or a representative each). The resulting Kripke structure is called
quotient structure. For rotation, its state space is reduced by the factor n, for full
symmetry by the factor n!.
Program slicing is an abstract interpretation by selective data hiding: data and

operations irrelevant for the currently checked property are statically removed. So the
abstract interpretation detects which statements from the system specification descrip-
tion can be ignored without changing the verification result [Millet, 1998; Holzmann,
2004]. For infinite trace semantics (cf. page 71), this only works for LTL properties
and assertions, whereas other properties like deadlock detection are incompatible with
program slicing.
Statement merging is a special case of POR computed statically [Holzmann, 2004]:

A sequence of invisible, deterministic statements within a process is wrapped into a
d_step call (cf. Subsec. 3.4.3). MC retains completeness when statement merging is
used, since the sequence may be executed without interleavings, as POR shows. Since
the statements are invisible, the sequence may be executed atomically, i.e., intermediate
steps may be eliminated.
State space compressions besides the symbolic techniques described in Sec. 5.4.2

are for instance: ETF (cf. Subsec. 3.4.3), minimized automata, tree compression and
collapse compression:
Minimized automata compression replaces the hash table with a symbolic repre-

sentation, using multi-valued decision diagrams (MDDs), which use bytes, not bits
like BDDs do.
Tree compression [Laarman et al., 2011b] reuses parts of a state vector for multiple

states, enabling compact storage: State vectors are not stored individually in one hash
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table, but split up and stored in a binary tree of hash tables, where subtrees are shared
amongst state vectors.
Collapse compression is similar to tree compression, but reuse is limited to one

level, i.e., not done recursively via trees.
Incomplete reductions via hashing methods (often called lossy hashing) are

mainly bitstate hashing and hash compaction. Even though this thesis focuses on sound
and complete MC techniques, bitstate hashing and hash compaction are also mentioned
briefly since they are very efficient. For liveness properties, lossy hashing can also become
unsound.
Bitstate hashing assumes that the number b of buckets in the hash table is large

enough such that the hash function is injective on the state space. Thus not the full
state vectors need to be stored in the hash table, a simple bit (representing that the
corresponding state has been visited) is sufficient. Needing only one bit per state, b can
become very large, so collisions becomes unlikely. If they do occur, i.e., the hash function
is not injective on the state space, none but one of the states colliding in a bucket are
explored. Thus verification becomes incomplete. Identifying colliding states as one can
cause fake cycles, resulting in unsound MC of liveness properties.
Hash compaction lowers the possibility of collisions even stronger than bitstate

hashing by increasing the number of buckets even further (e.g., currently to 264) – above
the number of bits fitting into memory. Thus a level of indirection is used: the bucket
number (i.e., the value of the hash function f) is stored in a regular hash table. Though
collisions in the regular hash table are resolved, verification again becomes incomplete
(and unsound for liveness properties) iff f is not injective on the state space.

5.5. Tools

Many tools for model checking exist [URL:listFMToolsHP; URL:listVerifToolsHP; Frap-
pier et al., 2010; Bérard et al., 2013]. One of the most prominent, SPIN, is described
in Subsec. 5.5.1. Subsec. 5.5.2 describes LTSmin, a language-independent parallel MC
tool. Subsec. 5.5.3 briefly describes DiVinE, a language-independent explicit state par-
allel on-the-fly LTL model checker. Subsec. 5.5.4 briefly describes PRISM, an implicit
state probabilistic model checker. SBMC tools will be covered in Chapter 7.

5.5.1. SPIN

SPIN [URL:Spin] stands for simple PROMELA interpreter and is one of the most
popular explicit state on-the-fly MC tools for LTL and Büchi. It received the Soft-
ware System Award by the Association for Computing Machinery (ACM) in the year
2001 [URL:ACMAWARD]. Its specification language is PROMELA (cf. Subsec. 3.4.3).

SPIN’s Property Checks

For SPIN to be able to check properties, Boolean expressions need to be defined by
symbolic names, which then can be used as atomic propositions.
SPIN can check the following safety properties (also called safety checks):
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• deadlock detection via end state validity: for this check, self-loops at end states
are avoided and each end state must be marked by a PROMELA label starting
with the string “end” to be a valid end state;
• user-supplied assertions via assert (), which check the expression supplied as

parameter at the locations (determined by the corresponding program counter pc ,
cf. page 44) the assertion is given (cf. Sec. 2.2). If the expression evaluates to false,
an assertion violation is reported;
• unreachable code existence, i.e., some statement in a process declaration that is

never reached;
• correctness of xr and xs assertions: xr channelName in a process p for a channel

channelName with capacity larger 0 states that all other processes do not read
from channelName, likewise xw channelName for writing. These assertions are used
especially to improve POR.

SPIN can check the following liveness properties (also called liveness checks):
• acceptance cycle detection via NDFS (cf. Subsec. 5.3.2), where acceptance states
are marked by PROMELA labels starting with the string “accept”;
• never claims (cf. Subsec. 3.4.3), for checking property descriptions in Büchi via
acceptance cycle detection and for pruning the state space (cf. Subsec. 3.4.3 on
page 47 and Subsec. 5.3.2). Mainly never claims without side effect are used;
• property descriptions in LTL (cf. Subsec. 5.3.2, but using a faster LTL to Büchi
translation [Gastin and Oddoux, 2001]);
• livelock detection via the specialized LTL property of non-progress cycles (covered
thoroughly in Chapter 6).

For high performance verification, SPIN generates a C source file (pan.c) that is highly
specialized for the property being checked. Then the file is compiled and executed.
Liveness checks can be restricted to weakly fair linear Kripke structures (cf. Def. 5.6),

but costs a strong growth of the state space. In the context of SPIN’s processes,
fairnessweak means that a process that remains continuously enabled will eventually
be schedules (i.e., is not starving). SPIN does not support fairnessstrong, which would
forbid any process starvation, i.e., guarantee that a process that is recurrently enabled
will eventually be scheduled.

SPIN’s reductions

SPIN’s various reduction methods contribute strongly to its power and success, and
can mostly be combined. SPIN can reduce the state space by POR, program slicing
and statement merging. Symmetry reduction has only been implemented experimen-
tally [Bosnacki et al., 2002]. SPIN can compress the state space using minimized au-
tomata and collapse compression. It also offers lossy hashing via bitstate hashing and
hash compaction.

5.5.2. LTSmin

LTSmin [URL:LTSmin; Laarman, 2014] (short for “Minimization and Instantiation of
Labelled Transition Systems”) is an award-winning [Howar et al., 2012] tool-set for ma-
nipulation and MC of LTSs and (labeled) Kripke structures. Its strengths are language-
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independents and high-performance parallel (multi-core and distributed) MC. Fig. 5.2
(from [Laarman et al., 2013a]) shows the overall structure of LTSmin.

mCRL2 Promela DVE UPPAAL

Symbolic

Transition
caching

 Partial−order
Transition grouping  reduction

PINS

PINS

Distributed Multi−core

specification
language
front−ends

algorithm
back−ends
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as PINS2PINS
wrappers

Variable reordering,

Figure 5.2.: Overview of LTSmin

Specification Language Front-Ends. LTSmin supports several system specification de-
scription languages (cf. Subsec. 3.4.3 and [Blom et al., 2010]): process algebras and
infinite data structures in µ-CRL and mCRL2 [Kant and van de Pol, 2012; Cranen
et al., 2013; Groote and Mousavi, 2014], state based languages (ETF (cf. Example 3.29),
DVE (cf. Subsec. 5.5.3), PROMELA (cf. Subsec. 3.4.3) via SPINS [van der Berg and
Laarman, 2012]), discrete abstractions of (biological) ODE models (MAPLE, GNA),
and generalized timed automata [Dalsgaard et al., 2012; Laarman et al., 2013b]. Ad-
ditionally, LTSmin can interface with other tools: with CADP (offering their formats
BCG, DIR and OPEN/CAESAR interface [Garavel, 1998; Garavel et al., 2011], JTorX
(cf. Subsec. 10.3.3), DiVinE (cf. Subsec. 5.5.3), the Genetic Network Analyzer (GNA),
and Opaal (for timed automata, the UPPAAL input format and rapid prototyping MC
algorithms).

PINS.The high number of front-ends, optimizations (on the state space or parallel algo-
rithms) and back-ends, as well as their flexible combination, are achieved by LTSmin’s
design with separation of concerns [Blom et al., 2010, Fig. 1]: Its Interface based on
a Partitioned Next-State function (PINS) offers the right level of abstraction for
connecting specification language front-ends to algorithm back-ends. It defines not only
a next-state interface for enabled(·) to reflect the operational semantics, but also a
static dependency matrix for the dependency relation D (cf. Subsec. 5.4.1). Thus a
concrete specification language is hidden, but not the parallel structure inherent within
the specification. Therefore, the combinatorial structure of the specified system is pre-
served, enabling fast symbolic exploration and the optimizations described below. Inte-
grating a new language, i.e., implementing the next-state interface and the dependency
matrix, requires a few hundred LOC only. Similarly to SPIN and DiVinE, language
front-ends can generate specialized C code, resulting in high-performance MC [van der
Berg and Laarman, 2012].
In PINS, states are encoded as state vectors of N ∈ N slots (similar to Def. 5.4,

but integer values instead of binary), and the transition relation T is partitioned into
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K groups, describing local transitions between sub-vectors. This results in static
dependency matrices of type BK×N , denoting the slots that the transitions of a group
might depend on (this part is called read matrix) and the slots those transitions might
update (this part is calledwrite matrix). For many specified systems, there are only few
dependent slots for a group i ∈ {1, . . . ,K}, so the dependency matrix is sparse and the
next-state function for i needs only operate on the short (sub-)vector comprising
those dependent slots, not all N . Thus a single next-state function call covers the set
of all transitions on full vectors where the slots independent of i have arbitrary fixed
values [Blom et al., 2010].
Optimizations as PINS2PINS wrappers are reductions, such as Partial Order Re-

duction (cf. Subsec. 5.4.1 and [Pater, 2011; Laarman et al., 2013a]) or improvements for
concurrency, such as transition grouping of the dependency matrix by merging groups,
variable reordering for symbolic MC, and caching local transitions for slow language
front-ends (like mCRL2 and UPPAAL). These and further optimizations are indepen-
dent of front-ends and back-ends and can therefore be implemented as PINS2PINS
wrappers to perform the optimization on-the-fly between the front-end and back-end.
Therefore, they are composable and reusable for all language front-ends and most (but
not all, see below) algorithm back-ends.

Algorithm Back-ends for Property Checks. LTSmin has distributed algorithms [Lynch,
1996] to manipulate LTSs and (labeled) Kripke structures by τ -cycle elimination, strong
and branching bisimilar minimization and comparison.
LTSmin efficiently implements fully symbolic on-the-fly MC for CTL and µ-calculus

properties with the help of PINS: the transition relation T is learned and stored as BDD
successively.
LTSmin uses high-performance multi-core variants of the following on-the-fly algo-

rithms, which all yield counterexamples to violated properties:
• DFS for exploring LTSs and (labeled) Kripke structures, and checking invariants

and freedom of deadlocks [Laarman, 2014];
• PDFSFIFO, the parallelized variant of DFSFIFO (cf. Chapter 6). It is currently the

most efficient explicit state livelock verification;
• cndfs for general Büchi automata LTL verification. It is currently the most effi-

cient multi-core NDFS [Evangelista et al., 2012; van der Berg and Laarman, 2012;
Laarman, 2014] and the integration of two former multi-core NDFS algorithms
(LNDFS and ENDFS, both using swarm verification [Holzmann et al., 2011], but
with some synchronization). Since CNDFS influences the exploration order, DFS
order is not retained. Thus, the notInStack proviso C3’ cannot be applied. Up to
now, no solution has been found for combining CNDFS with POR.

Implementation of Parallelism. The implementations use shared memory via a lockless
shared hash table (cf. Def. 6.32) that is specialized for MC and hence only offers one
method [Laarman et al., 2010]: find_or_put. It is cache oriented, uses a table of fixed size
2n, and resolves conflicts via open addressing, i.e., probing subsequent buckets. Hash-
ing is performed incrementally (using Zobrist hashing [Laarman et al., 2011a]), which
is much faster since short vectors are usually small. Freedom of locks is achieved by
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compare-and-swap operations on buckets (cf. Subsec. 6.7.3). Dynamic load-balancing
(cf. Subsec. 3.5.2, Subsec. 3.6.2, and Subsec. 6.7.3) for (N)DFS is implemented via syn-
chronous random polling, for DFSFIFO and symbolic MC via work stealing.

Reductions. As described above, LTSmin offers flexible reductions via PINS2PINS
wrappers, e.g., for POR and symbolic techniques. Optionally, informed, incremental
tree compression of states can be activated (cf. Subsec. 5.4.3). PINS is exploited to do
incremental tree updates, so that the compression only requires negligible runtime.

With these implementations, LTSmin can explore more than 10 million states/sec
(≈ 1 GiB memory/sec) with 16 cores and achieves ideal linear scalability for DFS and
PDFSFIFO and almost ideal for CNDFS.

5.5.3. DiVinE
DiVinE [URL:DIVINE; Barnat et al., 2013] is an explicit state parallel on-the-fly LTL
model checker that offers multi-core and distributed MC. Parallelization is based on
partitioning the state space into disjoint parts [Barnat et al., 2007].

Note. DiVinE is related work to this thesis since we compare it with PDFSFIFO in
Chapter 6.

Similarly to LTSmin, DiVinE offers flexibility of system specification description lan-
guages: Next to its original, guarded command DiVinE modeling language (DVE),
it also understands LLVM bitcode, UPPAAL timed automata, component interaction
automata (CoIn) and MurPHI. Similarly to LTSmin, it offers an interface to decouple
the language front-ends from the algorithm back-ends, called Common Explicit-State
Model Interface (CESMI).
Property checks that DiVinE offers are: assertions, deadlock and livelock freedom,

LTL and Büchi automata MC, time deadlocks for UPPAAL timed automata.
The current enhancements of the tool focus on LTL MC of C and C++ (C++11) via

LLVM. For this, state space explosion is severe, e.g., for the peterson mutual exclusion
model with two processes, over 16GB of memory are required [Rockai et al., 2013]. Thus
strong reductions are required: besides tree compression and lossy hashing via hash
compaction, DiVinE offers two reduction methods that are very strong for LTL MC of
LLVM bitcode: heap symmetry reduction (also for MurPHI models) and POR (also for
DVE and CoIn models). DiVinE uses τ+ reduction, which is POR in combination with
a path reduction that is similar to statement merging. To achieve these strong reductions
on LLVM bitcode, it is instrumented and a shadow copy of the heap is created, for adding
further information to the heap. This enables pointer analysis, for instance for POR’s
visibility proviso (similar to shape analysis), and effective τ+ reduction. Furthermore,
the heap can be transformed into a canonical layout via topological sorting [Barnat
et al., 2010]. Topological sorting enables symmetry reduction for LLVM bitcode, and
also a parallel cycle detection algorithm for LTL MC that is independent of the DFS
order, called One-Way-Catch-Them-Young (owcty) [Fisler et al., 2001]. Therefore,
owcty can combine parallelism with POR (cf. Subsec. 5.5.2 and 6.8). Furthermore,
owcty is extended by a heuristic based on the MAP algorithm [Brim et al., 2004],
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which optimizes owcty to a worst case time complexity in O(|S→∗ |) for checking weak
LTL properties, which are those expressible by weak Büchi automata, i.e., Büchi
automata that contain no cycles with both accepting and non-accepting states [Barnat
et al., 2009]. owcty is a level 0 OTF algorithm, owcty with heuristics a level 1 OTF
algorithm (cf. Subsec. 3.6.2, [Barnat et al., 2009]).
DiVinE’s current memory consistency model is very simple [Berg, 2014], but plans for

DiVinE version 3.2 include LLVM’s sequential consistency (seq_cst [Lattner and Adve,
2011]) and nondeterministically deferring stores in LLVM, which simulates lazy store
operations, an out-of-order execution done by many modern CPUs (cf. Subsec. 3.5.2).

5.5.4. PRISM

PRISM [URL:PRISM] stands for probabilistic symbolic model checker. It is an implicit
state probabilistic model checker. Since floating point values are needed to represent
probability values, PRISM uses multi-terminal binary decision diagrams (MTB-
DDs), which extend BDDs to be able to represent arbitrary function ranges D, not just
B. Thus terminal nodes are labeled with D instead of B [Rutten et al., 2004; Fujita
et al., 1997]; PRISM uses floating points for D.

Probabilistic Structures. Some applications exhibit probabilistic behavior that needs to
be reasoned about. For instance in Subsec. 14.3.10, the probability of reaching a specific
state during randomized traversal needs to be computed.
To reason about probabilities, they need to be captured: Discrete-time Markov

chains (DTMCs) are structures in SKripke,labeled,finite,≥ω, with transitions labeled with
probability values in [0, 1], such that ∀s ∈ S : Σ

l∈enabled(s)
l = 1 (i.e., enabled(s) is a

probability distribution). Transitions can additionally be labeled with floating points
representing costs or awards, to be able to compute expected costs over a DTMC, e.g.,
for non-functional verification [Werner and Schmitt, 2008].
If nondeterminism should also be present,Markov decision processes (MDPs) can

be used, where transitions are not only labeled with a probability l1, but additionally with
a nondeterministic choice l2 ∈ N , with N being the set of all nondeterministic choices.
In this case, ∀s ∈ S ∀c ∈ N : either Σ

(l1,c)∈enabled(s)
l1 = 1 or ∀(l1, l2) ∈ enabled(s) : l2 6= c

must hold.
Thus for S ∈DTMC and a path π = (si−1

li−→ si)i∈[1,...,1+|π|) ∈ paths(S), π represents
a random walk on S, and the probability of π is Ppaths(S,source(π)) [π] = Π

i∈[1,...,1+|π|)
li.

For S ∈MDP, the same applies, using the probabilities (li)1 and the nondeterministic
choices (li)2.
To specify DTMCs or MDPs, PRISM offers its own system specification description

language based on implicit enumeration and guarded commands.
PRISM can check probabilistic properties for MDPs and DTMCs using proba-

bilistic CTL (PCTL) [Rutten et al., 2004].
Being a probabilistic model checker, PRISM does not give a counterexample if a

property does not hold.

Note. PRISM also handles continuous time Markov chains (CTMCs), in which
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transitions can occur in real-time, in contrast to the discrete time-steps we cover in this
thesis.

5.6. Conclusion
5.6.1. Summary
This chapter gave various definitions and aspects related to MC (see also positioning
in Fig. 15.1 on page 377). Several MC algorithms were introduced, with a focus on
on-the-fly LTL MC. Furthermore, reductions to optimize MC were given, with a focus
on partial order reduction. Finally, various MC tools were introduced, with a focus on
LTSmin.

5.6.2. Contributions
Although MC is an established field with several extensive textbooks [Holzmann, 2004;
Clarke et al., 1999b; Baier and Katoen, 2008], this chapter made some minor contribu-
tions:
• taxonomies of MC and of the reductions they use (similarly to [Holzmann, 2004],
but not tailored towards one MC tool) were defined;
• MC was presented in a generalized way, based on Chapter 3, so that many parts
can be applied in the remainder of this thesis, including MBT (cf. Part III);
• the implementation of finite ∪ infinite trace semantics was depicted for on-the-fly

LTL MC (cf. Note 5.11) and POR (cf. Note 5.14).

5.6.3. Future
Possible future work includes the integration of finite ∪ infinite trace semantics into
model checkers: This is simple for on-the-fly LTL MC, since the work-flow (cf. Fig. 5.1)
stays identical; solely a check for acceptance in NDFS’s outer DFS at end states is
necessary (cf. Note 5.11). POR can simply be implemented on top since the provisos
need not be adapted and the emptiness proviso guarantees that S and SPOR have the
same end states (cf. Note 5.14).
Hence the main future work for finite ∪ infinite trace semantics is:
• implementing a more efficient translation from LTL to Büchi (cf. Subsec. 4.5.3)
with finite ∪ infinite trace semantics;
• implementing finite ∪ infinite trace semantics for other temporal logics;
• investigating the results with a suitable case study, e.g., one from Subsec. 4.5.3.
Measurements should also show how efficient these implementations are for prop-
erty checks like LTL and deadlock detection in combination with optimizations
and reductions, especially for those checks that were incompatible with some re-
ductions for infinite trace semantics (like deadlock detection and program slicing,
cf. Subsec. 5.4.3).
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6.1. Introduction to Livelocks
This chapter introduces new techniques for explicit state model checking of livelock prop-
erties, defined in Def. 6.1. These techniques are particularly useful for on-the-fly MC.
The roots of this chapter, i.e., the motivation for improving non-progress cycle (NPC)
checks, and the core idea of the algorithm, have been published in [Faragó, 2007]. The
integration with POR, improvements to the algorithm and correctness proofs have been
published in [Faragó and Schmitt, 2009], parallelization and experiments in [Laarman
and Faragó, 2013].

Definition 6.1. A livelock is the liveness property of continuously making no progress.

So a livelock only occurs for infinite execution paths, and is equivalent to making
progress only a finite number of times. When no more progress is made, the processes
are starving (more colloquial: they hang). Like termination is one of the most prominent
liveness properties for transformational systems [Manna and Pnueli, 1992], so is livelock
for reactive systems.
The verification engineer determines where progress is made – which can be, for in-

stance, the increase of a counter or the access to a shared resource. Progress is usually
modeled compositionally: A local progress state is a local state that is marked as mak-
ing progress. This can either be done in the system specification description by corre-
sponding labels (e.g., in PROMELA all labels starting with “progress”, cf. Subsec. 3.4.3),
or specified separately by enumerating the local progress states for each process (e.g.,
in DiVinE, cf. Subsec. 5.5.3). A global progress state (progress state for short) is
a global state in which at least one of the processes is in a local progress state. Global
progress states are represented in Kripke structures by a corresponding propositional
variable. This thesis uses the same variable as SPIN, np_ (cf. Subsec. 3.4.3), leading to
Def. 6.2.

Definition 6.2. Let S = (S, T,Σ, I) ∈ SKripke,1 ,finite (or S = (S,T,Σ, I) ∈ SKripke,1 ,finite,
labelled) with np_∈ Σ. Then SP := supp(I(np_, ·)) is the set of progress states.

Sec. 6.5 presents progress transitions as alternative for modeling progress, especially
for labeled transition systems. Therefore, Def. 6.3 and Def. 6.4 define progress more
generally.

Definition 6.3. Let S = (S,T, L,Σ, I) ∈ SKripke,labeled,1 ,finite or S = (S,T,Σ, I) ∈
SKripke,1 ,finite. Then P ⊆ S ∪̇ T is the set of progress.

Definition 6.4. Let S ∈ SKripke,(labeled),1 ,finite, state s ∈ S and π ∈ paths(S, s).
Then π makes progress (written π ∩ P 6= ∅ for short) iff π contains a state or tran-

sition in P: for π = (si−1
li−→ si)i∈[1,...,1+n) with π ∩ P 6= ∅, there is j ∈ [1, . . . , 1 + n) :
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sj−1
lj−→ sj makes progress, i.e.,sj−1 ∈ P or sj ∈ P or lj ∈ P; for π = (si)i∈[0,...,1+n)

with π ∩ P 6= ∅, there is j ∈ [1, . . . , 1 + n) : sj−1 → sj makes progress, i.e.,sj−1 ∈
P or sj ∈ P or sj−1 → sj ∈ P.
We say an algorithm traverses progress iff it traverses a path that makes progress.

Livelocks can potentially occur in almost all protocols and parallel algorithms; Ex-
ample 6.5 enumerates some. Therefore, livelock detection is one of the most important
properties being model checked, and still gains importance with the rise of parallel pro-
gramming (cf. Sec. 3.5 and Sec. 6.7). Livelock detection is used in about half of the case
studies of [URL:PromelaDatabase] and a third of [Pelánek, 2007].

Example 6.5. Some relevant, established protocols that were all checked for livelocks
(mostly with SPIN, cf. Subsec. 5.5.1) are:
• the Group Address Registration Protocol (garp), a datalink-level multicast
protocol (cf. Sec. 3.5) for dynamically joining and leaving multicast groups on a
bridged LAN: The garp case study [Nakatani, 1997] proved garp to be free of
livelocks;
• the General Inter-Orb Protocol (giop), a key component of OMG’s Common
Object Request Broker Architecture (CORBA) specification for service oriented
architectures: It specifies a standard protocol that enables interoperability between
services (ORBs). The case studies [Kamel and Leue, 1998, 2000] found livelocks
in system specifications for giop’s remote object invocation and migration, which
are no longer present in the current version;
• the i-Protocol (i-prot for short), an asynchronous sliding-window protocol for

GNU Unix to Unix Copy (UUCP), with several optimizations to minimize traffic.
The case studies [Dong et al., 1999; Holzmann, 1999] found livelocks, which are no
longer present in the current version;
• the Dynamic Host Configuration Protocol (DHCP) is a client-server proto-

col enabling the server to dynamically configure clients for communication via the
Internet Protocol. The case study Islam et al. [2006] proved DHCP to be free of
livelocks;
• a leader election protocol determines a unique node, the leader, amongst all
nodes. Most protocols are based on rounds, in which nodes turn passive; after
finitely many rounds, exactly one node remains active and becomes the leader.
The leader election protocol leaderDKR [Dolev et al., 1982; Pelánek, 2007] requires
each node on a ring to have a unique ID. For anonymous rings (i.e., rings where all
nodes are identical), leaderItai communicates random values and counts and limits
the number of rounds [Itai and Rodeh, 1981; Faragó, 2007]. leadert (baptized
Atiming in [Faragó, 2007]) does not use rounds and transmissions of random values,
but random waiting for higher efficiency. All these protocols were verified to be
free of livelocks.

Many of these protocols are summarized in [Atiya et al., 2005].

Roadmap. Sec. 6.2 introduces NPC checks, used for livelock detection. Sec. 6.3 de-
scribes NPC checks via LTL MC, which is the currently established approach, and its
deficits. Sec. 6.4 introduces possibilities for better NPC checks, leading to the algorithm
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DFSFIFO. It is then compared to NPC checks via LTL MC. Sec. 6.5 shows that progress
transitions model progress more accurately than progress states, and how DFSFIFO can
process progress transitions. Sec. 6.6 motivates POR for NPC checks, modifies POR for
DFSFIFO and shows its correctness. It is then compared to NPC checks via LTL MC
with POR. Sec. 6.7 parallelizes DFSFIFO, resulting in PDFSFIFO, shows its correctness
and implementation details, and concludes with a comparison to NPC checks via parallel
LTL MC. Sec. 6.8 shows experiments with four established protocols (cf. Example 6.5) to
measure PDFSFIFO’s sequential and parallel runtime and memory use, without and with
POR, and its on-the-fly performance. The section compares the results with alternative
algorithms and tools. Sec. 6.9 concludes the chapter with a summary of PDFSFIFO,
contributions and future work.

6.2. Introduction to Non-progress Cycle Checks

This chapter makes statements on system specifications S ∈ SKripke,(labeled),1 ,finite. Since
their Büchi representations AS exhibit the same behavior and can be operated on simi-
larly, all statements and algorithms apply for AS analogously.
If progress states are used, a livelock can be described by the LTL property Llivelock

:= ♦�np_. Since S is finite, Lemma 5.9 shows that S has a livelock iff there is a lasso
π ∈ pathsω(S) whose cycle makes no progress, called non-progress cycle in Def. 6.6.
Therefore, if S has no deadlock (cf. Subsec. 5.5.1) and no non-progress cycle, S definitely
makes progress eventually.

Definition 6.6. Let S ∈ SKripke,(labeled),1 ,finite. A non-progress cycle (NPC) in S is
a reachable cycle π that makes no progress.

A non-progress cycle check determines whether S contains an NPC. Listing 6.1
refines the general contract for model checking (cf. Listing 5.1) by specifying the input,
output, and contract for NPC checks. If NPC_check returns true, it may optionally
output an error path, which is a witness for NPCs. Depending on the NPC_check, the
error path can either be degenerated to a single state that is on an NPC, or be the
complete NPC, or a path π from init to an NPC, or π concatenated with the NPC.

1// PRE: S is a well-formed (labeled) Kripke structure
2// with markings for progress.
3// POST: NPC check always terminates
4// and gives as result a Boolean output
5// that is true iff S contains an NPC.
6// Optionally, an error path can be output if the result is true.
7B NPC_check(S )

Listing 6.1: Contract for non-progress cycle checks
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6.3. Non-progress Cycle Checks via LTL
6.3.1. Introduction
In explicit state on-the-fly MC (cf. Subsec. 5.3.2), a livelock is a counterexample to the
property ¬Llivelock . Llivelock can be translated into the Büchi automaton A♦�np_ given
in Fig. 6.1 (cf. Subsec. 5.5.1).

np_

true np_

Figure 6.1.: Büchi automaton for NPC checks via ♦ � np_

In SPIN (and LTSmin’s former implementation), A♦�np_ is represented by the never
claim given in Listing 6.2 (cf. [Holzmann, 2004]). The comments are introduced to ease
understanding the walk-through of NPC checks via the NDFS for LTL MC in the next
subsection. As described in Subsec. 5.3.2, S |= ¬Llivelock can be checked by the NDFS
on AS ∩ A♦�np_. To avoid detecting NPCs in original end states, self-loops are either
not added or they must also make progress.

Note. Using finite ∪ infinite trace semantics (cf. page 71), non-progress is also detected
in finite paths with end states: a path π with an end state should terminate directly when
making progress; otherwise π performs unnecessary actions between its last progress and
its termination and is thus a counterexample to the property ¬Llivelock . For a check via
Büchi automata, an accepting end state s is added to A♦�np_ with transitions np_ from
both states of Fig. 6.1 to s. If livelocks are defined to infinitely perform actions without
making progress, we can use Llivelock := ♦�

(
np_ ∧ X true

)
instead, and A♦�np_.

1never { /∗ f o r LTL formula <>[] np_ ∗/
2do /∗nondet . de lay or swap to NPC search mode∗/
3: : np_ −> break
4: : true /∗ nonde t e rmin i s t i c de lay mode∗/
5od ;
6accept :
7do
8: : np_ /∗NPC search mode∗/
9od
10}

Listing 6.2: Never claim for NPC checks via ♦ � np_

6.3.2. Deficits
For the fixed formula Llivelock , LTL MC has the same worst case time and space complex-
ities as a simple reachability (e.g., via a DFS), which is in O(S→∗). But complexities in
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Landau notation [Cormen et al., 2001] are very rough, with too pessimistic worst cases
in practice, and hence only moderately meaningful (cf. Subsec. 10.2.5 and [Schnoebelen,
2002]); often the strength of optimizations like partial order reduction (cf. Subsec. 6.6.1)
and parallelization (cf. Subsec. 6.8.5) are more relevant.
In detail, NPC checks via LTL perform elaborate and redundant traversals and checks,

which require more resources and aggravates optimizations. The following algorithmic
walk-through depicts the steps of an NPC check via the NDFS for LTL MC (cf. List-
ing 5.3):

1. When the traversal starts at init (which is usually a non-progress state), the never
claim immediately swaps to its NPC search mode (cf. comment in Listing 6.2)
because the never claim process firstly chooses np_ −> break in the first do-loop.
Hence the outer DFS of the NDFS is performed, in which all (global) states are
marked as acceptance states by the never claim and progress states are omitted,
i.e., truncated (see Listing 6.2).

2. Just before the outer DFS backtracks from a state s that is traversed in the NPC
search mode, innerDFS(s) (i.e., the nested search) starts an acceptance cycle search
(since all traversed states were marked as acceptance states). For these acceptance
cycle searches, the reachable non-progress states are traversed again (but the order
in which innerDFS() is called on these states may differ from the outer DFS order
in step 1).

3. If an acceptance cycle is found during innerDFS(), it is also an NPC since only
non-progress states are traversed. If no acceptance cycle is found, the original call
of innerDFS(s) terminates and the outer DFS in the NPC search mode backtracks
from s. Before it backtracks from the predecessor s′ of s, innerDFS(s′) is called.
Fortunately, states that have already been visited by some innerDFS() are not
traversed again. But innerDFS() is repeatedly started many times and at least one
transition has to be considered each time. Eventually, when innerDFS() has been
performed for all states that the outer DFS in the NPC search mode has visited,
the outer DFS finally backtracks to init.

4. Now the outer DFS in the nondeterministic delay mode (cf. comment in Listing 6.2)
explores AS once more. During this, after each forward step of a non-progress
state, all previous steps are repeated. Since most of the time the (global)
states have already been visited, those procedures are immediately aborted. For a
state s in the nondeterministic delay mode, innerDFS(s) is not called, but a progress
state is also traversed.

This walk-through demonstrated that:
• the state space exploration for reaching an NPC and the NPC search are performed

in separate steps. Since NPC checks are performed in innerDFS(), which the outer
DFS in NPC search mode only calls when backtracking from a state, on-the-flyness
is weak;
• the size of the state space AS ∩ A♦�np_ is up to twice the size of AS , and often
close to the maximum due to few progress states. Hence the worst case space
requirement of NPC checks via LTL is about 2 · |S→∗ |, twice as high as for a basic
DFS. Furthermore, at least one additional bit per state is required to differentiate
visits of the outer DFS and innerDFS();
• the original state space (i.e., AS without composition of A♦�np_) is traversed
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three times: in the outer DFS in the NPC search mode, in the outer DFS in the
nondeterministic delay mode, and in innerDFS(). Hence the worst case runtime
requirement of NPC checks via LTL is about 3 · |S→∗ |, triple as high as for a basic
DFS.

Notes. If the order within the never claim’s do-loop were swapped, the nondeterministic
delay mode DFS in step 4 would precede the NPC search mode in step 1.
In step 1, use the first np_ state instead of init in the rare case that init is a progress

state.

6.4. A Better Non-progress Cycle Check
The detailed walk-through in the previous section has shown that NPC checks via LTL
MC unnecessarily often traverse states and transitions (inner and outer DFS, nondeter-
ministic delay mode and NPC search mode). The cause for this inefficiency is the general
approach: LTL and Büchi MC are very powerful and cover more eventualities and op-
tions than necessary for NPC checks. So we are looking for a more specific algorithm
for NPC checks that performs less redundantly. We will achieve this by combining the
exploration and the NPC search phase, so that traversing the state space only once is
sufficient. But with only a single traversal, we have to cope with the following problem:
Simply checking for each cycle found in a basic DFS (cf. page 99) whether it makes
progress is an incomplete NPC search since the DFS aborts traversal in states which
have already been visited (cf. Example 6.7). Hence not all cycles are traversed.

Example 6.7. Fig. 6.2 shows an NPC that is not traversed and therefore not found by
a basic DFS: From s1, the DFS first traverses path 1 over state s2 that makes progress
(marked with +) and s3 back to s1. After backtracking from path 1 to s1, the DFS
traverses path 2, but aborts it at s3 before closing the (red, thick) NPC. Hence if an
NPC has states that have already been visited, the cycle will not be found by a basic
DFS.

Figure 6.2.: NPC not traversed by the basic DFS

The idea for our alternative NPC checks is to guarantee that the DFS has lazy progress
traversal, as defined in Def. 6.8.

Definition 6.8. Let A be a DFS algorithm that traverses S.
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Then A has lazy progress traversal iff after reaching a non-progress state s0 for the
first time, A traverses progress only after backtracking from s0.

Lemma 6.9. Let A be a DFS algorithm that has lazy progress traversal and s0 a non-
progress state.
After A reaches s0 for the first time, A performs a DFS over all states reachable

from s0 without traversing progress or states already visited before s0; only thereafter A
traverses progress.

Proof. The proof uses induction over the length n of the shortest path π = (si)i∈[0,...,n]
from s0 to a non-progress state sn with ∀i ∈ [0, . . . , n] : si is a non-progress state and
has not yet been visited by A at the time t0 when s0 is visited for the first time (i.e.,
si 6∈ hash_table).
The base case for n = 0 is trivial, since s0 has just been reached at t0.
For the induction step from n to n + 1, let π = (si)i∈[0,...,n+1] ∈ pathsfin(S, s0) with
∀i ∈ [0, . . . , n + 1] : si is a non-progress state and has not yet been visited by A at
t0. If A traverses π, the induction step is proved. Otherwise, A aborts traversal at
si, i ∈ [1, . . . , n] because si has already been visited via other paths from s0. Since these
paths have been traversed after t0, but before the path (si)i∈[0,...,i] has been traversed,
they all contain only non-progress states that have not been visited before t0. Let
h ∈ {1, . . . , n} be maximal such that sh has already been visited via some other path
from s0, and π′ the path from s0 to sh that A traversed to reach sh for the first time.
Then we can apply the induction hypothesis on the path (si)i∈[h,...,n+1] of length ≤ n,
so A reaches sn after visiting sh for the first time via some path π′′ without traversing
progress or states already visited before sh. So A reaches sn+1 after visiting s0 for the
first time via the path π′ ·π′′ without traversing progress or states already visited before
s0.

Lemma 6.10. Let A be a DFS algorithm that checks NPCs with lazy progress traversal.
Then A is complete.

Proof. Let s ∈ S be the first state on an NPC π visited by A, and s′ ∈ S the predecessor
of s on π (i.e., s′ → s is part of π). After A visits s for the first time, A either finds
another NPC or traverses a path π′ from s to s′ without any progress state, as Lemma 6.9
shows. But then A detects the NPC π′ · (s′, s), so A is complete.

Notes. The proof of Lemma 6.10 shows that A finds an NPC before backtracking from
s, but the NPC does not have to contain s: Fig. 6.3 depicts such an example, in case
that t1 is traversed ahead of t2.
Lemma 6.10 is shown with a pure existence proof. Constructively proving that A

finds a certain NPC would be much more difficult, since that would require to consider
various complex situations and the technical details of A, e.g., the order in which the
transitions are traversed (cf. Fig. 6.3).

Roadmap. The following two subsections introduce two new algorithms that perform a
kind of DFS with iterative deepening, i.e., they search through S incrementally deeper.
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Figure 6.3.: The found NPC does not contain s

They simultaneously explore S from the system specification description and search for
NPCs.
Firstly, Subsec. 6.4.1 considers the incremental DFS algorithm (DFSincremental), which

has similarities to BMC and was the first attempt in [Faragó and Schmitt, 2009] to
improve NPC checks. Some of its techniques are reused later on in this chapter. The
argumentation via sub-graphs (GL) and the abstract method DFSprune,NPC() are also
introduced. We show that the incremental DFS does not traverse progress lazily in all
situations, and is indeed incomplete. Therefore, we improve it in Subsec. 6.4.2 by using
a FIFO instead of advancing with iterative deepening, resulting in the second algorithm,
DFSFIFO. Finally, Subsec. 6.4.3 makes a theoretical comparison of DFSFIFO with NPC
checks via LTL MC, considering both expressiveness and complexity.

6.4.1. DFSincremental

The idea is to search for NPCs using a bounded depth-first iterative deepening search
with stepwise increasing bounds b ∈ N≥0, similar to BMC (cf. Subsec. 5.4.2). The
bound is not on the length of the paths, but on the number of progress states that may
be traversed on each path. So the DFS is supposed to repeatedly explore the sub-graphs
Gb, which are the maximal parts of the state space where all pathsmax(Gb, init) make
progress maximally b times. The incremental depth-first search (DFSincremental)
tries to achieve this with basic DFSs (cf. page 99) by successively increasing b by one,
starting from 0. DFSincremental terminates either with an error path from init to an NPC,
inclusively, when one is found, or with “structure does not contain NPCs” when b becomes
big enough for DFSincremental to explore the complete state space.
So in each state s we might prune some of the outgoing transitions by omitting those

which exceed the current progress limit b, and only consider the remaining transitions.
The algorithm for DFSincremental is given as pseudocode in Listing 6.3 and Listing 6.4:

It uses a progress_counter for the number of progress states on the current path from
init to the current state. The underlined methods of DFSprune,NPC in Listing 6.4 are
polymorphic, with the following implementations for DFSincremental:
• pruned(s, t): if (t is a progress state)

then i f ( progress_counter == b)
then return true ;
f i ;
progress_counter++;
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1i n t b :=0;
2i n t progress_counter :=0;
3B DFS_pruned ;
4Stack stack := new Stack ( ) ;
5HashTable hash_table ;
6

7proc DFSstarting over (S→∗ s)
8repeat
9DFS_pruned:= fa l se ;
10hash_table := new HashTable ( ) ;
11DFSprune,NPC (s ) ; //cf. Listing 6.4
12b++;
13until ( ! DFS_pruned ) ;
14end ;
15

16proc main ( )
17DFSstarting over ( init ) ;
18p r i n t f ( " s t r u c tu r e does not conta in NPCs" ) ;
19end ;

Listing 6.3: Typed DFSincremental

f i ;
return fa l se ;

• pruning_action(t): DFS_pruned := true;
• np_cycle(t): return (cycle on stack contains no progress state ); . Instead, this check

can be accelerated with an insignificant increase in memory (maximally log(bmax)·
depth(state space) bits): l.3 of Listing 6.4 pushes the current progress_counter to-
gether with each state onto stack, but the progress_counter is ignored in l.10 when
states are being compared. Then np_cycle(t): return (progress_counter == counter
on stack for t); (i.e.,true iff the current progress_counter == progress_counter when
t was visited last time on the current path);
• error_message(): print(stack); , which corresponds to the path from init to the NPC

(inclusively);
• backtrack(): pop s from stack;

i f ( s i s a p rog r e s s s t a t e )
then progress_counter−−;
f i ;

For progress transitions, the only modification is checking for progress transitions instead
of progress states in pruned(s, t) and np_cycle(t).
Unfortunately, DFSincremental has several deficiencies:
• due to iterative deepening, the beginning part of the state space is traversed repeat-
edly. But since usually the state space grows exponentially in depth, DFSincremental
is only a constant factor slower than a basic DFS;
• DFSincremental’s main disadvantage is that it does not always traverse progress
lazily: It can happen that NPCs are reachable in the state space via p ∈ N progress
states (i.e., are within Gp), but DFSincremental reaches them only for bounds larger
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1proc DFSprune,NPC (S→∗ s)
2add s to hash_table ;
3push s onto s tack ;
4for each S→∗ t with s→ t do
5i f ( t 6∈ hash_table )
6then i f ( ! pruned (s, t ) )
7then DFSprune,NPC (t)
8else pruning_action (t)
9f i
10else i f (t ∈ s tack && np_cycle (t ) )
11then ha l t with error_message ( )
12f i
13f i
14od ;
15backtrack ( ) ;
16end ;

Listing 6.4: Typed generic DFSprune,NPC: DFS with pruning and NPC check

than p. Such a situation is depicted in Fig. 6.4, with the traversal order equal to
the path number, s0 a state on an NPC and + marking progress: for b = 2, path
1 is pruned before s2 is reached. Then path 2 is traversed via s1 until the progress
between s1 and s0. Then path 3 is traversed but aborted at s1, which has already
been visited. path 3 ·NPC at s0 is, however, within G2. For b = 3, path 1 visits s2,
but traversal does not continue to s1. Then path 2 is pruned before s1 is reached.
Thus path 3 reaches s0 and hence the NPC for the first time. Since path 3 makes
progress twice but b = 3, the NPC might not be detected, as described for Fig. 6.2.
Thus DFSincremental is incomplete;
• hence, depending on the traversal order of DFSprune,NPC, the progress_counter limit

might have to become unnecessarily large until an NPC is found.

DFSincremental could be modified to become complete by storing the current progress
progress_counter for each state on the hash_table and allowing retraversals for a smaller
progress_counter. But the following subsection shows a more efficient modification to
DFSincremental.

Figure 6.4.: Example for DFSincremental not traversing progress lazily
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6.4.2. DFSFIFO

The incremental depth-first search with FIFO buffering of progress does not re-
peatedly increase the bound b and retraverse the beginning part of the state space.
Instead, it buffers the pruned progress states to jump back to them later on to continue
traversal. Roughly speaking, we perform a breadth-first search (BFS) with respect to the
progress states, and in-between progress states we perform DFSs: To reuse sub-graphs
already explored instead of repeatedly retraversing sub-graphs like DFSincremental, we
have to buffer some extra information to know which transitions have been pruned. One
way to track these pruned transitions is by using a FIFO queue (FIFO for short), caus-
ing a BFS over progress states and hence shortest counterexamples (but other orders
than FIFO also yield correct NPC checks, cf. Note 6.33). This results in the DFSFIFO
algorithm as defined in Def. 6.11.

Definition 6.11. DFSFIFO is the algorithm given in Listing 6.5. It uses the abstract
DFSprune,NPC from Listing 6.4, with the polymorphic methods implemented as follows
(for progress modeled by states):
• pruned(s, t): return (t is a progress state);
• pruning_action(t): if (t 6∈ fifo) then put t into fifo; fi;
• np_cycle(t): return (t is not a progress state);
• error_message(): print(stack); , which corresponds to the lasso from the last progress

to the NPC (inclusively);
• backtrack(): pop state from stack;

1Stack stack := new Stack ( ) ;
2HashTable hash_table := new HashTable ( ) ;
3FIFO f i f o := new FIFO ( ) ;
4

5proc DFSFIFO (S→∗ s)
6put s in f i f o ;
7repeat
8pick f i r s t s out o f f i f o ;
9DFSprune,NPC (s)
10until ( f i f o i s empty ) ;
11end ;
12

13proc main ( )
14DFSFIFO ( init ) ;
15p r i n t f ( " s t r u c tu r e does not conta in NPCs" ) ;
16end ;

Listing 6.5: Typed DFSFIFO

Notes 6.12. For progress transitions, the only modification is again to check for progress
transitions instead of progress states in pruned(s, t) and np_cycle(t) (cf. Sec. 6.5, Sec. 6.6
and Sec. 6.7 for details).
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The check of np_cycle(t) is sufficient since only the first element on the stack (except
maybe for init) is a progress state. This and further properties also become apparent
when considering the contract for DFSprune,NPC in Listing 6.6.
Instead of introducing a FIFO, a simpler version of DFSFIFO puts pruned states un-

derneath the stack instead of in fifo. When it is time to consider the state, the original
stack becomes empty and DFSprune,NPC will pop them from the stack and consider them.
Compared to DFSFIFO, this results in a simpler version:
• pruning_action(t): put t underneath the stack;
• np_cycle(t): needs not change since the stack now has only progress states at

its bottom (representing the former fifo) and thereafter only non-progress states
(representing the original stack);
• error_message(): print(non−progress states of stack);
• backtrack(): pop s from stack;

i f ( s tack . peek ( ) 6∈ hash_table )
then DFSprune,NPC ( s tack . pop ( ) ) ;
f i ;

• DFSprune,NPC(init) can be called directly to start an NPC check.
In summary, DFSFIFO does not repeatedly start exploring the state space from scratch,

but rather uses the sub-graphs already explored, lazily picks the progress states out of
fifo, and expands the state space further by continuing the basic DFS. When a new
progress state is reached, traversal is postponed by putting the state into fifo. When
eventually DFSprune,NPC is finished and fifo is empty, the complete state space has been
explored.
Implementation pruning_action(t): put t into fifo; (i.e., without first checking whether

t ∈ fifo) is also correct: if t is present multiple times in fifo, all but the first call of
DFSprune,NPC(t) will not cause recursive calls. But then performance can be improved
by DFSFIFO() only calling DFSprune,NPC(t) if t 6∈ hash_table (cf. Sec. 6.7).
DFSFIFO erases a large part of the stack: everything behind progress states, i.e., all

of the stack between init and the last progress state, is lost. But for detecting NPCs
via the stack, having only non-progress states on the stack (besides the first element)
is a feature and not a bug: Exactly the NPCs are detected by considering the stack;
the cycles that go back to states from previous runs are progress cycles (i.e., cycles with
some progress state) and stay undetected. A further benefit will arise in combination
with partial order reduction (see Sec. 5.4.1 and 6.6).
Consequently, if an NPC is detected, the stack from the current run supplies the NPC,

but additional work is required for error_message() to report more information like the
complete error path from init: The shortest (w.r.t. progress) counterexample π can be
found quickly, for instance with a basic BFS up to the NPC, or with one of the following
methods, which usually require only little additional memory: Instead of storing only the
last progress state of each pruned path in fifo, all progress states are saved forever, e.g.,
in a tree of progress states. Then error_message() can simply print all progress states on
π, or reconstruct the full path π using a fast DFS that is guided by the progress states
on the error path. Alternatively, each state can store a back-link to the predecessor it
was reached from. The path from init to the NPC can then be constructed by backward
traversal in O(|counterexample|) steps. This approach will be used in Sec. 6.8, since
LTSmin already uses back-links. For easy combination with lossy hashing techniques,
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the other approaches can be chosen.

DFSFIFO avoids the deficiencies of DFSincremental:
• the traversed sub-graphs do not become unnecessarily large, which saves resources
and produces shortest counterexamples with respect to progress;
• we avoid the redundancy of DFSincremental by reusing sub-graphs, i.e., the part of
the state space already explored previously, which saves resources;
• lazy progress traversal is fulfilled, as the proof of Theorem 6.13 shows in detail.

Theorem 6.13. DFSFIFO finds an NPC if one exists and otherwise outputs that no NPC
exists. An NPC is found at the smallest depth w.r.t. progress, i.e., after the smallest
number (b0) of progress states that have to be traversed from init to an NPC.

Proof. DFSFIFO is sound, i.e., it does not output false NPCs: DFSFIFO only postpones
transitions, but does not generate new ones. It checks for NPCs by searching through
the stack (except the first state if it is a progress state), so it only considers non-progress
states.
DFSFIFO is complete, i.e., it finds an NPC if one exists: This is shown via Lemma 6.10

since DFSprune,NPC has lazy progress traversal: during the call DFSprune,NPC(s) on a non-
progress state s being visited the first time, all encountered progress states (or progress
transitions) are pruned due to pruned() and pruning_action(). They are traversed only
by retrieving them from fifo in DFSFIFO(), which is done only after DFSprune,NPC(s) has
finished.
DFSFIFO finds an earliest NPC w.r.t. progress: As long as DFSFIFO explores Gb

for b < b0, all paths leading to an NPC are pruned. Let b = b0. Since DFSprune,NPC has
lazy progress traversal and DFSFIFO considers progress states in a first come first serve
approach (with the help of fifo), DFSFIFO explores the full sub-graph Gb0 . During this
exploration, an NPC is found since DFSFIFO is complete.

Notes 6.14. DFSFIFO does not know which Gb is currently explored. If we want to
keep track on the NPC’s depth w.r.t. progress, we can swap between two FIFOs: one
for reading and one for writing; when the FIFO that is read from is empty, the current
Gb is finished and we swap it with the FIFO for Gb+1\Gb. But even the original DFSFIFO
successively generates Gb+1 \Gb for increasing b, although the phases are not explicitly
separated. Hence we may still talk about the sub-graphs Gb.
Theorem 6.13 is proved graph-theoretically via Lemma 6.9, which is shorter than the

proofs via contracts that we found. As the contract can help understand the algorithm, it
is given in Listing 6.6. The precondition can be weakened by not requiring s 6∈hash table
(cf. Note 6.12 and Note 6.23). Sec. 6.7 will prove the parallel DFSFIFO correct using
similar contracts. The parallel DFSFIFO subsumes DFSFIFO – algorithmically as well as
in the implementation. This subsection presented the sequential algorithm and its proof
since parallelization adds further complexity to the DFSFIFO algorithm and its proof of
correctness.
In short: DFSFIFO traverses each state through a path with the fewest possible progress

states and successively explores Gb for increasing b until an earliest NPC w.r.t. progress
is reported or the whole state space has been explored and “structure does not contain
NPCs” is reported.
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1// INV: no element ever gets removed from the hash table;
2// INV: ∀s′ ∈ stack: s′ is oldest element on stack <==>
3// s′ is a progress state or init;
4// INV: ∀s, s′ ∈ stack: s′ is the successor of s on the stack ==> s→ s′;
5// INV: ∀s ∈ hash table \ (stack ∪ fifo): no NPC is reachable from s
6// without traversing progress and ∀s′ ∈ dest(s,→) : s′ ∈ hash table ∪ fifo;
7//
8// PRE: s 6∈ hash table and (s == init or ∃|s′ ∈ hash table: s′ → s);
9//
10// POST: NPCs are reachable from s without traversing progress ==>
11// an NPC is reported;
12// POST: ∀ states s′ 6∈ \old(hash table): s′ is reachable from s only by
13// traversing progress ==> s′ 6∈ hash table;
14// POST: NPC has been reported ==>
15// a real suffix in the stack forms an NPC;
16// POST: no NPC has been reported ==>
17// fifo consists of \old(fifo) appended by all states
18// s′ 6∈ \old(fifo)∪\old(hash table) that are reachable via some
19// path π · s′′ → s′ and π makes no progress, but s′′ → s′ does;
20// POST: no NPC has been reported ==>
21// s ∈ hash table and s 6∈ stack and s 6∈ fifo;
22// POST (redundantly): no NPC has been reported ==>
23// ∀ states s′ reachable from s without traversing progress:
24// s′ ∈ hash table and s′ 6∈ stack and s′ 6∈ fifo;
25proc DFSprune,NPC (S→∗ s)

Listing 6.6: Contract for DFSFIFO’s DFSprune,NPC
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6.4.3. Comparing LTL NPC Checks to DFSFIFO

This subsection theoretically compares DFSFIFO with the basic DFS and with NPC
checks via LTL MC. Practical experiments will be presented in Sec. 6.8.
Before we compare performance, we consider expressiveness. For this Def. 6.15 re-

stricts the conjunctive Büchi automaton of Büchi and LTL MC (cf. Subsec. 5.3.2): in-
stead of using an arbitrary Büchi automaton (e.g., generated from an LTL formula)
Anever as property description, A♦�φ is used.

Definition 6.15. Let φ ∈ PROPΣ. Then NPCφ: Büchi→Büchi, S 7→ S ∩A♦�φ maps
the specification Büchi automaton S to the generalized NPC conjunctive Büchi
automaton S ∩ A♦�φ.

Since Modelslin(NPCnp_(S)) =
{
Sπ|π ∈ pathsω(S) with Sπ |= ♦�np_

}
, NPCnp_(·)

corresponds to the temporal logic formalism that represents our NPC checks. We can
easily implement the generalized NPC checks NPCnp_(·) to not check for np_, but
rather for an arbitrary φ ∈ PROPΣ. This results in checking the persistence prop-
erty [Baier and Katoen, 2008] ♦�φ. Still LTL  NPC PROPΣ(·); �φ is an LTL example
not expressible as persistence property, which can only enforce that φ eventually becomes
an invariant. So NPC PROPΣ(·) is a specialization of LTL, i.e., a real sub-class of LTL.
This explains why DFSFIFO can perform better for livelock detection, but unfortunately
cannot be employed for full LTL MC.
Extending DFSFIFO by allowing checks, e.g., assertions, in the specification Büchi

automaton S (cf. Subsec. 3.4.3) is not a strong improvement: Lemma 6.16 shows that
expressivity does not reach LTL.

Lemma 6.16. Büchi NPC PROPΣ(Büchi) 6≥LTL.

Proof. Let q ∈ Σ, φ ∈ PROPΣ, Q :=
{
R ⊆ Σ

∣∣q ∈ R}, Q := 2Σ \ Q,Φ := {R ⊆ Σ
∣∣∃|I :

valI(φ) = true and R = supp(I(·))
}
, and L := �♦q. So Prop(L) � (Q∗ · Q)ω (the

ω-regular language of L, with A = 2Σ). Assume ∃|A ∈ Büchi: NPCφ(A) ≡ L. Let n be
the number of states of NPCφ(A). Since (Qn+1 ·Q)ω ⊆ Prop(L), there must be a path
π ∈ pathsω(NPCφ(A)) for which eventually invariantly φ and infinitely many prefixes
have traces that end with Qn+1. Thus π = πprefix · πmiddle · πsuffix with πmiddle being a
cycle whose trace is in (Q∩Φ)+, i.e., for πprefix · πωmiddle ∈ pathsω(NPCφ(A)) eventually
invariantly φ. Thus NPCφ(A) accepts a property P ∈ A|πprefix | · (Q ∩Φ)ω, contradicting
P 6∈ Prop(L).
Since Büchi  LTL and NPC PROPΣ constructs a conjunctive Büchi automaton, we

also have Büchi NPC PROPΣ(Büchi).

Note 6.17. More advanced modifications to DFSFIFO are possible, e.g., checks that are
not decided in a local state. But the modifications for these checks can become difficult.
For instance, efficiently lifting NPC PROPΣ(·) to NPC NPC (·) by nesting formalisms and
DFSFIFO (similarly to ECTL∗), is not possible since pruning (as for progress in the
original DFSFIFO) must be at the same states for each nesting and decided on-the-fly for
DFSFIFO to work in one pass over the state space. One possible extension, suggested by
Henri Hansen in a conversation, is to verify the important class of response properties,
which have the form L = �(A → ♦B) with A,B ∈ PROPΣ [Baier and Katoen, 2008].
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Since ¬L = ♦(A ∧ �¬B), this is a generalization of persistence properties. DFSFIFO
has to be modified to check for NPCs only for certain states, which adapts aspects
from testing automata (see end of this subsection and [Hansen et al., 2002]). However,
implementing it and investigating correctness and compatibility with optimizations is
future work.

Comparing the expressiveness of DFSFIFO and NDFS also shows that NPC checks can
be performed easier than acceptance cycle checks: NPC checks make use of the fact that
the moment progress is found at state s, the current sub-path up to s is definitely not
part of an NPC. Thus the current sub-path (i.e., the current stack) can be discarded,
and the NPC search can be resumed in s later on. Contrarily, when searching for an
acceptance cycle, there is no situation where the current sub-path can be discarded:
There always remains the possibility that an acceptance state still occurs and the path
forms a loop to an element earlier in the current sub-path. Therefore, only when all
reachable acceptance states do not contribute to an acceptance cycle, the path to s is
no longer required. This is exactly the check that NDFS performs.
As for NPC checks via LTL (cf. Subsec. 6.3.2), we compare DFSFIFO’s complexities

also to the basic DFS: For DFSFIFO, both time and space requirements are about the
same as for the basic DFS because DFSFIFO only requires one pass: all states are
traversed only once by a simultaneous exploration of the state space and NPC search.
DFSFIFO only needs additional operations for checking whether s → t makes progress,
and if so pushing and popping t once to and from fifo. To construct a full counterexample,
maximally the resources of one more basic DFS are required, but usually far less (cf.
Subsec. 6.4.2 on page 126). DFSFIFO requires no additional space compared to a basic
DFS because progress states are stored only temporarily in fifo until they are stored in
hash_table (cf. Listing 6.4 and Listing 6.5). Since DFSFIFO’s stack stores only part of
the full path, it needs less space than DFS’s stack.
Besides the time and space requirements, other aspects of MC algorithms are also im-

portant: Summarizing what work has already been performed, usability, on-the-flyness,
heuristics, and effectiveness of reductions. These will be considered in the rest of this
subsection.
DFSFIFO can output more information upon termination or when it runs out of time

or space: The bound b (or the sub-graph Gb) for which DFSFIFO has verified Gb to be
free of NPCs (which is as much information as BMC gives for too small bounds, cf. Sub-
sec. 5.4.2). Furthermore, fifo can be output as helpful information for the test engineer,
or to turn DFSFIFO into a conditional model checking algorithm (cf. Subsec. 5.1): By
adding the contents of fifo as input Cinput and as output Coutput to DFSFIFO, the NPC
check can continue where a former check left off, i.e., at the border of Gb instead of init.
Sec. 6.5 shows that DFSFIFO can specify progress in a better way using progress

transitions instead of progress states.
Since DFSFIFO performs NPC checks in one pass, it has strong on-the-flyness (cf.

Subsec. 6.8.6).
DFSFIFO comprises an efficient search heuristic since paths making less progress are

preferred: Since the small scope hypothesis often holds (cf. Subsec. 5.2.3), many livelocks
in practice already occur after very little progress (e.g., for the i-Protocol after 2 sends
and 1 acknowledge, cf. [Dong et al., 1999]). Since the state space usually grows exponen-
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tially with its depth, this heuristic also improves on-the-flyness (cf.shallow in Table 6.9).
Additionally, shortest (w.r.t. progress) counterexamples show faults that occur
more often in practice and are easier to understand. Since progress is the most important
aspect for NPC checks, minimizing the number of progress states (or progress transitions,
cf. Sec. 6.5) on the counterexamples is more important than minimizing other aspects,
such as the overall length of the path. Alternative algorithms to find better counterex-
amples minimize the length of the counterexample, require additional processing and are
hard to combine with POR; examples are [Gastin and Moro, 2007], which uses a nested
BFS guided by priority queues, [Hansen and Kervinen, 2006], which uses an interleaved
BFS that explores some transitions backwards, and [Edelkamp et al., 2004], which uses
heuristics that operate on the counterexample found by SPIN’s NDFS to reduces its
length afterwards, and does not guarantee to find a shortest counterexample.
Finally, the effectiveness of a verification largely depends on the strength of the ad-

ditional optimization techniques involved, especially partial order reduction (cf. Sub-
sec. 5.4.1 and Sec. 6.6) and parallelization (cf. Sec. 6.7).
We compare DFSFIFO to the following algorithms, besides NDFS, that we found to

also cover on-the-fly livelock detection:
Before performing NPC checks via LTL MC, SPIN used a variant of the NDFS al-

gorithm (cf. Listing 5.3) specialized to detect NPCs [Holzmann, 1992]: innerDFS(s) is
called each time the outer DFS backtracks from a non-progress state s. innerDFS(s) only
traverses non-progress states and checks with an own stack whether a cycle is closed,
which is an NPC. Similar to NPC checks via LTL MC, this algorithm does not have lazy
progress traversal, performs redundant work, and does not have strong on-the-flyness.
Furthermore, it is not compatible with partial order reduction (see Note 6.22).
Henri Hansen has pointed out that [Valmari, 1993] already contains an algorithm that

is similar to DFSFIFO: It performs a check for divergent traces, which are reachable
livelocks from special states, but does not use Büchi automata but tester processes,
which comprise multiple property detections like deadlocks, divergent traces, and accep-
tance cycles. Furthermore, the algorithm additionally marks transitions and has only
weak optimizations: weak partial order reduction (cf. Subsec. 6.6.3) and no paralleliza-
tion. The algorithm is not further investigated; [Valmari, 1993] “only makes informal
arguments” and “does not have any analytical or experimental results” that compares
the algorithm to alternatives. But the algorithm already uses the idea of performing
lazy progress traversal by postponing progress. Valmari’s later work on detecting diver-
gent traces via testing automata (similar to tester processes) used a different algorithm
that is closer to the NDFS [Hansen et al., 2002]: the so-called one pass algorithm does
not traverse progress lazily but traverses the state space in one pass, e.g., in a DFS or
BFS, but additionally calls an inner traversal function (called LLDET) for non-progress
states. LLDET marks states with 3 colors during its traversal to detect NPCs. The one
pass algorithm is more general but also more complex than DFSFIFO: its set of states
to still work on contains both non-progress and progress states and an inner traversal
and coloring is performed. Consequently, correctness is more difficult to prove, the algo-
rithm has weaker optimizations (like partial order reduction and parallelization), it has
less on-the-flyness, and does not find shortest counterexamples even if the set of states
to still work on is a FIFO.
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6.5. Progress Transitions

NPC checks via LTL MC need to mark states as having progress because the Büchi
automata can only consider I, not T of the labeled Kripke structure S = (S,T, L,Σ, I).
Since our DFSFIFO can operate directly on S without needing Büchi automata, it can
use progress transitions instead, i.e., labeled transitions in T that are marked as making
progress.

6.5.1. Semantics

We define progress transitions and one way of marking them in Def. 6.18. Using a
labeled Kripke structure instead of an unlabeled one is no restriction for MC of system
specification descriptions where basic commands are used to describe how transitions
update the state vector, since these basic commands can be used as statements L (cf.
Subsec. 3.4.3).

Definition 6.18. Let S = (S,T, L,Σ, I) ∈ SKripke,labeled,1 ,finite. The set of progress
transitions is TP :=

{
(s, α, s′) ∈ T

∣∣α starts with “progress”
}
.

Progress transitions model progress more naturally than progress states, since an
action of the system constitutes the actual progress, e.g., the increase of a counter or
acquisition of a resource. Similarly, tester processes and testing automata (see end of
Subsec. 6.4.3) observe changes in state propositions, not states and their propositions.
So progress transition semantics, i.e., P = TP , is more direct than progress

state semantics, i.e., P = SP , which also shows when comparing them for NPC checks:
Fig. 6.5 shows an automaton with SP = {s2} and TP = {(s2, α, s1)}. With progress
state semantics, the cycle π = s2 → s3 → s2 exhibits only fake progress: the system’s
action performing progress, resulting in the labeled transition α, is never taken. With
progress transition semantics, π can be detected as NPC.

s1 s2 s3
α

Figure 6.5.: Fake progress cycle for P = SP , but not for P = TP

Example 6.19. Fake progress cycles occur often in parallel systems: If process1 in
Fig. 6.6 has the progress transition s2 → s1 and the progress state s2, and process2 has
no progress, then the parallel composition contains the fake progress cycle (s2, t1) →
(s2, t2) → (s2, t1). In this simple case, the alternative NPC (s1, t1) → (s1, t2) →
(s1, t1) can be detected. But if a transition between t1 and t2 is only enabled if
process1 is in s2, no alternative NPC exists. An implementation for this is given in
Appendix A.1. SPIN’s LTL NPC check via progress states detects no NPC for the im-
plementation, i.e., is not complete for livelock detection when actions and not states
constitute progress. Our fake progress cycle in Fig. 6.6, which corresponds to the NPC
with output (process2 restarted without progress)ω, is constructed by SPIN as a counterex-
ample for the LTL property ¬♦�(process1globalPC==1) when weak fairness is disabled.
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Fake progress cycles can often be hidden by enforcing strong (A-)fairness, but (A-)fair-
ness, like SPIN’s weak fairness, is usually insufficient (cf. Def. 5.6, Subsec. 5.5.1 or Baier
and Katoen [2008]; Holzmann [2004]). If the action making progress is only enabled
outside the fake progress cycle (e.g., implemented analogously to Listing A.1), no fair-
ness can hide the fake progress cycle. Only if all fake progress cycles in S are hidden
by fairness does the livelock detection become complete again with fairness semantics.
Enforcing any kind of fairness is costly.

Note. To directly compare progress states with progress transitions, let (s, α, t) ∈ T. If
(s, α, t) ∈ TP , then s ∈ SP . But if s ∈ SP , then not necessarily (s, α, t) ∈ TP because s
is a progress state if s contains a local state se (cf. Subsec. 3.4.3) and ∃|s′ ∈ S such that
s′ contains se and enabled(()s′) ∪ TP 6= ∅.
If it only depends on α whether (s, α, s′) ∈ T (see next subsection), then a state s is

a progress state iff enabled(s) ∩ TP 6= ∅. So a progress state just means that a progress
transition is enabled. With this, if none of the enabled progress transitions on a cycle
are actually chosen, it is a fake progress cycle in the progress state semantics.

Figure 6.6.: Fake progress cycle by parallel composition

6.5.2. System Specification Descriptions
Similar to progress states, progress transitions can be specified in system specification
descriptions by annotating the appropriate basic command c with some specification
language label, e.g., “progress:c” (cf. Subsec. 3.4.3). Then each update (s, α, s′) ∈ T
caused by progress:c is marked as making progress, i.e., ∀(s, α, s′) ∈ T with α =progress:c:
(s, α, s′) ∈ TP . Hence we also write α ∈ TP for labeled Kripke structures. Alternatively,
all progress transitions can be enumerated separately. Both approaches will be used in
Sec. 6.8: labels for PROMELA specifications, enumeration for DVE specifications.

Note. Using progress labels as just described changes PROMELA’s semantics. To
avoid this change, one could try staying in PROMELA’s progress state semantics:
statementi; progress: statementj ; sets the local state s between statementi and statementj
to a local progress state . Transforming the code to statementi; atomic {skip;progress:
statementj} moves progress from s to the following composite transition. Fig. 6.7 shows
the difference in the labeled Kripke structures. atomic{...} guarantees that the progress
state is left immediately after it was entered (cf. Subsec. 3.4.3). Unfortunately, SPIN
does not interleave atomic sequences with the never claim process, so this technique
cannot be used for SPIN’s NPC checks. Trying nevertheless, SPIN sometimes claims to
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find an NPC, but returns a trace which has a progress cycle; at other times, SPIN gives
the warning that a “progress label inside atomic - is invisible”. SPIN’s in-
consequent warning suggests that it does not always detect progress labels inside atomic.

Figure 6.7.: Progress state (left) and progress transition without changing
PROMELA’s semantics (right)

6.5.3. DFSFIFO

Adapting DFSFIFO to progress transitions only requires to change two polymorphic meth-
ods of DFSprune,NPC within the loop for each s α−→ t (cf. Def. 6.11):
• pruned(s, α, t): return ((s, α, t) ∈ TP);. So for this check, statement α ∈ L was added

as parameter;
• np_cycle(t): return true;

The different versions of these polymorphic methods can be combined to handle both
progress states and progress transitions simultaneously, which will be demonstrated in
Sec. 6.7.
The biggest advantages of using progress transitions emerge in combination with POR,

described in the next section.

6.6. Compatibility of DFSFIFO with POR
Most reduction methods for MC (cf. Sec. 5.4) are combinable with DFSFIFO without
difficulty, for instance program slicing, statement merging, compressions, and symme-
try reduction [Bosnacki et al., 2002; Faragó, 2007]. POR is one of the most powerful
reduction methods, but its combination with DFSFIFO not trivial.

Roadmap. Subsec. 6.6.1 shows how relevant POR is for NPC checks. Subsec. 6.6.2 shows
how POR has to be modified for DFSFIFO and its correctness. Finally, Subsec. 6.6.3 com-
pares DFSFIFO with POR activated and NPC checks via LTL MC with POR activated
and considers variations of POR provisos.

6.6.1. Motivation for Strong POR
POR’s strength can decrease exponentially when changing from safety to liveness checks
via LTL MC, caused by:
• the visibility proviso C2 (cf. Subsec. 5.4.1) becoming stricter;
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• changing the exploration algorithm from a basic DFS to the NDFS (cf. Sub-
sec. 5.3.2;
• with NDFS, the cycle proviso C3’ is intricate: Since C3’ depends on the stack, the
set of states that innerDFS() with POR reaches also depends on the stack. So for
correct POR, the NDFS must preserve information about the ample set selection
between the NDFS’s two phases, DFS() and innerDFS() (cf. [Holzmann et al., 1996,
page 6]). This weakens POR – in many states up to full deactivation, and can
cause several attempts to select a correct ample set for a state.

Example. Table 6.1 shows the runtime (in seconds), depth and number of states for
a case study that verified a version of leadert that is highly optimized for MC (cf.
[Faragó, 2007]): the DFS for safety checks with partial order reduction were performed in
O(|processes|2) time and memory (i.e., easily up to SPIN’s default limit of 255 processes),
whereas the NPC checks via LTL MC could only be performed up to 6 processes. So a
very critical aspect of NPC checks is how strong POR can perform.

Table 6.1.: Difference of DFS with POR and NPC checks via LTL MC with POR
|processes| DFS NPC checks via LTL MC

time depth states time depth states
3 5” 33 66 5” 387 1400
4 5” 40 103 5” 2185 18716
5 5” 47 148 6” 30615 276779
6 5” 54 201 70” 335635 4.3e+06
7 5” 61 262 memory overflow (> 1GB)

254 100” 1790 260353 memory overflow (> 1GB)

6.6.2. Correctness of DFSFIFO with POR

For DFSFIFO with POR via ample sets (see Subsec. 5.4.1), the provisos C0, C1 and C2
can remain, since they can be checked by DFSFIFO in each state s, independently of the
path that the state space exploration took to reach s. So the different order in which
states are traversed by DFSFIFO compared to the basic DFS is irrelevant.
We investigate C2 closer in relation to Sec. 6.5; although C2 is general enough to cover

both progress state semantics and progress transition semantics, we name and investi-
gate the proviso separately for both semantics: C2 for progress transition semantics can
directly be translated to C2T (cf. Table 6.2). Progress transition semantics and C2T cor-
rectly differentiates fake progress cycles from real progress cycles. C2 for progress state
semantics considers alternations in np_ and hence makes no constraints for all-progress
cycles, i.e., cycles that only contains progress states: all states on an all-progress cycle
are invisible since np_ does not swap its value between successive progress states. For
our adaption of POR (cf. Lemma 6.20), this will be too weak to guarantee completeness.
Thus we will not use C2 for progress state semantics, but C2S (cf. Table 6.2). C2S is
stricter than C2transparent (cf. Note 5.14) since it additionally constraints all-progress
cycles visible. As trade-off for completeness, POR becomes weaker with C2S .
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Table 6.2.: Visibility provisos for DFSFIFO

C2T ∀s ∈ SPOR : ample(s) 6= enabled(s)⇒ ∀α ∈ ample(s) : α 6∈ TP

C2S ∀s ∈ SPOR : ample(s) 6= enabled(s)⇒ s 6∈ SP

C3’ in isolation no longer implies C3: Since a large part of the stack gets lost by
DFSFIFO postponing the traversal at progress, the premise of C3’ (that α(s) is in the DFS
stack) no longer holds for progress cycles, so the conclusion of C3’ needs to be guaranteed
otherwise. Fortunately, our visibility provisos already enforce that all pending transitions
are enabled when we are about to destroy the stack by making progress, as Lemma 6.20
and its proof show.

Lemma 6.20. For DFSFIFO, (C1 and C2S) =⇒ C3, as well as (C1 and C2T) =⇒ C3.

Proof. Let s0 ∈ SPOR, cycle π = (si)i∈[0,...,n] ∈ paths(SPOR, s0) and α ∈ enabled(s0 ).
If π is an NPC, the proof of Lemma 6.10 shows that DFSFIFO finds some NPC in
SPOR and terminates. If π contains some progress sj

β−→ sj′ with j ∈ [0, . . . , n] and
j′ := (j + 1)mod(n + 1), then either β ∈ TP or sj ∈ SP , so C2T or C2S guarantee
that enabled(sj) = ample(sj). Thus C1 for i ∈ [0, . . . , j] guarantees that for some h ∈
[0, . . . , j] : α ∈ ample(sh).

Theorem 6.21. Theorem 6.13 also holds for DFSFIFO with POR (i.e., via C0, C1,
(C2T or C2S)).

Proof. DFSFIFO with POR is sound: POR does not create new NPCs. Thus DFSFIFO
still does not output false negatives.
DFSFIFO with POR is complete: Because of Lemma 6.20, POR via C0, C1, (C2T

or C2S) for NPC checks implies (C2 or C2transparent) and C3, so all provisos of POR
for NPC checks via LTL MC are met. Furthermore, all C0, C1, C2T and C2S are
independent of the path π used to reach s, so the order in which states are traversed
is irrelevant. Therefore, the lemma of [Holzmann and Peled, 1994, page 6,7] can be
applied for DFSFIFO, too, showing that stutter equivalence related to progress is retained.
Therefore, SPOR has an NPC iff the original S has one. Theorem 6.13 can hence be
applied to SPOR.
DFSFIFO finds an earliest NPC w.r.t. progress: Let there be an NPC in the state

space, found at the smallest depth w.r.t. progress, b0. If b < b0, all paths leading to
an NPC are pruned before the NPC is reached. The completeness proof above can be
applied to Gb0 instead of the complete S. Thus (Gbo)POR also has an NPC, to which
Theorem 6.13 can be applied.

6.6.3. Comparing LTL NPC checks with POR to DFSFIFO with POR
Adapting POR for DFSFIFO, the constraint C3’ becomes unnecessary. Subsec. 6.6.1 has
shown that POR with C3’ is very intricate. Therefore, eliminating C3’ makes POR easier,
stronger, and faster, which is investigated here theoretically and measured empirically
in Sec. 6.8.
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DFSFIFO and its POR show that there are subclasses of LTL liveness properties, i.e.,
livelocks (more generally: persistence properties) for which no cycle proviso (such as C3
or C3’) is necessary. Thus the simpler, locally checkable provisos C0, C1 and (C2T or
C2S) are sufficient to avoid the ignoring problem and render POR correct.
Furthermore, using progress transition semantics not only simplifies modeling and

DFSFIFO, but also POR: The visible transitions are exactly the progress transitions,
facilitating the visibility proviso. Furthermore, only one of the originally two transitions
(swapping np_ back and forth) is now visible, hence fewer full expansions are necessary
compared to the original C2. This is a special case of transparent POR and of guard-
based POR (cf. Subsec. 5.4.1). It can dramatically improve POR [Faragó and Schmitt,
2009; Siegel, 2012].
The restrictions on POR by the visibility proviso are also reduced by lazy progress

traversal, which postpones progress traversal as long as possible, i.e., the proviso does
not force fully expand states as often.

Notes 6.22. We can also compare our DFSFIFO with SPIN’s former NPC check, which
used a specialized NDFS algorithm (cf. Subsec. 6.4.3 or [Holzmann, 1992]). [Holzmann
et al., 1996] explains that this algorithm is not compatible with POR because of con-
dition C3. The authors of the paper “do not know how to modify the algorithm for
compatibility with POR” and NPC checks via LTL MC as alternative. But DFSFIFO
can be regarded as such modification of SPIN’s old NPC check: the state space creation
and search for an NPC are performed simultaneously, whereby C3 is reduced to C2.
The lazy progress traversal algorithm from [Valmari, 1993] (see end of Subsec. 6.4.3)

has weak partial order reduction: It uses a stubborn set variant of POR that is not
adapted to the special case of livelock detection. It combines livelock detection with
other property detections, like deadlocks, such that at least one property detection
is preserved, but it does not guarantee that every kind of property detection is pre-
served [Valmari, 1993]. Furthermore, the reduction requires (a DFS) to find strongly
connected components or a reachability closure, which can be time consuming.
C2S weakens POR much more than C2T since a path may contain many progress states

but rarely perform actual progress, i.e., not have many progress transitions. Thus C2S
causes many unnecessary full expansions. Table 6.5 on page 147 shows that this can have
a large effect. In (the rare) case a path has many successive progress states due to actual
progress, i.e., different local progress states, the original POR with C2 and progress state
semantics might outperform C2T with progress transition semantics since np_ does not
swap its value between successive progress states, thus avoiding full expansions. This
inspires lazy full expansion due to progress, with the corresponding provisos given in
Table 6.3. The check with hash_table avoids invisible all-progress cycles, but complicates
POR. C2Tlazy and C2Slazy can probably be implemented and optimized by coupling the
provisos to the exploration algorithm [Evangelista and Pajault, 2010], but this is future
work.

6.7. Parallel DFSFIFO
As described in Sec. 3.5, programs must be parallelized to make use of current advances of
CPUs, which is also the trend in formal methods. This section focuses on the algorithmic
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Table 6.3.: Visibility provisos for lazy full expansion

C2Tlazy ∀s ∈ SPOR : ample(s) 6= enabled(s) ⇒ ∀α ∈ ample(s) :
(
α 6∈

TP or enabled(α(s)) ⊆ TP and α(s) 6∈ hash_table
)

C2Slazy ∀s ∈ SPOR : ample(s) 6= enabled(s) ⇒ s 6∈ SP or
(
∀α ∈ ample(s) :

α(s) ∈ SP and α(s) 6∈ hash_table
)

aspects to parallelize DFSFIFO, for which multi-threading was chosen since DFSFIFO has
to handle a large amount of global communication with higher performance, and we can
reuse data structures and concepts of LTSmin (cf. Subsec. 5.5.2). Thus it covers general
concurrency aspects and data structures only as much as necessary, but gives sufficient
references for further reading. The main reference on multiprocessor and multi-threaded
programming is [Herlihy and Shavit, 2008], on concurrent implementations for LTL MC
and their data structures is [Laarman, 2014].

Roadmap. Subsec. 6.7.1 introduces PDFSFIFO, a parallel version of DFSFIFO, and
enumerates the differences to DFSFIFO. Subsec. 6.7.2 proves PDFSFIFO correct. Sub-
sec. 6.7.3 gives some implementation details of PDFSFIFO. Finally, Subsec. 6.7.4 com-
pares PDFSFIFO with parallel LTL MC, considering mainly scalability aspects.

6.7.1. The Algorithm PDFSFIFO

Listing 6.7 presents a parallel version of DFSFIFO, PDFSFIFO. The algorithm does not
differ much from Listing 6.5:
DFSprune,NPC(S→∗ s) is split into parallel DFSprune,NPC(S→∗ s, int workerNumber),

handling states from fifo concurrently. The technique to parallelize the DFSprune,NPC(s, w)
calls is based on shared state storage as in the successful multi-core ndfs algorithms [Laar-
man et al., 2011c; Laarman and van de Pol, 2011; Evangelista et al., 2012]. Each worker
thread w ∈ [1, . . . , P ] uses a local stack[w], while hash_table is shared. Here fifo is shared,
but later it is partially localized for lower contention (cf. Subsec. 6.7.3). The local stacks
may overlap (see l.36 and l.27), but eventually diverge because we use a randomly ordered
next-state function, enabledw(·) (see l.7).
Instead of adding a state s to hash_table at the beginning of DFSprune,NPC(s, w), it

is added just before backtracking (see l.21). Therefore, only when DFSprune,NPC(s, w) has
finished exploration, l.12 forbids worker threads to visit s. Beforehand, DFSprune,NPC(s, w′)
for w′ 6= w may be called, such that worker thread w′ can help by undertaking part of
the exploration of dest(s,→∗), resulting in better parallel scalability.
DFSFIFO(w) calls DFSprune,NPC(s, w) for a state s from fifo iff s 6∈ hash_table (cf.

Note 6.12).
As announced in Sec. 6.5, PDFSFIFO handles both progress states and progress tran-

sitions simultaneously, so P = SP ∪̇ TP . Consequently, ∀s ∈ fifo\{init} : s ∈ SP or s
was reached via s′ α−→ s with α ∈ TP . We call these states collectively after-progress
states.
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1HashTable hash_table := new HashTable ( ) ;
2FIFO f i f o := new FIFO ( ) ;
3Stack [ ] s tack ;
4

5proc DFSprune,NPC (S→∗ s , i n t w )
6push s onto s tack [w ] ;
7for each α ∈ enabledw(s) do
8t := α(s) ;
9i f (t ∈ s tack [w ] && α 6∈ P && t 6∈ P )
10then ha l t with error_message ( )
11f i ;
12i f (t 6∈hash_table )
13then i f (α 6∈ P && t 6∈ P )
14then DFSprune,NPC (t ,w )
15else i f (t 6∈ f i f o )
16then put t in f i f o
17f i
18f i
19f i
20od ;
21add s to hash_table ;
22pop s from stack [w ] ;
23end ;
24

25proc DFSFIFO ( i n t workerNumber )
26while ( f i f o not empty ) do
27peek some s in f i f o ;
28i f (s 6∈ hash_table )
29then DFSprune,NPC (s , workerNumber ) ;
30f i ;
31remove s from f i f o ;
32od ;
33end ;
34

35proc main ( i n t P )
36put init in f i f o ;
37s tack = new Stack [P ] ;
38s tack [ i ] = new Stack ( ) for a l l i ∈ [1, . . . , P ] ;
39DFSFIFO (1 ) | | . . . | | DFSFIFO (P ) ;
40p r i n t f ( " s t r u c tu r e does not conta in NPCs" ) ;
41end ;

Listing 6.7: Typed parallel DFSFIFO (PDFSFIFO)



6. Explicit State Livelock Detection

If an NPC is found, l.10 calls error_message() and halts the algorithm, but the callee
does not return.

Note 6.23. A state s ∈ fifo might at any time be also added to hash_table (cf. Note 6.14)
by some worker thread in two cases:
• some worker thread w takes s from fifo at l.27, calls DFSprune,NPC(s, w) and com-

pletes the call;
• the after progress state s is not in SP and some worker thread w reaches s also
via some non-progress transition (see l.13), calls DFSprune,NPC(s, w) and completes
the call (e.g., for s α−→ s with α ∈ TP).

6.7.2. Correctness of PDFSFIFO

Theorem 6.31 proves correctness of PDFSFIFO, using the following lemmas: Lemmas 6.25,
6.27 and 6.29 use induction on PDFSFIFO’s execution steps: They show that the respec-
tive induction hypothesis holds after initialization, and that it is maintained by execution
of each statement of Listing 6.7. But only the statements that influence the induction hy-
pothesis are considered. Rather than restricting progress to either transitions or states,
we prove PDFSFIFO correct under P = SP ∪ TP .
We define NPC as the set of states on NPCs: NPC :=

{
s ∈ S

∣∣ ∃|π ∈ paths(S, s) :
π ∩ P = ∅ and π is a cycle

}
.

Lemma 6.24. Upon return of DFSprune,NPC(s, i), s is explored: s ∈ hash_table.

Proof. l.21 of DFSprune,NPC(s, i) adds s to hash_table.

Lemma 6.25. Invariantly, all direct successors of an explored state e are explored or
in fifo: ∀e ∈ hash_table ∀f ∈ dest(e,→) : f ∈ hash_table ∪ fifo.

Proof. The proof uses induction on PDFSFIFO’s execution steps. After initialization, the
invariant holds trivially, as hash_table is empty. hash_table is only modified at l.21, where
e is added by a worker thread w after all of e’s immediate successors f are considered
at l.9–l.16: If already f ∈ hash_table ∪ fifo, we are done. Otherwise, DFSprune,NPC(e, w)
terminates at l.10 or f was added to hash_table at l.14 (cf. Lemma 6.24) or to fifo at
l.16. States are removed from fifo at l.31, but only after being added to hash_table at
l.29 (cf. Lemma 6.24).

Lemma 6.26. Invariantly, all paths from an explored state e to a state f that is in
fifo, but not yet explored, contain progress: ∀f ∈ fifo\ hash_table ∀e ∈ hash_table ∀π ∈
paths(S, e) with dest(π) = f : π ∩ P 6= ∅.

Proof. Let π = (si−1
li−→ si)i∈[1,...,n]. By induction over π and Lemma 6.25, we ob-

tain either the contradiction sn ∈ hash_table, or some i ∈ [0, . . . , n − 1] with ∀j ∈
[0, . . . , i] : sj ∈ hash_table and si+1 ∈ fifo\ hash_table. By Lemma 6.24 and l.12–l.14 of
DFSprune,NPC(si, w) for the worker thread w who has added si to hash_table, si

li+1−→ si+1
makes progress.

Lemma 6.27. Invariantly, explored states are not on NPCs: hash_table∩NPC = ∅.
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Proof. Initially, hash_table= ∅ and the lemma holds trivially. Let e ∈hash_table and i be
the first worker thread that added e to hash_table in DFSprune,NPC(e, i) at l.21. Assume
that e ∈ NPC after l.21 of DFSprune,NPC(e, i). Then there is an NPC in e → f →+ e
with e 6= f , since otherwise l.10 would have reported an NPC. Now by Lemma 6.25,
f ∈hash_table∪ fifo. By the induction hypothesis, f 6∈hash_table, so f ∈ fifo\hash_table.
Lemma 6.26 contradicts e→ f making no progress.

Lemma 6.28. Upon normal termination of PDFSFIFO, all reachable states have been
explored: S→∗ = hash_table.

Proof. After some worker thread w normally terminates from DFSFIFO(w), fifo= ∅ by
l.26. By l.36, l.29 and Lemma 6.24, init ∈hash_table. So by Lemma 6.25, S→∗ =hash_table.

Lemma 6.29. PDFSFIFO terminates and either reports an NPC or “ structure does not con−
tain NPCs”.

Proof. Upon normal return of a call DFSprune,NPC(s, w) for some worker thread w and
some s ∈ fifo at l.29, w has put s in the hash_table (cf. Lemma 6.24), removed s from
fifo at l.31, and will never add s to fifo again (by l.12). Since elements are never removed
from hash_table, it grows monotonically, but is bounded by |S→∗ |, and eventually fifo =
∅. Thus eventually PDFSFIFO either terminates abruptly after reporting an NPC, or
all DFSFIFO(1), . . . , DFSFIFO(P ) terminate, and PDFSFIFO terminates normally after
reporting “structure does not contain NPCs” at l.40.

Lemma 6.30. Invariantly, for some worker thread w, the states in stack [w] form a
path that makes no progress except for possibly the first state: stack [w]= ∅ or stack [w]=
(si)i∈[0,...,n] ∈ paths(S, s0) and (si)i ∩ P ⊆ {s0}.

Proof. By induction over the recursive DFSprune,NPC(s, w) calls, stack[w]∈ paths(S, s0).
At l.14, we have t 6∈ P and α 6∈ P, but at l.29 with stack[w]= ∅ we may have s ∈ SP
(by l.16).

Theorem 6.31. S→∗ ∩NPC 6= ∅⇔ PDFSFIFO reports an NPC.

Proof. If DFSprune,NPC(s, w) reports an NPC, then s α−→ t·stack[w] is an NPC by l.9 and
Lemma 6.30.
If no DFSprune,NPC(s, w) reports an NPC, then PDFSFIFO reports “structure does not

contain NPCs” by Lemma 6.29. Therefore, at l.40, S→∗ = hash_table by Lemma 6.28.
Thus, S→∗ ∩NPC = ∅ by Lemma 6.27.

6.7.3. Implementation of PDFSFIFO

PDFSFIFO has been implemented by Alfons Laarman in C as algorithm back-end in
LTSmin Version 2.0.
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Lock-free Hash Table. To lower contention and thus improve parallel scalability, threads
communicate via hash_table that is maintained in shared memory, using a lock-free (also
called lockless) design via CAS operations, see Def. 6.32, Sec. 3.5 and Subsec. 5.5.2.

Definition 6.32. Let P be a multi-threaded program using shared memory, and progress
be defined according to the contracts of the methods P calls. Then:

• P is lock-free :⇔ recurrently some thread makes progress;
• P is wait-free :⇔ all threads recurrently make progress.

Notes. Thus, P is lock-free iff the whole system P is free of deadlocks and livelocks,
and P is wait-free iff each thread is free of deadlocks and livelocks.
Def. 6.32 shows that wait-freedom of P implies lock-freedom of P.
Usually, progress corresponds to the termination of method calls [Herlihy and Shavit,

2008]. But relating progress to the methods’ contracts is more general, e.g., for data
structures that have operations whose contracts allow blocking, for instance pop on an
empty stack.
A data structure D is called lock-free (respectively wait-free) if the multi-threaded

program that reads from or writes to D is lock-free (respectively wait-free).

Already [Herlihy, 1988] has shown that for all algorithms, there exist wait-free imple-
mentations, using universal constructors, which transform sequential code into wait-free
concurrent implementations. Latency and throughput of such wait-free implementa-
tions have been much worse than of lock-free or even blocking implementations [Fich
et al., 2005; Herlihy and Shavit, 2008]: the employed helping pattern [Herlihy et al.,
2003], which makes threads help each other to progress, costs many expensive synchro-
nization primitives (e.g., CASs). Fortunately, [Kogan and Petrank, 2012] introduced
a new methodology, called fast-path-slow-path, which achieves much better latency by
using the expensive concurrent operations only in rare cases, as fall-back to achieve
wait-freedom.
Differentiating performance aspects shows that the lock-free hash table is neverthe-

less more suitable for DFSFIFO than a wait-free hash table: Both lock-freedom and
wait-freedom guarantee system-wide throughput and stability from crash failures (i.e.,
continuously failing to return output [Cristian, 1993]). Wait-freedom additionally guar-
antees starvation-freedom and real-time behavior, i.e., it has a lower worst case la-
tency. With wait-freedom and lower worst case latency, a thread in DFSFIFO cannot fall
far behind, reducing
• how much work of the slow thread are redone by other threads, hence reducing
work duplication;
• the amount of the state space being explored late, as well as the delay, hence
reducing the search depth and the length of counterexamples (cf. Note 6.33 below).

But for model checking algorithms, throughput is more important than latency be-
cause of the huge amount of data caused by state space explosion (cf. Table 6.1). Since
communication is the most constraining factor for throughput [Lewis and Berg, 2000],
the focus is on low communication cost. This is best achieved by the lock-free hash table
design from LTSmin, since it requires few synchronization primitives, is cache oriented,
and can be implemented pointerlessly (cf. Subsec. 5.5.2 and [Laarman et al., 2010, 2011a;
Laarman, 2014]). As result, the lock-free hash table has
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• similar behavior and some similar concepts as the well-known wait-free hash table
of [Click, 2007];
• very little false sharing;
• little difference in throughput and latency compared to the wait-free hash table of
[Click, 2007]. For model checking, the wait-free hash table is slightly slower [Laar-
man, 2014].

Load Balancing. For fast concurrent inclusion checks and enumeration, fifo is maintained
as both queue and in hash_table (using one additional bit per state to distinguish fifo
from original entries). To also reduce contention for the queue [Sutter, 2009; Laarman
et al., 2010; Scogland and chun Feng, 2015], it is split into P local queues fifo [w] for
each worker thread w, calling for the load balancing described below. Since each stack[w]
remains much smaller than the other data structures, we maintain it as local hash table,
and construct counterexamples using back-links (cf. Subsec. 6.4.2), which are maintained
by LTSmin anyways when needed.
Our first implementation of load balancing (cf. Subsec. 5.5.2) simply relaxed the con-

straint of DFSprune,NPC(s, w) at l.15 to t 6∈ fifo [w], so that the after-progress state t
may end up in multiple local queues (cf. Note 6.12). This already provided good work
distribution, since AS is usually sufficiently connected. But the total size of all local
queues grew proportional to P , wasting a lot of memory on many cores. Therefore,
we prefer explicit load balancing via work stealing instead, as depicted in Listing 6.8:
steal ( fifo [w]) returns true if fifo [w] is not empty; otherwise, it tries to steal states
randomly from another local queue, returning true iff successful. So if steal ( fifo [w])
returns false, DFSFIFO(w) detects termination: it tried to steal but did not succeed
for any local queue, so exploration of S has finished, and DFSFIFO(w) also terminates.

1proc DFSFIFO ( i n t w )
2put init in f i f o [w ] ;
3while ( s t e a l ( f i f o [w ] ) ) do
4get and remove s from f i f o [w ] ;
5i f (s 6∈ hash_table )
6then DFSprune,NPC (s ,w ) ;
7f i ;
8od ;
9end ;

Listing 6.8: Work stealing for PDFSFIFO

Note 6.33. The proofs show that correctness of PDFSFIFO does not require a strict
FIFO order on after-progress states in the queues, i.e., a strict BFS over the after-
progress states is not required. Thus l.27 of Listing 6.7 does not say whether the order
of the FIFO is preserved. Instead, LTSmin’s command line option --strict turns on
strict FIFO order in PDFSFIFO (strict PDFSFIFO for short), using synchronization
between the bfs levels (cf. Note 6.14 and [Dalsgaard et al., 2012]). This guarantees
shortest counterexamples w.r.t. progress and low memory use of the FIFO. Without
--strict, synchronization is dropped to optimize parallel scalability.
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6.7.4. Comparing Parallel LTL NPC Checks to PDFSFIFO

As for the sequential case (cf. Subsec. 6.4.3), we again compare the two approaches
of livelock detection theoretically: parallel NPC checks via LTL MC and PDFSFIFO.
Practical experiments will be presented in Sec. 6.8.
LTL MC is probably not efficiently parallelizable: parallelization raises the worst case

time complexity of cycle detection from O(|S→∗ |) (cf. Subsec. 5.3.2) to either O(|S→∗ |·P )
using cndfs (cf. Subsec. 5.5.2 or [Evangelista et al., 2012]) or to O(|S→∗ |2) using owcty
(cf. Subsec. 5.5.3 or [Barnat et al., 2009]). Since livelocks are in the class of weak LTL
properties, owcty with heuristics can solve them in linear worst case runtime (cf. Sub-
sec. 5.5.3): the algorithm explores each state at most twice, in two searches over the state
space without any work duplication. Since the algorithm is based on state partition-
ing [Cerná and Pelánek, 2003], it has high communication and contention, which restricts
parallel speedup [Sutter, 2009], resulting in logarithmic speedup for DiVinE [Barnat
et al., 2009]. Experiments with cndfs [Evangelista et al., 2012] demonstrated that its
parallelization techniques make the state of the art for LTL MC; thus we used similar
techniques for PDFSFIFO (cf. Subsec. 6.7.3). Since PDFSFIFO has BFS behavior on
after-progress states, two different worker threads are likely to start DFSprune,NPC from
different after-progress states. So we can expect more work pruning between different
worker threads and less work duplication, resulting in better parallel scalability than
cndfs.
Furthermore, cndfs needs additional synchronization to prevent workers from early

backtracking [Laarman et al., 2011c]: a situation in which two workers exclude a third
from part of the state space. Figure 6.8 illustrates this: Worker 1 can visit s, v, t
and u, and then halt. Worker 2 can visit s, u, t and v and backtrack over v. If now
Worker 1 resumes and backtracks over u, both v and u are in hash_table. A third worker
will be excluded from exploring t, which might lead to a large part of the state space.
Lemma 6.25 shows that this is impossible for PDFSFIFO because the successors of visited
states are in hash_table or in fifo (but never solely in some stack[w], as in cndfs).

s

tu v

Figure 6.8.: Early backtracking

Finally, POR and parallelization of ndfs are not efficiently combinable due to the
DFS order required by C3 and C3’ (cf. Sec. 5.5 and [Barnat et al., 2010]).

6.8. Experiments

We benchmark the performance of our DFSFIFO for the first time, using LTSmin Ver-
sion 2.0 (cf. Subsec. 5.5.2). This is currently the only implementation of DFSFIFO and
PDFSFIFO we know of. It uses work stealing and offers both strict and non-strict BFS
order (cf. Note 6.33). We also use the PDFSFIFO algorithm for the sequential case.
Since the next-state function is randomly ordered, PDFSFIFO is a randomized algo-
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rithm. Since the results usually vary little, we took the average over 5 runs for each
relevant experiment.
We benchmarked on a 48-core machine (a four-way AMDOpteron 6168) with 128GB of

main memory, and considered four established, publicly available [URL:PromelaDatabase]
PROMELA models with progress labels: leadert, garp, giop and i-prot (see Subsec. 6.1).
We adapted SPINS (LTSmin’s language front-ends for PROMELA, cf. Subsec. 5.5.2) to
interpret the labels as either progress states, as in SPIN, or progress transitions. For all
these models, the livelock property holds under P = SP and P = TP . Models that we
modified are available at [URL:leader4DFSFIFOHP]. For fair comparison, we use SPINS
and DVE, and ensure similar state counts by turning off control-flow optimizations in
SPIN and SPINS. This is necessary because SPIN has a more powerful optimizer, which
can be, but is not yet implemented in SPINS. Only one of our models, giop, still yields
a larger state count in SPINS than in SPIN. Consequently, all measurements for giop
that depend on |S→∗ | cannot be compared sensibly between LTSmin and SPIN. We
still include giop in our tables as it nicely features the benefits of DFSFIFO compared to
LTSmin’s ndfs. All measurements in the tables and figures of this section have already
been published in [Laarman and Faragó, 2013].

Roadmap. Our benchmarks cover both the sequential and parallel case, progress states
and progress transitions, with strict and non-strict BFS order, without and with POR.
Subsec. 6.8.1 compares the time and space requirements of DFSFIFO and NPC checks
via LTL MC using LTSmin and SPIN. Subsec. 6.8.2 shows the strength of POR for NPC
checks via LTL MC using LTSmin and SPIN, in relation to the space requirements from
the previous subsection. Subsec. 6.8.3 investigates the parallel time requirements and
scalability of PDFSFIFO, and compares the results against the multi-core ndfs algorithm
cndfs, the state of the art for parallel LTL MC (cf. Subsec. 5.5.2 or [Evangelista et al.,
2012]), and the piggyback algorithm in SPIN (PB) [Holzmann, 2012]. Subsec. 6.8.4
investigates the parallel space requirements for DFSFIFO and compares it to cndfs’s and
shortly to PB’s. Subsec.6.8.5 considers the combination of parallelism and POR, and
compares PDFSFIFO’s space and time requirements and speedups with those available
for cndfs and those of DiVinE’s owcty [Barnat et al., 2009], which is also able to use
POR for parallel MC. Finally, Subsec. 6.8.6 benchmarks on-the-flyness for PDFSFIFO
and cndfs and compares the results.

6.8.1. DFSFIFO’s Performance

In theory, NPC checks via LTL MC require up to triple the time and double the space
compared to DFSFIFO (cf. Subsec. 6.4.3). To verify this, we compare DFSFIFO to ndfs in
LTSmin and SPIN. In LTSmin, we used the command line: prom2lts-mc --state=tree -s28
--strategy=[dfsfifo/ndfs] [model], which replaces the shared table (for fifo and hash_table)
by tree compression, to be able to cover more states in our experiments. Likewise,
we used compression in SPIN as well (collapse compression): cc -o2 -dnp -dnofair
-dnoreduce -dnoboundcheck -dcollapse -o pan pan.c, and pan -m100000 -l -w28,
avoiding table resizes and overhead. We write oom for runs that overflow the main
memory. Similar to the theoretical comparisons in Subsec. 6.4.3, we also compare the
performances to that of a basic DFS, using similar commands as above for both tools.
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Table 6.4 shows the results: For both SPIN and LTSmin, |Sltl
→∗ | (the state space for

NDFS) is 1.5 to 2 times as large as |S→∗ | (the state space for DFS and DFSFIFO). The
factor can become smaller than 2 since A♦�np_ can prune AS (cf. Subsec. 5.3.2). giop
fits in memory for DFSFIFO, but AS ∩A♦�np_ overflows for ndfs with LTSmin. Tndfs
is about 1.5 to 4.5 times larger than Tdfs for SPIN, 2 to 5 times larger for LTSmin.
The upward deviations from the theoretical factor 3 are probably caused by the in-
creased number of execution steps per state (switching between inner and outer DFS,
lockstepping between AS and A♦�np_, checking for progress and acceptance states), the
downward deviations by |Sltl

→∗ | being just 1.5 times as large as |S→∗ |. Tndfs is 1.6 to 3.2
times as large as TDFSFIFO . The downward deviations from the theoretical factor 3 are
probably caused by the previous deviations and by TDFSFIFO being 1.5 to 2 times larger
than Tdfs, likely caused by its set inclusion tests on stack and fifo.

Table 6.4.: Number of states and runtimes (sec) of (sequential) DFS, DFSFIFO, ndfs
in SPIN and LTSMIN

LTSmin SPIN
|S→∗ | |Sltl

→∗ | Tdfs TDFSFIFO Tndfs |S→∗ | |Sltl
→∗ | Tdfs Tndfs

leadert 4.5E7 198% 153.7 233.2 753.6 4.5E7 198% 304.0 1,390.0
garp 1.2E8 150% 377.1 591.2 969.2 1.2E8 146% 1,370.0 2,050.0
giop 2.7E9 oom 2.1E4 4.3E4 oom 8.4E7 181% 1,780.0 4,830.0
i-prot 1.4E7 140% 28.4 41.4 70.6 1.4E7 145% 63.3 103.0

6.8.2. Strength of POR

We extended LTSmin’s POR with the alternative provisos for DFSFIFO, C2S and C2T
(cf. Table 6.2) and without C3’. Table 6.5 shows the reduction rate, i.e., the number
of states relative to the corresponding |S→∗ | or |Sltl

→∗ | in Table 6.4, using the different
algorithms in both tools: For all models, both LTSmin and SPIN are able to obtain
reductions of multiple orders of magnitude using their DFS algorithms. We also observe
that much of this benefit disappears when using the ndfs algorithm, which is due to the
cycle proviso: the reduction rate is over 6 to 300 times worse for LTSmin, 1.2 to 38 times
worse for SPIN, so often SPIN can retain a better reduction rate than LTSmin. DFSFIFO
with progress states (column DFSSFIFO) performs almost as poorly as NDFS; apparently,
the C2S proviso is so restrictive that many states are fully expanded (cf. Subsec. 6.6.3).
But DFSFIFO with progress transitions (column DFST

FIFO) retains DFS’s impressive
reduction rate with only a factor 1 to 2 larger state spaces, so the reduction rates are
over 3 to over 200 times stronger than ndfs’s reduction rates.

6.8.3. Parallel Runtime

To compare the parallel algorithms in LTSmin, we use the options --threads=P --
strategy=[dfsfifo/cndfs], where P is the number of worker threads, up to 48, the number
of cores on our machine. In SPIN, we use -dbfs_par, which activates SPIN’s multi-core
BFS but also turns on lossy hashing [Holzmann, 2012], and run the pan binary with an
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Table 6.5.: POR (%) for DFST
FIFO, DFSSFIFO, DFS and ndfs in LTSMIN and SPIN

LTSmin SPIN
DFS DFST

FIFO DFSSFIFO ndfs DFS ndfsSPIN

leadert 0.32% 0.49% 99.99% 99.99% 0.03% 1.15%
garp 1.90% 2.18% 4.29% 16.92% 10.56% 12.73%
giop 1.86% 1.86% 3.77% oom 1.60% 2.42%
i-prot 16.14% 31.83% 100.00% 100.00% 24.01% 41.37%

option -uP . This turns on a parallel, linear-time, but incomplete, cycle detection algo-
rithm called piggyback (PB) [Holzmann, 2012]. It might also be unsound and incomplete
due its combination with lossy hashing [Barnat et al., 2012]. We chose SPIN’s multi-core
BFS since SPIN’s multi-core DFS can “only take advantage of parallel execution on no
more than two cpu-cores for liveness properties” [Holzmann, 2012].
Table 6.6 compares the runtimes of PDFSFIFO, cndfs, PB and again also DFS for

comparison. giop causes oom errors for cndfs. For the sequential case, DFS and DFSFIFO
use the parallel implementations with P = 1. Thus their runtimes are the same as in
Table 6.4. cndfs, on the other hand, adds parallel overhead to NDFS, so the sequential
runtime increases. Since PB is unsound and incomplete, it can be faster than SPIN’s
NDFS: PDFSFIFO is slightly slower than PB for leadert, but about a factor 2 faster for
garp and i-prot (and giop cannot be compared due to different |S→∗ |). Thus, PDFSFIFO
is the fastest algorithm for NPC checks for the sequential case, giving the following
scalability analysis even stronger meaning (being the absolute speedup, not only the
relative). Table 6.6 also includes runtimes for P = 48; since PB slows down after a
certain amount of worker threads, we took the optimal number of worker threads instead
of 48. PDFSFIFO is 3.4 to 9 times faster than cndfs, 4.5 to 16 times faster than PB.

Table 6.6.: Runtimes (sec) for the parallel algorithms: DFS, PDFSFIFO and cndfs in
LTSMIN, and PB in SPIN

DFS PDFSFIFO cndfs PB
T1 T48 T1 T48 T1 T48 T1 Tmin

leadert 153.7 3.8 233.2 5.7 925.7 51.4 228.0 25.9
garp 377.1 8.8 591.2 13.1 1061.0 58.6 1180.0 70.9
giop 2.1E4 463.3 4.3E4 970 oom oom 1200.0 57.8
i-prot 28.4 0.7 41.4 1.1 75.9 3.7 86.2 17.7

Figure 6.9 plots the obtained speedups: As expected, DFS’s [Laarman et al., 2010] and
PDFSFIFO’s runtime (strongly) scale almost linearly, while cndfs exhibits significant
sub-linear scalability, even though it is the fastest parallel LTL solution [Evangelista
et al., 2012]. PB’s runtime also scales sub-linearly significantly.

6.8.4. Parallel Memory Use
As expected (similarly to Note 6.23), few duplications of locally stored states occur:
Analyzing revisits of states by adding counters in the source code showed that they

147



6. Explicit State Livelock Detection

0

10

20

30

40

50

●

●

●

●

●

●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

dfs

● garp

giop2.nomig

i−protocol2

leader5

0

10

20

30

40

50

●

●

●

●

●

●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

dfsfifo

● garp

giop2.nomig

i−protocol2

leader5

0

10

20

30

40

50

●

●

●

●

●

●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

cndfs

● garp

giop2.nomig

i−protocol2

leader5

0

10

20

30

40

50

●

●

●

●

● ●
●

0 10 20 30 40 50
Threads

S
pe

ed
up

piggyback

● garp

giop2.nomig

i−protocol2

leader5

Figure 6.9.: Speedups of DFS, PDFSFIFO and cndfs in LTSMIN(without giop due to
oom), and piggyback in SPIN
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occur at most 2.6% when using 48 cores. For cndfs, strict and non-strict PDFSFIFO,
Table Table 6.7 shows the maximum number of states in all local queues and stacks:
QP :=

∑
w∈1..P

(
| fifo [w]| + |stack[w]|

)
. Half the time, strict and non-strict PDFSFIFO

have the same Qi; in the other cases, non-strict is up to 1.2 times larger, except for garp
with P = 48, where non-strict is almost 4 times smaller. Furthermore, Q48 = 0.25 ·Q1
for non-strict PDFSFIFO; this decrease is due to the randomness of the parallel runs
and occurs in weaker form also for strict and non-strict giop. In all other cases, Q48 is
at most 1.3 times Q1. Q1 of strict and non-strict PDFSFIFO is between 0.37 and 3.45
of cndfs’s Q1. But cndfs always has much larger Q48: Due to the long paths from
init to the current state for each worker thread in cndfs, Q48 is at least 10 times as
large as Q1, resulting in Q48 of strict and non-strict PDFSFIFO being between 3 and
30 times smaller than Q48 of cndfs where cndfs does not run out of memory. For
strict and non-strict PDFSFIFO, Qi/S→∗ is between 0.31 and 0.41 for giop, otherwise at
most 0.17. This high factor does not cause memory problems since all fifo [w] only store
pointers to the real states in hash_table and revisits occur at most 2.6%. Accordingly,
memory measurements showed that PDFSFIFO’s total memory use with 48 cores was
between 0.87 and 1.25 times the memory use of the sequential DFS. In the worst case,
PDFSFIFO (with tree compression) required 0.52 times the memory use of PB (with
collapse compression and lossy hashing), again giop excluded as its state counts differ.

Table 6.7.: Number of locally stored states for PDFSFIFO and cndfs

PDFSFIFO
strict PDFSFIFO

non-strict cndfs
Q1 Q48 Q1 Q48 Q1 Q48

leadert 1.0E6 1.2E6 1.2E6 1.4E6 2.7E6 3.6E7
garp 1.9E7 2.0E7 1.9E7 5.3E6 5.5E6 6.5E7
giop 1.1E9 8.4E8 1.1E9 8.4E8 oom oom
i-prot 1.0E6 1.1E6 1.0E6 1.3E6 8.3E5 1.0E7

6.8.5. Scalability of Parallelism Combined with POR

We checked for NPCs on leaderDKR models, successively increasing the number of nodes
N on the ring, i.e., the problem size. We compared PDFSFIFO with DiVinE’s parallel
LTL-POR algorithm, owcty, which we started with divine owcty [model] -wP -i30 -p.
We also compared to cndfs with parallelism and with POR, but not both (indicated by
n/a), since cndfs cannot handle the combination (cf. Subsec. 5.5.2). For PDFSFIFO and
cndfs, we turned on POR in LTSmin with the options described above. We limited
each run to half an hour (—30’ indicates a timeout). Table 6.8 shows that PDFSFIFO
and POR complement each other rather well: Without POR (left half of the table), the
almost linear speedup (S48 = T1

T48
= 40.8) allows to explore one model more: N ≤ 10

instead of only N ≤ 9, just like cndfs and owcty. But when POR is enabled (right half
of the table), we see again multiple orders of magnitude reductions. Parallel scalability
reduces to S48 = 3.5 for N = 9, though. This sub-linear scalability is caused by the
small size of the reduced state space |SPOR

→∗ |, which is not sufficiently large to outweigh
the parallel overhead (cf. Subsec. 3.5.2). When increasing N , the speedups grow again
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to almost linear scalability: S48 = 43 for N = 13. With POR enabled, parallelism
with P = 48 allows us to explore two more models compared to P = 1 within half an
hour, up to N = 15. So PDFSFIFO handles 4 more orders of magnitude (cf. |SPOR

→∗ | and
|TPOR|) compared to owcty (N ≤ 11), 5 more orders of magnitude compared to cndfs
(N ≤ 10).

Notes. As PDFSFIFO revisits states (cf. paragraph Parallel Memory Use), the ran-
domly ordered next-state function could theoretically weaken POR (as for ndfs). But
for all our experiments, this did not occur.
Since PDFSFIFO has low parallel memory use and never oom errors, it is not memory

bound. Table 6.8 shows that eventually —30’ occurs, so PDFSFIFO is CPU bound. Hence
we focused on strong scalability in this section (cf. Subsec. 3.5.2), especially in Fig. 6.9.
Table 6.8 does increase the problem size N , but not proportionally to p as for weak
scaling, but always considers p = 1 and p = 48 to investigate the speedups and feasibility
of PDFSFIFO (in comparison to owcty and cndfs).
Piggyback reported contradictory memory use and far fewer states (e.g. <1%) com-

pared to DFS with POR, although it must meet more provisos. Thus we did not compare
against piggyback (and suspect a bug).

Table 6.8.: POR and speedups for leaderDKR using PDFSFIFO, owcty and cndfs

N Alg. |S→∗ | |T| T1 T48 S48 |SPOR
→∗ | |T

POR| TPOR
1 TPOR

48 SPOR
48

9 cndfs 3.6E7 2.3E8 502.6 12.0 41.8 27.9% 0.1% 211.8 n/a n/a
9 PDFSFIFO 3.6E7 2.3E8 583.6 14.3 40.8 1.5% 0.0% 12.9 3.6 3.5
9 owcty 3.6E7 2.3E8 498.7 51.9 9.6 12.6% 0.0% 578.4 35.7 16.2

10 cndfs 2.4E8 1.7E9 —30’ 90.7 —30’ 19.3% 5.4% 1102.7 n/a n/a
10 PDFSFIFO 2.4E8 1.7E9 —30’ 109.3 —30’ 0.7% 0.1% 35.0 2.5 14.0
10 owcty 2.4E8 1.7E9 —30’ 663.1 —30’ 8.7% 2.2% —30’ 156.3 —30’
11 PDFSFIFO —30’ —30’ —30’ —30’ —30’ 5.1E6 7.1E6 109.8 5.3 20.7
11 owcty —30’ —30’ —30’ —30’ —30’ 9.3E7 1.7E8 —30’ 1036.5 —30’
12 PDFSFIFO —30’ —30’ —30’ —30’ —30’ 1.6E7 2.2E7 369.1 11.2 33.0
13 PDFSFIFO —30’ —30’ —30’ —30’ —30’ 6.6E7 9.2E7 1640.5 38.1 43.0
14 PDFSFIFO —30’ —30’ —30’ —30’ —30’ 2.0E8 2.9E8 —30’ 120.3 —30’
15 PDFSFIFO —30’ —30’ —30’ —30’ —30’ 8.4E8 1.2E9 —30’ 527.5 —30’

6.8.6. On-the-flyness

We also investigate on-the-flyness, i.e., on-the-fly performance, which is quite relevant
in practice (cf. Subsec. 3.6.2). Since leaderItai counts rounds (cf. Subsec. 6.1), we were
able to modify the model to analyze on-the-fly performance: we injected early NPCs
(model shallow), i.e., close to init, and late NPCs (model deep), i.e., far away from init.
Both models are available at [URL:leader4DFSFIFOHP]. Table 6.9 shows the average
runtime in seconds (T ) and counterexample length (number of states C) over five runs;
for cndfs’s T1 we took the average over 4 runs since one run had a timeout (including
the timeout results in an average of T1 ≥ 373 seconds). Since PDFSFIFO finds shortest
counterexamples, it outperforms cndfs for the shallow model (more relevant model in
practice because of the small scope hypothesis, cf. Subsec. 5.2.3) by a factor larger 150
for P = 1 and 1.75 for P = 48 and pays a penalty for the deep model by a factor larger
4.8 for P = 1 (the timeout for cndfs included) and 225.5 for P = 48. Both algorithms
benefit greatly from massive parallelism (cf. [Laarman and van de Pol, 2011]). For the
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model deep, cndfs’s counterexamples are about 10 times as long as for PDFSFIFO; the
model shallow only contains shortest counterexamples.

Table 6.9.: On-the-fly runtimes (sec) and counterexample lengths (states) for cndfs
and PDFSFIFO

cndfs PDFSFIFO
T cndfs PDFSFIFO

T

T1 T48 T1 T48 C1 C48 C1 C48

shallow —30’ 7 12 4 —30’ 16 16 16
deep 16

(once
—30’

)
2 —30’ 451 577 499 —30’ 51

Notes 6.34. Table 6.9 focuses on level 2 OTF, which is why we do not consider DiVinE,
which only has level 1 OTF.

cndfs exhibits super-linear speedup of S48 > 257 > 48 on average for shallow (and
S48 ≥ 187 for deep if the timeout is included). If the NPCs were evenly distributed
over the state space, “only” linear speedup would be possible on average. But since the
NPCs are all in a relatively small region of the state space, even super-linear speedup
on average is possible [Rao and Kumar, 1988].
Often, it is stated that super-linear speedup is impossible because the parallel al-

gorithm can be simulated by a sequential algorithm with the same amount of overall
work [Amdahl, 1967; Faber et al., 1986]. This, however, is only the case if the sequential
and parallel algorithms offer the same operations, with the same costs. But it need not
be the case [Janßen, 1987; Bader et al., 2000; Sutter, 2008], e.g., due to simulation costs,
communication costs, or different hardware costs like caching.
Our experiments use standard parameters and measures, and established protocols

from benchmarks, which lead to low threats to internal, construct, and external validity.
Threats to statistical conclusion validity are also low since we usually have little variance
in spite of PDFSFIFO being a randomized algorithm. Furthermore, the differences for
our comparisons are usually orders of magnitude. Hence we took the average only over
5 runs for each relevant experiment. For deep with the sequential cndfs, however, the
variance was large, so the measurements are not statistically accurate. Since cndfs is
not our focus, these rough measurements are only a small threat to statistical conclusion
validity for our experiments of PDFSFIFO.

6.9. Conclusion

6.9.1. Summary

This chapter showed theoretically and by experiments that the important property of
livelocks can be performed more efficiently than via LTL MC: By specializing on LTL’s
real subset of NPC checks, DFSFIFO can simultaneously explore the state space and
search for NPCs in one pass, instead of separating these steps, as NDFS for LTL MC
does.
DFSFIFO achieves this by lazy progress traversal: DFSFIFO postpones traversing

progress until all states that are reachable from the current state without progress have
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been traversed. Then DFSFIFO retrieves a postponed state and continues with this
approach.
To express this algorithm and its laziness as a scheduling of tasks (cf. Def. 3.33),

we partition DFSFIFO’s transition tasks into tasks that traverse a progress transition
and tasks that traverse a non-progress transition. Check tasks perform an NPC check,
which only needs to check whether the current transition performs progress and whether
its destination state is on the stack. These simple checks are sufficient if non-progress
transitions are scheduled in DFS order. DFSFIFO performs livelock detection by lazily
scheduling progress transition tasks only after non-progress transition tasks only after
NPC check tasks. It is a level 2 OTF algorithm, and truly OTF since no Büchi automata
is used.
DFSFIFO’s advantages over NDFS are:
• more efficient since it requires only one pass over AS , not two passes over AS ∩
A♦�np_ like the NDFS;
• progress can also be modeled by progress transitions instead of progress states;
• lazy progress traversal makes the POR proviso C3 and C3’ obsolete, resulting in
stronger POR;
• DFSFIFO’s BFS behavior on exploring after-progress states results in better parallel
scalability;
• POR and parallelism are efficiently combinable;
• stronger on-the-flyness for the livelocks that occur in practice;
• it finds shortest counterexamples w.r.t. progress.

As only trade-off, DFSFIFO’s counterexample solely contains the NPC. To construct a
full counterexample, DFSFIFO requires negligible additional time or space. DFSFIFO’s
disadvantage over NDFS is its restriction to livelock detection (more precisely: persis-
tence properties). Unfortunately, DFSFIFO cannot be generalized to full LTL MC.
Our experiments on four established protocols prove these advantages for our PDFSFIFO

implementation with progress transitions:
• DFSFIFO’s runtime is 1.6 to 3.2 times smaller than ndfs’s for our experiments,

and DFSFIFO’s memory use is 1.5 to 2 times smaller (cf. Table 6.4);
• DFSFIFO’s POR is over 3 to over 200 times stronger than ndfs’s, resulting in
reduced state spaces between 0.49% and 31.8% of the original size, which is only
1.0 to 2.0 times larger than that of a basic DFS with POR (cf. Table 6.5);
• PDFSFIFO is the fastest algorithm for NPC checks for the sequential case (about

twice as fast, cf. Table 6.6) and has almost linear speedup (cf. Fig. 6.9), resulting
in 3.4 to 16 times faster parallel NPC checks for our experiments (cf. Table 6.6);
• PDFSFIFO has 0.87 to 1.25 times the memory use of the sequential DFS, and
requires 3 to 30 times less local memory than NDFS (cf. Table 6.7);
• PDFSFIFO in combination with POR handles 5 more orders of magnitude compared
to ndfs, 4 more orders compared to DiVinE’s owcty (cf. Table 6.8);
• for relevant livelocks of our experiments, PDFSFIFO has over 150 times stronger

on-the-flyness for P = 1, 1.75 times for P = 48 (cf. Table 6.9);
• for our experiments, PDFSFIFO’s counterexamples are up to 10 times shorter than

those of ndfs.
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6.9.2. Contributions
The main contribution in this chapter is the design, implementation and analysis of
the algorithm DFSFIFO for efficient livelock detection, its parallelization PDFSFIFO,
the adaption and integration of POR without the need of a cycle proviso, correctness
proofs thereof, and experiments. The core ideas of DFSFIFO have already been published
in [Faragó, 2007], its correctness and integration with POR in [Faragó and Schmitt, 2009],
its parallelization, implementation and measurements in [Laarman and Faragó, 2013].
More abstract contributions are:
• the introduction of a semantically more accurate way to model progress by using

progress transitions;
• a lazy technique with advantages beyond those listed in Subsec. 3.6.3: It renders
the one pass DFS NPC check complete: using lazy progress traversal, DFSFIFO
becomes a sound and complete livelock (more generally: persistence property)
detection. Furthermore, lazy progress traversal improves optimizations (POR and
parallelization), is an efficient search heuristic for livelocks, and yields shortest
counterexamples;
• showing that there exist relevant subclasses of liveness properties that are worth
being specialized on since this specialization enables many improvements compared
to general LTL MC. Compared to DiVinE, which improves LTL MC for the larger
subclass of weak LTL, PDFSFIFO focuses on a subclass of weak LTL and achieves
strong level 2 on-the-flyness and almost linear speedup, whereas DiVinE has level
1 OTF and logarithmic speedup.

6.9.3. Future
Possible future work includes:
• integrating DFSFIFO into SPIN, which Gerard Holzmann, the author of SPIN, is
looking into;
• POR might be further improved for DFSFIFO by weakening the visibility proviso:
To find NPCs, we only need to distinguish π with infinite progress from π with
finite progress. Thus POR needs not guarantee stutter equivalence, but only that
NPC existence is preserved, i.e., that at least one progress is preserved per progress
cycle and one NPC is preserved. One step in this direction is reducing the number
of progresses on a cycle that are visible to POR using lazy full expansion due to
progress (cf. Subsec. 6.6.3): This is formalized by C2Tlazy and C2Slazy; implementing
and optimizing them by coupling the provisos to the exploration algorithm [Evan-
gelista and Pajault, 2010] is interesting future work (cf. Note 6.22);
• investigate on-the-flyness of PDFSFIFO more thoroughly (cf. Note 6.34);
• this chapter has shown that focusing on special sub-classes of liveness proper-
ties, such as livelocks (more generally: persistence properties), can improve the
efficiency and optimization of MC. Similar conclusions have been made for three
other sub-classes: a fragment of CTL that restricts nesting [Saad et al., ’12], weak
LTL properties (cf. Subsec. 6.7.4) and response properties (cf. Note 6.17). Thus we
should look for further sub-classes, how they are related, and how verification can
be specialized. Exemplary future work is adapting DFSFIFO to response properties
(cf. Note 6.17);
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• implement finite ∪ infinite trace semantics for DFSFIFO and its POR. Similarly to
on-the-fly LTL MC (cf. Subsec. 5.6.3), this would be simple: Solely a check for non-
progress at end states is necessary. Allowing also finite traces, no work-arounds
are necessary, whereas on-the-fly LTL MC with only infinite trace semantics must
add self-loops that also make progress – or not add self-loops to end states at all
for this special case (cf. 6.3.1);
• transform DFSFIFO and strict PDFSFIFO into a conditional model checking tool by

simply adding the contents of fifo as input Cinput and as output Coutput to DFSFIFO
(cf. Subsec. 6.4.3).
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To improve the feasibility of model checking, Sec. 5.4 introduced reduction techniques,
with a focus on partial order reduction and symbolic model checking via bounded MC.
Chapter 6 focused on liveness properties and achieved improvements via specialization
on the livelock property and via partial order reduction. This chapter investigates the
feasibility of software bounded MC (cf. Subsec. 5.2.3) for C and C++ source code, mainly
using the tool CBMC and safety properties, which is the more common application [Yi
et al., 2004; Prasad et al., 2005]. Experiments on a case study show that state space
explosion occurs when nondeterminism is used too heavily in CBMC. So even SBMC,
which is meant to be a more lightweight approach than exhaustive MC, can quickly
become infeasible. We introduce an even more lightweight approach via testing, baptized
testing with SBMC: the test engineer manually selects underspecified scenarios, which
are checked via SBMC. This approach leverages SBMC and improves scalability.
This chapter is the first example in this thesis about combining a formal method with

the testing approach. Therefore, it motivates Part III, which focuses on this combina-
tion. In this chapter, however, static testing and hence white-box testing is conducted.
Nonetheless, several approaches introduced here will be applied in Part III, too: the
integration of formal methods and testing is the main concept for Part III, bounded
exploration one of the key design features, and one implementation will use similar
techniques (SMT and compiler optimizations).
We describe a case study from the domain of wireless sensor networks (WSNs),

using a large program of practical size (≈ 21 000 LoC) and complexity. A WSN is
a distributed embedded system consisting of autonomous sensors that cooperatively
pass their measurements through the network to a main location. Trying to check
the large program with CBMC causes state space explosion, so we used abstractions:
lossy abstractions by removing technical details and by introducing nondeterminism (cf.
Subsec. 3.7). But too much nondeterminism causes too high a combinatorial explosion, so
we had to restrict the state space again. For this, we applied the testing approach: We
manually selected scenarios that seemed most likely to reveal relevant bugs or raise our
confidence in the correctness of the program. So we conducted experiments by choosing
scenarios, similar to testing. But we did not perform dynamic testing, i.e., we did not
execute the program; instead the properties were checked on the chosen scenario using
CBMC, which covered all possible situations (paths and inputs) within the scenario due
to underspecification, i.e., all remaining nondeterministic values. Therefore, we call this
approach testing with SBMC. The only manual tasks for testing with SBMC are selecting
scenarios and user-supplied properties to be checked; all other instrumentations, general
abstractions and verifications can be automated.
Most of this work was published in [Werner and Faragó, 2010]; this chapter introduces

SBMC, CBMC and the optimization heuristics more thoroughly, gives more related
work and explains our lightweight approach in greater detail. For the case study, Frank
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Werner [Werner, 2009] implemented all abstractions, scripts and code instrumentations,
and conducted the first verification round of the case study. Hendrik Post implemented
all optimization heuristics. Critical scenarios of the first round were inspected again by
Frank Werner and David Faragó in a second round using specific scenarios.
In summary, verification of our large and complex system was in general possible with

SBMC, but in a lightweight manner: we used rigorous static analysis via CBMC, but
with a manual restriction to certain scenarios, just like testing does for execution.

Roadmap. In Sec. 7.1, we introduce SBMC: firstly in general, then the SBMC tool
CBMC, its capability to use nondeterminism, and the complexity of SBMC. Then we
describe the heuristic improvements we contributed to make CBMC cope with our pro-
tocol. Sec. 7.2 introduces wireless sensor networks, the ESAWN protocol [Calvert et al.,
1999], the TinyOS platform and our abstraction from it. Then the desired properties of
ESAWN are described and verified. Sec. 7.3 concludes this chapter.

7.1. Introduction to Techniques for SBMC
The overall approach of SBMC was introduced in Subsec. 5.2.3. But for SBMC, the
user-supplied bound b usually does not directly describe the number of allowed steps on
each path, but rather denotes the maximum number of allowed loop body executions
on a path and the maximum recursive depth. The recursive depth of a path is the
number of stack frames it contains (more precisely: the number of equal return addresses
on the stack). For a given program, b still limits the number of statements on any path.
As described in Subsec. 5.2.3, the bound b for BMC with bound check can iteratively be
set large enough so that the SBMC tool becomes sound and complete for all properties
the tool can check. To apply SBMC for static code analysis (usually in the language
C or C++), the source code is transformed into a Kripke structure S (similarly to
Subsec. 3.4.3). For this, the code is unwound: loops are unrolled up to the upper
bound, as depicted in Listing 7.1; similarly, function calls are inlined up to the upper
bound. The resulting Kripke structure is in SKripke,(labeled),finite.

1i n t x = 0 ; i n t x = 0 ;
2i n t y = 0 ; i n t y = 0 ;
3while ( x < 2){ i f ( x < 2){
4y = y + x ; y = y + x ;
5x++; 7→ x++;
6} }
7i f ( x < 2){
8y = y + x ;
9x++;
10}
11a s s e r t ( ! ( x<2)) ;

Listing 7.1: Exemplary loop unwinding for a bound of 2

SBMC for static code analysis is important since “static analysis has become one of the
leading methods for software defect removal from source code” [Jones and Bonsignour,
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2012].
To simplify static analysis, logical encoding and optimizations of the source code, many

SBMC and other tools translate it into an intermediate representation (IR), which
is an abstract assembler language with simpler syntax and semantics. Often the static
single assignment form (SSA) [Rosen et al., 1988] is used (which is a special case of
continuation-passing style [Kelsey, 1995]): Every assignment is replaced by a versioned
assignment such that each identifier is assigned at most once. In order to transform a
sequence of n assignments to an identifier, n new identifiers are introduced by appending
a version number to the original identifier. Read accesses are replaced by read accesses
to the currently active version. At program points where two control flows join, e.g., at
the end of an if block, a new Φ function is introduced. A Φ function determines which
version should be used for the consecutive read accesses, cf. Listing 7.2. Using control
flow analysis, so-called dominance algorithms [Braun et al., 2013] determine where to
insert Φ functions in the intermediate representation. Subsec. 7.1.3 shows an example for
optimizations becoming much easier on SSA compared to C code: constant propagation,
which employs use-definition chains. These are easily computed for SSA.

1i n t x = 0 ; x0 = 0 ;
2i f ( x==0){ i f ( x0==0){
3x = x + 2 ; 7→ x1 = x0 + 2 ;
4} }
5a s s e r t ( x !=0) ; // phi :
6x2 = ( x0==0) ? x1 : x0 ;
7a s s e r t ( x2 !=0) ;

Listing 7.2: Exemplary translation from C code to SSA

With this, usually only Kripke structures in SKripke,(labeled),finite,<ω are considered.
An embedded system (e.g., one following the MISRA C standard [Association, 2004])
commonly is a reactive system, i.e., an event-driven system that continuously reacts to
the stimuli of its environment [Manna and Pnueli, 1995; Clarke et al., 1999b]. Therefore,
it indefinitely offers finite functions, i.e., it consists of an endless loop on the outside, but
within that loop, all possible paths are bounded. Fortunately, SBMC can often show
ultimate correctness for typical properties of such a system even when only considering
one iteration through the loop (i.e., one loop unwinding, cf. Listing 7.1 below). So the
inner, finite functions without the infinite loop around them are investigated (usually
with generalized parameters), such that we have the situation above, with only finite
paths and a finite number of them. For this finitization, we might require underspecified
variable values via nondeterminism (cf. Subsec. 7.2.3), which many SBMC tools offer by:
• setting variable values nondeterministically with an explicit command, e.g., havoc
or nondet;
• or by implicitly setting uninitialized input variables to nondeterministic values.

Nondeterminism can also be used to underspecify functions: Underspecified input pa-
rameters can cover all possible values. Alternatively, the whole function can be ab-
stracted, for which its side effects are captured by nondeterministically setting the return
value and variable values that the functions may mutate. Therefore, source code that
interacts with the environment can be transformed to a closed system using nondeter-
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minism (cf. Sec. 2.3 and Sec. 3.7), for instance nondeterministically setting the sensor
values that the wireless sensors measure and communicate. So via nondeterminism, the
system specification description can subsume all possible behaviors of the SUV. The
description often contains even more behaviors than the SUV, i.e., it is truly underspec-
ified: The resulting (labeled) Kripke structure exhibits more behavior than the SUV,
possibly producing false positives, i.e., SBMC can become unsound. To avoid these false
positives, abstraction must be reduced by allowing only nondeterministic values that the
SUV exhibits too, e.g., by using assume(·) statements, (see next subsection) or by choos-
ing specific scenarios manually. Unfortunately, nondeterminism causes the SBMC tool to
consider even more combinations (before they are pruned by assume(·)), i.e., state space
explosion is even more severe. For our large case study, the complexity became often
too high to prove ultimate correctness. Instead, we had to restrict the cases by choosing
specific scenarios manually: this testing with SBMC is described in Subsec. 7.2.3.

7.1.1. CBMC

The C Bounded Model Checker (CBMC) [URL:CBMC] is one of the most popular
SBMC tools and implements SBMC for C programs. Properties have to be specified by
assert(·) statements, which are not only used for user-supplied C assertions, but also
to encode built-in standard runtime error checks: arithmetic errors like integer
overflow and underflow and memory errors like array index out of bound and illegal
pointer access [Clarke et al., 2004a].CBMC also offers assume(f) statements, which do
not demand f to be true, but simply cause all outgoing transitions of the current state to
be pruned (i.e., ignored) iff f evaluates to false (but we do not need assume(f) statements
in Sec. 7.2). Nondeterministic values must be set explicitly, e.g., by int x = nondet_int();.
In CBMC, the bound b can be set individually for each loop occurring in the program.
The SSA statements have guards in CBMC, i.e., necessary and sufficient conditions for
the statements to be executed.
Similarly to Subsec. 5.4.2, CBMC encodes the SBMC problem into a SAT instance

that is checked using the SAT solver Minisat2 [Eén and Sörensson, 2003]. The SAT
instance can also be exported in the DIMACS format. Alternatively, the SBMC problem
is encoded into SMT-LIB using the logic QF AUFBV and some support for lists, sets
and maps. The solvers Z3, Yices or Boolector can be used.
If the SAT or SMT problem is satisfiable, CBMC generates a concrete counterexample

from the satisfying assignment produced by the SAT or SMT solver. If the SAT or
SMT problem is not satisfiable, the property holds for all program executions (since
the bound check did not produce a counterexample, cf. Subsec. 5.2.3) and the program
always terminates.

7.1.2. Complexities

The worst case time complexity of SAT is exponential in the number of variables of the
SAT encoding, which is in O(b · (|Σsv(S)|+ |Σsv(L)|)) for the Kripke structure S and a
liveness property description L (cf. Subsec. 5.4.2), and in O(b ·Σsv(S)) for a reachability
property. Runtime did not cause problems in our case study since real world instances
of SAT problems can often be solved surprisingly fast in practice (cf. Subsec. 3.2.3).
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The size of the encoding, however, did cause problems even for small bounds: The
worst case size complexity of the encoding is inO

(
b·(C(AS∩Anever)+|Σsv(S)|+|Σsv(L)|+

C(F ))
)
for Büchi automata Anever for L with F acceptance states (cf. Subsec. 5.4.2),

and in O(b · (C(S) + Σsv(S))) for a reachability property. C(S) already has at least
as many variables as the number of bits potentially addressed in the C program. So
for SBMC on the source code level, the state space and C(S) become huge since many
values of the heap, stack, registers and program counter need to be considered, especially
when nondeterminism is used. Consequently, the generated encodings had many GiB of
file size and caused failures in Minisat2 simply because of their size; the SAT instances
that caused no such failure could be solved rather quickly by Minisat2. Alternatively, we
exported the SAT instances as DIMACS files. But even for reachability properties, the
size of the propositional formula that CBMC generated surpassed 4 GiB. Consequently,
alternative SAT solvers and reductions and simplifications on these DIMACS files were
also not able to handle their size. We solved this problem by integrating preprocessing
in CBMC before calling Minisat2, as described in the next subsection. Even though
the worst case size complexity of the encodings did not change, the encodings no longer
became so big and could often be handled by Minisat2.

7.1.3. CBMC Optimization Heuristics

To decrease the size of the SAT instances, we engineered some preprocessing into CBMC
that use heuristics from the field of compiler optimization on the most suitable level:
the intermediate representation in SSA form (cf. Sec. 7.1).
CBMC already had some optimization heuristics, but only on the SAT level and

only on primitive data types. Our heuristics also respect non-simple types like arrays,
pointers and structures, and also use slicing rules (enabled by the option −slice) and
simplifications (enabled by the option −use−sd). The simplifications use the following
steps:
• constant propagation for arrays, pointers and structures, which can be computed
efficiently in an unwound program (cf. Subsec. 7.1.3);
• expression simplification that uses the additional information generated by the
constant propagation (cf. Subsec. 7.1.3);
• simplifying guards for statements by early satisfiability detection, using the above
expression simplification (cf. Subsec. 7.1.3).

Hendrik Post implemented these heuristics within CBMC version 2.9, which are avail-
able on a side branch of CBMC’s repository thanks to Daniel Kröning. Our preprocess-
ing strongly reduces the problem size and complexity, enabling the verification of the
ESAWN implementation in Sec. 7.2.

Field- and Array-Sensitive Constant Propagation

Many implementations (like the ESAWN protocol, cf. Subsec. 7.2.2) heavily use ar-
rays, pointers and structures, which are not covered by CBMC’s optimizations. Hence
sequences as a [0] = 0; if (a [0] == 0) ... are not simplified by CBMC’s constant prop-
agation. In contrast, we have implemented the propagation on the level of the SSA
representation of the program by flattening these complex data types.
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Expression Simplifier

Using the additional information generated by the constant propagation, we have added
an expression simplifier. Any expression that can be simplified by one of the three
following rules is replaced by its simplified expression. Note that all expressions are free
of side effect at this level of encoding:
• Boolean expressions with Boolean operands: If an expression has Boolean type and
any Boolean operand must evaluate to a constant true or false, the expression
is simplified, e.g.,
– !true becomes false,
– expr && false becomes false,
– true => expr becomes expr,
– false? expr1:expr2 becomes expr2.

Additional cases where more than one operand evaluates to a constant are also
simplified.
• Boolean comparisons: Operators like <, >=, == and != are also simplified; e.g.,
c <= c becomes true, with c being a constant or versioned identifier.
• Integer, float and double expressions with constant integer or Boolean operands:
Arithmetic expressions like +,-,*,/,<<,>> with all operands being constants
are simplified according to their C semantics.

The last rule could easily be extended to float and double type variables. As the
ESAWN implementation does not use such types, they are not yet implemented.

Early Satisfiability Detection

The simplifications from the previous two subsections can be effectively used to simplify
the guards of the SSA statements: If the guard of a statement always evaluates to false,
that statement can be removed from the encoding as it cannot be executed. If a guard
evaluates to true and the statement is assert (f) with f always evaluating to true, it
can be removed. If a reachable guard evaluates to true and the statement is assert (f)
with f always evaluating to false, there is a counterexample for the corresponding
property. The heuristics can often detect the reachability and stop further encoding
with an appropriate message.
These heuristics detect that loop bounds are chosen too small if the loops are executed

a fixed number of times (most of ESAWN’s loops are). Since the unwinding bounds for
loops are unknown a priori, many CBMC iterations are necessary. Thus the overall
process of finding the correct loop bounds is greatly improved by early satisfiability
detection.

7.2. Case Study

This section introduces a case study with a complex and large code basis of 21 000 LoC.
It was published in [Werner and Faragó, 2010] and is from the field of wireless sensor
network protocols. For verification, CBMC version 2.9 was used, the most recent version
when our work started, together with our optimization heuristics. The major parts of
the implementation and experiments were conducted by Frank Werner [Werner, 2009].
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7.2.1. Introduction

A wireless sensor network is a network of autonomous sensors, called nodes. These
are embedded devices for that monitor environmental data and communicate wire-
lessly. We strongly rely on monitoring applications and WSNs, which are used in highly
distributed as well as safety-critical systems, such as structural health monitoring of
bridges [Xu et al., 2004], intrusion detection [Ioannis et al., 2007], and in many indus-
trial use cases, e.g., using SureCross from Banner Engineering Corp. [URL:SureCross] or
Smart Wireless from Emerson Electric Co [URL:EmersonSmartWireless]. Hence WSNs
must become more safe and dependable. The application of formal methods to embedded
systems could be the key to solve this. Although WSN nodes carry only some hundred
kilobytes of memory, their verification is neither simple nor easily automated (cf. re-
lated work below) because they run complex algorithms for the underlying protocols,
distributed data management, and wireless communication. In this domain, powerful
and extensible development and deployment frameworks are used, e.g., TinyOS (cf. Sub-
sec. 7.2.3). By integrating formal methods seamlessly, i.e., fully automated, into such
a framework, their usage by developers is most likely. Thus we decided for automatic
generation of the model (cf. Subsec. 7.2.3) for our verification process, which also solves
further problems:
• the development of manual artifacts is error-prone and costly since the model is

only required for verification and cannot easily be used for further development;
• since the verification model and the implementation must stay in conformance, the
model must rapidly change, especially during the design phase. Hence additional
work is required;
• there is a high danger to abstract from fault-prone details, e.g., due to missing
constructs in the modeling language, making it hard to model those details.

Roadmap. Subsec. 7.2.2 investigates a concast protocol implementation called ESAWN.
It is from the domain of WSNs and uses the development and deployment platform
TinyOS, introduced in Subsec. 7.2.3. Subsec. 7.2.3 describes the automatic generation
of our abstract software behavior model from the given ESAWN implementation. Sub-
sec. 7.2.4 describes how to specify desired properties and then enumerates properties for
STATUS packets and ESAWN packets. Subsec. 7.2.5 describes which properties could
be proved and why the others could not.

7.2.2. The ESAWN Protocol

The system under verification is the Extended Secure Aggregation for Wireless
sensor Networks (ESAWN) [Blaß et al., 2008]: It offers means to handle concasts,
i.e., the transportation and aggregation of messages in the sensor network from many
senders to one receiver. The path a message takes (ignoring witnesses, see below) is
called aggregation path, the set of all aggregation paths is called aggregation tree.
The aggregation tree is the topology of the WSN and set up in the initialization phase.
So the protocol runs in two phases: First an initialization is necessary, before the actual
probabilistic concast can be performed in the second phase. By using an end-to-end
authenticity, the transport of sensible data is possible even in the presence of multiple
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Figure 7.1.: ESAWN scenario of an aggregation tree with w = 2 witnesses.

malicious nodes under the control of an adverse acting entity.

Probabilistic Concast

We first consider the second phase, in which the actual sensor data is passed around
and aggregated by the probabilistic concast, all along the way to the sink, i.e., the root
node of the network, where the data is collected. We call the type of packets used in
this phase ESAWN packets. Since the packets are relayed down the aggregation tree
via intermediate nodes, their entries are encrypted such that only the destination can
decode its contents (see Subsec. 7.2.4).
To enable nodes to check for authenticity of the aggregates they receive, each node

sends its information to a fixed number w of additional child nodes, called witnesses.
For the concast with probability, each node checks the authenticity of each received ag-
gregate only with a given probability p, otherwise it just assumes that the aggregate is
authentic. Since authentication is costly, this is a trade-off between low energy consump-
tion (low p) and high probability of authenticity (high p). The employed concast saves
additional energy by buffering packets and sending them all together later on, using an
aggregation function fagg.

Example. An exemplary setup is given in Fig. 7.1, where 5 nodes are used: The
leaf node n0, i.e., the node without predecessors, triggers the probabilistic concast
by sending a packet (with its sensor data value D0) to its successor on the aggrega-
tion path, n1. Since this node could be cheating, additional packets are sent to node
n2 and n3, which act as witnesses to assure the proper behavior of node n1. The
nodes ni, with i ∈ [1, . . . , 3], are collecting all incoming packets, then check authenticity
with probability p and finally, if all incoming packets were authentic, send out packet
aggi = fagg(aggi−1, Di) (with Di being the new data value from ni and agg0 := D0).
The root node n4 finally collects all data. It is located at the base station and accessible
by the user.

Protocol Initialization

In the initialization phase, the parameter settings and the aggregation tree are made
known to all nodes in the network. For this task, the ESAWN protocol uses STATUS
packets, which are also encrypted (see Subsec. 7.2.4). The number of nodes, num_nodes,
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probability p and the number of witnesses w are sent around in the network using SET
packets. In addition, the aggregation tree is spread using SETAGG packets, which
contain the parent_ids for each node. Finally, a GO packet triggers the second phase
of the protocol. The GO packet contains a value specifying the frequency at which
nodes send their data (0 means only one concast). Further packet types exist, which we
do not consider since they play only a minor role for the verification of relevant global
properties.

7.2.3. TinyOS Platform and Model Abstraction

The TinyOS Platform

TinyOS [URL:TinyOS] is an open source operating software for embedded devices. Its
component based architecture and event driven execution model make it very suitable
for resource constrained hardware systems with respect to memory, computation power
and energy shortness. TinyOS is both an operating system and a software development
platform that offers instruments to deploy the implementation on various hardware plat-
forms through a modular design. So once a protocol like ESAWN is implemented, it can
be deployed automatically to the desired sensor type. With many possible combina-
tions of interacting components, automatic verification within TinyOS to check that the
resulting composition behaves as expected is a solution for this feature interaction
problem, i.e., for the combinatorial explosion of interactions amongst the offered fea-
tures. In more detail, software in TinyOS is initially written in nesC, a C dialect having
special constructs for embedded devices. Before the software can be deployed on sensor
nodes, it is firstly translated from the modular description in nesC into an intermedi-
ate ANSI C representation, which includes specific constructs for interaction with the
hardware. This C code could theoretically be used as model for the verification process
already. But an abstraction is required when considering the size and complexity of the
C code: 21 000 LoC that also include hardware parts with register assignments and inter-
rupt handling inhibit verification because of state space explosion. Thus, the following
subsection takes the approach of abstracting from the hardware part by generating an
abstract behavior model.

A Behavior Model Abstraction

The NULL Platform. The NULL platform is a hardware model included in the
TinyOS environment, which can be used to generate a hardware independent software
behavior model: The model is a skeletal structure containing only the functionality of
the protocol plus some overhead in form of the scheduling functions for jobs and the
job queue. But all hardware specific functions, e.g., for the UART and LEDs, are
simple functions that always terminate, and on a lower layer than the protocol. Thus
we were able to remove them, i.e., generate mostly empty function bodies. This ab-
straction is lossy, but only irrelevant information is removed; the few relevant parts of
the hardware specific functions that had been removed by using empty function bodies
were reintroduced (see next subsection). Therefore, exactly the behavior relevant for
our protocol verification is preserved, so that it is sound and complete, i.e., verifying
the abstraction does not induce false positives or false negatives. Besides strongly reduc-
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ing complexity, this abstraction has the major advantage that we do not have to take
hardware platforms into account when specifying properties.

Abstract Behavior Model.
To enable verification with CBMC, five modifications to the NULL platform were

made:
1. reintroduce relevant details the NULL platform abstracted from;
2. workarounds to avoid deficiencies of CBMC;
3. code instrumentation for the properties described in Subsec. 7.2.4;
4. enable a full but flexible initialization, such that we have a closed system (cf.

Sec. 7.1) and are able to cover all relevant scenarios;
5. finitization to make CBMC sound and complete.

We call the result abstract behavior model, which is C code annotated with CBMC
statements.
For Item 1, rudimentary packet sending and receiving was reintroduced into the send-

ing and receiving functions since all WSN protocol behavior depends on it. This was
necessary since the hardware independent NULL platform abstracted away the func-
tionality that transports packets to the transceiver chip, i.e., removed the body of all
sending and receiving functions. With the added details, our abstract behavior model
is even able to detect erroneous packet fragmentation and reassembling errors.

Note. Sensors are also not present in the NULL platform. But the implementation
of the ESAWN protocol was using the node’s IDs as sensor data to be transmitted,
anyways, for clarity reasons. We did this for verification, too, reducing its complexity
(since the IDs are unique). Alternatively, we used nondeterministic values.

For Item 2, features and structures that CBMC cannot handle were transformed.
These were simple workarounds, like the ones in Listing 7.3.
For Item 3, we manually instrumented the code with CBMC assertions, i.e., we

added assert (f) statements for the properties described in Subsec. 7.2.4. All other as-
sertions are inserted automatically by CBMC.
For Item 4, we introduced an autostart function: it imitates some of the omitted

hardware functionality, especially the input from the environment, resulting in a closed
system for a specific scenario. The autostart function sets a node into a specific state by
inserting STATUS packets (cf. Subsec. 7.2.4) into its receive queue. Hereby, parameters
as p and w and the topology of the network are communicated to the node. Furthermore,
tasks are enqueued into the node’s task queue to let the node perform certain actions
like starting the processing of packets. Using nondeterministic parameters for the au-
tostart function would enable full verification by covering all scenarios. Unfortunately,
CBMC cannot cope with the complexity, which causes severe state space explosion and
problems with complex data structures, like packets, since CBMC does not directly offer
nondeterminism for them. Consequently, we reduced nondeterminism to measurement
inputs from the environment and simple parameters like p and w where appropriate; so
we chose the testing approach for all other values. Two examples for the autostart func-
tion are given in Appendix A.2. As described in Subsec. 7.2.4, we choose an exemplary
topology and node in the topology for each verification.
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1RoundRobinSIZE= OU ? (OU − 1) / 8 + 1 : 0 ;
2↓
3RoundRobinSIZE = 0 ;
4

5

6typedef nx_struct msg_t {
7nx_uint8_t head [ s i z e o f (msg_head_t ) ] ;
8nx_uint8_t data [ 2 8 ] ;
9nx_uint8_t f oo t [ s i z e o f (msg_foot_t ) ] ;
10nx_uint8_t metadata [ s i z e o f (msg_metadata_t ) ] ;
11} msg_t ;
12↓
13typedef nx_struct msg_t {
14nx_uint8_t header [ 1 6 ] ;
15nx_uint8_t data [ 2 8 ] ;
16nx_uint8_t f o o t e r [ 1 ] ;
17nx_uint8_t metadata [ 1 6 ] ;
18} msg_t ;

Listing 7.3: Exemplary workarounds for CBMC

For Item 5, a node’s task loop must be bounded by changing the scheduler which
periodically executes the task loop. This is necessary since the nodes are reactive systems
that process packets indefinitely (cf. Sec. 7.1), i.e., the original task loop is infinite. By
limiting the execution number of the task loop, the model will run either until all tasks
from the task queue are processed or an upper bound is reached, which we compute with
injected code and check via CBMC assertions. When the task loop finishes, the node
terminates. With this finitization, we were also able to further reduce the scheduler’s
complexity by replacing the complex functions for initializing the scheduler queue and
the assignment of the empty task element with the necessary core functionality in the
autostart function. With the help of our autostart function and nondeterminism, it is
sufficient to show that individual packets are transported and processed in accordance
with the protocol. Hence regarding the finite task loop is sufficient.
We modified the NULL platform with manual intervention, but the modifications

for the task loop finitization and packet transportation can be automated easily, e.g.,
by introducing a verification platform into TinyOS. The autostart function cannot be
completely automated, since the initialization depends on the protocol and contains the
configuration we want to consider (cf. Appendix A.2).
With these modifications to the NULL platform, we get our abstract behavior model.

From originally 21 000 lines of C code, as in the example of a real hardware platform
(MicaZ nodes), the abstract behavior model only contains 4 400 lines of C code annotated
with CBMC statements, but fully comprises the protocol behavior of the sensor node.
Fig. 7.2 depicts an overview of the abstract behavior model.
In summary, we have a work-flow of verification as depicted in Fig. 7.3.

Simulation. Besides verification, the abstract behavior model can also be used for
simulation, i.e., for imitation of the real program’s execution to test the abstract
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Figure 7.3.: Work-flow for our verification
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behavior: We enriched the abstract behavior model with debugging statements and
executed it. A few internal variables of TinyOS that were set nondeterministically in
the model were now set to various specific values, removing all remaining underspeci-
fication. This simulation can be strengthened by setting these variables automatically
(e.g., randomly, by tool environments like TEPAWSN [Man et al., 2009] or by a network
simulators [Mahlknecht, 2010] like TOSSIM [Li and Regehr, 2010], NS-2 [Riley and Hen-
derson, 2010] or OMNeT++ [Shing and Drusinsky, 2007]) until a desired coverage level
is reached, to even better complement the verification process.

7.2.4. Property Specification

After acquiring the abstraction in Subsec. 7.2.3, we start specifying properties for the
ESAWN protocol. Since the original code is intended for deployment, it has a limited
scope of only a single node. Thus we need to specify local properties that do not
consider distributed settings where messages are interchanged. This means we cannot
specify properties that include two or more nodes, only the behavior and communication
of one node at a time can be verified. Therefore, correctness is shown with local prop-
erties in an assume-guarantee style (cf. Subsec. 5.2.5). The environment is constructed
using our powerful autostart function, partly by nondeterministically setting the net-
work into all relevant states, partly by the testing approach, i.e., selecting an exemplary
network topology and node in the topology. Then the corresponding desired behavior is
checked at a single node (e.g., checking correct reception of a package instead of its full
transportation in REQ4 below). This is achieved using assert() statements incorpo-
rated into the abstract behavior model, to be able to check the desired properties. At
the end of this subsection, we will depict a solution for global properties.
We formulate the desired functional behavior as requirements (REQ), which are all

translated into properties that are verifiable by assert (f) statements. These assertions
check whether the corresponding variables (e.g., a node’s locally stored parameter w
or outgoing packet queue) are set correctly. The assertions are located in the abstract
behavior model either after the node’s corresponding computation or within the alarm
function that is built into the protocol. This instrumented function is then able to
indicate wrong behavior of the protocol, potential attacks and also erroneous packets.
Besides these functional requirements, CBMC also covers the non-functional require-

ment of runtime correctness via its built-in standard runtime error checks (cf. Sub-
sec. 7.1.1).

STATUS Packets

The entries of the STATUS packets are encrypted with an RC5 cipher. The encryption
procedure was automatically removed in the NULL platform, which helps avoid state
space explosion in the abstract behavior model without changing the underlying protocol.
So nodes send their data as plain text.
Initialization of the network is done by our autostart function. Since full verification

by covering all scenarios with nondeterministic parameters was too complex (data struc-
tures and state space, cf. Sections 7.1 and Subsec. 7.2.4), we took the testing approach
and mostly picked one scenario that already exhibits most of ESAWN’s computation
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and communication operations: the topology described in Subsec. 7.2.2 (cf. Fig. 7.1)
with w = 2 and num_nodes = 5. For the probability value p, we firstly chose a non-
deterministic value, but finally verified with p = 1: since we are checking functionality,
not probabilities for desired results, and p = 1 is the strictest possible authentication,
verified REQ1 to REQ6 below for p = 1 still hold for p < 1, i.e., when some checks are
randomly omitted. But with p = 1, we can fully avoid the complexity caused by proba-
bility, i.e., the random variables, their computations, and pseudo-randomness. There is
an alternative to using p < 1 for investigating cases where checks are omitted: Settling
for qualitative instead of quantitative inspections in the abstract behavior model, i.e.,
using CBMC’s nondeterminism instead of probabilistic choices. Hence we are still able
to avoid probability computations and pseudo-randomness, and still investigate all pos-
sibilities of the probabilistic concast in a single verification run (and do not have to deal
with probabilities converging zero since we only have finite executions [Faragó, 2007]).
The disadvantages in this approach are the additional complexity that the nondetermin-
istic choices might cause and the loss of quantitative results, i.e., all runs are treated
equally no matter their probability. Hence this is future work.
Whether the values are set correctly by the autostart function is checked via the

assertions for the following three requirements for the respective STATUS packets:
REQ1 covers packets of type SET , which are sent initially by the base station to make

protocol parameters known to the network. REQ1 states that a node processes this type
of packet correctly:

SET (num_nodes, w, p) sets variables correctly (REQ1)

REQ2 considers packets that make the aggregation tree public using SETAGG pack-
ets. For this reason, each node is informed about its successor nodes that it will send
packets to. The SETAGG packets contain the fields node_id and parent_id and must
be sent to every node in the network:

SETAGG(node_id, parent_id) sets variables correctly (REQ2)

REQ3 is about protocol conform behavior after receiving a GO packet: Only leaf
nodes initiate concasts and the frequency value f in the GO packet (cf. page 163) must
be respected:

correct action upon reception of GO(f) (REQ3)

We omit the trivial requirements for the packet type RESET , which causes a hard
reset of the node, and for ALARM , which is simply forwarded.

ESAWN Packets

Entries of ESAWN packets are encrypted using symmetric keys (cf. SKEY [Zitterbart
and Blaß, 2006]). Again, we consider unencrypted packets instead. Similarly to STATUS
packets, we also split the correct handling of ESAWN packets into several requirements.
REQ4 requires that ESAWN packets are correctly transported. This also implies

that packets have been correctly aggregated and are correctly forwarded (e.g., correct
computation of the relay count). With our testing approach, we chose the sum as
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aggregation function fagg (fagg(a, b) = a +int b) and check REQ4 exemplarily for the
packet P that contains D1, agg1 sent to n2:

correct reception of packet P (REQ4)

REQ5 requires that ESAWN packets are correctly authenticated (which also implies
correct aggregation). For this, a node ni has to alarm if any of the last w aggregates is
incorrect (n0 to nw can only check fewer aggregates):

(∃|j ∈ {1, .., w} : aggi−j −Di−j 6= aggi−j−1) ⇐⇒ alarmi (REQ5)

Finally, REQ6 checks that this alarmi, a certain alarm function built into ni, behaves
correctly, i.e., issues an ALARM packet to be sent. We do this by checking whether
ALARM packets are put in the outgoing packet queue outni of ni:

alarmi =⇒ ALARM packets in outni (REQ6)

Global Properties

Global properties can achieve stronger and more concise formulations, for instance: if
some node alarms, then eventually the sink will receive an ALARM packet.
Since we are verifying the derived code that can be deployed on a sensor node, the
verification process used local properties, which cannot handle multiple nodes.
To imitate multiple nodes in a distributed settings with packet communication, we

implemented simple multitasking between nodes: When the current node sends out a
packet, a context switch between nodes takes place. For this, we modified TinyOS’s
send routine: The local variables of the current node are saved and the local variables
of the destination node are loaded. The packet being sent is enqueued into the receive
queue. With this, a distributed network behavior can be imitated to some degree, with
packets being sent to their destination without delay.
The trade-off for using global properties is an increased complexity. Therefore, we

successfully verified only very simple properties and leave more powerful global properties
as future work, after local properties no longer cause problems (cf. next subsection).

7.2.5. Verification Results

For the verifications, we used CBMC version 2.9 with our additional optimization heuris-
tics (cf. Subsec. 7.1.3), some bug fixes related to complex data types and compiled for
64bit processors because some verifications required a lot of memory (see below).
As described in the previous subsection, the generated code is manually instrumented

with the assertions that specify REQ1 to REQ6. All other assertions are inserted auto-
matically by CBMC. For most verifications (cf. Subsec. 7.2.4), we fixed node n2, which
exhibits all behavior relevant to our verification.
Besides the REQs from Subsec. 7.2.4, we also checked whether the number of unwind-

ings was sufficient, as well as code safety properties, array index out of bound and illegal
pointer access. All checks have to be performed individually for each REQ since the
autostart function is adjusted to each REQ.
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SET packets SETAGG packets GO packets
check correct |claims|
REQ1 yes 6
unwind yes 37
bounds yes 60
pointer “no” 181

check correct |claims|
REQ2 “no” 4
unwind yes 37
bounds yes 60
pointer “no” 177

check correct |claims|
REQ3 yes 4
unwind yes 37
bounds yes 59
pointer “no” 175

Table 7.1.: Verification results for STATUS packets for a valid loop unwinding of 4.
To be sure the verification of all other properties is complete, the first verification step

is finding and checking the required number of loop unwindings, using the corresponding
assertions. Our abstract behavior model has 32 loops in total (which CBMC shows when
the parameter −−show−loops is used). For one loop, we were able to infer the required
unwindings a priori: It belongs to a memset function, which has to be iterated often
when duplicating memory locations. Therefore, we set the required unwindings to a
sufficiently high and safe value of 20. The unwindings for the other 31 loops had to
be determined iteratively by automatically running the unwinding check provided by
CBMC and incrementing the unwinding setting if the unwinding assertion failed. Our
early satisfiability detection was critical to achieve this (cf. Subsec. 7.1.3).
Table 7.1 displays the performed verifications for the STATUS messages, their results

and number of required claims, i.e., manually or automatically inserted CBMC assertions
(which CBMC shows when the parameter −−show−claims is used). An unwinding depth
of 4 was sufficient, and all unwinding checks passed successfully. Array index out of
bound checks always passed successfully, too. The pointer checks were violated for every
packet type: The cause seems to be no real violation, since debugging the source code
of CBMC showed that this is not a failure of the protocol, but CBMC does not find
correct symbols during its pointer-analysis. REQ1 and REQ3 were successfully proved
correct. REQ2 was violated: The cause seems to be no real violation, but that CBMC
is unable to handle arrays of structures, which are heavily used for the queues. This is
one example where CBMC does not scale related to data type complexity.
Besides verifying these properties, we raised our confidence in the correctness of

ESAWN by successful simulation (cf. Subsec. 7.2.3) and fault injections (cf. Sec. 2.5) in
the code and in the assertions, all of which CBMC found.
Unfortunately, we were not able to verify REQ4 to REQ6 because the unwinding

checks were problematic: At first we had difficulties setting the loop unwindings just
as high as necessary, which is crucial. For instance, when we set the unwindings to
11 for all loops, CBMC requires 30GB of RAM (and over 3 hours) to detect that not
enough unwindings were made. For 12 unwindings, CBMC gives segmentation faults
because 32GB are exceeded. We solved the difficulty of finding the smallest possible
unwinding value for each loop by searching automatically. But as the search is very
time-consuming, it is important to start with sensible values. When we used 20 un-
windings for the first loop (memset, which needs to be able to copy values sufficiently
often) and 6 unwindings for all others (using the parameters –unwind 6 –unwindset
1:20), verification came much further with much less memory: With 2.5GB, CBMC
reached the stage passing to decision procedure. Unfortunately, CBMC then halts
with the error message unexpected array expression: typecast. Because CBMC
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aborted with a typecast exception, we tested whether the unwindings might be sufficient
by injecting a fault into one of our assertions for REQ4 to REQ6. But these verifica-
tions also caused typecast exceptions. This shows again that CBMC does not scale with
data type complexity. CBMC offers two alternatives when enough unwindings cannot
be reached efficiently: Firstly, paths with more unwindings can simply be ignored using
assume(f) statements. But this leads to a bad path coverage: in our case, a lot of packets
in the queue need to be processed for initialization; thus the processing of the ESAWN
packets – and therefore their bugs – would not be reached. Secondly, we could have
used nondeterminism at points where the maximum unwindings are reached. But this
might cause true underspecification (cf. Sec. 7.1), and severe state space explosion. Fur-
thermore, we would need to generate packets nondeterministically; because of CBMCs
difficulties with complex data types, it cannot directly create them nondeterministically.
Hence the only solution would be the cumbersome manual implementation of nonde-
terministically generating a protocol-conform sequence of packets whenever maximum
unwindings are reached. But that would modify the abstract behavior model strongly
and counteract our intent of an automatic verification process.

7.3. Conclusion

7.3.1. Summary

We have described a proof of concept for automatic SBMC verification for the realis-
tically large (21 000 LoC) and complex WSN protocol ESAWN. The verification can
be integrated into the WSN development and deployment platform TinyOS and thus
into the software development process. To be able to handle such large scale programs,
the verification and its integration must be automatic and require the abstractions and
optimization heuristics we provided. These insights are used in Part III, where full
automation and flexible heuristics are major design decisions.
Our process generates an abstract behavior model that is then verified by CBMC. The

developer can automatically check for pointer dereference and array index out of bound
errors, and for user-supplied functional properties described by assert (f) and assume(f)
statements.
We were able to prove correctness for about half of the properties: for the SET and

GO packets, but not for the SETAGG and ESAWN packets, due to technical difficulties
in CBMC, e.g., unsupported arrays of structures, pointer bugs and typecast exceptions.
It shows that, in our case, CBMC does not scale well with the complexity of data
structures. Many of the technical difficulties in CBMC were caused by large function
parameters (≈ 500 byte) in the source code of ESAWN. So in general, our case study
is a proof of concept that large programs of practical size can be handled by SBMC,
but many technical difficulties exist. Unfortunately, we do not know whether SBMC
could cope with the properties that now cause technical difficulties once these technical
difficulties are fixed.
In some cases, the large function parameters can be considered a design flaw in ESAWN

since frequent, unnecessary copying (because of C’s call-by-value evaluation) is ineffi-
cient; we have informed the developer of ESAWN about this.
Our optimization heuristics (cf. Subsec. 7.1.3) improved the scalability in data type
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complexity, and even more the scalability in the size of verifiable code: Without them,
state space explosion prevents verification of even the simplest instances for the ESAWN
protocol. A general lesson learned is that recent advances in compiler optimizations for
the generation of runtime code can also improve static analysis mechanisms in real
world settings. Our abstractions for the abstract behavior model (cf. Subsec. 7.2.3) also
improved scalability in the size of the code and additionally allowed hardware indepen-
dence. Using our optimization heuristics and abstractions, we have seen that CBMC can
be employed in the verification process for large scale programs. But CBMC does not
scale sufficiently with data type complexity, which can probably be solved by switching
to other SBMC tools (cf. following subsection). Furthermore, SBMC with our optimiza-
tion heuristics still does not scale sufficiently to handle all scenarios nondeterministically
without severe state spaced explosion. Therefore, we switched to lightweight verification
by adopting the testing approach to SBMC: Not all possible scenarios are considered at
once by nondeterminism (see Subsec. 2.3). Instead, relevant scenarios are selected man-
ually: SBMC does cover all possible situations within the selected scenarios, resulting
in a sensible overall coverage, and the selection enables CBMC with our optimization
heuristics to check our large code bases. This approach motivates Part III of this thesis,
which focuses on this the combination of formal methods and testing.

7.3.2. Related Work

After enumerating alternative SBMC tools that could be used for our approach, we
describe work related to our approach of testing with SBMC. Thereafter, we enumerate
work that applied verification to WSNs.
The award-winning [Beyer, 2013] Low-Level Bounded Model Checker (LLBMC)

[URL:LLBMC; Falke et al., 2013a; Faragó et al., 2014] implements the approach of
applying a compiler frontend to verify an intermediate language (cf. Subsec. 7.3.3).
LLBMC is a SBMC tool with a bit-precise memory model that employs the ACM award-
winning [URL:ACMAWARD] LLVM compiler infrastructure [URL:LLVM]. LLVM
provides modern compiler, optimizer (e.g., promote memory to register transform pass)
and static analysis (e.g., scalar evolution analysis) tools built around the established SSA-
based LLVM intermediate representation (LLVM IR). LLVM provides compiler
frontends for many languages, such as ActionScript, Ada, C, C++, C#, Common Lisp,
D, Fortran, GLSL, Go, Haskell, Java bytecode, Julia, Lua, Objective-C, Python, R,
Ruby, Rust, Scala, and Swift; and compiler backends for various instruction sets, such
as x86/x86-64, ARM, and PowerPC [URL:LLVM; Berg, 2014]. Since LLVM is a very
strong compiler and optimizer, many of the difficulties in this chapter (too complex data
structures and requiring optimization heuristics) can be avoided. Therefore LLBMC can
support all C constructs, even not so common features such as bitfields. After translating
LLVM IR to the intermediate logic representation (ILR), LLBMC’s additional
optimization heuristics use rewrite-based simplifications that are not already covered by
the LLVM compiler [Sinz et al., 2012; Falke et al., 2013b]. To avoid inefficient translations
to SAT, LLBMC translates ILR to SMT-LIB, performs some final optimizations and uses
the SMT solver Boolector or STP. These optimizations on three different levels perform
better than optimizations on fewer levels. LLBMC offers both explicit and implicit
nondeterminism (cf. Sec.7.1) and user-supplied checks via assert (f) and assume(f). The
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built-in standard checks are integer overflow and underflow, division by zero, invalid bit
shift and memory errors (invalid memory access, array index out of bound, stack buffer
overflows, illegal pointer access, invalid frees).
The Verifier for Concurrent C (VCC) [URL:VCC] is a SBMC tool currently

developed at Microsoft Research. It is roughly similar to CBMC and LLBMC, but
offers specifications via design-by-contract and translates the annotated source code to
BoogiePL [URL:BoogiePL], an intermediate representation that is a typed procedural
language for program analysis and verification [Cohen et al., 2009].
Besides CBMC, LLBMC and VCC, FAuST [Holzer et al., 2008] is another SBMC tool:

It is a highly customizable SBMC algorithm which integrates verification, bug finding,
equivalence checking, test case generation and execution (cf. Note 7.1). Like LLBMC,
FAuST builds its verification on top of LLVM IR. Furthermore, it uses LLVM’s JIT
compiler for execution of generated test cases.
There are other approaches that combine testing with constraint solving; consequently,

they are affected by the deficits of the applied constraint solver. We start with related
work that performs static testing; but the related work shows that the boundary between
static and dynamic methods are no longer sharp.
[Merz et al., 2010] introduces abstract testing, which are contracts derived from

requirements. Preconditions are formulated by assume(·), postconditions by assert (·).
Both are checked using CBMC, to perform static unit testing with high coverage. [Merz
et al., 2010] also contains a case study with a safety-critical automotive software project.
In comparison, [Merz et al., 2010] has a similar lightweight approach as this chapter, but
its motivation is to increase the coverage of combinatorial testing for unit tests, whereas
this chapter’s motivation is reducing complete verification to a more lightweight approach
to increase feasibility of SBMC while retaining generality for specific, manually chosen
scenarios, i.e., full path and input coverage for relevant scenarios. The approach in this
chapter can be considered static acceptance, system or integration testing.
Testing with SBMC has similarities to execution-based model-checking (EMC) [Kundu

et al., 2011]: both explore all possible behaviors for a given input. But EMC tools like
Verisoft [Godefroid, 1997] and Java Pathfinder [Visser and Mehlitz, 2005] do not use
implicit state MC, but implement execution-based explicit state MC (cf. Subsec. 5.2.1)
using an own runtime-scheduler, usually also adding reductions (cf. Sec. 5.4). Therefore,
execution is simulated in an own environment, e.g., (Symbolic) Java Pathfinder
(JPF) instruments and (symbolically) executes Java bytecode in an own Java Virtual
Machine to perform EMC. JPF is a good example that the boundaries between static
and dynamic methods are no longer sharp.
Techniques based on black-box testing will be investigated in Part III. Among the

vast amount of dynamic white-box testing tools [URL:whiteboxToolsHP], several are
based on the idea of instrumenting the source code such that its execution generates its
own TCs automatically. They instrument the source code and run it with some of the
inputs being symbolic. Hence this approach is sometimes called dynamic symbolic
execution (DSE) [Godefroid et al., 2005; Sen et al., 2005b; Su et al., 2015b,a].
EXE [Cadar et al., 2008b] is an efficient white-box test generation tool with search

heuristics to achieve high execution path coverage of the source code. For each input
i, the test engineer chooses i to be either a concrete value (random or user-supplied)
or to be symbolic. Other memory locations that do not correspond to input can be
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treated similarly. During execution, instructions containing symbolic values are exe-
cuted symbolically, i.e., the constraints describing the control flow and side effects of
the instructions are tracked along all paths (resulting in symbolic paths). All other
instructions are executed concretely. Symbolic branch points are resolved by forking
program execution. Due to the high number of symbolic paths that often occur (called
path explosion), they are not all investigated concurrently, but prioritized by so-called
search heuristics: paths that are likely to increase code coverage are preferred. By de-
fault, a DFS is performed by randomly picking one of the two branches to investigate
first; alternatively, a mix between DFS and best-first is performed, where heuristics pick
a symbolic path based on its run so far, e.g., how many steps and increments of the cover-
age level it had so far. Symbolic inputs enable to cover multiple values and thus multiple
concrete paths within one symbolic path. Searching through symbolic paths in this way
is sometimes called explicit symbolic path model checking, shortly called explicit
path MC (which is similar to JPF’s approach with symbolic execution). EXE checks
for the usual runtime errors (arithmetic errors and memory errors, cf. Subsec. 7.1.1) and
generates a test suite that exhibit these errors and high code coverage. For this, EXE
solves the constraints on the corresponding symbolic path with bit-precision using the
SMT solver STP. Besides bit-precision, EXE’s strength are high code coverage over a
broad range of source code. Its weakness is the inherent path explosion, which often
breaks completeness.
The open source tool KLEE [URL:Klee; Cadar et al., 2008a] is a redesign of EXE

and part of the LLVM Compiler Infrastructure [URL:LLVM]. It is implemented as a
virtual machine for LLVM IR. Since prioritization of paths to find bugs and increase code
coverage is a challenge, the heuristics have been improved by computing weights for each
path based on its run so far, and by sophisticated scheduling. Compared to testing with
SBMC, KLEE has the advantage that the environment can be set up via parameters
and files, without the need of an initialization function. Our Abstract Behavior Model
offers, however, a flexible initialization that can also cope with a very complex setup, as
is required for ESAWN and WSN topologies. KLEE’s heuristics automatically search
for paths that seem best, while testing with SBMC selects scenarios manually. But when
path explosion occurs, KLEE’s verification is no longer complete due to its heuristics,
not even for the scenarios selected in this chapter. KLEE has difficulties with symbolic
pointers and function pointers [Qu and Robinson, 2011]. Like testing with SBMC, KLEE
can now perform functional verification, via klee_assert(·) and klee_assume(·).
The directed automated random testing toolDART [URL:KoushikSensProjects;

Godefroid et al., 2005] is based on a similar explicit path MC approach, called concolic
testing: it performs a concrete execution with symbolic execution on top, for input
variables defined as symbolic by the test engineer. Concolic testing starts execution
with a random concrete input; for successive runs, iteratively a constraint of the current
path condition is negated and the resulting path condition solved to get a new concrete
input, which is used for the next iteration and to generate a TC. The negations are
chosen in a way to drive concolic testing through new execution paths in a bounded
DFS fashion, which leads to test suites with higher code coverage than random testing
(cf. Sec. 2.5). DART checks for the usual runtime errors (arithmetic errors and memory
errors, cf. Subsec. 7.1.1) and non-termination, similar to SBMC (cf. Subsec. 5.2.3).
The concolic unit testing engine (CUTE) [URL:KoushikSensProjects; Sen et al.,
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2005b,a] is a successor of DART that also handles data structures: logical input maps
represent all inputs, including memory graphs, using a collection of scalar symbolic vari-
ables and approximate pointer constraints (e.g., for alias analysis). After simplifications,
the approximate pointer constraints have the form x = y or x 6= y, which often suffice
in practice. But sometimes, pointers with symbolic offsets are needed, which CUTE
cannot handle [Cadar et al., 2008b], hindering interprocedural analysis and complete-
ness. Additionally, CUTE also has KLEE’s deficits compared to testing with SBMC.
Like KLEE and testing with SBMC, CUTE can now perform functional verification, via
CUTE_assert(·) and CUTE_assume(·).
Most work on applying SBMC for testing instruments the code and then applies

CBMC to generate test cases for dynamic testing that satisfy some coverage criterion
like statement coverage, decision coverage or MC/DC:
The tool FSHELL [Holzer et al., 2008] is a frontend for CBMC for white-box testing:

It offers a language to query program paths, based on regular expressions and cover-
age criteria, enabling test engineers to formulate, manage and execute test jobs. This
frontend turns CBMC into a versatile testing environment for interactive exploration or
automatic test case generation.
In [Angeletti et al., 2009c; Rosa et al., 2010; Angeletti et al., 2009a,b], CBMC is applied

to achieve branch coverage on C code from the railway domain. One project [Angeletti
et al., 2009a] has 250 000 LoC, and for 13% out of 31 modules CBMC gives a timeout, for
the others full branch coverage is achieved, and the approach yields a dramatic increase
in the productivity. Another project [Rosa et al., 2010] has 30 000 LoC, and CBMC
gives timeouts in less than 3% of the cases.
In [Venkatesh et al., 2012], CBMC is applied for MC/DC coverage based on an instru-

mentation approach from [Bokil et al., 2009]. The industrial project from the automotive
domain has 50, 000 LoC of C code, but CBMC crashed for about 20% of the 1241 cov-
erage tasks, and gave a timeout for one.
The German master’s thesis [Liu, 2015] does not use SBMC as an aid for test case

generation to achieve some coverage criterion, but extends the SBMC tool LLBMC
to generate a test case from a counterexample from LLBMC. By choosing functions
to be mocked and an entry point in the counterexample, where the appropriate state is
reconstructed for the test case to start, LLBMC can generate unit, integration or system
tests. So the focus of the work is on tightly integrating SBMC and dynamic testing in
the software development process, for instance to dynamically check, debug or regression
test mistakes found by SBMC.
The work described in this chapter was the first published work [Werner and Faragó,

2010] known to the author of this thesis that uses software bounded model checking for
verification of WSNs. But other verification techniques were also applied to WSNs at
that time, mainly based on MC or symbolic execution. Most approaches for protocol
verification in WSNs use either a heavy abstraction from the actual implementation or
only consider parts of the model behavior.
The T-Check tool [Li and Regehr, 2010] builds on TOSSIM and provides state space

exploration and early bug finding. Similar to our approach, the authors use a combina-
tion of model checking and more lightweight techniques to combat the complexity due
to nondeterminism. Their lightweight techniques are random walks and heuristics. The
results show the applicability of the tool and that it can find violated properties. But
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this random search is not as exhaustive as our approach, and strongly depends on the
implemented heuristics [Killian et al., 2007], yet the user’s experience is still required.
The Anquiro tool [Mottola et al., 2010] is used for the verification of WSN software

written for the Contiki OS. To cope with the state space explosion, the user can select
from different levels of abstraction, depending on his property of interest. In compari-
son, our abstraction only eliminates direct function calls to the hardware and assembler
constructs. Thereby, our abstraction is even able to detect erroneous packet fragmenta-
tion and reassembling errors. This is closer to the actual implementation – at the cost
of complexity. In addition, since we use CBMC and its transformation mechanisms, we
are able to directly point to the fault, i.e., the violating line of code, instead of trying to
backtrack the sequence of actions for the violated property.
In [Kothari et al., 2008], an approach is described that automatically derives a high-

level program representation from low-level nesC implementations in TinyOS. For this,
symbolic execution is adopted to handle the event-driven nature of the TinyOS frame-
work. The approach is implemented in a tool called FSMGen. In detail, generic
components are provided that approximate the behavior of sensor network components.
The resulting finite state machine representation of components is obtained by predicate
abstraction. Since the approach uses coarse approximations of the event-driven execu-
tion model of TinyOS, not all possible execution paths are represent. Furthermore, the
approach is in general not applicable for low-level interrupt driven code. The largest
conducted case study (FTSP) consists of 255 states.
The work of [Hanna, 2007] proposes a tool called Slede for bug finding in secu-

rity protocols. This tool extracts a model from a provided nesC implementation in
TinyOS. From the protocol specification, an intrusion model is automatically generated.
Finally, PROMELA code (cf. Subsec. 3.4.3) is generated and verified with SPIN (cf.
Subsec. 5.5.1). We performed some experiments with Slede and found out that only old
protocol implementations written in TinyOS 1.0 can be used as input for the verifica-
tion tool. Furthermore, the implemented intrusion model is restricted to the Dolev-Yao
threat model. Finally, the real implementation is heavily abstracted from.
KleeNet [URL:KleeNet] is a DSE tool based on KLEE, which is described above,

enabling test case generation for distributed systems. [Sasnauskas et al., 2010] integrated
KleeNet into the Contiki OS to detect bugs due to nondeterministic events in WSNs by
automatically injecting nondeterministic failures. The case study detected four insidious
bugs in the µIP TCP/IP protocol stack. An advantage of KleeNet is its support to check
global properties (cf. Subsec. 7.2.4) using distributed assertions. Though the search
heuristics achieve high coverage, they cannot be influenced by the user to achieve 100%
input and path coverage even for small parts, as SBMC can.
The FeaVer verification system [Holzmann and Schmith, 2000] focuses on coping

with the feature interaction problem (cf. Subsec. 7.2.3). This has long been a problem
in telecommunications systems [Keck and Kühn, 1998] and is currently being researched
in product lines [Padmanabhan and Lutz, 2005] and feature oriented software develop-
ment [Apel and Kästner, 2009]. FeaVer offers means to mechanically extract a reduced
verification model from implementations in C, controlled by a user-supplied lookup ta-
ble of feature requirements: Parts relevant for the currently investigated features are
included and possibly abstracted using nondeterminism, whereas irrelevant parts are
sliced from the model. The verification is performed by SPIN. Due to the abstractions

176



7.3. Conclusion

and slicing, FeaVer may become unsound, i.e., yield false counterexamples.
The work [Bucur and Kwiatkowska, 2009] and [Bucur and Kwiatkowska, 2010] con-

siders the application of verification techniques to software written in TinyOS (more
precisely, in the TosThreads C API). Instead of analyzing an integrative model with an
operating system part and a protocol implementation, low level services are modeled
and statistically verified individually against safety specifications. For verification, SA-
TABS [URL:SATABS] was employed, which performs predicate abstraction using SAT
and can handle ANSI-C and C++ programs. In this work, the overall checked model
size is at most 440 LoC. In our approach, we apply our abstraction to the more complex
ESAWN protocol consisting of 21 000 LoC and obtain a model with about 4 400 LoC,
which we subsequently check.
Insense [Sharma et al., 2009] is a composition-based modeling language which trans-

lates models in a concurrent high-level language to PROMELA code to enable verification
of WSN software by SPIN. A complete model of the protocol under investigation has
to be created, though, even if an implementation, e.g., in TinyOS, already exists. This
is very time intensive and error-prone. Though SPIN is very well capable of analyz-
ing concurrent and distributed settings, [Werner and Steffen, 2009] shows severe state
space explosion when model checking an abstract behavior model of ESAWN with small
topologies in SPIN.

7.3.3. Contributions

Most related work that combines model checking with a testing approach generates
dynamic tests with MC/DC or branch coverage. But it strongly depends on the sit-
uation whether these coverage criteria yield meaningful test suites (cf. Sec. 2.5 and
Subsec. 12.3.1). Our testing with SBMC checks all situations for manually chosen sce-
narios (i.e., achieves path and input coverage for them), but not outside these scenarios.
Together with our abstract behavior model and optimization heuristics, verification of
WSN code of practical size of originally 21 000 LoC reaches feasibility.
Our case study shows that scalability with the complexity of data structures is very

important for the successful verification of programs of practical size. CBMC (and
VCC) can improve by not only supporting flat C data types, such as a single struct or
array, but also their closure, i.e., nested types. A different solution is using a compiler
frontend to translate C code into an intermediate language, which is also in line with the
lesson we learned about recent advances in compiler optimizations also improving static
analysis, and with the current trend in formal methods to decouple input processing
from the actual analysis by introducing an intermediate representation [Blom et al.,
2010; URL:BoogiePL; Cohen et al., 2009; Ulbrich, 2014; Falke et al., 2013a].

7.3.4. Future Work

As further SBMC tools emerge and improve, our case study can be used as benchmark
for them:
Aarti Gupta has shown interest in our work to benchmark NEC’s F-Soft [URL:F-

Soft],which has grown into a full framework providing various static analyses and model
checking techniques where the size and complexity can be reduced across multiple
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stages [Gupta, 2008].
We alternatively tried applying the Verifier for Concurrent C, but experienced similar

problems as in the first steps with CBMC: Pointer constructs present in the generated
model could not be handled correctly and resulted in a syntax error while parsing. This
shows that handling complex data types in SBMC tools is problematic, but a necessary
improvement for verifying programs of practical size.
To check whether our case study can in general be conducted with LLBMC, we recently

verified REQ1 with LLBMC version 2013.1 after removing some workarounds required
for CBMC (cf. Subsec. 7.2.3) and changing some CBMC specific syntax to the LLBMC
counterpart. All of LLBMC’s built-in standard checks, plus unwind and REQ1 were
verified on a Mac mini, 2.6 GHz Intel Core i7, 16 GB RAM, requiring 232 seconds (mainly
183 seconds for transformations and 37 seconds with STP and MiniSat) and less than 8
GB memory. Using LLVM’s promote memory to register and scalar evolution analysis,
the maximal trip count of many loops can be derived automatically, i.e., the maximal
number of times the loop exit condition chooses to stay in the loop, which is equal to
the required number of loop unwindings. This is very helpful since it was difficult and
time-consuming to find the smallest possible unwinding value for each loop with CBMC
(cf. Subsec.7.2.5). Because of this efficiency, it is interesting future work to conduct
the whole case study in LLBMC with increased nondeterminism and a reduced testing
approach, for higher coverage. Furthermore, the SBMC tool FAuST can be considered,
which is similar to LLBMC.
For a fair comparison, the adapted case study should also be repeated with the newest

version of CBMC, which might yield better results. We had checked for improvements
with CBMC version 3.6, but encountered segmentation faults, e.g., when passing the
problem to propositional reduction, already with 4 unwindings. This indicates that
CBMC does not include our optimization heuristics (cf. Subsec. 7.1.3) or similar ones.
However, CBMC offers encodings for SMT solvers instead of SAT solver since version
4.0, so this is interesting future work. In general, SBMC tools have evolved strongly in
the last few years: while our case study with 21 000 LoC was one of the largest when the
case study was conducted in 2010, competition benchmarks from 2013 contain several
examples with 10 000 LoC to 80 000 LoC and even beyond, but the larger examples are
meant as smoke test, not for successful verification [Beyer, 2013]. But for practical code,
state space explosion still causes feasibility problems quickly.
We can also consider exhaustive model checking tools, e.g., use our generation of

the abstract behavior model and apply SATABS afterwards (cf. Subsec. 7.3.2). If this
approach is infeasible, a combination of SBMC and predicate abstractions (cf. [Post
et al., 2008]) might be able to cope with our large protocol.
We successfully verified simple global properties, but left more powerful global prop-

erties as future work (cf. Subsec. 7.2.4) since they are more complex and the complexity
of local properties already caused problems. Many extensions and improvements are
possible for verifying global properties, e.g., enhancing our abstract behavior model by
improving multitasking between nodes: We can reduce the large memory requirement by
not storing the local variables (e.g., w, p and the whole aggregation tree) of all simulated
nodes independently, but only once. We can also implement a more general multitask-
ing that allows several leaf nodes and delayed transmission of packets. This can be
achieved by using one extended scheduling function that comprises all jobs of all simu-
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lated nodes. With these improvements, all distributed properties verified in [Werner and
Steffen, 2009] with SPIN (cf. Subsec. 5.5.1) using hand-written models will be verifiable
automatically.
Thoroughly investigating the protocol’s robustness and fault-tolerance is another im-

portant research direction, made possible by the powerful autostart function. Since it can
set all state variables to arbitrary values, also hazardous situations can be constructed.
In this situation, settling for qualitative inspections instead of using a probabilistic value
p (cf. Subsec. 7.2.4) is also interesting future work.
Incorporating our generation scheme (simulation features inclusive) as a verification

platform into TinyOS will help developers of WSN protocols to verify correctness of
their implementations.

Notes 7.1. Since our testing with SBMC does not achieve path and input coverage
outside the chosen scenarios, integrating dynamic testing with SBMC and coverage-based
test case generation with SBMC is interesting future work, although it deviates from our
static approach. This coverage-based test case generation with SBMC is a current trend
and planned as extension of LLBMC and [Liu, 2015]. To generate more meaningful test
suites, the extension to OMC/DC is intended (cf. Sec. 2.5). The extension is alleviated
by the SSA-based LLVM IR.
As alternative to coverage criteria, LLBMC aiding mutation testing is also interesting

future work, since this can further increase meaningfulness of test suites. LLBMC can
help detect equivalent mutants, which is often costly and prohibits a broad success of
mutation testing [Frankl et al., 1997; Grün et al., 2009; Madeyski et al., 2014]. LLBMC’s
equivalence checks [Falke et al., 2013a] are a promising approach to tackle this problem.
As potential further improvement, a single meta-mutant in schema-based mutation can
be used, where all mutants are encoded in the meta-mutant [Offutt and Untch, 2001; Jia
and Harman, 2008, 2011]. LLBMC can then efficiently check equivalence by asserting
equivalent original input (i.e., modulo the input for triggering still active mutants) but
different output.
Such an approach has already been implemented in FAuST [Riener et al., 2011], using

an LLVM transform pass to generate the meta-mutant. FAuST cannot, however, handle
pointers and arrays, and was only applied to source code of less than 1 000 LoC.
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8. Input-output conformance theory

8.1. Introduction
This chapter introduces the ioco theory, which formalizes black-box, functional testing,
enabling to precisely formulate
• when an SUT conforms (i.e., complies) to a specification;
• an abstract test case generation algorithm;
• when a test suite (e.g., generated by the algorithm) is sound and complete (i.e.,
exhaustive, cf. Sec. 8.8).

Therefore, the ioco theory is a tool-independent foundation for conformance test-
ing [ITU-T Study Group 10, 1997; ISO Information Technology, 1992], i.e., for checking
whether the observable behavior of the SUT conforms to its expected functional behav-
ior, described by a system specification. The ioco theory helps design concrete test case
generation algorithms and compare them, the overall methods and the tools for test case
generation.
The ioco relation determines which SUTs from the set SUT of all possible SUTs

conform to the specification. The ioco relation can be used in test generation algo-
rithms to derive a test suite from the specification to check the SUT for conformance.
By traversing the specification S and nondeterministically choosing amongst all con-
trollable choices, but keeping all uncontrollable choices, i.e., choices that the SUT can
take nondeterministically, the ioco algorithm generates test cases which are themselves
LTSs. They are sound, and the generated test suite containing all possible test cases is
complete. A test case is run by executing it synchronously in parallel with the SUT.
To be able to also treat the real, physical SUT formally, it needs to be abstracted to a

mathematical structure (just like other sciences use mathematical objects to talk about
physical objects).
Though the ioco theory is covered by many publications [Brinksma and Tretmans,

2000; ITU-T Study Group 10, 1997], this chapter contributes several new results, mainly:
• the aspects of abstractions covered by the testing hypothesis, the test adapter and

nondeterminism;
• more flexible semantics: different kinds of LTSs and semantics for internal transi-
tions;
• investigating reduced exhaustive test suites, covering a deterministic test case gen-
eration algorithm, coverage criteria, fairness, and exhaustiveness thresholds.

The other parts are roughly based on [Tretmans, 2008; Frantzen, 2016], but more flexible
and concise with the help of the general formalisms introduced in Sec. 3.4.

Roadmap. Subsec. 8.1.1 introduces the most visible abstractions: those on the interface.
Thereafter, Subsec. 8.1.2 investigates the full testing hypothesis. Subsec. 8.1.3 gives an
overview of the remainder of this chapter.
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8.1.1. Interface Abstraction
The testing hypothesis helps bridge the gap between the formal specifications and the
informal, real system under test. The first step is abstracting the SUT’s interface,
described in Def. 8.1.

Definition 8.1. We abstract the SUT’s interface by restricting the possible
• stimuli for the SUT: We consider all stimuli as input to the SUT since they are
under the tester’s control; we only use a countable set I of relevant input;
• observations from the SUT: We consider all observations as output of the SUT
since they are under the SUT’s control; we only use a countable set U of
relevant output.

We also include the observation that is made when some i ∈ I is inhibited by the
SUT, i.e., we do not abstract from it. Thus, the SUT always accepts all inputs (cf.
Subsec. 8.2.6), but may return an output indicating that the SUT inhibits the input (cf.
coffee machine example below).

Example 8.2. For a coffee machine (one of the most popular toy examples in MBT), we
can choose the expected input I = {10cent, 20cent, buttonPushed}, but omit unexpected
input like inserting 2rupee, turning the machine off or on, turning the machine upside
down and environmental influences like radiation or abrasion. Likewise, we choose the
expected output U = {10cent, coffee, tea}, but omit unexpected output like getting
2rupee, an error screen, sounds and smells the machine makes, and that the machine
turns itself off.
If the machine inhibits the inputs 10cent, respective 20cent, in some states by a closed

coin slot, we add the output 1̃0cent, respective 2̃0cent, which corresponds to the case
that 10cent, respective 20cent, is pushed against the coin slot as input, but refused by
a closed coin slot.

Notes 8.3. Detecting refusal like 1̃0cent has been researched in refusal testing [Phillips,
1987], which allows to detect refusal of any subset of I ∪U . We take the more practical
approach, since usually the SUT does not show the set of actions it currently cannot
perform: We only allow to detect the refusal ĩ directly after giving the input i ∈ I (and
the refusal Ũ after a timeout, cf. Subsec. 8.2.3), and consider a refusal as an own output.
In the ioco domain, U (short for the dutch word for output: uitvoer) is the standard

name for the set of outputs.
Physical aspects are relevant in software, too, since software needs hardware to run.

But even if we exclusively consider software, interface abstractions are required, e.g.,
omitting as input certain events from the environment, like exceptions or manipulations
of memory or files, likewise as output own exceptions and side effects in memory or files.
Since these interface abstractions focus on input and output, their application to MBT

is often called behavioral MBT [Anand et al., 2013].
These interface abstractions are lossy and solve the epistemological frame problem [Den-

nett, 1984; Chow, 2013] of having to take everything into account (“Hamlet’s problem
viewed from an engineer’s perspective” [Fodor, 1987]): by deciding on the scope I ∪ U
of what is relevant from the physical system, the abstraction turns the informationally
unencapsulated physical system into an abstract system that only considers
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• the input stimuli in I (helping to solve the qualification side of the frame prob-
lem [McCarthy, 1959]);
• the observations in U (helping to solve the qualification and the ramification side
of the frame problem [Papadakis et al., 2008]).

Besides these interface abstractions, the input and output can also be made more
abstract by the test adapter (cf. Subsec. 8.7.2).

8.1.2. Testing Hypothesis
Interface abstraction is not sufficient to fully formalize the SUT: the rules for the causality
between the elements in I∪U need to be formalized. The specifications, i.e., mathemati-
cal structures specifying this, are calledmodels in the ioco theory [Tretmans, 2008] (not
to be confused with model in the logical sense, e.g., in Def. 3.4 and Def. 4.12). MOD is
the set of all models, e.g., MOD = SLTS or SKripke,labeled .
The ioco theory represents traces (cf. Def. 3.23 and Def. 8.14), i.e., sequences of ele-

ments in I ∪ U that occur in the SUT, by words t ∈ (I ∪ U)∗ or variants thereof. So
with the word t = (tj)j∈[1,...,n], the input or output tn is an outcome of (tj)j∈[1,...,n−1].
The set of all outputs that nondeterministically occur in the SUT as direct consequence
of t is out(SUT, t) :=

{
u ∈ U

∣∣ directly after starting the SUT and successively giving
the stimuli and observations (tj)j∈[1,...,n], u is observed

}
. For M ∈ MOD instead of the

SUT, out(M, t) is defined analogously (using LI 
 I, LU 
 U , cf. Def. 8.14). With
this introduction, we can define the testing hypothesis in Def. 8.4, which states that
accurate abstractions from SUT to MOD are possible.

Definition 8.4. The testing hypothesis for given SUT , MOD, I and U is:

∀S ∈ SUT ∃|M ∈ MOD :
(
S and M accept all inputs in all states

and ∀t ∈ (I ∪ U)∗ : out(S, t)
 out(M, t)
)
.

Notes. This shows that the purpose of our testing hypothesis is to enable formal rea-
soning about the SUT, and not to restrict SUT for better test case generation (e.g., as
in [Gaudel, 1995] via selection hypotheses, which guarantees that a finite set of test cases
is sufficient for completeness).
In the standard literature [Tretmans, 2008; Frantzen, 2016], the testing hypothesis

does not consider all words in (I ∪U)∗, only those represented by TEST , the set of test
cases generated out of the specification, which is a weaker testing hypothesis iff the test
generation algorithm is not sound or not complete (i.e., exhaustive, cf. Sec. 8.8). Since
we focus on sound and exhaustive test generation algorithms, we can use our simpler
definition that does not require the set TEST . Furthermore, the testing hypothesis in
the standard literature does not explicitly demand S ∈ SUT to accept all inputs in all
states. But for sound and exhaustive TEST , for each sequence t in a test case, with
input at the end, there is also an extension t′ to t with an output or quiescence (cf.
Subsec. 8.2.3 and Sec. 8.8). So for out(S, t′) 
 out(M, t′) to hold, S must accept all
inputs in all states if M does. Since this is an important property (cf. Sec. 8.4), this
thesis includes the condition explicitly in the testing hypothesis.
For |out(SUT, t)| > 1, the SUT behaves nondeterministically; each u ∈ out(S, t) must

occur recurrently after finitely many tries (cf. fairness below or [Tretmans, 2008]).
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Besides interface abstraction, MOD can abstract from further aspects. In the standard
ioco theory and in this thesis, we will also abstract from
• continuous or hybrid behavior, so we only use discrete state spaces in MOD;
• probability, but we allow possibilistic models, i.e., use nondeterministic, unquan-
tified choices (see enumeration below);
• timing values, so we do not specify and measure precise time (except timeouts,
see enumeration below);
• other quality aspects like fault-tolerance, performance, usability.

This thesis and most work on ioco makes use of the following aspects, so they are not
abstracted from. We enumerate all those aspects explicitly:
• infinite systems, so M ∈ MOD may have infinitely many states, which is in con-
trast to FSM-based testing [Lee and Yannakakis, 1996], but much more practi-
cal [Huima, 2007];
• nondeterministic systems, so we allow all kinds of nondeterminism (cf. Subsec. 8.2.5).
We demand fairness of the SUT, i.e., that all nondeterministic choices must oc-
cur. Deviant from other literature, we investigate what this means exactly, which
leads to three main variants of fairness (described in detail in Subsec. 8.8.3):
– fairnessmodel demands that the SUT exhibits all nondeterministic behaviors

of its model M ∈ MOD recurrently;
– fairnesstest demands that M ∈ MOD exhibits all its nondeterministic behav-

iors in each test case;
– fairnessspec demands thatM ∈ MOD exhibits all its nondeterministic behav-

iors in each Strace in S.
• real-time constraint on the → relation: even though we do not measure time
values, we demand that the SUT performs actions before some predetermined
timeout, i.e., if the SUT accepts an input or makes an output, it does so before
the timeout;
• quiescence (cf. Def. 8.8, Def. 8.9 and Def. 8.10), so idleness of the SUT is considered
in M ∈ MOD (in contrast to FSM-based testing [Lee and Yannakakis, 1996]);
• refusal ĩ directly after giving the input i ∈ I. So the SUT gives an input refusal as

output and continues to run afterwards. In contrast to the standard ioco literature
and FSM-based testing, we use this concept to carry out that the SUT accepts all
inputs in all states (cf. Subsec. 8.2.6);
• a reliable reset capability is required to enable recurrent restarts of the SUT. An
implicit reset is not reified, i.e., not part of M ∈ MOD, but abstracted away by
the interface abstraction. Contrarily, an explicit reset is part of LI and I. Resets
are not mentioned in the standard literature on the ioco theory [Tretmans, 2008;
Frantzen, 2016; Brinksma and Tretmans, 2000; ITU-T Study Group 10, 1997], but
required. Explicit resets are included in FSM-based testing theory.

8.1.3. Overview

With these abstractions, we can use LTSs, labeled Kripke structures or some variations to
formally define all artifacts involved in the ioco theory: MOD, system specifications, and
test cases (cf. Fig. 8.5 on page 224). Using the same kind of structure for these artifacts,
a verification engineer needs to deal with one kind of structure only. Furthermore, their
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relations and interactions are simplified: The ioco theory can formally reason about an
SUT being conform to a specification, an algorithm can correspondingly generate test
cases by unwinding the specification in a specific way, and test execution can simply
be formalized by the synchronous product and derive verdicts in accordance to the ioco
relation.

Roadmap. Sec. 8.2 introduces several variants of and operations on LTSs used in the
ioco theory. It contributes new results by thoroughly differentiating various kinds of
nondeterminism and internal transitions, as well as consequences thereof for quiescence
and livelock detection. Sec. 8.3 defines the set SPEC of possible specifications, Sec. 8.4
the set MOD of possible models; multiple structures that can all be used for the same
ioco theory are given, which has only been done limitedly in other ioco literature [Jard
and Jéron, 2005; Volpato and Tretmans, 2013; Tretmans, 2008]. Sec. 8.5 defines the im-
plementation relation ioco, furthermore faultable states and traces used later for reduced
exhaustive test suites. Sec. 8.6 defines test cases as trees (which is the most suitable
structure to apply our heuristics). Sec. 8.7 defines test execution on M ∈ MOD. Unlike
other ioco literature, it additionally makes the full connection to the test execution on
the SUT, the testing hypothesis and further abstractions. Sec. 8.8 covers test case gen-
eration: besides introducing a nondeterministic algorithm, it makes new contributions
by defining a deterministic algorithm that generates a reduced test suite for a given
bound, and investigates exhaustiveness thresholds for our fairness constraints. Sec. 8.9
summarizes the chapter, our contributions and possible future work.

8.2. Labeled Transition Systems for ioco
All formalisms used for ioco (cf. Fig. 8.5) are based on labeled transition systems with
input and output (and with further elements xi like internal transitions and quiescence),
as defined in Def. 8.5.

Definition 8.5. Let L ⊇ LI ∪̇LU , LTS S = (S,→, L, S0) ∈ SLTS , n ∈ N≥0 and pairwise
different elements x1, . . . , xn 6∈ L. Then:
• Lx1...xn ⊇ LI ∪̇ LU ∪̇

i∈[1,...,n]
{xi}, with |Lx1...xn | − |LI ∪̇ LU ∪̇

i∈[1,...,n]
{xi}| ∈ N≥0;

• S is called a labeled transition system with inputs and outputs (LTS with
I/O), where LI specifies input, LU output;
• LT S(LI , LU , x1, . . . , xn) denotes the set of all LTSs with L = LI ∪̇ LU ∪̇

i∈[1,...,n]
{xi};
• LT S(LI , LU , x1, . . . , xn,+) denotes the set of all LTSs S with ∃|m ∈ N>0,
∃|y1, . . . , ym : S ∈ LT S(LI , LU , x1, . . . , xn, y1, . . . , ym);
• LT S(LI , LU , x1, . . . , xn, ∗) := LT S(LI , LU , x1, . . . , xn) ∪̇ LT S(LI , LU , x1, . . . ,
xn, +), i.e., with L = Lx1...xn .

For simplicity and wlog, the set S0 is always given implicitly (cf. Subsec. 3.4.1) and
unreachable states are ignored (i.e., S = S→∗).
To avoid case distinctions later on, this thesis considers LT S(LI , LU , x1, . . . , xn−1) ⊆
LT S(LI , LU , x1, . . . , xn) by identifying S ∈ LT S(LI , LU , x1, . . . , xn−1) with the corre-
sponding S ′ ∈ LT S(LI , LU , x1 . . . , xn) with the label xn unused.
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Often all elements in LI have the prefix ?, all elements in LU the prefix !.

8.2.1. Internal Transition
Sometimes it is convenient to use an additional label τ 6∈ LI ∪̇LU for internal transitions,
resulting in Def. 8.6.

Definition 8.6. τ represents an internal transition. Then:
• S ∈ LT S(LI , LU , τ ) is called a labeled transition system with inputs and
outputs and internal transition (LTS with I/O and τ).
• S is convergent :⇔ ∀s ∈ S ∀π ∈ pathsω(S, s) : trace(π) 6= τω.

Internalmeans that the transition is under the control of the SUT, but not observable
by the tester. Therefore, testing should be able to abstract from τ . This is done by
building the reflexive and transitive τ -closure −→

τ∗
of →, as defined in Def. 8.7.

Definition 8.7. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗). Then:
−→
τ∗ ⊆ S×(Lε)×S is the reflexive and transitive τ -closure of→, i.e. ∀s, s′ ∈ S ∀l ∈ L :

• s ε−→
τ∗

s′ :⇔ ∃|n ∈ N>0 : s τn−→ s′ or s = s′;

• s l−→
τ∗

s′ :⇔ ∃|s1, s2 ∈ S : s ε−→
τ∗

s1
l−→ s2

ε−→
τ∗

s′.

The τ abstraction of S is Sτ∗ := (S,−→
τ∗
, Lε) ∈ LT S(LI , LU , ε, ∗).

∀s̈ ∈ 2S \ {∅} : s̈ is τ-closed :⇔ s̈ = destSτ∗ (s̈,
ε−→
τ∗

).

Now the demands on τ for the testing hypothesis’s real-time constraint for → can be
formulated: ∀s, s′ ∈ S ∀l ∈ Lε : if s l−→

τ∗
s′, then the corresponding action of the SUT

must be performed before the predetermined timeout.

Example. Fig. 8.1 on page 192 shows S ∈ LT S(LI , LU , τ) (Subfig. 8.1a), its τ ab-
straction Sτ∗ (Subfig. 8.1b) and an alternative automaton (Subfig. 8.1e) without τ , but
similar behavior (cf. Def. 9.3).

Even though the tester can neither control nor observe internal transitions, τ can be
useful in specifications. For instance, having one initial state init is sufficient if the other
states can be reached by τ . The semantics of τ can be classified along two dimensions:
• whether the SUT has to treat τ internally like output (τu) or not (τ6u): The
SUT must eventually take τu if no other transition is taken. Contrarily, τ6u is fully
internal, so the SUT may take or ignore such internal transitions as long as this
does not contradict −→

τ∗
(e.g., in Subfig. 8.1a with a, b ∈ LI , giving input b in

s0 should cause s0
τ−→ s2

b−→ s3); Subsec. 8.2.3 about quiescence covers this in
detail);
• whether τ may consume time (τt) or not (τ6 t): τ6 t in the specification corresponds

to a no operation (NOP) in the SUT, i.e., the SUT does not change state in
correspondence. τt vs. τ6 t is particularly relevant for livelocks (cf. Subsec. 8.2.2).

These two dimensions lead to the internal transitions τ6u6 t, τ6ut, τut, and τu6 t. So τ6u means
τ6u6 t or τ6ut, analogously for τu, τt, and τ6 t.
The semantics of τ have an effect on the ioco theory (cf. Subsec. 8.2.2, Subsec. 8.2.3,

and Fig. 8.1) and should be chosen according to the application of τ :
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• to easily and clearly model nondeterminism of the LTS (cf. Subsec. 8.2.5)
and structure the LTS, in which case τ6 t is suitable. The strongest variant of
structuring is using equality between two states s, s′, i.e., the states and their
incoming and outgoing transitions can be merged together in S. In this case, a
deliberate τ -cycle (cf. Subsec. 8.2.2) s

τ6u6t−→ s′
τ6u6t−→ s can be used;

• to naturally hide an action for abstraction: The straight forward way to hide an
action is to replace it with τ6ut if it is an input, and with τut if it is an output. If the
output should be completely removed from S, e.g., because neither the output nor
any information about internal transitions in the SUT is present (any longer), τ6u6 t
should be used; for process algebraic specifications, many actions are meant
from the beginning only for synchronization and later action hiding, in which case
τ6 t is most suitable;
• for unobservable communication if the tester knows that hidden I/O be-
tween components must take place. Sometimes, the SUT is not fully black-box
and the tester has this insight, e.g., during compositional or integration test-
ing that is not fully black-box: the tester knows how the SUT is composed of
components, and their respective interfaces. Thus the tester knows when a syn-
chronous product C1||C2 hides I/O, caused by an output of C1 being consumed as
input of C2 without revealing it to its environment. Therefore, τut should be used;
• if no information on the application of τ is given, we do not know whether it
consumes time, so τt should be used.

As default, this thesis uses τ = τut (i.e., S ∈ LT S(LI , LU , τut, ∗)) since this is a
common case and leads to the usual definition of quiescence (cf. Def. 8.8). If another
semantics of internal transitions is used, we make this explicit by replacing τ in S, e.g.,
use S ∈ LT S(LI , LU , τ6u, ∗).

8.2.2. Livelocks

Since τ corresponds to internal actions of the SUT, they do not contribute to the SUT’s
observable behavior, i.e., its progress. Consequently, they can cause livelocks in the SUT:
If infinitely many τ of a trace τω in the system specification S are τt, i.e., not NOPs in
the SUT, the trace corresponds to a livelock.
The only traces τω that an on-the-fly traversal algorithm over S can detect are τ -

cycle, i.e., cycles in S that only consists of τ transitions. For other τω traces, black-
box testing cannot differentiate between quiescence (cf. Subsec. 8.2.3), deadlocks and
livelocks. Luckily, if S only has finitely many τt, a livelock τω stems from a τ -cycle.
This leads to the following three solutions:
• use the precondition that S ∈ LT S(LI , LU , τ, ∗) is convergent, which is what most
MBT tools do, e.g., the original (J)TorX (cf. Subsec. 10.3.2 and Subsec. 10.3.3);
• only allow τ6 t. The test case generation algorithm must still check for τ -cycles to
avoid looping endlessly, but τ6 t-cycles are not livelocks and thus acceptable. This
is what JTorX currently does by default. STG (cf. Subsec. 10.3.4), an extension
of the tool TGV, performs τ abstraction only for internal transitions that have
non-internal sibling transitions. This handles some but not all τ -cycles; e.g., for
s1

τ←→ s2 with both s1 and s2 having non-internal sibling transitions, τ abstraction
does not terminate;
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• allow infinitely many τ6 t in S, but only finitely many τt; check for τ -cycles to resolve
endless loops in test case generation algorithms (cf. Subsec. 8.8 and Chapter 11).
If the τ -cycle contains τt transitions, give a livelock warning to the user, since live-
locks are faults and also do not meet the testing hypothesis’s real-time constraint
for →. This approach is a generalization of what the tool TGV does (cf. Sub-
sec. 10.3.1): guarantee only finitely many τt transitions by demanding S to have
only finitely many states. TGV returns quiescence instead of a livelock warning
(cf. Note 8.13 and Subsec. 8.2.3 below). TGV uses Tarjan’s DFS to detect τ -cycles.
This requires the decomposition of S into SCCs (cf. Subsec. 5.3.1) and additional
memory. Chapter 6 introduces other livelock detection algorithms, which are com-
patible with optimizations, especially partial order reduction. DFSFIFO is partic-
ularly apt because testing often requires strong on-the-flyness (cf. Subsec. 6.8.6)
and short τ -traces (cf. Subsec. 6.4.3) are better understandable. Compared to
the NDFS, DFSFIFO is also simpler since exactly the τt transitions can be set as
non-progress transitions for DFSFIFO. Though DFSFIFO does not preserve the full
lasso starting from init, this is no drawback since usually the paths with internal
transitions are not needed later on, only a set of states on the paths (cf. Sec. 8.3
and Sec. 8.8).

Note. Note that livelocks are detected in S during its traversal; they cannot be detected
in the SUT during its executing, since liveness properties cannot be detected by dynamic
testing (cf. Subsec. 10.2.1).

8.2.3. Quiescence

The testing hypothesis for ioco does not abstract from idleness and the real-time con-
straint for →. So when the tester does not give an input but waits for an output, he
either observes an output in LU or quiescence (also called suspension), i.e., that the
SUT gives no output until the timeout. Therefore, quiescence can be considered as a
special kind of output (or as the refusal of all output, L̃U , cf. Note 8.3). Def. 8.8 reifies
quiescence in LT S(LI , LU , τu, ∗), Def. 8.9 in LT S(LI , LU , τ6u, ∗), Def. 8.10 for mixed τ
semantics in LT S(LI , LU , τu, τ6u, ∗).

Definition 8.8. Let τ = τu, S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗), δ 6∈ Lτ and s, s′ ∈ S.
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Then:

• s is quiescent :⇔ ∀u ∈ LU ∪̇ {τ} : s u−→ . This is written δu(s) or
δ(s) if it is clear thatτ = τu;

•Sδ := (S,−→
δ
, Lτδ) ∈ LT S(LI , LU , τ, δ, ∗)

is S’s suspension automaton, where
−→
δ

:=→ ∪̇
{
(s, δ, s)

∣∣ s ∈ S with δ(s)
}
reifies quiescence in S;

•Sτ∗δ := (S,⇒, Lεδ) ∈ LT S(LI , LU , ε, δ, ∗)
is S’s suspension automaton after τ abstraction,
where ⇒ is also written −−→

τ∗δ and
⇒ :=−→

τ∗
∪̇
{
(s, δ, s)

∣∣ s ∈ S with δ(s)
}
reifies quiescence in Sτ∗ ;

• δ	 := δ that is used only in self-loops (s, δ, s);
• δy := δ that is not used only in self-loops, i.e., also (s, δ, s′) for some s 6= s′;
•Sδτ∗ := (S,⇒, Lδε) ∈ LT S(LI , LU , δ, ε, ∗)

is S’s τ abstraction after reifying quiescence,
where ⇒ is also written −−→

δτ∗ and δy is possible.

Def. 8.8 of δ(s) is the default for this thesis and the definition found in the ioco
literature [Tretmans, 2008]. It forbids outgoing τu since τu performs hidden output. But
for τ = τ6u, τ transitions are fully internal and arbitrary as long as they do not contradict
−→
τ∗

(cf. Subsec. 8.2.1). Therefore, δ(s) must also allow arbitrary τ6u as long as they do
not contradict −→

τ∗
, leading to Def. 8.9. So when the tester observes quiescence, outgoing

τu must have been taken, whereas outgoing τ6u may have been taken.

Definition 8.9. Let τ = τ6u,S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗), δ 6∈ Lτ and s ∈ S.
Then:

• s is quiescent :⇔ ∀u ∈ LU : s u−→
τ∗
. This is written δ6u(s) or

δ(s) if it is clear that τ = τ6u.

In case both τ semantics τu and τ6u are mixed in S, quiescence must also consider their
combinations, i.e., forbid quiescence if τu is reachable via τ∗6u , leading to Def. 8.10.

Definition 8.10. Let S = (S,→, Lτ6uτu) ∈ LT S(LI , LU , τ6u, τu, ∗), δ 6∈ Lτ6uτu and s ∈ S.
Then:

• s is quiescent :⇔ ∀u ∈ LU ∪̇ {τu} : s u−→
τ∗6u
. This is written δ6uu(s) or

δ(s) if it is clear that τu and τ6u may occur .

Example 8.11. Subfig. 8.1c reifies quiescence for S of Subfig. 8.1a and ?a, ?b ∈ LI . δ6u
(respectively δu) in a state s means s is quiescent if all τ = τ6u (respectively all τ = τu).
δ means that δu, δ6u and δ6uu hold. For τu, if we initially observe δ, then ?a cannot be
observed afterward since δu implies that s0

τu−→ s2 was taken. For τ6u, initially observing
δ6u and then ?a is possible because of δ6u(s0).
The suspension automaton after τ abstraction Sτ∗δ of Subfig. 8.1d reifies quiescence

(δu or δ6u or δ6uu) for the τ abstraction Sτ∗ in Subfig. 8.1b: δ(s) can be checked easily
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by replacing τ with ε: For τ = τ6u, δ6u(s) iff enabledSτ∗ (s) ∩ LU = ∅; for τ = τu, δu(s) iff
enabledSτ∗ (s) ∩ LU = ∅ and destSτ∗ (s,

ε−→
τ∗

) = {s}. So we only get self-loops δ	. For
Sδτ∗ , the τ abstraction is made after reifying quiescence, i.e., from Subfig. 8.1c. So the
τ abstraction is also made for δ	, resulting in the additional gray quiescent transitions
that are no longer self-loops but δy.
If the semantics were mixed by having s1

τ6u−→ s0
τu−→ s2, then neither δ6uu(s0) nor

δ6uu(s1).

s0

s1 s2

s3

a

τ
τ

b

(a) Some S ∈ LT S(LI , LU , τ)

s0

s1 s2

s3

τ∗

τ∗

a

τ∗
ε, a

τ∗

ε, a

τ∗ε, a

τ∗
b

τ∗

b

τ∗
b

τ∗

ε, a

τ∗

ε, a

τ∗
ε

τ∗
ε

(b) Sτ∗ ∈ LT S(LI , LU , ε)
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s1 s2

s3

δ

δ

?a
δτ

δ

τ

δ

?b

δ

δ6u

δ

δ6u

δ
δ

δ
δ

(c) Sδ ∈ LT S(LI , LU , τ, δ)
for ?a, ?b ∈ LI

s0

s1 s2

s3

?a

δ6u,ε, ?a
δ,ε, ?a

δ,ε, ?a
?b

?b

?b

δ6u, ε, ?a

δ6u, ε, ?a

δ, ε

δ, ε

(d) Sτ∗δ ∈ LT S(LI , LU , ε, δ) for ?a, ?b ∈
LI (gray labels only for Sδτ∗)

{s0, s2}

{s0, s1, s2} {s2}

{s3}

d

d
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d
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d?b
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δ6u
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δ6u, ?a
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(e) Sdet ∈ LT S(LI , LU , δy)

Figure 8.1.: Exemplary S ∈ LT S(LI , LU , τ) and its transformations (δ6u for τ = τ6u, δu
for τ = τu, δ for both)
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Lemma 8.12 shows the relationship between δu(s) and δ6u(s) when the kind of τ is left
open.

Lemma 8.12. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗) and s ∈ S.

Then δu(s) =⇒ δ6u(s), but δu(s) 6⇐= δ6u(s) is possible.

Proof. δu(s) =⇒ τ 6∈ enabledS(s) (for τ = τu) =⇒ enabledS(s) ⊆ LI =⇒ ∀u ∈ LU : s
u−→
τ∗

(for τ = τ6u) =⇒ δ6u(s). Subfig. 8.1c with s = s0 is an example for δu(s) 6⇐=δ6u(s).

Note 8.13. Some tools, e.g., TGV and JTorX, do not differentiate between quiescence
and livelocks (cf. Subsec. 8.2.2): Instead of detecting livelock and warning the user,
they detect a timeout and return quiescence. This means that δ	 is added to all states
that are on a τ -cycle [Jard and Jéron, 2005; Belinfante, 2014; Stokkink et al., 2013].
This chapter differs since livelocks often indicate some erroneous behavior that the test
engineer should be informed about, and quiescence should indicate idleness, and output
should not follow δ (if τ -cycles are not excluded from the real-time constraint on →).
To fix that output should not follow δ, [Stokkink et al., 2013] recently changed the
semantics of the LTS by modifying it: Instead of adding δ	 to each state s that is
on a τ -cycle, a transition δy is added, pointing to a copy s′ of s, which is added,
too. s′ inherits outgoing input and quiescence from s, resulting in enabledSδ(s′) =
{δ	} ∪ (enabledSδ(s) ∩ LI). Belinfante adapted this fix in JTorX, but only optionally
since he is “not yet sure about its usability” [Belinfante, 2014]. Furthermore, he pointed
out the problem that τ transitions leaving a τ -cycle are not considered [Stokkink et al.,
2013, Def.4.1]: if δ is observed in s, only the inputs may follow that directly leave the
τ -cycles which s is on. To allow exiting a τ -cycle not only through such a direct input,
but also through some τ∗ · i, the LTS has to be modified further by also adding all i ∈ LI
with s i−→

τ∗
to the copy s′ as outgoing transition.

8.2.4. Operations

Most of the following operations on LTSs can be formulated already with the operations
introduced in Sec. 3.4. To be able to formulate even more concisely and use the standard
notation [Tretmans, 2008; Frantzen, 2016], we give Def. 8.14.
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Definition 8.14. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗) and s ∈ S. Then:

• tracesSτ∗ (s) := tracesfin(Sτ∗ , s);
•StracesSτ∗δ(s) := tracesfin(Sτ∗δ, s) (called suspension traces);
• afterSτ∗δ

: S × L∗δ → 2S , (s, σ) 7→ destSτ∗δ(s,
σ=⇒∗)

(often written infix as s afterSτ∗δ σ);
• inSτ∗ (s) := enabledSτ∗ (s) ∩ LI ;
• outSτ∗δ(s) := enabledSτ∗δ(s) ∩ (LU ∪̇ {δ});
• branchoutS = supremum

s∈S
(|outSτ∗δ(s)|);

•≈Straces ⊆ LT S(LI , LU , ∗)2(called Strace equivalence), with
S ′ ≈Straces S ′′ :⇔ StracesS′

τ∗δ
(initS′) = StracesS′′

τ∗δ
(initS′′);

•≈Straces ⊆ (2LT S(LI ,LU ,∗))2 lifts Strace equivalence to sets, with
L ≈Straces L′ :⇔ ∀S ∈ L∃|S ′ ∈ L′ : S ≈Straces S ′, and vice versa.

If the τ abstraction is made after reifying quiescence, the index Sδτ∗ is used instead.
We sometimes drop the index if it is clear from the context, e.g., from a state given as
parameter.

Lemma 8.15 shows the relationship between various Straces.

Lemma 8.15. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗) and s ∈ S. Then
StracesSδuτ∗u (s) = StracesSτ∗uδu (s) ( StracesSτ∗6uδ6u (s) = StracesSδ6uτ∗6u (s).

Proof. Since both s1
δy−→ s2 and s1

ε−→
τ∗

s′1
δ	−→ s′1

ε−→
τ∗

s2 result in s1 ⇒ s2, the equalities
hold. The subset relation is a direct consequence of Lemma 8.12, with Subfig. 8.1d giving
an example.

8.2.5. Nondeterminism
We use nondeterminism for desired or forced multiple choices within one situation.
We do not determine whether nondeterminism is caused by epistemological restrictions
(cf. Subsec. 8.1.1), or by indeterminism of nature itself, or by both [Bohm, 1971].
Nondeterminism can be differentiate by two aspects:
• whether the nondeterministic choices at a choice point are controllable by the
tester (sometimes called external nondeterminism), i.e., related to input, or
uncontrollable by the tester (sometimes called internal nondeterminism),
i.e., related to output;
• whether the uncontrollable nondeterministic choice is immediately observable
by the tester (sometimes called external nondeterminism) or known to the
tester only later on, if at all (sometimes called internal nondeterminism).

On the whole, there are three different types of nondeterminism:
• nondeterminism that is controllable by the tester comprises two cases: Firstly, the
nondeterministic choice point whether the tester tries to give a stimuli to the SUT
or only waits to observe the SUT; secondly, if the tester gives a stimuli, he can
also nondeterministically choose amongst the inputs in(s) if |in(s)|  1. These
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nondeterministic choices are carried over into the test case generation algorithms
in Sec. 8.8;
• nondeterministic choices uncontrollable by the tester, but immediately observable,
occur iff |out(s)|  1. Thus we call it nondeterminism on output;
• nondeterministic choices uncontrollable by the tester and not immediately observ-
ables stem from nondeterminism of the LTS, i.e., iff ∃|σ ∈ tracesSτ∗ (init) :
|init after σ|  1. There are two different causes for this: Firstly, if ∃|l ∈ Lτ : l−→
is not right-unique. This is called nondeterministic branching and wlog sub-
sumes nondeterministic initialization, i.e., if |S0|  1. Secondly, if S has internal
transitions, since the SUT might or might not take them (with τ6u being more
nondeterministic than τu since the SUT may, but need not, take τ6u while the
tester waits). In short, we have nondeterminism of the LTS iff ∃|l ∈ Lε : l−→

τ∗
is not

right-unique.
In practice, controllable nondeterminism occurs in almost every system, since usually

the user can make some choices. Systems with uncontrollable nondeterminism are often
called nondeterministic systems. Uncontrollable nondeterminism also occurs in al-
most all complex systems, since they usually build upon lower layers, e.g., the operating
system or network [Fraser et al., 2009; ETSI, European Telecommunications Standards
Institute, 2011]. Since these lower layer are not under the tester’s control (e.g., con-
taining asynchronous communication, scheduling, parallel interleavings, possibly race
conditions) or too complex to model and monitor, they are abstracted from: several
behaviors are comprised into one abstract behavior (such as a nondeterministic choice),
where we need not care about which concrete behavior actually occurred (e.g., which of
the many interleaving (cf. Table 6.1) occurred or what concrete data is present in the
underlying database). For instance, out(s) might contain one output from the happy
path and several exceptional cases (e.g., when the underlying database contains null). So
this abstraction can be forced upon the tester, but is often also desired to simplify test-
ing: specifications are simpler to understand, sometimes test case generation becomes
easier and test case execution more efficient. Besides reducing complexity and covering
unpredictability, nondeterminism can also postpone implementation decisions, which is
particularly useful for iterative software development (cf. Sec. 14.2).
Depending on the type of nondeterminism, different methods are used for resolving

nondeterminism:
Controllable nondeterminism is resolved by the tester making a choice, or considering

multiple choices (cf. Subsec. 8.8.3 and Subsec. 10.2.5).
Nondeterminism on output is resolved the moment the SUT picks one output of the

nondeterministic choices, i.e., during test case execution. Until then, all choices should
be respected for exhaustive testing, leading to test cases being test trees (cf. Sec. 8.6)
as opposed to sequences (called linear test cases). If nondeterminism on output occurs
often and with many choices, test trees can become very broad. Then offline MBT needs
to create huge test suites from which most parts have to be discarded during test case
execution because of the SUT made other nondeterministic choices (cf. Subsec. 10.2.5).
Uncontrollable and not immediately observable nondeterminism occur when a trace

does not fully determine the final state. Thus multiple states are possible, which must
all be included in subsequent computations. Therefore, a suspension trace does not lead
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to a single state, but to a set of potential states, one of which really represents the SUT’s
state. This nonempty set of states s̈ is called superstate (or meta-state [Jard and
Jéron, 2005]), and real superstate if |s̈| > 1. So this kind of nondeterminism can be
resolved by keeping track of superstates, where a transition between superstates, i.e.,
s̈

l−→ s̈′ for l ∈ Lδ, is the result of all potential transitions in Sδ : s̈′ = ∪
s∈s̈

destS(s, l−→
δ

).
This eliminates nondeterministic branching, but a δ transition from superstate s̈ can
now occur in combination with other output. Furthermore, δ is no longer a self-loops δ	
iff {s ∈ s̈|δ(s)} 6= s̈, so we use a transition δy instead. A subsequent τ -closure for each
s̈

l−→ s̈′ also eliminates internal transitions. The result is Sdet, given in Def. 8.16.

Definition 8.16. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ). Then:

•Sdet := (Sdet,−→d , Lδy) ∈ LT S(LI , LU , δy) is the
determinized suspension automaton of S, with

•Sdet := 2S−→
d
∗ ;

• initSdet := initS afterSτ∗ ε;
•−→
d

:=
{
(s̈, l, ∪

s∈s̈
destSτ∗δ(s,

l=⇒))
∣∣ s̈ ∈ Sdet, l ∈ enabledSτ∗δ (̈s)

}
;

• transforming S into Sdet is called determinization of S.

Notes 8.17. Determinization of S resolves all nondeterminism of the LTS in S.
In some literature [Tretmans, 2008], suspension automaton refers to Sdet.
Nondeterminism of the LTS can fully abstract away certain differentiating behavior

in a specific state s ∈ S, resulting in counter-intuitive specifications: For instance, let s
differentiate odd from even via StracesSδuτ∗u (s) = {?i?i}∗·?end!even ∪̇{?i?i}∗·?i?end!odd,
but s only occurs in superstates that also contain a state that allows all behavior (e.g.,
state χ). Then Sdet cannot differentiate odd from even for all nondeterministic resolu-
tions.

Example. Subfig. 8.1e shows the determinized suspension automaton Sdet for S of
Subfig. 8.1a and ?a, ?b ∈ LI .

Complexity analyses for the time and space requirements of determinizing S are very
rough, i.e., the typical complexity measures in Landau notation are only moderately
meaningful (cf. Subsec. 10.2.5). Thus they are derived only shortly:
The worst case time complexity per determinization step, i.e., per considered super-

state s̈ ∈ Sdet, depends on:
• |S→∗ | to traverse through all the states s ∈ s̈ and to include all the states s ∈
s̈ afterSτ∗δ a (where a ∈ enabledSτ∗δ (̈s)), i.e., also those states reachable via subse-
quent τ transitions;
• branchS→∗ to consider all outgoing transitions of each such state s.

This results in a worst case time complexity in O(|S→∗ | · branchS→∗ ) per step.
Since Sdet ⊆ 2S , Sdet can have up to 2|S→∗ | many states, the overall worst case time

complexity of this determinization of S is in O(2|S→∗ | · |S→∗ | · branchS→∗ ).
The worst case space complexity of determinization of S depends on:
• |Sdet|, the possible number of superstates to store;

196



8.2. Labeled Transition Systems for ioco

• |S→∗ |, the possible number of states per superstate;
• branchSdet ≤ max(|Lδ|, |Sdet|), the possible number of outgoing transitions in Sdet
per superstate.

This results in an overall worst case space complexity of this determinization
of S in O(2|S→∗ | · (|S→∗ |+ branchSdet)).
Often, branchS→∗ is small (cf. Subsec. 11.3.3) and can be ignored. Then the overall

worst case time complexity of determinization of S is in O(2|S→∗ | · |S→∗ |).

Notes. branchSdet can become large in spite of a small branchS→∗ ; Fig. B.1 on page 386
gives an example if only the maximal available licenseID were allowed as parameter
for ?removeLicenseInput.
Determinization requires ld(branchS→∗ ) of memory to be able to iterate for the current

state s over its possible outgoing transitions, but this is negligible in Landau notation
since branchS→∗ ∈ O(branchSdet · |S→∗ |). In summary, focusing on the strongest growth,
the overall worst case time and space complexities of determinization of S are exponential
in |S→∗ |.

All these complexities are rough because the structure of Sdet is usually much simpler
than the worst case, often with only a few large superstates, so determinization requires
much less runtime and memory.
This determinization corresponds to the popular Rabin-Scott powerset construction [Ra-

bin and Scott, 1959]. Though it does not yield minimal LTSs, it can be used as an on-the-
fly determinization of the LTS; on-the-fly determinization is a requirement to perform on-
the-fly MBT. Furthermore, only reachable states are considered (so S→∗ was used in the
complexity formulas instead of S). For an imperative Rabin-Scott powerset construction,
the LTS S must have |initS | < ω and be image finite: ∀s ∈ S ∀σ ∈ L∗ : |s after σ| ∈ N.
τ abstractions are mainly used for formal reasoning about traces. Contrarily, the

Rabin-Scott powerset construction is mainly used for implementations. The Lemmas 8.18
and 8.21 show the relationship.

Lemma 8.18. Let S ∈ LT S(LI , LU , τ, ∗). Then
StracesSτ∗δ(initS) = StracesSdet(initSdet).

Proof. The proof uses induction over the length of the trace σ.
For the base case, σ = ε, so σ ∈ StracesSτ∗δ(initS) ∩ StracesSdet(initSdet).
For the induction step from n to n + 1, let σ := σ′ · l with l ∈ Lδy and σ′ ∈

StracesSτ∗δ(initS) ∪ StracesSdet(initSdet). Because of the induction hypothesis, σ′ ∈
StracesSτ∗δ(initS) ∩ StracesSdet(initSdet). Let s̈ := initS after σ. Therefore, σ · l ∈
StracesSτ∗δ(initS) ⇔ ∃|s ∈ s̈ : l ∈ enabledSτ∗δ(s) ⇔ s̈

l−→
d
⇔ σ · l ∈ StracesSdet(initSdet).

We say a deterministic S ∈ LT S(LI , LU , δy) reifies quiescence if ∃|S ′ ∈ LT S(LI , LU ,
τ) : S = S ′det. Such S ′ need not exist if S uses δ as arbitrary label, for instance S with
S = {initS} and no transition. Lemma 8.19 gives a criterion, Cor. 8.20 the direct
consequence for Strace equivalence. Thereafter, Lemma 8.21 shows that δy is required.
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Lemma 8.19. Let S = (S,−→
d
, L) ∈ LT S(LI , LU , δ	, δy) be deterministic with: ∀s̈, s̈′ ∈

S : s̈ δ	−→
d
s̈′ ⇒ s̈ = s̈′ and s̈ δy−−→

d
s̈′ ⇒ s̈ 6= s̈′. Then S reifies quiescence iff

• ∀s̈ ∈ S : outS(s̈) ⊆ LU ∪̇ {δy} or outS(s̈) = {δ	} (1)
• and ∀s̈, s̈′ ∈ S : s̈ δy−−→

d
s̈′ ⇒(

outS(s̈′) = {δ	} (2)
and ∃|L′ ⊆ LU : L′ 6= ∅ and outS(s̈) = L′ ∪̇ {δy} (3)
and ∀i ∈ LI ∀s̈′′ ∈ S : (s̈′ i−→

d
s̈′′ ⇒ s̈

i−→
d
s̈′′) (4)

)
Proof. Let s̈, s̈′ ∈ S and S reify quiescence with S ′ = (S′,→, Lτ ) ∈ LT S(LI , LU , τ) so
that S ′det = S. If outS(s̈) 6⊆ LU ∪̇ {δy}, then we have in S ′ : ∀s ∈ s̈ : δ(s), i.e., (1)
holds since s̈ 6= ∅. If s̈ δy−−→

d
s̈′, then firstly outS′(s̈′) ∩ LU = ∅, i.e., (2) holds. Secondly,

since s̈ 6= s̈′,∃|s ∈ s̈ with outS′(s) ∩ LU 6= ∅, i.e., (3) holds. Thirdly, if additionally for
i ∈ LI , s̈′′ ∈ S we have s̈ δy−−→

d
s̈′

i−→
d
s̈′′, then s̈ i−→

d
s̈′′ since s̈′ ⊆ s̈, i.e., (4) holds.

Let S meet all (1), (2), (3) and (4) and S ′ result from S by removing all δ	 and
hiding all δy (i.e., exchanged by τ). Then S ′ has no nondeterministic branching, only
nondeterminism by internal transitions. We show by induction over the steps of the
determinization that S ′det 
 S, each superstate of S ′ contains one state or two states
connected by τ , and each outgoing transition leads to one state. (The induction can be
generalized to also hold for not image finite S ′.)
For the base case, let s := initS , s′ := initS′ , s̈′ := s′ after τ and s′det := initS′

det
.

If τ ∈ enabledS′(s′), then because of (2) |s̈′| = 2, and the two states are connected by
τ . Because of (2) and (4), ∀l ∈ LI ∪̇ LU ∪̇ {δy} : |s̈′ afterS′

δ
l| = 1. Because of (3),

|s̈′ afterS′
δ
δ	| = 1. Because of (1), δ	 ∈ outS′

det
(s′det) iff δ	 ∈ outS(s), so enabledS(s) =

enabledS′det
(s′det).

For the induction step from n to n + 1, let s̈′ be the superstate of S ′ in step n + 1,
s′det the corresponding state in S ′det, and s the corresponding state in S. Each outgoing
transition in step n led to one state, s′ ∈ S′. Besides this initialization, proving the
induction step is identical to the proof for the base case.

Corollary 8.20. LT S(LI , LU , τ) ≈Stracesdeterministic LT S(LI , LU , δy) with reified
quiescence.
Lemma 8.21. For Strace equivalent determinization, reified δy is required, so reified
δ	, or δ deduced instead of reified, is not sufficient: LT S(LI , LU , τ) 6≈Stracesdeterministic
LT S(LI , LU , δ	) with reified quiescence, and LT S(LI , LU , τ) 6≈Stracesdeterministic LT S(
LI , LU ).

Proof. For Subfig. 8.1a with τ = τu and a, b ∈ LI , StracesSτ∗δ(initS) = a∗δ∗bδ∗. Assume
there were a deterministic Strace equivalent Sdet ∈ LT S(LI , LU , δ	) with reified quies-
cence or Sdet ∈ LT S(LI , LU ) with δ deduced (cf. Def. 8.8), then δ ∈ enabledSdet (initSdet )
since δb ∈ StracesSτ∗δ(initS). Furthermore, a ∈ enabledSdet (initSdet ) since ab ∈ StracesSτ∗δ
(initS). But δ deduced or δ	 does not change the current state, so δab or δ	ab would
also be in StracesSτ∗δ(initS), which is a contradiction.
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8.2.6. Enabledness

Definition 8.22. Let S = (S,→, L) ∈ LT S(LI , LU , ∗), A ⊆ L with τ 6∈ A, and s ∈ S.
Then:
• s is A-enabled (also called A-triggered) iff A ⊆ enabledSτ∗ (s); otherwise, s is
A-inhibited;
• S is A-enabled (also called A-complete) iff all its states are A-enabled;
• IOT SA(LI , LU) denotes the set of all A-enabled S ∈ LT S(LI , LU ) (analo-
gously for IOT SA(LI , LU , x1, . . . , xn), IOT SA(LI , LU , x1, . . . , xn,+) and
IOT SA(LI , LU , x1, . . . , xn, ∗));
• for A = LI , A-enabled s (respective S) are called input-enabled;
• for A = LU , A-enabled s (respective S) are called output-enabled.

Any S ∈ LT S(LI , LU , ∗) can be transformed into a S ′ ∈ IOT SLI (LI , LU , ∗) by input
completion, e.g., by angelic completion or by demonic completion:
Angelic completion of S makes the lax assumption that the SUT is able to simply

ignore input not specified in S and continue as if the input had not been given. This
transformation corresponds to adding self-loops, as defined in Def. 8.23.

Definition 8.23. Let S = (S,→, L) ∈ LT S(LI , LU , ∗). Then:

S := (S,−→, L) ∈ IOT SLI (LI , LU , ∗) is S’s angelic completion, with

−→ :=→ ∪̇
{
(s, i−→, s)

∣∣ s ∈ S, i ∈ LI with i 6∈ inSτ∗ (s)
}
.

Demonic completion of S conservatively makes no assumptions on how the SUT
handles input not specified in S, so any behavior may occur. Consequently, the transfor-
mation adds transitions to a chaos state, from which any behavior may occur, as defined
in Def. 8.24.

Definition 8.24. Let S = (S,→, L) ∈ LT S(LI , LU , ∗). Then:

S := (S ∪̇ {χ},−→, L) ∈ IOT SLI (LI , LU , ∗) is S’s demonic completion, with

−→ :=→ ∪̇
{
(s, i−→, χ)

∣∣ s ∈ S, i ∈ LI with i 6∈ inSτ∗ (s)
}
, where

χ := the chaos state, with inSτ∗ (χ) = LI and outSτ∗δ(χ) = LU ∪̇ {δ},
all self-loops, i.e., leading back to χ.

Example 8.25. Subfig. 8.2a shows the angelic completion for S ∈ LT S(LI , LU , τ) from
Subfig. 8.1a. Subfig. 8.2b shows the demonic completion for S ∈ LT S(LI , LU , τ) from
Subfig. 8.1a. Chaos χ can itself be modeled by an IOT SLI (LI , LU , τ), e.g., as depicted
gray in Subfig. 8.2b, or in [Tretmans, 2008, Fig. 5] using three states. So in these cases,
S is not extended by χ, but by those two or three states.

Note. The angelic and demonic completions might add more transitions than necessary
to S, because of τ , but this does not cause any problems.
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s0

s1 s2

s3

?a
τ

τ

?b
?a

?a, ?b
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(b) Demonic completion S

Figure 8.2.: Angelic and demonic completions of S from Subfig. 8.1a

8.3. System Specifications
As described in Sec. 2.4, system specifications (specifications for short) define what
behavior the SUT should conform to (cf. Sec. 8.5) and are the source for test case
generation algorithms (cf. Sec. 8.8 and Fig. 8.5). The default definitions for specifications
are given in Def. 8.26, alternatives are enumerated afterward.

Definition 8.26. SPEC denotes the set of all specifications.
SPEC = LT S(LI , LU , τ).

This does not determine the semantics of τ . To do so, we use τut, τu6 t, τ6ut or τ6u6 t instead,
or multiple ones to mix semantics, e.g., SPEC = LT S(LI , LU , τut, τ6u6 t).
Similarly to behavioral properties for temporal logics (cf. Sec. 4.2), the ioco theory

(cf. Sec. 8.5) does not consider the states in S ∈ LT S(LI , LU , τ), only the derived set
StracesSτ∗δ(initS) of suspension traces (or variations thereof, cf. Chapter 9). So as long
as the resulting set of suspension traces stays the same, S can be replaced by another
specification, without having to modify any other part of the ioco theory, enabling
alternative definitions of SPEC , e.g., one of the following:
• SPEC = deterministic LT S(LI , LU , δy) with reified quiescence (cf. Cor. 8.20);
• SPEC = LT S(LI , LU , ε, δ	) with reified quiescence (cf. Lemma 8.15).

Contrarily, the meaning of ioco would change for SPEC = deterministic LT S(LI , LU , δ	)
with reified quiescence or SPEC = deterministic LT S(LI , LU ) since they are not Strace
equivalent to LT S(LI , LU , τ) (cf. Lemma 8.21). Many more variations could be inves-
tigated (deterministic vs. nondeterministic, finite vs. infinite, τu vs. τ6u, δ	 vs. δy
vs. δ deduced). But the ones above are the most relevant since they are used in prac-
tice and also as alternatives for MOD (with the restriction of being input-enabled, cf.
Sec. 8.4). Many Strace equivalences are direct implications of the ones above, e.g.,
LT S(LI , LU , τ) ≈Straces LT S(LI , LU , ε) with δ deduced, as described in Example 8.11.
Therefore, we only show one more extreme case in Lemma 8.27.

Lemma 8.27. LT S(LI , LU , τ) ≈Straces LT S(LI , LU ), but S ′ ∈ LT S(LI , LU ) that is
trace equivalent to S ∈ LT S(LI , LU , τ) might require nondeterministic branching, infi-
nite state space and more than one initial state, even if S does not.
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Proof. Since LT S(LI , LU ) ( LT S(LI , LU , τ) (cf. Sec. 8.2), we only need to show that
for a S ∈ LT S(LI , LU , τ), there is a S ′ ∈ LT S(LI , LU ) with S ≈Straces S ′, which we
do by constructing S ′ as computation tree (cf. Def. 4.4) that contains exactly the same
Straces, using induction over the length of the suspension trace σ ∈ StracesS(initS):
For the base case, σ = ε, so σ ∈ StracesS′(initS′). For the induction step, let σ =
σ′ · l with σ, σ′ ∈ StracesS(initS) and l ∈ Lδ. Because of the induction hypothesis,
σ′ ∈ StracesS′(initS′). Let π ∈ paths(S ′) with trace(π) = σ′. We extend S ′ to contain
σ: If l = δ, we create a copy sδ of destS′(π) by making a copy of the last transition
s|π|−1

l|π|−→ s|π|, i.e., s|π|−1
l|π|−→ sδ. If l ∈ LU , we attach new outgoing transitions l to new

states for all s ∈ initS′ after σ′ \ sδ, so that δ(sδ) is retained. If l ∈ LI , we attach new
outgoing transitions l to new states for all s ∈ initS′ after σ′ (cf. Sec. 9.2).
This adds exactly all trace σ′ · l ∈ StracesS(initS) to S ′, so S ≈Straces S ′.
Nondeterministic branching is introduced by making a copy sδ of a state. If S contains

a loop, the state space of S ′ becomes infinite, even if the state space of S is finite. If
out(initS after τ) contains δ and some u ∈ LU , we need two initial states in S ′ (one state
initδ for δ).

Many languages can be used to describe these specification. Some popular description
languages are described in Subsec. 3.4.3.

8.4. MOD
Subsec. 8.1.2 has shown that we abstract from SUT to the set of all models, MOD, to
enable formal reasoning: The test hypothesis guarantees the existence of an appropriate
M ∈ MOD to replace the SUT, such that conformance between the SUT and the speci-
fication can be formalized (cf. Fig. 8.5). But M is not an artifact that is operated on or
at all available, just a theoretical construct. Therefore we need to execute the SUT to
find out its behavior (cf. Sec. 8.7).
We consider an i ∈ LI to be the attempt to give that input, not its actual processing

(e.g., Example 8.28). Therefore, all M ∈ MOD and all S ∈ SUT are input-enabled,
resulting in Def. 8.29. Input-enabledness facilitates test case execution (cf. Sec. 8.7),
underspecification (cf. Sec. 9.2), and defining the testing hypothesis, though the imple-
mentation of the test adapter becomes more difficult (cf. Subsec. 8.7.2).

Example 8.28. In Example 8.2, input 10cent means that we are pushing 10 cent against
the coin slot, not that 10 cent are actually inserted and processed. Thus if the machine
closes its slot, the input is still accepted by the machine, with the observation 1̃0cent.

Definition 8.29. MOD = IOT SLI (LI , LU , τ).

With these considerations, we can fulfill the testing hypothesis by choosing LI 
 I
and LU 
 U . Since we are black-box testing, the states of S ∈ SUT are not observable.
The tester only considers I ∪ U . Accordingly, our formal reasoning does not investigate
the states in M ∈ MOD, so M only defines the rules for the causality between the
actions. So as for SPEC , only the derived set StracesMτ∗δ(initM) of suspension traces
(or variations thereof, cf. Chapter 9) are considered in the ioco theory. Since the Strace
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equivalence used in Sec. 8.3 also hold for input-enabled LTSs with I/O, MOD also has
many alternatives, e.g.,:
• MOD = deterministic IOT SLI (LI , LU , δy) with reified quiescence;
• MOD = IOT SLI (LI , LU , ε, δ	) with reified quiescence;
• MOD = IOT SLI (LI , LU ).

8.5. Implementation Relation ioco
Having formalized SUT to MOD with the help of the testing hypothesis, conformance
can now be defined as relation over MOD × SPEC , called implementation relation.
This section introduce the ioco relation, which has its roots in the theory of testing-

and refusal-equivalences for transition systems [Tretmans, 2008]. It decides when a model
M ∈ MOD conforms to a specification S ∈ SPEC (cf. Fig. 8.5). For this, traces in a set
F ⊆ L∗δ are considered, along which the input and output behavior of M must conform
to that of S:

1. the input considered by the paths in F must be specified by S;
2. all possible output of M (including δ) must be specified by S.

Because of Item 1, the largest possible set without senseless traces is F = StracesSτ∗δ(initS),
which is what the default ioco theory in Def. 8.30 uses. Chapter 9 will introduce gener-
alizations and variants.

Definition 8.30. Let modelM ∈ MOD, specification S ∈ SPEC , F = StracesSτ∗δ(initS).
Then M ioco S :⇔ ∀σ ∈ F :

outMτ∗δ(initM afterMτ∗δ σ) ⊆ outSτ∗δ(initS afterSτ∗δ σ)

Notes. Since initM afterMτ∗δ σ is already τ -closed, Def. 8.30 remains unchanged if
outMτ∗δ(·) does not use τ abstractions, i.e., outMδ(·) instead. The same applies for
S.
So S ∈ SUT conforms to S iffMiocoS for a corresponding modelM ∈ MOD according

to the testing hypothesis. To denote that conformance is checked by the ioco relation,
we also say SiocoS.

So forM iocoS, there must be a σ ∈ StracesSτ∗δ(initS) and a u ∈ outMτ∗δ(initMafterMτ∗δ
σ) \ outSτ∗δ(initS afterSτ∗δ σ). This can only be the case if outSτ∗δ(initS afterSτ∗δ σ) 6=
LU ∪̇ {δ}, leading to Def. 8.31.

Definition 8.31. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ, ∗) and s ∈ S.
Then faultable(Sdet) :=

{
s̈ ∈ Sdet

∣∣outSdet(s̈) 6= LU ∪̇{δ}
}
, baptized faultable states

of Sdet.

We can reduce F by excluding suspension traces σ ∈ StracesSτ∗δ(initS) that are not
faultable or redundant:
• σ with initS after σ 6∈ faultable(Sdet) are not faultable since no output leads to fail ;
• σ that end with δ are not faultable because δ only reaches quiescent states, so the
testing hypothesis guarantees that no output u ∈ LU occurs in them. Therefore,
no output leading to fail can occur in the SUT;
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• σ that contain δ · δ are redundant because after the first δ, only quiescent states
are reached, so the testing hypothesis guarantees that no output u ∈ LU oc-
curs. Therefore, the second δ cannot cause fail and simply makes a self-loop (cf.
Lemma 8.19).

Thus F in Def. 8.30 can be reduced from StracesSτ∗δ(initS) to faultable(StracesSτ∗δ(initS)),
as given in Def. 8.32, which is similar to Rtraces of [Volpato and Tretmans, 2013] used
on Utraces (cf. Sec. 9.2) for coverage (cf. Chapter 2 and Subsec. 8.8.4 and Chapter 12).

Definition 8.32. Let S = (S,→, L) ∈ LT S(LI , LU , ∗) and s̈ ∈ Sdet.
Then faultable(StracesSτ∗δ(s̈)) :=

{
σ ∈ StracesSτ∗δ(s̈)

∣∣ σ = (li)i∈[1,...,|σ|] and 6 ∃|k ∈
[1, . . . , |σ| − 1] : lk = lk+1 = δ and l|σ| 6= δ and initS after σ ∈ faultable(Sdet)

}
, baptized

faultable reduced suspension traces.

Example 8.33. Since input completion in S from Subfig. 8.2a only adds input to
S from Subfig. 8.1a, but does not change the outputs on suspension traces already
present, S iocoS. For S and its τ interpreted as τu, we have init afterS δ?a = {χ, χ′}, so
outS (initafterδ?a) = LU ∪̇{δ}. For S and its τ interpreted as τ6u, we have initSafterδ6u?a =
{s0, s1, s2}, so outS(init after δ6u?a) = {δ6u}. Therefore (S with τ = τu) ioco (S with τ =
τ6u) if LU¬∅.

8.6. Test Cases
Whereas S specifies how the SUT should behave, a test case T specifies how the test,
an experiment on the SUT, should behave during its execution of T. Since we want
to check whether M ioco S, each test case follows suspension traces of S. Therefore,
test cases can also be described by LTSs in LT S(LI , LU , ∗), but of a special kind that
meets the following demands: Since test cases will be executed (cf. Sec. 8.7 and Fig. 8.5),
nondeterminism of S must be resolved. As described in Subsec. 8.2.5, controllable non-
determinism is resolved by either trying to give one input or waiting for an output. If
an input is given, the tester picks one amongst all the enabled inputs. Since the SUT
can preempt test input by giving an output, all outputs must always be accounted for,
such that verdicts can be made no matter what output occurs. Thus test cases are
output-enabled and not traces, but contain branching; because of nondeterminism on
output, test cases are not degenerated: more than one output can lead to subsequent test
steps instead of the verdict fail . Nondeterminism of the LTS is also resolved similarly
to Subsec. 8.2.5 by considering all possible nondeterministic cases and states the SUT is
potentially in.
Depending on where uncontrollable nondeterminism occurs, and on what choices the

SUT has made so far, it might or might not be useful to revisit a certain state of the model
during test case execution. Therefore, a test case T forbids loops, but rather unwinds
S to control how often a specific state can be revisited, to make T as meaningful (cf.
Subsec. 2.5) as possible. Besides unwinding loops, we also replicate other superstates,
such that T becomes a tree (cf. Def. 4.4). Without this replication, test cases would
more generally be single-rooted, connected, directed, acyclic graphs, i.e., states would be
shared amongst different traces, saving memory. But often test trees are used [Tretmans,
2008], and they are necessary when different traces must be treated differently, e.g., for
our heuristics (cf. Chapter 12) of our lazy on-the-fly MBT (cf. Chapter 11).
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Since test cases are executed, only finite traces are relevant. Thus T should not contain
infinite paths.
We guarantee that each test case results in a verdict by demanding that each leaf is a

verdict leaf : a pass or a fail .
Test cases in LT S(LI , LU , ∗) that meet all the demands above result in Def. 8.34.

Def. 8.35 shows how test cases can be extended by concatenation.

Definition 8.34. Let T = (S,→, Lδy) ∈ IOT SLU (LI , LU , δy). Then:
T is a test case (TC) iff all of the following points hold:
• pass, fail ∈ S are two different states and called verdict states;
• T is a tree with the leafs pass and fail ;
• ∀i ∈ LI ∀s ∈ S : s 6 i−→ fail ;
• T only has finite paths: ∀π ∈ pathsmax(T) : |π| ∈ N;
• ∀s ∈ S \ {pass, fail} ∃|iδ ∈ LI ∪̇ {δy} : enabledT(s) = LU ∪̇ {iδ}.
T T S(LI , LU , δ) denotes the set of all test cases in IOT SLU (LI , LU , δy).
A countable subset T̈ ⊆ T T S(LI , LU , δ) is called a test suite (TS).

Definition 8.35. Let T1,T2 ∈ T T S(LI , LU , δ), with T1 = (S1,→1, Lδy) and T2 =
(S2,→2, Lδy) where initT2 ∈ S1 and initT2 →1 pass in T1.
Then the concatenation of TCs T1 · T2 is the TC (S1 ∪ S2,→, Lδy) with →=→2
∪̇(→1 \{initT2 →1 pass}), i.e., the pass after initT2 in T1 is replaced by T2.

Notes 8.36. Since we always use these kind of trees as test cases, we always set TEST =
T T S(LI , LU , δ); so unlike SPEC and MOD, we do not need the abstraction TEST .
Since test execution (cf. Sec. 8.7) terminates in pass and fail anyways, there is no need

for the verdict states to be output-enabled. Formally, we can define T to be a tree besides
the verdict states, and on each path a verdict state must eventually occur. Similarly
to chaos (cf. Def. 8.24), pass and fail can be rendered output-enabled by demanding
outT( fail ) = outT(pass) = LU ∪̇ {δ}, all self-loops. By including δ, the constraint on
enabledT(s) of Def. 8.34 also holds for s = pass and s = fail . Besides pass and fail , TCs
remain to be trees.
As always, the single initial state is called init or initT if not named explicitly.
Test cases have the following properties:
• Even though T = (S,→, Lδ) ∈ T T S(LI , LU , δ) only contains finite paths, the

depth of T, depth(T), can be infinite for infinite |LU |. If T is finitely branching,
i.e., branchT is finite, then the depth of T is finite [König, 1936], as is its size, i.e.,
|T| = |S|+ | → | ∈ N;
• Having resolved nondeterminism of the LTS, T is a deterministic LTS;
• pass states are used to indicate termination of test runs. State fail indicates a
failure of the SUT and also the termination of the test run, since a failure might
cause an inconsistent state of the SUT.

Since failures often occur close to each other (“bugs are social” [Kervinen et al., 2005;
Anand et al., 2013]), it would be helpful to continue at the failure state. This could
be done by hardening the test hypothesis with some constraint on the SUT: that it
copes with failures in a specific way (e.g., via fault-tolerance [Dubrova, 2013] or strong
exception safety [Abrahams, 1998] or via failure recovery like Erlang’s backward recov-
ery [Nyström, 2009]), or that it can be guided to some consistent state (e.g., via homing
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sequences [Lee and Yannakakis, 1996]). So many solutions are possible. But continuing
in a state after a failure is only an optimization and not necessary in this thesis because
it designs a robust testing process that restarts after failures during test execution
(cf. reset capability in the testing hypothesis in Subsec. 8.1.2 and test case sequences in
Def. 11.8). Therefore, fault-tolerance of the SUT is future work.

Example 8.37. Fig. 8.4 on page 214 depicts the beginning of three TCs: T1, T2 and
T3.

8.7. Test Case Execution

Subsec. 8.7.1 formally describes how a TC is executed in an abstract way on a model
M ∈ MOD. Subsec. 8.7.2 shows how a test adapter binds abstract models in MOD to
SUTs in SUT . Therefore, test cases can be executed on the SUT.

8.7.1. Test Case Execution on MOD

In a test case execution (test execution for short) of the test case T ∈ T T S(LI , LU , δ)
on the model M ∈ IOT SLI (LI , LU , τ) (cf. Sec. 8.4),

• T chooses the input, which drives M;
• M chooses the output, leading to a successive state of T, possibly a verdict, result-
ing in the test oracles.

Therefore, a test execution of T on M corresponds to their synchronous parallel product
T||Mδτ∗ (cf. Def. 3.32). Since M is input-enabled, it always accepts T’s input; since T is
output-enabled, it always accepts M’s output. Thus T||Mδτ∗ never deadlocks and yields
a test run σ of T on M: a maximal trace through both T and M that terminates in a
leaf of T, yielding the verdict of σ.

Due to uncontrollable nondeterminism, different test executions of T on M can result
in different test runs. Since M should behave according to T for all nondeterministic
resolutions, all possible test runs must pass for the whole test case T to pass. These
concepts are defined in Def. 8.38 and Def. 8.39. For full certainty, the test case have to
be repeatedly executed an unknown number of times, but finite due to fairness. Under
which circumstances the SUT must exhibit all nondeterministic resolutions depends
on the king of fairness included in the testing hypothesis. These will be described in
Subsec. 8.8.4 after having introduced test case generation algorithms and exhaustiveness.
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Definition 8.38. Let T ∈ T T S(LI , LU , δ) and M ∈ IOT SLI (LI , LU , τ). Then:

• (T||Mδτ∗) ∈ LT S(LI , LU , δ) models all possible test executions
of T on M;

• a path π ∈ pathsfin(T||Mδτ∗) resembles one nondeterministic
resolution of T||Mδτ∗ and is called test run path;
• a path π ∈ pathsfinmax(T||Mδτ∗) is called maximal test run path;
• a suspension trace σ ∈ tracesfin(T||Mδτ∗) is called a

test run trace (test run for short) of T on M;
• a test run σ ∈ tracesfinmax(T||Mδτ∗) is called a maximal test run

trace (maximal test run for short) of T on M;
•Fmod : pathsfin(T||Mδτ∗)→ pathsfin(T), ((ti−1, si−1) li−→ (ti, si))
7→ (ti−1

li−→ ti) forgets the model M component of the test run path,
and is called forgetful transformation for model component;
•FTC : pathsfin(T||Mδτ∗)→ pathsfin(Mδτ∗), ((ti−1, si−1) li−→ (ti, si))
7→ (si−1

li−→ si) forgets the test case T component of the test run path,
and is called forgetful transformation for TC component;
• the verdict of a maximal test run path π is dest(Fmod(π));
• the verdicts of T on M are verdM(T) :=

dest(Fmod(pathsfinmax(T||Mδτ∗))).

Definition 8.39. Let model M ∈ IOT SLI (LI , LU , τ), test case T ∈ T T S(LI , LU , δ),
TS T̈ ⊆ T T S(LI , LU , δ), maximal test run path π ∈ pathsfinmax(T||Mδτ∗) and maximal
test run σ ∈ tracesfinmax(T||Mδτ∗). Then:

•M passes π :⇔ dest(Fmod(π)) = pass;
•M passes σ :⇔ ∀π′ ∈ pathsfinmax(T||Mδτ∗) with trace(π′) = σ : M passes π′;
•M passes T :⇔ verdM(T) = {pass}

(i.e., ∀π′ ∈ pathsfinmax(T||Mδτ∗) : M passes π′);
•M passes T̈ :⇔ ∀T′ ∈ T̈ : M passes T′;
•M fails σ (resp. T, resp. T̈) ⇔M passes σ (resp. T, resp. T̈);
• π (resp. σ, resp. T) is a counterexample-path (resp. -trace, resp.
-test case) to M ⇔M fails π (resp. σ, resp. T).

Notes. StracesT||Mδτ∗ (init) = StracesT||Mτ∗δ(init) because of Lemma 8.15. We use Mδτ∗

to have δy as for TCs.
A test run path π ∈ pathsfin(T||Mδτ∗) resolves nondeterminism on output by picking

one. Nondeterministic branching must be resolved by considering all possibilities (cf. M
passes σ in Def. 8.39) since they can lead to differing behavior.
M fails path π ⇔ dest(Fmod(π)) = fail .
Some papers call LI output and LU input (and correspondingly for enabledness and

completion) when talking about a TC T, due to the symmetry of T||Mδτ∗ . Since it is

206



8.7. Test Case Execution

simpler, we consistently call LI input and LU output, independent of the artifact we are
talking about.

As Sec. 8.4 has shown, alternatives to MOD = IOT SLI (LI , LU , τ) can also be chosen.

8.7.2. Test Adapter
The last subsection has shown how to execute a test case on a modelM ∈ IOT SLI (LI , LU ,
τ), but M is just imaginary, for formalization. So we actually need to execute the test
case on S ∈ SUT , resulting in Def. 8.40.

Definition 8.40. To indicate that a test case T ∈ T T S(LI , LUδ) is executed on a
model, it is also called abstract test case.
To execute abstract test cases on an SUT, a binding b(·) is used: It consists of a

mapping bI(·) between LI and the SUT’s input I and a mapping bU(·) between the
SUT’s output U with quiescence and LU ∪̇ {δ}. b(·) is implemented by a test adapter.
A test adapter that binds all actions in the abstract test case T to actions in I ∪ U ∪̇
{quiescence} yields a concrete test case b(T) (also called executable test case).
The verdicts of executing b(T) on S are verdS(T).

To fulfill the testing hypothesis’s interface abstraction, we chose LI 
 I and LU 
 U ;
consequently, the mapping is a lossless abstraction and the test adapter only needs to
implement the bijection. More precisely, test execution on the SUT only requires the
directions bI : LI → I and bU : U ∪̇ {quiescence} → LU ∪̇ {δ}. Depending on the SUT,
this can be simple or technically challenging. The main technicalities for the test adapter
to fulfill the testing hypothesis are:
• implementing the mapping bU from a refusal directly after bI(i) for an i ∈ LI to
ĩ ∈ LU (cf. Subsec. 8.1.2 and Sec. 8.4);

• handling race conditions between giving an input and receiving an output. Usu-
ally, input and output is implemented as atomic transactions, where an input is
interruptible by an output if parts of giving an input can be undone;

• implementing waiting with timeouts, such that the system does not deadlock but
detect quiescence. δ in a TC T causes the tester to wait, since δ ∈ enabledT(s) in
a state s of T implies LI ∩ enabledT(s) = ∅. If no other output occurs until the
timeout, then quiescence is observed and δ is taken in T.

As mentioned in Subsec. 8.1.1, the SUT’s interface cannot only be abstracted using
interface abstractions, but also by abstractions by the test adapter: In this case,
bI(·) binds an element i ∈ LI not to an atomic input of the SUT, but to a more complex
structure; likewise, bU (·) can bind a more complex structure to an element u ∈ LU .
Hereby, the difference between abstract and concrete test cases becomes much larger,
distributing the complexity between the model and the test adapter [van der Bijl et al.,
2005; Prenninger and Pretschner, 2005]. While the interface abstractions are lossy,
abstractions by the test adapter are usually lossless. More precisely, bU (·) performs
abstraction, bI(·) refinement. Abstractions by the test adapter are hence often called
action refinement.

Notes 8.41. There are many variations of this kind of abstraction and action refinement
for conformance testing in practice, but few have been published [van der Bijl et al.,
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2005; Fraser et al., 2009; Nieminen et al., 2011]. The properties of most of them are not
yet well researched, although action refinement is highly relevant in practice. One solid
reference is [van der Bijl et al., 2005], which investigates a more general action refinement
than described above: It allows replacing an abstract atomic transition (called atomic
refinement) or even a whole suspension trace with another suspension trace (called linear
refinement) or even with a whole tree. These refinements can become very complex,
so a prominent use-case is atomic linear refinement (called atomic linear input-inputs
refinement in [van der Bijl et al., 2005]), which maps an atomic input to a trace of inputs
(similar to keywords in keyword driven testing [Brandes et al., 2015]). Having thoroughly
introduced the testing hypothesis, abstractions and the test adapter, action refinement
can be investigated on top of this foundation as future work; one promising approach
is binding an element i ∈ LI to a sequence of atomic inputs and fully determined
atomic outputs of the SUT, and likewise binding a sequence of atomic outputs and fully
determined atomic inputs to an element u ∈ LU .
The term “test case refinement” sometimes stands for the mapping of abstract to

concrete test cases, sometimes for the abstractions by the test adapter.
The binding does not determine which nondeterministic resolutions the SUT actually

takes under which circumstances. This is covered by fairness criteria, investigated in
Subsec. 8.8.4.
Test adapters, even when not doing elaborate abstractions, are still technical and

time-consuming in practice: the cost of general test adapters can become the major part
in MBT, cf. [Grieskamp et al., 2011] and the German articles [Weißleder et al., 2011;
Faragó et al., 2013].

8.8. Test Case Generation

This section introduces abstract test case generation algorithms (test generation for
short) that check ioco (cf. Fig. 8.5).

Roadmap. Subsec. 8.8.1 introduces the concept of test case generation algorithms. Sub-
sec. 8.8.2 introduces the nondeterministic test case generation algorithm genTC, which is
roughly similar to the standard literature [Tretmans, 2008; Frantzen, 2016], and shows
some of its properties. Subsec. 8.8.3 shows that genTC contains redundant TCs and in-
troduces the deterministic test suite generation algorithm genTS, an adaption of genTC.
Subsec. 8.8.4 details the fairness constraints introduced in Subsec. 8.1.2 and properties
they imply. Subsec. 8.8.5 introduces exhaustiveness thresholds for genTS and shows
approximations for all kinds of fairness (cf. Table 8.1).

8.8.1. Introduction

Test case generation algorithms generate TCs (cf. Sec. 8.6) that check ioco (cf. Sec. 8.5).
They not only help in implementing concrete algorithms, but also in comparing different
concrete algorithms, as well as tools and testing processes that employ them. Test case
generation algorithms are defined in Def. 8.42, Listing 8.1 determines their input, output
and contract.
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Definition 8.42. Let S ∈ SPEC be a system specification.
Then a test case generation algorithm (gen for short) is a computable algorithm

that takes (at least) S as input to generate
• nondeterministically a single test case T ∈ T T S(LI , LU , δ) from S. In this case,
termination and the result of gen depend on the resolution of gen’s nondeterministic
choice points. We often identify gen(S) with the set

{
T ∈ T T S(LI , LU , δ)|T =

gen(S) for some nondeterministic resolution
}
;

• or deterministically a test suite T̈ ⊆ T T S(LI , LU , δ) from S.

In later chapters, some test case generation algorithms integrate test execution and
hence take S ∈ SUT as additional parameter. This thesis will use the notation genexec(S
S) if this needs to be made explicit.

1// PRE: S is a well-formed system specification in LT S(LI , LU , τ) (or
2// Strace equivalent structure or description thereof);
3// POST: If gen(S) is nondeterministic, it need not terminate;
4// If it does, it returns a TS containing a single TC;
5// If gen(S) is deterministic, it must terminate and return a TS.
62T T S(LI ,LU ,δ) gen (S )
7

8// PRE: S is a well-formed system specification in LT S(LI , LU , τ) (or
9// Strace equivalent structure or description thereof);
10// S ∈ SUT ;
11// POST: If gen(S, S) is nondeterministic, it need not terminate;
12// If it does, it returns a TS containing a single TC;
13// If gen(S, S) is deterministic, it must terminate and return a TS;
14// For each returned TC T, a verdict in verdS(T) may be given.
152T T S(LI ,LU ,δ) genexec (S, S)

Listing 8.1: Contract for test case generation

Usually, only sound gen are considered. In the field of ioco, the term “exhaustive”
is often used instead of complete, and some say complete to express both soundness
and exhaustiveness. To avoid confusion, we will only use the term “exhaustive” in ioco
and MBT, as defined in Def. 8.43. Unfortunately, exhaustiveness of gen does not have
strong practical implications in the ioco theory: exhaustive test suites usually have
infeasibly large size (cf. exhaustiveness threshold in Subsec. 8.8.3), and each of its test
cases needs to be executed an unknown number of times (cf. Subsec. 8.7.1). But at least
exhaustiveness implies that gen can potentially find every fault eventually, i.e., no faults
are in advance ruled out to be detected.

Definition 8.43. Let TC T ∈ T T S(LI , LU , δ), TS T̈ ⊆ T T S(LI , LU , δ), specification
S ∈ LTS(LI , LU , τ), SUT S1 ∈ SUT , M1 ∈ IOT SLI (LI , LU , τ) a corresponding model
according to the testing hypothesis (cf. Def. 8.4), and gen(·), genexec(·, ·) test case gen-
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eration algorithms. Then we call:

T sound for S :⇔ ∀M ∈ IOT SLI (LI , LU , τ) :
(
M fails T⇒M iocoS

)
;

T̈ sound for S :⇔ ∀M ∈ IOT SLI (LI , LU , τ) :
(
M fails T̈⇒M iocoS

)
;

T̈ sound for S and S1

:⇔
(
M1 fails T̈⇒M1 iocoS

)
;

T̈ exhaustive for S
:⇔ ∀M ∈ IOT SLI (LI , LU , τ) :

(
M fails T̈⇐M iocoS

)
;

T̈ exhaustive for S and S1

:⇔
(
M1 fails T̈⇐M1 iocoS

)
;

gen(·) sound :⇔ ∀S ∈ LTS(LI , LU , τ) : gen(S) is sound for S;
gen(·) exhaustive :⇔ ∀S ∈ LTS(LI , LU , τ) : gen(S) is exhaustive for S;
genexec(·, ·) sound :⇔ ∀S ∈ LTS(LI , LU , τ) ∀S ∈ SUT :

genexec(S, S) is sound for S and S;
genexec(·, ·) ex- :⇔ ∀S ∈ LTS(LI , LU , τ) ∀S ∈ SUT :
haustive genexec(S, S) is exhaustive for S and S.

Notes. Thus, a false positive from an unsound gen is a T ∈ gen(S) for whichM fails (i.e.,
T is a witness for M iocoS), when in fact M iocoS and T should pass. Conversely, a false
negative from an inexhaustive gen is a TS gen(S) for which M passes (i.e., the statement
that M ioco S), when in fact M iocoS and M should fail for some TC in gen(S).
If S is image finite, gen only generates TCs that have finite depth and finite state

space (cf. Note 8.36).

There is a strong connection between gen(·) and genexec(·, ·): Since most gen(·) itera-
tively generate TCs, a generated TC can be executed on-the-fly on a given S before the
next TC is generated, resulting in an algorithm genexec(·, ·) which inherits soundness and
exhaustiveness from gen(·). Conversely, if genexec(·, ·) generates TCs independently of the
given S and only uses S to execute the generated TCs, the TC generation of genexec(·, ·)
can be isolated into an algorithm gen(·) by reordering TC generation and execution, i.e.,
firstly generating the full TS genexec(S, ·) for a given S and thereafter executing it on a
given S. Though this might not be practical due to the size of genexec(S, ·), it allows us
to apply the following lemmas about gen(·) also to genexec(·, ·). If the generation of TCs
in genexec(·, ·) does depend on the given S, it can restrict the TCs that are generated.
But we can use a special simulated SUT (cf. Lemma 8.69) Ssim S to transform a sound
and exhaustive genexec(·, ·) into a sound and exhaustive gen(·) by using genexec(S,Ssim S)
for a given S. Therefore, we focus on gen(·) in this chapter.

8.8.2. Nondeterministic Test Case Generation genTC

gen(S) has to deal with nondeterminism when generating TCs; Sec. 8.6 has already de-
scribed how nondeterminism is resolved for TCs: To cover nondeterminism on output
(and the preemption of a test input), all outputs are always included. If the output does
not conform to S, the verdict fail is given. Nondeterminism of the LTS is resolved by
considering all possible nondeterministic cases using superstates. Controllable nondeter-
minism is resolved by choosing either one input or quiescence. In genTC from Listing 8.2,
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this choice is made nondeterministically, resulting in a nondeterministic algorithm that
creates one TC. In genTS from Listing 8.3 in Subsec. 8.8.3, nondeterministic resolutions
will be enumerated deterministically, resulting in a TS.
genTC(S, s̈) nondeterministically generates one TC from S with the root node s̈.

Though described differently, this algorithm corresponds to the one from [Tretmans,
2008]: genTC(S, s̈) nondeterministically either terminates by returning pass, or assem-
bles a TC that tries to give an input (for iδ ∈ LI), or assembles a TC that only ob-
serves the SUT (for iδ = δ). The TC is assembled from smaller TCs by assembleTC
(TreeState, LU ∪̇{iδ} → T T S(LI , LU , δ)) – again only the description differs from [Tret-
mans, 2008]: The TC has s̈ in its root and comprises each output and (one input
or δ) using a case distinction over all (argument,value) pairs of l2TC : LU ∪̇{iδ} →
T T S(LI , LU , δ), which appends subtrees that are TCs themselves, via recursion, sas
depicted in Fig. 8.3. For uk+1, . . . , u|LU | 6∈ outSτ∗ (s̈), the recursive calls genTC(S,∅)
yield fail .

1proc T T S(LI , LU , δ) genTC(LT S(LI , LU , τ) S, 2S s̈)
2TreeState s := new TreeState r ep r e s en t i ng s̈ ;
3B terminate := nondet ({false, true} ) ;
4LI ∪̇{δ} iδ := nondet ( inSτ∗ (s̈) ∪̇ {δ} ) ;
5LU ∪̇{iδ} → T T S(LI , LU , δ) l2TC := l 7→ genTC(S, s̈ afterSτ∗δ l ) ;
6

7i f ( s̈ == ∅) then return new TreeState f a i l ; f i ;
8i f ( terminate ) then return new TreeState pass ; f i ;
9return assembleTC (s, l2TC ) ;
10end ;

Listing 8.2: Typed nondeterministic genTC(S, s̈)

s

s0 s1 sk sk+1 s|LU |. . . . . .

l2TC (iδ) l2TC (u1) l2TC (uk)

l2TC (uk+1)
= fail

l2TC (u|LU |)
= fail

6∈ outSτ∗δ(s̈)

∈ outSτ∗δ(s̈)

iδ u1 uk uk+1 u|LU |

Figure 8.3.: assembleTC(s, l2TC ) (with LU finite)

Worst case complexities for genTC are not sensible since it is a nondeterministic algo-
rithm that returns a single TC, which can become arbitrarily large. The main resource
consumption for each genTC call is for
• s̈afterSτ∗δ l, which is covered by the complexities of a determinization step: a worst

case time complexity in O(|S→∗ | · branchS→∗ ) and a worst case space complexity
in O(|S→∗ |+ branchSdet) (cf. Subsec. 8.2.5);
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• and assembleTC, which has a worst case time and space complexity of O(|LU |)
each.

So for genTC that returns T = (S, T, Lδ) ∈ T T S(LI , LU , δ), the time complexity is in
O(|S| · |S→∗ | · branchS→∗ ), the space complexity in O(|S| · |S→∗ |+ |T |+ branchSdet).
Note 8.44. If S is infinitely branching, l2TC and the TC must be described implicitly,
e.g., represented symbolically (cf. Subsec. 5.4.2).
For infinite branchings, the depth of a TC can be infinite (cf. Note 8.36). But since

executions are always finite, the generation of finite TCs is sufficient and gen(S) termi-
nates.
The Lemmas 8.45, 8.46 and 8.47 show properties of genTC for S = (S,→, L) ∈
LT S(LI , LU , τ). They use the fact that states in TCs are instances of superstates of
S (cf. l.2 of Listing 8.2). Thereafter, Theorem 8.48 proves genTC(·, initS after τ) sound
(using Lemma 8.45, Lemma 8.47) and exhaustive (using Lemma 8.46), with a roughly
similar approach as sketched in [Tretmans, 1996].
Lemma 8.45. Let S ∈ LT S(LI , LU , τ), with Sdet = (Sdet,−→d , Lδy), s̈ ∈ Sdet,T ∈
genTC(S, s̈), π ∈ paths<max(T). Then π ∈ paths(Sdet, s̈).
Proof. The proof uses induction over |π|.
For the base case n = 0, π = (s̈) ∈ paths(Sdet, s̈). For the induction step from n to

n+1, π = (s̈ x−→ s̈′) ·π′ with x ∈ Lδ and π′ ∈ paths<max(T′) for some T′ ∈ genTC(S, s̈′).
Since π is not maximal, the recursive call genTC(S, s̈ after x) did not yield fail , so
s̈ after x 6= ∅. Thus s̈ x−→ s̈′ ∈ paths(Sdet, s̈). By the induction hypothesis for s̈′ and T′,
π′ ∈ paths(Sdet, s̈′), so π ∈ paths(Sdet, s̈).

Lemma 8.46. Let S ∈ LT S(LI , LU , τ), with Sdet = (Sdet,−→d , Lδy), s̈ ∈ Sdet, π ∈
pathsfin(Sdet, s̈). Then ∃|T ∈ genTC(S, s̈) such that π ∈ paths<max(T).
Proof. The proof uses induction over |π|.
For the base case n = 0, π = (s̈). genTC(S, s̈) can immediately choose terminate, thus

return T that only contains pass for s̈, so paths(T) = {(s̈)}.
For the induction step from n to n + 1, we have π = (s̈ x−→ s̈′) · π′ with π′ ∈

pathsfin(Sdet, s̈′). For x ∈ inSdet(s̈) ∪̇ {δ}, genTC(S, s̈) can take that nondeterministic
choice (cf. l.4 of Listing 8.2). For x ∈ outSdet(s̈), genTC(S, s̈) includes that output
anyways (cf. l.5). Thus, there is a corresponding transition s̈

x−→ s̈′ in the T that
genTC(S, s̈) returns (cf. Fig. 8.3). By the induction hypothesis for s̈′ and π′, there
exists a T′ ∈ genTC(S, s̈′) with π′ ∈ paths<max(T′). The recursive call genTC(S, s̈′) of
genTC(S, s̈) can choose that T′, so there exists a T ∈ genTC(S, s̈) with π ∈ paths<max(T).

Lemma 8.47. Let S ∈ LT S(LI , LU , τ),T ∈ genTC(S, initS after τ), π′ ∈ paths(T), π ∈
pathsmax(T) with π = π′ · (dest(π′) x−→ fail ). Then x ∈ (LU ∪̇ {δ}) \ outSdet(dest(π′)).
Proof. Let s̈ := dest(π′).
Assume x ∈ LI , then x ∈ inSτ∗ (s̈) (cf. l.4 of Listing 8.2). Thus s̈ afterSτ∗δ x 6= ∅,

contradicting (s̈ x−→ fail ). Thus x ∈ LU ∪̇ {δ}.
Assume x ∈ outSdet(s̈), then again s̈ afterSτ∗δ x 6= ∅ contradicts (s̈ x−→ fail ). Thus

x 6∈ outSdet(s̈).
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Theorem 8.48. genTC(·, init after τ) is sound and exhaustive.

Proof. To prove soundness, let S = (S,→, L) ∈ LT S(LI , LU , τ),T ∈ genTC(S, initS
after τ),M ∈ IOT SLI (LI , LU , τ) with M fails T. Thus ∃|π ∈ pathsmax(T||Mτ∗δ) :
dest(Fmod(π)) = fail . Therefore, S,T and FMOD(π) = π′ · (s̈ x−→ s̈′) meet the premise
of Lemma 8.47, so x 6∈ outSdet(s̈). Furthermore, S,T and π′ meet the premise of
Lemma 8.45, so π′ ∈ paths(Sdet, initSdet after τ). Thus trace(π′) ∈ StracesSτ∗δ(initS) and
outMτ∗δ(initM after trace(π′)) 6⊆ outSτ∗δ(initS after trace(π′)). Consequently, M iocoS.
To prove exhaustiveness, let S ∈ LT S(LI , LU , τ),M ∈ IOT SLI (LI , LU , τ) with

M iocoS. Therefore, there exists a suspension trace σ ∈ StracesSτ∗δ(initS) and x ∈ L
with x ∈ outMτ∗δ(initM after σ) but x 6∈ outSτ∗δ(initS after σ). Let π ∈ pathsfin(Sdet,
initSdet after τ) be the unique path according to suspension trace σ (i.e., with σ =
(li)i∈[1,...,|σ|], path π = (s̈i−1

li−→ s̈i)i∈[1,...,|σ|] with s̈0 = initS after τ). Lemma 8.46 shows
that there exists a T ∈ genTC(S, initS after τ) such that π ∈ paths<max(T). Since π
is not maximal, dest(π) is not a verdict TreeState. Since x 6∈ outSτ∗δ(initS after σ),
π · (dest(π) x−→ fail ) ∈ T (cf. Fig. 8.3). Since x ∈ outMτ∗δ(initM after σ),M fails T.

Thus genTC(·, initS after τ) can be used as gen(·). For brevity, Def. 8.49 extends paths
of Sdet with verdicts.

Definition 8.49. Let S ∈ LT S(LI , LU , τ). Then

• paths fail (Sdet) :=
{
π · (dest(π) x−→ fail )

∣∣π ∈ paths(Sdet),
x ∈ (LU ∪̇ {δ}) \ outSdet(dest(π))

}
;

• pathsV(Sdet) :=


paths(genTC(S, initS after τ)) if verdicts in

TCs are given explicitly (cf. Def. 8.34);
paths(Sdet) ∪ paths fail (Sdet) if verdicts in
TCs are given implicitly (cf. Subsec. 13.2.2).

• pathsV(Sdet) can be embedded in paths(Sdet) by allowing the
additional state fail in Sdet (e.g., represented by ∅).

Note 8.50. To get more meaningful test cases, gen should avoid building TCs for traces
that do not help in detecting failures. Consequently, gen should only construct TCs for
the inputs that are enabled in a superstate (cf. Listing 8.2 line 4 and Listing 8.3 line 7)
since the other inputs are irrelevant for ioco (cf. Sec. 8.5 and Sec. 9.2).
Furthermore, all longest non-maximal paths π ∈ paths<max(T) should have traces in

faultable(StracesSτ∗δ(initS)):
• not faultable end states s̈ can be avoided by checking that outSdet(s̈) 6= LU ∪̇ {δ};
• to handle quiescence, an additional parameter for the test case generation algo-
rithm is required to inform the nested call whether the last transition was δ. Thus
paths containing δ · δ as well as ending directly after δ can be avoided;
• instead of the additional parameter and the parameter s̈, the current path π can
be passed as parameter (cf. Listing 12.1 and Listing 12.2).

Example 8.51. Fig. 8.4 depicts the beginning of three TCs T1, T2 and T3 for S from
Subfig. 8.1a with LU = {!a} and LI = {?b}. They are the templates for the set of all
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nondeterministically generated TCs genTC(S), which can be constructed by combining
T1, T2, T3 via concatenation (cf. Def. 8.35), and pruning the TCs to finite ones by
nondeterministically replacing sufficiently many non-terminal states with pass.
Template T3 is unnecessary because its fail never occurs in an SUT due to the testing

hypothesis (cf. Note 8.50). Avoiding template T3 results in TCs that only consist of
faultable longest non-maximal paths.

{s0, s2}

{s3} {s0, s1, s2}

{s3} ∅
Ti

pass fail

?b !a

δ !a

(a) T1

{s0, s2}

{s2} {s0, s1, s2}

∅{s3}

{s3} ∅

Ti

fail

fail

pass

δ !a

?b !a

!aδ

(b) T2

{s0, s2}

{s2} {s0, s1, s2}

{s2} ∅
Ti

pass fail

δ !a

δ !a

(c) unnecessary T3

Figure 8.4.: TCs generated by genTC for S from Subfig. 8.1a

Although all longest non-maximal paths of all TCs are faultable, the next subsection
shows that genTC still contains redundant TCs, and refines the test case generation
algorithm.

8.8.3. Deterministic Test Suite Generation genTS

As Def. 8.52 and Lemma 8.53 show, genTC still contains redundant TCs (i.e., contra-
dicting the DRY principle, [Hunt and Thomas, 1999]).

Definition 8.52. Let T = (S,→, L) ∈ T T S(LI , LU , δ),T′ = (S′,→, L) ∈ T T S(LI , LU , δ).
Then:
• T′ extends T :⇔ T′ begins like T, but may replace some pass states with some

longer TCs. Formally, ∃|n ∈ N ∃|T0, . . . ,Tn : T′ = T ·
i∈[1,...,n]

Ti.

• the extends relation inherits transitivity, reflexivity and antisymmetry from con-
catenation.

Lemma 8.53. Let T,T′ ∈ T T S(LI , LU , δ) with T′ extends T, M ∈ IOT SLI (LI , LU , τ).
Then M fails T ⇒ M fails T′.

Proof. M fails T ⇒ ∃|π ∈ pathsfinmax(T||Mδτ∗) : dest(Fmod(π)) = fail . Since an extension
only differs from T at pass states in T, π ∈ pathsfinmax(T′||Mδτ∗) and dest(Fmod(i(π))) =
fail , so M fails T′.

So larger TCs detect more failures than the TCs they extend, and also make better
use of unlikely paths by not terminating with pass when they occur. Thus extensions
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should be preferred. But since TCs need to be finite, our next test case generation
algorithm genTS(S, s̈, b) takes a bound b as additional parameter and generates a TS
by resolving nondeterminism of genTC(S, s̈) in the following way (cf. Listing 8.3):
• terminate is chosen true exactly at depth b of a generated TC, i.e., at recursion
depth b (similarly to the bounded considerations of bounded model checking, an-
other bounded exploration for bug finding, cf. Subsec. 5.2.3 and Chapter 7);
• all other nondeterministic choice points are resolved by enumerating all choices via
backtracking.

1proc 2T T S(LI ,LU ,δ) genTS(LT S(LI , LU , τ) S, 2S s̈, N b)
2TreeState s := new TreeState r ep r e s en t i ng s̈ ;
32T T S(LI ,LU ,δ) r e s u l t := ∅ ;
4

5i f ( s̈ == ∅) then return {new TreeState f a i l } ; f i ;
6i f (b == 0) then return {new TreeState pass } ; f i ;
7for each LI ∪̇{δ} iδ ∈ inSτ∗ (s̈)∪̇{δ} do
8for each LU ∪̇{iδ} → T T S(LI , LU , δ) l2TC with

∀l ∈ LU ∪̇{iδ} : l2TC ( l )∈ genTS(S, s̈ afterSτ∗δ l, b− 1) do
9r e s u l t . add ( assembleTC (s, l2TC ) ) ;
10od ;
11od ;
12return r e s u l t ;
13end ;

Listing 8.3: Typed deterministic genTS(S, s̈, b)

Having a bounded, deterministic algorithm, worst case complexities can be computed,
but are extremely rough: Since we iterate over each LI ∪̇{δ} in each node (i.e., TreeState)
and have to consider all LU for l2TC , we need to consider the full computation tree of Sdet
even if we do not construct each TC or compute each assembleTC from scratch. The main
resource consumption for each genTS call is for determinization, so the overall worst
case time complexity of genTS(S, initSafterτ, b) is inO(branchbSdet ·|S→∗ |·branchS→∗ ),
the overall worst case space complexity in O(branchbSdet · (|S→∗ | + |L|)), and both
are extremely rough.
Lemma 8.54 and Corollary 8.55 show that genTS(·, init after τ,N) is sound and exhaus-

tive. Thus genTS(·, initS after τ,N) can be used as gen(·), and genTS(·, initS after τ, b)
generates the non-redundant TS of TCs with paths pruned at depth b.

Lemma 8.54. Let S ∈ LT S(LI , LU , τ),T ∈ genTC(S, initS after τ) with depth(T) = d ∈
N, and b ∈ N with b ≥ d.
Then ∃|T′ ∈ genTS(S, initS after τ, b) : T′ extends T.

Proof. genTS(S, initS after τ, b) enumerates all of genTC’s nondeterministic choices on iδ
for each state in the generated trees up to depth b. Since b ≥ d, the nondeterministic
resolutions made for T were also made for some T′ ∈ genTS(S, initS after τ, b). Thus T′
extends T.

Corollary 8.55. genTS(·, init after τ,N) is sound and exhaustive.
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Proof. Proof of soundness: ∀S ∈ LT S(LI , LU , τ) : genTS(S, initS after τ,N) ⊆ genTC(
S, initS after τ), since for each T ∈ genTS(S, initS after τ,N), genTC(S, initS after τ) can
pick the same nondeterministic choices. Thus Theorem 8.48 shows soundness.
Proof of exhaustiveness: Let S ∈ LT S(LI , LU , τ), M ∈ IOT SLI (LI , LU , τ) with

M iocoS. Theorem 8.48 shows that ∃|T ∈ genTC(S, initS after τ): M fails T. Since
genTC(S, initSafter τ) terminated to return T, depth(T) ∈ N (cf. Note 8.44). Lemma 8.54
shows that ∃|T′ ∈ genTS(S, initS after τ, depth(T)) : T′ extends T. Lemma 8.53 shows
that M fails T′.

8.8.4. Fairness and Coverage

Having covered test case generation algorithms, we can now investigate precise defini-
tions for our variants of fairness (cf. Subsec. 8.1.2). As mentioned in Subsec. 8.7.1, test
case have to be repeatedly executed an unknown but finite number of times, i.e., re-
peatable reachability is guaranteed. This is enforced by some variant of fairness. All
fairness variants demand certain uncontrollable nondeterministic behavior in a super-
state, independent of the path leading to that superstate. Depending on the variant,
paths and superstates are fromM, T or S, causing different exhaustiveness thresholds in
Subsec. 8.8.5 and different heuristics in Chapter 12. The lemmas in this subsection help
to understand the effects of our fairness variants. Some lemmas relate exhaustiveness
for a fairness variant to (nondeterministic, static) coverage criteria of test cases, which
can now be defined formally for the ioco theory, in Def. 8.56.

Definition 8.56. Let S ∈ LT S(LI , LU , τ) with Sdet = (Sdet,→det, Lδ), S′ ⊆ Sdet, tran-
sition relation →′⊆→det, Straces′ ⊆ StracesSτ∗δ(initS), TS T̈ ⊆ genTC(S, initS after τ),
TS T̈′ ⊆ T T S(LI , LU , δ), M ∈ IOT SLI (LI , LU , τ) with Mdet = (Mdet,→Mdet , Lδ), and
M ′ ⊆Mdet.
Then we define the following (nondeterministic, static) coverage criteria:

• T̈′ covers all states of M ′ :⇔ ∀m̈ ∈M ′ ∃|T ∈ T̈′ with T = (T,→T, Lδ)
∃|t ∈ T : T||Mdet contains state (t, m̈)

• T̈ covers all states of S′ :⇔ ∀s̈ ∈ S′ ∃|T ∈ T̈ with T = (T,→T, Lδ) :
s̈ ∈ T

• T̈ covers all transitions :⇔ ∀(s̈, l, s̈′) ∈→′ ∃|T ∈ T̈ with T =
of →′ (T,→T, Lδ) : (s̈, l, s̈′) ∈→T

• T̈ covers all suspension :⇔ ∀σ ∈ Straces′ ∃|T ∈ T̈ :
traces of Straces′ σ ∈ StracesT(initT).

fairnessmodel , our weakest kind of fairness (cf. Lemma 8.64), demands that the SUT
behaves fairly in correspondence to the model, as defined in Def. 8.57.

Definition 8.57. Let S ∈ SUT and M ∈ IOT SLI(LI , LU , τ) the corresponding model
according to the testing hypothesis (cf. Def. 8.4).
Then S has fairnessmodel iff ∃|t ∈ R with t > 0 ∀π ∈ pathsfin(Mdet) :
• ∀u ∈ outMdet(dest(π)) : when trace(π) is executed infinitely often on S, then S
gives the output u infinitely often directly afterwards within t seconds;
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• and ∀li ∈ LI : when trace(π) is executed infinitely often on S and directly after-
wards li is offered to S within t seconds, then S infinitely often accepts li, i.e., does
not preempt li by giving an output beforehand.

Lemma 8.58 connects test execution on the SUT and test execution on its model,
so that Lemma 8.59, Lemma 8.61, Lemma 8.63 and their proofs only need to consider
models. Finally Lemma 8.64 will show the relationship between our fairness variants.
Lemma 8.58. Let S ∈ SUT have fairnessmodel , M ∈ IOT SLI(LI , LU , τ) be a cor-
responding model according to the testing hypothesis, TC T ∈ T T S(LI , LU , δ), and
σ ∈ traces<max(T||Mδτ∗) a non-maximal test run.
When T is executed infinitely often on S, then it will exhibit the test run σ infinitely

often.
Proof. Since StracesMτ∗δ(initM after τ) = StracesMdet(initMdet) (cf. Lemma 8.18), we
have traces<max(T||Mδτ∗) = traces<max(T||Mdet). Let T = (T,→T, Lδ) and π ∈
paths<max(T||Mdet) the unique path with trace(π) = σ, with π = ((ti−1, m̈i−1) li−→
(ti, m̈i))i∈[1,...,|π|].
The proof uses induction over the length n of π.
For the base case n = 0, π≤n = ((initT, initM)), which every execution of T on S

exhibits.
For the induction step from n to n+ 1, the induction hypothesis shows that infinitely

often executing T on S infinitely often exhibits the test run trace(π≤n), leading to m̈n.
Since π ∈ paths<max(T||Mdet), ln+1 ∈ outMdet(m̈n) ∪̇LI , so fairnessmodel guarantees that
the next transition after trace(π≤n) will infinitely often be ln+1 (with an appropriate
timeout t of Def. 8.57).

Lemma 8.59. Let S ∈ LT S(LI , LU , τ), T̈ ⊆ genTC(S, initS after τ) and SUT restricted
by fairnessmodel .
Then T̈ is exhaustive iff T̈ covers all paths in faultable(StracesSτ∗δ(initS)).

Proof. Let F := faultable(StracesSτ∗δ(initS)). Exactly the superstates of M ∈ IOT SLI (
LI , LU , τ) that are reachable by some σ ∈ F can reveal M iocoS, so no more than the
Straces in F need to be covered by T̈.
The testing hypothesis with fairnessmodel allows a model M ∈ MOD to become ar-

bitrarily more complex than S, so any σ ∈ F might lead to a new superstate of a
M ∈ IOT SLI (LI , LU , τ), which can have non-conforming output (cf. computation tree
in proof of Lemma 8.27). Consequently, all Straces of F need to be covered by T̈.

Notes. Lemma 8.59 is similar to the combination of Theorem 4.1 and Theorem 4.2
of [Volpato and Tretmans, 2013], which uses Rtraces and uioco and is directly defined
via F (cf. Sec. 9.1).
We can also translate fairnessstrong from model checking (cf. Def. 5.6) to the ioco

theory: Let S ∈ SUT and M = (M,→, Lτ ) ∈ IOT SLI (LI , LU , τ) the corresponding
model according to the testing hypothesis. Then S has fairnessstrong iff each m̈

l−→
m̈′ that occurs during test execution on S must occur recurrently while test execution
progresses (or the test execution eventually fails). Since fairnessstrong demands that m̈
is successively visited through longer paths, it seems stronger than fairnessmodel , where
m̈ may be visited infinitely often through the same finite path by repeatedly executing
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some TC. But since M is not determined in ioco, fairnessmodel implies fairnessstrong: if
m̈ needs to be reached by some longer path to exhibit all its nondeterministic behaviors,
we simply replace M by a larger, unwound model M′ that demands the longer path.

fairnesstest , the strongest kind of fairness we use in this thesis (cf. Lemma 8.64),
demands that for each test case T ∈ gen(S), a SUT that is ioco S exhibits all its
nondeterministic behaviors in T. Since the SUT hopefully does not exhibit all paths of
T to fail , and since S might contain underspecification of output (cf. Def. 8.65), not all
paths in T eventually occur during test execution of T on the system. But all output
that occurs after some trace leading to the superstate s̈ of Sdet also eventually occurs
after any trace in T that leads to s̈. This condition is given in Def. 8.60.

Definition 8.60. Let S ∈ SUT that meets fairnessmodel , and M ∈ IOT SLI(LI , LU , τ)
a corresponding model according to the testing hypothesis.
Then S has fairnesstest iff ∀S ∈ LT S(LI , LU , τ) with M ioco S ∀T ∈ gen(S) ∀π ∈

paths(T) ∀π′ ∈ pathsfin(Sdet) with dest(π) = dest(π′):

outMτ∗δ(initMτ∗δ after trace(π)) = outMτ∗δ(initMτ∗δ after trace(π′)).

Notes. Since T ∈ gen(S), paths(T) = pathsfin(T) (cf. proof of Corollary 8.55).
Def. 8.60 could be defined purely via SPEC (cf. Def. 8.62 and Lemma 8.64), without

T, but is motivated coming from TCs.

Lemma 8.61. Let SUT be restricted by fairnesstest. Let S ∈ LT S(LI , LU , τ) with
Sdet = (Sdet,→, Lδ), and T̈ ⊆ genTC(S, initS after τ).
Then T̈ is exhaustive iff T̈ covers all states of faultable(Sdet).

Proof. Let T̈ be exhaustive, s̈ ∈ faultable(Sdet), and M := (S )det but with outM(s̈)
extended to LU ∪̇ {δ} by adding transitions to e.g., initM. Thus M iocoS, but the only
fault in M is in s̈. Since T̈ is exhaustive, there is a T ∈ T̈ that visits s̈.
Let T̈ cover all states of faultable(Sdet), and M ∈ IOT SLI (LI , LU , τ) with M iocoS.

Thus ∃|σ ∈ StracesSτ∗δ(initS after τ) : outMτ∗δ(initM after σ) 6⊆ outSτ∗δ(initS after σ).
Let s̈ := initS after σ, so s̈ ∈ faultable(Sdet). Then ∃|T ∈ T̈ ∃|π ∈ paths(T) : dest(π) = s̈.
Because of fairnesstest , outMτ∗δ(initMτ∗δ after trace(π)) = outMτ∗δ(initMτ∗δ after σ), so M
fails T. Thus T̈ is exhaustive.

Lemma 8.61 shows that for fairnesstest , faultable(Sdet) coverage is sufficient for ex-
haustiveness. So S constraints the complexity of M, similarly to the FSM-based testing
theory [Lee and Yannakakis, 1996]. But fairnesstest is weaker since the relationship be-
tween states of S and M is weaker and the bound on states of M may be exponentially
larger compared to FSM-based testing (2|S| − 1 vs. |S|, cf. Table 8.1 on page 225). But
fairnesstest is still very restrictive on the output behavior of M, i.e., S’s nondeterminism
on output is interpreted strictly: S is a heavyweight specification that must make it
explicit if output behavior depends on the path leading to the superstate, i.e., S must
incorporate the condition for some nondeterministic choice of S to occur in M, e.g.,
some exception. An exemplary condition is some cycle in S that needs to be traversed
sufficiently often, which S can incorporate by integrating a counter. Demanding that
such a relevant behavioral condition (e.g., the counter) should be made explicit in S
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is sensible for desired behavior. Failing behavior, however, is caused by an arbitrarily
unusual circumstance not anticipated by the developers, so the fault’s condition can be-
come arbitrarily complex, i.e., arbitrarily deep in M. So these details cannot be added
to S because they are infeasible as well as unknown. This leads to fairnessspec, which
restricts the demands of fairnesstest to the behavior specified by S. So fairnesstest is not
required for failing behavior, resulting in Def. 8.62. Since specified output is still as pre-
dictable as in fairnesstest , fairnessspec is sufficiently helpful for reachability and coverage
(cf. Lemmas 8.66 and 8.67).

Definition 8.62. Let S ∈ SUT that meets fairnessmodel , and M ∈ IOT SLI(LI , LU , τ)
a corresponding model according to the testing hypothesis.
Then S has fairnessspec iff ∀S ∈ LT S(LI , LU , τ) with MiocoS ∀π, π′ ∈ pathsfin(Sdet)

with dest(π) = dest(π′):

outMτ∗δ(initMτ∗δ after trace(π)) ∩ outSτ∗δ(dest(π)) =
outMτ∗δ(initMτ∗δ after trace(π′)) ∩ outSτ∗δ(dest(π′)).

Lemma 8.63. Let SUT be restricted by fairnessspec, S ∈ LT S(LI , LU , τ), and T̈ ⊆
genTC(S, initS after τ).
Then T̈ is exhaustive iff T̈ covers all paths in faultable(StracesSτ∗δ(initS)).

Proof. For failing behavior of the SUT, fairnessspec only demands fairnessmodel . So
Lemma 8.59 shows that T̈ is exhaustiveness iff T̈ covers all faultable(StracesSτ∗δ(initS)).

Note. So for exhaustiveness, fairnessmodel and fairnessspec are equally strict. But ex-
haustiveness is a very theoretical criterion that does not capture all practical aspects. For
instance, Lemma 8.66 will show that fairnessspec is much more helpful than fairnessmodel
for reachability.

Lemma 8.64. Let S ∈ SUT . Then fairnesstest of S⇒ fairnessspec of S⇒ fairnessmodel
of S.
Contrarily, there exist respective S ∈ SUT that show fairnesstest of S 6⇐ fairnessspec

of S 6⇐ fairnessmodel of S.

Proof. We show fairnesstest of S implies fairnessspec of S by restricting the equation of
output in Def. 8.60 to a subset of S: fairnesstest of S implies ∀S ∈ LT S(LI , LU , τ) ∀T ∈
genTC(S, initS after τ) ∀π ∈ paths(T) ∀π′ ∈ pathsfin(Sdet) with dest(Fmod(π)) =
dest(π′):

outMτ∗δ(initMτ∗δ after trace(π)) ∩ outSτ∗δ(dest(π′)) =
outMτ∗δ(initMτ∗δ after trace(π′)) ∩ outSτ∗δ(dest(π′)).

This condition is equivalent to fairnessspec of S.
fairnessspec of S implies fairnessmodel of S since fairnessmodel is a premise in the definition

of fairnessspec.
Let S ∈ SUT have fairnessmodel , S = (S,→, L) ∈ LT S(LI , LU , τ) with LU = {u1, u2},

outSτ∗δ(initS after τ) = {u1} and cycle initS
π−→ initS ∈ paths(S).

• If S outputs u1 in initS only after the Strace trace(π)|S|+1, but not after the Straces
trace(π)i for i < |S|+ 1, then S cannot have fairnessspec and be ioco S.
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• If S wrongly outputs u2 in initS after the trace trace(π)|S|+1, but behaves ioco S
for all other Straces, then S has fairnessspec but cannot have fairnesstest .

The definitions of our fairness variants are sufficiently flexible that we can additionally
allow or forbid underspecification of output, which means that more output is given in S
than ever occurs in M, as defined in Def. 8.65. Sec. 9.2 and Sec. 9.3 describe underspec-
ification more generally. Underspecification of output is useful e.g., for refinement and
if some anticipated exceptions never occur in the SUT (cf. Sec. 9.3 and Subsec. 14.3.8).
But with underspecU , the specification S can be unintuitive, and testability becomes
difficult as some superstates and traces of S may never occur (cf. Lemma 8.66).

Definition 8.65. Let S ∈ LT S(LI , LU , τ) and M ∈ IOT SLI (LI , LU , τ) with M ioco S.
Then S has underspecification of output for M (underspecU for short) :⇔
∃|s̈ ∈ Sdet ∃|u ∈ outSτ∗δ(s̈) ∀σ ∈ StracesSτ∗δ(initS after τ) with s̈ = initS after σ:
u 6∈ outMτ∗δ(initM after σ).

Lemma 8.66. Let S ∈ LT S(LI , LU , τ),M ∈ IOT SLI (LI , LU , τ) and SUT restricted
to fairnessspec or fairnesstest, with forbidden underspecU .
Then M ioco S ⇒ StracesSτ∗δ(initS) ⊆ StracesMτ∗δ(initM).

Proof. LetMiocoS and π = (s̈i−1
li−→ s̈i)i∈[1,...,|π|] ∈ pathsfin(Sdet) with Strace trace(π) =

σ ∈ StracesSτ∗δ(initS).
The proof uses induction over the length n of π: For the base case n = 0, π≤n =

(initSdet) and trace(π≤n) = ε ∈ StracesMτ∗δ(initM). For the induction step from n
to n + 1, the induction hypothesis shows that trace(π≤n) ∈ StracesMτ∗δ(initM). Since
underspecU is forbidden, there is an Strace σ′ ∈ StracesSτ∗δ(initS) with s̈n = initSafterσ′
and ln+1 ∈ outMτ∗δ(initMafterσ′). Since we haveMiocoS and (fairnessspec or fairnesstest),
we also have ln+1 ∈ outMτ∗δ(initM after trace(π≤n), so σ ∈ StracesMτ∗δ(initM).

Lemma 8.67. Let S ∈ SPEC , σ ∈ StracesSτ∗δ(initS), b ∈ N>0, T ∈ genTS(S, initSafterσ,
b), M ∈ MOD with M ioco S and SUT restricted to fairnessspec (or fairnesstest), with
forbidden underspecU .
Then recurrent execution of T on M in initM after σ exhibits all traces<max(T).

Proof. Lemma 8.66 shows that ifMiocoS, then traces<max(T) ⊆ StracesMτ∗δ(initMafterσ)
(so traces<max(T) = traces<max(T||Mτ∗δ)). Lemma 8.64 shows that fairnessmodel holds.
Therefore, Lemma 8.58 (for M′ equal M but with initM′ = initM after σ) shows that
recurrent execution of T on M in initM after σ exhibits all traces<max(T).

Lemma 8.66 and Def. 8.68 help proof Lemma 8.69, which is used to transform a sound
and exhaustive genexec(·, ·) into a sound and exhaustive gen(·) via Ssim S .

Definition 8.68. Let S ∈ SPEC .
Then Ssim S is any simulated SUT that conforms to S and meets fairnessspec and

forbids underspecU .
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Lemma 8.69. Let genexec(·, ·) be a test case generation algorithm according to List-
ing 8.1.
Then genexec(·, ·) is sound (resp. exhaustive) iff gen : S 7→ genexec(S,Ssim S) is sound

(resp. exhaustive).

Proof. Let S ′ ∈ SPEC , S ∈ SUT , M ∈ IOT SLI(LI , LU , τ) a corresponding model
according to the testing hypothesis, and Msim S′ ∈ IOT SLI(LI , LU , τ) a model corre-
sponding to Ssim S′ according to the testing hypothesis.
If genexec(·, ·) is sound andM fails genexec(S ′,Ssim S′), then ∃|T ∈ genexec(S ′, Ssim S′)∃|π ∈

pathsfinmax(T||Mτ∗δ) : dest(Fmod(π)) = fail . Let σ = trace(π), so σ = σ≤|σ|−1 · u
with u ∈ LU . Since genexec(·, ·) is sound, u 6∈ initS′ after σ≤|σ|−1, so M iocoS ′. Thus
S 7→ genexec(S,Ssim S) is sound.
If S 7→ genexec(S,Ssim S) is sound, then genexec(S ′,S) ⊆ genexec(S ′, Ssim S′) is sound.
Let genexec(·, ·) be exhaustive. Since Msim S′iocoS ′ and meets fairnessspec with forbid-

den underspecU , Lemma 8.66 shows StracesS′
τ∗δ

(initS′) ⊆ StracesMsim S′ τ∗δ(initMsim S′ ).
Since genexec(·, ·) is exhaustive and Ssim S′ is treated as black-box by genexec(·, ·), genexec(S ′,
Ssim S′) covers all faultable(StracesS′

τ∗δ
(initS′)) and is hence exhaustive (cf. Lemma 8.59).

If S 7→ genexec(S, Ssim S) is exhaustive, then genexec(S ′,Ssim S′) is exhaustive for S ′. If
M iocoS ′, then ∃|T ∈ genexec(S ′,Ssim S′) ∃|π ∈ pathsfinmax(T||Mτ∗δ) : dest(Fmod(π)) = fail .
Since π ∈ pathsfin(Mτ∗δ), ∃|T2 ∈ genexec(S ′,S) with π ∈ pathsfinmax(T2||Mτ∗δ), so M fails
T2. Thus genexec(·, ·) is exhaustive.

Notes. The fairness described in the standard literature [Tretmans, 2008] states that
“the SUT shows all its possible nondeterministic behaviors with the test case by re-
execution of the test case”. Depending on how “all its possible nondeterministic be-
haviors” is interpreted, this can have four different meanings: either fairnesstest or
fairnessspec, either with underspecU allowed or not.
fairnessmodel only restricts SUT , but not MOD, so it is an abstraction from SUT to

MOD. Contrarily, fairnessspec, fairnesstest and forbidden underspecU also restrict MOD,
and have even been formulated as relationship between S ∈ LT S(LI , LU , τ) and M ∈
IOT SLI (LI , LU , τ) with the help of fairnessmodel . Since the testing hypothesis restricts
MOD by restricting SUT , and all fairness restrictions are related to fairnessmodel , we
included them all in the testing hypothesis.

All these fairness criteria allow nondeterminism and underspecification of output and
are hence much less restrictive than most FSM-based testing [Lee and Yannakakis, 1996].
fairnesstest is our only criterion that restricts the number of states the SUT may have
(cf. Lemma 8.61 and motivation for fairnessspec), like most FSM-based testing [Lee and
Yannakakis, 1996]. An example of a stricter fairness criterion that still allows nonde-
terminism but restraints it, is the constraint fairnessS≈S in Def. 8.70. It is motivated
by situations where we know that S reflects the internal structure of S (e.g., because S
was used as blueprint when developing S) and that each state s ∈ S can be reached in
isolation in S. Lemma 8.71 shows that fairnessS≈S does not allow nondeterminism of
the LTS to cause any additional faults and hence covering the states of faultable(S) in
isolation is sufficient for exhaustiveness. Because it is so strict, we will never demand
fairnessS≈S in this thesis. But coverage of faultable(S) in isolation can still be used as
simple approximation to coverage of faultable(Sdet), which is still unfeasible for large S.
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This approximation is good when we expect nondeterminism of the LTS to cause only
few faults.

Definition 8.70. Let S ∈ SUT that meets fairnesstest , and M ∈ IOT SLI(LI , LU , τ) a
corresponding model according to the testing hypothesis.
The states of faultable(S) in isolation is defined as the set Sisol :=

{
{s}

∣∣s ∈ faultable(S)
}
.

Then S has fairnessS≈S iff
• ∀s̈ ∈ Sisol ∃|σs̈ ∈ StracesSτ∗δ(initS) : initS after σs̈ = s̈

(i.e., Sisol ⊆ Sdet);
• and ∀σ ∈ StracesSτ∗δ(initS) : outMτ∗δ(initM after σ) ⊆

∪
s∈faultable(initS after σ)

outMτ∗δ(initM after σ{s})

Lemma 8.71. Let SUT be restricted by fairnessS≈S , S = (S,→, L) ∈ LT S(LI , LU , τ),
and T̈ ⊆ genTC(S, initS after τ).
Then T̈ is exhaustive iff T̈ covers all states of Sisol .

Proof. This proof is similar to the one of Lemma 8.61:
Let T̈ be exhaustive, s̈ ∈ Sisol , andM := (S )det but with outM(s̈) extended to LU ∪̇{δ}

by adding transitions to e.g., initM. Due to fairnessS≈S , M iocoS, but the only fault in
M is in s̈. Since T̈ is exhaustive, there is a T ∈ T̈ that visits s̈.
Let T̈ cover all states of Sisol , and M ∈ IOT SLI (LI , LU , τ) with M iocoS. Thus
∃|σ ∈ StracesSτ∗δ(initS after τ) ∃|u ∈ outMτ∗δ(initM after σ) \ outSτ∗δ(initS after σ). As-
suming that M passes T̈, we have due to fairnessS≈S that u ∈ outMτ∗δ(initM after σ) ⊆

∪
s∈faultable(initS after σ)

outMτ∗δ(initMafterσ{s}) ⊆ ∪
s∈faultable(initS after σ)

outSτ∗δ(initSafterσ{s})

= outSτ∗δ(initS after σ), a contradiction. Thus M must fail T̈, so T̈ is exhaustive.

8.8.5. Exhaustiveness Threshold
To investigate how large the bound b should be chosen, we compare genTS to BMC:
For BMC, a completeness threshold can be computed for each S and property F to be
checked, such that BMC is complete (cf. Subsec. 5.2.3). To transfer this approach to
ioco, we define exhaustiveness thresholds in Def. 8.72. Lemma 8.73 and Lemma 8.74 give
approximations for exhaustiveness thresholds for our fairness criteria (cf. Table 8.1), and
hence show whether ET ∈ N exists for the given situation.

Definition 8.72. Let S ∈ SPEC and S ∈ SUT .
The exhaustiveness threshold for S (ET ) is a value b ∈ N such that genTS(S, initS

after τ, b) is exhaustive.

Lemma 8.73. For fairnesstest and S = (S,→, L) ∈ LT S(LI , LU , τ), an exhaustiveness
threshold ET ≤ 2|S| − 1 exists.

Proof. Let Sdet = (Sdet,→, Lδ), and T̈ ⊆ genTC(S, initS after τ).
For fairnesstest , Lemma 8.61 shows that T̈ is exhaustive iff it covers all states of

faultable(Sdet). A superstate s̈ ∈ Sdet is reachable within at most 2|S| − 2 transitions
since |Sdet| � 2|S|. Therefore, a TC T ∈ genTS(S, initS after τ, 2|S| − 1) also reaches s̈
and can make one final step to reveal if M is not conform to S in s̈.
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Lemma 8.74. For fairnessspec and fairnessmodel and S = (S,→, L) ∈ LT S(LI , LU , τ),
• an exhaustiveness threshold ET ≤ 2|S|+1− 4 exists if S is finite and its only cycles
are δ	;
• ET = ω otherwise.

Proof. Let Sdet = (Sdet,→, Lδ), and T̈ ⊆ genTC(S, initS after τ).
For fairnessspec, respectively fairnessmodel , Lemma 8.63, respectively Lemma 8.59,

shows that T is exhaustive iff it covers all faultable(StracesSτ∗δ(initS)).
• If S is finite and its only cycles are δ	, then each Strace σ ∈ faultable(StracesSτ∗δ(

initS)) has a length of at most 2|S|+1 − 4 since σ traverses each δ	 at most once,
contains no δ · δ, does not end with δ, and |Sdet| � 2|S|, so it may contain 2|S| − 2
states twice and its final state once.

• If S is not finite or contains a cycle other than δ	, faultable(StracesSτ∗δ(initS))
contains an infinite Strace.

Note. Usually, S contains other cycles besides δ	. Traversing cycles a bounded number
of times is not sufficient sinceM can become arbitrarily complex (cf. Lemma 8.59), which
is the cause for demanding full faultable(StracesSτ∗δ(initS)) coverage. But if we consider
only SUTs that have a corresponding M of of maximal size k ∈ N, then there exists an
exhaustiveness threshold ET ≤ (2|S|−1) · (2k−1): executing T ∈ genTC(S, initS after τ)
corresponds to the synchronous product of T and M (cf. Def. 8.38), so there are at
most (2|S| − 1) · (2k − 1) different states (s,m) ∈ T||M. This is an upper estimate for
an exhaustiveness threshold ET since no state of T||M needs to be revisited on a test
execution path. Ignoring certain kind of hardware errors that are usually outside the
scope of a software tester (see epistemological frame problem in Subsec. 8.1.1), it might
be possible to estimate k by considering the available resources or by static analysis of
S’s source code (or intermediate representation or binary code).

T̈ = genTS(S, initS after τ, ET ) is a reduced exhaustive test suite: it avoids generating
TCs that are larger than an exhaustiveness threshold or contain longest non-maximal
paths that are not faultable. But T̈might still contain some unnecessary TCs: If multiple
TCs are identical within some bound b < ET and no extension of them cover new
elements according to the appropriate coverage criterion beyond b, one of them would
be sufficient in T̈. Considering these TCs during traversal of S cannot be avoided since
all of S needs to be explored to detect whether uncovered elements are reachable from
the current superstate. But the unnecessary TCs can be discarded if they have not
already been executed on-the-fly (or at least re-execution can be avoided). Since such
TCs become less and less meaningful during test case generation, our guidance heuristics
will avoid them in many cases (cf. Chapter 12).
Instead of approximating an exhaustiveness threshold a priori, if one exists, gen can

do a bound check lazily during test case generation (similarly to a BMC tool with a
bound check, cf. Subsec. 5.2.3 and Chapter 7): genTS measures the coverage criterion
necessary for exhaustiveness of the given fairness criterion (cf. Lemmas 8.73 and 8.74)
on-the-fly and continues to extend the TCs generated so far until the coverage, or a
certain level thereof, is achieved. So besides full exhaustiveness, this coverage criterion
can also be used as exit criterion, adequacy metric, guidance heuristics, or for test suite
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reduction (cf. Sec. 2.5). Reporting the current bound b, or the uncovered coverage tasks,
can also be helpful for the test engineer, for instance to inform him about the progress
or what is left to achieve.
For these uses, we will measure coverage levels and the bound b on-the-fly during

traversal as well as during test execution (cf. Chapter 11). The measurements help
adapt the bound b and decide when to stop generating further TCs and when to stop
executing TCs (cf. Chapter 12).

8.9. Conclusion
8.9.1. Summary
Fig. 8.5 gives an overview of the ioco theory and the main artifacts involved (used in
Fig. 15.1 on page 377 to position this thesis). Cor. 8.75 summarizes why conformance by
ioco is equivalent to passing the test suite gen(S). For gen(S) = genTS(S, initS after τ, b),
Table 8.1 gives upper estimates for the exhaustiveness bound ET depending on the kind
of fairness.

S ∈ LT S(LI , LU , τ)
(= SPEC )

T̈ ⊆ T T S(LI , LU , δ)
(= TEST )

M ∈ IOT SLI (LI , LU , τ)
(= MOD)

S ∈ SUT

? ioco pass fail

||

gen(·)
exhaustive

gen(·)
sound

gen(·)
Table 8.1

Cor. 8.75

testing hypothesisbinding b(·)

Figure 8.5.: Overview of the ioco theory and its artifacts

Corollary 8.75. Let S ∈ SPEC , S ∈ SUT , and M ∈ MOD a corresponding model
according to the testing hypothesis. Then:

executing b(gen(S)) on S always gives verdict pass
testing hypothesis⇐⇒ M passes gen(S)

gen sound & complete⇐⇒ M ioco S
testing hypothesis⇐⇒ S conforms to S
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Table 8.1.: Upper estimates for ET depending on the fairness

kind of fairness upper estimate for ET
fairnesstest 2|S| − 1
fairnessspec or fairnessmodel , with |S| finite and
only δ	 cycles

2|S|+1 − 4

fairnessspec or fairnessmodel , with M having at
most k states

(2|S| − 1) · (2k − 1)

otherwise no ET , i.e., all b ∈ N must be considered

8.9.2. Contributions

There are many publications about the ioco theory; this thesis adopted many concepts,
mainly from [Tretmans, 2008; Frantzen, 2016]. Nonetheless, this chapter contributed
new concepts:

• many articles about the ioco theory mention the testing hypothesis, but only
briefly. This chapter thoroughly investigated the testing hypothesis:
– it showed implications and motivated decisions in the ioco theory;
– it covered various abstractions, new fairness constraints and concepts from

other fields (e.g., input refusal for input-enabledness and the reliable reset
capability);

– it showed the connection between the formal, abstract ioco theory and prac-
tical testing of the SUT, and gave advice how the test adapter should be
implemented to meet the testing hypothesis;

• Subsec. 8.2.1 differentiated the semantics of internal transitions τ along two dimen-
sions: whether τ is treated similarly to output, and whether τ transitions require
time. The dimensions influence how quiescence and τ -cycles are handled;
• Subsec. 8.2.5 gave a taxonomy of the kinds of nondeterminism involved in the ioco
theory, and how to resolve them for TCs, their generation and their execution;
• using our generalized formalisms from Chapter 3 led to more flexible or concise
definitions for test cases, their generation and their execution, with interchangeable
kinds of LTSs with I/O for SPEC and MOD without changing the ioco theory;
• besides the classical nondeterministic test case generation algorithm, a new deter-
ministic algorithm, genTS, was given. Both are described in detailed pseudocode.
genTS transfers concepts of SBMC to the ioco theory, especially exhaustiveness
thresholds (cf. Table 8.1);
• redundancy of test suites was reduced by the bounded deterministic test case
generation algorithm: for genTS(S, initSafterτ, ET ), no generated TC is larger than
the approximated exhaustiveness threshold ET or contains longest non-maximal
paths that are not faultable. The approximations use coverage criteria depending
on the given kind of fairness.
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8.9.3. Future
Possible future work includes:
• implement the differentiation of τ6 t vs. τt in S, and the combination of test case

generation algorithms with livelock detection, preferably DFSFIFO (cf. Subsec. 8.2.2
and Chapter 6);
• integrate special kinds of action refinement into our framework (cf. Subsec. 8.7.2),
especially with input refinement also covering determined output, and output con-
traction also covering determined input (cf. Note 8.41);
• investigate possible fault-tolerant approaches and failure recoveries to continue test
execution after reaching a failure state in the SUT (cf. Note 8.36);
• improving the approximations for the exhaustiveness thresholds, which might lead
to theoretical insights of exhaustiveness and its complexity. But this is less relevant
for our application of (lazy) OTF MBT with sets of test objectives (e.g., coverage
criteria) as exit criteria (cf. Chapter 11);
• parallelize our algorithms (cf. Listings 8.2 and 8.3): because a TC unwinds S into

a tree, work distribution can easily be implemented by state space partitioning (cf.
Subsec. 5.5.3) of the TC, e.g., using one worker thread per outgoing transition as
long as free worker threads are available. Besides speedup, parallelization also has
the advantage of supporting real-time behavior (cf. Subsec. 11.6.3).
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There are many subsets of MOD × SPEC besides ioco that are useful implementation
relations. Many have evolved from ioco, others were predecessors of ioco or evolved
independently [Tretmans, 2008]. This chapter introduces those which are relevant for
this thesis.

Roadmap. Sec. 9.1 generalizes the ioco relation as basis for variants of ioco, and gives
historical derivates. Sec. 9.2 investigates underspecification and the variant uioco, which
handles underspecification of input differently than ioco. Sec. 9.3 introduces the relation
refines, a generalization of ioco for refinement in software engineering. Sec. 9.4 describes
how ioco can be lifted from LTSs to STSs and symbolic ioco.

9.1. Generalized ioco Relation and Derivates

The ioco relation (cf. Def. 8.30) can be generalized by not determining F , the set of
Straces for which the input and output behavior of the modelM must conform to those
of the specification S. This results in Def. 9.1, which is the basis for many variations of
the ioco relation. Table 9.1 lists several variants of ioco that can be described as iocoF
by a specific F .

Definition 9.1. Let modelM∈ MOD, specification S ∈ SPEC , and F ⊆ L∗δ . Then M
iocoF S :⇔ ∀σ ∈ F :

outMτ∗δ(initM afterMτ∗δ σ) ⊆ outSτ∗δ(initS afterSτ∗δ σ)

Table 9.1.: Variants of ioco defined via iocoF and F
variant F description
≤ior L∗δ I/O refusal relation (Straces preorder)
≤iot L∗ I/O testing relation (tracesfin preorder)

ioconf tracesfin(Sτ∗ , initSτ∗ ) I/O conf relation
uioco Utraces (see Def. 9.3) underspecified ioco

Def. 9.2 generalizes the definition of soundness and completeness; all implementation
relations c listed in Table 9.1 have variants genc(·) of gen(·) as sound and exhaustive test
case generation algorithm [Tretmans, 1996; van der Bijl and Peureux, 2004; Tretmans,
2008; Frantzen, 2016]; ≤ior, ≤iot and ioconf give insights into implementation relations
and their history, uioco will be investigated in the next section.
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Definition 9.2. Let implementation relation c ⊆ MOD × SPEC .
Then soundness and exhaustiveness for c of a TC, TS, and test case generation algo-

rithm genc(·) are defined as in Def. 8.43, but with ioco replaced by c.

9.2. Underspecification and uioco
S ∈ SPEC is underspecified (also called partially specified) iff S is not input-enabled
or has underspecU (cf. Def. 8.65). More precisely, underspecification of input is a
generalization by omitting inputs in S, i.e., ignoring certain situations (like hazards):
the unspecified inputs i ∈ LI \ inSτ∗ (s) in state s ∈ S do not pose any conformance
conditions for ioco, i.e., the model M ∈ MOD may behave arbitrarily. Conversely,
underspecification of output is a generalization by allowing many nondeterministic
choices on output, i.e., giving more output in S than occurs in the model M [Fraser
et al., 2009]: the additional outputs u ∈ LU in state s result in more relaxed conformance
conditions for ioco in s. Sec. 9.3 will generalize underspecification in S by relating it to
another S ′ ∈ SPEC , not only to M ∈ MOD.
Nondeterminism of the LTS causes real superstates s̈. Consequently, input i of an

underspecified S with nondeterminism of the LTS can be underspecified in some, but
not all s ∈ s̈, i.e., ∃|s1, s2 ∈ s̈ : i ∈ inSτ∗ (s1) and i 6∈ inSτ∗ (s2). We say s̈ has irreg-
ular underspecification of input. Determinization of S (cf. Def. 8.16) includes any
input i ∈ inSτ∗ (s̈) as outgoing transition in superstate s̈, causing over-approximation if
i is irregular underspecified input. Using under-approximation for irregular underspeci-
fied input instead results in a different determinization Sudet and thus a different iocoF
relation named uioco, as defined in Def. 9.3, similar to [Frantzen, 2016].

Definition 9.3. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ). Then:

• in∩Sτ∗ : 2S \ {∅} → 2LI : s̈ 7→
⋂
s∈s̈
inSτ∗ (s)

•Sudet := (Sudet,−→ud , Lδy) ∈ LT S(LI , LU , δy), with
Sudet := 2S−→

ud
∗ ;

initSudet := initS afterSτ∗δ τ ;
−→
ud

:=
{
(s̈, l, ∪

s∈s̈
destSδτ∗ (s,

l=⇒))
∣∣ s̈ ∈ Sudet, l ∈ outSτ∗δ(s̈) ∪̇ in∩Sτ∗ (s̈)};

•UtracesSτ∗δ := tracesfin(Sudet, initSudet);
•uioco := iocoF with F = UtracesSτ∗δ .

We drop the index if it is clear from the context.

Defining uioco via Sudet resembles the usual implementations of the on-the-fly test
case generation algorithms for uioco. Since the definition of iocoF does not consider the
states in Sudet, but only the derived Straces (cf. Sec. 8.3), UtracesSτ∗δ can be defined
without the use of Sudet by defining the under-approximation directly on Straces, i.e.,
excluding irregular underspecified input, resulting in Def. 9.4. Since this is how other lit-
erature [Tretmans, 2008; Volpato and Tretmans, 2013; Frantzen, 2016] defines uioco, it is
also included in this thesis. The definition also shows that Utraces ⊆ StracesSτ∗δ(initS),
and hence that uioco is weaker than ioco.
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Definition 9.4. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ) and s ∈ S. Then:

•UtracesSτ∗δ(s) :=
{
σ ∈ StracesSτ∗δ(s)

∣∣ ∀σ1, σ2 ∈ L∗δ ∀i ∈ LI :(
σ = σ1 · i · σ2 ⇒ i ∈ in∩Sτ∗ (s afterSτ∗δ σ1)

)}
(called underspecified suspension traces)

•uioco := iocoF with F = UtracesSτ∗δ(initSτ∗δ).

Notes. Utraces can also be defined directly for superstates in an on-the-fly manner:
UtracesSτ∗δ : 2S \ ∅ → L∗δ , s̈ 7→

{
ε
}
∪̇
{
uδ · σ ∈ Straces(s̈)

∣∣ uδ ∈ out(s̈), σ ∈
UtracesSτ∗δ(s̈ after uδ)

}
∪̇
{
i · σ

∣∣ i ∈ in∩(s̈), σ ∈ UtracesSτ∗δ(s̈ after i)
}
.

uioco differs from ioco by dropping all constraints on Straces the moment irregular
underspecified input is encountered. This can also be achieved by demonic completion
(cf. Subsec. 8.2.6): the originally irregular underspecified input now leads to chaos χ,
making the Strace and its extensions no longer faultable, so considering them becomes
unnecessary. Therefore, uioco can be implemented by demonic completion and ioco.
Since ioco uses over-approximation, a path in Sdet that traverses an irregular under-

specified input i in s̈ can be considered as filtering out all s ∈ s̈ with i 6∈ in(s). This
might seem unintuitive since Sdet did allow those s to be in s̈. But since the SUT is a
black-box, the superstates created during traversal of S are irrelevant for the SUT and
its correctness (cf. Sec. 8.3). So filtering does not cause a problem for the SUT.
If the SUT is not completely black-box and S reflects the structure of the SUT (e.g.,

when S is not too abstract and used as blueprint when developing the SUT), the SUT
can be considered as being in a state corresponding to some s ∈ initS after σ for the test
run σ. In this case, filtering s would require the SUT to backtrack from dead ends, i.e.,
undo the resolution of nondeterminism of the LTS leading to s. But fortunately, choices
of nondeterminism of the LTS that lead to dead ends can be avoided by making these
choices lazily, i.e., merging all paths that correspond to one trace, and only diverge when
the difference becomes apparent. This corresponds to determinization with either Sdet
or Sudet.
In summary, ioco and uioco are equally expressive, as the implementation via deter-

minization or demonic completion have shown. But a specification that has irregular
underspecified input and under-approximation might be a simpler description of some
system and hence more understandable.

9.3. Underspecification and refines
The iocoF relations only state an explicit constraint on outputs, but not on inputs. As
implicit constraint, the SUT and the corresponding model must be input-enabled, so that
all inputs from TCs can be handled by the SUT. Since only the specified inputs occur in
the TCs, input-enabledness can be relaxed, which results in a generalized implementation
relation: a relation that gives similar constraints for input and output and can be used
for refinement (cf. Sec. 3.7, Subsec. 8.7.2, Sec. 14.2). As before, output on F that occurs
in the modelM∈ MOD must also be specified, i.e., must also occur in S ∈ SPEC . But
now, only the input on F that occurs in S must also occur inM, leading to the relation
refinesF defined in Def. 9.5. It is an endorelation over SPEC and thus a candidate for
hierarchical refinements.

229



9. Variants of ioco

Definition 9.5. Let specifications S ′,S ∈ SPEC and F ⊆StracesS′
τ∗δ
∩ StracesSτ∗δ .

Then
• S ′refinesF S :⇔ ∀σ ∈ F :
outS′

τ∗δ
(initS′ afterS′

τ∗δ
σ) ⊆ outSτ∗δ(initS afterSτ∗δ σ) and

inS′
τ∗

(initS′ afterS′
τ∗δ

σ) ⊇ inSτ∗ (initS afterSτ∗δ σ);
• S ′refines S :⇔ S ′refinesStracesS′

τ∗δ
∩StracesSτ∗δ

S.

S ′refinesFS directly relates to underspecification (cf. Sec. 9.2), but now to another
S ′ ∈ SPECIF , not only to M ∈ MOD:
• out(initS′ after σ) ( out(initS after σ) occurs at least for underspecification of
output in S in relation to S ′;
• in(initS′ after σ) ) in(initS after σ) is caused by underspecification of input in S
in relation to S ′.

Lemma 9.6 shows that refines is a generalization of ioco that drops the requirement
of input-enabledness.

Lemma 9.6. refines subsumes ioco: ∀M ∈ MOD ∀S ∈ SPEC : MiocoS ⇔MrefinesS.

Proof. Since M ∈ MOD, f.a. S ∈ SPEC f.a. σ ∈ F , we have inMτ∗ (initM afterMτ∗δ σ) =
LI ⊇ inSτ∗ (initS afterSτ∗δ σ). Without the condition on in(·), the definitions of refines
and ioco are identical.

Refinement is very helpful for software engineering: Using abstract specifications and
refinement makes MBT more lightweight and flexible; the refinement hierarchy enables
MBT to lazily introduce details, which is required for iterative software development (cf.
Sec. 14.2). Lemma 9.8 and Corollary 9.9 show that refines can construct a refinement
hierarchy for conformance.

Lemma 9.7. Let S ′′,S ′,S ∈ SPEC with S ′′refines S ′refines S.
Then StracesSτ∗δ ∩ StracesS′′

τ∗δ
⊆ StracesS′

τ∗δ
.

Proof. Let σ ∈ StracesSτ∗δ ∩ StracesS′′
τ∗δ

. Assuming that σ 6∈ StracesS′
τ∗δ

, there is a
longest prefix σ1 of σ that is in StracesS′

τ∗δ
and thus in StracesSτ∗δ ∩ StracesS′′

τ∗δ
∩

StracesS′
τ∗δ

. Since S ′′ refines S ′, σ = σ1 · i · σ2 for some i ∈ LI and σ2 the remaining
suffix of σ. Since S ′ refines S, σ = σ1 · uδ · σ3 for some uδ ∈ LU ∪̇ {δ}, leading to a
contradiction.

Lemma 9.8. refines is reflexive and transitive; on SPEC/ ≈Straces, refines is a partial
order.

Proof. Reflexivity of refines on SPEC is inherited from the subset relations used in
Def. 9.5.
For transitivity of refines on SPEC , let S ′′,S ′,S ∈ SPEC with S ′′refines S ′refines
S. To show S ′′refinesS, let σ ∈ StracesS′′

τ∗δ
∩ StracesSτ∗δ . Lemma 9.7 shows that σ ∈

StracesS′′
τ∗δ
∩StracesS′

τ∗δ
∩StracesSτ∗δ . Therefore in(initS′′ after σ) ⊇ in(initS′ after σ) ⊇

in(initS after σ) and out(initS′′ after σ) ⊆ out(initS′ after σ) ⊆ out(initS after σ).
For antisymmetry of refines on SPEC/ ≈Straces, let S ′,S ∈ SPEC with S ′refinesS

refinesS ′refinesS; applying Lemma 9.7 left-aligned and right-aligned yields StracesS′
τ∗δ
⊆
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StracesSτ∗δ and StracesSτ∗δ ⊆ StracesS′
τ∗δ

, so S ′ ≈Straces S. Since refines does not
consider states, but only the derived Straces of the specification (cf. Sec. 8.3), reflexivity
and transitivity of refines are invariant under ≈Straces and refines is a partial order on
SPEC/ ≈Straces.

Corollary 9.9. Let S ′,S ∈ SPEC and M ∈ MOD.
Then M ioco S ′ refines S implies M ioco S.

Proof. Lemma 9.6 shows that MrefinesS ′, Lemma 9.8 that MrefinesS, and Lemma 9.6
that MiocoS.

Therefore, refines enables a refinement hierarchy in model-based testing for ioco: With
the hierarchy Smaxrefines . . . refinesS2refinesS1, checking ioco for Smax subsumes check-
ing ioco for all Si.
Example 9.10 shows a refinement from the domain of web services. Sec. 14.2 shows an

application of refinement in agile software development, where S1 replaces user stories
and is used for communication, to give an overview and as basis for refinements. Smax is
sufficiently detailed for deriving abstract test cases that can easily be mapped to concrete
test cases.

Example 9.10. Fig. 9.1 shows (an abstract part of) a refinement hierarchy for web
services managing licenses, taken from WIBU SYSTEM AG’s License Central (cf.
Subsec. 14.3.1 and [URL:LC]), which is from the domain of service-oriented architecture
(SOA). It shows that Fig. (d) refines Fig. (c) refines Fig. (b) refines Fig. (a) and Fig. (c)
refines Fig. (a).

Just as refines generalizes ioco, urefines generalizes uioco, as defined in Def. 9.11.

Definition 9.11. Let specifications S ′,S ∈ SPEC and F ⊆UtracesS′
τ∗δ
∩ UtracesSτ∗δ .

Then

S ′urefinesS :⇔ ∀σ ∈ F :
outS′

τ∗δ
(initS′ afterS′

τ∗δ
σ) ⊆ outSτ∗δ(initS afterSτ∗δ σ) and

in∩S′
τ∗

(initS′ afterS′
τ∗δ

σ) ⊇ in∩Sτ∗ (initS afterSτ∗δ σ);

Lemmas 9.6, 9.7 and 9.8 and Corollary 9.9, as well as their proofs, can be transferred
from refines to urefines by replacing every occurrence of Straces by Utraces, every ioco
by uioco, and every in(·) by in∩(·).

Notes. Several variants of urefines are possible, which treat irregular underspecifica-
tion of input differently. urefines’s original condition on inputs, in∩(initS′ after σ) ⊇
in∩(initS after σ), poses no conditions on irregular underspecified input. Depending on
the use of urefines, exemplary alternative conditions are:
• in∩(initS′ after σ) ⊇ in∩(initS after σ) and in(initS′ after σ) ⊇ in(initS after σ);
• faultable(in∩(initS′afterσ)) ⊇ faultable(in∩(initSafterσ)), where i ∈ faultable(in∩(

initS′afterσ)) iff (i ∈ in∩(initS′afterσ) and σ·i ∈ faultable(UtracesS′
τ∗δ

) (see related
work below);
• consider input subsets not for s̈ ∈ Sdet, but for each s ∈ s̈ (e.g., by additionally
counting the states in which some irregular underspecified input i is enabled);
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Sales
LoggedIn

input:generateLicense. 
[true]{}

output:generateLicense 
returnCode:String.
[ ] {}returnCode!=“ok“

output:generateLicense 
ID:String, returnCode:
String.[returnCode=“ok“]
{}

generateLicenses
Requested

Error

(a) Abstract specification of WS gener-
ateLicense

Sales
LoggedIn

input:generateLicense. 
[true]{}

output:generateLicense 
returnCode:String.
[ ] {}returnCode!=“ok“

output:generateLicense 
ID:String, returnCode:
String.[returnCode=“ok“]
{}

generateLicenses
Requested

Error

input:showLicenses. 
[true]{}

showLicenses
Requested

output:showLicenses
licenses License[], returnCode:
String.[returnCode=“ok“]{}

output:showLicense 
licenses License[], 
returnCode:String.
[returnCode!=“ok“] {}

(b) refines (a) by adding input for WS
showLicenses

Sales
LoggedIn

input:generateLicense. 
[true]{}

output:generateLicense 
returnCode:String.
[ ] {}returnCode!=“ok“

output:generateLicense 
ID:String, returnCode:
String.[returnCode=“ok“]
{ }licenseCount++

generateLicenses
Requested

Error

input:showLicenses. 
[true]{

}
displayed:=maxPortion,

pageNo:=0
showLicenses
Requested

output:showLicenses
licenses License[], returnCode:
String.[
           returnCode=“ok“ ]{ }

licenseCount<=displayed &&
pageNo++

output:showLicense 
licenses License[], 
returnCode:String.
[ ] {}returnCode!=“ok“

moreLicenses

output:showLicenses licenses 
License[], returnCode: String.
[licenseCount>displayed &&
returnCode=“ok“]{pageNo++}

input:showLicenses.[true] 
{displayed+=maxPortion}

(c) Different functionality (with pag-
ination) for showLicenses, thus
refines (a) but not refines (b)

Sales
LoggedIn

input:generateLicense. 
[true]{}

output:generateLicense 
returnCode:String.
[ ] {}returnCode=“exc“

output:generateLicense 
ID:String, returnCode:
String.[returnCode=“ok“]
{ }licenseCount++

generateLicenses
Requested

Exception

input:showLicenses. 
[true

}
]{displayed:=maxPortion,

pageNo:=0
showLicenses
Requested

output:showLicenses
licenses License[], returnCode:
String.[

}
licenseCount<=displayed &&

           returnCode=“ok“ ]{pageNo++

output:showLicense 
licenses License[], 
returnCode:String.
[ ] {}returnCode=“exc“

moreLicenses

output:showLicenses licenses 
License[], returnCode: String.
[licenseCount>displayed &&
returnCode=“ok“]{pageNo++}

input:showLicenses.[true] 
{displayed+=maxPortion}

Timeout

output:showLicenses 
licenses License[], 
returnCode:String.
[returnCode=“Timeout“] {}

(d) refines (c) by removing output for re-
fined exception handling

Figure 9.1.: Exemplary refinement hierarchy for web services managing licenses

• disallow irregular underspecified input.

Which variant of urefines is most suitable depends on the application of refinement.
For instance, for iterative software development processes, the original definition of
urefines is most suitable to achieve the highest flexibility (cf. Sec. 14.2). For robust-
ness testing, disallowing irregular underspecified input is most suitable for a final re-
finement step that adds a minimum robustness specification to formalize robust behav-
ior [Shahrokni and Feldt, 2011] (e.g., fully input-enabled and according to the CRASH
scale [Jr. et al., 1997; Kropp et al., 1998]) in each state. Investigating these variants of
urefines is future work.

The next subsection depicts three variants of how refines and urefines can be imple-
mented, and presents one such implementation. Subsec. 14.2 will show an application
of refines.
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9.3.1. Implementation

refines (resp. urefines) on specifications (cf. Sec. 9.3) can be implemented in several
ways:
• programmatically: one possibility would be to extend an existing API for model-
ing a specification S [Veanes et al., 2008; Frantzen, 2007; Larysch, 2012]. Since
such programmatic S can become difficult to understand and maintain if they are
large, the API should have high usability by following the fail fast principle (i.e.,
perform early consistency checks and halt on inconcistencies [Gray, 1986; Bloch,
2006]) and concise (e.g., as a domain-specific language (DSL) or at least fluent
interface [Fowler, 2010]). Then a simple call of e.g., S.refinedBy() could return
S wrapped, indicating a refinement and disallowing the addition of output and
restriction of input. A DSL for STS specifications in the JTorX domain has al-
ready been implemented as a small proof of concept [Larsen et al., 2011]; a larger
implementation is planned, so its simple extension with refineBy() is future work;
• in a graphical user interface: the larger implementation via the DSL is planned
with Xtext [URL:XTEXT; Bettini, 2013], which is capable to generate a graphical
editor for the DSL. Once it is available, the editor can be extended with a simple
refinement mode which forbids the addition of output and restriction of input. As
the editor is not yet available, its extension is future work;
• checking refines (resp. urefines) between two given specifications: Since this ap-
proach does not enforce refines (resp. urefines) during the creation of the speci-
fications, it is the weakest solution. Since it is the simplest implementation and
independent of the planned DSL implementation, this solution is chosen in this
thesis.

To implement checking refines and urefines, the iocoChecker [URL:JTorX; Belin-
fante, 2010; Frantzen, 2016] was extended: The iocoChecker constructs Sδτ∗ ||Mδτ∗ for
given S ∈ SPEC and M ∈ MOD (e.g., because Ssim S is used). Having insight into both
S and M, already visited states can be detected, so loops can be avoided, and a kind
of DFS can be performed, resulting in a worst case time complexity of O(|Sδτ∗ ||Mδτ∗ |)
and a worst case space complexity linear in the number of states of Sδτ∗ ||Mδτ∗ (cf. Sub-
sec. 5.3.2). So if both S and M are finite, then Sδτ∗ ||Mδτ∗ is finite, and the construction
terminates. During the construction, the output constraints of ioco can be checked (cf.
Def. 8.30), so the iocoChecker is a sound and complete algorithm to check ioco if both
S and M are given and finite. Checking uioco alternatively (cf. Sec. 9.2) is also possible.
The checks could also be integrated into another DFS-based algorithm that traverses
S (e.g., LazyOTF from Chapter 11), leading to an efficient on-the-fly implementation of
the iocoChecker with heuristics for large S and M.
For refines and urefines, the iocoChecker was adapted by checking the corresponding

constraints on inputs and outputs (cf. Def. 9.5 and Def. 9.11) and only traversing the
corresponding Straces ∈ F . Furthermore, the JTorX GUI was extended slightly and
failures caused by inputs were allowed (by generalizing the FailureSituation class).

refines cannot, however, be checked as an endorelation over SPEC with a sound and
exhaustive black-box test case generation algorithm, since invalid inputs would have to
be refutable by the refining specification in a black-box manner, leading to some kind of
input completion (cf. Sec. 8.1); this results in ioco checking (cf. Cor. 9.9).
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9.3.2. Related Work

The closest related work is [Volpato and Tretmans, 2013], which introduces the relation
wioco on SPEC as generalization of uioco. wioco is similar to refines: it introduces the set
Rtraces of reduced, i.e., non-redundant, Utraces. So wioco corresponds to urefinesRtraces,
or the condition faultable(in∩(initS′ after σ)) ⊇ faultable(in∩(initS after σ)) (cf. note
above, which it inspired). wioco is not inteded for refinement in software engineering,
but for transforming the specification to reduce the set of TCs that are generated by a
sound and exhaustive test case generation algorithm. Similarly to the ioco theory not
including test selection heuristics, the wioco theory only offers the formalism for such
transformation, but does not offer heuristics or practical applications. The formalism,
however, is quite promising since it lifts test selection to the specification level in a clean
way (roughly similar to Subsec. 8.8.4).
Alternating simulation (cf. Subsec. 10.3.4) is similar to refines and to wioco [Alur

et al., 1998; Volpato and Tretmans, 2013], but it does not handle quiescence.
Action refinement (cf. Subsec. 8.7.2 and [van der Bijl et al., 2005]) and refines are not

comparable: action refinement operates on traces, performs one refinement step, and is
a lossless abstraction, refines operates on specifications, offers a refinement hierarchy,
and is lossy.

9.4. Symbolic Transition Systems and sioco

For test case generation, specially in the domain of model-based testing, a specification
is often described with an STS (cf. Subsec. 3.4.3 and Fig. 9.1). Similar to LTSs in
Chapter 8, input and output is discriminated with L = LI ∪̇ LU ∪̇ {τ}, type(τ) = ∅,
i ∈ LI called input gate, and u ∈ LU called output gate. This results in a symbolic
transition system with inputs and outputs (shortly STS with I/O).
Then model-based testing can be applied for STSs by expanding them to LTSs ac-

cording to their defined semantics (cf. Def. 3.31). The alternative to pushing STSs down
to the level of LTSs is to lift all artifacts to the symbolic level:
• a model M ∈ MOD to an input-complete initialized STS with I/O Ms;
• a set F ⊆ Straces to a set of symbolic extended traces Fs;
• TCs to symbolic TCs;
• ioco to sioco, such that MssiocoFsS directly on an STS with I/O S is equivalent

to checking [[(Ms)V0
M

]]ioco[[(Fs)V0
S

]][[SV0
S
]].

The exact definitions of these symbolic artifacts are given in [Frantzen et al., 2006;
Frantzen, 2016], with some variation also in [Rusu et al., 2000], and are not elaborated
here since this thesis conducts model-based testing mainly on the level of LTSs.
The advantage of model-based testing on the level of STSs are:
• the STSs comprise more information: variables not only help describe the specifi-
cation S concisely (cf. [Rusu et al., 2000]), they also preserve the structure of the
data and partition all states (resp. transitions) of [[S]] into classes of semantically
related states (resp. transitions), i.e., all instantiated states (resp. transitions)
of an abstract state (resp. transition). This partition can be used for coverage,
heuristics (test goals and test objectives, cf. Subsec. 11.2.4) and increased usability
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for the feedback to the test engineer. By giving heuristics applied on the level of
LTSs access to the artifacts of the original STS, all this information can, however,
be reconstructed;
• if those classes become large (e.g., infinite), using abstract states and abstract tran-
sitions instead of expanding the artifacts helps cope with the state space explosion
and can sometimes handle infinitely branching specifications.

The advantage of model-based testing on the level of LTSs are:
• symbolic artifacts are more complex (cf. [Frantzen, 2016]);
• computations over those artifacts is more complex, e.g., processing nondetermin-
ism (cf. Sec. 13.4), heuristics such as weights (cf. Subsec. 12.3.4), and sioco (cf.
[Frantzen, 2016]);
• hence STSimulator and JTorX (the model-based testing tools extended in this
thesis, cf. Subsec. 10.3.3 and Subsec. 13.2.1) expand STSs to perform model-based
testing on the level of LTSs.

Therefore, this thesis performs model-based testing on the level of LTSs. Sec. 13.4
depicts a proof of concept that model-based testing can be lifted to the level of STSs,
including LazyOTF (cf. Chapter 11).
STSs can describe the behavior of the SUT and requirements on several levels of

abstraction, so they are helpful for refinement (cf. Fig. 9.1). Underspecification of output
can now also be performed by strengthening guards on output transitions. Conversely,
underspecification of input can also be performed by relaxing guards on input transitions.

9.5. Conclusion
9.5.1. Summary
This chapter generalized the ioco relation to the iocoF relation and briefly introduced
derivates of ioco that are based on iocoF , especially the relations uioco and sioco. Fur-
thermore, this chapter covered underspecification and the refines relation.

9.5.2. Contributions
The main contribution of this chapter is in Sec. 9.3: devising, investigating and imple-
menting the refines relation, a generalization of ioco for refinement.

9.5.3. Future
Possible future work for supporting refines and urefines is creating a fail-fast fluent
API or DSL for programmatic modeling of specifications (cf. Sec. 9.3) and adapting a
graphical editor accordingly.
Investigate the practical use of variants of urefines, especially for robustness tests (cf.

Sec. 9.3), is also interesting future work.
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10.1. Introduction
10.1.1. Motivation
Model-based testing (MBT) [ETSI, European Telecommunications Standards Institute,
2011; ISTQB, 2013] is a lightweight FM for checking whether an SUT S conforms to a
specification S (e.g., according to ioco) under a specific condition (e.g., a test purpose)
using test case generation, which is based on formal methods. Optionally, MBT also
covers test case execution.
Compared to more heavyweight FMs, MBT has the advantage of being more feasible

because of weaker state space explosion (cf. Chapter 7), and it incorporates functional
black-box testing, which executes and inspects the real system. Applying black-box
testing and sufficiently general formalisms, MBT is applicable for the hardware and
embedded domain, too: The SUT is tested by simulating its complete environment by
MBT, resulting in hardware-in-the-loop (HIL) or software-in-the-loop (SIL) simulation,
respectively (cf. [Bringmann and Krämer, 2008]). MBT additionally has the advantage
of being an extension to classical testing, which industry is familiar with. These advan-
tages also show in the certification of safety-critical software, and their tool qualification
(cf. Subsec. 1.1.3): even though formal methods might be the primary source of evi-
dence for the satisfaction of many of the objectives concerned with development and
verification [DO178C Plenary, 2011; Dross et al., 2011], testing will always be part of
the certification process and FMs do net get adopted broadly in industry [Hunt, 2011].
Thus MBT is a suitable advent of FMs in safety-critical software development in indus-
try [Peleska, 2013], as well as in their certification and tool qualification [Huang et al.,
2013; DO-330 Plenary, 2011].
Compared to classical testing, MBT is more efficient and flexible, less error-prone, and

achieves higher coverage (cf. Subsec. 2.5). Furthermore, maintenance is reduced since
not the test cases need to be adapted for change, only the specification, which is more
concise. This advantage is very important for regression testing because over time, many
changes in the SUT that affect many TCs become necessary. In MBT, a small change
in the specification is usually sufficient, upon which the new test suite can be generated
automatically. Conciseness of the specification also leads to higher understandability
compared to the TS [Weißleder, 2009].
Thus MBT is in the sweet spot between testing and FM: a real mix of both, sufficiently

formal to completely specify the behavior of the system and automatically generate
test cases, but still sufficiently lightweight to execute the real system, stay feasible and
understandable for industrial personnel, and applicable for current certification.

10.1.2. Model-based Testing
Def. 10.1 defines model-based testing in a formal but general way.
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Definition 10.1. Let S ∈ SPEC be a system specification, o some kind of condition or
objective selecting what aspects should be tested, and c a fixed implementation relation
in MOD × SPEC determining what conformance between the SUT and S is checked. If
test case execution is performed, the SUT S ∈ SUT must also be given.
Then model-based testing (MBT) for c derives from S and o a sound TS T̈ ∈
T T S(LI , LU , δ) that meets the aspects described by o and helps to check whether the
SUT conforms to S according to c. Optionally, T̈ is executed and evaluated on the given
SUT S ∈ SUT , with M ∈ MOD being a corresponding model according to the testing
hypothesis; then verdicts in verdM(T) are derived for all T ∈ T̈, .
Within the domain of the ioco theory, Listing 10.1 determines the input, output and

contracts for MBT. The names MBTexec, respectively MBT exec , make explicit whether
test case execution is performed. ForMBTexec, the parameter S ∈ SUT is given implicitly
if it is not relevant (e.g., in Def. 10.3).

1// PRE: S is a well-formed system specification in SPEC (or
2// description thereof); o is some kind of condition or objective
3// selecting what aspects should be tested;
4// POST: MBT exec (S, o) gives as result a finite TS 2T T S(LI ,LU ,δ),
5// according to Def. 10.1;
6// if MBT exec (S, o) does not terminate, it iteratively creates the
7// TS according to Def. 10.1 by recurrently outputting a TC in
8// T T S(LI , LU , δ).
92T T S(LI ,LU ,δ) MBTexec (S, o)
10

11// PRE: S is a well-formed system specification in SPEC (or
12// description thereof); o is some kind of condition or objective
13// selecting what aspects should be tested;
14// SUT S ∈ SUT ;
15// POST: MBTexec(S, o,S) gives as result a finite TS with verdicts
16// for each TC, 2(T T S(LI ,LU ,δ)×V), according to Def. 10.1;
17// if MBTexec(S, o,S) does not terminate, it iteratively creates the
18// TS according to Def. 10.1 by recurrently outputting a TC in
19// T T S(LI , LU , δ) with a corresponding verdict in V.
202(T T S(LI ,LU ,δ)×V) MBTexec (S, o,S)

Listing 10.1: Contracts for model-based testing for c

So if c = ioco, MBT implements ioco’s test case generation. For this, MBT can
use variations of genTC (cf. Subsec. 8.8.2 and Subsec. 10.3.3) or variations of genTS (cf.
Subsec. 8.8.3 and Chapter 11). MBTexec additionally performs the test execution defined
in the ioco theory. This thesis focuses on ioco, but other implementation relations are
also possible.
Notes 10.2. If no specific aspect or condition should be tested, o can be omitted, i.e.,
be the empty set or the condition true to make no restrictions. Then, either all test
cases, or a random selection is chosen.
In rare cases, the term “MBT” is also used for deriving TCs manually with the use

of models (e.g., via the UML Testing Profile [Lamancha et al., 2009]). We exclude this
meaning, since the term “model-oriented testing” comprises this [Roßner et al., 2010].
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Def. 10.3 adapts the general Def. 8.43 of sound and exhaustive test case generation
algorithms to MBT. Like many other literature, this thesis demands MBT to be com-
putable and sound, but not necessarily exhaustive. In fact, exhaustive MBT is usually
not possible due to combinatorial explosion in the possible test steps (leading to O(2(2|S|))
many TCs for |S| many states in S if an exhaustiveness threshold exists, cf. Table 8.1),
sometimes called test case explosion [Mlynarski et al., 2012]. Inexhaustive MBT may,
however, miss faults hidden deeply in the system or in corner cases. Thus this thesis will
improve MBT’s feasibility via the new method LazyOTF (cf. Chapter 11) and guidance
heuristics (cf. Chapter 12).

Definition 10.3. Let MBT be an MBT method for the implementation relation c, either
MBT exec or MBTexec. Then we call:

MBT sound :⇔ ∀ testing conditions o : MBT(·, o) is sound;
MBT exec exhaustive :⇔ MBT exec (·, true) is exhaustive;
MBTexec exhaustive :⇔ MBTexec(·, true, ·) is exhaustive.

Notes. The SUT S ∈ SUT can be given implicitly for the soundness of MBTexec since
this thesis only considers MBT methods where S only influences the verdicts and test
selection, but not the rules how test cases are constructed (cf. Chapter 8).
A TS in 2T T S(LI ,LU ,δ) × V, i.e., with verdicts for each TC, is exhaustive iff the same

TS, but without those verdicts, is exhaustive.
This thesis only considers computable MBT, though MBT exec that never terminates

and recurrently outputs a TC with a verdict can implement a computably enumerable,
i.e., semi-decidable, MBT method. For finite S (and S following the testing hypothesis),
MBT exec terminates with probability 1.

10.1.3. Roadmap

Sec. 10.2 gives classifications of MBT, especially about the interplay between test gen-
eration and test execution. Sec. 10.3 describes the tools TGV, TorX and JTorX, and
shortly other tools.

10.2. Classification of MBT
Since MBT is a wide field, many techniques and tools exist that vary in several aspects:
• the kind of properties being tested (cf. Subsec. 10.2.1);
• the kind of test selection o (cf. Subsec. 10.2.2);
• the applied test generation technology (cf. Subsec. 10.2.3);
• the interplay between test generation and test execution (cf. Subsec. 10.2.5);
• the kind of system specifications (cf. Subsec. 10.2.6);
• the kind of test cases (cf. Subsec. 10.2.4);
• the kind of SUTs (cf. Subsec. 8.1.2);
• how detailed the SUT and its environment are specified (cf. Subsec. 10.2.7 and
Chapter 2);
• whether S is also used for the development of the SUT.
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This enumeration generalizes the taxonomy of MBT given in [Utting et al., 2006] by
additionally distinguishing the kind of properties, test cases and SUTs.

10.2.1. The Kind of Properties
Various properties are checked by MBT. Usually, these properties originate from a speci-
fication from some level of the V-model (cf. Sec. 2.4), ranging from requirements down to
unit design. These properties are mainly still safety properties and checked dynamically;
but some are liveness properties (cf. Sec. 4.2.2, Chapter 6, Subsec. 8.2.2, and [Bérard
et al., 2001; Fraser and Wotawa, 2006; Yi et al., 2004; Bérard et al., 2013]) and checked
within the specification.
For non-functional testing, the properties are usually robustness or performance re-

lated. But the focus is mostly functional testing, ranging from general conformance test-
ing to testing specific behavioral properties. For conformance testing (cf. Chapter 8), the
implementation relation c determines how the conformance between the system specifi-
cation and SUT is being checked.
For functional testing, MBT can check only safety properties, no liveness properties

(cf. Sec. 4.2): Since a failing TC in dynamic black-box testing corresponds to a coun-
terexample with a prefix causing refutation (cf. Def. 4.9), there exists no TC T that
can check a liveness property P (i.e., such that T fails iff P is not met). We partition
safety properties into two classes depending on their complexity: the simpler class, called
reachability properties, contains properties where some counterexample must simply
reach a state from a given set of states.
The property being checked also influences the kind of test selection, o (cf. next sub-

section).

10.2.2. The Kind of Test Selection
Various kinds of directives o can be used to select a subset of all possible TCs, which is
important due to frequent test case explosion.
The classical test selection directives (cf. Subsec. 12.3.1) are random selection, coverage

criteria (cf. Sec. 2.5) and test purposes, which are behavioral descriptions of a particular
functionality to be tested [Bertrand et al., 2012; Jard and Jéron, 2005; Belinfante, 2014],
usually specified by similar structures as the specification, e.g., LTSs, but often described
via regular expressions (cf. Sec. 10.3 and Subsec. 12.3.1). Mixtures of these are also
possible. For test selection with better guidance, this thesis introduces test objectives
(cf. Subsec. 11.2.4).
Which subsets of all TCs are good test selections depends on the kind of SUT and

the bugs it contains, which are unknown in advance for black-box testing. Hence test
selection directives are heuristics, which are investigated in Chapter 12.

10.2.3. Test Generation Technology
Def. 10.1 shows that test generation must meet the criteria of c and o, for which various
techniques can be applied:
• formal methods based on model checking techniques (cf. Sec. 10.3, [Holzmann,
1992; Engels et al., 1997; Fraser and Wotawa, 2007; Fraser et al., 2009]), especially
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graph traversal algorithms similar to explicit state MC (cf. Chapters 5 and Chap-
ters 6). Usually, trap properties are employed, to force the MC to generate the
desired paths. To model the criteria of c and o, the specification might have to be
extended by variables, called trap variables [Hamon et al., 2004, 2005];
• deductive verification (cf. [Brucker and Wolff, 2013; Engel et al., 2008; Beckert
et al., 2011]);
• constraint solving, e.g., via SMT (cf. Subsec. 10.3.3, Subsec. 13.4, [Grieskamp
et al., 2009; Carlier et al., 2013]);
• search-based software testing (cf. Subsec. 12.3.1, [Ali et al., 2010]),
• the simpler technique of user interaction (cf. Subsec. 10.3.3, [Zander et al., 2011;
Utting et al., 2006]);
• the simpler technique of randomness (cf. Subsec. 10.3.2, [Belinfante, 2010; Ciupa
et al., 2011; Oriol and Ullah, 2010; Belinfante, 2014]), which yields randomized
algorithms [Motwani and Raghavan, 1995].

More details about the various test generation technologies can be found in [Broy et al.,
2005; Utting et al., 2006; Utting and Legeard, 2007; Weißleder, 2009]. Nowadays, most
tools employ multiple techniques: For instance JTorX for STSs uses constraint solving
and randomness, LazyOTF in Chapter 11 will use constraint solving for STSs, MC-like
algorithms, heuristics from search-based software testing, and some randomization.

10.2.4. The Kind of Test Cases

The kind of test cases, i.e., their structure and formalisms for representation, depend
strongly on the other aspects of the MBT taxonomy, especially the interplay between
test generation and test execution, the kind of system specification and the kind of
test selection. Since test cases play a major role in MBT and their kind is not fully
determined by the other aspects, this thesis adds the kind of test cases as another aspect
to the MBT taxonomy.
TCs determine what kind of verdicts can occur (cf. Sec. 2.4). TCs have a trade-off

between expressiveness and memory requirement. Therefore, this thesis defines the test
case complexity in Def. 10.4. Analogously to most of this thesis’s complexities in Landau
notation, test case complexity is only a rough estimate, especially due to heuristics (cf.
Subsec. 10.2.5).

Definition 10.4. Let tcurr ∈ N>0 be the number of test steps that have been executed
on the SUT so far (alternatively the number of executable test steps, i.e., the TCs must
be able to execute at least tcurr test steps).
Then the worst case test case complexity is the worst case size of the TCs required

for executing tcurr test steps.

The main three kinds of TCs are:
• paths, which correspond to linear TCs: for systems with uncontrollable nonde-

terminism, they only represent one resolution and can thus lead to the verdict
inconclusive during classical test execution if the SUT’s resolution of uncontrollable
nondeterminism diverges from the TC (sometimes called path divergence [Anand
et al., 2013]). In such a case, the expressiveness of the TCs is very low. But the
TCs only have a worst case test case complexity of O(tcurr);
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• graphs, e.g., G = (S,→, L) ∈ LT S(LI , LU ) in the ioco theory: the probability of
inconclusive verdicts depends on how much of the uncontrollable nondeterminism
is covered by G. If G does not perform any unwinding of S, i.e., does not construct
parts of its computation tree, the worst case test case complexity is independent of
tcurr : O(|Sdet|), which is in O(2|S|). If G allowed multiple inputs for a state, they
would need to be resolved during testing, leading to on-the-fly MBT (see below).
Allowing only one input per state leads to an inexhaustive TS or a TS that contains
exponentially many graphs. Furthermore, G cannot make a distinction during test
execution between different paths leading to the same state in G. Unwinding paths
instead leads to the next item;
• trees, e.g., T ∈ T T S(LI , LU , δ) in the ioco theory: Since each state of T represents
a unique path through the tree, their expressiveness is highest, but their worst
case test case complexity is O(branchtcurr

T ), but much lower if T is degenerated.
Chapter 11 will therefore use degenerated trees (which are lists modulo trees of a
given depth).

Notes. If the TC does not allow the verdict inconclusive, the test case complexity is a
measure for how efficiently the TC deals with uncontrollable nondeterminism.
If cycles are present in S, using the computation tree would never terminate. Thus a

bound b > tcurr needs to be introduced (cf. genTS in Subsec. 8.8.3).
The test case complexity illustrates that MBT for SUTs with uncontrollable nondeter-

minism is more complex [Arcaini et al., 2013]: More computations have to be performed,
more elaborate structures used for specifications and TCs, and hence the complete MBT
and software development process adapted.

The test case complexity does not reflect, however, the overall cost for TCs of the
corresponding MBT approach, since other aspects like guidance influence it as well (cf.
Subsec. 10.2.5).

10.2.5. Interplay between Test Generation And Test Execution

The scheduling of tasks (cf. Def. 3.33) that current MBT algorithms use are either
offline techniques or strict on-the-fly techniques that perform transition tasks and
check tasks in lockstep (exceptions will be explored in Chapter 11). We call these
approaches offline MBT and on-the-fly MBT, respectively. This subsection depicts
the interplay between test generation and test execution for both approaches.
The complexities of on-the-fly and offline MBT for the number tcurr of executable

test steps are also investigated. Due to heuristics, complexities in Landau notation
offer only rough comparability of MBT approaches: they relate the complexities of the
underlying algorithms, but not the overall complexities of the MBT approaches, which
are more influenced by other aspects like guidance (similarly to optimizations for MC,
cf. Subsec. 6.3.2). Thus complexities in Landau notation are less important for MBT
approaches and often not given in literature; instead, experiments are performed.
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Offline MBT

The oldest MBT approach is offline MBT (also called off-the-fly MBT): it only
generates the complete test suite T̈, but does not execute T̈ during the generation. Af-
terwards, a classical testing framework like JUnit [URL:JUNIT] can be used to execute
T̈. Thus, offline MBT applies MBT exec (or the trivial case of MBTexec that firstly per-
forms MBT exec and thereafter classical execution of the returned test suite). The used
test directive o can be test purposes, coverage criteria or combinations of these. An early
and prominent, representative tool for offline MBT is TGV (cf. Subsec. 10.3.1).
Offline MBT can use any kind of test generation technology since test execution, which

can cause restrictions, is not present. But the lack of test execution during test generation
causes many deficits because there is no dynamic information from test execution yet
available:
• for state space traversal, offline MBT must decide a priori, i.e., before test exe-

cution, which parts of the state space Sdet (with the states §det) to explore (and
which values to explore if the specification contains variables). This is a difficult
decision: A restrictive selection will lead to inexhaustive and inconclusive testing.
A broad selection can quickly cause state space explosion. Furthermore, static
coverage levels can deviate dramatically from the dynamic coverage levels if un-
controllable nondeterminism is present (cf. Sec. 2.5, Subsec. 12.3.1). Often MC
algorithms (cf. Chapter 5) are used for state space traversal (their severe state
space explosion is demonstrated in Sec. 5.1, Subsec. 6.6.1 and Subsec. 14.3.6).
State space traversal can use on-the-fly MC (cf. Subsec. 5.2.2), e.g., LTL MC (cf.
Subsec. 5.2.5), and on-the-fly determinization (cf. Subsec. 8.2.5) to avoid traversing
the full state space (restricting both controllable and uncontrollable nondetermin-
ism) by aborting traversal as soon as a goal (i.e., a sensible counterexample as TC)
is found. The property description F that MC checks can implement the criteria
of c and o, e.g., with trap properties (cf. Subsec. 10.2.3). Often, large parts of
the state space might still have to be traversed until a goal is found (Table 6.9
on page 151 shows examples for large traversals even though efficient on-the-fly
algorithms like NDFS are used and goals are located close to init). Consequently,
the worst case complexities for an efficient state space traversal (and construction
of the transition system) for offline MBT are those of a full DFS: the worst case
time complexity is in O(|Sdet|), the worst case space complexity in O(|Sdet|) (cf.
Sec. 5.3.2). If the original specification S contains nondeterminism of the LTS,
traversal including on-the-fly determinization has an overall worst case time com-
plexity of O(2|S→∗ | ·|S→∗ |·branchS→∗ ) and an overall worst case space complexity of
O(2|S→∗ | · (branchSdet + |S→∗ |)) (cf. Subsec. 8.2.5). If the offline MBT algorithm of-
fers a bound b on the depth of exploration and test case generation (cf. Subsec. 8.8.3
and Subsec. 10.3.1), the overall worst case time complexity for b = tcurr executable
test steps is in O(branchtcurr

Sdet · |S→∗ | ·branchS→∗ ), for weaker guidance that does not
consider all inputs in each node in O((branchoutSdet + 1)tcurr · |S→∗ | · branchS→∗ ).
The overall worst case space complexity is in O(branchtcurr

Sdet · (branchSdet + |S→∗ |))
if the full computation tree of depth tcurr is stored, or O((branchoutSdet + 1)tcurr ·
(branchoutSdet + |S→∗ |)) if only one input transition per node is stored. If state
space traversal applies a MC algorithm for property description F , the worst case
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complexities are increased by that algorithm: Consequently, the worst case time
complexities additionally depends on F , e.g., for on-the-fly LTL MC, the worst
case complexities additionally contain the factor 2|F | (cf. Subsec. 5.3.2). Further-
more, if more than one test case is generated, parts of the state space might have
to be traversed multiple times, resulting in much higher complexities, similar to
Subsec. 8.8.3. If test cases are generated independently and have a depth of maxi-
mal b, complexities have an additional factor in O(tcurr/b). All these complexities
are again very rough, especially since the complexities for determinization are very
rough (cf. Subsec. 8.2.5);
• for test case generation, offline MBT either covers all possible nondeterministic
resolutions or performs test selection: To anticipate a priori all possibilities that
might occur during test execution, the test suite T̈ must include all nondetermin-
istic resolutions. For one test execution of T̈, only one resolution will occur. If T̈ is
executed recurrently, a resolution r might still not occur (unless SUT is restricted
to fairnessspec or fairnesstest , with forbidden underspecU , cf. Lemma 8.66). Since r
might lead to a large part of the TC, a lot of resources might be spent unnecessar-
ily. Including all resolutions yields (besides a lot of unnecessary runtime, see first
item) exponentially many TCs, i.e., test case explosion, or an exponentially large
TC for tcurr executable test steps. So we have a worst case test case complexity
in O((branchoutSdet + 1)tcurr ) (before a single test step is executed). Conversely,
elaborate test selection on controllable nondeterminism (e.g., via LTL MC) possi-
bly restricts the test case explosion, but adds runtime to the state space traversal
(see first item) and does not reduce uncontrollable nondeterminism. Performing
heuristics to select only few resolutions of uncontrollable nondeterminism costs
high runtime and risks inconclusive and inexhaustive testing. Consequently, if the
specification allows uncontrollable nondeterminism, “the only sensible approach is
on-the-fly MBT” [Utting and Legeard, 2007], described below. Therefore, some
tools offer both offline and on-the-fly MBT, and can cope with uncontrollable non-
determinism (or just nondeterminism on output) only in their on-the-fly mode (cf.
Subsec. 10.3.4);
• the resulting TS usually achieves its directives o very inefficiently – or possibly

not at all if we have a weak fairness constraint or underspecU . Consequently,
the overall number of test steps tTO

curr (cf. Subsec. 11.3.3) that are required to
achieve o is usually exponentially higher for offline MBT than the minimum number
of required test steps to achieve o. Hence complexities in Landau notation can
be misleading. Furthermore, estimating a bound b for the number of required
test steps (similar to Subsec. 5.2.3 and Subsec. 8.8.5) is hard, especially due to
uncontrollable nondeterminism, so exploration (and test case generation due to
uncontrollable nondeterminism) cannot be bounded efficiently.

In summary, for tcurr ∈ N executable test steps, the overall worst case time complex-
ity of offline MBT is in O(2|S→∗ | · |S→∗ | · branchS→∗ ) for a test case, the overall worst
case space complexity of offline MBT in O(2|S→∗ | · (branchSdet + |S→∗ |); for both,
the corresponding worst case complexities for the applied MC algorithm must be added,
and for execution of the TCs also the requirements of the SUT. The overall worst case
test case complexity of offline MBT is in O((branchoutSdet +1)tcurr ), which can also
be considered as additional space requirement since test cases need to be stored.
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On-the-fly MBT

Because of the deficits of offline MBT, many industrial tools (like Spec Explorer and
Conformiq Designer, cf. Subsec. 10.3.4) had switched to on-the-fly MBT after gaining
experience with offline MBT: on-the-fly MBT (also called OTF or online MBT)
applies MBTexec by strictly synchronously performing test case generation and test case
execution. For this, on-the-fly MBT derives the possible next transitions from S in lock-
step with executing one of them on the SUT. Therefore, uncontrollable nondeterminism
is immediately resolved by the SUT, controllable nondeterminism immediately by the
tool picking one transition randomly. Besides randomness, the choice can be made via
objective o using test purposes. Other test directives (cf. Subsec. 12.3.1), such as cover-
age criteria, cannot be implemented efficiently since on-the-fly MBT only considers the
immediately following transition, i.e., cannot guide any better than what lies directly
ahead of the current state, i.e., within one transition. But since dynamic information
is available, dynamic coverage values can be measured during test execution as infor-
mation to the test engineer and as exit criterion. Measuring new coverage criteria for
uncontrollable nondeterminism would also be possible (cf. Subsec. 12.3.1), but this is
future work. An early and prominent, representative tool for on-the-fly MBT is TorX
(cf. Subsec. 10.3.2).
On-the-fly MBT can avoid the deficits of offline MBT since now dynamic informa-

tion from test execution is available, which determines the resolution of uncontrollable
nondeterminism and the corresponding part of S to traverse. So for OTF, the only
transitions that are considered are those executed plus all direct outgoing input tran-
sitions from visited states. Thus the worst case test case complexity of OTF for
tcurr test steps is in O(tcurr). Because of on-the-fly determinization, the overall worst
case time complexity of OTF is in O(tcurr · |S→∗ | · branchS→∗ ) plus the worst case
time complexity of the SUT; the overall worst case space complexity of OTF is in
O(tcurr · |S→∗ |) plus the worst case space complexity of the SUT. Furthermore, once a
fault is reached or o is achieved, OTF can be stopped, i.e., it has strong on-the-flyness
(cf. Subsec. 3.6.2, Subsec. 6.8.6 and Subsec. 11.2.3).

Notes. Often branchS→∗ is small (e.g., due to manual or symbolic abstractions or reduc-
tion heuristics, cf. 12.3.1), so the factor can be ignored in the worst case time complexity.
If only the current superstate of S is stored, the factor tcurr can be ignored in the

worst case space complexity.

Since only the immediately following transitions are considered in each state, the
guidance of on-the-fly MBT is weak, picking input transitions at random, thus often
missing a transition that leads to a much more meaningful TC (cf. Subsec. 14.3.4).
Consequently, in practice “the random input selection strategy does not give us the
tests we are interested in” [de Vries et al., 2002], and the overall number of test steps
required to achieve o, tTO

curr , is usually exponentially higher for OTF than the minimum
number of required test steps to achieve o (cf. Subsec. 14.3.4). But in case a specific test
purpose needs to be tested (e.g., a single path) and uncontrollable nondeterminism does
not impede this test purpose, on-the-fly MBT is very efficient.
The histories of many industrial MBT tools (like Spec Explorer and Conformiq De-

signer, cf. Sec. 10.3) reflect these problems of on-the-fly and offline MBT: They had
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started with offline MBT, and then tried to resolve its deficits for the lack of dynamic
information by switching to OTF. Due to OTF’s weak guidance, it is only better in cases
where random exploration of behaviors detects many faults [Jard and Jéron, 2005], so
the tools switched back again to mainly support offline MBT.
In summary, on-the-fly and offline MBT resolve nondeterminism differently: Offline

MBT resolves uncontrollable nondeterminism by considering all cases, whereas on-the-fly
MBT considers the result of test execution. Offline MBT resolves controllable nonde-
terminism by considering all choices (or a subset thereof via test selection) using back-
tracking (similar to e.g., Listing 5.3). On-the-fly MBT cannot backtrack since executed
test steps cannot be undone in the SUT; so it needs to pick a transition immediately.
Lacking information for a more knowledgeable decision, the choice is usually performed
randomly. Consequently, offline MBT often has infeasible test case generation, test case
complexity and coverage; on-the-fly MBT has weak guidance and thus also problems
achieving (efficiently or at all) directive o, e.g., some coverage criteria and some feature
(cf. Example 11.1). Further disadvantages in the context of the whole software devel-
opment process are: long TCs that are hard to understand, weak reproducibility (cf.
Subsec. 12.4.3), and weak traceability (cf. Subsec. 11.1.2 and Subsec. 13.3.5). To resolve
these deficits, Chapter 11 will introduce LazyOTF, a novel method that synergetically
integrates on-the-fly and offline MBT.

10.2.6. The Kind of System Specification
Many kinds of system specifications exist; among the most popular formalisms are FSMs
and LTSs (cf. Subsec. 3.4). Many other formalisms can be reduced to them. The main
differences are: whether the specifications are finite, what kind of nondeterminism they
comprise, and their description language (cf. Subsec. 3.4.3).
Subsec. 8.2.5 describes a taxonomy of the kinds of nondeterminism that specifications

can comprise, and how to resolve them. The use, resolution and consequences of nonde-
terminism are investigated throughout this section, and more generally throughout this
thesis since they are a main aspect of formal methods.
FSMs only allow finite system specifications; contrarily, an LTS S ∈ SPEC may also be

countably infinite, which is much more practical (cf. Subsec. 8.1.2 and [Huima, 2007]).
Extending FSMs by adding variables, to so-called extended FSMs (EFSMs), usually
remains finite since usually the variables’ domain is finite [Anand et al., 2013]. Further
deficits of most FSM-based testing are a strict testing hypothesis (cf. Subsec. 8.1.2, [Jard
and Jéron, 2005]), inefficiencies in coping with uncontrollable nondeterminism, and more
severe state space explosion [Arcaini et al., 2013]. Therefore, this thesis uses LTSs and
the ioco theory.
Note. Because of physical restrictions, the systems of the real world that we investigate
are finite. They are, however, unbounded. For instance, a system can have
• input that can be arbitrarily large, e.g., a BigInteger;
• an unbounded number of concurrent processes;
• arbitrarily large data structures, e.g., lists or (clock) counters;

Therefore, it is often more suitable to model these real world systems with infinite
specifications by allowing arbitrarily many states or variable values (cf. Subsec. 8.1.2 or
[To, 2010]).
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10.2.7. Level of Detail of The SUT’s and Environment’s Specification

MBT can be performed on any level of the V-model (cf. Sec. 2.4). The level determines
how detailed the specification must be (and which details it must contain, e.g., imple-
mentation details for unit testing and requirements for acceptance testing). Details can
be avoided by abstraction, e.g., via nondeterminism (cf. Sec. 3.7), where multiple levels
of abstraction between connected specifications are possible (e.g., in a refinement hier-
archy, cf. formalization in Sec. 9.3 and application in Sec. 14.2). The level of lossless
abstraction determines how much refinement and abstraction is performed by the test
adapter (cf. Subsec. 8.7.2). The level of lossy abstraction determines what faults can be
detected by MBT.
The level of lossy abstraction of the SUT’s specification determines the degree of un-

controllable nondeterminism, the level of lossy abstraction of the environment determines
the degree of controllable nondeterminism.

10.3. Tools
Since MBT varies in several aspects (cf. previous section), many tools [URL:MBTtoolsHP]
exist, which are compared in several papers [Goga, 2001; Hartman, 2004; Belinfante et al.,
2005; Utting and Legeard, 2007; Shafique and Labiche, 2010; Binder, 2011; Lackner and
Schlingloff, 2012; Shafique and Labiche, 2013]. One of the strongest aspects for the test
generation algorithm is whether on-the-fly MBT or offline MBT is applied; hence we pick
a prominent, representative tool for both. The tools listed below all have the deficits
described in Subsec. 10.2.5, especially the weak guidance for on-the-fly MBT. These
deficits are also mentioned in the cited tool papers, and in the papers that compare
MBT tools.

Roadmap. This section chronologically lists some MBT tools that are based on transition
systems and traversal algorithms: first TGV, a main representative of offline MBT, in
Subsec. 10.3.1; then TorX, resp. JTorX, main representatives of on-the-fly MBT, in
Subsec. 10.3.2, resp. Subsec. 10.3.3. Since other MBT tools use similar techniques, this
thesis only mentions some of them shorty in Subsec. 10.3.4.

10.3.1. TGV

The offline MBT tool Test Generation V (TGV) [Jard and Jéron, 2005] is part
of the proprietary Construction and Analysis of Distributed Processes toolbox
(CADP) [URL:CADP], which focuses on the design of communication protocols and
distributed systems. Besides maintenance and a port to 64-bit architectures, advance-
ments on TGV have stopped in 2005.

SPEC are the labeled transition systems with inputs and outputs, finitely many
states, and a countable set of internal transitions, where cycles of internal transitions,
i.e., livelocks, are allowed. As system specification description language, TGV uses
the CADP formats SEQ and BCG graphs [URL:CADP]; simulation APIs make various
other formats possible: LOTOS [URL:LOTOS; SC 7, JTC 1, 1989] via the CAESAR
compiler [URL:CADP], the FSP language [Magee and Kramer, 1999], IF [Bozga et al.,
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2002], SDL [Kerbrat et al., 1999], and UML [Ho et al., 1999; Bozga et al., 2002]. TGV
uses Tarjan’s DFS to detect livelocks in the specification (cf. Subsec. 8.2.2) and trans-
forms them into quiescence. As implementation relation c, TGV uses ioco, but slightly
modified due to quiescence from livelocks in the specification.
As test generation technology, TGV employs on-the-fly MC algorithms based on Tar-

jan’s DFS (cf. Subsec. 5.2.2), as well as synchronous products (cf. Subsec. 3.4.3).
TGV offers as test selection directives randomness, coverage criteria, test purposes

and mixtures of these. In TGV, test purposes are FSMs that may contain internal
transitions. They are described with the help of regular expressions for the labels and
use the format BCG graphs, IF or the old Aldebaran format Aut [URL:CADP]. A
generalization of test selection directives can also handle variables, in test purposes as
well as in coverage criteria. To express coverage, an extension of trap variables can be
used: all reachable values of a given expression e are allotted to be covered (without the
need to explicitly introduce a new propositional variable for e). e might unexpectedly
cause the construction of the whole state graph, which demands the mixture of coverage
criteria and test purposes as countermeasure. Furthermore, the depth of the traversal
(after τ -closure) can be bounded.
TGV’s testing hypothesis demands SUTs to be input-enabled. TGV does not perform

test execution. Instead, TGV generates abstract TCs that are graphs, in the format
BCG, Aut, or TTCN (cf. Subsec. 11.5.1, [Schieferdecker and Vassiliou-Gioles, 2003]);
the translation into concrete test cases needs to be performed by other tools.
TGV has a modular architecture, similar to LTSmin (cf. Subsec. 5.5.2) and TorX (see

next subsection).

10.3.2. TorX

TorX [URL:TorX; Tretmans and Brinksma, 2003; Belinfante, 2014] is an open source,
on-the-fly MBT tool that is now also part of CADP [URL:CADP].
TorX uses SPEC = LT S(LI , LU , τ6 t) (cf. Subsec. 8.2.2 and Sec. 8.3). As system spec-

ification description language, TorX can use PROMELA (cf. Subsec. 3.4.3), the FSP
language [Magee and Kramer, 1999], CADP’s old Aldebaran format Aut [URL:CADP],
LOTOS [URL:LOTOS; SC 7, JTC 1, 1989] via the CAESAR compiler [URL:CADP], and
all languages that offer an implementation of the graph exploration interface OPEN/-
CAESAR [Garavel, 1998]. Since the specification is accessed only on demand, i.e., lazily,
this exploration interface enables the use of infinite specifications, as long as they are
finitely branching (cf. [Jéron et al., 2013] and reductions in Subsec. 12.3.1).
As implementation relation c, TorX uses a deprecated version of the ioco theory where

TCs need not be output-enabled.
As test generation technology, TorX employs random input selection and thus performs

a random walk over the specification. Additionally, TorX contains technology to derive
synchronous products (cf. Subsec. 3.4.3).
TorX offers as test selection directives (cf. Subsec. 12.3.1) randomness and test pur-

poses. In TorX, test purposes are also called observation objectives and are represented
by LTSs [de Vries and Tretmans, 2001]. They can be described by the same languages
as specifications, and additionally by regular expressions in the special purpose language
Jararaca. Furthermore, [Goga, 2003] introduces a user-supplied reduction heuristic and
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a cycling heuristic (cf. Subsec. 12.3.1), implemented as proof of concept in an offline
approach for TorX, which has not been integrated in TorX.
TorX also offers an offline MBT mode, called batch mode, by simply recording the

executed linear test cases. The recorded linear test cases can be executed again later on
(possibly leading to inconclusive verdicts).
TorX’s testing hypothesis demands SUTs to be input-enabled.
TorX can easily be extended and adapted because it has a flexible component-based

architecture. The components are depicted and described in the next subsection for
JTorX, which is TorX’s successor and main MBT tool for this thesis.

10.3.3. JTorX

The open source, on-the-fly MBT tool JTorX [URL:JTorX; Belinfante, 2010, 2014] is
the successor of TorX, implemented in Java. The techniques introduced in the following
chapters will be embedded in JTorX.
JTorX inherited most aspect from TorX: its test generation technology of random input

selection and synchronous products; offline test execution; and its testing hypothesis,
demanding SUTs to be input-enabled.

SPEC = LT S(LI , LU , τ), described by any format offered by TorX, except PROMELA,
and additionally GraphML [URL:GRAPHML], GraphViz [URL:GRAPHVIZ], Jararaca
also for system specifications, jtorx log files, networks of timed automata in the UPPAAL
input format, and TorX Explorer programs, which now additionally enable mCRL2 [Cra-
nen et al., 2013; Groote and Mousavi, 2014; Gregorio-Rodriguez et al., 2015] and LTSmin
(cf. Subsec. 5.5.2). Finally, STSs are supported and read in the XML format sax. STSs
contain constraints, i.e., expressions over variables to formulate guards and updates (cf.
Subsec. 3.4.3). Consequently, a constraint solver is required to solve these constraints and
find satisfying variable instantiations. Currently, JTorX employs STSimulator, which
uses treeSolver, which is based on a Prolog constraint solver (cf. Subsec. 13.2.1), but
integration of a more powerful solver is possible (cf. Subsec. 3.3.3 and Sec. 13.4).
As implementation relation c, JTorX uses the ioco relation (cf. Sec. 8.5) and alterna-

tively uioco (cf. Sec. 9.2).
JTorX offers as test selection directives randomness and test purposes. All random

choices can be replaced by user interaction. In the standard setting, the user sets the
number of steps, which are then executed in one run fully automatically by JTorX.
Coverage criteria are not used for test selection, but can be measured for user feedback
and exit criteria (cf. Subsec. 13.2.1 and [Sijtema et al., 2014]). In JTorX, test purposes
are also called guides. They can be described as in TorX, and by jtorx log files.
JTorX inherits TorX’s flexible component-based architecture, which allows easy ex-

tending, replacing, and adapting of its components (cf. Subsec. 13.2.1). From the out-
side in, JTorX consists of the following components, also depicted in Fig. 10.1, taken
from [Belinfante, 2010]:
An adapter component maps between abstract and concrete test cases and covers

the technicalities to fulfill the testing hypothesis (cf. Subsec. 8.7.2). Therefore, adapters
depend on the SUT, the testing hypothesis and on the specification (more precisely, on
L, cf. Def. 8.5). Since the adapter connects JTorX to the SUT for test execution, it is
sometimes called test execution engine [Belinfante, 2014]. JTorX offers default adapters
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to automatically connect to SUTs where abstract and concrete test cases are identical,
i.e., SUTs that use L as interface (via TCP or the operating system’s stdin/stdout pipes).
An explorer component is the specification language front-end that enabled to uni-

formly employ all the system specification description languages mentioned above, simi-
larly to other tools that understand multiple languages, e.g.,LTSmin (cf. Subsec. 5.5.2).
The specification is explored lazily. Explorers depend on the specification language, but
not on the specification.
A primer component lazily performs determinization (cf. Subsec. 8.2.5) and aids in

generating test cases, using explorer components to explore the given specifications.
Therefore, primers depend on explorer components and the test case generation algo-
rithm only. The explorer and primer together are called derivation engine.
A manager component (also called driver), which is the central component of TorX

that controls and orchestrates the other components for on-the-fly test case generation
and test case execution. It offers an interactive and an automatic mode. Therefore,
the driver only depends on the other components, but not on the SUT, specification,
specification language or core test case generation algorithm, which are all encapsulated
by the respective component.
An optional combinator component derives synchronous products (cf. Subsec. 3.4.3)

and is only required for test purposes. Like the driver, a combinator only depends on
other components.
An optional partitioner component determines probability distributions over LI and

is only required to depart from equidistribution. Therefore, partitioners depend on the
specification (more precisely, on LI , cf. Def. 8.5).
An optional IOchooser component determines the Bernoulli distribution between

stimulating and observing, and is only required to depart from equidistribution. There-
fore, IOchoosers only depend on other components (or additionally on the specification
if the Bernoulli distribution should not be constant during test execution).
An optional instantiator component instantiates variables and is only required if

the specification contains variables. Therefore, instantiators depend on the specification
language and on the specification.
An optional GUI component offers setup, interaction during test execution, and vi-

sualization of the results: The JTorX GUI increases usability by allowing all relevant
parameters for on-the-fly testing to be set. It visualizes test execution by dynamically
updating the plots of the specification, message sequence charts and further test arti-
facts [Jéron et al., 2013; Sijtema et al., 2014; Belinfante, 2014]. Without the GUI, JTorX
operates in its text mode.

Explorer
(u)ioco
Primer

Explorer
traces
Primer

Combinator

test
derivation

Driver Adapter

verdict log

user
control

J(TorX)

Model

Test
Purpose

System
Under
Test

Fig. 1. Tool components of a typical (J)TorX configuration. Items TP, Explorer,
Primer and Combinator in the dotted boxes are only present in a guided test run.

and Primer which states (reached by stimulus or observation not in the test run)
to forget. An Adapter provides uniform access to the SUT. The Driver controls a
test run, and decides whether to obtain and apply a stimulus, whether to obtain
and check an observation, or to stop the test run. Additional components, like
the Combinator, are used e.g. to guide a test run using a Test Purpose. Typi-
cally, an Explorer is modeling-formalism dependent, but model-independent; an
Adapter is model-dependent, and specific for a particular (family of) SUT. The
other tool components are model-, formalism- and SUT-independent.

4 Usage

At four universities students have used JTorX in courses on testing techniques,
to compare models, and to test a real program w.r.t. a model that they developed
themselves. Doing these exercises gave the students a deeper understanding of
the ioco theory and its test derivation algorithm, and allowed them to experi-
ence model-based testing in practice. For the tutors, the use of JTorX greatly
reduced the effort needed to set up the exercise class, compared to the use of
TorX in previous years. Moreover, it encouraged developing more elaborate
exercises – for example, testing of a real program (now facilitated by JTorX
built-in standard i/o Adapter) was not done in previous years. For the students,
JTorX clearly provided a better user experience – with TorX there typical
were complaints, e.g. about the GUI, but with JTorX there were none. As a
result, JTorX will continue to be used in these courses.

JTorX found a real, unintended error in a Java program developed as SUT
for one of the courses. The program occasionally lost inputs, because its input
handling was initialized inside (instead of before) its main input-processing loop.

In an internship a student used Unit Testing and then JTorX to test the
program he developed. JTorX found five errors, some of which rather subtle –
these might not have been found without JTorX, even when the time invested
in model-based testing would have been spent on manual testing instead [11].

5 Future Work

We foresee improvements to JTorX in two directions: improvement of the user
experience e.g. by professionalization of the user interface, and extension of the

Figure 10.1.: Architecture of JTorX
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JTorX offers additional functionality:
• the iocoChecker [Frantzen, 2016] for verifying (as opposed to testing) whether two

specifications are ioco or uioco; additionally, it can detect underspecified traces in
a model;
• simulated test execution of specifications (cf. Sec. 8.8 and [Belinfante, 2010; Jéron
et al., 2013; Belinfante, 2014]).

10.3.4. Other Prominent Tools

TGV, resp. JTorX, are main representatives of offline, resp. on-the-fly MBT. Many other
tools with varying focus exist [URL:MBTtoolsHP], but they all use similar techniques
and are mostly proprietary. Thus this thesis focuses on TGV and JTorX.
The symbolic test generation tool (STG) extends TGV’s test generation algo-

rithms to handle symbolic data and strongly focuses on test purposes. STG operates on
variants of STSs [Rusu et al., 2000; Clarke et al., 2002; Ployette et al., 2007]: It auto-
matically derives symbolic test cases and uses the Omega constraint solver to instantiate
them for test execution. However, to be useful in practice, future work needs to simplify
test cases (e.g., using constraint solving, automated static analysis, or proof strategies)
and investigate abstractions [Rusu et al., 2000]. The tool is no longer developed or
maintained since 2007.
A younger offline MBT tool is Spec Explorer [URL:Spec Explorer; Veanes et al., 2008],

which is used industrially at Microsoft and was employed in the largest case study on
MBT [Grieskamp et al., 2011]. Spec Explorer is now available as free (but not open
source) plug-in for Visual Studio 2010 and Visual Studio 2012. SPEC are FSMs (cf.
Def. 3.26) or abstract state machines [Gurevich, 1994] or interface automata, which
are similar to our TCs for the ioco theory (cf. Def. 8.34). Specifications are described
mainly in C# (calledModel Programs), or in Spec# or in the Abstract State Machine
Language (AsmL). As implementation relation c, Spec Explorer uses alternating simula-
tion [Alur et al., 1998], whose effect is similar to ioco [Anand et al., 2013], but its origin
is from two-player games where in each state, the SUT must accept every input from
S, and S must accept every output from the SUT (cf. [Alur et al., 1998] and Sec. 9.3).
So alternating simulation treats the SUT and specification symmetrically and does not
demand that the SUT is input-enabled. Unfortunately, alternating simulation cannot
handle nondeterminism of the LTS. As test generation technology, Spec Explorer has an
integrated explicit state MC (cf. Subsec. 5.2.1). Spec Explorer offers as test selection
directives randomness, a few coverage criteria, test purposes and mixtures of these. In
Spec Explorer, test purposes are FSMs and called slicing scenarios (scenarios for
short). They are described with the help of regular expressions and the scripting lan-
guage Cord. Spec Explorer still has some on-the-fly capabilities, which were more in
focus in the past. Since they have weak guidance, Spec Explorer now focuses on offline
MBT.
Conformiq Designer [Huima, 2007; Utting and Legeard, 2007; Grabowski et al.,

2013] is the commercial MBT tool of Conformiq Inc [URL:CONFORMIQ]. It started
similarly to Spec Explorers, but has evolved since. Due to weak guidance of on-the-
fly MBT, Conformiq Designer now focuses on offline MBT. While the on-the-fly mode
can cope with nondeterminism on output, its offline mode cannot [Anand et al., 2013].
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SPEC are finite or infinite state machines that can contain concurrency and timing
constraints. Internally, they are represented in the language CGλ, a variant of multi-
threaded Scheme [Huima, 2007; Abelson et al., 1998]. As system specification description
language, the Conformiq Modeling Language (QML) was developed, which is from
the domain of the Eclipse Modeling Framework (EMF). It extends UML statecharts by
including variables (also with infinite data types), static and dynamic polymorphism,
timing constraints and concurrency; actions are written in extended Java (but may not
use Java’s libraries). As test generation technology, Conformiq Designer has an inte-
grated explicit state MC with symbolic execution capabilities (cf. Subsec. 5.2.1) and
hence constraint solving. Conformiq Designer offers as test selection directives random-
ness, several coverage criteria implemented similarly to trap variables (e.g., requirements
coverage, transition coverage, branch coverage, atomic condition coverage), boundary
value analysis [Utting and Legeard, 2007; Weißleder, 2009; Naik and Tripathy, 2011],
test purposes and mixtures of these. In Conformiq Designer, test purposes are FSMs
and are called abstract use cases. They are described with the help of partial or high-
level UML use cases or sequence diagrams [Fowler, 2003]. Conformiq Designer has a
flexible plug-in architecture, including distribution (cf. Subsec. 11.5.1) and multiplexing
components, enabling testing distributed systems. Furthermore, Conformiq Grid offers
distributed test case generation (cf. Subsec. 11.5.1). In summary, Conformiq Designer
is one of the most powerful and modern MBT tools, but not open source and not freely
available.
Web services (cf. Subsec. 3.5.2) are a popular architecture for distributing application

over the Internet. So machines use web services in their computations and thus depend
on their correctness. Since web services are black-box systems that have formal specifi-
cations, MBT is a suitable approach for checking them. Hence there are MBT tools that
have specialized on checking WSs. Since STSs are an alternative to BPEL and WSDL-
S, some MBT tools are based on STSimulator (cf. Subsec. 10.3.3,[URL:STSimulator;
Frantzen, 2016]), for instance the PLASTIC Framework [Bertolino et al., 2008], Jambi-
tion [Frantzen et al., 2009], and Audition [Bertolino et al., 2004]. But incorporating all
technical aspects of WSs directly in the MBT tool can become elaborate [Pascanu, 2010].
An alternative is using a regular MBT tool and moving all web service technicalities to
the level of the test adapter, while abstract test cases are not aware of the web service
technology (cf. Subsec. 8.7.2 and Subsec. 14.3.2).
Finally, since parallelization is “a key to MBT success” [Nupponen, 2014], some MBT

tools have a focus on parallelization. These, and more generally parallel test automation
tools, are covered in Subsec. 11.5.1.

10.4. Summary
This chapter gave various definitions related to MBT in a general way, based on previous
chapters, to ensure flexibility and comparability. The established taxonomy of MBT was
introduced and extended (Fig. 15.1 on page 377 uses this for positioning). Finally, various
MBT tools were introduced and positioned according to the taxonomy. Considering their
deficits motivated an alternative approach (cf. Chapter 11).
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11.1. Introduction
11.1.1. Motivation
Chapter 10 has investigated the bad trade-off between on-the-fly and offline MBT: offline
MBT cannot handle large specifications and uncontrollable nondeterminism, whereas on-
the-fly MBT has insufficient guidance (cf. Example 11.1). Handling uncontrollable non-
determinism is relevant in practice (cf. examples in Sec. 3.7, Subsec. 8.2.5, and [Huima,
2007; Fraser et al., 2009]). Guidance is just as relevant in practice: Current tools re-
turned from on-the-fly MBT to offline MBT for better guidance since on-the-fly MBT
does not efficiently target precise features and potential faults (cf. Subsec. 10.3 and [Jard
and Jéron, 2005]). Because of this bad trade-off, there is no significant correlation be-
tween the size of the test suite T̈ generated by current tools and the fault detection
capability of T̈; the situation could be improved by “semantically integrating require-
ments into MBT and into the generation of the test suite” T̈ [Fraser and Wotawa, 2006;
Biffl et al., 2006; Rajan et al., 2008b; Lackner and Schlingloff, 2012]. This chapter in-
troduces lazy on-the-fly MBT to avoid this bad trade-off, and test objectives (TOs) to
semantically integrate requirements, specifications, and their coverage into MBT and
test case generation.

11.1.2. Lazy On-the-fly MBT
To avoid the respective disadvantages of offline and on-the-fly MBT, i.e., the bad trade-
off, this section introduces a novel method that synthesizes these two approaches, bap-
tized lazy on-the-fly MBT (LazyOTF for short): it executes parts of TCs lazily
on-the-fly on the SUT, i.e., only when there is a reason to, e.g., when a TC reaches a
test goal (cf. Subsec. 11.2.4), a certain depth, or some choice point of uncontrollable
nondeterminism. Therefore, we do interleave graph traversal of S and execution of
the SUT, but not strictly synchronously for each test step, but only loosely after several
steps. Thus LazyOTF’s scheduling of tasks (cf. Def. 3.33) does insert check tasks between
transition tasks and is hence on-the-fly, but does not intertwine strictly in lockstep, but
lazily.
Since LazyOTF integrates test case execution, it has the contract of MBTexec of List-

ing 10.1. Listing 11.1 shows the abstract LazyOTF algorithm, which cycles through
phases, each consisting of firstly a traversal sub-phase and secondly an execution
sub-phase. The abstract algorithm contains the following three polymorphic methods:
• exitCriterion(dynamicInfo), which determines via dynamic information given in

the argument dynamicInfo whether the LazyOTF algorithm should cycle another
iteration p through both sub-phases or terminate (e.g., when all TOs or some cov-
erage level is achieved, or fail occurs and LazyOTF should not continue thereafter);
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• traversalSubphase(S, ö, dynamicInfo), which traverses some part of Sdet via on-
the-fly determinization (cf. Subsec. 8.2.5), generates (e.g., via gen, cf. Sec. 8.8)
and chooses a heuristically best TC Tp ∈ T T S(LI , LU , δ) within that sub-graph:
Based on the given TOs ö and dynamic information dynamicInfo, guidance heuris-
tics determine which TCs are best (cf. Subsec. 11.2.4). Phase heuristics determine
the sub-graph that is traversed: The initial superstate s̈ of the sub-graph is deter-
mined by dynamicInfo, the sub-graph’s border via ö, by so-called inducing states
(investigated in Subsec. 11.2.3); furthermore, depth bounds for the TCs can be
set, depending on dynamicInfo;
• testExecutionSubphase(Tp, S, dynamicInfo), which executes Tp on S: The state

that S is in at the beginning of this testExecutionSubphase is determined by the
previous phases (and is hence contained in dynamicInfo). Test execution yields
further dynamic information, which is fed back to exitCriterion and the next
traversalSubphase.

dynamicInfo comprises all dynamic information that the algorithm collects during
test case execution that cannot be collected without executing the SUT:
• verdicts, and their location;
• resolution of uncontrollable nondeterminism;
• consequential information, e.g., the reached behaviors (requirements, other arti-
facts, or safety properties), which are modeled by test goals and test objectives
and get discharged once they are reached. This is encoded in dynamicInfo by up-
dating ö (cf. Subsec. 11.2.4).

1proc 2(T T S(LI ,LU ,δ)×V) LazyOTF(LT S(LI , LU , τ) S, TOs ö, SUT S)
2p := 0 ; dynamicInfo := ∅ ;
3

4while ( ! e x i tC r i t e r i o n ( dynamicInfo ) ) do
5p++;
6T T S(LI , LU , δ) Tp :=

traver sa lSubphase (S, ö, dynamicInfo ) ;
7dynamicInfo :=

testExecut ionSubphase (Tp, S, dynamicInfo ) ;
8od ;
9return a l l Tp and t h e i r v e r d i c t s ;
10end ;

Listing 11.1: Abstract LazyOTF(S, ö, S) algorithm

Example 11.1. Fig. 11.1 depicts one exemplary phase of LazyOTF:
• the traversal sub-phase generates a heuristically meaningful TC T1 by traversing
a sub-graph in the specification, bounded by a depth bound of 5 and by inducing
states (q4 and the test goal q3). Output transitions to fail are omitted in T1 (cf.
Subsec. 13.2.2);
• then T1 is executed on the SUT, and all dynamic information is fed back for the
next phase.

In this concrete example, one phase is sufficient to reach the test goal q3 in the gen-
erated TC, T1. Due to inducing states and bounds, the traversed sub-graph and TC
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T1 are kept small. If the SUT does not exhibit the resolution of uncontrollable non-
determinism leading to q3, or if the number k = 1 in the guard [i > k] of transition
q1 → q3 were larger, multiple phases are required to reach the test goal q3. For this
case, Chapter 12 will exploit dynamic information to reach test goals more efficiently
via guidance heuristics.
In contrast, on-the-fly MBT randomly chooses an input in q0, so the transition q0 →

q2, which resets i, is taken with probability 0.5. So if we increase the number k, the
expected number of steps to reach q3 in a random walk increases exponentially in k (cf.
Subsec. 14.3.4 and Subsec. 14.3.10).
Conversely, offline MBT has to deal with state space explosion, even for on-the-fly MC

if the state space below q2 or q4 is large and traversed before q3, or k and the domain of i
are large. If offline MBT uses a bound, q3 may not be reachable within that bound. With
state space explosion comes test case explosion (from controllable nondeterminism) and
high test case complexity (also from uncontrollable nondeterminism): For every visited
state q0, two extension of the TCs are possible due to ?a and ?b; for every visited state
q1, TCs must contain at least the two outputs !x and !z to avoid inconclusiveness.
Note. High test case complexity might be reducible if TCs are symbolically represented,
but only if all concrete states can be represented by much fewer symbolic states.
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Figure 11.1.: Exemplary phase of LazyOTF
LazyOTF’s integration of on-the-fly and offline MBT is synergetic since LazyOTF has

the unique feature of combining dynamic information with backtracking:
• all the dynamic information, as in on-the-fly MBT, is available after the delay of

the current traversal sub-phase. So the current traversal sub-phase can make use
of all dynamic information from previous test execution sub-phases, such that test
case generation may depend on the test execution of TCs from previous phases;
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11. Lazy On-the-fly MBT

• backtracking, as in offline MBT, is available within each sub-graph, to search for
a meaningful TC;

So unlike on-the-fly or offline MBT, LazyOTF can use dynamic information during guid-
ance, i.e., during the search for meaningful TCs. Thus LazyOTF
• need not consider all nondeterministic cases, as opposed to exhaustive offline MBT
(cf. Subsec. 10.2.5) to avoid inconclusive verdicts;
• can efficiently guide SUTs with uncontrollable nondeterminism to reach yet untested
behaviors (e.g., requirements, test objectives, or coverage tasks). For instance, if
a requirement is unexpectedly not, or hardly, reachable from init due to uncon-
trollable nondeterminism, but easily reachable from the current state, LazyOTF
adapts to this. Guidance can use novel heuristics, such as coverage criteria for un-
controllable nondeterminism (cf. Subsec. 12.3.1, [Faragó, 2011]) or taking previous
failures into account to avoid the same failure again, but to find related ones (cf.
Note 8.36).

Considering extreme cases of the depth bound show that LazyOTF subsumes on-the-fly
and offline MBT:
• if all depth bounds are 1 (or all states are inducing), LazyOTF performs the traver-
sal of S and test execution in strict lockstep, like on-the-fly MBT. If no test ob-
jectives are used, LazyOTF behaves identical to on-the-fly MBT (cf. Pvanishing in
Def. 12.6);
• if no states are inducing and the depth bound is sufficiently large, LazyOTF per-
forms similarly to offline MBT in the beginning: it generates a full TC T without
any dynamic information. But then, LazyOTF executes T before generating the
next TCs, for which dynamic information could be used. Both LazyOTF and offline
MBT via on-the-fly MC algorithms (cf. Subsec. 10.3.1) prune the state space that
has to be traversed for generating TCs. To determine the order in which states
are traversed and TCs are generated, Chapter 12 will show that LazyOTF employs
heuristics tailored towards MBT, whereas offline MBT usually employs standard
on-the-fly MC algorithms (cf. Subsec. 5.2.2, Subsec. 10.3.1).

In summary, LazyOTF’s guidance is more directed than the randomness of on-the-fly
MBT. But randomness is usually not completely replaced by LazyOTF’s guidance since
the applied heuristics can rank multiple choices as most meaningful, from which one
is usually chosen randomly (cf. Subsec. 12.3.4, Sec. 13.5, [Nieminen et al., 2011]). But
like JTorX (cf. Subsec. 10.3.3), LazyOTF offers to replace full automation implemented
with random choices by user interaction. LazyOTF’s guidance is also more directed than
on-the-fly MC algorithms for offline MBT, and better-informed than the guidance of
offline MBT because of the available dynamic information. Therefore, LazyOTF can
efficiently handle large specifications and uncontrollable nondeterminism to automati-
cally generate TCs that are shorter and more revealing (cf. Sec. 14.3). Shorter TCs
are simpler to execute and to understand [Anand et al., 2013; Gay et al., 2015], solving
the failure analysis problem of understanding the cause of a failing TC [Arcaini et al.,
2013]. Furthermore, the dynamic information of reached behaviors includes which TO
has been discharged where. So for TOs that describe requirements (or other specifica-
tion or design artifacts), LazyOTF yields automatic traceability between TCs and those
artifacts for free (cf. Chapter 2, Subsec. 13.3.5, and Subsec. 14.2.2), which is important
in practice [Peleska, 2013]. Finally, LazyOTF is more reproducible (cf. Subsec. 12.4.3).
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11.1.3. Roadmap

Sec. 11.2 reiterates the taxonomy of MBT for LazyOTF to give insights to all aspects (see
also Fig. 15.1 on page 377), especially the new possibilities for test selection. Sec. 11.3
formalizes the test selection, interplay between test generation and test execution and
then analyzes LazyOTF. Sec. 11.4 introduces the two related works. Sec. 11.5 firstly
introduces distribution for MBT and the corresponding related work, and then relates
them to distributed LazyOTF, which is introduced. Sec. 11.6 summarizes the chapter,
our contributions and possible future work.

11.2. Classifications
To show the details of LazyOTF, this section investigates the aspects according to the
taxonomy of MBT given in Sec. 10.2.

11.2.1. Test Generation Technology

Test cases are generated iteratively in traversalSubphase(S, ö, dynamicInfo). So within each
sub-graph, any test generation technology can be applied. To make strong use of the
available dynamic information and backtracking capabilities, the test generation tech-
nology must be adapted and the simpler test generation technologies of user interaction
and randomness should be kept to a minimum.
This thesis will implement test generation in traversalSubphase(S, ö, dynamicInfo)mainly

using graph traversal and MC-like algorithms, based on genTS (cf. Subsec. 8.8.3), and
employ heuristics similarly to search-based software testing (cf. Subsec. 11.2.4). Since
the test generation algorithm and the heuristics are intertwined, they are all investi-
gated in detail in Chapter 12. Furthermore, constraint solving is applied for STSs (cf.
Subsec. 10.3.3), and randomness is used to choose amongst equally meaningful TCs.
Alternatives are possible, for instance applying SMT solvers as main test generation

technology (cf. Subsec. 3.3.3 and Sec. 13.4).

11.2.2. Properties

This thesis focuses on functional properties. We check conformance based on the given
implementation relation c, for which we use the ioco relation. The reduction from full
S to a sub-graph, which traversalSubphase(S, ö, dynamicInfo) performs, is invisible to the
MBT exec algorithm that traversalSubphase applies. Therefore, LazyOTF can check any
implementation relation by using a corresponding MBT exec algorithm. If the applied
MBT exec algorithm can integrate heuristics that respect ö and dynamicInfo, LazyOTF can
unfold its synergetic power (cf. Subsec. 11.1.2). For instance, uioco can be performed on
unwound LTSs by simply restricting inputs (cf. Sec. 9.2).

11.2.3. Interplay Between Test Generation and Test Execution

On an abstract level, the interplay between test generation and test execution is given
in Listing 11.1. Heuristics determine where and when the sub-phases are swapped, e.g.,
in states with nondeterminism on output. Details on heuristics are given in Chapter 12.
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In this subsection, only the overall approach and the information that the heuristics
depend upon are introduced.

Traversal Sub-phase

The part of the graph that traversalSubphase traverses is determined by heuristics we
call phase heuristics, based on the current dynamicInfo and on user-supplied meta-
information about S: Depending on dynamicInfo, each state but traversalSubphase’s first
can indicate that traversal beyond the state should not continue immediately, but be
postponed to the next traversal sub-phase if the SUT makes the corresponding nondeter-
ministic resolutions. Since such states induce switching between a traversal sub-phase
and an execution sub-phase, they are baptized inducing states. Strategies can be
used to annotate states programmatically as inducing, instead of manually (cf. Sub-
sec. 13.2.3). Since nondeterminism of the LTS is uncontrollable, we define a superstate
s̈ to be inducing iff ∃|s ∈ s̈ : s is inducing.
The test engineer can set inducing states for many reasons, for instance at points

where:
• the SUT has a high degree of uncontrollable nondeterminism;
• more generally, where traversalSubphase requires dynamic feedback;
• where traversalSubphase has costly specification traversal that is likely not required
during test execution;
• the SUT is busy anyways, or where the SUT is able to wait (i.e., is quiescent);
• the test engineer wants to interact with LazyOTF.

Notes 11.2. Each traversalSubphase’s root is not inducing since at least one transition
should be chosen for testing, i.e., the returned TC Tp should have a depth of at least
one.
Instead of deciding inducingness based on states from S, it could be decided more

generally based on superstates or paths. The implementation can be extended for this
without difficulty ( cf. Subsec. 14.3.3). But using states is often sufficient (cf. Sec. 14.3),
can be implemented more efficiently, is less complex and more natural and usable: The
user only needs to determine inducingness for states in S, which is more intuitive and
exponentially less work than for superstates or paths.

To restrict the runtime and memory requirement of a traversalSubphase (cf. Sub-
sec. 14.3.6, Subsec. 10.3.1), a bound is set on the depth of the sub-graph’s computation
tree (cf. Def. 4.4) and consequently on the depth of the generated TC (cf. Def. 11.8). To
make use of dynamicInfo, the bound is set individually for each phase p by heuristics (cf.
Sec. 12.2), resulting in a sequence of bounds bp ∈ [bmin, . . . , bmax], with the minimal
bound bmin ∈ N>0 and maximal bound bmax ∈ N>0 determined by the user-supplied
heuristic configuration.

Test Execution Sub-phase

traversalSubphase always provides one TC T, which testExecutionSubphase thereafter fully
executes. Since T incorporates all resolutions of uncontrollable nondeterminism within
the corresponding sub-graph, test execution never leads to inconclusive verdicts.
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For the next traversalSubphase and exitCriterion , testExecutionSubphase can return the
accrued dynamicInfo at the end of the sub-phase. If dynamicInfo should be processed
immediately (e.g., for parallelization or visualization, cf. Subsec. 13.3.4), it should be
made available immediately or processed accordingly by testExecutionSubphase.
To analyze the degree of laziness for MBT, i.e., its on-the-flyness, we define on-the-

flyness for MBT as the number of check tasks and transition tasks required to feed
information from one sub-phase back to the other sub-phase (cf. Subsec. 3.6.2). So for
LazyOTF, if traversalSubphase detects that a TO can potentially be discharged, how much
more time is spent in traversalSubphase until the next testExecutionSubphase is executed to
discharge a TO? And if testExecutionSubphase yields some dynamicInfo such as a nondeter-
ministic resolution or a discharge, how much more time is spent in testExecutionSubphase
until the next traversalSubphase is executed with the new dynamicInfo? So for LazyOTF,
the size of the sub-graphs, especially the bounds, strongly influences its on-the-flyness.
For on-the-fly MBT, on-the-flyness is as high as possible. But it only considers the direct
outgoing transitions to find a potential TO. For offline MBT, traversal is performed a
priori, so its degree of on-the-flyness depends on the applied on-the-fly MC algorithm
to avoid unnecessary traversal once a counterexample is found (cf. Subsec. 6.8.6), if one
test case is generated. If many test cases are generated, the generation of the full test
suite hinders on-the-flyness. Furthermore, dynamicInfo is never fed back to the traversal.
Strong on-the-flyness is very important in practice, since it means little additional

resources for traversal once a potential TO is found, and little additional test execution
steps until traversal can make use of the new dynamic information. For the final (or
a single) test case, this means that traversal and test execution can stop as soon as
the desired TOs have been achieved. But the strongest performance improvement in
test execution comes from guidance with the help of dynamic information (see next
subsection), which yields very meaningful test cases, i.e., few needed test steps to achieve
ö. For slow SUTs, test case execution becomes the bottleneck and thus significant for the
overall speed of fault detection and hence success of the approach [Fraser et al., 2009;
Nieminen et al., 2011; Gay et al., 2015].

11.2.4. Test Selection

Test selection is the guidance heuristics that traversalSubphase employs within each
sub-graph to select a potentially most meaningful TC. Test selection is a hard problem
in theory and practice (cf. Chapter 12 and [Lackner and Schlingloff, 2012; Nupponen,
2014; Gay et al., 2015]), which many domains like MBT [Utting and Legeard, 2007] and
search-based software testing (cf. Subsec. 10.2.3, [Ali et al., 2010]) deal with. This thesis
contributes an own chapter on heuristics, Chapter 12, which investigates properties,
conditions and solutions for guidance heuristics. In this subsection, only the overall
approach and information required for LazyOTF’s test selection via TOs is introduced.
Since test selection is only the responsibility of traversalSubphase, it can independently

choose the kind of test selection without any restriction from the rest of the LazyOTF al-
gorithm. But test selection must be performed individually for each sub-graph, and clas-
sical test selection (i.e., coverage criteria, test purposes or randomness, cf. Subsec. 10.2.2)
is not sufficient to unfold LazyOTF’s synergetic power. Instead, more suitable heuristics
make use of dynamic information and semantically integrate requirements and specifica-
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tions, yielding better guidance for LazyOTF. One possible solution is via test objectives
(TOs). A test objective is used to generate the necessary tests for a new aspect, artifact
or coverage task, e.g., a new requirement or specification element for a newly imple-
mented feature. Therefore, TOs are a natural fit for the software development process
(especially agile approaches that focus on few features each sprint, cf. Sec. 14.2). Test
objectives are defined on an abstract level in Def. 11.3.

Definition 11.3. Let E be a feature, requirement, specification artifact or any other
element to be tested.
Then a test objective (TO for short) o for E comprises heuristical settings to effi-

ciently generate the tests for E.
The moment E has been tested sufficiently, o is discharged by a discharge func-

tion, i.e., o becomes inactive; beforehand, o was active. A test objective must be
dischargeable.
ö denotes the finite set of currently active test objectives.

Discharging depends on the SUT’s resolution of uncontrollable nondeterminism, i.e.,
on dynamic information. Hence it is best performed in testExecutionSubphase. We say
LazyOTF is active at the moment iff the set ö of currently active test objectives is
not empty and LazyOTF currently uses our heuristics for test selections (i.e., not OTF’s
random choice, cf. Pvanishing, Def. 12.6).
By composing the heuristics of all o ∈ ö (cf. Subsec. 12.3.7), the overall guidance

heuristic becomes a synergetic TO in ö, i.e., discharging all TOs in ö requires less
test steps than Σ

o∈ö

(
test steps to discharge o

)
on average. The order in which the TOs

o ∈ ö are discharged is determined automatically on-the-fly by the composed guidance
heuristics and depends on the strength of their respective guidance heuristics, how easily
they can be reached, and of course on the resolution of uncontrollable nondeterminism.
Using this TO technique is more flexible and expressive than classical test selection

techniques, which it subsume: coverage criteria by defining corresponding coverage tasks
as TOs, randomness by ö = ∅ (cf. Pvanishing, Def. 12.6), a test purpose with the help of
a manually defined TO that always picks a path that is in the test purpose, as long as
there is one. Since there is no single superior test selection technique (cf. Subsec. 12.3.1),
this flexibility is important [Gay et al., 2015].
Often, tests for a new requirement or feature correspond to reachability properties

in the specification S = (S,→, L) [Arcaini et al., 2013]. Usually, not a single state
s ∈ S needs to be reached, but any state from a set of states s̈ ⊆ S. Such a set of
states is called a test goal (TG). Since the only insight into the SUT’s behavior that
black-box testing allows are suspension traces, a TG s̈ corresponds to the behavioral
property Ps̈ :=

{
σ ∈ StracesSτ∗δ |s̈∩ initS afterSτ∗δ σ 6= ∅

}
. So during test execution, s̈ is

reached (or achieved) when there is a prefix σ of the test run trace with σ ∈ Ps̈. Hence
reaching any superstate in Sdet containing s is considered as reaching s̈, and TGs are
lifted from states to superstates analogously to inducing states. Similarly to inducing
states, this simplifies the definition, implementation and use of TGs, since otherwise, a
set of superstates ¨̈s would be needed to specify a TG. Usually, using states is sufficient.
In other cases, the implementation can be extended without difficulty (demonstrated by
Sisol , cf. Subsec. 14.3.3).
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A TO o describing a reachability property can contain a TG to make the definition and
configuration of o’s guidance heuristic and discharge function simpler and hence more
usable. An active test goal is a test goal of some active TO. In this thesis, inactive
TGs are usually discarded, so a TG is an active TG if not described otherwise.
For a TO describing a more complex safety properties (cf. Subsec. 10.2.1) than reach-

ability, the heuristics settings and discharge function become more complex and cannot
be based on TGs only. These TOs can be implemented manually or using multiple
auxiliary TOs (see Subsec. 13.3.2 and odec in Subsec. 14.3.3).

Notes 11.4. Since our TO technique subsumes classical test selection techniques, they
can easily be combined, which leads to more meaningful test suites, as described in Sub-
sec. 12.3.1 and [Abdurazik et al., 2000; Dupuy and Leveson, 2000; Fraser and Wotawa,
2006; Rajan et al., 2008b; Gay et al., 2015]). Due to these studies, [Fraser and Wotawa,
2006; Gay et al., 2015] suspect that future test generation tools will need to flexibly
augmenting coverage criteria with additional, domain-specific objectives to guide test
generation. Our TO technique fulfills this need. Since TOs subsume a test directive o
(cf. Subsec. 10.2.2), we also denote TOs by o.
TGs are not sufficient to simulate test purposes since test purposes can specify prop-

erties that are more complex than reachability.
Since mutation testing can make tests more meaningful (cf. Sec. 2.5), it is interesting

future work to investigate TOs for mutation testing: Similar to mutant selection [Grün
et al., 2009], we could add a TOm for each mutant m to guide test generation to cover
the mutated statement. Since LazyOTF integrates test execution, m can be executed in
parallel; if m is killed, TOm is discharged.
Another approach to test selection is model-based mutation testing: It mutates the

specification S, not the source code like regular mutation testing, and is hence also called
specification mutation testing. A model-based mutant m is killed if the generated TS
fails on SUTs that are conform to m [Aichernig et al., 2011, 2014] (or dually if the tests
generated from m fail on SUTs that are conform to S [Hollmann, 2011], which requires
the generation of a TS from each mutant m). Either way, m is killed if tests lead to a
location where m’s and S’s observations differ. Therefore, using a conformance checker
(e.g., the iocoChecker in Subsec. 9.3.1) for test generation is an efficient guidance to the
observational difference between S and m [Aichernig et al., 2007, 2011, 2014]. With this
approach, m can be considered a test purpose [Aichernig and Tappler, 2015]. Due to the
high number of mutants and their conformance checking, especially for equivalent model-
based mutants, mutation based test case generation strategies are not efficient [Aichernig
et al., 2014; Aichernig and Tappler, 2015]; hence integrating model-based mutation test-
ing as test selection heuristics in LazyOTF is future work. To improve efficiency, an
on-the-fly iocoChecker and on-the-fly mutations could be integrated in LazyOTF. Fur-
ther future work can compare the meaningfulness of simple model-based mutation test
selection strategies, particularly those resulting in linear test cases [Ammann et al., 1998;
Aichernig et al., 2014], and TOs for mutation testing and classical mutants of the im-
plementation, since the latter can be implemented efficiently. Or maybe an even more
efficient implementation by LazyOTF’s default guidance heuristics (cf. Sec. 12.3), e.g.,
reaching specific transitions with specific conditions, is just as meaningful?
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Fully automatic on-the-fly MBT often generates one huge test case (cf. Subsec. 10.3.3).
To be exhaustive, on-the-fly MBT must, however, recurrently restart exploration in
initSdet as well as restart execution in initMdet (cf. Subsec. 8.8). For this, the SUT
must have a reliable reset capability, which we demand by the testing hypothesis (cf.
Subsec. 8.1.2). To incorporate recurrent restarts, traversalSubphase employs some restart
heuristic to decide at the beginning of each traversal sub-phase whether to continue
traversal from the current superstate or to restart.
Both S = (S,→, L) ∈ LT S(LI , LU , τ) and M ∈ IOT SLI (LI , LU , τ) are SCCs iff they

can always restart on their own, i.e., reach the initial state. This is usually the case
for reactive systems. If both S and M are SCCs, on-the-fly MBT does not need to
explicitly restart by resetting exploration and execution to their respective init states
since fairnessspec or fairnesstest , with underspecU forbidden, guarantees a restart in M if
M ioco S and we visit initS sufficiently often through any cycle (cf. Lemma 8.66); the
weaker fairnessmodel guarantees that for each state m in M, there exists a cycle π in S
such that M restarts from m if we cycle sufficiently often through π. If not both S and
M are SCCs, or these guarantees are not strong enough in some situation, we can reify
the implicit reset capability in S: We add a new label ?r to LI , which corresponds to
resetting M. Therefore, f.a. s ∈ S, s

?r−→ initS is added to →. Hence S and M are
transformed to SCCs with guaranteed, synchronous resets via ?r. Operating on SCCs,
guidance heuristics subsume the restart heuristic; they can prefer fewer but longer TCs
if those are more meaningful, which is often the case [Fraser et al., 2009].

11.2.5. Other Classifications

The kind of the test cases is determined by other aspects: Since all resolutions of un-
controllable nondeterminism is considered, TCs are trees. They are determined by the
interplay between test generation and test execution and the phase heuristics. Due to
the phases and dynamic information, the TCs are degenerated: Only one path in each
phase’s TC is continued, so TCs are lists modulo a given depth (cf. Fig. 11.2). Since the
path follows the resolution of nondeterminism, inconclusive verdicts are avoided.
All other aspects of the MBT taxonomy given in Sec. 10.2 are independent of the

LazyOTF algorithm, i.e., are not restricted:
• LazyOTF can handle any kind of system specification description language that can
be used for S in the domain of the ioco theory, by employing for traversalSubphase
an MBT exec algorithm suitable for the given specification. But if the specifica-
tion contains timing constraints, they restrict the runtime resources that guidance
heuristics may consume (cf. Subsec. 12.5.3) and consequently the phase heuristics.
Since each traversalSubphase only traverses one sub-graph, whose depth is limited
by a bound and breadth can be limited by inducing states or other heuristics (cf.
Subsec. 12.3.1), LazyOTF can handle any kind and size of S;
• LazyOTF can handle any kind of SUT that meets the testing hypothesis by using for

traversalSubphase a corresponding MBT exec algorithm and a suitable configuration,
including the timeout value (cf. Subsec. 8.1.2) and the employed heuristics (cf.
Chapter 12);
• the level of detail in the specification of the SUT and its environment are irrelevant
for traversalSubphase. But testExecutionSubphase must be able to automatically
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execute the generated TCs on the SUT, which is only a restriction if MBT is
used to generate TCs that are later executed manually, which we can exclude (cf.
Note 10.2) and is inefficient most of the time anyways [Utting and Legeard, 2007];
• the LazyOTF algorithm works independently of whether S is also used for the

development of the SUT, and needs not know this fact. If development does not
use S, MBT can, however, detect more failures [Pretschner and Philipps, 2005;
Faragó et al., 2013], so LazyOTF’s on-the-flyness (cf. Subsec. 11.2.3) becomes even
more relevant.

11.3. Formalization
Having covered all aspects of MBT for LazyOTF in the last section, we can now formalize
them.

11.3.1. Test Selection

Since we introduced test objectives and test goals for efficient test selection, we formalize
them in this subsection.
Usually, the states of a test goal s̈ are also interpreted as inducing states, to feed back

the dynamic information of whether s̈ is reached during the next testExecutionSubphase,
before continuing to search for further test goals during the next traversalSubphase. This
is the most sensible approach since the prime goal of finding a test goal in S has been
achieved by the current traversal sub-phase, and the most relevant question now is
whether the test execution sub-phase reaches that test goal, too. If it does, the next
traversal sub-phase knows with certainty that the SUT starts in that test goal and
the corresponding TOs have been discharged. We favor this greedy approach since
uncontrollable nondeterministic causes high uncertainty whether a TG is really reached
by the SUT, so many early and short tries are usually better than taking higher risks
by performing testExecutionSubphase less frequently with larger TCs (cf. Note 12.14).
Furthermore, the dynamicInfo that phase heuristics use can usually be reduced to which

TOs have already been discharged. So we also use TOs for phase heuristics, and phase
heuristics and guidance heuristics are intertwined. Therefore, we also describe inducing
stated with the help of TOs by defining a function I lazy(·) that determines both TGs
and inducing states, cf. Def. 11.5, resulting in Def. 11.6 for TOs. Chapter 12 describes
phase heuristics and guidance heuristics, and how they use our TOs.

Definition 11.5. Let S = (S,→, Lτ ) ∈ SPEC and M ∈ MOD.
Then
• Σlazy := {TESTGOAL,INDUCING, ORDINARY } is a totally ordered set,
with TESTGOAL ≥ INDUCING ≥ ORDINARY;
• I lazy : S → Σlazy, i.e., I lazy(s) =TESTGOAL if s is in some TG, otherwise
I lazy(s) =INDUCING if s is inducing, and otherwise ORDINARY; furthermore,
s̈ = (I lazy)−1(TESTGOAL) and (s̈ = ∅ or Ps̈ ∩ StracesMτ∗δ( initM) 6= ∅, i.e.,
reaching TESTGOAL must be feasible for test execution on M;
• to deal with nondeterminism of the LTS, I lazy(·) is lifted to superstates: I lazy :
Sdet → Σlazy, s̈ 7→ max

s∈s̈
(I(s)).
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Definition 11.6. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ). Test objective o consists of

• I lazy : S → Σlazy, according to Def. 11.5;
• a guidance heuristic, determining the meaningfulness of each path π ∈
paths(Sdet)for o;
•active : a variable of type B that is true iff o has not yet been discharged;
• discharge : dynamicInfo� B, is the discharge function for o.
Discharging o must be feasible; thus discharge must be surjective. The default is
discharge(dynamicInfo) = true :⇔ I lazy(current superstate) = TESTGOAL, but
more complex functions are possible, e.g., for other than reachability properties.

Note. So we will never reactivate a discharged TO, even though it would technically
be possible by non-monotonic discharge functions, i.e., functions that return false for
some dynamicInfo, true for an extension, and again false for a further extension. This
is interesting future work, for instance if a fault has occurred and some, but not all,
discharged TOs are re-activated, so that further TCs help in finding the root cause of
the fault. If dynamicInfo does not reflect the full history (cf. Subsec. 11.3.3), discharge
might not be non-monotonic. Hence we use the variable active, which remains false
once it is set to false, so active =no discharge until now.

Example 11.7. Exemplary TOs are:
• o1 for testing a new coverage task, e.g., a newly added reachable state s in S: In

this case, we can choose as TG {s}, i.e., (I lazy)−1(TESTGOAL)= {s}, a guidance
heuristic based on the TG and the default discharge;
• o2 for testing a functional feature, e.g., pagination (cf. Subsec. 14.3.2): the TG
contains all states that exhibit pagination, all other settings are as in o1;
• o3 for testing a more complex behavior that is not a reachability property, e.g., that
some operation can be performed k times in succession (e.g., odec in Subsec. 14.3.3):
If the states after the k operations can also be reached differently, this cannot be
expressed as TG; so we set TG = ∅ and have to define an individual discharge
function and guidance heuristic.

In summary, a TO o for an element (e.g., feature or requirement or coverage task)
determines how to set induce states and how to guide test generation and test execution
to quickly test o, and when to discharge o. Once o is discharged, it no longer has an
effect, i.e., o can be discarded. Test goals simplify the specification of TOs for reachability
properties since they help describe guidance heuristics, phase heuristics and discharge
functions. TOs that are not based purely on TGs can flexibly describe more complex
properties (using strategies and observes, cf. Chapter 13).

11.3.2. Interplay Between Test Generation And Test Execution
Due to LazyOTF’s interplay between test generation and test execution, we need to
formalize test generation and test execution over phases. We can formalize the whole
run of LazyOTF MBT with recurrent restarts, which therefore contains all dynamic
information. For this, we use a sequence of TCs and a sequence of finite paths, as
defined in Def. 11.8 and depicted in Fig. 11.2.
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Definition 11.8. Let S ∈ SPEC . Then we define for the complete current run of
LazyOTF MBT:
• pcurr ∈ N>0 ∪̇ {ω} as the current number of phases;
• rcurr ∈ N>0 ∪̇{ω} as the current number of restarts, with rcurr = ω if pcurr = ω
and rcurr ≤ pcurr otherwise;
• the strictly monotonically increasing sequence (ri)i∈[1,...,1+rcurr) as the restart
sequence, indicating which phases where directly preceded by a restart; so r1 = 1
and ∀i ∈ [1, . . . , 1 + rcurr) : ri ≤ pcurr ;
• the sequence (bi)i∈[1,...,1+pcurr) as the bound sequence, describing what dy-
namic bound the corresponding traversal sub-phase used; so ∀p ∈ [1, . . . , 1 +
pcurr) : bp ∈ [bmin, . . . , bmax];
• the sequence (Ti)i∈[1,...,1+pcurr) as the test case sequence (TC seq for short),

describing the TC the corresponding traversal sub-phase has selected. Therefore,
∀p ∈ [1, . . . , 1 + pcurr) :

Tp ∈
{
genTS(S, initS after τ, bp) if p ∈ (ri)i,
genTS(S, dest(πp−1), bp) if p 6∈ (ri)i;

• the sequence (πi)i∈[1,...,1+pcurr) as the path sequence, describing each path πi the
corresponding test execution sub-phase took through Ti; so ∀p ∈ [1, . . . , 1+pcurr) :
πp ∈ pathsmax(Tp) with dest(πp) 6= fail if (p < pcurr and p + 1 6∈ (ri)i). During
the traversal sub-phase, when Tpcurr has not yet been constructed, the DFS stack
is used as πpcurr , i.e., the path currently considered in the current sub-graph (cf.
Fig. 11.2);
• the trace sequence (σi)i∈[1,...,1+pcurr) := (trace(πi))i;
• the sequence (Tfulli )i∈[1,...,1+rcurr) as the full test case sequence (full TC seq
for short), which contains the same trees as the TC seq, but indicates the full test
cases starting from init that the corresponding traversal sub-phases since the last
restart up to the next restart have selected: ∀i ∈ [1, . . . , rcurr) :
Tfulli := Π

p∈[ri,...,ri+1)
Tp, and Tfullrcurr := Π

p∈[rrcurr ,...,pcurr ]
Tp if pcurr < ω;

• the sequence (πfulli )i∈[1,...,1+rcurr) as the full path sequence, indicating each
full path πfulli the corresponding test execution sub-phases took through the cor-
responding Tfulli : ∀r ∈ [1, . . . , 1 + rcurr) : πfullr ∈ Fmod(pathsmax(Tfullr ||Mδτ∗)).
During the traversal sub-phase, when Tpcurr has not yet been constructed, πfullrcurr
is extended by the DFS stack πpcurr , i.e., by the path currently considered in the
current sub-graph (cf. Fig. 11.2);
• the set pathsV(Sdet)rcurr of all full path sequences of S;
• the full trace sequence (σfulli )i∈[1,...,1+rcurr) := (trace(πfulli ))i;
• the number of test steps tcurr := |(πi)i∈[1,...,1+pcurr )| = Σpcurr

p=1 |πp|, updated after
testExecutionSubphase (i.e., without adding the DFS stack during traversal sub-
phases).

Notes. Def. 11.8 uses recursion, but the structures are well defined as can be seen by
induction on their complexity.
We also allow ω for the amount of test steps and phases, in spite of testing always

performing only a finite number of steps. Hence we are able to use these notations also
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T1

T2

T3

T4

r1 = 1

r2 = 3

r3 = 4

Tfull1 with path πfull1 = π1 · π2

Tfull2 with path πfull2 = π3

Tfullrcurr with path πfullrcurr = π4 · πpcurr

π1

π2

π3

π4

πpcurr

Figure 11.2.: Sequences describing the whole run of LazyOTF

for theoretically infinite runs (for exhaustiveness and Pdischarge, cf. Sec. 12.3).
For fairnesstest or fairnessspec, with forbidden underspecU , surjectivity of dischargeo

implies its feasibility (cf. Lemma 8.66). For other cases, we must additionally de-
mand that there exists πfull ∈ pathsV(Sdet)rcurr with dischargeo(πfull) = true and
trace(πfull) ∈

(
StracesMτ∗δ(initM)

)rcurr to guarantee feasibility (cf. Def. 11.5).
For correct use of dest(πp) in Def. 11.8 and easier TC concatenation, we use pass states

implicitly in TCs, i.e., all non- fail states that are inducing states or are reaching the
bound limit have implicit outgoing transitions to pass.
Def. 11.8 determines that after a test execution fail , testing continues with a restart.

This failure recovery of the tester is important in practice, e.g., for automatic nightly
tests. More elaborate strategies when fail occurs would be possible (cf. Note 8.36), which
is future work. Def. 11.8 still allows the full TC seq to consist of only one full TC, i.e.,
without restarts, as special case. But a finite or infinite single full TC can be considered
as TC sequence by recurrently splitting it up nondeterministically at initSpecdet (cf. SCCs
in Subsec. 11.2.4).
In summary, f.a. i ∈ [1, . . . , 1 + rcurr), test execution of Tri restarts M. The full

history of all exploration sub-phases is contained in (Ti)i, the full history of all execution
sub-phases is contained in (πi)i.
Def. 11.9 reduces pathsV(Sdet)rcurr to paths(Sdet), for practice if the premise is met,

and for theory and brevity.
Definition 11.9. Let the reliable reset capability be reified in S and fail (e.g., repre-
sented by ∅) be included in Sdet. Then

• the concatenated full path can be defined as πfull := ·
i∈[1,...,1+rcurr )

πfulli ;

• the concatenated full trace can be defined as σfull := ·
i∈[1,...,1+rcurr )

σfulli .

By using the concatenated full path (resp. trace) and the full path (resp. trace)
sequence interchangeably, all operations defined on paths(Sdet) (resp. traces(Sdet)) are
lifted to pathsV(Sdet)rcurr , e.g., |πfull| = Σ

π∈(πfulli )i
|π|.
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11.3.3. LazyOTF Algorithm
With the formalizations from the previous subsections, we can describe and analyze the
LazyOTF algorithm in detail:

dynamicInfo can be defined to contain the full history, encoded as full test case sequence;
the full path sequence of previous test execution sub-phases can be reconstructed from
the full test case sequence. But often, not the full history is required by LazyOTF, only
parts of the history of the execution sub-phases, so dynamicInfo can be reduced to only
comprise the relevant parts of the full path sequence, e.g., πfullrcurr , or even just πpcurr .

LazyOTF can return a subset U ⊆ T T S(LI , LU , δ)× V, as defined in Listing 11.1, or
dynamicInfo, which subsumes U if it is not reduced too strongly.
For traversalSubphase, extensions of genTC or genTS (cf. Sec. 8.8) that integrate phase

heuristics and guidance heuristics can be used (e.g., Listing 12.2).
For testExecutionSubphase, a test adapter connects the TC with the SUT (cf. Sub-

sec. 8.7.2) and additionally updates dynamicInfo (and checks exitCriterion ), either on-
the-fly or at the end of the current phase.

Theorem 11.10. If traversalSubphase extends a sound test case generation algorithm by
guidance heuristics and phase heuristics, then LazyOTF is sound.

Proof. If traversalSubphase extends a sound (for ioco or some variant, cf. Chapter 9) test
case generation algorithm by guidance and phase heuristics, traversalSubphase is itself
sound since guidance heuristics only influences guidance, but not the construction of
TCs. So the heuristics only perform test selection (cf. Chapter 12); the result is a subset
of the sound genTC (cf. Theorem 8.48) and therefore itself sound.
If traversalSubphase is sound, then LazyOTF is sound, since it correctly assembles the

TCs from each phase into TCs (Tfulli )i (cf. Def. 11.8).

Exhaustiveness, on the other hand, can be influenced by the guidance heuristics.
Chapter 12 investigates conditions for the guidance heuristics to guarantee exhaustive-
ness and other desired properties. But exhaustiveness is not very relevant for MBT in
practice: For all but trivial scenarios, an infinite test suite would be necessary, but test
execution is always finite. Furthermore, having a single test case already leads to semi-
decidability only: we do not know how often we have to execute it to cover all of the
SUT’s resolution of uncontrollable nondeterminism (cf. Subsec. 8.8.4, Subsec. 10.1.2).
Therefore, guidance heuristics that prioritize meaningful test cases are very important
in practice, whereas exhaustiveness is of secondary relevance. Chapter 12 covers both.
Complexity analyses for the time and space requirements of LazyOTF are difficult and

vague since they depend on many aspects, especially on the applied test case genera-
tion algorithm, phase heuristics and guidance heuristics. Therefore, this paragraph only
depicts which aspects, factors and dependencies need to be considered, and roughly com-
pares LazyOTF to on-the-fly MBT and offline MBT using Landau notation. But typical
complexity measures in Landau notation are not very meaningful for MBT approaches
anyway (cf. Subsec. 10.2.5): the number of required overall test steps, tTO

curr , needed to
achieve the desired TOs is difficult to estimate since they are strongly dependent on the
efficiency of heuristics, which are hard to predict (see e.g., Subsec. 6.8.6). Sec. 14.3 will
perform concrete measures on our case study for our implementation, and for on-the-fly
MBT to compare their performances.
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The runtime and memory of LazyOTF for tcurr test steps depends on the overall
runtime and memory of traversalSubphase, testExecutionSubphase and exitCriterion (cf.
Listing 11.1):

For traversalSubphase, time and space complexities depend on the employed test case
generation algorithm and the employed heuristics. The basic test case generation algo-
rithm is variation of the bounded offline MBT algorithm (cf. genWTS in Subsec. 12.3.4),
with the worst case space complexity per traversalSubphase in O(branchbmaxSdet ·(branchSdet+
|S→∗ |)); the worst case time complexity per traversalSubphase is in O(branchbmaxSdet · |S→∗ | ·
branchS→∗ ), but additionally, each traversal step requires

• |LU | time for assembling the TC (cf. Subsec. 8.8.2). In our implementation,
we omit output transitions to fail (cf. Subsec. 13.2.2 and Fig. 11.1), leading to
branchoutSdet time for assembling the TC, but this is negligible in Landau nota-
tion since branchoutSdet ∈ O(branchS→∗ · |S→∗ |);
• |S→∗ |+ tcurr time per active TO for computing heuristics: inducingness based on s̈

requires O(|S→∗ |) time, and guidance heuristics based on πfull O(tcurr) time since
usually only one pass over the history of the execution sub-phases is necessary,
without touching individual states in superstates. (If weights are computed, each
traversal step requires branchoutSdet time for aggregation, cf. Subsec. 12.3.4. As
for assembling, this is negligible in Landau notation).

In sum, the worst case time complexity per traversalSubphase is in O(branchbmaxSdet · (|S→∗ | ·
branchS→∗ + (tcurr + |S→∗ |) · |ö|)).

Often smaller parts than πfull are sufficient, e.g., πpcurr , or caching can be used, leading
to fast heuristics that do not require tcurr time per TO, but are often in O(bmax · |S→∗ |)
(cf. Sec. 14.3). In this case, the worst case time complexity per traversalSubphase is in
O(branchbmaxSdet · |S→∗ | · (branchS→∗ + |ö|)). We often use efficient heuristics computations
based on composition and TGs, in which case |ö| can be neglected, too.

Furthermore, the factor |S→∗ | is required since superstates are used, but this is a
very rough estimate since large superstates are seldom and can often be restricted by
inducing states (cf. Subsec. 14.3.4). In this case, the worst case time complexity per
traversalSubphase is in O(branchbmaxSdet · (branchS→∗ + |ö|+ branchoutSdet)), the worst case
space complexity per traversalSubphase in O(branchbmax+1

Sdet ).

For the overall number of traversalSubphase calls, we usually require tcurr/bmax many
calls or less, but in the worst case, the TCs contain one short path which is chosen during
test execution, which yields O(tcurr) many calls. Consequently, the overall worst case
time complexity of all traversalSubphase for tcurr test steps is in O(branchbmaxSdet ·tcurr ·
(|S→∗ | ·branchS→∗ +(tcurr + |S→∗ |) · |ö|)), for fast heuristics in O(branchbmaxSdet · |S→∗ | · tcurr ·
branchS→∗ ). The overall worst case space complexity of all traversalSubphase for
tcurr test steps is in O(tcurr · branchbmaxSdet · (branchSdet + |S→∗ |)) if the whole test case
sequence (Ti)i is stored as dynamic feedback. For πfull and Tpcurr , this reduces to
O((tcurr + branchbmaxSdet ) · (branchSdet + |S→∗ |))

Of course an increase in bmax can exponentially decrease tTO
curr (cf. Subsec. 14.3.6),

which is not captured by our formulas in Landau notation.
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For testExecutionSubphase, a simple test adapter requires constant overall memory and
constant runtime per test step to connect the TC and the SUT. Of course, the resource
requirements of the SUT must be added to testExecutionSubphase’s complexity. The more
abstract the specification and hence the abstract test cases, the more the SUT has to
perform per abstract test step.
Most dynamicInfo can also be updated in constant runtime per test step, e.g., nondeter-

ministic resolutions. To check whether active TOs are discharged requires the resources
of the discharge functions of the |ö| active TOs, which requires time in O(tcurr) for one
pass per TO, as for the guidance heuristic. Since dynamicInfo is called O(tcurr) times, its
overall worst case time complexity is in O(t2curr · |ö|). Since the history is already stored,
e.g., in πfull, the overall worst case space complexity is lower, usually in O(1). Again,
for efficient implementations, e.g., based on TGs, the discharge functions have negligible
time requirements. Then the overall worst case complexities of testExecutionSubphase are
dominated by the SUT’s resource requirements.
For exitCriterion that investigate the history of the execution sub-phases, the time

requirement is also in O(tcurr) for one pass. Since exitCriterion is called after each
phase, its overall worst case time complexity is also in O(t2curr). Again the worst case
space complexity is lower, e.g., O(1), since the history is already stored. But usually,
exitCriterion simply checks ö = ∅, which has time and space requirements in O(1) since
the discharge functions are already computed in testExecutionSubphase.
In sum, the overall worst case time complexity of LazyOTF for tcurr test steps is

in O(tcurr ·branchbmaxSdet ·(|S→∗ |·branchS→∗+(tcurr +|S→∗ |)·|ö|)) +O(t2curr ·|ö|) +O(t2curr) =
O(tcurr ·(tcurr +branchbmaxSdet ·(|S→∗ | ·branchS→∗ +(tcurr + |S→∗ |) · |ö|))), for typical settings
in O(tcurr ·branchbmaxSdet ·|S→∗ |·branchS→∗ ). The overall worst case space complexity of
LazyOTF for tcurr test steps is in O(tcurr · branchbmaxSdet · (branchSdet + |S→∗ |)), for typical
settings in O((tcurr + branchbmaxSdet ) · (branchSdet + |S→∗ |)). If the overall complexities
should also include the SUT’s resource requirements, these need to be added, which is
impossible a priori since the testing hypothesis does not make sufficient performance
restrictions.
The test case complexity is |(Ti)i∈[1,...,1+pcurr )| ≤ Σpcurr

p=1 ((|LU |+ 1)bp) ≤ (|LU |+ 1)bmax ·
pcurr ≤ (|LU |+ 1)bmax · tcurr , taken after testExecutionSubphase.
In our implementation, we omit output transitions to fail (cf. Subsec. 13.2.2 and

Fig. 11.1), in which case we replace (|LU | + 1) with the factor (branchoutSdet + 1).
So the worst case test case complexity of LazyOTF for tcurr test steps is in
O((branchoutSdet + 1)bmax · tcurr).
The efficiency of the guidance heuristics is hard to guess (cf. e.g., Subsec. 6.8.6): in

the worst case, guidance heuristics attain no reduction of the overall number of required
test steps tTO

curr to achieve the desired TOs compared to offline and on-the-fly MBT (or
requires even more steps). In this case, we can compare the complexity formulas for
on-the-fly and offline MBT and LazyOTF:
• the overall worst case runtime complexity of LazyOTF is larger than of on-the-fly
MBT, for typical setting by a factor in O(branchbmaxSdet ), but usually smaller than
of offline MBT since the factor branchbmaxSdet · tcurr is usually smaller than the factor
2|S→∗ |;
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• the overall worst case space complexity of LazyOTF is larger than of on-the-fly
MBT, by a factor in O(branchbmax+1

Sdet ), but usually smaller than of offline MBT
since the factor (branchbmaxSdet + tcurr) is usually smaller than the factor (2|S→∗ |) (and
the additional space of O(branchouttcurr

Sdet ) for storing test cases);
• overall worst case test case complexity of LazyOTF is larger than of on-the-fly

MBT, by a factor in O((branchoutSdet + 1)bmax), but usually smaller than of offline
MBT since the factor (branchoutSdet + 1)bmax · tcurr is usually smaller than the
factor (branchoutSdet + 1)tcurr ).

Fortunately, the guidance heuristics often yield tTO
curr that is linear in the minimum

number of required test steps to achieve the desired TOs, i.e., the required tTO
curr is

reduced exponentially compared to offline MBT and on-the-fly MBT (see also Sec. 14.3,
Subsec. 12.3.1, [Anand et al., 2013; Gay et al., 2015]).
Comparing the number of required test steps tTO

curr to achieve the desired TOs and the
worst case complexities show that usually LazyOTF has exponentially better time, space
and test case complexity compared to offline MBT and on-the-fly MBT.
Due to hard predictions of the guidance heuristics and rough estimates for worst case

complexities of traversalSubphase, we also compare actual runtime and memory require-
ments in Sec. 14.3.

11.4. Related Work

A large body of work exists about MBT in general, of which the most relevant was cited
in Chapter 10. Here, we cover related work that intertwines offline MBT and on-the-
fly MBT, which was conducted by two groups – both motivated by the problems that
systems with uncontrollable nondeterminism cause.
[Fraser and Wotawa, 2007] is the earliest work that tries to increase the feasibility

for MBT of systems with nondeterminism on output (but not nondeterminism of the
LTS) by enhancing the interplay between test generation and test execution, i.e., mixing
on-the-fly and offline MBT: To reduce runtime and memory overhead (cf. Chapter 10),
it does not consider all resolutions of uncontrollable nondeterminism a priori. Instead,
one resolution is chosen eagerly and randomly using MC’s counterexample generation
(cf. Sec. 5.1) via a trap property F (cf. Subsec. 10.2.3). If the SUT chooses a different
resolution of nondeterminism on output, the approach does not return fail as false posi-
tive, but detects the verdict inconclusive. As alternative to returning inconclusive, a new
path can be derived via a new MC phase that follows the resolution of nondetermin-
ism on output that the SUT has just chosen. For this, variables model the resolutions
of nondeterminism on output. These variables also enable measuring the coverage of
nondeterminism on output during test execution (cf. Subsec. 12.3.1). An advantage of
the approach is that the test generation technology is based purely on MC, so that an
off-the-shelf MC tool can be applied. This adds modularity and enables the advantages
of those tools, especially optimizations (cf. Sec. 5.4). Hence off-the-shelf MC tools are
often used for MBT [Hamon et al., 2005; Fraser and Wotawa, 2006; Fraser, 2007; Enoiu
et al., 2014]. But this also entails multiple disadvantages: off-the-shelf MC tools usually
require workarounds such as model duplication or extension to generate TCs, have low
usability [Fraser et al., 2009], generate an impractically large amount of redundant TCs,
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even with subsequent reduction (cf. Sec. 8.8, [Fraser et al., 2009]), only create linear TCs
(cf. Subsec. 10.2.4), and are usually not able to tailor heuristics towards MBT [Fraser
and Wotawa, 2006, 2007; Rajan, 2009]; hence they often have test case generation with
no synergetic test objectives or directives, low meaningfulness, high runtime, and state
space explosion, especially in presence of nondeterminism [Rajan, 2009; Anand et al.,
2013]. The variables for trap properties and for the resolutions of nondeterminism on
output have to be added to the system specification description and cause a stronger
explosion of the state space S = (S, T,Σ, I) during MC. The re-computations of coun-
terexample paths via MC are performed iteratively whenever inconclusive verdicts would
occur. Since long counterexample paths might have to be discarded frequently due to re-
computation, the test case complexity is in O(t2curr), the number of MC runs in O(tcurr).
For an LTL MC run that searches the entire state space, the overall worst case time
complexity of this approach is O(tcurr · |S→∗ | · 2|F |) (and would be even higher with non-
determinism of the LTS, cf. Subsec. 10.2.5). The runtime could be improved by using
on-the-fly MC, but without guidance heuristics, probably a large part of the state space
must still be traversed until a counterexample is found (cf. Subsec. 6.8.6). Furthermore,
counterexample generation via MC and trap properties cannot differentiate degrees of
meaningfulness of counterexamples (cf. Subsec. 12.3.9) since MC just returns the first
or all counterexamples. Finally, the check for inconclusiveness and handling nondeter-
minism on output via re-computations are based only on the last transition between
observed states (cf. [Fraser and Wotawa, 2007, Sec. 3.1]), which does not reflect the full
run so far and can cause inexhaustive MBT in case fairnesstest is not met (cf. Def. 8.60).
LazyOTF neither has the advantage nor the disadvantages.
In [Arcaini et al., 2013], the feasibility of MBT for systems with nondeterminism on

output (but not nondeterminism of the LTS) is increased by combining a test driver
from the field of MC with an oracle from the field of runtime conformance monitoring,
i.e., monitoring (cf. Sec. 2.2) that checks conformance. For the test driver, MC via trap
properties is used, leading to the deficits mentioned above, especially TCs generated
independently of the SUT’s resolution of uncontrollable nondeterminism. When the
generated linear test case π, i.e., the counterexample path, differs from the SUT’s reso-
lution of nondeterminism on output, no re-computation occurs during the execution of
π (as in [Fraser and Wotawa, 2007]). Instead, the test driver simply continues to execute
the inputs of π, which is made possible by demanding the SUT be input-enabled (cf.
Sec. 8.1), resulting in an execution trace σ. The monitor uses techniques from white-box
testing, but could easily be transformed to purely black-box conformance testing. The
monitor measures requirements coverage and is able to avoid inconclusive verdicts no
matter which resolutions of nondeterminism on output the SUT chooses. But for ioco,
σ might not be in faultable(StracesSτ∗δ(initS)) (cf. Sec. 8.5) and might not increase the
coverage level. So if much nondeterminism on output is present, many executed linear
test cases do not aid in conformance testing (but can still serve as stress tests). If most
σ are in faultable(StracesSτ∗δ(initS)), they might still not aid in increasing the desired
coverage. For instance, if a test target is reachable via σ1 and σ2, MC likely always
chooses the same linear TC π; wlog π corresponds to σ1. If σ1 never occurs in the SUT
due to underspecU or only fairnessmodel being met (cf. Subsec. 8.8.4), recurrent execu-
tion of π never reached the test target. Besides being wasteful, this example shows that
the approach is inexhaustive for SUTs with underspecU or only fairnessmodel . Nonethe-
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less, the approach does try to achieve some coverage (mainly requirements coverage)
by successively and randomly picking active coverage tasks to discharge. Due to this
consecutiveness and randomness, no synergy in the set of coverage tasks is achieved (cf.
Subsec. 11.2.4). To focus on the more relevant coverage tasks, the authors have planned
to weight coverage tasks for prioritization, as future work. LazyOTF does not have the
mentioned inefficiencies. However, an interesting and important concept introduced by
[Arcaini et al., 2013] is the addition of a monitor that is decoupled from the test driver:
This offers a flexible oracle decoupled from TCs. For approaches that have strong guid-
ance but not as flexible oracles as LazyOTF, monitoring can add flexibility. The monitor
and input-enabledness lead to an advantage of [Arcaini et al., 2013] over LazyOTF: its
real-time behavior. During the execution of a TC, there is no need to stop for any com-
putation if the monitor runs sufficiently fast. But real-time behavior is not the focus of
this thesis, so it is solely mentioned as future work (cf. Subsec. 11.6.3).
In summary, both related work [Fraser and Wotawa, 2007; Arcaini et al., 2013] perform

TC generation and TC execution in isolation, which are intertwined only after each fully
generated linear test case, i.e., MBTexec corresponds to iteratively executing (cf. genexec
in Subsec. 8.8.1):

1. MBT exec of one linear TC π;
2. test execution of (a prefix of) π.
LazyOTF does not apply off-the-shelf MC tools or technologies in isolation, but adapts,

re-implements and tightly integrates the required MC algorithms (as concluded in [Fraser
et al., 2009]) to efficiently generate meaningful TCs.

11.5. Parallelization

11.5.1. Introduction

The runtime of performing tests is crucial in practice: more and more testing is needed
(cf. Subsec. 1.1.2), but short runtime is wanted for low cost and practicality, e.g., for
nightly tests or before a product release date. Since the free lunch is over (cf. Sec. 3.5), the
processing speed of tasks is now increased mainly by parallelization, which also applies
for testing [Starkloff, 2000; Nupponen, 2014]. Thus concurrent testing for speedup is
very relevant in practice; so it is surprising that there has not been much research on
that subject [Geronimo et al., 2012; Oriol and Ullah, 2010]. Most work applies testing
on the cloud, due to the rise of cloud computing and Testing as a Service (TaaS) [Bai
et al., 2011; Geronimo et al., 2012; Incki et al., 2012; Vilkomir, 2012; Priyanka et al.,
2012; Tilley and Parveen, 2013].
Whereas multi-threading can make use of current hardware developments on one com-

puter (cf. the model checking example PDFSFIFO in Sec. 6.7) parallelization of tasks by
distributed computing is more suitable for testing: each computer can run its own SUT,
so that test execution is efficiently parallelized, especially for slow SUTs. Additionally,
the SUT instances are independent of each other, so multiple platforms and environments
can be considered and the concurrent test execution is more stable and fault-tolerant,
e.g., if one system crashes due to a fault in the SUT. Therefore, most parallel testing
approaches distribute test execution. The generation of TCs, however, is rarely paral-
lelized. We firstly cover parallel test execution, then also parallel test generation.
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Parallel Test Execution

Not covering test generation, the TS is created either manually, which is time-consuming,
error-prone and achieves lower coverage (cf. Subsec. 1.1.2), or using offline MBT, which
cannot efficiently handle large, nondeterministic specifications (cf. Chapter 10).

These parallel test execution tools usually have one master (also called centralized
test controller or server machine), which is distributing TCs to slaves (also called client
machines), i.e., centralized computing in a client/server network is applied. There are
several tools of this kind:

Joshua [Kapfhammer, 2001] is one of the first work on distributed testing and shows
that distribution can complement optimizations by test selection. Joshua is an extension
of JUnit [URL:JUNIT] that uses the tuple space model [Carreiro and Gelernter, 1989]
for communication with low coupling and transaction primitives, and a server to handle
scheduling of TCs.

For [Lastovetsky, 2005], a new centralized test controller, called test manager was
implemented to distribute test cases, using their own parallel language (called mpC).
The experiments achieve almost linear speedup, but distribution was only performed
between two machines.

Some classical testing tools have technical extensions to distribute test execution of
their test cases: Selenium (Grid) [URL:SELENIUM], where a Selenium Grid Server
distributes Selenium test cases; HadoopUnit [Parveen et al., 2009; Tilley and Parveen,
2012, 2013], which extends JUnit via Hadoop [URL:HADOOP; White, 2012], where each
test case is a task. Experiments with a 150-node cluster show an improvement by the
factor 30. As MapReduce framework, HadoopUnit cannot give real-time feedback on the
testing session, but only after the reduce function (cf. Subsec. 3.5.2). As a master/slave
network, the complexity [Starkloff, 2000] of TC distribution is high, especially if TCs
should be scheduled efficiently and distributed via atomic transactions to not break
exhaustiveness. Furthermore, have a master results in a single point of failure and fast
contention. Due to these disadvantages, the following work made first steps towards
decentralization for distributed test execution:

GridUnit [Duarte et al., 2005, 2006] is a JUnit extension for grid computing that does
use a server, employing a Grid broker scheduler. The authors conducted experiments
with 288 TCs, each one taking exactly 5 minutes, which achieved parallel efficiency
between 0.64 and 0.09. They state that for shorter TCs, overhead can become large
and should be avoided. Their step towards decentralization is to partition the cluster
into multiple smaller clusters. But that causes further complexity of distribution and
possibly unbalanced load.

[de Almeida et al., 2010] not only builds sub-groups on one level, but a distributed
tree of instances where messages are exchanged only between parents and children. This
reduces contention, but adds complexity since a good tree order needs to be found, a
tree needs to be arranged and each inner tree node is a centralized test controller for
its children. Additionally, this tree is less fault-tolerant and causes more contention
(especially at the root node) compared to fully decentralized peer-to-peer networks.

273



11. Lazy On-the-fly MBT

Parallel MBT

There is even less published work on parallel or distributed model-based test-
ing [URL:PARALLELblogpost], even though MBT is particularly well suited for paral-
lelization:
• MBT is a kind of high volume automated testing [McGee and Kaner, 2004],
which are techniques (e.g., random [McGee and Kaner, 2003] or genetic [Berndt
and Watkins, 2005]) for automated execution and evaluation of a large number of
TCs, to expose functional faults that are otherwise hard to find. These techniques
are resource intensive but can effectively be distributed, for instance onto the
cloud [Parveen and Tilley, 2010];
• like test execution above, test generation can also be distributed, which is impor-
tant since “real world test generation problems are computationally very complex
and take long to process on a single PC” [Nupponen, 2014], causing painful delays
in the software development process [BusinessWire, 2009]. Since MBT is usually
employed iteratively, the delays are multiplied. Hence “distributed test design
processing is a key to MBT success” [Nupponen, 2014];
• with both test generation and test execution distributed, it is also possible to
get rid of a master and thus avoid the problems of a master/server network (cf.
Subsec. 3.5.2).

There are only four known distributed MBT tools [URL:PARALLELblogpost], which
all use a master/slave network and thus are not decentralized:
Conformiq Grid [BusinessWire, 2009; Nupponen, 2014] is an extension to the offline

MBT variant of Conformiq (cf. Subsec. 10.3.4), so it parallelizes test generation, but does
not offer distributed test execution, which can, however, be delegated to a parallel test
execution tool. Conformiq Grid offers multi-core, multiprocessing, and distributed com-
puting, and achieves savings of up to 90% of test generation time by scaling from one
to sixteen processor cores [BusinessWire, 2009; Nupponen, 2014]. It has a master/slave
architecture (based on CORBA) and thus a single point of failure and contention. But
the master distributes traversal tasks to the slaves, offering high performance load bal-
ancing and recovery. This allows the helpful feature of varying the number of processors
while test generation is running. One focus of Conformiq Grid is deterministic test case
generation, regardless of the number of processor cores, their speed, and load. This is
a difficult feature, but achieves reproducibility of test case generation; in case one SUT
is fixed and has no uncontrollable nondeterminism, also test coverage and bug detection
are fully reproducible, which is very helpful.
Parallel QuickCheck [Kusakabe et al., 2010; Kusakabe, 2011; Wada and Kusakabe,

2012] uses property-based random testing (cf. [Fink and Bishop, 1997] and Subsec. 1.1.3)
via the tool QuickCheck [Claessen and Hughes, 2000; Kusakabe et al., 2010; Kusakabe,
2011], where properties are described as Haskell functions [Marlow et al., 2010; O’Sullivan
et al., 2009]. By additional libraries, QuickCheck can be extended, e.g., supporting
quantifiers, conditionals and test data monitors for the properties, other languages and
generators for the input. For Parallel QuickCheck, distribution is performed by Hadoop
and properties are specified either in Haskell or in VDM-SL [Plat and Larsen, 1992]
(both used as executable specification languages, and one specification can also test
the other [Wada and Kusakabe, 2012]). TCs are generated randomly according to the
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specification with the help of property-based testing. Experiments in [Kusakabe et al.,
2010; Kusakabe, 2011] have shown that their distributed random TC generation produces
highly redundant TCs, causing low coverage and inefficiency. Thus Parallel QuickCheck
runs in two phases: The first distributedly generates TCs, which are then selected on
the server. In the second phase, the server schedules TCs to the nodes, where they are
executed and evaluated distributedly. Speedup is relatively good, but not linear: for
Haskell specifications efficiency is 1 for 8 cores, but drops to 0.6 on 32 cores, i.e., to a
speedup of less than 20.
YETI on the cloud [Oriol and Ullah, 2010] uses the automated random testing tool

Yeti, which is an on-the-fly MBT tool that tests for runtime exceptions and failures or
uses contracts as test oracles. Therefore, both test case generation and test execution
are distributed, using Hadoop. Yeti is distributed easily using varying seeds for Yeti’s
pseudo-random number generator. Limited experiments were conducted and showed
good scalability, but the need for exit criteria and real-time feedback [Oriol and Ullah,
2010] (which are both offered by distributed LazyOTF below). Furthermore, random
testing requires many more steps than LazyOTF to achieve the same desired TOs (cf.
Subsec. 14.3.4) and the long failure traces that random testing produces are impractica-
ble and need to be reduced, which is also a difficult task. Since Yeti on the cloud only
uses Hadoop to distribute the Yeti instances at the start and collect their results at the
end, the deficits of the master/slave architecture are not severe.
In PGA [Geronimo et al., 2012; Tilley and Parveen, 2013], a parallel genetic algo-

rithm (cf. Subsec. 12.3.1) is used to parallelize the individual fitness evaluation in each
iteration using Hadoop. After sufficiently many iterations, a JUnit test suite with high
branch coverage is derived. Therefore, PGA does not perform distributed test execution.
The preliminary evaluation show a speedup in test case generation of 1.57 on an Intel
Core i3-2100 processor, which has 2 cores and 4 threads via hyper-threading. Using a
master/slave network might be avoidable if not just the fitness evaluation, but all genetic
operations were parallelized.

Notes. [Schieferdecker and Vassiliou-Gioles, 2003] states that the prominent Testing
and Test Control Notation version 3 (TTCN-3) [URL:TTCN] does not provide an im-
plementation for distribution itself, but theTTCN-3 Control Interface (TCI) declares
entities and operations that help to distribute a test system, and to test a distributed
system.
The well-known Cloud9 [Ciortea et al., 2009] does not test but uses symbolic execution

and execution-based model-checking. So it is not closely related to distributed MBT,
but an interesting parallelization of a tool similar to those described in Subsec. 7.3.2.

11.5.2. Distributed LazyOTF

Algorithm. For LazyOTF, both the graph traversal and the test execution can be par-
allelized very easily using a distributed algorithm that is asynchronous and decentral-
ized [Lynch, 1996; Raynal, 2013], baptized distributed LazyOTF: P nodes run in
parallel, each one executing an instance of LazyOTF that tests an own instance of the
given SUT. We call these LazyOTF instances LazyOTF1, . . . , LazyOTFP . Each LazyOTFi
starts with the same set ö of TOs. Thus each o ∈ ö needs a common handle through-
out the distributed system, which is easily implemented. If LazyOTFi discharges some
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TO o ∈ ö, it asynchronously broadcasts the information about this so called inter-
nal discharge to all other instances. If LazyOTFi receives a message that some TO
o ∈ ö has been discharged somewhere else, LazyOTFi also discharges o, called external
discharge.

Implementation. Broadcasting internal discharges is implemented in a polymorphic
method called pushInternalDischarge(ö o). Receiving and processing these messages is
implemented in a polymorphic method called pullExternalDischarges(). The informa-
tion about an external discharge of TO o ∈ ö could be pushed into the local system
by discharging o the moment the message arrives at LazyOTFi. But this would cause
high complexity within LazyOTFi due to multi-threading and race conditions if run con-
currently with traversalSubphase or testExecutionSubphase. Thus pullExternalDischarges is
called once at the beginning of each traversalSubphase. The disadvantage of this approach
is that external discharges that happen during a traversal sub-phase or test execution
sub-phase will be delayed. But they will be processed before the next traversal sub-phase
is conducted. Consequently, termination detection of LazyOTFi might be delayed by one
phase. Message passing is implemented by Hazelcast as default, and alternatively by
UDP broadcasts and UDP multicasts (cf. Subsec. 3.5.2).
The resulting distributed LazyOTF algorithm has the same structure as Listing 11.1,

with its polymorphic methods adapted by:
• traversalSubphase: calls pullExternalDischarges() at the beginning, then proceeds as
usual;
• testExecutionSubphase: calls at each discharge of some TO o the method

pushInternalDischarge(o), otherwise proceeds as usual.
Therefore, distributed LazyOTF distributes test execution and test generation in a

shared-nothing architecture with low coupling and full decentralization. So the nodes
form a peer-to-peer network, where discharges of TOs are communicated. Distributed
LazyOTF offers the first decentralized parallel MBT.

Notes 11.11. The implementation uses observers for exitCriterion , so termination di-
rectly after pullExternalDischarges is possible (cf. Subsec. 13.3.4).
Distributed LazyOTF parallelizes MBT on the level of LazyOTF, with the help of

heuristics. An alternative parallelization of MBT would be on a lower level, by paral-
lelizing gen (cf. Subsec. 8.9.3). Parallel gen can implement LazyOTF such that traversal
and test execution sub-phases may overlap: If the test execution phase, run in parallel,
decides on the outgoing transition, all worker threads of gen traversing a state space
partition that has become irrelevant are discarded; therefore, resources become available
for new outgoing transitions to investigate. This approach is more suitable for real-time
computation, especially since it can interpret inducing states more loosely: if resources
are still available, investigation beyond inducing states can be performed before test
execution reaches the inducing state. Since real-time computation is not the focus of
this thesis, but LazyOTF and heuristics, we investigate distributed LazyOTF and leave
this alternative parallelization as future work.

Correctness. Distributed LazyOTF is sound if all instances LazyOTFi are sound because
then no instance produces a false positive. Distributed LazyOTF is exhaustive (resp.
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guarantees Pdischarge, cf. Def. 12.6) if one instance LazyOTFi is exhaustive (resp. guaran-
tees Pdischarge) since then at least that instance produces all required TCs. In summary,
since all instances run the same LazyOTF algorithm, initialized with the same set ö,
distributed LazyOTF is sound (resp. exhaustive, resp. guarantees Pdischarge) if LazyOTF
is sound (resp. exhaustive, resp. guarantees Pdischarge).
Distributed LazyOTF is fault-tolerant – more precisely, partition tolerant [Gilbert and

Lynch, 2002]: if messages are lost (i.e., communication performance failures or omission
failures occur [Cristian, 1993]), the runtime of distributed LazyOTF might increase, but
soundness is not broken; for partitions containing an instance LazyOTFi that is exhaus-
tive (resp. guarantees Pdischarge), distributed LazyOTF is also exhaustive (resp. guaran-
tees Pdischarge). Since all instances run the same LazyOTF algorithm and configuration,
exhaustiveness and Pdischarge guarantees are also not broken by message losses.

Analysis. Because an instance does not need to discharge TOs that other instances
have discharged, each instance requires fewer test steps and therefore less runtime for
the same overall effect (e.g., coverage, discharging all TOs, exhaustiveness, or fault
detection). With fewer test steps, counterexamples become shorter and hence easier to
understand and reproduce.
Usually ö is small, so discharges take place infrequently; furthermore, information is

distributed by efficient asynchronous message passing implementations; thus contention
for the network resource is usually not a problem. If ö happens to be large with many
o ∈ ö easily reachable, there might be a lot of message passing when distributed LazyOTF
starts, causing network congestion. For our message passing implementations, contention
for the network resource will not cause blocking or transmission retries, but simply
delayed or lost messaged. Since distributed LazyOTF is partition tolerant, message losses
do not break soundness, exhaustiveness or Pdischarge guarantees, and increase the runtime
only slightly because the discharged o ∈ ö whose messages got lost are easily reachable.
In short, distributed LazyOTF can trade networking resources for runtime.
For SUTs with high uncontrollable nondeterminism (or S with multiple best choices

in one traversal sub-phase, which LazyOTF can choose from, cf. Subsec. 11.1.2), two
different LazyOTFi and LazyOTFj are likely to diverge quickly, reaching different parts
of S in subsequent phases. So if the test goals used in ö are not clustered in a small
region of S, LazyOTFi and LazyOTFj will likely discharge different o ∈ ö, resulting in
little work duplication and high work pruning, and hence in good work distribution and
high parallel scalability.
Though distributed LazyOTF does not explicitly distribute a test suite, the distribution

criteria in [Kapfhammer, 2001] are met:
• transparent and automatic distribution is given since each LazyOTFi runs

independently and messages are exchanged fully automatically and transparently.
Only the communication (Hazelcast, multicast UDP, or broadcast UDP) needs to
be configured before testing, and the instances started on the machines, e.g., with
a simple script;
• test case contamination avoidance, i.e., execution of different TCs must be
independent. This is, as usual, achieved by each instance executing TCs on an
own, independent SUT;
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• test load distribution is achieved for free by our heuristics (cf. Chapter 12), since
each instance knows which TOs still have to be discharged and guides accordingly.
This load balancing is fully fault-tolerant, since it can handle crash failures and is
partition tolerant;
• test suite integrity is also given, as described in the paragraph above about
correctness. Full fault-tolerance and exhaustiveness are also guaranteed;
• test execution control, i.e., control execution of TCs and view their results from
a centralized testing environment: Since distributed LazyOTF is decentralized and
TCs are generated on-the-fly with our heuristics, test execution cannot be fully
controlled, only to the extent of guidance (cf. Chapter 12). With lightweight
message passing via UDP broadcasts or UDP multicasts, LazyOTF instances that
are started later on (e.g., to resume work after a crash) do not know which TOs
have already been discharged (unless they are forked from running instances that
know, which is currently not supported). Hence Hazelcast is used as default,
despite its high runtime and communication costs if a Hazelcast cluster is set
up and clean up frequently. Each LazyOTFi instance can be used for real-time
feedback to monitor which TOs have already been discharged globally. This and
all other results are stored on a shared drive by our implementation at the end.
The more heavyweight message passing via Hazelcast offers more sophisticated test
execution control: Dynamic information could be monitored using the Hazelcast
Management Center [Inc, 2015; Johns, 2013] for early feedback. To distribute the
actual LazyOTFi instances and the configuration onto the different machines, and to
merge the results into one location, Hazelcast’s distributed executor service could
be used. Both is future work. Since all LazyOTFi still communicate with each other
and store their results locally, this test execution control does not break full fault-
tolerance. As further Hazelcast features, instances can synchronize, communicate
reliably, be started or stopped elasticly, and be deployed also to cloud services that
do not support UDP broadcasts or multicasts [URL:AMAZONCLOUD]. These
features are very relevant in practice [Parveen and Tilley, 2010; Priyanka et al.,
2012; Tilley and Parveen, 2013; Nupponen, 2014].

Notes 11.12. Due to Hazelcast’s expressiveness, future work can easily be implemented,
e.g., adding new TOs lazily, i.e., when instances are already running. MapReduce on top
of lightweight message passing is an alternative test execution control without Hazelcast.
In relation to the CAP theorem [Gilbert and Lynch, 2002], distributed LazyOTF hence

AP: Available and Partition tolerant, whereas Consistency is only achieved eventually,
without a time bound, by additional local computation to discharge the lost o ∈ ö.
Even with Hazelcast and it’s distributed backups, distributed LazyOTF is still AP since
Hazelcast is AP.
Distributed LazyOTF can also use multi-core multiprocessing, but a tailored multi-

threaded parallelization (cf. Sec. 3.5) is likely more efficient for these cases than dis-
tributed LazyOTF, but future work. though more efficient implementations would be
possible, cf. Note 11.11). A multi-core variant of LazyOTF is especial useful if all in-
stances should operate on one SUT, or multiple SUTs can run independently and quickly
on one computer.
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Distributed LazyOTF can also be used to test a distributed SUT: use this SUT only
once instead of the n independent instances, and place a LazyOTF instance at each port of
the SUT (i.e., each distributed point of control and observation). Because of LazyOTF’s
flexible implementation of TOs (cf. Subsec. 13.2.3), arbitrarily complex distributed sit-
uations can be tested (e.g., ioco, mioco [Tretmans, 2008], dioco [Hierons et al., 2012],
eco [Frantzen, 2016] or coverage criteria for cloud computing [Chan et al., 2009]). Until
recently, there has been little progress on testing large-scale distributed systems [Hughes
et al., 2004]; one reason is that inefficient distributed testing (e.g., with a master and
contention) can strongly distort the distributed behavior of the SUT [de Almeida et al.,
2010; Long and Strooper, 2001]. Our decentralized distributed testing depicts a solution.

11.6. Conclusion

11.6.1. Summary

This chapter investigated the interplay between test generation and test execution and
motivated a lazy alternative to on-the-fly MBT, called LazyOTF. It synergetically inte-
grates the advantages of both on-the-fly and offline MBT: test steps are still executed
on-the-fly during test case generation, but not strictly in lockstep, but lazily when there
is a reason to, encoded as heuristic.
As in offline MBT, backtracking is possible, now within each phase’s sub-graph bound-

ed by the phase heuristics. So the test selection heuristics can search the complete sub-
graph to choose the potentially most meaningful TC, but unlike offline MBT, LazyOTF
can incorporate the dynamic information from previous phases. This enables new guid-
ance heuristics, designed and investigated in detail in Chapter 12. In this chapter, the
overview of the LazyOTF approach, algorithm, and heuristics framework is given accord-
ing to the MBT taxonomy, with a focus on test selection and on the interplay between
test generation and test execution. Both are formalized to enable precise descriptions
and analyses. We thoroughly consider related work to LazyOTF and to its parallelization,
called distributed LazyOTF, which is also introduced.
To express LazyOTF and its laziness as a scheduling of tasks (cf. Def. 3.33), we partition

transition tasks into intra-phase transition tasks, i.e., they stay within a sub-phase, and
inter-phase transition tasks, i.e., they leave a sub-phase (they leave an inducing state or
exceed a bound). Check tasks perform a test step execution on the SUT and check the
result of that test step. LazyOTF lazily schedules inter-phase transition tasks only after
check task only after intra-phase transition task. Hence it gives up strict on-the-flyness,
i.e., level 2 OTF, for better guidance in a level 1 OTF algorithm.

LazyOTF’s advantages over offline and on-the-fly MBT are mainly its overall time,
space and test case complexities, which are usually exponentially smaller, and the higher
meaningfulness of the generated TCs. For slow SUTs, meaningful TCs become even more
important, since test case execution becomes the bottleneck. Further advantages in the
context of the whole software development process are: stronger on-the-flyness, short
and understandable TCs, higher reproducibility, and automatic traceability (cf. Sub-
sec. 11.1.2). Furthermore, LazyOTF offers flexible heuristics via our TOs, which also
enables efficient parallelization: instead of distributing TCs (cf. Subsec. 11.5.1), dis-
tributed LazyOTF distributes discharging of TOs. This leads to (super-)linear speedup
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of the test execution sub-phase and of meaningfulness, almost linear speedup overall
(cf. Subsec. 14.3.7), and to the first decentralized MBT, in a peer-to-peer network with
full fault-tolerance (partition tolerance and crash failures) and less communication and
contention. Finally, LazyOTF also enables further optimizations and improvements, espe-
cially via its flexible heuristics framework. In sum, LazyOTFmakes MBT of large systems
with uncontrollable nondeterminism feasible, which is a major challenge [Huima, 2007].
These advantages will be substantiated by our experiments in Sec. 14.3. Unfortunately,
LazyOTF if more complicated than OTF, which simply chooses randomly. Consequently,
LazyOTF must tightly integrate MC algorithms with heuristics to make strong use of the
available dynamic information. Hence off-the-shelf MC tool cannot be applied efficiently
without adaption within LazyOTF. Furthermore, there are many aspects of MBT and
possibilities for further heuristics, which are future work. For instance, real-time MBT
of timed automata via LazyOTF is a challenge (cf. Subsec. 11.6.3).

11.6.2. Contributions

The main contribution of this chapter is the design and implementation of LazyOTF
to increase the feasibility of MBT. We formalized and investigated various aspects of
LazyOTF, showed that many aspects of the MBT taxonomy (cf. Sec. 10.2) can be varied
within LazyOTF, and analyzed LazyOTF’s complexity. We designed and implemented
distributed LazyOTF, as exemplary optimization.

11.6.3. Future

Possible future work on LazyOTF includes:
• more elaborate handling of failures: currently, testing stops or restarts when a fail
occurs, but coping with failures in a more elaborate way, e.g., via fault-tolerance,
could result in more efficient testing: After a failure occurred, it could be taken
into account to avoid the same failure again, but find related ones (cf. Note 8.36,
Subsec. 8.9.3, and Subsec. 11.1.2). Since these failure handling methods are diffi-
cult, require additional constraints, and should be evaluated empirically, they are
future work;
• adapting LazyOTF for real-time behavior and testing time automata is possible
at different levels: real-time behavior is supported by parallelizing gen (cf. Sub-
sec. 8.9.3, Subsec. 11.5.2, Subsec. 11.4, and below); furthermore, heuristics can be
greedy (cf. Subsec. 12.5.3). But this is future work since its efficiency is an open
question and it is not the focus of this thesis;
• implementing test selection strategies via mutation testing and model-based muta-
tion testing, and comparing them to the test selection strategies LazyOTF already
offers (cf. Note 11.4).

Possible future work on distributed LazyOTF includes:
• implement parallel gen (cf. Subsec. 11.5.2), and then overlapping traversal and test
execution sub-phases. Finally, compare the results to distributed LazyOTF;
• due to Hazelcast’s expressiveness, many interesting features can easily be imple-
mented and experimented with as future work. For instance, instances can add new
TOs lazily. Furthermore, using shell scripts to distribute LazyOTFi instances onto
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machines and to merge their results into one location became unhandy quickly,
so applying Hazelcast’s distributed executor service as technical solution for de-
ployment and for collecting and post-processing of results is some future work
that should cause no difficulties but could strongly simplify test execution control.
Since message passing is still used during the execution of all LazyOTFi, full fault-
tolerance and many additional features of test execution control, e.g., monitoring,
are still applicable;
• pushing the message of the external discharge o into the local system by discharging
o in ö the moment the message arrives at LazyOTFi, instead of receiving and pro-
cessing these messages in pullExternalDischarges just before traversal sub-phases.
But as described in Subsec. 11.5.2 and suggested by our experiments (cf. Sub-
sec. 14.3.7), pushing will probably not lead to a strong improvement over pulling;
• using distributed LazyOTF to test a distributed SUT (cf. Note 11.12 and Sub-

sec. 14.3.8).
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12.1. Introduction

Heuristics are techniques that follow some general guideline that does not always hold,
i.e., is only an approximation to the optimum. Consequently, they trade optimality
for lower cost to find a sufficiently satisfactory solution within an acceptable amount of
resources (such as time, space and information). Before introducing heuristics for phases
(cf. Sec. 12.2) and guidance (cf. Sec. 12.3), this section motivates the use of heuristics
and introduces classical heuristics used for MBT.
As Chapter 8 and Chapter 10 have shown, MBT is usually not exhaustive since ex-

haustive enumeration of all test cases is usually not feasible. Furthermore, it is unclear
how often a test case needs to be executed because of uncontrollable nondeterminism.
Therefore, MBT needs to perform test selection, i.e., choose a usually inexhaustive but
finite sequence of TCs (Ti)i to execute (cf. Def. 11.8). The standard ioco theory does
not deal with test selection. Our ioco theory in Chapter 8 did cover test selection within
exhaustive test suites by only considering faultable states and faultable traces and by
choosing TCs with an appropriate bound. But in most cases, the infeasibility problems
just described do hold (cf. Table 8.1). Then inexhaustive test selection is necessary and
not all possible faults can be found by (Ti)i. Furthermore, it is usually too difficult to
chose (Ti)i optimally, i.e., most meaningful (cf. Subsec. 2.5) within that amount of test
steps, because
• we do not know in advance what resolution of uncontrollable nondeterminism the

SUT will take, so we cannot choose in advance the TC that will be the most
meaningful during test execution;
• therefore, we can only try to select a potentially most meaningful TC, i.e., most
meaningful under all nondeterministic resolutions. But this is difficult, too, since
meaningfulness depends on the domain, user scenario and environment, which we
do not know in advance, and on the implementation of the SUT, which is unknown
in black-box testing. Thus meaningfulness heuristics are used to approximate
meaningfulness. These heuristics are user-supplied, e.g., coverage criteria, test
purposes or more generally test objectives (cf. Subsec. 11.2.4) to estimate how
meaningful a test case is;
• OTF and LazyOTF perform test execution before the specification S has been

(fully) explored. So test selection is necessary before further information of S is
available. But an optimal test case of size s1 might not be an extension of an
optimal test case of size s2 < s1;
• so test selection needs to be flexible enough to subsume some meaningfulness
heuristic. State coverage is one of the simplest relevant heuristics, which is suffi-
ciently strong to guarantee exhaustiveness only for the strongest fairness constraint
fairnesstest (cf. Subsec. 8.8.4). Nonetheless, optimal state coverage is already NP
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hard since the traveling salesman problem can be reduced to it [Mosk-Aoyama and
Yannakakis, 2005; Swain et al., 2012];
• test selection can be improved by taking dynamic information into account, i.e.,
information gained during a test run of the SUT, e.g., the uncontrollable nonde-
terministic resolution. But hereby, test selection becomes even more elaborate.

Fortunately, the optimal TCs are not required for testing, some suboptimal TCs also
detect the errors if they are sufficiently meaningful (and failure traces sufficiently short
for the verification engineer to understand). Thus we search for a usually suboptimal
but still sufficient solution to meet some requirement, using heuristics (cf. Fig. 12.4 on
page 322).

Note. Optimal test selection lies within NP for most meaningfulness heuristics: genTC
(cf. Listing 8.2) can nondeterministically guess a TC that meets the heuristics in poly-
nomial time, and for most heuristics it can be checked in polynomial time whether the
TC meets the heuristics’ criterion (e.g., some coverage or test objectives).

Roadmap. Sec. 12.2 introduces phase heuristics: user-supplied inducing states in Sub-
sec. 12.2.1, bound heuristics in Subsec. 12.2.2. Sec. 12.3 introduces flexible guidance
heuristics for test selection: Subsec. 12.3.1 enumerates related work on guidance heuris-
tics, for offline MBT and on-the-fly MBT, and depicts how LazyOTF can make better
use of guidance heuristics. Subsec. 12.3.2, resp. Subsec. 12.3.3, introduce provisos that
guarantee exhaustiveness, resp. discharging of TOs, for our heuristics. Subsec. 12.3.4
design flexible heuristics based on weights, and a corresponding test generation algo-
rithm. Subsec. 12.3.5, resp. Subsec. 12.3.6, investigate our provisos to guarantee ex-
haustiveness, resp. discharging of TOs, for our weight heuristics. Subsec. 12.3.7 covers
compositionality of TOs for our weight heuristics, and how they meet our provisos. Sub-
sec. 12.3.8 investigates when provisos are not met, and countermeasures. Subsec. 12.3.9
lists related work on guidance heuristics via weights. Sec. 12.4 introduces optimizations
for our heuristics: Subsec. 12.4.1 lazy traversal sub-phases to optimize performance via
phase heuristics, Subsec. 12.4.2 eager micro-traversal sub-phases to optimize meaning-
fulness via guidance heuristics, Subsec. 12.4.3 covers optimization of reproducibility,
Subsec. 12.4.4 considers more dynamic information for bound heuristics as future work,
and Subsec. 12.4.5 investigates quantifying nondeterminism for better meaningfulness as
future work. Sec. 12.5 concludes this chapter, summarizing our provisos in Fig. 12.4.

12.2. Phase Heuristics
Since LazyOTF integrates on-the-fly and offline MBT, it has the new feature of swapping
flexibly between traversal sub-phases and test execution sub-phases, leading to new
heuristics neither present in on-the-fly nor in offline MBT, the so called phase heuristics
(cf. Subsec. 11.3.2). They determine how LazyOTF divides S into (possibly overlapping)
sub-graphs, where each traversal sub-phase traverses one of them (cf. Subsec. 11.1.2).
Consequently, the phase heuristics control LazyOTF’s scheduling of tasks (cf. Def. 3.33
and Subsec. 11.6.1).
A phase heuristic can
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• reduce the overall complexity of a traversal sub-phase as well as execution sub-
phase;
• control where and when dynamic information is fed back to test selection, by
determining where and when traversal sub-phases and execution sub-phases are
swapped;
• reduce uncontrollable nondeterminism in TCs, and thus their complexity, by post-
poning exploration of nondeterministic choices until the dynamic information of
the actual choice is fed back to the next traversal sub-phase.

The advantage and effectiveness of phase heuristics strongly depend on the specifi-
cation and application domain. Thus they are supplied by the verification engineers,
either explicitly or via heuristics, in the form of inducing states and bounds bpcurr (cf.
Def. 11.8). l.10 of Listing 12.2 on page 300 integrates LazyOTF’s phase heuristics:
if (b == 0 or isInducing(π)).

12.2.1. Inducing States

Inducing states are formalized by I lazy(·) (cf. Def. 11.5). isInducing(π) is usually im-
plemented via test objectives by return (I lazy(dest(π)) == INDUCING) && (|πpcurr | != 0);
(forcing at least one test step, cf. Note 11.2).
Inducing states are user-supplied and either enumerated explicitly in the specification

or in the GUI (cf. Subsec. 13.3.2), or declared programmatically (see Subsec. 13.2.3),
e.g., all states with a name in *Exception*, since exceptions cause nondeterminism on
output.

12.2.2. Bound Settings and Heuristics

Since inducing states do not guarantee that the sub-graphs for the traversal sub-phases
will be sufficiently small for the phase heuristics to be efficient, a depth bound bpcurr

restricts the depth of Tpcurr , i.e., of the sub-graph’s computation tree (cf. Def. 11.8). bpcurr

can be constant for all phases, or incorporate dynamic information to increase efficiency
(cf. Sec. 14.3.6), so that the bound sequence (bi)i∈[1,...,1+pcurr ) may contain different
values. This is implemented by our dynamic bound heuristics, defined in Def. 12.1.
The minimal depth bound, bmin, the maximal depth bound, bmax, the depth
bound thresholds, p+ and p−, the depth bound increment function, b+(·), and
the depth bound decrement function, b−(·) are user-supplied (cf. Subsec. 14.3.6),
and b1 := bmin.

Definition 12.1. Let bmin, bmax, p+, p− ∈ N>0 and b+, b− : [bmin, . . . , bmax]→ [bmin, . . . ,
bmax] be given. Then the dynamic bound heuristics determines b1+pcurr (depending
on (bi)i∈[1,...,1+pcurr ) and (πi)i∈[1,...,1+pcurr )):

b1+pcurr :=



b+(bpcurr ) if ∀i ∈ [0, . . . , p+ − 1] :
(
bpcurr−i = bpcurr and

testExecutionSubphase in phase pcurr − i discharged no TO
)
;

b−(bpcurr ) if ∀i ∈ [0, . . . , p− − 1] :
(
bpcurr−i = bpcurr and

testExecutionSubphase in phase pcurr − i discharged a TO
)
;

bpcurr otherwise.
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Notes. Our dynamic bound heuristics depend on the user-supplied values and the dy-
namic information of when TOs are discharged. By this restriction, our dynamic bound
heuristics are easily configurable and efficiently computable. Furthermore, discharges are
the most relevant information for the bound heuristics since discharging TOs is a main
goal of testing with LazyOTF. In rare cases, considering further dynamic information
might yield better bound heuristics, which is considered in Subsec. 12.4.4.
An increment in bpcurr improves meaningfullness of the generated TCs, a decrement

improves the performance of traversalSubphase. So supporting increases and decreases of
bpcurr allows fast and aggressive dynamic bound heuristics since bpcurr can be corrected
in both directions later on. Furthermore, there might be an important but hard to reach
TO, and once it is discharged, less important but easier to reach TOs call for smaller
bpcurr (see next section).

12.3. Guidance Heuristics

12.3.1. Introduction

Whereas phase heuristics determine the current sub-graph (cf. previous section), guid-
ance heuristics resolve the controllable nondeterministic choices of the abstract test
case generation algorithm genTC in Listing 8.2:
• whether to offer an input or wait;
• which input to pick;
• whether to restart (cf. Subsec. 11.2.4);
• whether, respectively when, to terminate (cf. exitCriterion in Listing 11.1).

So guidance heuristics determine iδ ∈ LI ∪̇{δ} in each step and thus the TCs. Therefore,
guidance heuristics are test selection heuristics to find potentially meaningful test
cases. The importance of test selection has been shown empirically, e.g., in [Jard and
Jéron, 2005; Lackner and Schlingloff, 2012].

Related Work on Guidance Heuristics

The following classical guidance heuristics, also called test selection directives
(test directive for short), are used in practice as classical test selection heuristics:
• randomness, i.e., a random walk over the graph is performed, which corresponds to
TCs being selected randomly from genTC(·, init after τ) (which can be considered
the weakest possible heuristic since no information is used to guide selection).
Random choice is not directed: if a state s of a specification S has a large set
inSτ∗ (s) and few lead to meaningful states or traces, random selection likely leads
to bad results [Nieminen et al., 2011];
• a user-supplied test purpose p: p is a set of StracesSτ∗δ(initS) to be consid-
ered (formally, p is a linear time property (cf. Subsec. 4.2.2) with respect to
LI ∪̇ LU ∪̇ {δ}). p is usually described by a regular expression or by a deter-
ministic LTS in IOT SLI ∪̇LU (LI , LU ) with two special states pass and inconclusive
(roughly similar to a test case, cf. Def. 8.34). p restricts the exploration of S to the
behaviors described by both p and S (similarly to never claims in SPIN, cf. 3.4.3).
So a TC T generated with the help of p only considers behaviors in p. Thus test
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execution of T yields the verdict inconclusive if the SUT’s behavior departs from
p due to uncontrollable nondeterminism. Unfortunately, the stronger the state
space is decreased by p, the more likely the verdict inconclusive. Furthermore,
describing test purposes is a manual task that is error-prone, requires time and
expertise [Rusu et al., 2000; Jard and Jéron, 2005], and requires high maintenance
whenever S changes. Finally, test purposes are not compositional as they cannot
be combined efficiently: conjunction might not be feasible, concatenation ineffi-
cient since some order needs to be determined a priori, and possible redundancy
removed manually to achieve synergetic effects (cf. Subsec. 11.2.4). Disjunction is
used in [de Vries and Tretmans, 2001] (by flattening the set of test purposes called
plural observation objective) and also inefficient, as this further weakens guid-
ance. For instance for full transition coverage, the resulting observation objective
is simply the specification itself, resulting in testing as if no observation objective
was given. While this eventually achieves full transition coverage, it causes no
performance improvement at all. Test purposes are also called singular observa-
tion objectives, scenarios, trace patterns (e.g., in Spec Explorer [Veanes et al.,
2008; Jiang et al., 2011]) and usage profiles if they are enriched by probability
values (cf. Subsec. 5.5.4 and [Seifert et al., 2008]);
• a user-supplied coverage criterion c (cf. Sec. 2.5), such that test selection makes
the choice that is best for c: the choice to (potentially) raise the coverage level
of c the most, if such a choice exists. Otherwise, the choice should help future
selections to raise c the most. So the choice (πpcurr in LazyOTF’s terminology,
cf. Def. 11.8) is derived from the history ((πfulli )i in LazyOTF’s terminology), i.e.,
what has been covered so far. This guidance is often restricted to certain struc-
tural coverage criteria and hard to transfer to other guidance heuristics, e.g., for
other test selection directives, for requirements, for composition, and for systems
with uncontrollable nondeterminism. It depends on the situation and the coverage
criterion c (or mix of coverage and other criteria [Duran and Ntafos, 1984; Abdu-
razik et al., 2000; Dupuy and Leveson, 2000; Rajan et al., 2008b; Krishnan et al.,
2012; Anand et al., 2013; Gay et al., 2015]) whether c selects meaningful test cases
or not: In [Staats et al., 2012; Pretschner et al., 2013], c rarely selects meaningful
test cases, in [Heimdahl et al., 2004], simpler specifications coverage criteria rarely
selects meaningful test cases, in [Weyuker and Jeng, 1991; Frankl et al., 1997; Juz-
gado et al., 2004; Cadar et al., 2008b; Fraser et al., 2009; Krishnan et al., 2012;
Gay et al., 2015] it strongly depends on the situation, and in [Horgan et al., 1994;
Gutjahr, 1999; Fraser and Wotawa, 2006; Mockus et al., 2009; Derderian et al.,
2006; Weißleder, 2009; Ali et al., 2010; Utting and Legeard, 2007; Godefroid et al.,
2005] c supports the meaningfulness of test cases. The most relevant aspect is
whether uncontrollable nondeterminism is present: if it is, static coverage levels
on S during traversal can deviate dramatically from the dynamic coverage levels
during test execution (cf. Sec. 2.5).

In iterative software development, more directed test selection like test purposes are often
better suited than coverage criteria, e.g., to prioritize TCs for new or fixed behaviors
(cf. 14.2). But better suited test selections should also be better combinable and more
flexible than test purposes, like coverage criteria.
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Two other test selection heuristics are introduced in [Feijs et al., 2002; Goga, 2003],
which are meant to be used simultaneously:
• a user-supplied reduction heuristic, which assumes that few outgoing transi-
tions of a state already show all relevant differing behavior, and hence reduces the
number of outgoing transitions via user-supplied transition selection;
• a cycling heuristic, which assumes that few unwindings of a cycle (like loop
unwindings in Subsec. 7.1.1) show all relevant differing behavior (cf. small scope
hypothesis in Subsec. 6.4.3), and hence prioritizes test cases that unwind cycles
only a few times. So the cycling heuristics recurrently allows more and more loop
unwindings (like BMC with a bound check, cf. Subsec. 5.2.3). But sometimes there
is no exhaustiveness threshold for the maximal number of required loop unwindings
(cf. Lemma 8.74), unlike BMC’s completeness threshold.

Unfortunately, the cycling heuristic is based on a representation of traces that uses cy-
cle enumeration, which is costly [Feijs et al., 2002; Johnson, 1975]. Furthermore, the
heuristics work offline, operating on sets of paths of Sdet. [Goga, 2003] implements
the heuristics as proof of concept in an offline approach by firstly unfolding a set of
traces from S and then performing test selection on the set. [Feijs et al., 2002] raises
the question whether an on-the-fly implementation of the heuristics on S is possible.
The guidance heuristics introduced in this section for LazyOTF can be used to imple-
ment on-the-fly variants of the cycling heuristic, as future work (cf. Subsec. 12.3.9 and
Subsec. 12.5.3).
In search-based software testing (SBST) [Ali et al., 2010; Anand et al., 2013; Su

et al., 2015b], classical metaheuristics (e.g., evolutionary algorithms, simulated annealing
and hill climbing) are used to maximize the meaningfulness of TCs while minimizing the
cost, so the algorithms search for good TCs in the specification.The approaches are often
not as expressive and flexible as our heuristics, focus only on coverage criteria, and do
not handle oracles well (i.e., deal with input better than output) [Anand et al., 2013].
Many approaches search for a suitable TS of the full state space, i.e., search within the
set 2T T S(LI ,LU ,δ), which quickly becomes infeasible, especially for large, nondeterministic
systems.
For instance, genetic algorithms (cf. GPA in Sec.11.5.1 and [Geronimo et al., 2012;

Fraser and Arcuri, 2011]) iteratively pick the fittest solutions (called survival selection)
out of the population and create new solutions by applying reproduction operators (i.e.,
crossover and mutation). So evolutionary algorithms require a fitness evaluation, which is
difficult to choose, requires an initial population (e.g., of random solutions), and is not as
flexible (especially for composition) and expressive as LazyOTF’s heuristics. LazyOTF’s
heuristics implementation via weights (cf. Subsec. 12.3.4) could, however, be used as
fitness evaluation, e.g., using a larger bound and no full traversal within sub-graphs, but
a genetic algorithm.
Genetic algorithms with a fitness evaluation that executes the TSs to measure some

coverage criterion only make sense for generating a TS for later regression testing, since
all TCs in the reproduction selection have already been executed. For large specifications
with uncontrollable nondeterminism, it would have to be investigated whether genetic
algorithms are able to implicitly quantify nondeterminism, i.e., that the evolution adapts
to the SUT’s probability distribution of nondeterministic resolutions, and whether that
is possible with a feasible number of iterations. If so, the resulting TS might achieve
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sufficient coverage if the SUT’s nondeterministic resolution tends to favor specific choices.
Otherwise, the resulting TS cannot achieve a coverage as high as LazyOTF, which makes
use of dynamic information.
Several of these guidance heuristics are based on some metric, such as the coverage

level, the number of cycle unwindings, or the fitness evaluation. These guidance heuris-
tics are sometimes called metric-driven [Anand et al., 2013].

Guidance Heuristics for Offline MBT

Heuristics for offline MBT (cf. Subsec. 10.2.5) can be used for test selection while explor-
ing the specification S, but without dynamic information: since offline MBT is generating
TCs a priori, it has no dynamic information from test execution yet, but it can investi-
gate all of S – or at least parts of S if S is too large for full exploration. To select TCs
from the explored behaviors of S, offline MBT uses any of the three classical test selec-
tion heuristics; newer approaches also allow a combination of them, e.g., the tool TGV
(cf. Subsec. 10.2.5) now supports a coverage criterion restricted by a test purpose [Jard
and Jéron, 2005]. Furthermore, since S can cause state space explosion during traversal,
offline MBT can restrict the explored behaviors (and thus the TCs) by a bound b1 on
the depth (which is a special case of our bound heuristics, cf. Subsec. 12.2.2).
Besides the deficits already described for each classical test selection heuristic (cf.

Subsec 10.2.5 and enumeration above), feasibility is at risk since offline test selection
heuristics often generate or operate on a huge test suite T̈ [Fraser et al., 2009] due to
uncontrollable nondeterminism and the lack of dynamic information. Classical guidance
heuristics without dynamic information are highly uncertain, e.g., a static coverage level
during traversal of S might strongly deviate from the dynamic coverage level the SUT
later exhibits during test execution (cf. Sec. 2.5). Furthermore, if the resolution of
uncontrollable nondeterminism during test execution corresponds to only a small part
of T̈, most work for generating T̈ is unnecessary.

Guidance Heuristics for OTF

On-the-fly MBT mainly uses randomization. As mentioned above, random guidance
is a weak test selection since it does not avoid unnecessary cases. Even worse, some
i ∈ inSτ∗ (s) might move far away from meaningful states or traces that have almost been
reached, rendering the previous test steps void (cf. Sec. 14.3). Test purposes can also
be used for OTF, with all disadvantages mentioned above. Employing coverage criteria
for guidance is too difficult, because OTF only considers the transitions inSτ∗ (s) ∪̇ {τ},
not what occurs after that one step. Consequently, OTF usually does not know which
transition will help increase the coverage criterion. Of course the coverage level can still
be measured to inform the test engineer or as exit criterion.

Guidance Heuristics for LazyOTF

Differing from OTF, LazyOTF needs not perform test selection strictly on-the-fly in each
step, but lazily within the current traversal sub-phase. Thus backtracking can be used to
search for a potentially best choices iδ of controllable nondeterminism within the current
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sub-graph of S. Backtracking can also make use of dynamic information gathered from
previous phases. This new combination enables new heuristics.

Note. So on an abstract level, LazyOTF can itself be considered a guidance heuristic.
LazyOTF can also be considered a metaheuristic: it makes use of lower-level heuristics
for
• deciding in which states traversal of S should be postponed in favor of test execu-

tion (cf. phase heuristics in Sec. 12.2);
• deciding for individual paths how meaningful they are, (e.g., based on meaningful-
ness weight heuristics, cf. Subsec. 12.3.4);
• deducing from individual paths how meaningful complete test cases are (e.g., based
on heuristics that aggregate weights, cf. Subsec. 12.3.6).

In summary, LazyOTFmakes more meaningful choices with the help of guidance heuris-
tics that search in a traversal sub-phase within the current sub-graph, pruned by the
depth bound bpcurr and by inducing states. If a TO can be reached within bpcurr steps, the
guidance heuristics can definitely construct a TC Tpcurr with a TO. If TOs are further
away, test execution can still be guided such that the likelihood of a quick discharge of
a TO is higher than for random choices. Sec. 14.3 will give examples. The guidance
heuristics can use dynamic information from previous phases.
This also enables guidance via dynamic coverage criteria, which are measured during

test execution. New criteria for coverage of uncontrollable nondeterminism can
also be designed: For instance, TOs can incorporate nondeterminism of the LTS (cf.
Subsec. 8.8.4, Subsec. 11.2.4). Furthermore, the following coverage criteria [Faragó,
2011] stipulate that each choice point of nondeterminism on output
• is visited at least once, baptized 1-choice state coverage;
• can pursue different choices, baptized 2-choices state coverage;
• makes at least n choices if the specification offers at least n choices, baptized
n-choices state coverage;
• covers all its choices, baptized all-choices state coverage.

One possible implementation of these coverage criteria for uncontrollable nondetermin-
ism is described in Subsec. 12.3.5. Combined with classical coverage criteria, 1-choice
state coverage, 2-choices state coverage and all-choices state and transition coverage are
a proper superset of the coverage criteria described in [Fraser and Wotawa, 2007].
Our guidance heuristics have several advantages over classical guidance heuristics, as

the remainder of this section will show: they subsume all classical test selection heuris-
tics, are simpler to specify than test purposes, compositional, more expressive, and yield
more meaningful TCs. They are particularly useful for user-supplied meaningfulness
heuristics for specific features. Hence test objectives are a natural fit for meaningfulness
in practice (such as iterative software development processes, cf. Sec. 14.2).

Notes. Another example of a possible new guidance that can make use of dynamic
information is the integration of mutation testing (cf. Notes 11.4); even for systems
with uncontrollable nondeterminism, guidance can dynamically adapt to mutants being
killed.
For infinitely branching states (cf. Note 8.44), LazyOTF requires a reduction heuristic

(see related work above). This can be implemented by the exploration interface (cf.
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Sec. 10.3), which prioritizes the outgoing transitions of a state according to the explo-
ration order. Alternative implementations can wrap the original exploration interface
(e.g., by an additional JTorX) explorer) to perform these reductions. They are invisible
to LazyOTF, so LazyOTF can assume that the specification only has finitely branch-
ing states, i.e., that the system specification description incorporates these reductions
already. Our weight heuristics (cf. Subsec. 12.3.4) do subsume reduction heuristics,
e.g., via a limited, ordered enumeration from highest to lowest weights, but for infinite
branching, we need implicit reduction (cf. Note 8.44).

12.3.2. Exhaustiveness and Test Objectives

In practice, exhaustiveness is usually not achievable (cf. Subsec. 8.8.1, Subsec. 10.1.2,
Subsec. 11.3.3). But exhaustiveness of a test case generation algorithm gen is a useful
property nonetheless since it shows that for every fault, gen can eventually generate a
TC that finds the fault after recurrent execution, no matter how improbable. Rephrased
to an SUT that does not exhibit all these faults, gen will recurrently add new test cases
that increase the assurance that the SUT conforms to its specification [Peleska, 2013].
But exhaustiveness does not say anything about how efficiently this is performed. So
for efficient bug finding, other aspects like finding meaningful test cases and discharg-
ing test objectives are more important, so that giving up exhaustiveness can lead to a
worthwhile trade-off, similarly to the incomplete approaches CMC, lossy hashing and
SBMC with too small a bound (cf. Chapter 5), and EMC and testing with SBMC (cf.
Chapter 7). This subsection covers exhaustiveness nonetheless, so that we know whether
gen can still potentially find all faults, and that we can investigating trade-offs. Relating
exhaustiveness to test objectives (the main practical application of LazyOTF) shows that
test objectives and exhaustiveness are not opposing.
Exhaustiveness of LazyOTF can be guaranteed if the heuristics meet certain criteria.

Since many heuristics are possible, and their usefulness depends on the situation, we do
not want to determine one single heuristic. Instead we constrain the heuristics as little
as possible to maintain exhaustiveness, resulting in several provisos, which become more
and more detailed and tailored towards our specific approach with test objectives (cf.
Fig. 12.4 on page 322). Our implementation (cf. Chapter 13) is even more flexible, so
several instantiations do not meet all provisos. Therefore, we can experiment and tune
test selection heuristics to effectively handle typical situations and practically relevant
TOs, possibly as trade-off for hard and practically less relevant goals, such as exhaus-
tiveness or the guarantee to discharge even pathological TOs, i.e., very complex and
unlikely TOs.
On the most abstract level, exhaustiveness of LazyOTF can be guaranteed by reducing

it to exhaustiveness of OTF or by covering S sufficiently (cf. Subsec. 8.8.4), as Lem-
mas 12.3 and 12.4 show. These conditions are formally defined in Def. 12.2 as provisos
P→OTF and Pcoverage (cf. Fig. 12.4 on page 322).

Definition 12.2. The OTF limit proviso (P→OTF ) demands that after a finite num-
ber of test execution steps without fail , LazyOTF behaves identical to OTF: ∀S ∈
LT S(LI , LU , τ) ∃|k ∈ N : fail occurs within k test execution steps or f.a. t > k : after
t execution steps, LazyOTF gives the same results as OTF, i.e., f.a. s̈ ∈ Sdet : test
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execution from s̈ yields the same full path sequence starting from s̈ for LazyOTF as for
OTF.
The coverage proviso (Pcoverage) demands that test execution eventually yields fail

or gen(S, Ssim S) covers
• all states of faultable(Sdet) for SUT with fairnesstest ;
• all faultable(StracesSτ∗δ(initS)) for SUT with fairnessspec or fairnessmodel .

Lemma 12.3. Let LazyOTF use heuristics that meet P→OTF .
Then LazyOTF is exhaustive.

Proof. If fail occurs during test execution, the TS is exhaustive for the given specification
S and SUT S. Otherwise, P→OTF and the restart property guarantees that there exists
a k ∈ N such that LazyOTF behaves identical to OTF after k steps and restarts in
init after τ . Since OTF performs purely random with no dependency on previous steps,
OTF without the first k steps generates an exhaustive TS for S and S. Therefore
LazyOTF does as well (and even more so with the first k steps included).

Lemma 12.4. Let LazyOTF fulfill Pcoverage.
Then LazyOTF is exhaustive.

Proof. If fail occurs during test execution, the TS is exhaustive for the given specification
S and SUT S. Otherwise, since Pcoverage is fulfilled,
• Lemma 8.61 shows that gen(S,Ssim S) is exhaustive for SUT with fairnesstest ;
• Lemma 8.63 shows that gen(S,Ssim S) is exhaustive for SUT with fairnessspec;
• Lemma 8.59 shows that gen(S, Ssim S) is exhaustive for SUT with fairnessmodel .

Hence Lemma 8.69 shows that LazyOTF with fulfilled Pcoverage is exhaustive for S and
S.

There are many ways to achieve P→OTF : The simplest is by user interaction, i.e.,
the user can switch dynamically between LazyOTF and OTF at any time. Alternatively,
we can mitigate guidance, as given in Def. 12.5.

Definition 12.5. Mitigation of LazyOTF’s guidance replaces some decisions made
by LazyOTF’s guidance with random (or nondeterministic) choices. The frequency of
those replacements increases with the number of test execution steps without fail .
Probabilistic mitigation replaces LazyOTF’s guidance by OTF’s random choices,

but only with probability p, which increases over time.

Example. By counting the number of execution steps t made so far, and picking a
threshold m at which LazyOTF should be completely mitigated, the next transition can
be chosen with OTF’s random choice with probability p = min(1, t/m) (i.e., LazyOTF’s
guidance is used with probability max(0, 1− t/m)).

Notes. LazyOTF need not deactivate its phase heuristics for mitigation: the interleav-
ing between execution and traversal sub-phases is transparent to the TCs because for
mitigated LazyOTF as well as for OTF, iδ is chosen nondeterministically in each s̈.
If MBTexec terminates upon fail , one fail is sufficient that LazyOTF need not behave

identical to OTF; otherwise, recurrent fail is necessary.
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Depending on the testing hypothesis, Def. 12.2 might contain probability: If some
behavior in the SUT occurs recurrently after at most n ∈ N tries, no probability is
required. But if the behavior occurs with probability p for each try, Def. 12.2 must be
reformulated such that the probability of P→OTF converges to 1 (e.g., via probabilistic
mitigation).

Since the main application of LazyOTF is with test objectives, implementations of
P→OTF that make use of test objectives are suited best. A simple approach is to mitigate
LazyOTF’s guidance by counting only the number of execution steps t since no objective
has been discharged, instead of counting all execution steps. A more powerful approach
integrates P→OTF with a guarantee of discharging all test objectives ö if test
execution does not fail . Again many implementations are possible, so we give two
provisos (cf. Fig. 12.4 on page 322) Pvanishing and Pdischarge in Def. 12.6, such that
(Pvanishing ∧ Pdischarge)⇒ P→OTF , as Lemma 12.7 shows. In practice, Pdischarge is more
relevant than exhaustiveness. We will investigate Pdischarge in the next subsection.

Definition 12.6. The vanishing proviso (Pvanishing) demands: if all test objectives
have been discharged, LazyOTF behaves like OTF (i.e., LazyOTF yields the same full
path seq as OTF).
The discharge proviso (Pdischarge) demands: given the set of currently active test

objectives ö and the current superstate s̈, after a finite number of test execution steps
from s̈, a test objective o ∈ ö is discharged if no fail occurs beforehand. In short:
LazyOTF is discharging.

Lemma 12.7. If LazyOTF meets Pvanishing and Pdischarge, then LazyOTF also meets
P→OTF .

Proof. Let ö be the set of active test objectives.
Pdischarge guarantees that some o ∈ ö is discharged in some superstate s̈ of S after

a finite number of test execution steps from initS after τ without fail . We can apply
Pdischarge inductively on ö \ {o} and s̈. Since ö is finite, there is a k ∈ N such that after
k test execution steps, all test objectives in ö are discharged or fail occurs. If no fail
occurs, Pvanishing implies P→OTF .

P→OTF is stricter than Pcoverage since all solutions of P→OTF also guarantee Pcoverage
because the coverage criteria for the respective fairness are equivalent to exhaustiveness
(cf. Lemmas 8.59 and 8.61 and 8.63) if fail does not occur beforehand. As for P→OTF ,
we also investigate an approach that integrates Pcoverage with the guarantee of dis-
charging all test objectives. Again many implementations are possible, so we define
a further proviso (cf. Fig. 12.4 on page 322) PcoverViaTOs in Def. 12.8 to help achieve
Pcoveragevia test objectives. Lemma 12.9 shows that (Pdischarge∧PcoverViaTOs)⇒ Pcoverage.

Definition 12.8. The cover via TOs proviso (PcoverViaTOs) demands that ö imple-
ments the coverage required by Pcoverage.

Lemma 12.9. If LazyOTF meets Pdischarge and PcoverViaTOs, then LazyOTF also meets
Pcoverage.
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Proof. Pdischarge guarantees that eventually all o ∈ ö are discharged if no fail occurs
beforehand. PcoverViaTOs guarantees that then all elements required by Pcoverage have
been covered.

Coverage via TOs focuses on practical coverage; hence it is difficult to implement
Pcoverage via PcoverViaTOs: Weak fairness and unsuitable TOs can cause too complex
situations. To avoid TOs that are unnecessarily complex for the given fairness constraint,
we can demand proviso Pexh⇒ disch (cf. Def. 12.10).

Definition 12.10. Let a fairness constraint be given.
Then the exh⇒disch proviso (Pexh⇒ disch) demands that exhaustiveness implies

Pdischarge: f.a. T̈ ⊆ genTC :
(
T̈ is exhaustive ⇒ ∀o ∈ ö : T̈ eventually discharges o if

executed recurrently
)
.

For instance, a TO o that is only discharged by one specific path is too complex
if we have fairnesstest and the states of the path can be reached via multiple traces:
all following behavior is independent of the trace, so demanding one specific path is
too strict. If one specific path is of importance, S must be extended to incorporate
the differentiating behaviors. So with Pexh⇒ disch, full state coverage can be reduced to
faultable(Sdet) for fairnesstest when dealing with Pdischarge; likewise for all other fairnesses,
full trace coverage can be reduced to faultable(StracesSτ∗δ(initS)) when dealing with
Pdischarge.
Even with Pexh⇒ disch, it depends on the testing hypothesis and specification whether

PcoverViaTOs can be implemented in practice:
For fairnesstest and finite S, faultable(Sdet) is also finite, so it can be covered by creating

one TO o ∈ ö for each element. For infinite S, we would have to allow an infinite set ö
and describe it declaratively.
Likewise, for fairnessspec and fairnessmodel , all of faultable(StracesSτ∗δ(initS)) can be

covered with finitely many test execution steps only if S is finite and for all s̈, s̈′ ∈ Sdet :
s̈

l−→ s̈′ only for finitely many l ∈ L, and the only cycles are δ	 (cf. Lemma 8.74). In
this case, we can again create one TO for each element to be covered. For all other cases,
Pcoverage again requires the coverage over infinitely many elements.
But PcoverViaTOs helps in practice to achieve Pcoverageif finitely many elements have

to be covered, otherwise a coverage level as high as practically possible. Furthermore,
Subsec. 12.3.5 will introduce an alternative based on weights without TOs to achieve
Pcoverage,

Note 12.11. Exhaustiveness and the corresponding coverage are inherently difficult to
achieve because we allow uncontrollable nondeterminism, arbitrarily pathological faults,
and very general SUTs with infinite state spaces, fairnessmodel and underspecU (see also
Note 12.18).
The remainder of this section will introduce weight heuristics and compositionality of

TOs, which add power and flexibility. For instance, we can compose efficient TOs to
cover the most relevant aspects with more elaborate TOs based on weights to also detect
the more pathological faults eventually.
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12.3.3. Discharging Test Objectives

Besides aiding exhaustiveness via P→OTF or Pcoverage, Pdischarge also aids more practical
ö, e.g., when guidance focuses on a few elements for a feature of interest. Having only a
few specific TOs, they can be discharged efficiently. Pdischarge gives the guarantee that the
TOs are eventually discharged, but does not consider efficiency, which will be considered
for our weight heuristics. Discharging a small set ö to check some requirements or
features of interest is suitable and helpful for the software development process [Lackner
and Schlingloff, 2012], especially agile approaches that focus on few features each sprint
(cf. Sec. 14.2).
Def. 11.3 and Def. 11.5 imply that every TO can be discharged somehow. This chapter

shows that Pdischarge can become difficult because of uncontrollable nondeterminism
and because we allow very general cases with infinite state spaces, fairnessmodel and
underspecU . But several solutions are possible, and their usefulness depends on the
situation. Thus we do not want to determine one single heuristic, similar to the previous
subsection. Instead, Pdischarge is further split down, into the three provisos (cf. Fig. 12.4
on page 322) Pphase, Pgoal and Pfair , defined in Def. 12.12. Lemma 12.16 shows that
(Pphase ∧ Pgoal ∧ Pfair)⇒ Pdischarge

Definition 12.12. The phase proviso (Pphase) guarantees that the current LazyOTF
search for a TO terminates after a finite number of traversal sub-phases; for this, Pphase
demands that there exist k ∈ N and a termination function phaseVariant such that:
• phaseVariant : N→ [0, . . . , k]
• the domain of phaseVariant corresponds to the number of traversal sub-phases

LazyOTF executed so far;
• while LazyOTF is still active, phaseVariant must recurrently increase until a test

execution fail occurs or the current sub-graph contains a TO, i.e., ∀q ∈ N∃|p > q :
in phase p, LazyOTF is no longer active, or a test execution fail occurs, or its
sub-graph contains a TO, or phaseVariant(p)  phaseVariant(q).

The goal proviso (Pgoal) demands that if LazyOTF is active and the sub-graph of
the current traversal sub-phase contains a TO, then so will the selected TC Tpcurr .
The fairness proviso (Pfair) demands that the TC sequence is constructed in the

following way: if the TC sequence recurrently contains a desired state (to a TO or to a
higher value for phaseVariant), one will eventually also be reached during test execution
if no fail occurs (recurrently) during test execution.

Example 12.13. Exemplary phaseVariant map the phase p to
• the number of discharged TOs up to phase p;
• the number of covered elements up to phase p, like states, transitions, paths, cycles;
• the distance to ö.

Notes 12.14. Because of uncontrollable nondeterminism, the SUT might choose a non-
deterministic resolution during the execution of a TC that might not lead towards a
TO, which is usually reflected by phaseVariant(·) not being strictly monotonically in-
creasing. But Pfair guarantees that eventually test execution does move towards a TO.
If we restricted the domain of phaseVariant(·) to those phases that do move towards
a TO during test execution, phaseVariant(·) is strictly monotonically increasing and
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k − phaseVariant(·) is a classical termination function, i.e., a strictly monotonically de-
creasing functions with the codomain N≥0. But using phaseVariant directly is more
natural in our case.
Pgoal is greedy: if a TO exists in the current sub-graph, the selected TC must contain

a TO, even if another TC might lead quicker to more TOs in future phases. We favor
the greedy approach since our heuristics and uncontrollable nondeterministic cause high
uncertainty whether a TO is really reached during test execution, so many early and
short tries are usually better than taking higher risks (cf. Sec. 12.2).
Lemma 12.15. If LazyOTF meets Pphase, Pfair and Pgoal and there are still active TOs,
then after finitely many phases, LazyOTF constructs a TC that contains a TO or fail
occurs during test execution.
Proof. If LazyOTF’s guidance heuristic eventually turns inactive, controllable nondeter-
ministic choices are made randomly, so together with the restart property, eventually a
test case sequence is constructed that contains a TO or fail occurs during test execution.
If LazyOTF’s guidance heuristic stays active, then Pphase and Pfair guarantee that

eventually fail occurs during test execution or a sub-graph of a traversal sub-phase p
contains a TO. Otherwise, there would be a sequence (pi)i∈N with strictly monotonically
increasing phase numbers pi, such that phaseVariant(pi) is strict monotonically increas-
ing, contradicting the bounded codomain [0, . . . , k]. Pgoal guarantees that some TO is
in the TC generated in the traversal sub-phase p.

Lemma 12.16. If LazyOTF meets Pphase, Pgoal and Pfair , then LazyOTF also meets
Pdischarge.
Proof. Lemma 12.15 has shown that as long as there are still active TOs, the TC se-
quence recurrently contains TOs, or test execution recurrently has fail s. Therefore,
Pfair guarantees that some TO will eventually be reached during test execution if no
fail occurs (recurrently) beforehand.

There are several ways to implement Pphase (cf. Example 12.13):
• using the number of discharged TOs as phaseVariant and mitigation of LazyOTF’s
guidance (or user interaction) can guarantees exhaustiveness and also Pdischarge if
Pexh⇒ disch is met, but this is as undirected as OTF in the worst case;
• if we have a coverage criterion with a finite number of coverage tasks (e.g., for
states, transitions, paths, cycles), we can use the coverage level as phaseVariant,
which corresponds to implementing PcoverViaTOs. For an infinite number of cover-
age tasks, we can use weights without TOs, as described in Subsec. 12.3.5;
• the most directed guidance is using a distance function as phaseVariant, which is
covered in Subsec. 12.3.7.

There are many ways to implement Pgoal : The simplest is the most greedy (cf.
Note 12.14): pick a TC T that contains a TO the moment one is found during the
traversal. Since T might not be a potentially most meaningful TC with a TO of the cur-
rent sub-graph (e.g., T might contain a TO only very deeply after many uncontrollable
nondeterministic choice points), more elaborate implementations complete the traversal
through the sub-graph to search for a potentially most meaningful TC with a TO. Sub-
sec. 12.3.6 will model meaningfulness using weight heuristics and investigate Pgoal for
them.
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Note 12.17. For real-time computing, the most greedy approach to satisfy the provisos
can be investigated as future work.

To guarantee Pfair for fairnesstest and fairnessspec without underspecU , recurrent re-
executions are sufficient. For fairnessmodel or allowed underspecU , full StracesSτ∗δ(initS)
needs to be covered so that test execution can reach a desired state even if it is patho-
logically hard to reach. This will be shown together with other lemmas about meeting
provisos in Subsec. 12.3.6.

Note 12.18. These strong requirements, especially for Pfair , are not a deficit of our
heuristics: Pdischarge is inherently difficult since
• we allow a flexible way of defining TOs;
• Pfair is at least as difficult as the reachability problem on Sdet, and for weak fairness
or underspecU as hard as exhaustiveness to cover all pathological cases (see also
Note 12.11, [Anand et al., 2013]);
• it is not clear how often a TC must be executed to show a desired and possible
behavior.

Without Pfair , the TC seq may contain infinitely many TOs (e.g., one specific TO
recurrently via the same path from init), but still never discharge any TO (as the proof
of Lemma 12.31 will show).

12.3.4. Weight Heuristics
The previous subsection has motivated using weights to guarantee Pgoal , Pphase and Pfair ,
which will be investigated in the remainder of this section.

LazyOTF implements metric-driven guidance with heuristics using weights (though
alternatives are possible, e.g., via cycling heuristics, cf. Subsec. 12.3.1 and Subsec.12.3.9,
or via SMT constraints, cf. Subsec. 3.3.3 and Sec. 13.4). But using weights is flexible
and expressive, as the following subsections will show. For weight heuristics, each test
case has an associated weight, where higher values indicate potentially more meaningful
test case execution, enabling test case prioritization for test selection. Test cases with
associated weights are defined in Def. 12.19.

Definition 12.19. Let W = (S,→, Lδ, w) with (S,→, Lδ) ∈ T T S(LI , LU , δ) and w a
function S → Z. Then:
• w is called a weight function on S;
• W is a weighted test case (WTC) of the test case (S →, Lδ);
• WT T S(LI , LU , δ) denotes the set of all weighted test cases of T T S(LI , LU , δ);
• wWT T S (w for short): WT T S(LI , LU , δ) → Z,W 7→ w(initW) is called the
weight function on WT T S, wWT T S(W) the weight of W;
• Fw : WT T S(LI , LU , δ) → T T S(LI , LU , δ), (S,→, Lδ, w) 7→ (S,→, Lδ) is called
forgetful transformation for weights;
• Ẅ ⊆ WT T S(LI , LU , δ) with injective Fw|Ẅ is called a weighted test suite
(WTS);

To show how weights are computed for TCs, genWTC from Listing 12.1 modifies genTC
from Listing 8.2: The meaningfulness of the path π from initS after τ to the current
superstate is estimated using meaningfulness weight heuristics, implemented by
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the polymorphic function path2W (π). Those weights are in turn aggregated to
weights of TCs using the polymorphic function aggWTCs (cf. Fig. 12.1 and Ex-
ample 12.35 on page 309). Otherwise, genWTC is equal to genTC: It decides termi-
nation nondeterministically and does not use weights to resolve other nondeterminism
since weight heuristics are only sensible when TCs cannot become arbitrarily large.
As for genTC, worst case complexities are not sensible. The main resource consump-
tion for each genWTC call are for assembleWTC and s̈ afterSτ∗δ l, similar to genTC,
and additionally for path2W (π), usually O(1) space and O(tcurr · |öinit |) time. So for
genWTC that returns W = (S, T, Lδ, w) ∈ T T S(LI , LU , δ), the time complexity is in
O(|S| · (|S→∗ | · branchS→∗ + tcurr · |öinit |)), the space complexity is the same as for genTC,
i.e., in O(|S| · |S→∗ |+ |T |+ branchSdet).

genWTS from Listing 12.2 will add both deterministic termination and weight heuris-
tics.

1proc WT T S(LI , LU , δ) genWTC
(
LT S(LI , LU , τ) S, paths(Sdet) π

)
22S s̈ := dest(π) ;
3TreeState s := new TreeState r ep r e s en t i ng s̈ ;
4B terminate := nondet ({false, true} ) ;
5LI ∪̇{δ} iδ := nondet ( inSτ∗ (s̈) ∪̇ {δ} ) ;
6LU ∪̇{iδ} → WT T S(LI , LU , δ) l2WTC :=

l 7→ genWTC(S, π · (s̈ l−→ s̈ afterSτ∗δ l ) ) ;
7

8i f ( s̈ == ∅)
9then return new TreeState f a i l 7→ path2W (π) ;
10f i ;
11i f ( terminate )
12then return new TreeState pass 7→ path2W (π) ;
13f i ;
14return assembleWTC(s, path2W (π), l2WTC ) ;
15end ;

Listing 12.1: Typed nondeterministic genWTC(S, π)

s 7→ aggWTCs(p2W , z0, . . . , z|LU |)

s0 7→ z0 s1 7→ z1 sk 7→ zk sk+1 7→ zk+1 s|LU | 7→ z|LU |. . . . . .

l2WTC (iδ) l2WTC (u1) l2WTC (uk)

fail 7→ zk+1 fail 7→ z|LU |

6∈ outSτ∗δ(s̈)

∈ outSτ∗δ(s̈)

iδ u1 uk uk+1 u|LU |

Figure 12.1.: assembleWTC(s, p2W , l2WTC ) (with LU finite)
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Notes 12.20. Since π ∈ paths(Sdet), π starts from initSdet , e.g., is the path πfullrcurr . If
more information is required, larger parts of dynamicInfo can be passed, e.g., the full path
sequence for the full history of previous execution sub-phases. Using the concatenated
full path πfull, the full path sequence can be encoded in paths(Sdet) (cf. Def. 11.9). This
improves readability of Listing 12.1, but also enables prioritization of faults by weights:
the domain of path2W is extended accordingly, such that it can weight maximal paths of
TCs with verdict fail , e.g., prioritize faults according to their severity and relevance. If
the set paths(Sdet) should not be extended, genWTC can detect that l 6∈ outSτ∗δ(dest(π))
and choose fail 7→ 0 as value of l2WTC in l.6 without a further recursive call of genWTC.
Since genWTC traverses down sub-graphs in a DFS and path2W ((πfulli )i) can inves-

tigate πpcurr , many superstates in the sub-graph can be considered multiple times for
weighing. On the two extremes,
• path2W ((πfulli )i) could consider the full path sequence but be called only in the
leafs of Tpcurr . The advantage is that considering the full path sequence enables
weights that reflect meaningfulness not just for reachability properties, and can
incorporate the full history;
• path2W ((πfulli )i) could consider only dest(πpcurr ) but be called for every node of
Tpcurr . The advantage is that the DFS traversal can be used to investigate the
superstates efficiently, and each superstate is considered only once, even if many
extensions of the current path occur in the DFS.

To allow all advantages, our approach makes no restrictions and hence allows all combi-
nations.

Corollary 12.21. genWTC(·, init after τ) is sound and exhaustive.

Proof. genWTC only adds weights, but otherwise performs identical to genTC, so ∀S ∈
LT S(LI , LU , τ) : Fw(genWTC(S, initS after τ)) = genTC(S, initS after τ). Thus Theo-
rem 8.48 shows that genWTC(·, init after τ) is sound and exhaustive.

genWTS(S, π, b) from Listing 12.2 is a bounded deterministic version of genWTC,
like genTS is of genTC: It generates a WTS containing all WTCs from genWTC(S, π)
with paths pruned at depth b and maximal weight. This test selection based on weight
heuristics becomes sensible in genWTS since termination is no longer decided nonde-
terministically, but by the bound b. For more flexible termination, genWTS addition-
ally introduces a polymorphic method isInducing(π): For equal behavior to genTS,
its implementation simply returns false. But it can also implement LazyOTF’s phase
heuristics, as described in Subsec. 12.2. genWTS computes weights by modifying genTS
similarly to genWTC’s modification of genTC. The weights are now additionally used
for guidance by picking exactly a heaviest WTCs (cf. l.15–l.18), i.e., a potentially
most meaningful: since all included iδ lead to WTCs with the same weight wmax,
w(s) = aggWTCs(p2W , z0, . . . , z|LU |) (cf. Fig. 12.1) is also always the same. For the
same reason, the iδ further down in the chosen WTCs (cf. l.14) may vary.
The worst case complexities are similar to genTC and also extremely rough: As for

genWTC, we additionally require time to compute path2W (π) in each node, which is
usually in O(tcurr · |öinit |), but often much less (cf. Note 12.20). Furthermore, we require
time to compute isInducing(π) in each node, which is usually in O(|S→∗ | · |öinit |). The
complexity in Landau notation for the aggregation per node does not change. Hence the
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overall worst case time complexity of genWTS(S, initS after τ, b) is in O(branchbSdet ·
(|S→∗ | · branchS→∗ + (tcurr + |S→∗ |) · |öinit |)), The space for computing path2W (π) and
isInducing(π) is negligible. In the worst case, all WTCs have the same weight. Thus
the overall worst case space complexity of genWTS(S, initS after τ, b) is the same
as for genTS, i.e., in O(branchbSdet · (|S→∗ |+ |L|)).

1proc 2WT T S(LI ,LU ,δ) genWTS(LT S(LI , LU , τ) S, paths(Sdet) π, N≥0 b)
22S s̈ := dest(π) ;
3TreeState s:= new TreeState r ep r e s en t i ng s̈ ;
42WT T S(LI ,LU ,δ) r e s u l t :=∅ ;
5i n t wmax := 0 ;
6

7i f ( s̈ == ∅)
8then return {new TreeState f a i l 7→ path2W (π)} ;
9f i ;
10i f (b == 0 or isInducing(π))
11then return {new TreeState pass 7→ path2W (π)} ;
12f i ;
13for each LI ∪̇{δ} iδ ∈ inSτ∗ (s̈) ∪̇ {δ} do
14for each LU ∪̇{iδ} → WT T S(LI , LU , δ) l2WTC with

∀l ∈ LU ∪̇{iδ} : l2WTC ( l )∈ genWTS(S, π · (s̈ l−→ s̈ afterSτ∗δ l), b− 1) do
15WT T S(LI , LU , δ) W := assembleWTC(s, path2W (π), l2WTC ) ;
16i f (w(W) < wmax ) then break ; f i ;
17i f (w(W) > wmax ) then wmax := w(W) ; r e s u l t :=∅ ; f i ;
18r e s u l t . add (W ) ;
19od ;
20od ;
21return r e s u l t ;
22end ;

Listing 12.2: Typed deterministic genWTS(S, π, b)

Note. For b ∈ N, a WTC W ∈ genWTS(·, init after τ, b + 1) may not extend any
WTC in W ∈ genWTS(·, init after τ, b). This is a consequence of the fact that there
are most meaningful TCs of size b1 that are no extensions of most meaningful TCs of
size b2 < b1 (cf. Sec. 12.1). Although this contrasts with Lemma 8.54, exhaustiveness of
genWTS(·, init after τ, b + 1) can still be guaranteed with the help of the provisos from
Subsec. 12.3.2, as Theorem 12.22 shows.

Theorem 12.22. genWTS(·, init after τ,N) is sound; if proviso P→OTF or Pcoverage is
met, genWTS(·, init after τ,N) is also exhaustive.

Proof. Soundness follows from Cor. 12.21, exhaustiveness from Lem. 12.3 and 12.4.

Instead of enumerating all heaviest WTCs, a single heaviest one can be chosen non-
deterministically (or randomly): The only modifications for this are l.14 to LU ∪̇{iδ} →
WT T S(LI , LU , δ) l2WTC := l 7→ genWTS(S, s̈ afterSτ∗δ l, b− 1); and l.18 to result :={nondet(
result ∪̇{W})};. For this, the overall worst case space complexity of genWTS(S, initS
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after τ, b) reduces to O((branchoutSdet + 1)b · (|S→∗ | + |LU |)). The resulting LazyOTF
with weight heuristics is given in Def. 12.23. Cor. 12.24 lifts Theorem 12.22 to LazyOTF,
i.e., shows that LazyOTF retains soundness, and exhaustiveness if P→OTF or Pcoverage is
met. Furthermore, Pdischarge guarantees that LazyOTF discharges all TOs.

Definition 12.23. LazyOTF with weight heuristics performs as described in Chap-
ter 11, but with genWTS in each traversal sub-phase to nondeterministically (or ran-
domly) choose among the heaviest WTCs.

Corollary 12.24. LazyOTF with weight heuristics is sound.
If LazyOTF uses weight heuristics that meet P→OTF or Pcoverage, then LazyOTF is

exhaustive.
If LazyOTF uses weight heuristics that meet Pdischarge, then LazyOTF is discharging.

Note. Having refined LazyOTF to use the test generation algorithm genWTS in each
traversal sub-phase, and nondeterministically (or randomly) choose among the heaviest
WTCs, we can now refine the general worst case complexities per traversalSubphase that
were investigated in Subsec. 11.3.3 on the basis of the bounded variant of the offline
MBT algorithm: the worst case time complexity remains identical, but the worst case
space complexity of genWTS has the values |LU |, resp. branchoutSdet , instead of the
parameter branchSdet for traversalSubphase, because it is adjusted to storing one heaviest
WTC.

Def. 12.25 extends Def. 11.8 by defining (full) weighted test case sequences.

Definition 12.25. Let S ∈ SPEC . Then we define for a whole run of LazyOTF via
weight heuristics:
• the weighted test case sequence (Wi)i∈[1,...,1+pcurr) (WTC seq for short) with
∀p ∈ [1, . . . , 1 + pcurr) :

Wp ∈
{
genWTS(S, initS after τ, bp) if p ∈ (ri)i,
genWTS(S, dest(πp−1), bp) if p 6∈ (ri)i;

• the full weighted test case sequence (Wfull
i )i∈[1,...,1+rcurr) (full WTC seq

for short) with ∀i ∈ [1, . . . , rcurr) :
Wfull
i := Π

p∈[ri,...,ri+1)
Wp, and Wfull

rcurr := Π
p∈[rrcurr ,...,pcurr ]

Wp if pcurr < ω;

• the TC seq is now (Ti)i∈[1,...,1+pcurr ) = (Fw(Wi))i∈[1,...,1+pcurr );
• the full TC seq is now (Tfulli )i∈[1,...,1+rcurr ) = (Fw(Wfull

i ))i∈[1,...,1+rcurr ).

Weights are very flexible since the codomain of path2W (πfull) is Z: they can quantify
meaningfulness of πfull and allow various computations, e.g.:
• they can be aggregated by aggWTCs (as in Listing 12.1) to derive WTCs, i.e.,
weights of TCs that describe their potential meaningfulness. This will be investi-
gated in Subsec. 12.3.6;
• they can be aggregated over multiple path2W are used, e.g., from different TOs.

This will be investigated in Subsec. 12.3.7;
• they can be manipulated to factor in various concerns, e.g., P→OTF , Pcoverage, or
further heuristics like cycling. This will be investigated in the next subsection.
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12.3.5. Exhaustiveness and Coverage via Weight Heuristics

Having introduced weight heuristics in the previous subsection, we can now investigate
our provisos for them. Since weights can be processed in many ways, they can be used
to implement various heuristics and construct new ones, as this subsection will exhibit.
Since our focus is on discharging TOs, we will thoroughly cover Pdischarge and weight
heuristics with TOs in the next subsection. Here, we investigate the use of our flexible
weight heuristics for other provisos (cf. Fig. 12.4 on page 322): P→OTF , using mitigation
via weights, and Pcoverage, using covFiningPath2W .
To factor in multiple concerns, e.g., proviso P→OTF and further heuristics like coverage

or cycling, the weights of path2W can easily be adapted by multiplying (with rounding)
the weights with a factor in [0, . . . , 1]. This kind of compositionality is implemented by
wrapping another path2W called finingPath2W around the original path2W . Alterna-
tively, finingPath2W can be multiplied with a large constant to result in a stand-alone
path2W .
Mitigation via weights improves probabilistic mitigation: The number of steps t

and threshold m no longer determines the probability p = min(1, t/m) to use random
choices. Instead, a finingPath2W uses the factormax(0, 1−t/m). Thus the prioritization
of particularly meaningful paths prevail longer since their weights are still higher. But
after at most m steps, all path2W vanish (i.e., result in weigh 0) since the factor of the
finingPath2W converges to 0. Thus all WTCs weigh 0 (for all sensible aggWTCs, cf.
Subsec. 12.3.6), so a value iδ ∈ LI ∪̇ {δ} is chosen nondeterministically (or randomly)
(cf. Lemma 12.23), as for OTF.
Pcoverage via weights can be implemented directly by path2W ((πfulli )i) returning

sufficiently high values the moment πfullrcurr visits a new coverage task, and sufficiently low
values otherwise. One simple implementation for such a path2W ((πfulli )i) is to return a
high constant the moment πfullrcurr reaches a coverage task, and a low constant otherwise
(similarly to nonfancy path2W , cf. Example 12.43). This results in purely random choices
within sub-graphs that have no coverage task. A more directed guidance via Pcoverage
employs finingPath2W to replace randomness with better distribution with regard to
the coverage criterion, resulting in covFiningPath2W , see Def. 12.26.

Definition 12.26. Let S = (S, T, Lτ ) ∈ SPEC and the finite full path sequence (πfulli )i
be given, πfull its representation as concatenated full path (cf. Def. 11.9) and (σfulli )i its
full trace sequence. Then:
The coverage efficiency fnew((πfulli )i) ∈ (0, . . . , 1] returns higher weights if new

elements are preferably added, i.e., to full path sequences that have more differing ele-
ments:

fnew((πfulli )i) :=



∣∣{s̈∈Sdet∣∣s̈∈πfull}∣∣
tcurr

for state coverage∣∣{s̈ l−→
d
s̈′
∣∣s̈ l−→
d
s̈′∈πfull

}∣∣
tcurr

for transition coverage∣∣{trace(π)|π∈(πfulli )i
∣∣

rcurr
for trace coverage.

The coverage distribution fdistr ((πfulli )i)∈ (0, . . . , 1] returns higher weights if infre-
quent elements are preferably added, i.e., to full path sequences with better distribution
of elements: fdistr((πfulli )i) :=
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min
s̈∈πfull∩S

(number of occurrences of s̈ in πfull)

max
s̈∈πfull∩S

(number of occurrences of s̈ in πfull) for state coverage

min
l∈πfull∩T

(number of occurrences of l in πfull)

max
l∈πfull∩T

(number of occurrences of l in πfull) for transition coverage

min
π∈(πfull

i
)i

(number of occurrences of trace(π) in (σfulli )i)

max
π∈(πfull

i
)i

(number of occurrences of trace(π) in (σfulli )i)
for trace coverage.

covFiningPath2W ((πfulli )i) := fnew((πfulli )i) · fdistr((πfulli )i).

Notes. In general, computing covFiningPath2W has high runtime and memory require-
ments.
The resulting weights might favor certain elements at early phases due to high values

from the wrapped path2W , but if they are bounded, covFiningPath2W will eventually
even them out, i.e., fine those high values sufficiently to switch to other elements. Thus
paths to each coverage task will recurrently be ranked highest and chosen, with the
selection converging to equidistribution.
If covFiningPath2W converges too quickly towards 0, i.e., all wrapped path2W are nul-

lified, covFiningPath2W can be normalized, i.e., the factor covFiningPath2W ((πfulli )i)
is replaced by covFiningPath2W ((πfulli )i)/ max

π∈(πfulli )i
(covFiningPath2W ((πfulli )i)). This

computation is, however, costly.

covFiningPath2W ((πfulli )i) can similarly be used to implement coverage criteria for
nondeterminism on output, e.g., n-choices state coverage, all-choices state coverage, or
all-choices transition coverage (cf. Subsec. 12.3.1, [Faragó, 2011]), as defined in Def. 12.27.

Definition 12.27. Let S = (S, T, Lτ ) ∈ SPEC , n ∈ N>0, the finite full path sequence
(πfulli )i be given, and πfull its representation as concatenated full path. Then:
For convenience and n ∈ N>0, we define the following sets of state and transitions in
Sdet:

•Sfn :=
{
s̈ ∈ Sdet

∣∣|outSdet(s̈)| ≥ n};
•Sfn(πfull) :=

{
s̈ ∈ Sf2

∣∣|outS
πfull

(s̈)| ≥ n
}
;

•Sall(πfull) :=
{
s̈ ∈ Sf2

∣∣outSdet(s̈) = outS
πfull

(s̈)
}
;

• Tall(πfull) :=
{
s̈

l−→
d
s̈′ ∈ T

∣∣s̈ ∈ Sf2(πfull) and s̈ l−→ s̈′ ∈ πfull
}
.

The coverage efficiency for nondeterminism on output is fnew((πfulli )i) :=

∣∣Sfn(πfull)
∣∣

tcurr
for n-choices state coverage∣∣Sall(πfull)∣∣

tcurr
for all-choices state coverage∣∣Tall(πfull)∣∣

tcurr
for all-choices transition coverage.

The coverage distribution for nondeterminism on output is fdistr((πfulli )i):=
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min
s̈∈Sfn(πfull)

(number of occurrences of s̈ in πfull)

max
s̈∈Sfn(πfull)

(number of occurrences of s̈ in πfull) for n-choices state coverage

min
s̈∈Sall(πfull)

(number of occurrences of s̈ in πfull)

max
s̈∈Sall(πfull)

(number of occurrences of s̈ in πfull) for all-choices state coverage

min

s̈
l
−→s̈′∈Tall(πfull)

(number of occur. of s̈ l−→s̈′ in πfull)

max

s̈
l
−→s̈′∈Tall(πfull)

(number of occur. of s̈ l−→s̈′ in πfull)
for all-choices transition cov.

With this definition, we have the following coverage levels:

•
∣∣{s̈∈Sdet∣∣s̈∈πfull}∣∣

|Sdet| for state coverage

•

∣∣{s̈ l−→
d
s̈′
∣∣s̈ l−→
d
s̈′∈πfull

}∣∣
|−→
d
| for transition coverage

•
∣∣{trace(π)|π∈(πfulli )i

∣∣
|StracesSτ∗δ |

for trace coverage

•
∣∣Sfn(πfull)

∣∣
|Sfn| for n-choices state coverage

•
∣∣Sall(πfull)∣∣
|Sf2| for all-choices state coverage

•
∣∣Tall(πfull)∣∣∣∣{s̈ l−→
d
s̈′|s̈∈Sf2

}∣∣ for all-choices transition coverage.

Since Sall(πfull) ⊆ Sf2(πfull) ⊆ Sf1(πfull), the coverage levels are: all-choices state
coverage ≤ 2-choices state coverage ≤ 1-choice state coverage.

path2W (πfull) can best approximate meaningfulness and reduce its complexity and the
amount of randomness of guidance by incorporating rules individual to the given speci-
fication S. Such rules can be described efficiently with the help of TOs and their com-
position (cf. Subsec. 12.3.7). Hence we investigate the TO-based provisos (cf. Fig. 12.4
on page 322) for weight heuristics in the next subsection. Since TO-based heuristics are
the focus of this thesis, most weight computations in this subsection have not yet been
implemented.

12.3.6. Discharging Test Objectives Via Weight Heuristics

Before focusing on Pdischarge, we consider Pvanishing, since their conjunction guarantees
P→OTF and hence exhaustiveness. Pvanishing can be met easily for our weight heuristics
by guaranteeing that all WTCs have identical weight once all test objectives have been
discharged, e.g., weight 0. Then repetitive genWTS that returns one nondeterministic
TC behaves identical to genTC (except additionally computing weights). Only returning
the weight 0 can for instance be achieved by aggWTCs and aggPath2Ws not adding
constants. As for mitigation via weights, the interleaving between execution and traversal
sub-phases is transparent to the TCs.
Subsec. 12.3.3 has investigated Pphase, Pgoal and Pfair to guarantee Pdischarge, intro-

duced several general ways to achieve them, and motivated the use of weights for this.
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Lemma 12.29 gives sufficient conditions for w(Wpcurr ) to meet Pphase. Lemma 12.31, resp.
Lemma 12.33, show how our weight heuristics can generally meet Pfair , resp. Pgoal .
Def. 12.28 is used in Lemma 12.29 and is a strict case for a recurrently increasing

phaseVariant because it does not allow values to decrease in later phases without dis-
charges in between (cf. beginning of Subsec. 12.3.8) for at least one nondeterministic
resolution (of uncontrollable nondeterminism and of nondeterministic restarts, cf. Sub-
sec. 11.3.2). We usually do not demand strictness for monotonically increasing sequences
because we do not require it and stuttering is helpful in practice (e.g., due to stuttering
variable evaluations).

Definition 12.28. A sequence (ai)i ∈ Z[1,...,1+z) of size z ∈ ω + 1 is:
• finitely monotonically increasing :⇐⇒
∀i ∈ [1, . . . , 1+z) : ai ≥ ai−1 and only finite stuttering, i.e., ∀i ∈ [1, . . . , 1+z)∃|j >
i : aj  ai;
• also strictly monotonically increasing :⇐⇒
∀i ∈ [1, . . . , 1 + z) : ai  ai−1.

Lemma 12.29. Let w(Wpcurr ) be implemented via genWTS.
If w(Wpcurr ) has a finite codomain and is finitely monotonically increasing for at least

one nondeterministic resolution until fail occurs or the current sub-graph contains a
TO, then w(Wpcurr ) is a phaseVariant that meets Pphase.

Proof. If LazyOTF is still active, without test execution fail , trying to discharge TO o,
then w(Wpcurr ) is a phaseVariant that has a finite codomain and is recurrently increasing
until its sub-graph contains a TO, since the finitely monotonically increasing w(Wpcurr )
is only finitely stuttering.

Note 12.30. When using this argument of finitely monotonically increasing weights,
we guarantee Pphase by choosing a fitness function that has a TO in each maximum and
consider the choices ofWi in LazyOTF’s phases as steepest ascent hill climbing [Harman
et al., 2009] (that does not stop when moving downwards, modulo stuttering, modulo
fail , modulo necessary restarts due to nondeterminism).

Lemma 12.31. Let (Wi)i∈[1,...,1+pcurr ) be the WTC seq that LazyOTF generates.
For fairnessspec (or fairnesstest), with forbidden underspecU , (Wi)i∈[1,...,1+pcurr ) meets

Pfair if it recurrently restarts and each Fw(Wi) is executed recurrently.
For fairnessmodel or allowed underspecU , (Wi)i∈[1,...,1+pcurr ) meets Pfair if it eventually

covers all StracesSτ∗δ(initS).

Proof. For fairnessspec (or fairnesstest), with forbidden underspecU , Lemma 8.67 shows
that recurrent execution of some W will eventually lead to a desired state (to a higher
value for phaseVariant or to a TO) in the next phase if no fail occurs (recurrently)
during test execution.
For fairnessmodel or any fairness with allowed underspecU , this is not sufficient: For

M ∈ MOD, Wpcurr might only contain a desired state s̈ reachable via path pathfulls̈ ∈
pathsfin(Fw((Wi)i)) such that: trace(pathfulls̈ ) 6∈ trace(Fmod(pathsmax(Fw(Wfull

rcurr )||
Mδτ∗))), i.e., trace(pathfulls̈ ) never occurs in M. In the worst case, all but one σ ∈
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StracesSτ∗δ(initS) with s̈ = initSτ∗δ after σ might not occur in M (such a M exists, it
can be constructed analogously to the proof of Lemma 8.27). To handle these patho-
logical cases, all σ ∈ StracesSτ∗δ(initS) with s̈ = initSτ∗δ after σ must recurrently occur
in the full TC seq to guarantee that the desired s̈ will eventually be reached. With
full StracesSτ∗δ(initS) coverage (or faultable(StracesSτ∗δ(initS)) coverage if Pexh⇒ disch

is met) and TCs executed recurrently, test execution must eventually lead to a desired
state if no fail occurs (recurrently) during test execution.

When LazyOTF is active, i.e., selection from inSτ∗ (s) is not made randomly, path2W
should give higher weights to paths that probably reach a TO faster, even if the current
sub-graph contains no TO. But if it does, path2W (πfull) must return a sufficiently high
value for πpcurr containing a TO, so that after aggregation, WTCs that do contain a TO
are heavier than WTCs without TOs, to guarantee Pgoal . Hence Def. 12.32 differentiates
paths to TOs and their weights from other paths and their weights.

Definition 12.32. Let S ∈ SPEC , TO o and aggWTCs be given.
Then
• pathsTO(Sdet)rcurr :=

{
πfull ∈ pathsV(Sdet)rcurr

∣∣
dischargeo(dest(πfull)) = true

}
• pathsTO (Sdet)rcurr := pathsV(Sdet)rcurr \ pathsTO(Sdet)rcurr

• p2W TO := min
πfull∈pathsTO(Sdet)rcurr

(path2W (πfull))

• p2W TO := max
πfull∈pathsTO (Sdet)rcurr

(path2W (πfull)).

• aggWTCs with path2W o does not suppress TOs iff
(the current sub-graph contains TOs ⇒ genWTS using aggWTCs with path2W o

yields the highest values for WTCs containing a TO).

Lemma 12.33. Let w(Wpcurr ) be implemented by genWTS via aggWTCs with path2W .
If aggWTCs with path2W does not suppress TOs, then w(Wpcurr ) implemented via

genWTS meets Pgoal .

Proof. If LazyOTF is active, genWTS chooses a heaviest WTC. If the current sub-graph
contains a TO and aggWTCs with path2W does not suppress TOs, each heaviest WTC
contains a TO.

Note. To implement Pgoal , we could simply select the heaviest WTC only amongst those
containing a TO. But since our weights should reflect meaningfulness, they should be
configures such that weights of WTCs that contain a TO should be the heaviest anyways.

We investigate various aggWTCs and corresponding inequalities between p2W TO

and p2W 6TO, summarized in Lemma 12.34: aggWTCs(p2W , z0, . . . , z|LU |) has many
possibilities to aggregate (cf. Table 12.1). The value p2W should always be incorpo-
rated in aggWTCs(p2W , z0, . . . , z|LU |) because if test execution reached the WTC that
is currently aggregated, its root has definitely been reached, i.e., it is the most certain
node of the tree. We achieve this by taking the sum or the maximum between p2W
and the rest, i.e., the aggregate for z0, . . . , z|LU |. Due to the recursion in genWTS, this
sum or maximum aggregates along paths, whereas the rest is the aggregation over all

306



12.3. Guidance Heuristics

possible branches. Since fail nodes also yield weights, we need not differentiate between
the outputs, z1, . . . , z|LU |. To compute this rest, we introduce five aggregation variants
(cf. Table 12.1) by considering MBT as a two person game between the tester and its
adversary, which is the uncontrollable nondeterminism:

• aggWTCs(p2W , z0, . . . , z|LU |) = max(p2W , z0, . . . , z|LU |) (max(p2W ,max(. . . ))
for short) results in a WTC weighing the maximal path2W it contains. Thus sup-
pression is not possible if the obvious inequality p2W TO > p2W TO is met. But a
WTC with many heavy path2W is not heavier than a WTC with only one heavy
path2W ;
• thus we consider aggWTCs(p2W , z0, . . . , z|LU |) = p2W + max(z0, . . . , z|LU |) (for

short: +(p2W ,max(. . . ))), which is the optimistic approach of assuming the
tester can take the most meaningful outgoing transition, i.e., the heaviest. This
not only includes input, i.e., controllable nondeterminism, but also output, i.e.,
uncontrollable nondeterminism. Thus we consider a good adversary who picks the
output in favor of the tester. The meaner the adversary gets, the less suitable
this heuristic becomes, because it focuses only on the most meaningful path; a
different WTC might contain many more promising paths, just not the optimal
one (cf. also Note 12.14 on lowering risk). Fortunately, for fairnesstest or fairnessspec,
with forbidden underspecU , the adversary cannot be very mean since all outputs
must eventually occur (cf. Lemma 8.67). Otherwise this optimistic approach is
too extreme in practice. The advantage is that weights only increase moving up a
WTC if all weights are non-negative. Thus a WTC without TOs needs a long path
with many heavy path2W to suppress TOs. So if p2W TO > bmax · p2W TO , then
weights for TOs are sufficiently high. Fig. 12.2 with y ∈ LI depicts an example
where this inequality is not met since the left tree (reachable via δ) weighs 270,
but the right tree (reachable via y) weighs only 170;
• aggWTCs(p2W , z0, . . . , z|LU |) = max

(
p2W ,min(z0, . . . , z|LU |)

)
(for short: max(

p2W ,min(. . . ))) and aggWTCs(p2W , z0, . . . , z|LU |) = p2W +min(z0, . . . , z|LU |)
(shortly +(p2W ,min(. . . ))) are pessimistic approaches of taking the least mean-
ingful transition, i.e., the lightest. So we consider a mean adversary who always
picks the least meaningful output. This approach is usually too pessimistic even if
we only have fairnessmodel or underspecU in a strong form: Since one bad potential
output can suppress TOs, the minimum is usually too extreme in practice. For in-
stance, Fig. 12.2 with a ∈ LU shows that one small weight (the weight 0 reachable
via the trace yba) is already sufficient to suppress a TO;
• thus balanced aggregations, which include all values in the aggregate, are usu-

ally better in practice. They all take the sum between p2W and the rest. A simple
solution is aggWTCs(p2W , z0, . . . , z|LU |) = p2W +z0+· · ·+z|LU | (+(p2W ,+(. . . ))
for short) since w(W) = Σ

π∈paths(Fw(W))
(path2W (πfull · π)). But for all π ∈ paths(

Fw(W)), path2W (πfull·π) is treated equally, independent of π’s length, and weights
of WTCs grow exponentially fast and can quickly cause an overflow if weights are
bounded. Therefore, we prefer the following similar solutions;
• aggWTCs(p2W , z0, . . . , z|LU |) = p2W + arithmeticMean(z0, . . . , z|LU |) (shortly

+(p2W ,mean(. . . ))) is the balanced aggregation that assumes equidistribu-
tion as the adversary’s strategy, i.e., over all outgoing transitions, since we do
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not know in advance which one will occur how often. Many heavy path2W on
one path can again suppress TOs, though one such path likely gets evened out
by taking the mean of z0, . . . , z|LU |. For instance in Fig. 12.2 with LU = {a}, the
heaviest path (with the trace δbδ) gets evened out (by the paths with traces δa
and δba). On the other hand, for some πfull ∈ pathsTO(Sdet)rcurr , path2W (πfull)
might also be evened out, i.e., TO in dest(πfull) is suppressed if the containing
WTC has many outgoing transitions to small weights and another WTC without
TOs has mainly output transitions to heavy weights. For instance in Fig. 12.2 with
LU = {b}, LI = {a, y}, if the left tree (reachable via δ) had all path2W (πfull) of 70
(instead of 90 or 0), its weight would be 175, but the right tree (reachable via y)
would only weigh 163. But for a given maximal bound bmax, path2W (πfull) can be
chosen sufficiently high for πfull ∈ pathsTO(Sdet)rcurr , such that TOs are never sup-
pressed: p2W TO > branchout(bmax−1)

Sdet · bmax · p2W TO . For instance as in Fig. 12.2
for bmax = 4 and p2W TO = 90, p2W TO > 2(b−1) ·b ·90 = 2880. Then equidistribu-
tion is a good approximation for all variants of fairness without underspecU . For
strong underspecU , equidistribution is too rough an approximation; but we could
quantify the probabilistic distribution on-the-fly (cf. Subsec. 12.4.5);
• a pragmatic approach of quantifying probability leads to an easy improve-

ment that only distinguishes choices of the tester and choices of the adversary: For
p ∈ [0, . . . , 1], aggWTCs(p2W , z0, . . . , z|LU |)=p2W +p·z0+(1−p)·arithmeticMean(
z1, . . . , z|LU |) (+(p2W ,+(p · z0, (1− p) ·mean(. . . ))) for short) takes into ac-
count that often neither the performance of the SUT nor the timeout for quiescence
varies over time. Thus p reflects the rate at which an output preempts input or
quiescence. For the outputs, all solutions above can be applied. We focus on
arithmeticMean(z1, . . . , z|LU |) since it is a balanced aggregation, can be improved
by quantifying the probability distribution on-the-fly (cf. Subsec. 12.4.5), and evens
out most paths with many heavy weights but no TO. Additionally, many output
transitions to heavy weights do not suppress TOs as quickly as before if p >
1/(|LU |+1). For instance in Fig. 12.2 with LU = {b}, LI = {a, y} and p = 0.9, the
TO is not suppressed since the left tree (reachable via δ) weights 107, but the right
tree (reachable via y) weighs 159. For p = 0.5, the TO does get suppressed because
the left tree weighs 158 and the right 138. Usually p > (1−p)/(branchoutSdet −1),
in which case p2W TO > ((branchoutSdet−1)/(1−p))(bmax−1) ·bmax ·p2W TO avoids
suppression.

Lemma 12.34. Let w(Wpcurr ) be implemented by genWTS via aggWTCs with path2W .
Then aggWTCs with path2W does not suppress TOs if the following corresponding

inequality is met:
•max(p2W ,max(. . . )) : p2W TO > p2W TO ;
•+(p2W ,max(. . . )) : p2W TO > bmax · p2W TO ;
•+(p2W ,mean(. . . )) : p2W TO > branchout(bmax−1)

Sdet · bmax · p2W TO ;
•+(p2W ,+(p · z0, : p2W TO > ((branchoutSdet − 1)/(1− p))(bmax−1)·

(1− p) ·mean(. . . ))) ·bmax · p2W TO .

The user can choose from the pre-built (cf. Subsec. 13.2.3) max(p2W ,max(. . . ))
(MaxMax for short), +(p2W ,max(. . . )) (Max for short), and +(p2W ,+(p · z0, (1 −
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p) ·mean(. . . )))) (PInputDefault for short). With this selection, all practical classes
of aggWTCs are already covered: using min is not practical, and PInputDefaultis the
most practical balanced aggregation (cf. Subsec. 12.3.6). We set PInputDefaultas default
since it is the most meaningful in practice (cf. Subsec. 14.3.5). However, the inequalities
between p2W TO and p2W TO are simpler met for MaxMax and Max.

Example 12.35. Fig. 12.2 depicts a TC (from Subfig. 8.1a for y = a, also cf. Fig. 8.4),
with path2W (πfull) for each node.
Table 12.1 lists all aggWTCs mentioned above for the TC and path2W (πfull) from

Fig. 12.2 for LU = {a, y}, LI = {b}.

1

90

090

90 0

50

20 90

100 0 10 20
TO

δ y

b a

aδ

b a

δ a b a

Figure 12.2.: A TC (for LU = {a, y}, LI = {b}) and all path2W (πfull)

Table 12.1.: Our aggWTCs for Fig. 12.2 with LU = {a, y}, LI = {b}

aggWTCs w(W)
max(p2W ,max(. . . )) 100
+(p2W ,max(. . . )) 271
max(p2W ,min(. . . )) 50
+(p2W ,min(. . . )) 71
+(p2W ,+(. . . )) 561
+(p2W ,mean(. . . )) 149
+(p2W ,+(0.9 · z0, 0.1 ·mean(. . . ))) 237

Notes. In cases where the tree in Fig. 12.2 is not output-enabled for the given LU and
LI , we ignored this fact since it can be corrected easily and we wanted to keep the
examples as simple as possible.

aggWTCs(p2W , z0, . . . , z|LU |) can be fine-tuned further, e.g., for +(p2W ,+(p ·z0, (1−
p) ·mean(. . . ))), δ can be treated exceptionally, since it usually takes longer than giving
an output. This leads to the regular equidistribution +(p2W ,mean(. . . )) for δ.
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All aggWTCs that add values can theoretically cause an overflow if the weights are
bounded. This, however, is unlikely if no TOs can be suppressed and TOs are inducing
(cf. Sec. 12.2).

12.3.7. Composition of Test Objectives

Weight heuristics can be modularized according to features (or requirements or any other
elements to be tested). Each feature is modeled by a test objectives, also called basic
test objective. Composing basic test objectives lead to sophisticated heuristics, e.g.,
requirements coverage. Def. 12.36 gives a formal definition and extends Def. 11.6 to
incorporate our meaningfulness weight heuristics.

Definition 12.36. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ). For our heuristics, a test
objective o consists of
• I lazy

o : S → Σlazy, indicating which states are inducing and test goals for o;
• path2W o : pathsV(Sdet)rcurr → N, πfull 7→ path2W o(πfull),

where higher values indicate that πfull is more meaningful for o;
•activeo : has type B and is true iff o has not yet been discharged;
• dischargeo : pathsV(Sdet)rcurr � B, is the discharge function for o.

Furthermore, discharging o must be feasible. Thus dischargeo must be surjective.

If multiple basic TOs o ∈ ö are active, they must all be considered, i.e., their path2W o

aggregated and their I lazy
o respected. Thus, they are composed to a new TO, as defined

in Def. 12.37. LazyOTF functions with this composed TO as if it were a basic TO.

Definition 12.37. Let S = (S,→, Lτ ) ∈ LT S(LI , LU , τ) and ö a finite, nonempty
(finitely nested) set of TOs.
Then ö can be considered a composed test objective, with

• I lazy
ö : S → Σlazy, s 7→ max

o∈ö
(I lazy
o (s));

• path2W ö : pathsV(Sdet)rcurr → N, πfull 7→ aggPath2Ws
(

(path2W o(πfull))o∈ö
)
, which aggregates the path2W o(πfull) of all o ∈ ö;

•activeö : has type B and is true iff ∀o ∈ ö : activeo;
• dischargeö : pathsV(Sdet)rcurr � B, π 7→ ∨

o∈ö
dischargeo(πfull).

öinit is the set of initially active TOs, i.e., when phase 1 begins.

Notes 12.38. So when using composition of TOs, the composed TO that comprises all
currently active basic TOs is currently active.
Since ö is not ordered, aggPath2Ws must be symmetric in its parameters.
As with other heuristics (cf. Subsec. 12.3.1), compositional TOs can be used as guid-

ance or as metric to give feedback to the test engineer and to decide whether to exit
testing. To turn ö into a metric (similarly to the conformance index in [Arcaini et al.,
2013]), we define the TO coverage level to be 1− |ö|/|öinit |.
If we want to nest composition, aggPath2Ws should be homomorphic, i.e., for ö =
{ö1, ö2} with ö1 ∩ ö2 = ∅, path2W ö(πfull) = aggPath2Ws

(
(path2W ö1(πfull), path2W ö2(
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πfull))
)

= aggPath2Ws
(
aggPath2Ws((path2W o(πfull))o∈ö1), aggPath2Ws((path2W o(

πfull))o∈ö2)
) != aggPath2Ws((path2W o(πfull))o∈ö1∪̇ö2) = path2W ö1∪̇ö2(πfull).

As described in Subsec. 12.3.2, composition is also helpful in practice to combine
• more lightweight heuristics, to ensure efficiency for simpler but also more relevant

TOs;
• and heavyweight heuristics, to ensure rigor, or even exhaustiveness.

We implemented interfaces and abstract classes for flexible aggPath2Ws (cf. Sub-
sec. 13.2.3), max as default and sum as alternative. The more balanced aggPath2Ws
takes different TOs o ∈ ö into account (similar to balanced aggWTCs), the more difficult
exhaustiveness and Pdischarge becomes, but the more synergetic TO ö becomes.

Since we do not know the order in which the TOs o ∈ öinit are discharged, we would
have to check the provisos for each subset ö of öinit (i.e., for each path2W ö) to be able
to give guarantees when using composed TOs with no further restrictions on the TOs
o ∈ öinit . Since this becomes infeasible quickly, we search for conditions when the provisos
are preserved by composition, i.e., we investigate how the provisos can be strengthened
such that composition preserves them.
P→OTF , Pcoverage and PcoverViaTOs are already modular, i.e., they cover compositional

TOs, too. For Pvanishing, aggPath2Ws must correctly handle the set of active TOs being
empty (cf. next paragraph). To fulfill Pdischarge, e.g., via Pphase, Pgoal and Pfair , we lift
our previous lemmas to composed TOs as defined in Def. 12.37. For this, we firstly
consider aggPath2Ws, then aggWTCs and finally path2W .

aggPath2Ws

aggPath2Wsö can include all values path2W o for all o ∈ ö, e.g., via mean or sum (cf.
balanced aggregations of aggWTCs in the previous subsection). But this can suppress
a TO and thus break Pgoal (similar to aggWTCs), especially if we generate TOs auto-
matically (e.g., for a coverage criterion) and hence have no control over the size of ö.
Fortunately, we can use max for aggPath2Ws without the risk of being too optimistic:
unlike aggWTCs, we have no uncontrollable nondeterminism (i.e., no mean adversary)
for aggPath2Ws since the tester can decide which TO to focus on. So we mostly use
max as aggPath2Ws, and set path2W∅(·) = 0, such that Pvanishing is also fulfilled.

Example. An example for suppressed TOs can be derived from the TC of Fig. 12.2 for
ö := {o1, o2}, aggPath2Ws the sum or the mean, and LU = {a, y}, LI = {b}. Let the
basic TO o1 have path2W o1 as depicted in Fig. 12.2; let o2 be another basic TO that is
equal to o1 except for
• the node reachable via the trace ybδ no longer discharges a TO and has the weight
0 instead of 100;
• the node reachable via the trace yba now discharges a TO and has the weight 100

instead of 0;
• the node reachable via the trace ya now has the weight 0 instead of 90.

Then the TOs are not suppressed for +(p2W ,min(. . . )); but for all six other variants
of aggWTCs listed in Table 12.1, the TOs are suppressed by the left tree (reachable via
δ).
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aggWTCs

The inequalities between p2W TO and p2W TO from Lemma 12.34 still guarantee that
TOs are not suppressed since Def. 12.32 can be lifted to a compositional test objectives
ö because ö is discharged in a superstate s̈ iff some o ∈ ö is discharged in s̈ (but ö \ {o}
is not discharged).

path2W o

For fairnesstest or fairnessspec, with forbidden underspecU , many implementations of
path2W o fulfill our provisos, in dependence of aggWTCs and further heuristics settings.
The investigation of path2W in Subsec. 12.3.6 showed that for fairnesstest or fairnessspec,
with forbidden underspecU , Pphase and Pfair can be met by choosing w(Wpcurr ) as
phaseVariant and guaranteeing that it is (finitely or strictly) monotonically increasing for
at least one resolution of uncontrollable nondeterminism. By Lemmas 12.40 and 12.41,
this holds if path2W o for each (basic or composed) TO o is strictly (or only finitely)
monotonically increasing towards o, as defined in Def. 12.39. Depending on aggWTCs,
the additionally required settings are either met easily or are strong restrictions. The
lemmas also cover the weaker constraints of finitely (as opposed to strictly) monotoni-
cally increasing towards TOs, because this is relevant in practice: a value path2W o(πfull)
is often derived by a certain aspect of dest(πfull) that reflects the distance to o, e.g., a
variable evaluation. These aspects often stutter, i.e., do not change for each transition
in S (cf. Example 12.43).
Definition 12.39. Let S ∈ SPEC , πfull ∈ pathsV(Sdet)rcurr with πfull=(πi)i∈[1,...,1+pcurr )
and o be a TO, and pathsTOo (Sdet)>rcurr := ∪

k∈N>0
pathsTOo (Sdet)rcurr+k.

Then distanceo : pathsV(Sdet)rcurr → N≥0,

πfull 7→



min
πfulle ∈pathsTOm (Sdet)>rcurr that extends πfull

(|πfulle | − |πfull|), with m = o

if o is a basic TO, otherwise m =
{
n ∈ o

∣∣path2W n(πfull) =
max
r∈o

(path2W r(πfull))
}

if ∃|n ∈ [0, . . . , |πfull|] : dischargeo(π
full
≤n )

0 otherwise.

πfull moves towards o in the current traversal sub-phase :⇔
distanceo(πfull) = distanceo((πi)i∈[1,...,pcurr ))− |πpcurr |.

path2W o is:
• finitely monotonically increasing towards o :⇐⇒
∀πfull ∈ pathsV(Sdet)rcurr :

(
distanceo(πfull) < distanceo(πfull≤|πfull|−1)

=⇒ path2W o(πfull) ≥ path2W o(π
full
≤|πfull|−1)

)
• strictly monotonically increasing towards o :⇐⇒
∀πfull ∈ pathsV(Sdet)rcurr :

(
distanceo(πfull) < distanceo(πfull≤|πfull|−1)

=⇒ path2W o(πfull) > path2W o(π
full
≤|πfull|−1)

)
.

Lemma 12.40. Let aggPath2Ws = max.
Then composition preserves that path2W is finitely (resp. strictly) monotonically in-

creasing towards the TO: for a set ö of TOs with ∀o ∈ ö : path2W o is finitely (resp.
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strictly) monotonically increasing towards o, path2W ö is finitely (resp. strictly) mono-
tonically increasing towards ö.

Proof. Let ö be a set of TOs with ∀o ∈ ö : path2W o is finitely (resp. strictly) mono-
tonically increasing towards o. Let πfull ∈ pathsV(Sdet)rcurr with distanceö(πfull) <

distanceö(πfull≤|πfull|−1). Then ∃|om ∈ ö : path2W ö(πfull) = max
o∈ö

(path2W o(πfull)) ≥

path2W om(πfull) ≥ path2W om(πfull≤|πfull|−1) = max
o∈ö

(path2W o(πfull≤|πfull|−1)) = path2W ö(

πfull≤|πfull|−1) (resp. path2W om(πfull) > path2W om(πfull≤|πfull|−1)). Therefore, path2W ö is
finitely (resp. strictly) monotonically increasing towards ö.

Lemma 12.41. Let o be a (basic or composed) TO with path2W o finitely (resp. strictly)
monotonically increasing towards o. If

1. either aggWTCs = max(p2W ,max(. . . ));
2. or aggWTCs = +(p2W ,max(. . . )) and all path2W o are non-negative and b+ is

monotonically increasing and I lazy
o retains one successor state reachable via an

outgoing transition that moves towards o (i.e., does not set it to INDUCING);
3. or aggWTCs is balanced (e.g., +(p2W ,+(. . . )) or +(p2W ,mean(. . . )) or +(p2W ,

+(p·z0, (1−p)·mean(. . . )))) and all path2W o are non-negative and (path2W o(πfull)
> 0 iff I lazy

o(dest(πfull))=TESTGOAL, cf. Example 12.43),
then w(Wpcurr ) is finitely monotonically increasing for at least one resolution of uncon-
trollable nondeterminism, until o is in the current sub-graph.

Proof. Let (Wi)i∈[1,...,1+pcurr ) be the weighted test case sequence, p := pcurr ≥ 2 (wlog,
since otherwise LazyOTF already terminated with discharged o), with o not in the sub-
graphs of the traversal sub-phases p, p− 1. Furthermore, πprep := (πfullrcurr )≤|tcurr |−|πp| and
πprep−1 := (πfullrcurr )≤|tcurr |−|πp|−|πp−1|.
Case 3: path2W o(πfull) = 0, w(Wp) = 0 ≥ 0 = w(Wp−1).
Cases 1 and 2: we can choose a resolution of nondeterminism such that each outgoing

transition of πp−1 reduces the distance to o, so that in those steps, path2W o increases:
For output, the premise allows this; if input is the only possibility to advance successfully
(i.e., leave the state without a fail ), it also reduces the distance to o. From the choices
that reduce the distance to o, the chosen resolution avoids inducing states as long as
possible. So if w(Wp−1) = M ∈ N, we have path2W o(πprep) = M for this resolution of
nondeterminism.
Case 1: w(Wp−1) = M = path2W o(πprep) ≤ max

π∈Fw(paths(Wfull
rcurr ))

(path2W o(π)) =

w(Wp).
Case 2: bp ≥ bp−1 since o is not in the sub-graph of the traversal sub-phase p − 1.

With analogous resolution of nondeterminism in traversal sub-phase p as in the traversal
sub-phase p−1, we have w(Wp−1) = M ≤ bp−1 ·path2W o(πprep) ≤ bp ·path2W o(πprep) ≤
w(Wp).
Therefore, for all three cases, w(Wpcurr ) is finitely monotonically increasing for at least

one resolution of uncontrollable nondeterminism, until o is in the current sub-graph.

Def. 12.39 and Lemmas 12.40 and 12.41 allowed path2W o to have path2W o(πfull) >
path2W o(π

full
≤|πfull|−1) if distanceo(πfull) ≥ distanceo(πfull≤|πfull|−1), i.e., we only constrained
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path2W o when moving towards o. Consequently, the guidance heuristic may lead away
from o, i.e., the TOs that LazyOTF moves towards can change. But this can happen
only finitely often if the weights are bounded since w(Wpcurr ) is finitely monotonically
increasing. Since such weak constraints on path2W o are counter-intuitive, inefficient, too
weak for unbounded weights and usually not necessary, we can employ stricter constraints
(i.e., they imply the weak constraints given in Def. 12.39), as defined in Def. 12.42.

Definition 12.42. Let S ∈ SPEC , πfull ∈ pathsV(Sdet)rcurr with πfull = (πi)i∈[1,...,1+pcurr )
and o be a TO.
Then path2W o is:
• finitely monotonical towards and away from o :⇐⇒
∀πfull ∈ pathsV(Sdet)rcurr :

(
distanceo(πfull) < distanceo(πfull≤|πfull|−1)⇐⇒

path2W o(πfull) ≥ path2W o(π
full
≤|πfull|−1)

)
• strictly monotonical towards and away from o :⇐⇒
∀πfull ∈ pathsV(Sdet)rcurr :

(
distanceo(πfull) < distanceo(πfull≤|πfull|−1)⇐⇒

path2W o(πfull) > path2W o(π
full
≤|πfull|−1)

)
.

Example 12.43. Often, we employ path2W o of one of the following types: path2W o :
pathsV(Sdet)rcurr → N≥0, πfull 7→

• nonfancy (πfull) :=


k0 if I lazy

o(dest(πfull)) = ORDINARY
k1 if I lazy

o(dest(πfull)) = INDUCING
k2 if I lazy

o(dest(πfull)) = TESTGOAL;

• fancylinear (πfull) :=
{
k0 − k1 · distanceo(πfull) if distanceo(πfull) 6= 0
k2 if distanceo(πfull) = 0

(modulo stuttering);

• fancynonlinear (πfull) :=
{
ko + round(k1/distanceo(πfull)) if distanceo(πfull) 6= 0
k2 if distanceo(πfull) = 0

(modulo stuttering).
The distance is often measured on the STS level with the help of a location variable.
With appropriate ki ∈ N≥0, these path2W o are finitely monotonical towards and away
from o. The result of fancylinear can become negative for large distances. But if the
distance is measured with the help of a variable with bounded domain, ki can be chosen
such that all results are non-negative. Alternatively, we can take the maximum of the
result and 0, for which fancylinear remains finitely monotonical towards and away from
o. Subsec. 14.3.3 contains examples with concrete values.

12.3.8. Countermeasures for Unmet Provisos

For cases where the premise of Lemma 12.41 is not met (e.g., in Example 12.44),
w(Wpcurr ) might not be finitely monotonically increasing for any resolution of uncon-
trollable nondeterminism. So the increase of path2W o towards o is distorted by the
weights of the other reachable paths.

Example 12.44. This example uses a balanced aggWTCs and path2W o that are strictly
monotonically increasing towards o, but are more sophisticated, so that the premise of
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Lemma 12.41 is not met. Fig. 12.3 shows that for o = o1 and o = o2 with path2W o

strictly monotonically increasing towards o, ö = {o1, o2} also has path2W ö that is strictly
monotonically increasing towards ö. But for aggWTCs = +(p2W ,mean(. . . )), both
successor WTCs of W1 are lighter, so w(Wpcurr ) is not finitely monotonically increasing.

(9,9)

(10,4)

(2,5)(11,3)

o1

(2,10)

(3,4) (3,11)

o2

u1 u2

u1 u2 u1 u2

w(W1) = 19

w(W′2) = 17.5w(W2) = 18

Figure 12.3.: S with strictly monotonically increasing (path2Wo1 ,path2Wo2) towards
the TOs and balanced aggWTCs resulting in no finitely monotonically
increasing w(Wpcurr)

Without w(Wpcurr ) finitely monotonically increasing, we can no longer use it as argu-
ment to guarantee Pphase. But this does not necessarily mean that Pphase and Pdischarge
is not met: If there is a TO o that the Wpcurr keep moving towards, even if w(Wpcurr )
decrease, a sub-graph containing a TO will eventually be reached. This scenario can for
instance occur when b+ is not monotonically increasing, but otherwise the premise of
case 2 in Lemma 12.41 is met.
But in general, if w(Wpcurr ) is not finitely monotonically increasing, we have no guar-

antee that the heaviest WTCs keep moving towards o. As long as LazyOTF only changes
finitely often between TOs it is moving towards, a sub-graph containing a TO will still
eventually be reached. Thus, because there are only finitely many TOs, Pphase is still met
if the sequence (öi)i∈[1,...,1+pcurr ) of TOs that LazyOTF is moving towards in each phase
i does not keep cycling through a period (öi)i∈[1,...,p] with ∩

i∈[1,...,p]
öi = ∅, baptized

alternating TO period. Infinitely cycling through an alternating TO period never
occurred in our experiments (cf. Sec. 14.3); it only happens in the unlikely situation
that the balanced aggWTCs distorts the increase of path2W o towards o, and this results
in a choice iδ ∈ LI ∪̇{δ} moving towards an o that we moved away from before, and
these alternations form a TO period, and no output that the SUT makes while cycling
exits the alternating TO period, and the dynamic bound heuristic does not break the
alternating TO period, i.e., the alternating TO period must be sustained by all chosen
bounds. But a finite amount of cycles occurs often due to uncontrollable nondeterminism
(cf. Subsec. 8.7.1, Subsec. 14.3.9). Infinitely cycling through an alternating TO period
can be avoided by any of the following countermeasures:
• change aggWTCs to one that meets the premise of Lemma 12.41;
• or change path2W o (and for case 2 possibly I lazy

o and b+) for the given aggWTCs
such that the premise of Lemma 12.41 is met. For aggWTCs = +(p2W ,max(. . . ))
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with some negative path2W o, computations can easily be transformed to purely
non-negative weights. But modifying I lazy

o to retain at least one outgoing transition
that moves towards o is either implemented easily and strongly restrictive, or less
restrictive but complex to implement;
• simply changing the bound b in aggWTCs = +(p2W ,mean(. . . )) or aggWTCs =

+(p2W ,+(p · z0, (1− p) ·mean(. . . ))), or the probability distribution in the latter,
may resolve the TO period;
• for finite S, use finingPath2W ;
• use mitigation.

Since unbounded cycling through an alternating TO period occurs rarely (never in our
experiments, cf. Sec. 14.3), it is useful in practice to accept the risk and only add one of
the above countermeasures if alternating TO periods cause problems.

LazyOTF offers a simple cycle warning to warn about alternating TO periods for
finite S: For finite S, infinite cycling through an alternating TO period only occurs if we
infinitely traverse a cycle in S. Furthermore, for finite S we infinitely traverse a cycle in
S iff we infinitely visit some state. LazyOTF’s cycle warning implementation counts how
often a superstate in S is visited without any discharge in between (i.e., without making
any progress, cf. Chapter 6). A cycle warning is issued whenever some superstate
is visited c times, where the user-supplied cycle warning threshold c reflects how
mean the adversary can be. For fairnesstest or fairnessspec, without underspecU , false
positive!cycle warning can often be avoided if c is chosen sufficiently large (cf. Lemma 8.67
and Subsec. 14.3.9). But for fairnessmodel or complex TOs, cycles might have to be
traversed often. This cycle warning can also be used as a more general analytical tool
to detect weak guidance heuristics, or mean adversaries, or hot spots in Sdet during
LazyOTF’s traversal and test execution sub-phases, which indicates hot spots in the
application.

12.3.9. Related Work on Guidance via Weight Heuristics

There is little related work that uses weights to implement guidance heuristics similar
to ours. Hence we broaden the scope and investigate the use of weights for a kind
of guidance in KLEE (cf. Subsec. 7.3.2). Then we consider the relation to search-based
software testing (cf. Subsec. 11.2.4, Subsec. 12.3.1, and Note 12.30). Finally, we compare
our guidance via weight heuristics to the cycling heuristics (cf. Subsec. 12.3.1) and NPC
checks (cf. Chapter 6).
KLEE is related work when broadening the scope to also considering gray-box and

white-box testing, since KLEE uses weights to prioritize the investigation of symbolic
paths. But weights are used only to increase the code coverage level. Furthermore, KLEE
only weighs paths, but not trees, i.e., uncontrollable nondeterminism is not supported (cf.
Sec. 11.4). KLEE executes concrete instructions immediately, which generally forbids
backtracking, and hence also the investigation of future transitions (except for the direct
outgoing transition), which renders the guidance heuristic weak, as for on-the-fly MBT.
Within search-based software testing, the metrics used for prioritization can roughly

be considered as weights similar to ours. Most of them are used to achieve a high
coverage level for a classical coverage criterion. But several techniques from search-based
software testing, like metaheuristics, can be transferred to other prioritization metrics
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than classical coverage criteria; this has been done in this thesis for general weights
(cf. Note 12.30 and Subsec. 12.3.7). Furthermore, parallelization is rarely considered in
search-based software testing, but in this thesis, in Sec. 11.5. PGA (cf. Subsec. 11.5.1) is
one of the few works on parallelization in search-based software testing. Since the choices
of Wi in LazyOTF’s phases (cf. Subsec. 12.3.4) can roughly be considered as steepest
ascent hill climbing (cf. Note 12.30), and iδ caching (cf. Subsec. 13.6.2) as variation of
tabu search, distributed LazyOTF can also be roughly considered as parallelization in
search-based software testing. Further comparisons and advantages of LazyOTF over
genetic algorithms is given in Subsec. 12.3.1.
We first consider the most restrictive case of the cycling heuristics: forbidding all

cycles. For fairnesstest with forbidden underspecU , we need not traverse cycles in S to
reach all states (cf. Lemma 8.66), and hence not for exhaustiveness (cf. Lemma 8.61)
and for Pdischarge if Pexh⇒ disch is met. But this is not the case for more complex TOs
(e.g., odec, cf. Subsec. 14.3.3) and not efficient since allowing a cycle when the SUT made
an undesired choice in uncontrollable nondeterminism might cost much less than having
to restart in initS . For better performance, or weaker fairness, or allowed underspecU ,
we can allow a certain amount of cycles via less restrictive cycling heuristics, e.g., by
integrating incremental deepening on the number of cycle unwindings i (analogously to
DFSincremental, cf. Subsec. 6.4.1) into genWTS. Alternatively, we can allow only specific
cycles via progress states by integrating NPC checks into genWTS, and pruning whenever
an NPC is detected. For direct and efficient guidance, cycles that do not make progress
towards coverage or discharging TOs should be avoided, so the test engineer has to
accurately model which cycles are making progress, e.g., by marking states or transitions
in those cycles as progress. With more and more relaxed cycling, successively larger
Straces coverage can be achieved. A finingPath2W wrapper can also be used to easily
implement a variant of the cycling heuristic (cf. Subsec. 12.3.1): cycleFiningPath2W
fines paths the more cycles (without discharges) they have. All these cycling heuristics
operate on-the-fly (as opposed to [Feijs et al., 2002; Goga, 2003]).
Because different cycles and progress cycles have no priority, guidance is not suffi-

ciently fine-grained to guide effectively towards TOs, i.e., meaningfulness is indicated
less accurately. Thus using weights are more suitable, and can also be used to imple-
ment variants of the cycling heuristic. Hence we investigated weights in this chapter and
leave all alternatives via cycling heuristics from this subsection as future work.

12.4. Optimizations
LazyOTF’s flexible heuristics and open implementation allow many optimizations of its
resource consumption, its meaningfulness, and its usability. This section introduces three
implemented optimizations and two for future work:
The interplay between the phase heuristics (cf. Sec. 12.2) and the guidance heuristics

(cf. Sec. 12.3) has been optimized for lower runtime and memory requirements: Since
states directly after the current sub-graph have not been considered at all in the last
traversal sub-phase, incorporating them at the end of the current test execution sub-
phase can yield improvements in two special cases:
• if they do not contain controllable nondeterminism, optimizations via lazy traver-
sal sub-phases are possible;
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• if they are lighter than alternative states (i.e., other states reachable with the
same amount of steps), optimizations via eager micro-traversal sub-phases
are possible.

Besides these two implemented optimizations, reproducibility of failures can be opti-
mized by tuning our flexible heuristics, without any modifications to our code. This is
important in practice for usability, but difficult to solve for SUTs with uncontrollable
nondeterminism.
Interesting future work is optimizing our bound heuristics by considering further dy-

namic information to increase performance, and quantifying nondeterminism to generate
further dynamic information to increase meaningfulness.
Feasibility can be improved best if optimizations can be combined efficiently (cf. Chap-

ter 6). For LazyOTF, parallelization, lazy traversal sub-phases and eager micro-traversal
sub-phases are orthogonal and can be combined efficiently (cf. Sec. 14.3). They do not
restrict the heuristics, so reproducibility can additionally be improved.

12.4.1. Lazy Traversal Sub-phases

If a test execution sub-phase ends with the trace σfullrcurr and inSτ∗ (s̈) = ∅ with s̈ =
initS after σfullrcurr , i.e., s̈ does not contain controllable nondeterminism, there is no reason
to start the next traversal sub-phase at s̈. Therefore, the lazy traversal sub-phase
optimization extends the current test execution sub-phase (and therefore the trace
σfullrcurr ) via OTF (i.e., via test steps on the SUT and in S in lockstep) until a superstate
is reached with inSτ∗ (initS after σfullrcurr ) 6= ∅. Then the next traversal sub-phase begins.
Lazy traversal sub-phase optimization can reduce runtime and memory requirements if
sequences of superstates without controllable nondeterminism exist in Sdet, especially if
those states have high uncontrollable nondeterminism, i.e., a large branching, since the
next traversal sub-phase and corresponding TC would need to cover all resolutions of
uncontrollable nondeterminism, whereas test execution only gives one result.

Example. Fig. B.1 in Appendix B.1.1 gives an example with a clean web service follow-
ing the request-response pattern: in all ∗Requested states, output only occurs together
with quiescence, but no input. Input is, however, again possible in all successor states,
so traversal sub-phases are delayed at most one step.

12.4.2. Eager Micro-traversal Sub-phases

Since the traversal sub-phase pcurr choses a TC Tpcurr among the heaviest, and since
exhaustiveness, coverage or discharging is guaranteed if a corresponding proviso holds,
Tpcurr on the whole is meaningful. However, since the traversal sub-phase does not
consider the states directly after the current sub-graph, Tpcurr ’s last resolutions of con-
trollable nondeterminism (i.e., its last iδ transitions) might not be the most meaningful
if the weight heuristics cannot accurately indicate meaningfulness at the granularity of
single transitions (e.g., using variable evaluations). Thus the eager micro-traversal
sub-phase optimization (also called MarginSafetyMiniTT or OracleSafetyTree)
does consider states directly after the current sub-graph before the last test steps of
Tpcurr are executed, as defined in Def. 12.45.
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Definition 12.45. Let bexec, bfuture ∈ [1, bpcurr ), Tpcurr = (S,→, Lδ) and s ∈ S the first
state during the test execution sub-phase pcurr such that ∃|π ∈ pathsmax(Tpcurr ) with
dest(π) = pass and ∃|π1, π2 with π = π1 · π2, dest(π1) = s and |π2| ≤ bexec. Furthermore,
let T′ be the complete subtree of Tpcurr rooted in s.
Then the eager micro-traversal sub-phase with the parameters bexec, bfuture con-

siders all possible bfuture states directly after the current sub-graph before the last bexec
test steps of Tpcurr are executed: It performs a small traversal sub-phase with the bound
bexec + bfuture the moment s is reached, to check whether there exists a heaviest TC with
the bound bexec + bfuture that extends T′.
• If so, Tpcurr contains no inefficiency in the end, and test execution of T′ is performed,

too, i.e., Tpcurr is fully executed and then the next traversal sub-phase is started,
as without the optimization.
• If not, Tpcurr contains an inefficiency in the end, so T′ is not executed and the next
traversal sub-phase is started in s already, avoiding the less meaningful T′.

bfuture should be chosen small to avoid increased runtime due to the additional traversal
sub-phases. In summary, traversal sub-phases and their TCs guarantee exhaustiveness,
coverage or discharging, whereas eager micro-traversal sub-phases avoid inefficiencies in
the end of those TCs due to coarse-grained weight heuristics.
Example. Again Fig. B.1 in Appendix B.1.1 following the request-response pattern
is an example: most ∗Input transitions represent requests and only the corresponding
∗Output transitions update location variables as response. Hence the weight heuristics
do not sufficiently reflect meaningfulness for ∗Input transitions. Therefore, eager micro-
traversal sub-phases do improve meaningfulness, but bexec = bfuture = 1 is sufficient.

12.4.3. Reproducibility
LazyOTF and its heuristics can optimize MBT for a high degree of determinism of specific
TCs, i.e., to avoid uncontrollable nondeterminism as much as possible. This leads to
higher repeatability of verdicts for these TCs, and thus higher reproducibility of
specific failures.
Our heuristics help avoid uncontrollable nondeterminism in multiple ways:
• guidance heuristics reduce the randomization of on-the-fly MBT (cf. Subsec. 11.1.2);
• uncontrollable nondeterminism can be reduced by the phase heuristics choosing
states with high uncontrollable nondeterminism as inducing states, lowering their
weights by forbidding subtrees;
• since our guidance heuristics find shorter test cases, they usually contain less un-
controllable nondeterminism;
• finingPath2W can be used to further fine uncontrollable nondeterminism (cf. Sub-
sec. 12.3.5).

Note. For fully deterministic test case generation, the weights of different WTCs should
differ.

12.4.4. More Dynamic Information for Bound Heuristics
The bound heuristics in Subsec. 12.2.2 only checked in which sub-phases TOs were
discharged, and did not depend on any further information. This was an intentional
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design choice to keep the dynamic bound heuristics easily configurable and efficiently
computable.
For strong guidance via TOs, a small bound is usually sufficient since the TOs guide

in the right direction over multiple phases. For weak guidance via TOs, this is not the
case, so a larger bound helps in finding those TOs and thus improves the meaningfulness
(cf. Subsec. 14.3.6). But a larger bound increases test case complexity and the resources
needed for test case generation (cf. Fig. 14.5). So the bound heuristics must continuously
balance the trade-off between meaningfulness and performance for the set of currently
active TOs. In specific cases, more information can help the bound heuristics to optimize
this trade-off faster and better. For instance, in rare cases the following might happen
over multiple phases if the guidance heuristcs are configured badly: bpcurr = 5 and a TO
is discharged every p+ − 1 phases, so bpcurr is not increased; but for bpcurr = 6, a TO
would be discharged in every phase. This shows that in certain cases, extending b+ and
b− to consider more dynamic information would yield better heuristics. An exemplary
implementation is b−, b+: dynamicInfo 7→ max(bmin,min(bmax, lengthdischarge)), where
lengthdischarge is the mean number of test steps between two discharges. Since the average
distance between all active TOs can change over time, the mean could be taken over
the last m ∈ N>0 discharges only. So b−, b+ reflects the current average distance, and
bpcurr quickly adopts a suitable value; hence p+, p− can be set to 1. But since computing
b−, b+ is expensive, higher values of p+, p− might lead to a better overall performance.
Since these heuristic and their computations are complex and might only improve

LazyOTF in rare cases, this extension is future work.

12.4.5. Quantifying Nondeterminism
The testing hypothesis (cf. Subsec. 8.1.2) abstracts from all probabilities and uses un-
quantified choices in form of nondeterminism instead. If we had probability distributions
instead, they could be integrated into our weights heuristics, resulting in more accurate
probabilistic weights.

Example. A first step in this direction was the pragmatic approach of quantifying
probability in aggWTCs = +(p2W ,+(p · z0, (1− p) ·mean(. . . ))) (cf. Lemma 12.34).

The probability distributions can be formalized by labeling transitions with probability
values, as for discrete-time Markov chains (cf. Subsec. 5.5.4). The probability values can
be user-supplied, derived from usage scenarios, or from observations during execution.
A simple solution counts the number of visits for each superstate and transition;

the probability that transition s̈
l−→ s̈′ is taken in s̈ can thus be approximated by

Penabled (̈s)[s̈
l−→ s̈′] := count(s̈ l−→ s̈)/count(s̈). For this, count(·) is incremented by

one at each visit, and initialized with count(s̈) := enabled (̈s) for each superstate s̈ and
count(l) := 1 for each transition l, which yields equidistribution of Penabled (̈s)

[
s̈

l−→ s̈′
]

at the beginning. Other distributions are also possible.
Then Penabled (̈s)

[
s̈

l−→ s̈′
]
can be used by assembleWTC(s, p2W , l2WTC ) to com-

pute aggWTCs(p2W , z0, . . . , z|LU |), e.g., by +(p2W , zo · Penabled(s)

[
s

iδ−→ s0

]
,Σk

i=1zi ·

Penabled(s)
[
s

ui−→ si
]
,mean(zk+1, . . . , z|LU |)), as extension to +(p2W ,+(p · z0, (1 − p) ·
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mean(. . . ))). Alternatively, Penabled (̈s)
[
s̈

l−→ s̈′
]
can already be factored in as weight

when computing path2W during traversalSubphase, e.g., via finingPath2W . A straight
forward approach computes path2Wprob (πfull) := path2W (πfull)·Ppaths(S,source(πfull))[
πfull

]
, with Ppaths(S,source(πfull))

[
πfull

]
= Π

i∈[1,...,1+|π|)
Penabled(si−1 )

[
si−1

li−→ si

]
(cf. Sub-

sec. 5.5.4) and πfull = (si−1
li−→ si).

Quantifying nondeterminism could be implemented by extending the JTorX parti-
tioner (see Subsec. 10.3.3 and [de Vries et al., 2002; Belinfante, 2014]) to also cover out-
put and quiescence. But this is future work since it is unclear how much improvement
quantifying nondeterminism will bring in practice, whether it is misleading for abstract
specifications, how to retain exhaustiveness, and how costly and stable the numerical
computations are. Roughly similar approaches of counting to bias choices according to
the number of traces, transitions, or states reachable via each successor are given in
[Denise et al., 2008], but they count traces (or decomposable structures) to uniformly
generate traces of a given length, and have to count a large amount in an offline manner.

12.5. Conclusion

12.5.1. Summary

This chapter has shown that exhaustiveness, coverage and discharging TOs is in general
inherently difficult because our ioco theory is very general and allows infinite state space,
uncontrollable nondeterminism, weak fairness constraints and underspecU (cf. Note 12.11
and Note 12.18). Thus this chapter designed elaborate heuristics: phase heuristics on
the one hand, abstract guidance heuristics on the other.
Our phase heuristics (cf. Sec. 12.2) break down the graph into appropriate sub-graphs

to simplify the traversal and test case generation, to improve their performance, and
to enable dynamic information. Sub-graphs are derived by inducing states, which are
user-supplied, and dynamic bound heuristics, which vary the bound from phase to phase
to adapt to the current situation.
Our abstract guidance heuristics (cf. Sec. 12.3) are kept flexible and offer the provisos

P→OTF , Pvanishing, Pdischarge, Pcoverage and PcoverViaTOs to guarantee exhaustiveness, cov-
erage, and discharging if the guidance heuristics comply with the corresponding provisos.
Since our focus is on discharging TOs, the further provisos Pphase, Pgoal and Pfair are
provided to guarantee Pdischarge. Furthermore, advice on how to achieve these provisos
is given. Thereafter, weights heuristics are introduced by extending TCs, TSs and the
algorithms genTC and genTS, resulting in the algorithms genWTC and genWTS. LazyOTF
applies genWTS in each traversal sub-phase to generate a potentially most meaningful
TC; LazyOTF is shown to be sound and, if the corresponding provisos are met, exhaustive
or discharging TOs. Then these provisos are further investigated for our weights heuris-
tics, giving criteria on how to implement Pphase, Pgoal and Pfair . This chapter has also
shown how meaningfulness is configured by defining and composing TOs. We have seen
that TOs can efficiently describe user-supplied information and are useful in practice,
e.g., for specific requirements and iterative software development. Hence our provisos
are further investigated for TOs, restricting our criteria such that they are retained by
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composition. Finally, we introduced cycle warnings and countermeasures in case our
provisos are unmet. In summary, our provisos and their relationship are depicted as
provisos framework in Fig. 12.4.

exhaustiveness

P→OTF ∨ Pcoverage

mitigation Pvanishing ∧ Pdischarge Pdischarge ∧ PcoverViaTOs covFiningPath2W

Pphase ∧ Pgoal ∧ Pfair

w(Wpcurr ) finitely
monot. increasing

p2W TO-p2W TO -
inequalities

faultable(Straces)
coverage or

recurrent execution

composition of finitely monot.
increasing towards TO

MaxMax, Max,
or PInputDefault

nonfancy, fancylinear, or fancynonlinear

Lemma 12.3 Lemma 12.4

Lemma 12.7 Lemma 12.9

Lemma 12.16

Lemma 12.29 Lemma 12.33 Lemma 12.31

Lemma 12.34Lemma 12.41

Example 12.43

Figure 12.4.: Guarantees for exhaustiveness and TO discharge of LazyOTF by a frame-
work of (TO-based and other) provisos

Our guidance heuristics subsume all classical test selection heuristics and are more
general and flexible:
• compared to randomness, our guidance heuristics are more directed;
• compared to test purposes, our guidance heuristics are easier to specify, better
composable, and more expressive. But test purposes are a suitable and simpler
solution if a specific purpose needs to be tested (e.g., a single path) and uncontrol-
lable nondeterminism does not impede this purpose;
• compared to coverage, our guidance heuristics have finer granularity, can cover
arbitrary artifacts and cope with infinitely many of them, can handle and measure
uncontrollable nondeterminism, and are more expressive;
• compared to the cycling heuristics, our guidance heuristics are easier to specify,
have finer granularity, and are more expressive.

In summary, our guidance heuristics, compositional TOs and weights lead to better
guidance and more meaningful test cases. Our provisos framework offers flexibility, which
is important since MBT tests a wide variety of SUTs and properties, in very different
domains, so different guarantees and performance criteria are needed. Unfortunately,
our guidance heuristics are quite elaborate and are hence difficult to transfer to other
test case generation algorithms that might be interesting to employ for LazyOTF (cf.
Subsec. 11.2.1, Sec. 13.4). But here, our provisos framework can also help.
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12.5.2. Contributions
The main contributions in this chapter are:
• phase heuristics for LazyOTF’s phases: inducing states for user-supplied heuristics

with high usability, and a dynamic bound heuristic to determine bpcurr on the basis
of dynamic information;
• abstract guidance heuristics with a provisos framework, which enables flexible con-
figurations to guarantee exhaustiveness, coverage, and discharging, and shows the
cost of those guarantees;
• flexible weights heuristics and the investigation and extension of our provisos frame-
work for them, showing that strong guarantees and efficiency are often conflicting;
• TOs for configuration of our heuristics, the investigation and extension of our
provisos framework for them, and composition of TOs to simpler meet the provisos
and unite the guarantees with efficiency;
• further advice, criteria and examples on how to achieve the provisos;
• optimizations for our heuristics.

12.5.3. Future
Possible future work includes:
• implement bound heuristics that employ a higher amount of dynamic information

than simply in which sub-phases TOs were discharged. These are future work since
they are complex and might improve LazyOTF only rarely (cf. Subsec. 12.4.4);
• quantifying nondeterminism is future work since it is unclear how much improve-
ment it will bring in practice, and it might break other desired aspects of LazyOTF
(cf. Subsec. 12.4.5);
• let LazyOTF decide how to behave when a failure occurs (cf. Subsec. 8.9.3), instead
of always simply restarting or terminating;
• many weight computations in Subsection 12.3.5 not based on TOs have not yet
been implemented, but are future work since our focus was on TO-based heuristics;
• likewise, mitigations that are not based on TOs were not in our focus, have not
been implemented yet and are future work;
• for real-time computing, investigate greedy approaches (cf. Note 12.17) to satisfy
the provisos;
• implement on-the-fly variants of the cycling heuristic: via counting cycles within

genWTS, via cycleFiningPath2W , or via NPC checks.
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13. Implementation of Lazy On-the-fly
MBT

13.1. Introduction
LazyOTF is implemented in Java and has about 28 000 LoC. It is an extension to STSim-
ulator (cf. Subsec. 13.2.1), an API for STSs that expands STSs to LTSs. Therefore the
LazyOTF implementation operates on the level of LTSs. JTorX (cf. Subsec. 10.3.3) is
used as GUI for configuration, interaction and visualization, but also for functional-
ity that LazyOTF can better delegate JTorX: the exploration of the specification, its
determinization, and test execution. To connect LazyOTF to JTorX, LazyOTF is embed-
ded in the adapter between JTorX and STSimulator, called SymToSim. Furthermore,
extensions and a few modifications to JTorX were necessary.

Roadmap. The implementation of LazyOTF’s core test case generation based on STSim-
ulator is described in Sec. 13.2. The integration and implementations in JTorX are
described in Sec. 13.3. An alternative implementation on the symbolic level is depicted
as proof of concept in Sec. 13.4. Finally, Sec. 13.5 covers several technical optimizations
in test case execution and test case generation.

13.2. Core LazyOTF

The core test case generation algorithm is described in Chapter 11, the applied phase
heuristics and guidance heuristics via weights in Chapter 12. Therefore, this section
only depicts deviations and extensions. Further technical details are described in the
LazyOTF manual [Kutzner and Faragó, 2015].

13.2.1. STSimulator

STSimulator [URL:STSimulator; Frantzen, 2007; Larysch, 2012; Kutzner, 2014; Fran-
tzen, 2016] is a Java library to model and simulate STSs (cf. Def. 3.30). Since FOL is
undecidable [Church, 1936; Turing, 1936; Kleene, 1967] and unfamiliar to most test en-
gineers, STSimulator’s guards and updates use the Dumont language [Frantzen, 2007;
Larysch, 2012; Kutzner, 2014] instead, which reduces the expressiveness for decidability
and adopts Java’s syntax. It is typed and supports bounded non-negative integers, B,
user-supplied strings, enums and records. For expressions of type integer and B, Dumont
offers the standard relational and arithmetic operators, otherwise only equality and in-
equality (so no quantifiers). The experimental support for fixed-point decimals, calendar
dates, lists and external calls of Java code is strongly restricted, since they cannot be
used in expressions due to the applied solver. To solve guards (in combination with
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updates), STSimulator uses treeSolver as constraint solver, which is a simple solver
based on Prolog.
To simulate an STS S, STSimulator keeps track of the current superstate in [[SVd ]]det

and allows checking and giving inputs in LI , outputs in LU , and δ. Thus STSimu-
lator simulates an STS on the level of LTSs (cf. Sec. 9.4). If S has a switch ξ :=
s
l<type(l)>,[F ],ρ−−−−−−−−−−→ s′ with an interaction variable v ∈ type(l) of some infeasibly large (e.g.,

unbounded) type, ξ might be expanded into infeasibly (e.g., infinitely) many transitions
in [[SVd ]]: If the guard F only allows few transitions to states other than fail , the traver-
sal and generated TC remain feasible for an efficient implementation (cf. next subsec-
tion). Otherwise, the implementation remains feasible by applying reduction heuristics
(cf. Subsec. 12.3.1): v’s value space for ξ is reduced to a feasible size by inspecting S or
by only taking values specified by the test engineer.
Several minor bug fixes in STSimulator were made, and changes to improve its ro-

bustness, its performance (e.g., for τ -closures, cf. Def. 8.7 and Subsec. 13.5.2) and its
functionality (via exit criteria, STS editor, STS Guides, alternative simulation). A few
extensions to employ STSimulator for LazyOTF were also necessary.

13.2.2. Test Cases
In practice, adding verdict leafs in test cases (and transitions to the verdict leafs) can
become inefficient for large |LU |. Instead, we do not demand leafs to be pass or fail
(cf. Def. 8.49, Chapter 11): If an output transition is missing in the test case, it is
an implicit output transition to fail . For OTF MBT, pass only occurs when test
execution terminates (by user interaction or the SUT terminating), so it costs little. It
can still be omitted if pass is indicated by termination without fail .

13.2.3. Heuristics
Bound Heuristics

Bound heuristics are implemented as described in Sec. 12.2, but not in its full generality:
For higher usability, there are pre-built bound heuristic templates, so that some of the
parameters given in Def. 12.1 are already set in an appropriate way;
• the so called sawtooth phase heuristic [Kutzner, 2014] has aggressive reduction
and is used when TGs of different TOs are clustered: b+ : b 7→ min(bmax, b + 3),
b− : b 7→ bmin, p− = 1. p+, bmin, and bmax are still configurable;
• the so called triangle phase heuristic has a conservative reduction that only
reduces bpcurr when there is multiple evidence that TOs are reachable within the
bound: b+ : b 7→ min(bmax, b+ 1), b− : b 7→ max(bmin, b− 1). p+ = p−, bmin, and
bmax are still configurable.

Guidance Heuristics

The application of our guidance heuristics via weights is described in Sec. 12.3. As
codomain of the weight function w, we mainly use the finite set [0, . . . , 232 − 1]. For
higher flexibility and usability of a TO o, its I lazy

o (·) and path2W o(·) are refined in
the implementation; the artifacts for applying the guidance heuristics are introduced
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here, whereas the configuration and management of TOs (e.g., for coverage) is cov-
ered in Sec. 13.3. But for total freedom, path2W o(·), I lazy

o (·), dischargeo(·), and their
helper functions can be implemented from scratch by implementing, resp. extending,
the corresponding interface, resp. class (e.g., via sub-TOs and observers, cf. odec in
Subsec. 14.3.3).
The implementation generalizes I lazy

o (·) (cf. Def.11.5): Besides the elements in Σlazy,
the verification engineer can use the element DECIDED BY STRATEGY when
marking states for I lazy

o (·), to combine programmatic and enumerative I lazy(·) implemen-
tations. He must then also provide a decision strategy S → Σlazy (or Sdet → Σlazy,
cf. Subsec. 11.3.1) within the test objective o. The strategy is used dynamically during
traversalSubphase to resolve the type of a state marked as DECIDED BY STRATEGY to
some type in Σlazy. If no decision strategy is given in o, in spite of DECIDED BY STRA-
TEGY markings, then implicitly the default decision strategy that maps all DE-
CIDED BY STRATEGY to ORDINARY is used. An employed decision strategy can
be a new implementation of the interface Location. LocationTestType.DecisionStrategy.
Alternatively, a pre-built strategy can be configured, e.g., a MappingStrategy that de-
fines a map from (abstract) states to Σlazy, or a SatStrategy that defines a map from
concrete states to Σlazy with the help of Dumont expressions (cf. Subsec. 13.2.1). With
this approach, I lazy

o (·) can be declared flexibly and concisely.
For high flexibility and usability, the computation of path2W o(·) is distributed over two

layers (similarly to distributing the computation of WTCs’ weight between path2W o(·)
and aggWTCs, cf. Subsec. 12.3.4): a layer for states and superstates, and another layer
that aggregates them for paths. Analogously, aggPath2Ws that deviates from the default
max can also be implemented over the two layers.
Weights can be assigned to states and superstates with a new implementation of the

interface NodeValue2Weight<N>, with the formal type parameter N being the node
value type, for flexible weights. Alternatively, a pre-built NodeValue2Weight<N> can
be configured: LocationValuation2Weight maps concrete states to weights, configured
via Dumont expressions. Locations2Weight maps abstract states to weights. For sim-
plicity, JTorX embeds Locations2Weight as TestTypeDefaultNode2Weight to assign a
weight to a superstate s̈ according to I lazy(s̈). For superstates, weights of its states
can be aggregated similar to aggregation over TOs and TCs, e.g., via max, sum, or
mean. While max is canonical to deriving I lazy on superstates, and to aggregating TOs,
the alternative mean and sum are more balanced and are fining nondeterminism (cf.
Subsec. 14.3.3). Nondeterminism can also be considered (fined and rewarded) by the pre-
builtNondeterminismFiningNodeValue2Weight and SuperLocationSizeNodeValue2−
Weight. aggPath2Ws that deviate from the default max and the alternative sum can
be implemented on the layer of states by implementing NodeValue2Weight<N> that has
other nested NodeValue2Weight<N>, e.g., as for SumOfOtherNodeValue2Weight<N>.
The weight for a path can be computed by implementing the interface Path2Weight

<N, E> (with parameter E being the edge value type). Alternatively, various pre-
built Path2Weight<N, E> can be configured: to aggregate the weights of all ab-
stract superstates on a path (e.g., addition via NodeValueSummingPath2W), or to
only consider the final one (FinalLocationSetDefaultPath2W, see also Note 12.20),
or concrete superstates (CollapsedLocationsSetPath2W), or to take the length of the
path into account (LengthPath2W), or its transitions (MessageSetPath2W), or to fine
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nondeterminism (NondetFiningFinalLocationSetPath2W). If a Path2Weight<N, E>,
P , only uses one NodeValue2Weight<N>, N , we shortly write P (N). If the defaults
TestTypeDefaultNode2Weight and FinalLocationSetDefaultPath2W are used, the user only
has to configure I lazy

o (·). aggPath2Ws that deviate from the default max and the alter-
native sum can also be implemented on the layer of paths by implementing the interface
Path2Weight<N, E> that has other nested Path2Weight<N, E>, which has been done for
AggSumOfOtherPath2W<N, E extends stsimulator.sts.InputDecider>.
If the original specification is an STS, all these heuristics have access to the artifacts

on the STS level, e.g., to location variables. Furthermore, all heuristics can be configured
and managed in the context of TOs, within the JTorX integration, described in the next
section.
Our main aggWTCs max(p2W ,max(. . . )), +(p2W ,max(. . . )), +(p2W ,+(p · z0, (1−

p) ·mean(. . . ))) (cf. Subsec. 12.3.4) are pre-built, others can easily be implemented by
extending the abstract class AbstractEdgeWeightAggregator, which offers multiple helper
functions and hooks to implement an own aggWTCs, or by implementing the interface
EdgeWeightAggregator from scratch. We set PInputDefault with p = 0.5 as default since
it is the most meaningful in practice (cf. Subsec. 14.3.5).

13.2.4. Quality Assurance

The core LazyOTF contains the abstract 2(T T S(LI ,LU ,δ)×V) LazyOTF( LT S(LI , LU , τ)
S, TOs ö, SUT S) and the test case generation algorithm genWTS, and is hence the
most critical and formal part of LazyOTF. To assure its quality and correctness, we
did not take our own medicine of applying LazyOTF on LazyOTF’s code since genWTS
behaves contrary to embedded and reactive systems: it takes one large input and then
performs complex algorithms and constructs large data structures to then finally give
one large output and terminate. Hence genWTS is not suitable for MBT; self application
is an interesting case study as future work, but case studies on more suitable (reactive
or embedded) software are more important (cf. Sec. 14.3).
We chose other measures to assure its quality and correctness: 441 unit and inte-

gration tests, 44 large parametrized system tests in the form of experiments (cf. Ap-
pendix B.1.5), and 16 large acceptance tests achieve a coverage level of 73% for in-
structions and 66% for branches. These values would be much higher if the coverage
measurements with EclEmma [URL:EclEHP] could also detect covered exceptional code
as such [URL:EclFAQHP], since our code contains a lot of exception handling for fault
tolerance.
Furthermore, pluggable type checking via the Checker Framework [Papi et al., 2008;

Ernst et al., 2011] enhances Java’s type system (cf. Subsec. 1.1.3), to statically check
immutability and nullness, including pure and covariant types.
To accumulate as much information as possible for debugging and for our experiments,

we implemented and usually activated thorough logging:
• storing communication between JTorX and LazyOTF in memory, which can
be presented or logged via observers, for debugging purposes (cf. LazyOTF debug
console in Subsec. 13.3.5);
• verbose logging about test generation, test execution, and their performance is
written on disk and stored as experiment archive;
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• low-level logging on various verbosity levels (with SLF4J) enables further de-
bugging.

13.3. JTorX Integration

All aspects of LazyOTF that are related to user interaction, visualization and features al-
ready offered by JTorX (cf. Subsec. 10.3.3), e.g., test execution, are embedded in JTorX:
Subsec. 13.3.1 describes how JTorX handles the management of TOs. Subsec. 13.3.2
sketches how JTorX’s GUI helps in configuring LazyOTF. Subsec. 13.3.3 states how and
to what extent coverage criteria are integrated in JTorX’s GUI. Subsec. 13.3.4 sketches
how JTorX’s test execution is connected to LazyOTF. Subsec. 13.3.5 describes the GUI
for feedback and interaction during test execution.

13.3.1. Test Objective Management

TOs are a central feature of LazyOTF, as they configure the phase and guidance heuris-
tics. The computations of path2W o(·), I lazy

o (·) (and thus decision strategies) are per-
formed if and only if they are contained in an active TO o, as defined in Def. 12.36,
because each of those computations should help test some requirement or feature, rep-
resented by a TO. Being such a central feature, TO management should be usable
and efficiently: The configurations for LazyOTF can be structured clearly by TOs, and
TOs should be discharged efficiently when updating dynamic information from test ex-
ecution. For extensibility and performance, I lazy

o (·) is implemented by a separation of
mechanism and policy [Wulf et al., 1974]. Therefore, discharging TOs is optimized for
the default dischargeo(·) (cf. Def. 12.36). But individual discharge functions are also
facilitated by flexible observer patterns [Gamma et al., 1995] implementing the interface
AbstractDriverObserver.
Since both configuring LazyOTF (cf. Subsec. 13.3.2) and updating dynamic information

from test execution (cf. Subsec. 13.3.4) are embedded in JTorX, so is TO management.

13.3.2. Configuration

In JTorX’s GUI, a checkbox enables guided testing via LazyOTF and a new tab for
configurations, implemented by Felix Kutzner and depicted in Fig. 13.1. It offers the
direct configuration of simple settings and gives access for more elaborate configurations.
The simple configurations the main tab offers are:
• for the bound heuristics, values for bmin, bmax, and b− = b+ can be set;
• for guidance heuristics, aggWTCs can be configured, as well as TOs and weight
computations for the simplest configurations of guidance heuristic. This is achieved
via standard configurations or via I lazy

o (·), using the defaults (cf. Subsec. 13.2.3)
TestTypeDefaultNode2Weight and FinalLocationSetDefaultPath2W;
• storing and loading all of LazyOTF’s configuration via LazyOTF’s XML configura-
tion files.

Infrequent configurations for debugging, logging and exit criteria are hidden in a sub-
menu.
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Figure 13.1.: LazyOTF’s main tab

For more elaborate configurations of the guidance heuristics (cf. Subsec. 13.2.3), the
LazyOTF GUI offers a multi-level TO editor and weights editor to configure an arbi-
trary amount of:
• sets of states for configuration purposes;
• Dumont expressions used for guidance heuristics;
• decision strategies;
• I lazy

o (·);
• NodeValue2Weight<N>;
• Path2Weight<N, E>;
• TOs.

Although artifacts are only used by the guidance heuristics if they are contained in an
active TO, the TO editor also allows to define these artifacts independently, for higher
usability (e.g., loading and storing elaborate configurations). For even higher flexibility,
computations can be implemented programmatically by implementing the corresponding
interface, as described in Subsec. 13.2.3.

13.3.3. Coverage Criteria

Besides the default settings for the heuristics functions (cf. previous subsection), general
coverage criteria (cf. Sec. 2.5) are important settings. Currently, only abstract state
coverage on the STS level (cf. Sec. 9.4) is offered as proof of concept for a general
coverage criterion, i.e., a coverage criterion implemented by automatically generating
a suitable set of TOs from the given specification. Offering further general coverage
criteria is future work and facilitated by the flexible implementation (cf. Subsec. 13.3.1).
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Currently, our applied heuristics (cf. Sec. 14.3) mainly use defaults and some settings
specific to the given specification, including further coverage criteria. These specific
settings have been configured manually (cf. previous subsection) or programmatically
and stored for automatic application.
Alternatively, coverage criteria can be implemented via covFiningPath2W ((πfulli )i).

This is also future work since this thesis focuses on core guidance heuristics (cf. Sec. 14.3).
Hence the coverage criteria for nondeterminism on output as defined in Def. 12.27 were
also not yet implemented.

Note. In Sec. 14.3, we achieved 100% Sisol (i.e., coverage of faultable(S) in isolation,
which incorporate nondeterminism of the LTS, cf. Subsec. 8.8.4) and 100% abstract state
coverage on the STS. which implies 100% abstract 1-choice coverage.

13.3.4. Test Execution

Our implementation of testExecutionSubphase updates dynamicInfo immediately (cf. Sub-
sec. 11.2.3). This is not necessary for exitCriterion and traversalSubphase, but for the
GUI that visualizes dynamicInfo (cf. Subsec. 13.3.5) and for distributed LazyOTF (cf.
Subsec. 11.5.2).
Efficient and flexible updates are made possible by an open and clean architecture

(cf. Subsec. 10.3.3, Sec. 11.3 and Subsec. 13.3.1). Updating dynamicInfo immediately
and having flexible observers, multiple exitCriterion can be integrated efficiently in the
updating mechanism.

13.3.5. Dynamic Feedback and Interaction

The LazyOTF introspection window (cf. [Kutzner and Faragó, 2015]) offers feedback
to the test engineer during test execution, as well as interaction. Its main tab is the
trace/tree explorer, shown in Fig. 13.2. It gives feedback to the test engineer about
the dynamic information during test execution by showing the path sequence of all
previous test execution sub-phases (cf. Def. 11.8); directly below, the current WTC is
displayed. So the trace/tree explorer visualizes the results of the last traversalSubphase
and all testExecutionSubphases (cf. Listing 11.1). Furthermore, flags indicate additional
information about the source superstate s̈ of each transition:
• flag T indicates that s̈ discharged a TO;
• otherwise, flag I indicates that s̈ is inducing;
• flag F in the path sequence indicates that the transition was the first one in the
corresponding WTC, i.e., traversalSubphase was executed in s̈;
• flag C indicates that s̈ caused a cycle warning (cf. Subsec. 12.3.7).

Interaction is also possible in the trace/tree explorer: through context menus, the test
engineer can choose to
• stimulate with LazyOTF-proposed input: this executes the first input in the current
WTC (the green transition), i.e., a most meaningful input;
• observe: this observes an output or δ;
• recompute test tree, which executes no test step but traversalSubphase;
• abandon test tree, which switches to JTorX’s pure on-the-fly mode.
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Figure 13.2.: LazyOTF’s introspection window

Details of the data on the STS level is given in the valuation tab, on the discharged
TOs in the test objectives tab. JTorX and the LazyOTF debug console give access
to all dynamic information by allowing interaction with the LazyOTF core (cf. Sec. 13.2).
The help command of the debug console describes its available commands:
• get: gets information about the current superstate s̈ and their states s ∈ s̈ (includ-

ing I lazy and decision strategies), the current node n inWpcurr (including its weight
w(n)), and further technical details (e.g., visitors for the STS traversal method);
• propose: get iδ ∈ LI ∪̇{δ} for the current node in Wpcurr ;
• took−transition: inform LazyOTF about an interaction with the SUT, i.e., that test
execution has taken the given transition step in the test run path. The extended
version took−transition−ext offers convenience features;
• set−location−type: set I lazy for some state s;
• strategy: manages the decision strategies for DECIDED BY STRATEGY test

types;
• set−max−recursion−depth: specify the next traversalSubphase’s depth bound bpcurr+1;
• set−tt2w−aggregate: set aggPath2Ws (currently max and sum is implemented);
• set−test−tree−weigher: set aggWTCs;
• path2weight: manage path2W o(·) (including Path2Weight);
• nodevaluetoweight: manage NodeValue2Weight;
• compute−new−test−tree: compute a new Wpcurr (or a WTC for any other visited
superstate);
• select−visitor: select a visitor for the STS traversal method in genWTS (for devia-

tion from the default DFS);
• discharge−test−objectives: information about an observed dischargeo(πfull) from a
programmatic TO o;
• oraclesafetytree : manages the eager micro-traversal sub-phase optimization (cf.
Subsec. 12.4.2);
• get−cycle−warning: get a boolean value that is true if the current node has a cycle
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warning;
• set−cycle−warning−threshold: set the cycle warning threshold c (cf. Subsec. 12.3.7);
• torx−get: interface to TorX interna;
• debug: low level debugging for various purposes;
• help: prints out this list of available commands.

Since user interaction is optional, JTorX also offers a text mode for fully automatic
MBT without any GUI. In text mode, LazyOTF is configured via LazyOTF’s XML con-
figuration files, and all dynamic information is stored in the specified log file. This
functionality is used heavily in the case study presented in Sec. 14.3.

Note. For TOs that describe requirements (or other specification or design artifacts), the
test engineer can use the feedback of dynamic information for traceability between TCs
and those artifacts (cf. Subsec. 11.1.2): For a simple form of traceability, the test engineer
only has to look for T flags to find out where TOs have been discharged. If it is not
obvious which TOs have been discharged, the test engineer must use the debug console
to find out. Acquiring this information could easily be automated, e.g., implemented
in an own traceability tab, which is future work. Our guidance heuristics can provide
information that goes beyond classical traceability: Besides reporting TOs that have
been discharged in the current TC Tfullrcurr , a TO o that Tfullrcurr has almost discharged
can be reported (for instance all but the final decrease for odec has been performed, cf.
Subsec. 14.3.3). If o corresponds to some feature, aspect or behavior that can cause
a failure before having fully been executed, o is helpful traceability information, too.
To determine whether o has almost been discharged in the current test step tcurr , its
path2W o difference since the last reset or since the last discharge can be computed. In
each state, all TOs o whose path2W o difference has just increased beyond some threshold
can be reported, or simply the path2W o difference for all active TOs o (cf. Def. 12.39).
Such fuzzy traceability is interesting future work, and there is little related work:
[Gaur and Soni, 2013] uses fuzzy sets to model vague requirements and to trace them
up to a desired degree of relevance; [Noppen et al., 2008; Turban, 2011] consider fuzzy
traceability between requirements and design artifacts. All this related work is motivated
by partial knowledge of some requirement or other artifact, as opposed to our motivation
by partial coverage of a requirement. A related work that also investigates coverage
metrics for requirements-based testing and its traceability is [Banka and Kolla, 2015].
The property relevance investigated in [Fraser and Wotawa, 2006] helps determine the
relationship between TCs and properties, and hence also traceability if the properties
are requirements. But the determined relationship “is too weak since it only checks if the
property is relevant to the TC. It does not determine whether the property is exercised
by TCs in several interesting ways” [Banka and Kolla, 2015], which LazyOTF can do
since arbitrary many TOs can be defined for a requirement.

13.4. Alternative Implementation with Symbolic Execution
The LazyOTF implementation described in the previous sections is based on STSimulator
and therefore has the following deficits:
• it operates on the level of LTSs: So for S ∈ SSTS , the structural information of
S is lost and state space explosion becomes more severe due to expansion (cf.
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Sec. 9.4). Furthermore, the expansion needs to be handled technically (for which
JTorX interfaces with STSimulator using parameterized transition systems [Jéron
et al., 2013; Belinfante, 2014]);
• the language Dumont for STS guards and updates is used, which is a very simple
constraint language (cf. Subsec. 13.2.1).

13.4.1. STSExplorer

This subsection depicts STSExplorer, which is a proof of concept implemented by
Florian Larysch [Larysch, 2012] for replacing STSimulator to avoid the deficits from
above:
• it additionally offers symbolic execution, i.e., execution of transitions of the STS
on symbolic instead of concrete values by constructing constraints on the symbolic
values along paths, resulting in symbolic paths (cf. Subsec. 7.3.2). Therefore,
data embedded in STSs can be handled more efficiently, the possible values need
not be expanded, allowing unbounded data types without the need for reduction
heuristics;
• it supports a more expressive language for guards and updates, baptized Zuul, an

extension of Dumont that offers quantifiers, integer and real data types, container
data types with user-specified functions, and external calls, e.g., of Java code.

STSExplorer is a TorX Explorer (cf. Sec. 10.3) as a drop-in replacement for SymToSim
(cf. Sec. 13.3). It offers simulation as STSimulator (the operations take, receive , jump),
and additionally symbolic exploration (the operations explore, backtrack, jump).
For symbolic execution, constraints constructed from guards and updates must be

managed and solved. For constructing and managing constraints, STSExplorer uses
SMT-LIB 2.0, for solving the constraints the SMT solver Z3 (cf. Subsec. 3.3.3). The
implementation can handle container data types, incremental solving, external calls,
quantifiers, and partly extremal and randomized solutions with the help of quanti-
fiers [Larysch, 2012]. Therefore, STSExplorer can be used for the core LazyOTF test
case generation algorithm. LazyOTF’s heuristics (cf. Chapter 12) can either be handled
outside of STSExplorer, as in Sec. 13.2, or encoded into SMT-LIB, which can also handle
various coverage criteria like interaction coverage [Grieskamp et al., 2009] and data flow
coverage [Su et al., 2015a].
Three problems were detected during implementation:
• technical difficulties necessitate work-arounds to embed symbolic execution in
JTorX due to its protocols between components (cf. Subsec. 10.3.3);
• the average runtime of MBT with STSExplorer is six times as high as the average
runtime with STSimulator. Investigations showed that handling nondeterminism
of the LTS manually in STSExplorer is a main cause, since the nondeterminism is
resolved by iterating over all states of a superstate (via jump). This does not fit into
Z3’s incremental solving and hence results in poor performance of the solver. For
higher efficiency and flexibility, nondeterminism of the LTS should be embedded in
SMT by logically encoding superstates. Furthermore, many time consuming calls
to the SMT solver could be avoided by employing compiler optimization heuristics
similar to Subsec. 7.1.3. Both improvements are future work;
• using quantifiers in SMT can cause undecidability for some theories (e.g., uninter-
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preted functions and arrays, cf. Subsec. 3.3.3), but some heuristics are difficult to
compute within SMT without quantifiers.

Therefore, a reimplementation of JTorX in combination with STSExplorer, considering
these problems from the beginning, is the best approach and future work. Due to its
workarounds and low performance, STSExplorer is only a proof of concept that SMT
solving can be used to implement on-the-fly MBT and LazyOTF on the level of STSs
with an expressive constraint language.

13.4.2. Related Work

There are several other testing tools that use constraint solvers. The most related ones
are other advanced MBT tools that operate on specifications containing variables:
• JTorX operating on STSs using treeSolver (cf. Subsec. 13.2.1) can be considered

related work (and hence also the main implementation of LazyOTF), but Dumont
is not very expressive and treeSolver not very powerful; for most tasks, JTorX
expands STSs into LTS;
• a variant of TGV called STG (cf. Subsec. 10.3.4) operates on variants of STSs
using the Omega constraint solver [URL:omegaprojectHP], which has its focus on
program analysis;
• Spec Explorer [URL:Spec Explorer; Veanes et al., 2008], which uses and strongly
influenced the SMT solver Z3.

All three MBT tools are described in Subsec. 10.3.4, where their advantages and disad-
vantages are investigated.

LazyOTF with symbolic execution also has similarities to dynamic symbolic execution
tools like EXE, KLEE, DART and CUTE (cf. Subsec. 7.3.2): They all intertwine execu-
tion with symbolic processing, including the use of constraint solving. When symbolic
processing becomes infeasible, they all fall back on concrete values. KLEE also has op-
timizing heuristics via weights, but uses weights differently (cf. Subsec. 12.3.9) and is a
white-box testing tool. Using the static testing approach for SBMC (cf. Chapter 7) is
white-box static testing and hence further away from LazyOTF with symbolic execution.
But static testing with SBMC can also be used for test case generation (cf. Note 7.1),
which again has stronger similarities to LazyOTF with symbolic execution.
Instead of the core idea of executing instrumented code to detect runtime errors,

LazyOTF’s core is the ioco theory to check conformance. Since the specifications are
usually not executable, their traversal is implemented in LazyOTF from scratch with
elaborate algorithms (e.g., in Subsec. 8.8.3), lazy scheduling (cf. Sec. 3.6 and Chap-
ter 11), and heuristics (cf. Chapter 12) that can additionally handle uncontrollable non-
determinism and sophisticated guidance.

13.5. Optimizations

The two main tasks of MBT are test case generation and test case execution, which
LazyOTF improves compared to on-the-fly and offline MBT. The implementation of
LazyOTF further optimizes test execution and test case generation.
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13.5.1. Test Case Execution

Since the SUT is fixed, test steps cannot be accelerated, but only reduced and distributed.
Thus LazyOTF speeds up test case execution in two ways:
Firstly, the guidance heuristics dynamically generate meaningful test cases, reducing

the number of test steps that need to be executed. The implementation is described
in Subsec. 13.2.3. Meaningfulness is further improved by our eager micro-traversal sub-
phase optimization (cf. Subsec. 12.4.2), which is simply implemented via genWTS.
Secondly, distributed LazyOTF has (super-)linear speedup of meaningful test execu-

tion (cf. Subsec. 14.3.7). Integrating distribution into LazyOTF required only a few
classes and changes, due to our powerful heuristics and LazyOTF’s open architecture (cf.
Subsec. 13.3.4). To reduce communication overhead and contention, and inform other
instances efficiently about a discharge, efficient implementations of asynchronous mes-
sage passing have been integrated in LazyOTF: by UDP broadcasts, UDP multicasts,
and the more heavyweight Hazelcast; the implementation is described in Subsec. 11.5.2.

13.5.2. Test Case Generation

For test case generation, graph traversal is the bottleneck (cf. Sec. 14.3). LazyOTF speeds
up graph traversal in two ways:
Firstly, by using phase heuristics and leveraging dynamic information (which also re-

duces memory requirements). The implementation is described in Subsec. 13.2.3. An
optimization to the phase heuristics are the lazy traversal sub-phases described in Sub-
sec. 12.4.1, which is simply implemented by JTorX’s OTF.
Secondly, distributed LazyOTF parallelizes graph traversal with almost linear speedup.
There are, however, further possibilities to optimize graph traversal algorithms on the

technical level:
One possibility is optimizing τ -closures by avoiding redundant work if a state is revis-

ited during τ traversals (similar to TGV’s optimization [Jard and Jéron, 2005]). This
might improve performance in some cases where there is a high degree of nondeterminism
of the LTS (cf. Subsec. 14.3.9). Since τ -closures are performed by JTorX using STSim-
ulator, we had to adapt STSimulator to implement this optimization. It is activated by
the JTorX JVM Parameter −Dstsimulator.enableTauClosureOptimization=true.
Another possibility is using caching of outgoing transitions in LI ∪̇{δ} in each state (or

in superstates), so that the transitions to the heaviest successors (called iδ transitions,
cf. Listing 12.2) need not be computed each visit. This iδ caching seems promising since
genWTS can hereby reduce much work, as well as the randomization amongst heaviest iδ
transitions. iδ caching is, however, a full heuristic that might cause inefficiencies or even
inexhaustiveness in some cases. Therefore, it has not yet been implemented, so future
work needs to implement and investigate it.
Many implementations of iδ caching are possible; a simple version creates for each

superstate s̈ a cache cs̈. Then in each superstate s̈, genWTS returns a random iδ ∈ cs̈,
after filling cs̈ with the heaviest iδ ∈ inSdet(s̈) ∪̇ {δ} whenever cs̈ is empty. All caches
together are implemented by cacheMap, of type 2S → LI ∪̇{δ} and initialized to map
all superstates to ∅. This results in Listing 13.1, replacing l.13 – l.21 of genWTS from
Listing 12.2. During execution of Tpcurr with the resulting test run path πpcurr (π for
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short), we remove all taken iδ from the corresponding cache: for all s̈ iδ−→ s̈′ in π,
remove iδ from cs̈. Alternatively, we can only remove all taken iδ that were leading to
a discharge: if the last TO discharge in the current execution sub-phase is by π≤k, then
for all s̈ iδ−→ s̈′ in π≤k, remove iδ from cs̈; so if no TO is discharged during execution of
Tpcurr , no iδ is removed from any cache.

1i f ( cacheMap(s̈) == ∅)
2then for each LI ∪̇{δ} iδ ∈ inSτ∗ (s̈) ∪̇ {δ} do
3LU ∪̇{iδ} → WT T S(LI , LU , δ) l2WTC := l 7→

genWTS(S, s̈ afterSτ∗δ l, b− 1 ) ;
4WT T S(LI , LU , δ) W:=assembleWTC(s, path2W (π), l2WTC ) ;
5i f (w(W) < wmax ) then break ; f i ;
6i f (w(W) > wmax )
7then wmax := w(W) ; cacheMap ( s̈):=∅ ;
8f i ;
9cacheMap ( s̈ ) . add ( iδ ) ;
10od ;
11f i ;
12LI ∪̇{δ} iδ :=cacheMap ( s̈ ) . pollRandom ( ) ;
13LU ∪̇{iδ} → WT T S(LI , LU , δ) l2WTC := l 7→

genWTS(S, s̈ afterSτ∗δ l, b− 1 ) ;
14WT T S(LI , LU , δ) W := assembleWTC(s, path2W (π), l2WTC ) ;
15return {W} ;

Listing 13.1: Typed caching routine for genWTS(S, π, b)

iδ caching has two advantages: whenever a cache is not empty, recursive calls of
genWTS are not required for choosing iδ, so we have lower runtime. As second advantage,
the nondeterministic or random choice amongst all iδ transitions to the heaviest WTCs,
performed in the original genWTS, is restricted. Therefore, variance in the random
algorithm is lowered and hence reproducibility is raised (cf. Subsec. 12.4.3). Due to the
second advantage, iδ caching is a refined heuristic that incorporates dynamic information.
Since we could store the iδ that should be avoided instead of those that should still be
taken, this heuristic is a variation of the tabu search metaheuristic [Glover, 1989; Gass
and Fu, 2013] for search-based software testing (cf. Subsec. 12.3.1). But computing once
the set of outgoing iδ that should be taken and then removing elements from, iδ caching
also has the first advantage of lower runtime.
This simple iδ caching has three deficits by ignoring certain aspects:
Firstly, some iδ ∈ cs̈ might lead to a lighter WTC, Wiδ , than some i′δ 6∈ cs̈. This can

be caused by a path2W o(πfull) that depends on the path leading to dest(πfull) = s̈. So
when πfull) is extended and s̈ visited again, the remaining iδ in cs̈ might no longer lead
to the heaviest WTCs. But path2W o is independent of the path leading to s̈ if it only
considers s̈ (cf. FinalLocationSetDefaultPath2W in Subsec. 13.3.2), or if it accounts for S
having fairnesstest (cf. Def. 8.60).
Secondly, a discharge of a TO o that was still active the moment cs̈ was computed

also influences the weights. To countervail that some i′δ 6∈ cs̈ leading to a heavier WTC
is ignored, we can use an advanced variant of iδ caching: Store in cs̈ pairs (iδ, ä), with
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ö being the set of TOs active the moment cs̈ is filled and discharging o ∈ ä causes the
strongest decrease in w(Wiδ). To compute ä efficiently, all path2W and all aggregation
functions can be extended to yield ä. When test execution discharges o ∈ ä, all pairs
from all caches that contain ä are removed. If the employed data structures cannot
perform this sufficiently fast, genWTS can remove those pairs lazily in cs̈ when visiting
s̈.
Finally, the remaining depth b − 1 at s̈ is not taken into account in cs̈ (cf. l.13 of

genWTS(S, π, b) from Listing 13.1). But larger bounds might yield meaningful WTCs
that are no extension of a WTC in genWTS(S, π, b′) with b′ < b. To yield more
meaningful TCs and guarantee exhaustiveness, cs̈ can store the depth of the computed
WTCs and cause a recomputation if a greater depth is required.
If iδ caching is employed in a parallel setting, the use of cs̈ should also be parallelized

since filling cs̈ is performed with genWTS, which has high runtime. So cs̈ could be shared
between distributed nodes: whenever a distributed node finds an empty concurrent cache
(or one with smaller depth), the node performs the computation needed to fill the cache.
This can easily be implemented via Hazelcast, but with a risk of high contention.

13.6. Conclusion

13.6.1. Summary

LazyOTF has been implemented on top of JTorX, such that LazyOTF can delegate many
tasks to JTorX, e.g., the exploration of the specification, its determinization, and test
execution. LazyOTF has been integrated in JTorX and is available at [URL:JTorXwiki].
Core LazyOTF is implemented on top of STSimulator as own package within Sym-

ToSim. The configuration, management and user interaction is integrated in JTorX.
Table 13.1 shows the rough structure and size of the implementation.

Table 13.1.: Structure and size of the implementation of LazyOTF
core LazyOTF JTorX integration: non-GUI JTorX integration: GUI

packets 5 18 10
interfaces 12 39 29

classes 38 179 130
methods 285 1095 988

source LoC (SLOC) 2915 11950 12834

Furthermore, we introduced optimizations and an alternative implementation that
does not use STSimulator and the treeSolver, but symbolic execution and SMT solving,
as proof of concept.

13.6.2. Contributions

The implementations described in this chapter contributes:
1. the core LazyOTF (cf. Chapter 11), on top of STSimulator;
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2. the heuristics framework (cf. Chapter 12), covering phase heuristics (via inducing
states and bound heuristics) and guidance heuristics (via weights). For guidance
heuristics, the implementation is even more flexible than the formal heuristics in
Chapter 12;

3. connections to JTorX, its command line interface and its GUI, with extensions to
configure (main LazyOTF tab, TO editor and weights editor) and operate (intro-
spection window) LazyOTF;

4. minor extensions to STSimulator and JTorX (τ -closure optimization, exit criteria,
alternative simulation, STS editor, STS Guides based on JTorX Guides), as well
as bug fixes;

5. test adapter;
6. a proof of concept implementation for JTorX and LazyOTF with symbolic execu-

tion;
7. several optimizations like lazy traversal sub-phases, eager micro-traversal sub-

phases, and parallelization.
Items 3, 4, and 5 were completely implemented by Felix Kutzner [Kutzner, 2014],

item 6 by Florian Larysch [Larysch, 2012], both under the supervision of David Faragó.

13.6.3. Future
Sec. 13.5 designed iδ caching, but its implementation and investigation left as future
work, because iδ caching is a full heuristic that might cause inefficiencies or even break
exhaustiveness or other provisos (cf. Chapter 12).Furthermore, iδ caching is not orthogo-
nal to the lazy traversal sub-phase optimization and the eager micro-traversal sub-phase
optimization (cf. Sec. 12.4.
Offering more coverage criteria is also future work: further general coverage criteria

and coverage criteria that are not based on our core guidance heuristics, e.g., determin-
istic and nondeterministic coverage criteria via covFiningPath2W ((πfulli )i).

LazyOTF with symbolic execution (cf. Sec. 13.4) also offers future work, e.g., encod-
ing superstates in SMT and employing compiler optimizations similar to Subsec. 7.1.3.
However, a reimplementation of JTorX in combination with STSExplorer is the cleanest
approach.

Notes. Further possible future work is the integration of test selection strategies via
mutation testing and model-based mutation testing (cf. Subsec. 11.6.3) into our alter-
native implementation with symbolic execution, which speeds up model-based mutation
testing [Aichernig and Tappler, 2015].
Furthermore, LLBMC’s approach to detect equivalent mutants (cf. Subsec. 7.3.4) could

be integrated. Since efficiently coping with equivalent mutants (resp. model-based mu-
tants) would strongly improve test selection via mutation testing (resp. via model-based
mutation testing), this is very promising.
Future work in the domain of software engineering is the traceability tab and fuzzy

traceability.
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14.1. Introduction

For the application of MBT, multiple aspects are relevant:
1. how efficient it is, i.e., how fast TCs are generated and how fast and meaningful

the TCs are.
2. how usable it is: MBT must be understandable to the test engineer and software

engineer, and easily applicable (usable specification language, usable configuration,
automation);

3. how well it fits into the software engineering process; what aspects of software
engineering it covers (regression testing; short failing test runs; reproducibility;
traceability; metrics; communication);

This thesis thoroughly covered feasibility (mainly item 1, but occasionally also items
2 and 3) theoretically. Additionally, the case study in Sec. 14.3 investigates feasibility
empirically. To investigate items 2 and 3 further, large industrial case studies have to
be performed (e.g., similar to [Sijtema et al., 2014] for JTorX, possibly larger), which is
future work. These aspects are a major part in the articles cited in the next paragraph.
Furthermore, item 3 is influenced by items 1 and 2. Item 3 is investigated in Sec. 14.2
for agile software development.
Taking all these aspects into account by financially quantifying their costs and ben-

efits results in the return on investment (ROI). Though it is difficult to sufficiently
consider all aspects and quantify their costs and benefits, the ROI is an important metric
for MBT’s acceptance and adoption. Hence, many case studies, surveys and publications
investigate the ROI [Weißleder et al., 2011; Binder, 2011; Mlynarski et al., 2012; Faragó
et al., 2013; URL:ROIblogpost].

14.2. Agile Software Development and refines

14.2.1. Introduction

To apply MBT, it needs to be embedded in the software development process, and agile
software development (AD) is the state of the art: two out of three organizations have
adopted AD according to the study [Ambler, 2008], one out of three according to [Kerner,
2009]. Furthermore, the Agile Conference had a growth of 40% in 2009. This section
investigates the integration of MBT and AD and is based on [Faragó, 2010a; Faragó,
2010].
MBT and AD are two major approaches to increase the quality of software, but AD’s

strength is validation, as opposed to MBT’s strength of dynamic verification. Therefore,
the advantages of the combination are investigated, too.
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Figure 14.1.: Exemplary agile methods: XP and Scrum

Roadmap. Subsec. 14.2.2 gives an overview of AD’s values and then shortly introduces
the two most popular agile methods: XP and Scrum, which we will focus on. Sub-
sec. 14.2.3 motivates the integration of AD and MBT, lists the demands on tightly
integrating AD and MBT, describes how they are solved with the help of underspecifi-
cation and refinement hierarchies, and describes all resulting benefits. Finally, related
work is given.

14.2.2. Agile Development

In short, agile software development (AD) [Shore and Warden, 2007; Faragó, 2010] is
iterative software development in short cycles, such that requirements and solutions can
evolve. This is supported by a set of engineering best practices, such that high-quality
software increments can be delivered rapidly.
The big picture on how AD aims at better software development is given by the

values of AD, stated in the Manifesto for Agile Software Development [Fowler
and Highsmith, 2001]:

1. value: individuals and interactions over processes and tools;
2. value: working software over comprehensive documentation;
3. value: customer collaboration over contract negotiation;
4. value: responding to change over following a plan.
Fig. 14.1 sketches an example of how software development achieves these values. Two

of the most prominent agile methods are applied, which can be combined easily: Extreme
Programming (XP) [Team", 1998; Jeffries et al., 2000] and Scrum [Takeuchi and Nonaka,
1986]. Other agile methods (e.g., the Agile Unified Process [Ambler, 2002] or Feature
Driven Development [Palmer and Felsing, 2002]) lead to the same implications on MBT.
AD achieves rapid delivery (cf. 2. value) by short (a few weeks) development iterations,
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called sprints in Scrum: In each sprint, the team implements one or more pending
features/customer requirements, managed in the product backlog. These are often
formulated as user stories, which are lightweight requirements – a few sentences in
natural language, but too abstract to be understood on their own. The user stories are
refined into tasks, which are put into the sprint backlog. By iterating over all tasks,
the sprint is implemented. The result is a potentially shippable, incremented product.
In more detail, each task should be completable in about one person day. Within a

task, the developer practices even shorter iterations using test-driven development
(TDD), where software is developed in a very short cycle called TDD cycle [Beck,
2002]:

1. Before writing production code, one TC that fails is added to (or modified in) the
TS T̈ on the unit level;

2. only then the production code is changed, in a minimal way to pass T̈ again;
3. finally, refactor the production code (and T̈) for cleaner code according to some

standard.
Therefore, this cycle is also called red-green-refactor-cycle. Similarly to formal meth-
ods, automation also helps in AD to increase efficiency and decrease errors. Automation
is thus supported by many tools. For writing production code such that T̈ passes again,
intelligent code completion of modern IDEs offer semi-automation in writing source code.
For more complex TC failures, the developer can use debugging and trace back from the
TC to the corresponding feature/requirement (cf. Chapter 2).
To always assure the 2. value in spite of flexibly being able to respond to change

and in spite of many small increments via the TDD cycle, AD practices continuous
integration (CI) [Duvall et al., 2007]: the work of all developers is continuously (several
times a day) integrated into a shared mainline to prevent problems later on. The shared
mainline is checked by a CI framework in the background (e.g., Jenkins or CruiseControl)
after each integration whether
• the source code is clean, follows standards and best practices using static analysis;
• and whether it is correct using T̈ and TCs on higher levels of the V-model (cf.

Sec. 2.4) as regression tests. Usually, AD focuses on unit tests and acceptance
tests [Rainsberger, 2009], but if less modular software is developed, more tests
have to be performed by integration instead of unit tests. For high usability,
testing within CI should be fully automatic and fast, such that developers get
quick feedback (optimally, a 10-minute build including all of CI’s tasks is reached).

The agile team defines exit criteria for tasks and sprints (mainly based on metrics from
static analysis and testing). These definitions of done (DoD) are then configured
within the CI framework to be checked automatically.
Using agile processes, rapid delivery of high quality working software increments can be

achieved. These are shown to the customer, so that customer feedback can be early and
flexibly incorporated in the following iterations. Therefore, AD has strong validation
(derived from the Latin word for “to be worthy”), i.e., checking that the SUT really
fulfills the needs of its users (often formulated as “checking that the right product is
built”) [Boehm, 1984; Balzert, 1997; Prenninger and Pretschner, 2005; Pezzé and Young,
2007]. This is orthogonal to verification (derived from the Latin word for “truth”), i.e.,
checking that the SUT really fulfills its specification (often formulated as “checking that
the product is built the right way”). From the perspective of a given specification S,
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verification checks that the implementation conforms to S and validation checks that S
is what the customer wants.
Since validation narrows the gap between the specification and what the customer

actually wants, integrating AD with MBT is helpful in software development. This
integration is investigated in the following subsection.

14.2.3. Integrating MBT and Agile Development

Motivation

By integrating MBT and AD, deficits from both AD and MBT can be avoided:
A main deficit of AD is that too little specification and documentation is delivered.

Even though working software is more important (cf. 2. value), specifications and doc-
umentations are necessary in today’s component-oriented software development, since
components need to be specified to reuse, distribute and certify them (especially for
safety-critical applications). More precise documentation is also helpful for developers
so they have direction and knowledge of the purpose while navigating through source
code.
AD also has some difficulties in testing, even though testing is an integral part of

AD (cf. the previous subsection): The used test coverage is still often insufficient and
deceptive (e.g., 60% statement coverage, cf. [Lawrance et al., 2005], more generally see
Subsec. 12.3.1). Manually written test cases are less flexible and require more mainte-
nance than the specifications that MBT requires. For instance, if exception handling is
refined, a lot of test cases might have to be modified to incorporate this.
Finally, tracing back from failed test cases to user stories is often difficult in AD.
The deficit of most applications of MBT (and most other formal methods) is their big

design up front (BDUF): MBT requires the entire specification of the final product.
This results in a rigid process, where gains of MBT are only possible after investing a
lot of time into specifying, faults are detected late, and validation takes place only at
the end or not at all.

Tight Integration of MBT and AD

Applying MBT within AD, the deficits of MBT must be avoided: Firstly, being flexible,
as result from the 1. value, the 3. value and the 4. value. Secondly, avoiding a BDUF
by rapidly delivering working products, as result from the 2. value. Furthermore,
dynamic verification should be fast and automatic, to keep up with AD’s fast iterations
and flexibility, and to be able to integrate the dynamic verification process into the CI
framework.
These requirements imply using lightweight formal methods. Very lightweight static

analysis tools (such as FindBugs [Ayewah et al., 2007]) are already an integral part of AD
since they are often plugged into IDEs and the CI framework. But they unfortunately
produce many false negatives or false positives. MBT is hence a relevant alternative
since it is lightweight, generates tests automatically from specifications, can easily be in-
tegrated into AD (technically as well as psychologically since agile teams are accustomed
to testing), and yields further advantages such as traceability and metrics.
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To be flexible and avoid a BDUF [de Vries et al., 2002], MBT needs to use abstractions,
e.g., underspecification. To be used in AD’s iterations, it must be iteratively refineable,
so that details can be introduced lazily to the specifications, and test generation must
efficiently handle this. Therefore, this section uses a refinement hierarchy and the refines
relation (cf. Sec. 9.3). This increases MBT’s usability in all fields [Peleska, 2013].

Notes. The level of abstraction could also be influenced by the test adapter (cf. Sub-
sec. 8.7.2 and Sec. 9.3), but those are lossless abstractions. Underspecification is lossy
and thus more helpful if not all information is available yet.
Example 9.10 on page 231 shows a refinement hierarchy for some web services. Web

services are a prominent application of MBT and are also frequently used in AD (and
sometimes called Agile Applications), since their design concept supports loose cou-
pling, rapid delivery and AD.

Integrating MBT and AD, the iterative and incremental processes in AD can also be
applied on the specification-level, i.e., to the refinement hierarchy:
• starting with the most abstract specifications (e.g., Figure 9.1(a)),which replace
user stories and support flexibility and communication;
• within sprints, iteratively add aspects by refining more abstract specifications into
less abstract specifications, for rapid delivery;
• the most refined specifications are sufficiently detailed for MBT.

Using the refinement hierarchy within AD, MBT and AD can be tightly integrated,
in both the CI framework and the TDD cycle:
• the CI framework uses MBT for metrics and for regression testing;
• in the TDD cycle, tests are no longer written manually; instead, specifications are
written (and refactored) resulting in specification-driven development. The
tests are generated from the specifications automatically via MBT.

The result is called MBTAD and depicted in Fig. 14.2.
MBTAD avoids the deficits of both AD and MBT, and yields further advantages:
MBTAD produces working software increments plus the corresponding specification

increments, resulting in a specification hierarchy (cf. V-model in Sec. 2.4). The
specification hierarchy aids certification, re-usability, communication and orientation
during programming.
Testing is now based on the ioco theory, performing continuous refines checks.

Therefore, TCs can be generated efficiently and automatically, with high coverage and
meaningfulness. MBT provides more coverage criteria, which not only produce better
tests, but also better measurements for quality management. For instance, andrena ob-
ject’s agile quality management ISIS [Rauch et al., 2008] is state of the art and also
uses test coverage, measured using EclEmma; but that only allows limited coverage
criteria, namely basic blocks, lines, bytecode instructions, methods and types (cf. Sub-
sec. 13.2.4). Since more sophisticated coverage criteria are often more meaningful (cf.
Sec. 2.5, Subsec. 12.3.1), MBTAD can also improve agile quality management.
The specification hierarchy is more flexible to change, and maintenance is easier than

of the TS. For instance, if exception handling is refined, MBTAD no long has to modify a
lot of test cases, but only the concise changes in the specification hierarchy that exactly
reflects the exception handling refinement (cf. Fig. 9.1 (c) to (d)). This concise formalism
also increases efficiency in the TDD cycle.
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Figure 14.2.: MBT in our exemplary agile methods

MBTAD empowers one modeling language with many levels of abstraction, improving
expressiveness, usability, redundancy and maintenance. The more abstract specifications
are used for business-facing [Crispin and Gregory, 2009], in particular for communication
and to give an overview, and are a formal (graphical) replacement for user stories.
They are, however, also the origin for refinements to the more concrete specifications,
which are used for technology-facing, in particular for automatic test case generation.
Although formal abstract specifications are slightly less intuitive than user stories, the
higher precision is more important to avoid errors and misunderstanding, especially in
safety-critical domains. In cases when technical details need to be considered early and
complex architectures, business logic or product logic need to be modeled, UML state
machines and use cases are often employed [Cockburn, 2000; Weißleder, 2009; Mlynarski,
2011]). Our specifications can replace these and need not determine whether business-
or technology-facing and which degree of abstraction should be used.
Our automatic generation of TCs can easily implement traceability between require-

ments and TCs as described in Subsec. 13.3.5, but also vertical traceability between two
consecutive levels S ′,S ∈ SPEC of the specification hierarchy: S ′ refines S guarantees
that a trace σ ∈ StracesS′

τ∗δ
∪ StracesSτ∗δ is a common trace of both S ′ and S or cor-

responds to a feature change: a new feature via added input on the refinement level of
S ′, i.e., σ ∈ StracesS′

τ∗δ
\ StracesSτ∗δ , or a restricted feature via removed output on the

refinement level of S ′, i.e., σ ∈ StracesSτ∗δ \StracesS′
τ∗δ

. Therefore, we choose a trace link
(which we call strong trace link) between a specification element (state or transition)
e′ ∈ S ′ and e ∈ S if there is a common trace σ ∈ StracesS′

τ∗δ
∩StracesSτ∗δ that leads to e′

in S ′ and to e in S. If e′ corresponds to a new feature, then we do not add a strong trace
link. We can, however, add another kind of trace link, which we call weak trace link,
between e′ and the element e ∈ S that is the last element on σ that has a strong trace
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link, i.e., if ∃|k ∈ N with k < |σ| and σ≤k leads to e and σ≤k ∈ StracesS′
τ∗δ
∩ StracesSτ∗δ

and σ≤k+1 6∈ StracesSτ∗δ . Therefore, the weak trace link indicates that σ≥k+1 directly
after e (resp. directly after strongTraceLink(e)) is the reason why e′ has no strong trace
link. Symmetrically, if e corresponds to a restricted feature, then we add a weak trace
link between e and the element e′ ∈ S ′ that is the last element on σ that has a strong
trace link. In short, vertical traceability in our specification hierarchy is determined by
reachability through common traces and allows tracing back from failed TCs through
the specification hierarchy all the way up to the most abstract specifications that replace
user stories. The continuous refines checks performed by MBT on the most refined speci-
fications also guarantee conformance with each more abstract specification, thus showing
the conformance with the most abstract specification, which replaced user stories.

Note. If the partial mapping between the elements of S ′ and S defined by trace links
should be a bijection between its domain and its image, then S and S ′ should be deter-
ministic and each trace link identified by the trace σ leading to the elements e′, resp. e;
alternatively, if S and S ′ are computation trees, each state is only reachable by a unique
trace, so identifying each trace link by its corresponding trace is no longer necessary.

The implementation of traceability can make use of the implementation of refines
(cf. Subsec. 9.3.1): Since the implementation of refines must guarantee that no input is
remove in e′ compared to e, and no output added, the implementation already considers
the strong trace links and must only record them. To implement weak trace links, the
implementation of refines must be extended to store added inputs and removed outputs,
or perform a reachability analysis. Our implementation of refines via the iocoChecker
performs such a reachability analysis with the help of a DFS anyways. Just like the
regular implementation of automatic traceability (cf. Subsec. 13.3.5) is left as future
work, so is the implementation of this vertical traceability in our specification hierarchy.
Refinement and AD applied to specifications avoid a BDUF for specifications, which

leads to higher usability and ROI, to fail fast and lower risks. Furthermore, agile methods
as pair programming, reviews, and CI help find defects in the specifications early. Be-
cause of AD’s strong validation, differences between the specification and the customers
expectations are also detected early.
Using LazyOTF for MBTAD, abstract specifications and nondeterministic systems are

handled efficiently. LazyOTF’s strong guidance generates meaningful TCs with high
coverage levels, resulting in higher quality of testing and hence better software develop-
ment. The meaningful TCs are short and can avoid nondeterminism as much as possible,
resulting in high usability, reproducibility and traceability. For the CI framework, bet-
ter coverage criteria improve the metrics for quality management, and reproducibility
improves automated regression testing.
In summary, AD requires rapid delivery and CI with regression tests. Hence MBT can

profitably be applied to AD: Efficient tests can be generated and executed automatically
with an appropriate coverage.

Related Work

There is some work on MBT with AD previous to [Faragó, 2010]: [Utting and Legeard,
2007] scarcely considers using AD to improve MBT and also MBT within AD. It suggests
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MBT outside the AD team, i.e., not strongly integrated. [Puolitaival, 2008] aims to
adapt MBT for AD and also shortly motivates using MBT within the AD team, but
does not investigate in detail how to modify AD for fruitful integration, e.g., adjusting
specifications and CI. It rather focuses on a case study, which empirically shows that
abstraction is very important in MBT for AD. [Katara and Kervinen, 2006] uses a strict
domain and a limited property language. It uses very restricted S that are lists of
exemplary paths. [Rumpe, 2006] gives a good overview of MBT when evolution (as in
AD) is involved. It uses the same modelling language for the production system and
the tests, but not the same specifications. This section links abstract specifications of
the product and more detailed specifications for MBT, reducing work and redundancy.
[Rainsberger, 2009] states that contract-based testing should replace integration tests
in AD. The combination of AD and safety-critical software is being investigated in the
project AGILE [OpenDO]. More generally, [Black et al., 2009] gives a broad overview
of the combination of AD and formal methods. In agile modeling [Ambler, 2002], the
relationship between specifications and AD are investigated, but testing is not considered
thoroughly.
More recently, [Binder, 2011] showed that AD is already used by some applications of

MBT.

14.2.4. Summary

This section showed how MBT and AD can be combined, using underspecification and
refines for the specifications to avoid rigidness and a BDUF. Tightly integrating MBT
and AD yields the highest profits: specifications with high flexibility, low redundancy
and low maintenance, effective CI with high coverage and continuous ioco checks. Var-
ious overage criteria can also be used for quality management. Further advantages are
traceability, higher reproducibility and efficiently handling abstract specifications and
nondeterministic systems, especially when applying LazyOTF.

14.3. Experiments

14.3.1. Introduction

This thesis theoretically investigated the efficiency of LazyOTF (cf. Chapter 11) and the
applied heuristics (cf. Chapter 12). In this section, the efficiency is measured empir-
ically with experiments, considering how meaningful the results are and how fast its
TC generation is. Since meaningfulness is approximated by guidance heuristics, config-
ured by TOs, this section uses several sets ö of TOs. Meaningfulness of the generated
TCs is measured by counting the overall number of test execution steps tmaxcurr required
to discharge all TOs in ö. The meaningfulness of the generated TCs also influences
other aspects of applying MBT (see also Sec. 14.1, [Nieminen et al., 2011; Anand et al.,
2013; Gay et al., 2015]): If less test steps are required, TC generation and TC execu-
tion are faster (cf. Subsec. 11.2.3), TCs and failing test runs are more understandable
and reproducible. Despite having an effect on these performance attributes, tmaxcurr is less
machine-dependent than those attributes [Bader et al., 2000]. Finally, meaningfulness
can have a stronger impact on the required resources than the complexities per test step
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(cf. Chapter 11). Therefore, this section focuses on measuring meaningfulness, like other
work [Anand et al., 2013; Gay et al., 2015].

Roadmap. After describing the specification and configuration in the next two sub-
sections, Subsec. 14.3.4 compares JTorX’s OTF and LazyOTF. Subsec. 14.3.5 com-
pares guidance heuristics settings. Subsec. 14.3.6 investigates dynamic bound heuristics
settings. Subsec. 14.3.7 investigates parallelization using distributed LazyOTF. Sub-
sec. 14.3.8 covers testing of a real SUT. Subsec. 14.3.9 depicts results of preliminary
further experiments. Finally, Subsec. 14.3.10 concludes our experiments, especially by
considering their validity.

14.3.2. Case Study and Its Specification

The experiments in this section are conducted within a case study (cf. Example 9.10)
from the domain of service-oriented architecture: web services from WIBU SYSTEM
AG’s CodeMeter License Central [URL:LC], for managing and distributing licenses;
licenses can be generated, removed, backed up and inspected. This SUT is called SLC
and was developed mainly by Stefan Nikolaus.
We created a strongly abstracted specification, described by an STS called SLC and

specified in detail in Appendix B.1.1. SLC contains a hard-coded parameter: the constant
MAXPRT ∈ N>0 describing the maximal portion for pagination (see next paragraph).
SLC and SLC are designed for web services, using the request-response pattern [W3C,

2001] and fault handling via response messages and additional exceptional behaviors.
Managing licenses is specified by the following features, all having appropriate exception
handling:
• generateLicense generates a new license, returning its ID;
• removeLicense removes the license with the given ID;
• removeExpired removes all licenses that are currently expired. Since expiration is
not modeled by SLC , the abstraction nondeterministically removes a subset of all
present licenses;
• removeAll removes all licenses;
• showLicenses lists all present licenses using portions of maximal MAXPRT ∈
N>0 many licenses, to support pagination and packages for transmission, i.e.,
successively MAXPRT many licenses can be requested;
• remoteBackup, resp. localBackup, to perform remote, resp. local, backups.

Since STSs used in JTorX do not offer container data types (cf. Sec. 13.4), SLC
abstracts from the set of licenses to its cardinality. Consequently, the License Central
web services are described very abstractly, reducing the fault detection capability. To
check concrete licenses, more expressive STSs would have to be used (cf. Sec. 13.4), or
the test adapter would have to keep track of the licenses. But we prefer to stay on
this abstract level for our experiments since this strong abstraction simplifies the case
study, such that several aspects can be investigated quicker and clearer, and JTorX’s
expansion of SLC to the level of LTSs (cf. Sec. 9.4 and Sec. 13.4) causes no problem:
no reduction heuristic can break exhaustiveness for SLC since guards only allow few
transitions to states other than fail (cf. Subsec. 13.2.1). Furthermore, SLC exhibits the
relevant aspects of an LTS:
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• all kinds of nondeterminism:
– controllable nondeterminism, especially in the abstract state initLocation,

as SLC models a reactive system;
– uncontrollable nondeterminism on output, mainly due to exception handling,

in all abstract states *Requested;
– uncontrollable nondeterminism of the LTS due to nondeterministic branching:

removeLicenseRequested !removeLicenseOutput<returnCode>,[returnCode==

”UnknownException”]−−−−−−−−−−−−−→ removeLicenseUnknownException and
removeLicenseRequested !removeLicenseOutput<returnCode>,[returnCode==

”LicenseNotFoundException”||(returnCode==”UnknownException”&&licenseCount==0)],−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
removeLicenseLicenseNotFoundException;

– uncontrollable nondeterminism of the LTS due to τ transitions in
removeExpiredRequested;

• a τ -cycle: removeExpiredRequested (unobservable)−−−−−−−−−→ removeExpiredRequested;
• irregular underspecification of input for superstates containing multiple initLoca-
tion with licenseCount = 0 and licenseCount > 0 due to the switch initLoca-
tion

!removeExpiredLicensesInput<>,[licenseCount>0],−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ removeExpiredRequested;
• the size of [[(SLC)VdLC ]] ([[SVdLC ]] for short) and of its resulting superstates is only

bounded by the size of the type used for bounded non-negative integers. Since the
32 bit integer type is used, [[SVdLC ]] and superstates can become huge if they are
not effectively processed on-the-fly;
• we can easily express test objectives over SLC that become increasingly difficult to
discharge with increasing MAXPRT , e.g., the test goal s̈ := {showMoreLicenses}×
DV since the abstract state showMoreLicenses is a deep state in [[SVdLC ]]: Due
to its guard, showMoreLicenses is only reachable via paths of length greater
2 · MAXPRT + 3. Reaching s̈ is particularly difficult for random testing: If
some transitions are selected with probability smaller 1, the probability of reaching
showMoreLicenses from initLocation with b ∈ N steps quickly decreases with
increasing MAXPRT (shown empirically in the next subsection).

14.3.3. Configuration
Our experiments will vary some parameters for comparison: ö, aggWTCs, bound heuris-
tics, MAXPRT , the number P of parallel instances, the SUT, and the MBT approach.
Other parameters will be fixed throughout this section: the specification SLC , the imple-
mentation relation ioco, no user interaction, aggPath2Ws(·), the software and hardware,
and almost always the activated optimizations, communication, and logging.

Varying Parameters

SUT. As SUT, this section mainly uses Ssim SLC , i.e., SLC with the simulation capa-
bilities of JTorX (cf. Subsec. 10.3.3), to factor out the runtime of test execution as
much as possible when measuring LazyOTF’s test case generation and heuristics: Since
they are independent of the test case execution, simulation investigates them more ac-
curately since the simulated test execution is fast, exactly on the abstraction level of
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SLC , and independent of any real SUT and its technicalities. The simulation is ioco,
has fairnesstest without underspecU , and a reliable reset capability since SLC is an SCC.
For strong statistical randomness yet fast performance, we integrated the pseudorandom
number generator Mersenne Twister [Matsumoto and Nishimura, 1998] into the simula-
tion. When test execution is performed on the real SUT SLC (cf. Subsec. 14.3.8), we use
JTorX with an own test adapter, which is a simple solution allowing comparison with
our other experiments.

Bound heuristics. Most experiments do not focus on the different bound heuristics
settings. For them, we get clean measurements by deactivating the bound heuristics
and using a fixed bound of 5 instead. For Subsec. 14.3.6, we vary the bound heuristics
settings as described there.

aggWTCs. Most experiments do not focus on the different guidance heuristics set-
tings, for which we fix PInputDefault; for Subsec. 14.3.5, we do vary over our pre-built
aggWTCs to compare them: PInputDefault, MaxMax, and Max.

Distributed LazyOTF. We mostly consider the sequential LazyOTF, i.e., fix P = 1. To
measure the parallel speedup in Subsec. 14.3.7, the number P of parallel instances of
distributed LazyOTF is varied.

Test Objectives. In most subsections, we consider the following TOs o (resp. ö) to cover
various use cases:
oRSML is a reachability TO for the abstract state showMoreLicenses, testing pagina-

tion (i.e., the safety property ∃♦pageNo > 0). It is composed of two auxiliary TOs:

path2W oRSML(πfull) := {awardLicenseCount(πfull), awardTG(πfull)}

with
• awardLicenseCount(πfull) being dest(πfull)’s mean licenseCount ·1000, imple-
mented via FinalLocationSetDefaultPath2W(LocationValuation2Weight). For max in-
stead of mean, awardLicenseCount would be a pure fancylinear path2W (cf. Exam-
ple 12.43); mean approximates a distance function, but additionally fines nonde-
terminism. Since oRSML was still always discharged in our experiments, this choice
is better in practice;

• awardTG(πfull) :=


107 if I lazy

oRSML
(dest(πfull)) = TESTGOAL

500 if I lazy
oRSML

(dest(πfull)) = ORDINARY
1 if I lazy

oRSML
(dest(πfull)) = INDUCING;

,

which is a nonfancy path2W (cf. Example 12.43), implemented via FinalLocationSet−
DefaultPath2W(TestTypeDefaultNode2Weight).

dischargeoRSML is the default discharge function.

I lazy
oRSML

: s 7→
{
TESTGOAL if s = showMoreLicenses
ORDINARY otherwise;
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öcov is a TO composed of a set of reachability TOs, implementing abstract state cov-
erage of SLC , except showMoreLicenses, which is covered by either oRSML or oNFRSML
below. Thus exactly for each x ∈ SLC \ {showMoreLicenses}, öcov contains a coverage
task TO ox with

I lazy
ox : s 7→

{
TESTGOAL if s ∈ x×DV

ORDINARY otherwise;

and
path2W ox(πfull) := awardTG(πfull).

dischargeox is the default discharge function.
Since two abstract states in SLC \ {showMoreLicenses} have at most a distance of 6

transitions, all TOs in öcov are discharged efficiently. Hence we consider öcov as fancy
TO, i.e., plot it together with other TOs that have fancy path2W .
oNFRSML is a reachability TO defined just like the coverage task TOs in öcov , but for

the abstract state showMoreLicenses. So it has nonfancy guidance that does not take
licenseCount into account, as opposed to oRSML, which employs awardLicenseCount.
For nonfancy guidance, we can still use the function I lazy to reduce the size of the
sub-graphs by setting removeAllRequested to INDUCING.
öSisol is a TO composed of a set of reachability TOs, implementing Sisol , i.e., reachable

state coverage in isolation (cf. Subsec. 8.8.4, Subsec. 11.2.4, and Subsec. 13.3.3) of SLC ,
but only up to a constant k ∈ N>0 to stay feasible. As for öcov , showMoreLicenses
is excluded, which can only be reached for licenseCount> MAXPRT anyways. Thus
exactly for each reachable state x in [[SVdLC ]] that has a licenseCount≤ k and is not a
showMoreLicenses, öSisol contains a coverage task TO ox with

I lazy
ox : Sdet → Σlazy, s̈ 7→

{
TESTGOAL if s̈ = {x}
ORDINARY otherwise,

implemented with the help of the SatStrategy decision strategy, and the nonfancy

path2W ox(πfull) := awardTGdet(πfull),

with

awardTGdet(πfull) :=


106 if I lazy

oRSML
(dest(πfull)) = TESTGOAL

100 if I lazy
oRSML

(dest(πfull)) = ORDINARY
1 if I lazy

oRSML
(dest(πfull)) = INDUCING,

implemented via DetFinalLocationSetPath2W(TestTypeDefaultNode2Weight). dischargeöSisol
only discharges if the final superstate is a TG, i.e., s̈ = {x}.
Since we expect nondeterminism of the LTS to cause only few faults, öSisol is suitable

for testing the real web service with the abstract SLC , and for testing the simulated
SUT. The bound k is necessary since the state variables are 32 bit integers; hence the
user-supplied bound k limits the state variable licenseCount to the interval [0, . . . , k];
all other variables are hereby also strongly limited.
odec is a TO that goes beyond reachability: It is discharged when licenseCount is de-

creased d ∈ N>0 times via removeLicenseRequested, without increasing licenseCount

352



14.3. Experiments

in between. The function dischargeodec is implemented programmatically using the cor-
responding observer interface. The function path2W odec(πfull) is more complex than for
other TOs and implemented with two auxiliary TOs oup, odown:
• oup is for guidance to a state with sufficiently high licenseCount for subsequent
d decreases, with the fancy awardLicenseCount as path2W oup , and discharged by
setting oinc’s test goals correspondingly;
• odown is for guidance in the decreasing phase, with fancynonlinear path2W odown =

1000+2000/(lc+1) and lc = dest(πfull)’smean licenseCount (cf. configuration of
oRSML), implemented via FinalLocationSetDefaultPath2W(LocationValuation2Weight).
odown is discharged when odec is fully achieved, via the programmatic dischargeodec
observer.

The function I lazy is also used to aid guidance by setting removeExpiredRequested,
removeAllRequested, and backupMenu to INDUCING.

MAXPRT . We scale SLC in size and complexity via MAXPRT . The TOs oRSML and
oNFRSML (cf. state variable licensesDisplayed) depend on MAXPRT and are increas-
ingly difficult to discharge with increasing MAXPRT . öSisol (resp. odec) are increasingly
difficult to discharge with increasing k (resp. d). Because of similarity and simplicity, we
set k = d = MAXPRT in our experiments. Therefore, we can measure whether the effi-
ciency and meaningfulness of LazyOTF with the above TOs (and of JTorX) scales with
increasing MAXPRT . Scalability of öcov , however, is trivial, since it does not depend on
MAXPRT .

Variable parameters that are measured. The following parameters are neither fixed
nor iterated over by the experiment settings, but measured to observe the experiment’s
outcome. We will mainly measure meaningfulness by counting the overall number
of test steps, tmaxcurr until termination, i.e., until all TOs are discharged. Furthermore,
we will measure the number of (internal) discharges and many performance quantities:
memory requirements (MiB), CPU time (s), and various wallclock times (s), which
measure the real time that has passed: the overall WC time, called all WC time
(WC time for short), the WC time of the actual LazyOTF algorithm without setup and
cleanup overheads (for JTorX, TreeSolver, and the network in the parallel setting), called
test WC time, and the WC time of the SUT S (i.e., test execution), called WC time
on S. For most experiments, measurements will depend on MAXPRT ∈ [1, . . . , 10].

Fixed Parameters

Since SLC exhibits the relevant aspects of an LTS and can make TOs arbitrarily difficult
by increasing MAXPRT , this case study always uses SLC and no other specification.
For the expansion to LTSs, [[SVdLC ]] is used (i.e., with the default variable initialization).
This case study only employs the implementation relation ioco (cf. Sec. 8.5) since it is

a standard and simple to implement. But other implementation relation could be used
instead (cf. Subsec. 11.2.2).
Most implemented optimizations are activated throughout the case study: the lazy

traversal sub-phase optimization and the eager micro-traversal sub-phase optimization.
The latter always uses bfuture = bexec = 1, which is sufficient for the cleanly designed
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reactive SLC . For consistency, all described experiments (except in Subsec. 14.3.9) were
conducted without τ -closure optimization, which was implemented only after several
experiments had already been conducted. Implementing and experimenting with more
dynamic information for bound heuristics and with quantifying nondeterminism is future
work, for the reasons given in Sec. 12.4.
No user interaction or GUI was used in the experiments since the large number of

iterations for statistically accurate results (see below) require fully automatic MBT.
Therefore, all experiments are performed in text mode (cf. Subsec. 13.3.5), which also
allows recomputation [Gent, 2013; Arabas et al., 2014; URL:recomputationHP].
No cycle warnings were active (except for the preliminary experiments on the cycle

warning feature, cf. Subsec. 14.3.9).
This section always uses aggPath2Ws(·) = max to avoid suppressing a TO (cf. Sub-

sec. 12.3.7).
The following software was used:
• JTorX version 1.10.0-beta8 with LazyOTF support [URL:JTorXwiki] and various
small extensions [Kutzner, 2014];
• Oracle R© JavaTM JDK version 1.7.0_45, JavaTM SE Runtime Environment version

1.7.0_45-b18), Java HotSpotTM 64-Bit Server VM version 24.45-b08, mixed mode;
• Linux kernel 2.6.27.7-9-default;
• Hazelcast [URL:Hazel] version 3.1.2 (and version 3.4.2);
• License Central [URL:LC] version 2.0a and version 2.01.

All experiments were performed on the Acamar computing cluster from the research
group “Verification Meets Algorithm Engineering” [URL:Verialg] at the Karlsruhe In-
stitute of Technology, on 17 nodes, each containing two Intel Xeon E5430 CPUs with
four cores, 2.66 GHz, 12 MiB second-level cache, 64bit architecture, Enhanced Intel
SpeedStep and Demand Based Switching, no hyper-threading, and 32 GiB of RAM.
The License Central web services were hosted on a separate machine within Oracle VM
VirtualBox [URL:VirtualBox].
For evaluation and for debugging, we accumulate as much information as possible

during our experiments (cf. Subsec. 13.2.4): storing communication between JTorX and
LazyOTF and verbose logging are active as default. Samples with storing communication
deactivated show for most of our experiments that performance is influenced little by
storing communication, as expected since our experiments are CPU-bound. However,
for long running experiments with large bounds, i.e., high amount of communication
in each traversalSubphase, storing communication in memory sometimes caused a strong
increase in memory, up to out-of-memory (oom) and garbage collection (gc) exceptions,
and increased CPU- and WC-time due to the gc algorithm (cf. Appendix B.1.2). In
these cases, we deactivated storing communication between JTorX and LazyOTF. For
evaluation of all aspects (see plots below) and for debugging, we use verbose logging (but
low-level logging on a low verbosity level). We write the log files in experiment archives
onto a high-performance hardware raid, which never caused disk I/O contention for our
experiments (cf. Appendix B.1.2), and allows convenient access to all log files, even for
our parallel experiments and when a node with an experiment is not accessible.
For performance evaluations, cluster nodes were used exclusively, i.e. no other jobs

could be scheduled on such nodes while the experiments ran. For memory measurements,
the swap space was set to 0 bytes and the maximum Java heap size to 16 GiB (using
the option -Xmx) when required.
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Statistics

LazyOTF and JTorX are randomized algorithms [Motwani and Raghavan, 1995; Sijtema
et al., 2014]:
• the simulation of the SUT contains randomization due to uncontrollable nondeter-

minism;
• for test case generation, JTorX performs a random walk on SLC ;
• for test case generation, LazyOTF chooses a TC randomly amongst the heaviest
(cf. Subsec. 12.3.4).

To measure a probabilistic value x in our experiments, we perform lightweight statis-
tical tests: We measure
• the sample mean (also calledmean value or expected value) x := 1/n ·Σn

i=1xi
of x, taken over n samples (xi)i∈[1,...,n] (i.e., independent observations), so n is the
sample size;
• the maximal value max(x) := maxni=1xi and the minimal value min(x)

:= minni=1xi;
• themedian valuemedian(x) :=(sorted((xi)i)b(n+1)/2c+sorted((xi)i)d(n+1)/2e)/2;
• the corrected sample standard deviation σ(x) :=

√
1/(n− 1) · Σn

i=1(xi − x)2

of x;
• the standard error of mean SEM(x) := σ(x)/

√
n;

• relative standard error of means RSEM(x) := SEM(x)/x.
We will usually executed our LazyOTF experiments between 90 and 4000 times to push

the RSEM of tmaxcurr to less than 5% (cf. Subsec. B.1.5). Therefore, we can safely transfer
our observations from the samples to the real population (cf. Subsec. 14.3.10). For some
measurements at the border of feasibility, some samples caused out-of-memory (oom) or
timeouts (cf. Subsec. 14.3.10). Since this influences our statistics, we plot the point for
those measurements in parantheses.

14.3.4. Comparing MBT Approaches

This subsection compares on-the-fly MBT via JTorX and LazyOTF for all TOs defined in
Subsec. 14.3.3. For fair comparison, we implemented for each set of TOs a corresponding
exit criteria to JTorX. Many experiments in this subsection have been executed by Felix
Kutzner [Kutzner, 2014].

Note. Experiments with offline MBT are not necessary since they are not feasible for
this case study: the variables in the STSs quickly cause state space explosion during
traversal. If we restrict the expansion of the STS, give a bound b on the depth of the
generated TCs (cf. Subsec. 10.2.5), and apply on-the-fly MC algorithms for traversal,
then the presence of uncontrollable nondeterminism still causes state space explosion
and test case explosion; the exponential runtime of a LazyOTF phase plotted against b,
shown in Subfig. 14.5a, can be transferred to offline MBT, so offline MBT is only feasible
for small depths b.

For the experiments in this subsection, we additionally fix the following parameters:
• the SUT Ssim SLC ;
• the default aggWTCsPInputDefault;
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• the default bound heuristics: a fixed bound of 5 (and 10 as comparison for oNFRSML);
• the default P = 1, i.e., only sequential LazyOTF.

Therefore, the following parameters are varied: ö, MAXPRT , using both LazyOTF and
JTorX.
Fig. 14.3 depicts tmaxcurr , the expected value for tmaxcurr , up to 107, plotted against MAXPRT .

Subfig. 14.3a, resp. Subfig. 14.3b, shows all our fancy, resp. nonfancy, TOs for LazyOTF,
Subfig. 14.3c, resp. Subfig. 14.3d, shows all our fancy, resp. nonfancy, TOs for JTorX.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  1  2  3  4  5  6  7  8  9  10

M
ea

n 
E

xe
cu

te
d 

T
es

t S
te

ps
 t

cu
rr

m
ax

__
__

MAXPRT Model Parameter

test objective o
{oRSML,öcov,odec}

{oRSML,odec}
odec

{oRSML,öcov}
oRSML

öcov

(a) tmaxcurr that LazyOTF requires to discharge
fancy TOs as well as öcov
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Figure 14.3.: Comparing the meaningfulness of the test cases generated by LazyOTF
(Subfig. 14.3a and Subfig. 14.3b) and JTorX (Subfig. 14.3c and Sub-
fig. 14.3d) for all our TOs, where Subfig. 14.3a is a lin-lin plot, all others
are log-lin plots

JTorX requires roughly ten times more tmaxcurr for öcov compared to LazyOTF; for all
others TOs, JTorX’s tmaxcurr rises exponentially in MAXPRT and is multiple orders of
magnitude larger than for LazyOTF. For instance, oRSML is difficult for a random walk
because the probability of reaching showMoreLicenses from initLocation with n ∈ N
steps quickly decreases with increasing MAXPRT as some transitions are selected with
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probability smaller 1. For fancy TOs, LazyOTF’s tmaxcurr rises linearly in MAXPRT , for
nonfancy TOs exponentially. So for JTorX, all TOs except öcov confirm the theoretical
analysis that for JTorX you have to expect an exponentially higher tmaxcurr than the mini-
mum number of required test steps for discharging the given TOs, i.e., for reaching some
desired feature or coverage criterion via a shortest path (cf. Subsec. 10.2.5).
For LazyOTF with fancy TOs, the measurements also confirm the theoretical analysis

(cf. Subsec. 11.3.3) that LazyOTF has strong guidance, i.e., requires tmaxcurr that is linear in
the minimum number of required test steps. For LazyOTF with nonfancy TOs, tmaxcurr is
exponential in MAXPRT , but at least one order of magnitude smaller than for JTorX,
and the factor increases with MAXPRT . LazyOTF achieves this despite using random
guidance when far away from TOs, with the help of strong, directed guidance in the final
phase, where weak guidance that traverses transitions that nullify long paths traversed
towards a TO would hurt the most. Since the length of those paths increases with rising
MAXPRT , LazyOTF’s advantage over JTorX increases with rising MAXPRT .

LazyOTF has synergetic TOs (cf. Subsec. 11.2.4), as Subfig. 14.3a shows: {oRSML, odec}
is very synergetic since tmaxcurr ({oRSML, odec}) << tmaxcurr (oRSML) + tmaxcurr (odec) with tmaxcurr (
{oRSML, odec}) ∈ tmaxcurr (odec) + O(1), but tmaxcurr (oRSML) 6∈ O(1). The synergy is achieved
since LazyOTF detects that both oRSML and odec need to increase licenseCount mul-
tiple times at the beginning, and then oRSML can cheaply be discharged before per-
forming the decreases of licenseCount for odec [Kutzner, 2014]. {oRSML, öcov} and
{{oRSML, odec}, öcov} are slightly synergetic since tmaxcurr ({oRSML, öcov}) < tmaxcurr (oRSML)
+tmaxcurr (öcov) and tmaxcurr ({{oRSML, odec}, öcov}) < tmaxcurr ({oRSML, odec}) + tmaxcurr (öcov). How-
ever, tmaxcurr (öcov) is in O(1) anyways.

Notes. JTorX has even higher synergy, as Subfig. 14.3c shows. This is because the
random walk to reach a hard TO requires a huge number of test steps, so it is likely
that the random walk meanwhile also achieved weaker TOs [Duran and Ntafos, 1984;
Denise et al., 2008]. Even though LazyOTF achieves our main goal of nearly optimal
tmaxcurr , which are orders of magnitude smaller than for JTorX, it still has synergetic TOs,
but sometimes only with weak synergy.
We also investigated whether LazyOTF’s linear results for fancy experiments scale

for higher MAXPRT , up to 1024, which yields huge specifications. They do, except
for ö with odec ∈ ö since the fancynonlinear path2W odown was configured as 1000 +
2000/(lc + 1), which yields strong guidance only for small average licenseCount; for
lc ∈ [800, . . . , 1333], it yields the same weight, which is why our experiments had a time-
out for MAXPRT=1024. This shows that fancynonlinear does not scale well when based
on variable evaluations. But odec could easily be fixed by changing 2000 to a very large
value or to using a fancylinear TO instead. All other fancy TOs are slightly better for
MAXPRT=1024 than the expected tmaxcurr by extrapolating Subfig. 14.3a:
• for oRSML: tmaxcurr = 4092 < 5004 = MAXPRT ∗ 4 + 8;
• for öcov : tmaxcurr = 53 ≈ 50;
• for {oRSML, öcov}: tmaxcurr = 4207 < 5050 = MAXPRT ∗ 4 + 54.

Even though meaningfulness is more important than time complexities (cf. Sub-
sec. 11.3.3), we also compare our measurements to the overall worst case time com-
plexities for tcurr test steps of both on-the-fly MBT and LazyOTF: Having the fixed
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specification SLC with small branchS→∗ and branchSdet (cf. Appendix B.1.1), the theo-
retical worst case time complexity of both JTorX and LazyOTF for typical settings are
in O(tcurr · |S→∗ |) (cf. Chapter 10 and Chapter 11). For our measurements in Fig. 14.3,
the average CPU time per test step approaches a constant for increasing MAXPRT (cf.
Appendix B.1.3). So up to MAXPRT=10, the worst case time complexities for tcurr test
steps seem to be in O(tcurr), the factor O(|S→∗ |) for superstates and τ -closure in O(1).
Depending on the TO, however, the CPU time per test steps remains constant (for öcov)
or increases by a factor of up to 4 (for oRSML) for our samples with MAXPRT=1024.
Hence O(|S→∗ |) only causes a small factor, which was expected since the degree of non-
determinism is limited for our TOs: for fancy TOs due to strong guidance, for öSisol since
nondeterminism is fined, for oNFRSML due to inducingness of removeExpiredRequested.
So our performance measurements conform to the worst case time complexities. How-
ever, the measurements are rough due to the environment (hardware, operating system,
JVM, cf. Subsec. 14.3.6 and Appendix B.1.2). This shows particularly in the memory
measurements, which do not reflect the exact memory requirements due to the JVM’s
conservative memory allocation algorithm (cf. Subsec. 14.3.6).

14.3.5. Comparing aggWTCs

This subsection compares the meaningfulness of test cases generated by LazyOTF using
our pre-built aggWTCs (cf. Subsec. 14.3.3).
For the experiments in this subsection, we additionally fix the following parameters:
• the SUT Ssim SLC ;
• the default bound heuristics: a fixed bound of 5 (and 10 as comparison for oNFRSML);
• the default P = 1, i.e., only sequential LazyOTF.

Therefore, the following parameters are varied:
• MAXPRT ;
• ö, using all TOs defined in Subsec. 14.3.3, excluding odec, which was programmat-
ically designed only for aggWTCsPInputDefault;
• the pre-built aggWTCs: The measurements for PInputDefaultare already shown
in Fig. 14.3, so here we measure Max and MaxMax. These three aggWTCs cover
all practical classes (cf. Subsec. 12.3.6).

Fig. 14.4 depicts tmaxcurr , up to 107, plotted against MAXPRT . Subfig. 14.4a, resp.
Subfig. 14.4b, shows all fancy, resp. nonfancy, TOs for Max, Subfig. 14.4c, resp. Sub-
fig. 14.4d, shows all fancy, resp. nonfancy, TOs for MaxMax.
The measurements confirm the theoretical analysis of aggWTCs (cf. Subsec. 12.3.6):

The balanced aggWTCsPInputDefault yields the lowest tmaxcurr : considerably lower for fancy
TOs, and lower by a small factor for nonfancy TOs. It is interesting that MaxMax has
slightly lower tmaxcurr than Max for oRSML and {oRSML, öcov}, which can be explained by
path2W oRSML steadily monotonically increasing towards oRSML. For all other TOs, Max
has significant lower tmaxcurr than MaxMax, since Max takes all WTC nodes on a path
into account, not just the heaviest like MaxMax. We plotted the measurements for
MaxMax with oNFRSML and MAXPRT=10 in parantheses since several oom occurred
(cf. Subsec. 14.3.10).
We expected Max and MaxMax to be faster computations than PInputDefault, but

the difference in CPU time per test step was usually small (at most 25% difference,
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Figure 14.4.: Comparing the meaningfulness of the test cases generated by
aggWTCs

Max
(Subfig. 14.4a and Subfig. 14.4b) and aggWTCs

MaxMax
(Subfig. 14.4c and Subfig. 14.4d) for our TOs (excluding odec)

usually much less). Sometimes Max was faster, sometimes MaxMax. The insignificance
of the aggregation computations on the runtime can be explained theoretically since the
aggregation computation does not influence genWTS’s worst case time complexity (cf.
Subsec. 12.3.4). Due to the small difference in the CPU time per test step, most perfor-
mance measurements conform to the worst case time complexities, as for PInputDefault.
But for {oRSML, öcov}, the CPU time per test step is slightly increasing for both Max
and MaxMax, which is probably due to larger degrees of nondeterminism: Max and
MaxMax are not balanced aggregations, so only the most meaningful resolution of non-
determinism on output determines the weight. Hence nondeterminism is not fined but
can increase meaningfulness, i.e., larger degrees of nondeterminism are rewarded.
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14.3.6. Comparing Bound Heuristics
This subsection compares the performance and meaningfulness of test case generation by
LazyOTF depending on the bound heuristics. This shows the effectiveness of the bound
heuristics since it must balance the trade-off between meaningfulness and performance
for the set of active TOs (cf. Subsec. 12.4.4).
For the first experiments in this subsection, we show the measurements from [Kutzner,

2014] on the resource requirements for one traversalSubphase depending on a constant
bound b. They fix all parameters but b:
• the SUT Ssim SLC ;
• MAXPRT = 10;
• P = 1, i.e., only sequential LazyOTF;
• aggWTCs = aggWTCsPInputDefault;
• ö = ∅, such that full TCs of depth b are generated, i.e., without early pruning by

inducing states.
Fig. 14.5 depicts the required CPU time (Subfig. 14.5a) and memory (Subfig. 14.5b),

plottet against bound b.
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Figure 14.5.: Resource consumption for one traversalSubphase depending on a constant
bound b

For one traversalSubphase, the worst case time, space, and test case complexities are
exponential in b = bmax: with fixed branchS→∗ , branchSdet , and ö = ∅, both complexities
are in O(branchbSdet · |S→∗ |) (cf. Subsec. 11.3.3). The measured CPU time confirms the
worst case time complexity since it is exponential in b. The measured memory seems to
be polynomial in b, i.e., too low to confirm the exponential worst case space complexity.
But the measured memory requirement is probably distorted by the JVM’s conservative
memory allocation algorithm (cf. Subsec. 14.3.10) for smaller memory requirements, i.e.,
for smaller b. Since we have no TOs and no end states in SLC , complete test trees
are constructed per traversalSubphase. If all verdicts are given explicitly, the test case
complexity per traversalSubphase is (LU + 1)b · b. If we allow implicit verdicts, the test
case complexity per traversalSubphase is at least 2b/2 because at least every other state
in SLC exhibits nondeterminism on output.
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As described in Subsec. 11.3.3, the number of required test steps tmaxcurr to discharge
all TOs is more critical than the above complexities. Thus Fig. 14.6 illustrates the
overall effect that the bound heuristics has on meaningfulness and performance, i.e., the
trade-off between tmaxcurr and the expected CPU time. Many bounds and parameters for
the bound heuristics are possible (cf. Subsec. 13.2.3), especially when also considering
dynamic bound heuristics, which continuously balance this trade-off. So a huge number
of experiments would be required if we considered all possible parameter combinations.
Therefore, we fix the following parameters:
• P = 1, i.e., only sequential LazyOTF;
• aggWTCs = aggWTCsPInputDefault;
• since storing communication caused an increase in CPU time for these experiments
(cf. Appendix B.1.2), or even oom exceptions, we disabled it;
• ö = öSisol , so this subsection focuses on one nonfancy TO. This is sufficient to show
that the parameters of the bound heuristics strongly influence meaningfulness and
performance, but are hard to predict;
• the sawtooth phase heuristic with p+ being x 7→ x + 3, which is likely a good

heuristic for öSisol since TGs of different TOs are clustered.
Having fixed the sawtooth phase heuristic, we vary bmax ∈ [1, . . . , 10]. To also vary bmin
for dynamic bound heuristics, we define the following: iuptoBound for i ∈ {1, 4, 5},
which uses bmin = i and only bmax ∈ [i + 3, i + 6, 10] (never more than 10); the bound
heuristics exactBound use bmin = bmax and are thus not dynamic. Furthermore, we
choose MAXPRT ∈ {1, 10}.
Fig. 14.6 depicts tmaxcurr as well as the mean CPU time, plotted against the maximal

bound bmax; Subfig. 14.6a and Subfig. 14.6b for MAXPRT = 1, Subfig. 14.6c and Sub-
fig. 14.6d for MAXPRT = 10.
For MAXPRT=1, tmaxcurr decreases exponentially until about b = 5, for larger b only

weakly. The dynamic bound heuristics have tmaxcurr that are only slightly higher than
exactBound (for higher bmin) or about twice as high (for bmin = 1). The mean CPU time
starts to increase exponentially at about b = 5 for exactBound, but remains low and con-
stant for dynamic bound heuristics. So for MAXPRT=1, our dynamic bound heuristics
have a good trade-off between tmaxcurr and the mean CPU time, especially for higher bmin.
Unfortunately, the situation is different for MAXPRT=10: tmaxcurr decreases exponentially
for all considered b ∈ [1, . . . , 10]. Again, the dynamic bound heuristics have tmaxcurr that
are only slightly higher than exactBound (for higher bmin), but about four times as high
(for bmin = 1). Again, the mean CPU time starts to increase exponentially at about
b = 5 for exactBound, but unfortunately also for dynamic bound heuristics. Furthermore,
the mean CPU time is about twice as high for bmin = 1 compared to exactBound, a bit
higher for bmin = 4 and slightly lower for bmin = 5. These measurements for the dy-
namic bound heuristics are probably due to tmaxcurr always decreasing exponentially with
b, i.e., dynamically choosing a b < bmax has a drastic effect on tmaxcurr . Consequently, for
our experiment with MAXPRT=10, our dynamic bound heuristics have a bad trade-off
between tmaxcurr and the mean CPU time for small bmin, for high bmin the trade-off is only
insignificantly better than for exactBound.
In summary, exactBound with b = 5 seems to be a good default because CPU time

remains comparably low. But the exact bound for an optimal trade-off between tmaxcurr
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Figure 14.6.: Comparing the meaningfulness and runtime of various (dynamic) bound
heuristics of LazyOTF with MAXPRT = 1 (Subfig. 14.6a and Sub-
fig. 14.6b) and MAXPRT = 10 (Subfig. 14.6c and Subfig. 14.6d) for
öSisol

and the mean CPU time is hard to predict. Dynamic bound heuristics may restricts
CPU time if bmin is not chosen too small, depending on the situation, e.g., whether
tmaxcurr always decreasing exponentially with b. So our suggestion after these experiments
is using exactBound with b = 5 or 5uptoBound with bmax = 10. However, in the case
of dynamic bound heuristics being much better than exactBound, i.e., for MAXPRT=1,
4uptoBound has a slightly lower mean CPU time than 5uptoBound. Several alternative
settings and improvements for dynamic bound heuristics are possible and should be
investigated as future work (cf. Subsec. 14.4.3).

14.3.7. Distributed LazyOTF

This subsection investigates how distributed LazyOTF speeds up test generation and
test execution. We consider strong scaling (cf. Subsec. 3.5.2) since LazyOTF is CPU
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bound: previous experiments showed runtimes of several days (cf. Appendix B.1.5) for
hard problems, but seldom oom exceptions (if storing communication was disabled, cf.
Appendix B.1.2).
To distribute test execution in an efficient and fault tolerant way, we distribute

LazyOTF on different machines in this subsection. We choose up to 16 nodes in our
cluster (cf. Subsec. 14.3.3). But preliminary experiments have shown that distributed
LazyOTF can also use multi-core multiprocessing (cf. Note 11.12).
We used our default communication via Hazelcast, since it is the most flexible, reliable

(cf. Note 14.1), and offers the most features (synchronization, reliable communication, an
object-based DSM system, elasticity, easy deployment to cloud services, and a monitor,
cf. Subsec. 11.5.2).

Notes 14.1. We conducted the first experiments on distributed LazyOTF with lightweight
message passing via broadcasts and multicasts. They had roughly the same results as
with Hazelcast. But sometimes the cluster’s scheduler (PBS) did not start all instances
sufficiently synchronously, so the later instances did not receive all broadcasts or multi-
casts from earlier instances, i.e., did not detect all externally discharged TOs, in which
case there was higher work duplication. For short running experiments (roughly one
second), even the most extreme case occurred: the early instances finished the experi-
ment and terminated before the later instances started receiving messages, so the later
instances missed all external discharges from the early instances, causing full work du-
plication for them. Hence we chose Hazelcast as default communication in our imple-
mentation and our experiments, and did not investigate lightweight message passing
further.
Since we used shell scripts and PBS for all other experiments, we also used them to

schedule parallel jobs (cf. Subsec. 11.6.3). In hindsight, we should have used Hazelcast’s
distributed executor service due to the complexity of parallel scenarios, which is therefore
future work.

For the experiments in this subsection, we additionally fix the following parameters:
• the SUT Ssim SLC ;
• the default aggWTCsPInputDefault;
• the default bound heuristics: a fixed bound of 5;
• message passing via Hazelcast, version 3.1.2 (and version 3.4.2);
• MAXPRT = 10 to have a sufficiently large fixed problem size to consider strong

scaling.
Therefore, the following parameters are varied: P ∈ [1, . . . , 16] and ö, using öSisol (as
example for a hard problem and a nonfancy TO, and several fancy TOs (as examples
for simple problems).
Fig. 14.7 depicts the following quantities for öSisol (cf. Subsec. 14.3.3):
• tmaxcurr to measure meaningfulness, counterexample length, and test execution per-
formance, which is the bottleneck for slow SUTs;
• CPU time to measure how computationally intensive the problem is, which affects
costs and WC time;
• all WC time to measure cost and how long the user has to wait when Hazelcast is
not running beforehand;
• test WC time as alternative to all WC time when Hazelcast is already running;
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• internal discharges to measure redundancy (i.e., multiple discharges) and distribu-
tion of work (i.e., of discharges amongst the nodes).

We always take the average over the set of samples n. For each sample, we have P runs,
one on each distributed node, and pick the minimal, maximal and mean value:
• min is the optimistic estimate (since the shortest test execution might depend on
results of the longest test execution);
• max is the pessimistic estimate;
• avg shows the mean, which takes each measure into account, and is also relevant
for the overall costs.

So for instance min CPU time = avg
i∈[1,...,n]

( min
p∈[1,...,P ]

(CPU time of experiment number i

and node p)). In total, we have 5 · 3 = 15 measurements, which also allow insightful
comparisons, e.g., between min and max or between all WC time and test WC time.
Since LazyOTF performs very efficiently for fancy TOs (cf. Subsec. 14.3.4), with

about 12 to 22 seconds sequential WC all time, the parallelization overhead (see Ap-
pendix B.1.4) outweighs the gains from parallelization, so the fancy TOs exhibit sub-
linear speedups that drop around P = 10 to P = 14. Furthermore, measurements
have shown that Hazelcast’s setup is usually about 4 seconds faster for the node that is
elected the master in the Hazelcast cluster. Furthermore, there is a variation of about
1 second among the other instances. Hence the actual distributed LazyOTF algorithm
does not start synchronously, but with a time difference of up to 5 seconds. Such de-
lays can distort the speedups for fancy TOs. We did not force the master node to wait
since this decreases the overall performance, and such delays are usual for parallel execu-
tions [Bader et al., 2000]. Since strong scaling analysis should only consider a sufficiently
large problem size [Bader et al., 2000], we do not analyze the fancy TOs and only plot
them in Appendix B.1.4.
The measured CPU times and test WC times in Fig. 14.7 show almost linear speedup.

min, avg and max test WC times are almost identical, showing that communication of
discharges are fast. avg all WC times and max all WC times show lower but still good
speedups. Since testing the SUT for all TOs is finished with the first parallel instance
finished, and we immediately store a LazyOTF result (i.e., its experiment archive) on
our RAID, min all WC time represents the time the user has to wait and is the most
relevant all WC time. The difference between min and avg all WC time, as well as
the difference between avg and max all WC time, are proportional to P and show
Hazelcast’s overhead since all test WC times are almost identical. But Hazelcast’s high
overhead (cf. Appendix B.1.4) only occurs if Hazelcast must setup up and clean up the
Hazelcast cluster for each MBT run. An important application of distributed MBT
is, however, the processing of many MBT tasks on a varying number of processors (cf.
Subsec. 11.5.1 and [Nupponen, 2014]). Hazelcast can handle this without repetitive
setups and cleanups. In this case, test wc time is the important measure. The measured
speedups for TO discharges give insights to how the fastest or luckiest parallel instance
(max intern discharge) performs compared to the slowest or unluckiest (min intern
discharge). These two plots are far apart, which shows that the fastest instance is much
faster than the slowest, i.e., TOs are not evenly discharged. The fastest instance is the
elected master in the Hazelcast cluster, which starts with the actual LazyOTF algorithm
up to 5 second earlier than the other instances (see above). Furthermore, the CPU
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Figure 14.7.: Distributed LazyOTF for öSisol

performance of the parallel instances varies (cf. Appendix B.1.2). avg intern discharge
shows that on average, less than 20% redundant TO discharges occur, very likely the
simpler ones that are quickly discharged from the fastest parallel instance. Finally, we
consider the measured test steps tmaxcurr : Since there is a large difference between avg tmaxcurr
and max tmaxcurr , there also has to be a corresponding difference between avg tmaxcurr and
min tmaxcurr . Therefore, the super-linear speedup of min test steps can be explained by the
high speedup of avg tmaxcurr . But why does the practically relevant avg tmaxcurr have speedup
that is slightly super-linear? More precisely, the speedup of avg tmaxcurr for P = 16 is
16.03 and has a factor of 2.1 from P = 8 to P = 16, so only slightly above linear and
hence denoted as (super-)linear. Meaningful test execution can achieve super-linear
speedup because parallel test execution cannot be simulated efficiently (cf. Note 6.34)
on a sequential machine: In the parallel setting, simple TOs are discharged concurrently
at the beginning, so that each instance can then execute the SUT directed towards
more difficult TOs without being diverted by simple TOs. In the sequential case, simple
TOs can divert test generation from more difficult TOs, but these simple TOs would
be easily discharged after a restart during a directed test generation towards further
difficult TOs. Simulating the concurrent discharges of simple TOs at the beginning
and thereafter concurrently moving towards more difficult TOs can generally not be
implemented in the sequential case: Running multiple SUTs on a single machine usually
differs too much from the real environment (usually with a single SUT), leading to less
stable SUTs that might influence each other, to very different performance behavior, and
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to less fault-tolerant testing that might break at the first failing TC (cf. Subsec. 11.5.1).
Simulating the concurrent discharges on a single machine with a single SUT is usually
not possible during test execution since the SUT cannot jump between arbitrary states
(without performance penalty).

Note 14.2. We had a bug in our logging that caused inconsistent evaluation of internal
discharges. We fixed this bug by changing the Hazelcast version to 3.4.2 and its cleanup.
Since this only has a potential effect on max intern discharge and avg intern discharge
for P=16, we plotted these values in parantheses and did not repeat the experiment,
which required 34 days of accumulated WC time.

Since Conformiq Grid (cf. Subsec. 11.5.1) also offers parallelization, we can compare
speedups: For max or avg all WC time, both tools have a speedup of about 10 on 16
nodes. But it is reasonable to consider min all WC time or test WC time for distributed
LazyOTF, in which case we have a speedup of 13 to 14.5 on 16 nodes. Furthermore,
the faster the sequential algorithm that the speedups are based on, the more significant
the scalability analysis is; since our sequential algorithm is usually exponentially faster
than offline MBT to achieve the desired TOs, our speedups (being the absolute speedup,
not only the relative) have even stronger meaning. These speedups were achieved by
including meaningful test execution with (super-)linear speedup, which also allows to
only communicate TO discharges (i.e., much lower communication than for transmitting
TCs).

14.3.8. Real SUT

This subsection employs LazyOTF on a real, industrial SUT, and is a proof of concept
that the aspects investigated on Ssim SLC can be transferred to practical SUTs. For this,
we measure LazyOTF’s overall WC times and test execution WC times on SLC , and
compare the test steps on SLC with those on Ssim SLC .
For scalability analysis and comparisons with former experiments, we show these mea-

surements depending on MAXPRT , for both a fancy and a nonfancy TO, and the other
parameters as before. Hence we fix the following parameters:
• the SUT SLC : the tests are executed on License Central version 2.0a, preliminary
experiments also on version 2.01;
• the default aggWTCsPInputDefault;
• the default bound heuristics: a fixed bound of 5;
• the default P = 1, i.e., only sequential LazyOTF. Besides executing a single

LazyOTF in our main experiments, we also executed up to 80 sequential LazyOTF
in parallel on a single SLC to investigate a different kind of parallelism: concurrent
accesses on a single SUT.

Therefore, the following parameters are varied: MAXPRT and ö, using the fancy TO
oRSML and the nonfancy TO oNFRSML (cf. Subsec. 14.3.3). Due to the simple facade
(see below), no coverage level of 100% is achievable, i.e., no öcov and concurrent accesses
with odec would also not terminate.
Since we employ LazyOTF for testing SLC , we apply a general MBT tool that is not

aware of web services, and move those technicalities into the test adapter (cf. Sub-
sec. 10.3.4). The actual test execution on SLC is performed via JTorX and its test
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adapters (cf. Sec. 13.3). The main developer of SLC , Stefan Nikolaus, also implemented
a simple facade to simplify the test adapter for SLC . The test adapter was mainly im-
plemented by Felix Kutzner. For direct measurements and better comparison, the test
adapter is kept as simple as possible. Since this subsection only performs a proof of
concept, the facade is very limited, so that only the core functionality of SLC is tested:
the backup functionality is stubbed, and exception handling is omitted. No failures oc-
curred during the experiments that would have been covered by the removed exception
handling. Therefore, the runtime measurements in this subsection are a lower estimate
for testing the full SLC .
Fig. 14.8 depicts the expected overall WC time and test execution WC times on SLC ,

furthermore tmaxcurr and the corresponding tmaxcurr on Ssim SLC for comparison, plotted against
MAXPRT , for oRSML (cf. Subfig. 14.8a) and for oNFRSML (cf. Subfig. 14.8b).
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Figure 14.8.: One LazyOTF on the real SUT SLC , version 2.0a, with fancy TO oRSML
(Subfig. 14.4a) and nonfancy TO oNFRSML (Subfig. 14.4c)

The number of test steps tmaxcurr on SLC is a constant factor f smaller than on Ssim SLC ,
for both oRSML and oNFRSML. Test WC time on our simple SLC is always about 10% to
30% of all WC time on SLC , for both oRSML and oNFRSML. For oRSML, the WC times
increase linearly and very slowly with MAXPRT . The values for MAXPRT = 1 show
that LazyOTF has a significant overhead (for setup, waiting and cleanup). For oNFRSML,
the WC times increase exponentially with MAXPRT , like tmaxcurr .
The WC times for maxprt = 1 were unexpectedly high for oNFRSML, since these runs

have a very low tmaxcurr . This is probably caused by the frequent restarts and inefficient
resets in SLC . But this did not occur for oRSML. Since it was not reproducible on SLC ,
version 2.01, we investigated no further. For oNFRSML and MAXPRT = 10, quiescence
errors occurred sporadically in 22 out of overall 2250 cases, all within 3 hours; hence the
points for MAXPRT = 10 are plotted in parantheses. Quiescence errors occurred where
the SUT was by mistake quiescent, even though the timeout was set to 10 seconds, i.e.,
latency increases significantly. The error logs showed messages similar to Listing 14.1.
The reason is either a network error or a rare performance problem of SLC or a rare
failure in the test adapter. Since these errors did not re-occur on SLC , version 2.01, we
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did not investigate further and the error is probably not in the test adapter. No other
errors occurred. This was expected since SLC is very abstract and License Central is
a well tested and broadly applied product. Otherwise, SLC scales well, as the test WC
times in relation to tmaxcurr for increasing MAXPRT show.

1. . . .
2In f o : 406 output ( out ) : ( Quiescence )
3Verdict : f a i l
4stopTestRun ( ) : done myDriver . stopAuto ( ) ;
5. . .

Listing 14.1: Exemplary quiescence error message

The measurements show that LazyOTF is applicable on a real SUT, also in an industrial
context. Due to the constant factor f (see above), our conclusions from measurements
on Ssim SLC in previously subsections can be transferred to a real SUT. Furthermore,
the constant factor f shows that LazyOTF scales well with the degree of nondeterminism
on output since SLC is very simple (e.g., exercises no exceptions), whereas Ssim SLC uses
equidistribution over all outgoing transitions in Sdet (i.e., a lot of exceptions). Hence the
increase in the number of test steps must be at least a constant factor. For on-the-fly
MBT, it is higher since more random choices are made that can reduce licenseCount.
Offline MBT does not know a priori how often exceptions occur, which leads to test case
explosion or inconclusive testing.
Finally, we also performed experiments with up to 80 sequential LazyOTF instances

running in parallel for concurrent accesses of the single SLC , with a single run for each
instance. This caused only insignificant changes in the measurements. This is under-
standable since oRSML and oNFRSML only increases licenseCount and notices when it
has increased sufficiently. Hence it does not matter whether the increases are caused by
one or multiple instances. It does, however, show that the web services in SLC handle
concurrent accesses well, i.e., License Central scales well in the number of users.

14.3.9. Preliminary Further Experiments

Preliminary experiments investigating the cycle warnings (cf. Subsec. 12.3.7) showed that
for a threshold of 10, cycle warnings usually did not occur for fancy TOs (mostly 0 times
on average, but 0.8 times on average for öcov with MAXPRT = 10), but exponentially in
MAXPRT for oNFRSML (0 times on average for MAXPRT = 1 and 1593 times on average
for MAXPRT = 10) and for öSisol (16 times on average for MAXPRT = 1 and 123311
times for MAXPRT = 10). For a threshold of 1000, cycle warnings usually did not occur
for nonfancy TOs, too (mostly 0 times on average, but 3.75 times on average for oNFRSML
with MAXPRT = 10 and 14 times for Sisol with MAXPRT = 10). Since we have multiple
parameters for these cycle warning experiments, thorough statistics are a lot of work and
hence future work. The experiments might yield further interesting results since cycle
warnings also help to detect weak guidance heuristics, or mean adversaries, or hot spots
in Sdet during LazyOTF’s traversal and test execution sub-phases, which indicates hot
spots in the application (cf. Subsec. 12.3.7).
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Preliminary experiments show that an optimized implementation for the τ -closure
(cf. Subsec. 13.5.2 and [Kutzner, 2014]) usually only yield small runtime improvements
(as expected due to the (almost) constant CPU time per test step independent of
MAXPRT ). Hence further experiments were not conducted. For consistency, all other
experiments described in this section were conducted without τ -closure optimization,
which was implemented only after many experiments had already been conducted.

14.3.10. Conclusion
Summary

This section has investigated multiple aspects of LazyOTF: its capability compared to
OTF, its guidance and bound heuristics, its parallelization, and its ability for testing a
real SUT.
Since our experiments are fully automated and all scripts and plots available on-

line [URL:experimentLOTFHP], they can be recomputed. Their validity is considered
in the following subsection.

Threats to Validity

Threats to validity are potential risks in the design and execution of empirical studies
that may limit the experiments’ trustworthiness, i.e., reliable results or their generaliza-
tion to a larger population [Barros and Dias-Neto, 2011; Wohlin et al., 2012; Creswell,
2013].
Since our case study is empirical research, this section mentions its threats to validity.

Since we do not perform applied research, but perform experiments to test our theory,
the biggest threats are for invalid relationships, resulting in the following priorities:
internal over construct over conclusion over external threats [Wohlin et al., 2012].

Threats to Internal Validity.
We explained all parameters in Subsec. 14.3.3, and partitioned them into a set of

parameters V that were varied in some experiment, and a set of parameters that were
always fixed: V contains the SUT, bound heuristics, aggWTCs, the number P of par-
allel instances, TOs, and MAXPRT . The following parameters were always fixed: the
specification SLC , the implementation relation ioco, no user interaction (i.e., JTorX’s
text mode), the lazy traversal sub-phase optimization, the eager micro-traversal sub-
phase optimization with bfuture = bexec = 1, no cycle warning (except in Subsec. 14.3.9),
aggPath2Ws(·) = max, the software (except for Hazelcast and License Central) and
hardware settings, storing communication between JTorX and LazyOTF (except for ex-
periments where this impacted memory), and verbose logging. Furthermore, we listed
for each experiment which of the parameters in V were additionally fixed and which one
actually varied for that specific experiment.
We thoroughly considered our fixed parameters. However, our environment is com-

plex (including hardware like our cluster, and software like the JVM), especially for
our parallel experiments [Bader et al., 2000] environment (including heavy communica-
tion and Hazelcast). Consequently, there might still be some technical aspect that we
have overlooked but that influenced our results. To investigate whether the hardware in
our cluster threatens the validity of our measurements, we additionally investigated the
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hardware performance (cf. Appendix B.1.2) and detected a potential influencing param-
eter: the processor load causes power management to vary the time measurements, but
at most 20% and usually much smaller. Hence we set similar loads in our experiments
for better comparisons. But the load could not be set precisely since the cluster’s job
scheduler (Portable Batch System [URL:PBSHP]) sometimes put jobs into idle mode
or started some jobs with delay. But we only detected this infrequently, and the mea-
surements usually vary only slightly, so this is only a small threat to internal validity.
Another technical influence on performance was Hazelcast’s varying parallel overhead
for setup and cleanup (cf. Appendix B.1.2). We mitigated this threat to internal validity
by discussing it at our parallel experiments and measuring both all WC time and test
WC time.
Since our experiments have many attributes, we lowered the risk of invalid inferences

by performing many experiments over multiple parameters. We believe there are no
further influencing parameters (except for possibly network errors within 3 hours, cf.
Subsec. 14.3.8) since we conducted many experiments, each one over multiple iterations
spread over time.
A few bugs were found during our experiments, in which case we fixed the bug and

restarted the experiment from scratch. τ -closure optimization in STSimulator (cf. Sub-
sec. 13.5.2) was only implemented after many experiments had already been conducted.
Hence we performed the remaining experiments without τ -closure optimization, except
for the corresponding preliminary experiments (cf. Subsec. 14.3.9).
To get all possible information and measurements, we used verbose logging by default,

which we wrote into experiment archives stored onto a high-performance hardware raid
(cf. Subsec. 14.3.3). Since this never caused significant performance penalties for our
experiments (cf. Appendix B.1.2), it did not threaten measurement accuracy (i.e., con-
struct validity), but had the advantage of full information and measurements, i.e., lower
threats to internal validity. Similarly, we stored the communication between JTorX and
LazyOTF if this did not cause strong memory increases, which was rarely the case (and
memory measurements were distorted anyway, cf. threats to construct validity below).
The strongest threats to internal validity were from experimental mortality (aka ex-

perimental attrition): For some measurements at the border of feasibility, some samples
did not finish the experiment, i.e., did not terminate due to out-of-memory (oom) or
timeouts. Since this can lead to distorted measurements, we dealt with these cases ex-
ceptionally: we mentioned them in the text and plotted the corresponding points for the
possibly distorted measurements in parantheses (cf. Subsec. 14.3.3). In some cases, we
adapted settings (e.g., deactivated verbose logging and set the maximum Java heap size
to 16 GiB, cf. Subsec. 14.3.3) to avoid mortality; in all these cases, the expected values
were achieved, i.e., we had no outliers.
Finally, we were not able to evaluate the internal discharges in a few logs for P=16

(cf. Note 14.2), which caused slight outliers in max intern discharge and avg intern
discharge; we consequently plotted them in parantheses in Fig. 14.7. We did not repeat
the experiment since these experiments for P=16 required about 34 days of accumulated
WC time, since we updated Hazelcast to the newest version, and since intern discharge
were only auxiliary values to explain tmaxcurr and time quantities.
In summary, the inferences from our measurements and conclusions on the relation-

ships between our parameters have high validity, i.e., we have mitigated all relevant
threats to internal validity.
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Threats to Construct Validity.
Our main evaluation metric was tmaxcurr until all TOs are discharged because this metric

is established [Nieminen et al., 2011; Anand et al., 2013; Gay et al., 2015] and has pre-
dictive validity for meaningfulness and test execution performance (cf. Subsec. 14.3.1).
Furthermore, we measured the number of (internal) discharges, memory requirement
and multiple time requirements: The CPU time, which is the definitive measure for
serial executions, and various wallclock times, which are the definitive measure for par-
allel executions [Bader et al., 2000]. While all WC time measures the complete WC
time elapsed, test WC time excludes the setup and cleanup time to measure the WC
time elapsed for the actual distributed LazyOTF algorithm, which should be consid-
ered for runtime analysis of parallel algorithms [Bader et al., 2000] (cf. Subsec. 14.3.3).
Since these performance measurements are difficult [Beyer et al., 2015], we used the
System Information Gatherer and Reporter (SIGAR) framework, which is a
cross-platform, cross-language API that provides accurate operating system and hard-
ware level information, such as CPU and system memory statistics [URL:sigarHP; Reddy
and Rajamani, 2014]. It is employed by projects like MySQL, Terracotta, and JBoss.
The only measurement that caused difficulties to relate to theory was the memory

requirement, which was distorted by the JVM’s conservative memory allocation algo-
rithm (cf. Subsec. 14.3.6). We do not know how to avoid these technical distortions, and
whether this is possible at all.
The limitations and practical effects of using LTS models to abstract from the SUT

are specified precisely in the interface abstraction and testing hypothesis (cf. Sec. 8.1).
In summary, we established a strong relationship between theory and observation with

low threats to construct validity for all metrics but memory requirement.

Threats to Statistical Conclusion Validity.
To derive valid relationship from our experiments, we need to use statistical compu-

tations since the SUT is nondeterministic (or probabilistic in case of simulation), and
genWTS chooses randomly amongst heaviest weights.
For strong statistical randomness yet fast performance, we integrated the pseudoran-

dom number generator Mersenne Twister [Matsumoto and Nishimura, 1998] into the
simulation and into genWTS (option use−mt).
Since measurements (like output, the number of test steps, or runtime) of random al-

gorithms can have very complex non-normal probability distributions with high standard
deviation, a high sample size (e.g., n = 1000) or powerful non-parameterized statistical
tests [Wilcox, 2010; Wohlin et al., 2012] are advisable for hypothesis testing [Arcuri and
Briand, 2014], if time permits. Simply comparing average measurements, e.g., in a t-test,
might be misleading for small n since this does not give any information on the probabil-
ity distribution, and for randomized algorithms, normality and equal variance are usually
not given. But for a sufficiently high number n of samples, the t-test has just as much
statistical power and accuracy as other tests, including non-parameterized tests [Arcuri
and Briand, 2014]. Since most of our measured expected values that we compare yield
high differences (e.g., between JTorX and LazyOTF, between our heuristics, or between
different parallelization degrees), we do compare expected values similar to a t-test. Fur-
thermore, we often have a high number n of samples (cf. Appendix B.1.5). Hence our
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lightweight statistical tests via RSEMs (as suggested by KIT’s statistical consulting) are
sufficient and yield more general results than testing for a few specific hypotheses. If
WC time is a bottleneck, performing more experiments with smaller n usually yields
more insights than fewer experiments with larger n [Arcuri and Briand, 2014]. Hence
we allow smaller numbers n and focus on achieving an RSEM < 5% for tmaxcurr (for 3
experiments we have an RSEM < 10% with an accumulated WC time of 40 days, each).
Appendix B.1.5 summarizes the RSEM, required sample size, and accumulated WC time
for all experiments, which totals to 180000 runs and 14 years of WC time.

Note. A standard in reliable statistics is set by health-related statistics, (e.g., from the
U.S. National Center for Health Statistics), which demand an RSEM of at most 30%,
and a sample size of at least 30 [Klein et al., 2002].

For our comparisons, we always chose a representative of the best known solution so
far as baseline: on-the-fly MBT via JTorX, PInputDefault a aggWTCs, exact bounds
as bound heuristics, the sequential LazyOTF for distributed LazyOTF, and Ssim SLC as
SUT.
For descriptive statistics, we considered mean, min, max, median, corrected sample

standard deviation, SEM , and RSEM in our experiments (cf. Subsec. 14.3.3). To keep
the plots simple, we summarize our measurements by demanding an RSEM <5% and
only plotting the average measurements in most plots (not for Fig. 14.7 and several
Figures in Appendix B.1). We summarize the RSEM and number n of sample in Ap-
pendix B.1.5, from which many of the above statistical numbers can be reconstructed.
Furthermore, the detailed statistical measurements for each experiment can be found at
[URL:experimentLOTFHP].
Since our statistical computations are slightly distorted by mortality, we mention this

in our descriptions and plot the corresponding measurements in parantheses (cf. threats
to internal validity).
Since we have no reason to consider extreme measurements to be outliers caused by

erroneous settings introduced into our experiments, we did not truncate extremes [Kaner
and Kabbani, 2012; Bader et al., 2000].
In summary, we derive statistical relationships with a RSEM < 5%. For this, we often,

but not always, measure n ≥ 1000 samples because performing more experiments with
smaller n usually yields more insights.

Threats to External Validity.
To allow the generalization from our samples to larger populations, i.e., to lower the

threats to external validity, we carefully chose our settings: the specification, its size and
complexity, the experiments and their parameters:
We only used one case study based on the abstract specification SLC since this already

caused 44 experiments with an accumulated WC time of 14 years (cf. Appendix B.1.5) to
compare approaches, heuristics, and parallelization degrees. Since SLC has high abstrac-
tion, we did not find any functional bug when testing the industrial SUT SLC (except for
quiescence errors). Hence our experiments only roughly investigated LazyOTF’s behavior
when it finds a bug, but this was not considered by our experiments anyway, so it does
not increase the threats to external validity.

372



14.3. Experiments

It would have been interesting to conduct experiments with a full benchmark to be able
to use different specifications and settings to cover more cases and different complexity,
to reveal performance limits and to find and test optimizations. Unfortunately, an
established benchmark does not exist yet [Lackner and Schlingloff, 2012]. Hence we
started building one [URL:MBTbenchmark] and included SLC , but had to mitigated
the threats to external validity differently: We based our specification on an industrial
example, which we abstracted in natural ways, in accord with architectural principles (cf.
Subsec. 14.3.2). Furthermore, SLC is of variable size and complexity, and incorporates
all relevant aspects of an LTS (cf. enumeration in Subsec. 14.3.2), e.g., nondeterminism,
τ -cycles, and irregular underspecification of input. We conducted many experiments,
with many parameter variations, e.g., using various TOs for coverage, requirements, and
more complex properties than reachability (cf. odec in Subsec. 14.3.3). Furthermore, they
vary in difficulty of discharging and in strength of guidance (fancy vs. nonfancy TOs).
Our experiments of distributed LazyOTF were conducted on one cluster. Since each

machine and environment is its own special case for parallel experiments [Bader et al.,
2000], the measurements can differ on another parallel machine. But since the parallel
overhead was low for the actual distributed LazyOTF, the measured test WC times should
differ only slightly.
Our insights are applicable independent of the degree of nondeterminism on output

and nondeterminism of the LTS (cf. Subsec. 14.3.8).
The TO odec was created manually, using two helper TOs and a programmatic discharge

function, configured and implemented specifically for aggWTCsp for our experiments in
Subsec. 14.3.4. For other aggWTCs, odec does not describe meaningfulness sufficiently
well, such that guidance can become inefficient or even inexhaustive. But odec could
easily be fixed by configuring it with higher values (cf. Subsec. 14.3.4). Furthermore,
odec for our experiments in Subsec. 14.3.4 was sufficient to show that the advantages of
LazyOTF can be transferred to TOs that are more complex than reachability properties
if they describe meaningfulness sufficiently well by weights; then LazyOTF can handle
them as well as reachability TOs.
A benchmark is also often used to compare results between various tools for low

threats to external validity. Even though we have no benchmark yet, we did not conduct
our experiments with further tools besides JTorX and LazyOTF either, since this is not
required to achieve a low threat to external validity: Other MBT tools perform either on-
the-fly or offline MBT (cf. Sec. 10.3), and we investigated on-the-fly and offline behavior
that is inherent in the approach. Hence our findings are generalizable to the other tools.
We tested our theoretical results of on-the-fly MBT via JTorX (cf. Subsec. 14.3.4), of
offline MBT indirectly via traversalSubphase (cf. Subsec. 14.3.6).
Our theoretical result of tmaxcurr to reach some goal being exponential in the minimal

number of required steps for on-the-fly MBT was based on probabilistic computations
of random walks, as described in Example 11.1. We additionally computed such a
probabilistic value of a random walk for SLC : the expected value tmaxcurr for OTF to reach
oRSML, using the tool PRISM (cf. Subsec. 5.5.4). We got similar results as JTorX (cf.
Subsec. 14.3.4), so our measurements are due to the bad guidance of OTF and not caused
by some technicality in JTorX.
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Notes. There is one use case that has been used as case study for various MBT tools:
the conference protocol; however, each tool was investigated with an own specification,
with uneven degrees of complexity, aggravating comparisons [Belinfante et al., 2005].
Furthermore, most specifications did not exhibit all relevant aspects of an LTS (see
above). Hence we used SLC instead.
PRISM’s results differed from the expected value tmaxcurr we measured in JTorX for large

MAXPRT , but this is probably due to instable computations in PRISM since variations
in the applied numerical method resulted in different expected values tmaxcurr .
The exponential tmaxcurr are particularly severe for specifications S with complex guards,

since these often cause TOs being deep in the state space, i.e., only reachable via long
paths, which usually have low probability. Similarly, guards can cause the state space
to contain a bottleneck, i.e., a large sub-graph in the state space that is reachable only
through relatively few transitions. Such bottlenecks in state spaces are usually traversed
only with low probability, too. Bottlenecks also exist in practice [Gay et al., 2015] More
generally, there are specifications that have an irregular topology, i.e., for some b ∈ N,
some paths of length b have a much lower probability compared to the other paths of
length b [Denise et al., 2008]).

SLC is an abstract STS that is suitable for JTorX, i.e., the reduction heuristic of
STSimulator is sufficient for [[SVdLC ]]. This is not the case in general, i.e., for arbitrar-
ily complex STSs, which is a relevant threat to external validity for STSimulator. For
example, more expressive STSs would have to be used to check concrete licenses (cf.
Sec. 13.4). But alternatively, the test adapter could keep track of the licenses. Fur-
thermore, this thesis does not focus on STSimulator and arbitrarily complex STSs, but
on LazyOTF and on LTSs, for which this threat does not apply. Finally, the proof of
concept in Sec. 13.4 shows how to handle complex STSs.
Since the experiments were conducted by the implementers of the LazyOTF tool, they

do not reflect the average knowledge of an average tester to set up the heuristics. This
threat was addressed by conducting experiments for various test objectives with various
complexities in their heuristics setup and providing usable TOs and a provisos frame-
work. So all threats to external validity were mitigated and we can generalize our ob-
served results to larger populations. This can be individually examined since we clearly
defined our samples, i.e., our specification, the parameters we set and the parameters
we measured.

In conclusion, we have several minor threats to the construct, internal, conclusion
and external validity, but were able to mitigate all but distorted memory measurements.
Therefore, we can safely transfer our observations (except for memory requirements)
from the samples to the real population.

14.4. Conclusion

14.4.1. Summary

Sec. 14.2 presented an application of MBT and LazyOTF in a prominent software devel-
opment process: agile development with Scrum and XP. For optimal application, MBT
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and AD should be integrated tightly. This requires flexible MBT without a BDUF and
early feedback, e.g., via LazyOTF and refines.
Sec. 14.3 confirmed most theoretical analyses from Chapter 11 and 12: LazyOTF and

its heuristics yield exponentially better meaningfulness and performance. Distributed
LazyOTF achieves (super-)linear speedup of meaningful test execution and almost linear
speedup overall. Unfortunately, the dynamic bound heuristics turned out to improve
the trade-off between meaningfulness and CPU time only in some cases compared to
a well chosen exact bound; in other cases, dynamic bound heuristics yield only slight
improvements or even deterioration of the trade-off. But good exact bounds are not
always known in advance. Many alternative settings and improvements for dynamic
bound heuristics are possible and future work (see below).

14.4.2. Contributions
We described howMBT and agile development should be integrated for practical software
engineering, and how LazyOTF and refines can be applied fruitfully for this.
Thorough experiments with 14 years of accumulated WC time were conducted, com-

paring different MBT approaches, different guidance heuristics settings, different bound
heuristics settings, distributed LazyOTF, and finally MBT of a real SUT, an industrial
web service. The experiments confirmed all theoretical analyses except for the dynamic
bound heuristics: we expected significant improvements for bound heuristics by making
them dynamic, too, but the experiments showed improved trade-off between meaning-
fulness and CPU time only in some cases.

14.4.3. Future
For future work on integrating LazyOTF and refines with agile development, an indus-
trial case study is promising. For our LazyOTF experiment, interesting future work is
performing further experiments on:
• cycle warnings;
• τ -closure optimization;
• bound heuristics, especially with triangle phase heuristics instead of sawtooth;
• bound heuristics using more dynamic information (cf. Subsec. 12.4.4);
• quantifying nondeterminism (Subsec. 12.4.5).
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15.1. Summary
This thesis has been concerned with making formal methods more feasible in practice,
i.e., faster, more scalable and more usable. The focus was on software, but some tech-
niques can easily be applied to hardware as well (e.g., model-based testing [Utting et al.,
2006] or bounded model checking [Biere et al., 1999]). Since automation strongly in-
creases usability, we have focused on model checking and model-based testing. More
precisely, the positioning of this thesis is depicted in Fig. 15.1.
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15.1.1. Main Addressed Challenges
Sec. 1.2 already described how this thesis achieves increased feasibility for model checking
and model-based testing, and listed the contributions of this thesis. Here, we consider
the main challenges that the thesis addressed:
The major problem in MC is state space explosion, causing infeasible time and space

requirements, especially for liveness properties. For the important liveness property of
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livelock freedom, DFSFIFO reduces both time and space requirements by simultaneously
exploring and checking the specification in one pass and without a Büchi product, and
by improving partial order reduction for DFSFIFO. The time requirement is further
reduced by parallelization with almost linear speedup. Usability is improved by simpler
and more accurate modeling of progress and shortest counterexamples. Unfortunately,
DFSFIFO cannot be generalized to cover all LTL properties.
The major problem in MBT is state space explosion and test case explosion for of-

fline MBT and low meaningfulness for on-the-fly MBT, both causing infeasible time, for
offline MBT also infeasible space requirements, especially for SUTs with uncontrollable
nondeterminism. LazyOTF reduces both time and space requirements by integrating
both on-the-fly and offline MBT: It swaps between state space traversal and test exe-
cution phases, enabling strong guidance by traversing sub-graphs of the specification,
employing heuristics that make use of dynamic information from previous test execution
phases, for instance the SUT’s resolution of uncontrollable nondeterminism. The time
requirement is further reduced by parallelization with (super-)linear speedup of mean-
ingful test execution and almost linear speedup overall. Usability is improved by higher
meaningfulness and reproducibility. Furthermore, flexible heuristics via weights, com-
posable TOs, and a provisos framework offer usable configuration and guarantees for
exhaustiveness, coverage, and discharging. Unfortunately, LazyOTF tightly integrates
MC algorithms with heuristics to make strong use of the available dynamic information;
hence useful off-the-shelf tools (e.g., for MC or SMT solving) cannot be efficiently em-
ployed by LazyOTF without adaption; but our provisos framework helps the adaption.
Furthermore, many aspects of MBT and possibilities for further heuristics are future
work, with MBT of timed automata being a big challenge (cf. next section).

15.1.2. Measurements
For our experiments on four established protocols (cf. Subsec. 6.9.1) and within feasible
problem size, DFSFIFO’s space requirements are reduced by a factor of 3 to over 200
compared to related work, its time by a factor of 3.4 to 16. Furthermore, DFSFIFO has
over 150 times stronger on-the-flyness than related work. PDFSFIFO achieves almost
linear parallel speedup, and PDFSFIFO with POR can handle 4 to 5 more orders of mag-
nitude compared to related work. For relevant livelocks of our experiments, PDFSFIFO’s
counterexamples are up to 10 times shorter than those of related work. Unfortunately,
the improvement of on-the-flyness drops to a factor of only 1.75 for our experiments with
PDFSFIFO with P = 48, but this is mainly due to the strong improvement of the related
work (cndfs) for P = 48 compared to P = 1.
For our experiments with an accumulated WC time of 14 years (cf. Sec. 14.3 and

Appendix B.1.5), LazyOTF’s meaningfulness and CPU times are exponentially better
than for related work, its space requirements are apparently only polynomial (probably
due to JVM’s conservative memory allocation for our problem sizes). Furthermore,
distributed LazyOTF achieves (super-)linear speedup of meaningful test execution and
almost linear speedup overall. Unfortunately, dynamic bound heuristics turned out to
improve the trade-off between meaningfulness and CPU time only in some cases. In other
cases, dynamic bound heuristics yield only slight improvements or even deterioration of
the trade-off. The comparison shows, however, that further investigations and more
dynamic information for bound heuristics is relevant future work (see next section).
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15.2. Future
Since this thesis covered many fields and MC and MBT span wide domains, we have
already summarized many future work in different directions at the end of most chapters.
The most fundamental and important ones are:
• for DFSFIFO, the extension from livelock properties to other properties is interest-

ing future work, in spite of the extension to full LTL MC being impossible and
livelocks being one of the most relevant liveness properties already;
• for LazyOTF, a clean reimplementation on top of an SMT solver instead of STSim-
ulator can improve the expressiveness of LazyOTF and its specifications due to
more powerful symbolic capabilities.

But since the goal of this thesis was improving the feasibility of formal methods in
practice, and the main results have been integrated in the popular tools LTSmin and
JTorX, the most relevant future work is applying DFSFIFO and LazyOTF in industrial
case studies. This is the next step (after sufficiently increasing FM’s feasibility) towards
the challenge of broad industrial application of FMs (cf. Chapter 1). Due to the trend
in parallelization, likely examples for industrial case studies are
• in MC: the verification of livelock freedom for lock-free and wait-free algorithms

and data structures, which are quickly growing in number and importance;
• in MBT: the verification of web services, as has already been started in Sub-
sec. 14.3.8.

These case studies should also contain broader empirical experiments on usability, and
implement or prioritize among the many smaller future work given throughout this thesis,
e.g.,
• integrating our finite ∪ infinite trace semantics (e.g., into LTSmin) to improve the
specification’s expressivity and avoid workarounds;
• integrating further heuristics such as bound heuristics or iδ caching if LazyOTF’s

performance must further improve, or a cycling heuristic via NPC checks (which
brings DFSFIFO and LazyOTF fully together), or integrating further features of
distributed LazyOTF if it is employed heavily due to the boom in cloud computing.
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A.1. Excerpt for SPIN
Listing A.1 implements Example 6.19 by defining process1 and process2, with progress
corresponding to the action d_step{process1globalPC = 0;printf("process1 made progress")};
at l.7.

1byte process1g lobalPC = 0 ;
2

3proctype proce s s1 ( )
4{
5s t a r t : process1g lobalPC = 1 ;
6prog r e s s :
7d_step{ process1g lobalPC = 0 ; printf ( " p roce s s1 made prog r e s s " ) } ;
8goto s t a r t ;
9}
10

11proctype proce s s2 ( )
12{
13s t a r t : process1g lobalPC==1
14−> printf ( " p roce s s2 r e s t a r t e d without p rog r e s s " ) } ; goto s t a r t ;
15}
16

17in i t {run proce s s1 ( ) ; run proce s s2 ( ) ; }
Listing A.1: PROMELA description for process1 and process2 in Fig. 6.6

A.2. Excerpt for CBMC
Listing A.2 shows the autostart function used for most STATUS packets: The first block
(l.2 – l.5) sets parameters to configure the network for the chosen scenario. The second
block (l.7 – l.20) constructs a SET package and lets the node process it. The third block
(l.22 – l.30) constructs n SETAGG packets to communicate the aggregation tree to the
node.
Listing A.3 shows the autostart function used for most ESAWN packets: The first

block (l.2 – l.8) sets parameters to configure the network for the chosen scenario. Here p is
set nondeterministically. The second block (l.10 – l.21) creates an empty ESAWN packet
and then fills it. Here the measurements are set nondeterministically. The third block
(l.23 – l.26) sets the ESAWN packet’s destination, i.e., the recipient in the aggregation
tree. The fourth block (l.28 – l.29) moves the ESAWN packet into the node’s queue and
lets the node process it.
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1void au to s t a r t ( void ){
2uint16_t n = 5 ;
3TOS_NODE_ID = 2 ;
4uint16_t _parent [ 5 ] = { 0 , 0 , 1 , 2 , 3} ;
5uint32_t _fake_agg [ 5 ] = { 0 , 0 , 0 , 0 , 0} ;
6

7radio_status_msg_t ∗_msg = ( radio_status_msg_t ∗)
8EsawnC$Se r i a lPacke tS ta tu s$getPayload (
9&EsawnC$tmp_pkt , s i z e o f ( radio_status_msg_t ) ) ;
10EsawnC$parents = mal loc ( s i z e o f ( uint16_t )
11∗ EsawnC$num_nodes ) ;
12_msg−>status_id= STATUS_SET;
13_msg−>data . s e t . num_nodes=n ;
14_msg−>data . s e t . k=2;
15_msg−>data . s e t . p=65;
16_msg−>data . s e t . fake_agg=_fake_agg [TOS_NODE_ID] ;
17EsawnC$SerialAMPacketStatus$ s e tDe s t i na t i on (
18&EsawnC$tmp_pkt , TOS_NODE_ID) ;
19EsawnC$Se r i a lRe c e i v eS t a tu s$ r e c e i v e (&EsawnC$tmp_pkt ,
20_msg , s i z e o f ( radio_status_msg_t ) ) ;
21

22for ( i = 1 ; i < n ; i++) {
23_msg−>status_id=STATUS_SETAGG;
24_msg−>data . se tagg . node_id=i ;
25EsawnC$SerialAMPacketStatus$ s e tDe s t i na t i on (
26&EsawnC$tmp_pkt , TOS_NODE_ID) ;
27EsawnC$Se r i a lRe c e i v eS t a tu s$ r e c e i v e (&EsawnC___msg
28−>data . se tagg . parent_id=_parent [ i ] ;
29d__tmp_pkt , _msg , s i z e o f ( radio_status_msg_t ) ) ;
30}
31}

Listing A.2: Exemplary autostart function for the initialization without any nondeter-
minism
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1void au to s t a r t ( void ){
2uint16_t i ;
3TOS_NODE_ID=2;
4EsawnC$param_k = 2 ;
5EsawnC$num_nodes = 5 ;
6EsawnC$param_p = nondet_int ( ) ;
7EsawnC$parents [ 5 ] = { 0 , 0 , 1 , 2 , 3} ;
8EsawnC$fake_agg = _fake_agg [ 0 ] ;
9

10msg_queue_item mitem ;
11radio_esawn_msg_t ∗_msg = ( radio_esawn_msg_t ∗)
12EsawnC$AMSendEsawn$getPayload (
13&EsawnC$tmp_pkt , s i z e o f ( radio_esawn_msg_t ) ) ;
14EsawnC$SerialAMPacketStatus$ s e tDe s t i na t i on (
15&EsawnC$tmp_pkt , TOS_NODE_ID) ;
16_msg−>part [ 0 ] . from=0;
17_msg−>part [ 0 ] . data . dec . va lue=nondet_int ( ) ;
18EsawnC$add_to_relay_l ist (&_msg−>part [ 0 ] ) ;
19_msg−>part [ 1 ] . from=1;
20_msg−>part [ 1 ] . data . dec . va lue=nondet_int ( ) ;
21EsawnC$add_to_relay_l ist (&_msg−>part [ 1 ] ) ;
22

23mitem . to = TOS_NODE_ID;
24mitem . am_type = AM_RADIO_ESAWN_MSG;
25mitem .msg = EsawnC$tmp_pkt ;
26mitem . output = WIFI ;
27

28EsawnC$MessageQueue$enqueue (mitem ) ;
29EsawnC$send_queue$postTask ( ) ;
30}

Listing A.3: Exemplary autostart function for the probabilistic concast with measure-
ments and p being nondeterministic
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B.1. Figures for the Application of MBT

B.1.1. Abstract STS Specification for CodeMeter License Central

This subsection describes the system specification for SLC , the CodeMeter License Cen-
tral [URL:LC] web services from WIBU SYSTEM AG for managing and distributing
licenses. The specification is an STS that strongly abstracts SLC and covers its main
features: generating, removing, inspecting and backing up licenses.
We call the STS SLC and depict it in Fig. B.1 (plotted by Felix Kutzner [Kutzner,

2014] using yEd [URL:yEdHP]. SLC contains a hard-coded parameter: the constant
MAXPRT ∈ N>0 describing the maximal portion for pagination (see next paragraph).
As described in Subsec. 14.3.2, SLC is designed for web services, using the request-

response pattern [W3C, 2001] and fault handling via response messages and additional
exceptional behaviors. Managing licenses is specified by the following features, all having
appropriate exception handling:
• generateLicense generates a new license, returning its ID;
• removeLicense removes the license with the given ID;
• removeExpired removes all licenses that are currently expired. Since expiration is
not modeled by SLC , the abstraction nondeterministically removes a subset of all
present licenses;
• removeAll removes all licenses;
• showLicenses lists all present licenses using portions of maximal MAXPRT ∈ N>0
many licenses, to support pagination and packages for transmission, i.e., succes-
sively MAXPRT many licenses can be requested;
• remoteBackup resp. localBackup to perform remote resp. local backups.

Formally, SLC = (SLC ,→LC , LLC ,VLC , ILC , S0
LC) ∈ SSTS , with

• SLC = {initLocation, generateLicenseRequested, generateLicenseUnknown-
Exception, removeLicenseRequested, removeLicenseUnknownException,
removeLicenseLicenseNotFoundException, removeAllRequested,
removeAllUnknownException, removeExpiredRequested, removeExpiredUnknown-
Exception, showLicensesRequested, showLicensesUnknownException,
showMoreLicenses, backupMenu, localBackupRequested, localBackupUnknown-
Exception, localBackupDiskFull, remoteBackupRequested, remoteBackup-
UnknownException, remoteBackupDiskFull}, i.e., 20 abstract states;
• LLC = LI ∪̇LU ∪̇{(unobservable)}, with the 9 input gates LI = {?generateLicense-
Input, ?removeLicenseInput, ?removeAllLicensesInput, ?removeExpired-
LicensesInput, ?showLicensesInput, ?makeBackupOnlyInput, ?localBackup-
Input, ?remoteBackupInput, ?abortOnlyInput}, the 7 output gates LU = {
!generateLicensesOutput, !removeLicenseOutput, !removeAllLicensesOutput,

385



B. Supplemental Figures And Tables

Figure B.1.: Abstract specification of the License Central, described as STS SLC , with
maximal portion MAXPRT ∈ N>0
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Figure B.2.: Memory requirements (of storing communication) for a long running ex-
periment, depending on the bound (i.e., on the amount of communication)

!removeExpiredLicensesOutput, !showLicensesOutput, !localBackupOutput,
!remoteBackupOutput}, and the τ transition labeled (unobservable);
• VLC = {licenseCount, licensesDisplayed, pageNo}, all of type bounded non-
negative (32 bit) integer;
• ILC = {returnCode, licenseID}, where licenseID is a bounded non-negative
(32 bit) integer and returnCode is of type string;
• S0

LC = {initLocation};
• →LC consists of the 58 switches depicted in Fig. B.1, where 39 switches have input

gates, 18 switches have output gates, and one transition is a τ -cycle in the abstract
state removeExpiredRequested.

B.1.2. General Performance Plots

Storing Communication Between JTorX and LazyOTF

Fig. B.2 shows an example where storing communication between LazyOTF and JTorX
causes a strong increase of JTorX’s memory requirement: for the experiment Fig 14.6
with MAXPRT=10 and exactBound, the number of traversalSubphases is very high
(≈ 2E6 resp. 5E5 resp. 1.7E5 for b = 1 resp. 2 resp. 3, cf. Subfig. 14.6c), caus-
ing a huge amount of communication for small b. This leads to many GiB of data in
JTorX’s memory. When b increases, the number of traversalSubphases and hence the
communication and memory requirement strongly decreases.
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Figure B.3.: Hardware Performance (CPU and WC time) for Concurrent Experiments

Hardware Performance

To investigate how much our experiment results are influenced by the hardware and its
contention for concurrent experiments, we measure the overall CPU time and WC time
for increasingly higher loads for 1 resp. 4 resp. 16 nodes, using LazyOTF instances with
oRSML with MAXPRT = b = 5, whose verbose logging has a relatively high, but still
representative throughput.
Fig. B.3 shows that for increasing load per node, the average CPU time per experiment

decreases, independent of whether 1, 4, or 16 nodes are employed. The average WC
time per experiment also decreases, but not as strongly and not above 80 concurrent
experiments.
The consistent decrease in the average CPU time per experiment that occurs for

higher load is probably due to the CPU’s Enhanced Intel SpeedStep and Demand Based
Switching, which are “power-management technologies in which the applied voltage and
clock speed of a microprocessor are kept at the minimum necessary levels until more
processing power is required”, i.e., voltage and frequency are “switched in response to
processor load” [URL:XeonHP]. Consequently, the average WC time per experiment
also decreases for higher load (and at most 80 concurrent experiments), but slightly less
than the CPU time. This shows that there is some small local contention, e.g., due to
local disk storage, internal busses, memory, or the network. For 16 nodes, the average
WC time and CPU time are almost identical for up to 80 concurrent experiments, but
thereafter the average WC time increases. This shows that the RAID does not cause
I/O contention for up to 80 concurrent experiments, and is also not the cause for the
small local contention. But for 96 and more concurrent experiments, there is notable
contention, likely I/O contention due to the RAID.
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So the overall computation successively converts from a CPU-bound to a probably I/O-
bound problem for 96 and more instances. Thus verbose logging, even with relatively
high throughput, scales well up to at least 80 instances.
This decrease in CPU time and small local contention show that CPU time and WC

time have to be measured and interpreted carefully.

Performance Scatter Plot

Fig. B.4 shows an exemplary scatter plot for the different numbers of test steps in
each experiment. So the dependent variable is tmaxcurr , the independent variable is the
experiment id (a random 6 digit string and hence not displayed in the plot), sorted
according to the maximal tmaxcurr in each experiment. The measurements are from our
experiment in Subsec. 14.3.7 for P = 14. The plots for other P look similarly.

Figure B.4.: Scatter plot for parallel experiment with P=14

The plot shows that the variance in the number of test steps is proportional to the
numbers of test steps each experiment requires, suggesting that the different nodes in
the cluster have slightly different runtime, i.e., vary in their performance. This again
shows that CPU time and WC time have to be measured and interpreted carefully.

B.1.3. Exemplary Plot for CPU Time per Test Step

Fig. B.5 shows an exemplary plot for the mean CPU time per test step, up to MAXPRT
= 10. Due to LazyOTF’s overhead for setup, waiting and cleanup (cf. Subsec. 14.3.8),
the value decreases for increasing MAXPRT . Since the value approaches a constant for
increasing MAXPRT up to 10, the mean CPU time per test step does not increase with
MAXPRT . For other experiments, the plots look similarly (except for ö = {oRSML, öcov}
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for Max and MaxMax, cf. Subsec. 14.3.5). The mean CPU time per test step for
MAXPRT > 10 are also considered in Subsec. 14.3.4.
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Figure B.5.: Mean CPU time per test step for oNFRSML with bound b = 5

B.1.4. Plots for Distributed LazyOTF

Hazelcast overhead

Hazelcast’s powerful features cost overhead for setup and cleanup (cf. Subsec. 3.5.2).
Fig. B.6 depicts the expected WC time for Hazelcast’s setup and cleanup, plotted against
the parallelization degree P ∈ [2, . . . , 16]. The measurements are from our experiment
in Subsec. 14.3.7, and we again consider for each distributed sample on P nodes
• max, i.e., the setup and cleanup WC time of the node with the highest WC time;
• avg, i.e., the average setup and cleanup WC time over all P nodes;
• min, i.e., the setup and cleanup WC time of the node with the smallest WC time.

TheWC time for setup and cleanup are about 25 seconds formin, and almost constant.
For max resp. avg, the WC time also starts at about 25 seconds, but increases linearly
with P , up to over 100 seconds resp. 70 seconds. The costs for communication are
often high for parallel algorithms [Bader et al., 2000], for Hazelcast luckily only for
setup and cleanup, not while running (cf. Subsec. 14.3.7). The WC time for cleanup was
often higher in our experiments than for setup, but cannot be measured easily, since it
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Figure B.6.: Hazelcast’s WC time for setup and cleanup

depends on which instance leaves the Hazelcast cluster when; the cleanup of one node
performs repartitioning and new backups when another node leaves the Hazelcast cluster
earlier (cf. Subsec. 3.5.2). This explains whyminWC time over the nodes remains almost
constant, whereasmaxWC time over the nodes increases to over 100 seconds for P = 16.
To avoid these setup and cleanup costs, one Hazelcast cluster can be kept running for
multiple experiments by using its distributed executor service and elasticity.

Simple TOs

Fig. B.7 shows our parallel experiments for oRSML, öcov and {oRSML, öcov}, analogously
to Fig. 14.7. They have not been investigated in Subsec. 14.3.7 since strong scaling
analysis should only consider sufficiently large problem sizes [Bader et al., 2000].

B.1.5. Table Describing the Amount of Experiments

To consider the effort of our experiments in Sec. 14.3, we give measures for each exper-
iment. An experiment sample is one single (concurrent) execution, an experiment
sample set the set of all experiment samples for one experiment with one specific value
for the independent variable (usually MAXPRT ∈ [1, . . . , 10]), which usually leads to
one point in a plot. An experiment is the set of all experiment sample sets taken over
all possible values for the independent variable, which usually leads to one function in a
plot. Table B.1 shows the RSEM of tmaxcurr , the required sample size n, and accumulated
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Figure B.7.: Distributed LazyOTF for oRSML, öcov , and their composition

WC time t (to reach the RSEM < 5%). The accumulated WC time takes the all WC
time (cf. Subsec. 14.3.3) for each experiment sample (despite concurrent execute), and
sums up those values for the considered experiment sample set (since many experiment
samples were executed in isolation on the cluster). In detail,
• the first column describes the considered experiment;
• the second column shows the minimal and maximal RSEM for that experiment,
taken over all experiment sample sets;
• the third column shows the minimal and maximal accumulated WC time, taken
over all experiment sample sets;
• the fourth column shows the sum of all accumulated WC times, taken over all
experiment sample sets;
• the fifth column shows the minimal and maximal sample size, taken over all ex-
periment sample sets;
• the sixth column shows the sum of all sample sizes, taken over all experiment
sample sets.

In summary, we executed 32 of our LazyOTF experiments between 90 and 10444 times
to push the RSEM of tmaxcurr to less than 5%. For 3 LazyOTF experiments (Fig. 14.3b,
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oNFRSML with b=10, Fig. 14.6 with MAXPRT=10 and 4uptoBound resp. 5uptoBound),
we have a sample size between 90 and 245 to push the RSEM of tmaxcurr to less than 10%;
for a lower RSEM, the accumulated WC time was too high for each (between 47 and
156 days).
For our LazyOTF experiment Fig. B.2, we have an RSEM of tmaxcurr that is less than

15%, with an accumulated WC time over 90 days. But this experiment was not our focus
since we can deactivate storing communication for experiments that run much longer
than the average. Our hardware performance experiment Fig. B.3 were also not our
focus, so we only executed between 5 and 640 runs, with an RSEM between 0.3% and
3.1%. For our preliminary experiments, we have RSEMs between 0% and 48.5%, with 1
to 30 runs. Our 7 JTorX experiments (first rows in Table B.1) were also not the focus
of this thesis, and we have an RSEM of tmaxcurr that is between 4.4% and 15.3%.
Automating these experiments required over 100 bash scripts, evaluating them over

50 Java classes.
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Table B.1.: The (min-max or sum) values for RSEM of tmaxcurr (in %), sample size n, and
total WC time t (in minutes or days) per experiment

(Figure,) experiment RSEM t sum t n sum n

Fig. 14.3c, öcov 6.5% - 10.0% 10.7’ - 17.8’ 139.2’ 70 - 70 700
Fig. 14.3c, odec 10.6% - 13.9% 20.6’ - 7.7d 8.5d 70 - 70 280

Fig. 14.3c, {oRSML, odec, öcov} 10.7% - 15.3% 21.6’ - 7.6d 8.7d 70 - 70 280
Fig. 14.3c, {oRSML, öcov} 10.3% - 14.8% 16.3’ - 10.0d 16.5d 64 - 70 694
Fig. 14.3c, {oRSML, odec} 10.1% - 13.2% 21.7’ - 9.1d 9.9d 70 - 70 280

Fig. 14.3c, oRSML 9.8% - 13.0% 11.5’ - 10.4d 17.7d 70 - 70 700
Fig. 14.3d, öSisol 4.4% - 6.0% 35.6’ - 4.8d 10.3d 91 - 152 962

Fig. 14.3a, oRSML 2.1% - 4.2% 17.7’ - 25.3’ 210.0’ 90 - 90 900
Fig. 14.3a, öcov 2.1% - 2.8% 18.6’ - 27.9’ 214.5’ 90 - 90 900
Fig. 14.3a, odec 1.7% - 4.8% 18.6’ - 28.2’ 222.6’ 90 - 90 900

Fig. 14.3a, {oRSML, öcov} 1.4% - 2.3% 22.3’ - 32.3’ 249.7’ 90 - 90 900
Fig. 14.3a, {oRSML, odec} 1.7% - 3.4% 18.2’ - 31.7’ 217.0’ 90 - 90 900

Fig. 14.3a, {oRSML, odec, öcov} 1.4% - 2.2% 21.4’ - 37.3’ 250.5’ 90 - 90 900
Fig. 14.3b, oNFRSML,b=10 4.5% - 9.7% 44.0’ - 26.8d 46.6d 90 - 173 1016
Fig. 14.3b, oNFRSML,b=5 1.7% - 4.9% 167.9’ - 9.6d 22.0d 412 - 1524 12076

Fig. 14.3b, öSisol 1.4% - 4.9% 139.4’ - 21.4d 39.4d 530 - 578 5400
Fig. 14.4a, oRSML 2.3% - 4.7% 14.2’ - 25.0’ 183.4’ 120 - 130 1210

Fig. 14.4a, öcov 2.0% - 2.5% 14.8’ - 16.2’ 154.9’ 100 - 100 1000
Fig. 14.4a, {oRSML, öcov} 2.2% - 2.9% 16.5’ - 41.7’ 283.4’ 100 - 100 1000

Fig. 14.4b, öSisol 1.6% - 5.0% 57.0’ - 18.1d 30.4d 220 - 413 2853
Fig. 14.4b, oNFRSML,b=5 2.3% - 4.6% 123.2’ - 14.6d 26.5d 539 - 876 7718
Fig. 14.4b, oNFRSML,b=10 4.6% - 4.9% 152.5’ - 147.4d 253.3d 212 - 428 3239

Fig. 14.4c, oRSML 3.8% - 4.9% 38.7’ - 125.7’ 589.6’ 240 - 280 2580
Fig. 14.4c, öcov 2.1% - 2.8% 15.2’ - 44.0’ 234.9’ 100 - 130 1180

Fig. 14.4c, {oRSML, öcov} 2.2% - 4.9% 25.0’ - 56.8’ 368.4’ 110 - 130 1170
Fig. 14.4d, öSisol 1.1% - 5.0% 175.7’ - 28.3d 83.0d 195 - 681 5901

Fig. 14.4d, oNFRSML,b=5 3.6% - 4.9% 52.3’ - 26.8d 69.8d 214 - 597 4338
Fig. 14.4d, oNFRSML,b=10 3.8% - 5.0% 416.5’ - 624.7d 1520.6d 231 - 443 3968

Fig. 14.6, MAXPRT=1,1uptoBound 2.7% - 3.1% 32.4’ - 81.0’ 146.1’ 118 - 312 548
Fig. 14.6, MAXPRT=1,4uptoBound 3.2% - 3.3% 17.4’ - 17.7’ 35.1’ 102 - 102 204
Fig. 14.6, MAXPRT=1,5uptoBound 2.6% - 2.8% 18.1’ - 18.2’ 36.4’ 100 - 101 201
Fig. 14.6, MAXPRT=1,exactBound 1.4% - 3.3% 63.5’ - 1.4d 2.5d 306 - 308 3069

Fig. 14.6, MAXPRT=10,1uptoBound 3.8% - 4.7% 42.1d - 430.8d 630.2d 187 - 338 854
Fig. 14.6, MAXPRT=10,4uptoBound 8.0% - 9.9% 33.3d - 95.5d 128.8d 117 - 134 251
Fig. 14.6, MAXPRT=10,5uptoBound 6.9% - 8.7% 50.2d - 105.4d 155.7d 180 - 245 425
Fig. 14.6, MAXPRT=10,exactBound 3.2% - 4.8% 13.9d - 650.4d 1497.3d 335 - 1014 6663

Fig. 14.7, öSisol 1.2% - 3.1% 24.4d - 46.1d 262.7d 1180 - 10444 45818
Fig. 14.8, oRSML 0.0% - 0.0% 14.4’ - 19.8’ 166.6’ 120 - 122 1206

Fig. 14.8, oNFRSML 0.0% - 5.0% 117.1’ - 72.9d 121.0d 427 - 474 4639
Subsec. 14.3.9 0% - 48.5% 1’ - 1.9d 6.3d 1 - 30 1046
Fig. B.2, öSisol 10.4% - 14.1% 253.9’ - 34.1d 93.9d 5 - 87 631

Fig. B.3 0.3% - 1.9% 15.2’ - 1.4d 7.8d 5 - 640 3744
Fig. B.7a, oRSML 1.4% - 3.1% 910.3’ - 5.0d 18.1d 934 - 3990 17074

Fig. B.7b, öcov 3.1% - 5.0% 885.4’ - 4.9d 18.4d 946 - 3964 17512
Fig. B.7c, {oRSML, öcov} 0.7% - 1.7% 821.6’ - 4.9d 17.9d 638 - 3504 15024

Total amount about 14 years about 180000
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– (PROMELA), 45
– (output prefix), 188

(S, T ), 32
(S, T, S0), 32
(S, T,Σ, I), 34
(S, T,Σ, I, S0), 32
(S,T, L, S0), 32
(S,T, L,Σ, I, S0), 32
(·, . . . , ·) (open interval over ω + 1), 10
(öi)i∈[1,...,p], 315
(S)≥k (suffix of a linear Kripke structure),

67
(S)≤k (prefix of a linear Kripke structure),

67
(Tfulli )i∈[1,...,1+rcurr) (full TC seq), 265, 301
(Ti)i∈[1,...,1+pcurr) (TC seq), 265, 301
(Wfull

i )i∈[1,...,1+rcurr) (full WTC seq), 301
(Wi)i∈[1,...,1+pcurr) (WTC seq), 301
(νx); · (restriction), 42
(πfulli )i∈[1,...,1+rcurr) (full path sequence), 265
(πi)i∈[1,...,1+pcurr) (path sequence), 265
(σfulli )i∈[1,...,1+rcurr) (full trace sequence), 265
(σi)i∈[1,...,1+pcurr) (trace sequence), 265
(bi)i∈[1,...,1+pcurr) (bound sequence), 265
(li)i≥k (suffix, LTS), 36
(li)i≤k(prefix, trace), 36
(ri)i∈[1,...,1+rcurr) (restart sequence), 265
(xi)i, 10
(xi)i∈I , 10
+(p2W ,+(p ·z0, (1−p) ·mean(. . . ))) (aggre-

gation), 308
+(p2W ,+(. . . )) (aggregation), 307
+(p2W ,max(. . . )) (aggregation), 307
+(p2W ,mean(. . . )) (aggregation), 307
+(p2W ,min(. . . )) (aggregation), 307
0, 9
0 (inert process), 41
1, 9, 36
?r (reified implicit reset capability), 262

A-complete, 199
A-enabled S, 199
A-inhibited, 199
A-triggered, 199
ABA problem, 50
DΣFOL , 30
Eeven(p), 86
F (function symbols), 29
FORM , 29
FORMΣFOL , 29
FORMΣFOL(Var), 29
F bT , 106
F bi , 106
F bL,i, 106
FS0 , 106
GO packet, 163
Gb, 122
I, 184
I(·, ·) (interpretation function), 35
IΣFOL , 30
L, 35
L (for STSs), 40
LI , 16
LI (input), 187
LU , 16
LU (output), 187
Lε, 188
Lτ , 188
Lδε, 191
Lεδ, 191
Lτδ, 191
Lτ6uτu , 191
Lx1...xn , 187
P , 138, 275
P (number of processes), 49
P (predicate symbols), 29
Ps̈, 260
Prop(), 69
Prop(L), 80
Proplin(), 69
RSEM(x), 355
S, 32
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S (for STSs), 40
SEM(x), 355
SET packet, 163
SETAGG packet, 163
S0 (for STSs), 40
S0 (initial states), 32
SP , 115
SP (speedup), 49
SPOR, 103
Sdet, 196
Sudet, 228
T , 32
T -solver, 55
T (s), 34
TERM , 29
TERMΣFOL , 29
TERMΣFOL(Var), 29
TL, 68
U , 184
[[S, L]]b, 106
[[SV0 ]], 41
[[SVd

LC
]], 350

� (operator), 73
7→, 10
♦ (operator), 73
LT S(LI , LU ), 187
LT S(LI , LU , ∗), 187
LT S(LI , LU ,+), 187
LT S(LI , LU , δ, ε), 191
LT S(LI , LU , ε), 188
LT S(LI , LU , ε, δ), 191
LT S(LI , LU , τ, δ), 191
⇔, 10
N>0, 9
N≥0, 9
Φ function, 157
Σ, 34
Σ for propositional logic, 26
Σlazy, 263
ΣFOL, 29
Σsv, 91
Σsv(X), 106
S , 199
S , 199
Straces(·), 194
StracesSδτ∗ (·), 194
Utraces(·), 194, 228
after(·, ·), 194
afterSδτ∗ (·, ·), 194
α (arity), 29
≈Σ (equivalence relation), 66
≈Straces, 194

≈Straces (on sets), 194
≈Σ (equivalence relation over Kripke struc-

tures), 66
≈Σ (equivalence relation over paths), 66
≈Σ (equivalence relation over states), 66
β (variable assignment), 30
Xw, 76
⊥, 72
· (concatenation of LTS paths), 35
· (concatenation of TS paths), 33
· (concatenation of traces), 36
·(·) (input prefix), 42
·+ · (choice operator), 42
·; · (sequential composition), 42
· | · (parallel composition), 42
· || · (synchronous product), 42
· ||| · (asynchronous product), 42
· | [c1, . . . , cn] | ·, 42
· (parameter for a 10
χ (chaos), 199
| · | (of an FSM), 38
|S|, 34
δ, 16
δ(s), 191
δu(s), 191
δ	, 191, 192
δy, 192
δ6uu(s), 191
δ6u(s), 191
−→
d
, 196

I lazy(·), 264
I lazy
o (·), 310
I lazy
ö (·), 310
I lazy(·), 263
Sisol , 222, 331, 352
≈st (stutter equivalence), 76
B, 9
B in Dumont, 325
SKripke,1 (one initial state), 35
SKripke,<ω (Kripke structures for finite trace

semantics), 71
SKripke,Σsv , 91
SKripke,≥ω (Kripke structures for infinite trace

semantics), 71
SKripke,finite, 35
Sω−automaton, 76
A(b1, . . . , bn), 86
CT (completeness threshold), 94
ET (exhaustiveness threshold), 222
FL, 35
Fw, 297
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FTC , 206
Fmod, 206
IOT SA(LI , LU ), 199
IOT SA(LI , LU , x1, . . . , xn), 199
IOT SA(LI , LU , x1, . . . , xn, ∗), 199
IOT SA(LI , LU , x1, . . . , xn,+), 199
LT S(LI , LU , δ, ε, ∗), 191
LT S(LI , LU , ε, ∗), 188
LT S(LI , LU , ε, δ, ∗), 191
LT S(LI , LU , τ), 188
LT S(LI , LU , τ, δ, ∗), 191
LT S(LI , LU , τ6u, ∗), 189
LT S(LI , LU , x1, . . . , xn), 187
LT S(LI , LU , x1, . . . , xn, ∗), 187
LT S(LI , LU , x1, . . . , xn,+), 187
P, 115
S ∈ LT S(LI , LU , τut, ∗), 189
Sδ, 191
Sπ, 67
SPOR, 103
SLC , 349, 385
Sδτ∗ , 191
Sτ∗δ, 191
Sτ∗ , 188
Sdet, 196
Sudet, 228
T T S(LI , LU , δ), 204
WT T S(LI , LU , δ), 297
T, 35
TP , 132
TPOR, 103
Models(), 69
Modelslin(), 69
NPCφ, 129
Rtraces, 234
StracesSτ∗δ(·), 194
UtracesSτ∗δ , 228
UtracesSτ∗δ(·), 229
Var (for STSs), 40
afterSτ∗δ(·, ·), 194
branchoutS , 194
branchS (LTS), 36
branchS (TS), 34
branchS (of an FSM), 38
computationTree(S), 67
depth(T) (of a test case), 204
depthS (TS), 34
dest(s,→) (in a TS), 34
dest(s,→∗) (in a TS), 34
dest(s,→+) (in a TS), 34
destS(·, ·) (in a TS), 34
discharge(·), 264

dischargeo(·), 310
dischargeö(·), 310
distanceo, 312
faultable(·) (for Straces), 203
faultable(·) (for states), 202
init, 188
initSdet , 196
initSudet , 228
initA, 38
iocoF , 227
ioco, 202
phaseVariant, 295
refinesF , 230
refines, 230
subF lin(·), 83
uioco (w/o using Sudet, 229
urefines, 231
verdM(T), 206
verdS(T), 207
bexec, 319
bfuture, 319
iδ, 336
iδ caching, 336
pcurr (current phase number), 265
rcurr (current restart number), 265
tTO
curr , 244, 245, 267
tcurr , 241, 242
ε, 10
≡ (for property descriptions in temporal log-

ics), 69
≡ (for temporal logics), 80
∃|, 10
∃, 70
∀, 10
∀, 10
≥ (for temporal logics), 80
 (for temporal logics), 80
iδ, 204
λ, 10
genc(·), 228
¨̈s, 260
T̈, 204
Ẅ, 297
ö, 254
ö (active test objectives), 260
ö (as test objective), 310
öinit , 310
Ssim S , 210, 220
V, 20
T||Mδτ∗ , 206
T (TC), 204
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Penabled(s̈)[s̈
l−→ s̈′], 320

D, 30
DΣFOL , 30
F , 202
I, 40
V, 40
Vd (default variable initialization), 41
L bounded model checking, 93
L model checking, 90
Strace coverage, 217, 219
aggPath2Ws(·), 310
aggWTCs, 298
covFiningPath2W , 303
cycleFiningPath2W , 323
cycleFinintPath2W , 317
finingPath2W , 302
lengthdischarge, 320
path2W (π), 298
path2W o difference, 333
path2W o(·), 310
path2W ö(·), 310
| · | (path length, LTS), 35
| · | (trace length), 36
| T | (size of a TC), 204
| π |, 33
| · | (path length, TS), 33
|=, 30, 66
|= for ω-automata, 77
|= for ECTL∗, 86
|= for FOL, 30
|= for propositional logics, 26
|= for temporal logics, 69
µ (least fix-point), 105
ν (greatest fix-point), 105
ω, 9
ω-automaton, 76
ω-regular language, 129
ω + 1, 10
·〈·〉 (output prefix), 42
x (mean), 355
α−→POR, 103
·−→
∗
, 36

·−→
+
, 36

π−→
∗
, 34

π−→
+
, 34

σ−→
∗
(in an FSM), 38

σ−→
+
(in an FSM), 38

l−→, 35
π-calculus, 41, 43
π ∩ P 6= ∅, 115

πfull (concatenated full path), 266
π(S,{init}), 67
πS , 67
π≥k (suffix), 33
π≥k (suffix, LTS), 35
π≤i(prefix, LTS), 35
π≤k (prefix), 33
→, 34
→ (for STSs), 40
→ (in an FSM), 38
→∗, 34
→∗ (in an FSM), 38
→+, 34
→+ (in an FSM), 38
σ(x) (standard deviation), 355
σfull (concatenated full trace), 266
σs̈, 222
τ , 188, 350

– internally like output, 188
– may consume time, 188

τ (silent prefix), 42
τ abstraction, 188
τ abstraction after reifying quiescence, 191
τ+ reduction, 112
τ -closed, 188
τ -closure, 188
τ -cycle, 189
τ -cycle elimination, 111
τt, 188
τu, 188
τ6 t, 188
τ6u6 t, 188
τ6ut, 188
τ6u, 188
τt, 188
τu6 t, 188
τut, 188
τu, 188
−→
τ∗

, 188
−−→
δτ∗

, 191
−−→
τ∗δ

, 191
−→
ud

, 228
∗ (Kleene star), 10
+ (Kleene plus), 10
ω (infinite sequences), 10
active, 264
activeo, 310
activeö, 310
b (bound for BMC), 93
b (bound for genTS), 215
b(·), 207
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b(T), 207
bI(·), 207
bU (·), 207
b+(·), 285
b−(·), 285
bpcurr , 285
bmax, 258, 285
bmin, 258, 285
c (canonical embedding), 38
cs̈, 336
even(p), 80
exists, 10
fdistr(·) (coverage), 302
fdistr(·) (for nondeterminism on output), 303
fagg, 162
fnew(·) (coverage), 302
fnew(·) (for nondeterminism on output), 303
free(·), 29
iuptoBound, 361
in(·), 194
in∩Sτ∗ (·), 228
in∩(·), 228
inSτ∗ (·), 194
l(s), 36
max(p2W ,max(. . . )) (aggregation), 307
max(p2W ,min(. . . )) (aggregation), 307
max(x), 355
median(x), 355
min(x), 355
n (sample size), 355
n-choices state coverage, 290, 303
o (abstract TO def.), 260
o (test objective), 264, 310
out(·), 194
outSδτ∗ (·), 194
outSτ∗δ(·), 194
p+, 285
p−, 285
paths fail (Sdet), 213
pathsV(Sdet)rcurr , 265
pathsV(Sdet), 213
supp(I(·, s)), 35
supp(I(p, ·)), 35
supp(f(·)), 9
tracesSτ∗ (·), 194
type(·), 40
valI , 26
valD,β , 30
w (weight function), 297
wWT T S , 297
[·, . . . , ·] (closed interval over ω + 1), 10
(A-)fairness, 133

(miss, fail ), 20
(miss,pass), 20
(super-)linear speedup, 365
=, 45
? (input prefix), 188
Rtraces, 234
Überdeckungen, viii
UtracesSτ∗δ , 228
UtracesSτ∗δ(·), 229
Var , 29
CTL∗ semantics, 71
S→∗(state space), 34
T→∗ , 34
S→∗ , 34
T→∗ , 35
öSisol , 352
öcov, 351
maxprt, 353
MOD, 185
MOD, 201
Rtraces, 217
Rtraces, 203
STATUS packet, 162
SUT , 16
SUT , 183
TEST , 185
Var , 29
refines, 9
sioco, 234
subF , 81
uioco, 217, 228
tmaxcurr , 356
PcoverViaTOs, 293
Pcoverage, 292
Pcoverage via weights, 302
Pdischarge, 293
Pfair , 295, 297
Pgoal , 295
Pgoal , 296
Pphase, 295
Pphase, 296
Pvanishing, 293
P→OTF , 291
fairnessmodel , 216
fairnessmodel (abstr. def.), 186
fairnessspec, 219
fairnessspec (abstr. def.), 186
fairnesstest , 218
fairnesstest (abstr. def.), 186
leaderItai, 116
leadert, 116
oNFRSML, 352
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oRSML, 351
odec, 352
pc , 46
tmaxcurr , 353
tmaxcurr , 348
tcurr , 265
n/a, 149
−> (PROMELA), 45
? (PROMELA), 45
; (PROMELA), 45
CollapsedLocationsSetPath2W, 327
DecisionStrategy, 327
FinalLocationSetDefaultPath2W, 327
INV, 39
LazyOTF, vii, 6, 253
LazyOTF debug console, 328, 332
LazyOTF introspection window, 331
LazyOTF is active, 260
LazyOTF manual, 325
LazyOTF with weight heuristics, 301
LazyOTFi, 275
LazyOTF’s XML configuration files, 329
LengthPath2W, 327
Location.LocationTestType.DecisionStrategy,

327
LocationValuation2Weight, 327
Locations2Weight, 327
MappingStrategy, 327
MessageSetPath2W, 327
NodeValue2Weight<N>, 327
NodeValueSummingPath2W, 327
NondetFiningFinalLocationSetPath2W, 328
NondeterminismFiningNodeValue2Weight, 327
POST, 39
PRE, 39
Path2Weight<N, E>, 327
SatStrategy, 327, 352
SumOfOtherNodeValue2Weight<N>, 327
SuperLocationSizeNodeValue2Weight, 327
TestTypeDefaultNode2Weight, 327
backtrack, 334
cacheMap, 336
dynamicInfo, 254, 254, 267
exactBound, 361
exitCriterion (dynamicInfo), 253
explore, 334
fail , 204
fail (abstr. def.), 20
gen, 209
genexec(S,S), 209
generateLicense, 349, 385
havoc command, 157

hit, 20
inconclusive, 20
innerDFS(), 99
jump, 334
localBackup, 349, 385
miss, 20
nondet command, 157
np_, 115
pass, 204, 326
pass (abstr. def.), 20
progress label, 115, 133
promise broken, 50
promise kept, 50
promise pending, 50
pullExternalDischarges(), 276
pushInternalDischarge(ö o), 276
receive, 334
remoteBackup, 349, 385
removeAll, 349, 385
removeExpired, 349, 385
removeLicense, 349, 385
showLicenses, 349, 385
stack, 99
take, 334
testExecutionSubphase(Tp, S, dynamicInfo),

254
traversalSubphase(S, ö, dynamicInfo), 254
fifo , 125
hash table, 99
Pexh⇒ disch, 294
—30’, 149
owcty, 145
owcty, 112
ö (as test objective), 310
1-choice state coverage, 290
10-minute build, 343
2-choices state coverage, 290

A
A operator, 73
a priori, 243
A�, 74
A♦, 74
ABA problem, 50
abrasion, 184
absolute speedup, 49, 147, 366
abstract assembler language, 157
abstract behavior model, 164, 165
abstract behavior model, 164
abstract from the full system, 60
abstract interpretation, 102, 107
abstract method, 122
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abstract state, 40
abstract state coverage, 330
Abstract State Machine Language, 251
abstract state machines, 251
abstract syntax tree, 26
abstract test case, 207, 249
abstract testing, 173
abstract use case, 252
abstraction, 59, 59, 96, 158, 207

– τ , 188
abstractions, 33
abstractions by the test adapter, 207
Acamar, 354
accept, 46
accept label, 46
accept of Büchi paths, 77
accept of extended Büchi paths, 77
acceptance

– label, 46
– state, 46

acceptance condition, 77
acceptance cycle, 98
acceptance cycle detection, 99, 109
acceptance testing, 18
acceptance tests, 328
accepting state, 37
accumulated WC time, 366, 370, 372, 375,

378, 392
achieved TG, 260
acquire memory barrier, 51
action, 32
action refinement, 207, 207
ActionScript, 172
activated, 19
active, 260
active test goal, 261
active testing, 14
ACTL∗, 91
m , 91
Actor Model, 48
actually missing information, 59
AD, 341, 342
Ada, 172
adapter, 249
adequacy metric, 23, 24, 223
A♦�np_, 118
adversary, 307

– good, 307
– mean, 307

adverse acting entity, 162
A-enabled

– S, 199

A-enabled
– state, 199

Aeven, 80
AF, 74
after(·, ·), 194
after-progress state, 138
afterSδτ∗ (·, ·), 194
afterSτ∗δ(·, ·), 194
AG, 74
aggregated to weights of TCs, 298
aggregation function, 162
aggregation path, 161
aggregation tree, 161
aggWTCs, 298
agile, 260
AGILE, 348
Agile Applications, 345
Agile Conference, 341
agile modeling, 348
agile quality management, 345
agile software development, 9, 342
Agile Unified Process, 342
A-inhibited, 199
Aldebaran, 248
algorithm, 275
algorithm back-ends for property checks, 111
alias analysis, 175
all full path sequences of S, 265
all WC time, 353, 371
all-choices state coverage, 290, 303
all-choices transition coverage, 303
all-def-use-paths, 22
all-defs, 21
all-progress cycle, 135
all-uses, 21
α (arity), 29
alphabet, 37
alternating simulation, 234, 251
alternating TO period, 315
always operator, 73
Amdahl’s law, 49
ample(), 103
ample decomposition proviso, 103
ample set, 103, 103, 135
analysis, 277
angelic completion, 61, 199
anomaly, 20
anonymous ring, 116
Anquiro, 176
AP, 278
AR, 74
architecture, 331
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arithmetic error, 158
arithmetic operators in Dumont, 325
arity function, 29
ARM, 172
array, 177
array (PROMELA), 44
array bounds, 3
array index out of bound, 158, 169, 173
array index out of bound error, 171
ArraysEx theory, 31
AsmL, 251
assembleTC, 211
assert () (PROMELA), 109
assert (·) statement for CBMC, 158
assertion, 109
assertion (abstr. def.), 14
assertion violation, 109
associative, 26
assume-guarantee, 96, 167
assume(f) statement for CMBC, 158
asynchronous

– execution, 47
– transmission, 41

asynchronous communication, 195
asynchronous parallel composition, 42
asynchronous product, 42, 91
at least as expressive as, 80
atomic, 207
atomic, 47
atomic behavior, 32
atomic condition coverage, 252
atomic linear input-inputs refinement, 208
atomic linear refinement, 208
atomic propositional variable, 34
atomic refinement, 208
AtomicNumber, 53
A-triggered, 199
AU, 74
Audition, 252
AUFLIA, 31
Aut, 248
authenticity, 161
automata theory, 32
automated test case generation, 15
automated testing, 15
automatic, 250
automatic nightly tests, 266
automatic traceability, 17, 256
autonomous, 161
autonomous sensor, 155
autostart function, 164
auxiliary TO, 261

Availability, 278
AW, 74
awards in PRISM, 113
AX, 74
axiom, 30

B
b (bound (for genTS)), 215
b (bound), 93
B (Boolean values), 9
b(·) (binding), 207
b+(·) (depth bound increment function), 285
b−(·) (depth bound decrement function), 285
Büchi, 77, 109
Büchi automaton, 77, 118
Büchi automaton over formulas, 86
back-link, 126
backtracking, 6, 99
backtracking by eager scheduling, 59
backward recovery, 204
backward traceability, 17
backward traversal, 97
bad weather behavior, 19
balanced aggregation, 307
baseline, 372
basic command, 45
basic depth-first search, 99
basic statement, 35, 45
basic test objective, 310
batch mode, 249
BCG, 39, 110
BCG graphs, 247, 248
BDD, 28, 92, 111
BDUF, 344
behavior, 32
behavioral MBT, 184
behavioral property, 66
behavioral property of a TG, 260
benchmark, 373
Beschränkungs-Heuristik, viii
best-first heuristic, 174
β (variable assignment), 30
bexec, 319
BFS, 125
bfuture, 319
(bi)i (bound sequence), 265
bI(·) (binding), 207
big design up front, 55, 344
Binary Coded Graph, 39
binary decision diagram

– reduced ordered, 28
– shared reduced ordered, 28
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binary modality, 70
binding, 207
bit (PROMELA), 44
bit-precise, 174
bit-precise memory model, 172
bitblasting, 55
bitfield, 172
bitstate hashing, 108
black-box, 14, 183
black-box testing, 14
block, 45
blocked

– label, 35
– process, 89
– sequence, 45

blocking never claim, 47
blueprint, 221, 229
bmax (maximal bound), 258
bmax (maximal depth bound), 285
BMC, 3, 93, 122
BMC encoding, 106
BMC tool with a bound check, 223
bmin (minimal bound), 258
bmin (minimal depth bound), 285
bold, 10
BoogiePL, 173
bool (PROMELA), 44
Boolean, 9
Boolean decision procedure, 27
Boolean satisfiability problem, 27
Boolector, 158, 172
Boolector SMT solver, 55
bottleneck (in a state space), 374
bound, 285
bound (for genTS), 215
bound (for BMC), 93
bound (for DFSincremental), 122
bound by a quantifier, 29
bound check (for genTS), 223
bound check (for BMC), 94
bound heuristics, 6
bound heuristics, 351
bound sequence, 265
bound variable, 29
boundary value analysis, 252
bounded DFS, 122, 174
bounded integers, 44
bounded model checking, 3, 93, 106, 215
� operator, 73
box operator, 73
BPEL, 252
branch coverage, 252, 275, 328

branching bisimulation, 111
branching time formula, 70
branching time logics, 70
branching time operators, 74
branching time property, 66
branchoutS , 194
branchS (LTS), 36
branchS (TS), 34
breadth-first search, 125
break, 46
broadcast, 52
bU (·) (binding), 207
buckets, 108
buckets of hash tables, 111
buffered channel, 41
bug, 1, 19
bug finding, 3, 93, 175, 176, 215, 291
built-in standard checks, 158
business requirements, 17
busy-waiting, 88
byte (PROMELA), 44

C
c, 21
C, 107, 172
C Bounded Model Checker, 158
C flag, 331
C language, 23, 44, 158
C programming language, 45, 112, 141, 156,

158
C++, 112, 156, 172
C++11, 112
C0, 105
C1, 105
C2, 105
C2T, 136
C2Tlazy, 138
C2S , 136
C2Slazy, 138
C2transparent, 104
C2S , 136
C2Slazy, 138
C2T, 136
C2Tlazy, 138
C3, 105
C3’, 105
C#, 172, 251
cache coherency protocol, 51
cache line, 51
cache oriented, 111
cacheMap, 336
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caching, 51
caching local transitions, 111
CADP, 39, 110, 247, 248
CAESAR, 247, 248
calendar dates in Dumont, 325
call stack, 94
call-by-value, 171
canonical embedding, 38
canonical heap layout, 112
CAP theorem, 278
capacity of a channel, 41
capacity of a channel (PROMELA), 45
cartesian POR, 103
CAS, 50, 142
cause, 20
CBMC, 155, 158
CENELEC EN 50128, 4
centralized computing, 273
centralized network, 52
centralized test controller, 273
certification, 4, 237
CESMI, 112
CGλ, 252
channel, 41
channel (PROMELA), 44
chaos, 229
chaos state, 199
chaos state (χ), 199
check tasks, 55
Checker Framework, 4, 328
choice, 42
CI, 343
classical guidance heuristics, 286
classical test selection heuristics, 286
classical testing, 2
client machine, 273
client-server protocol, 116
client/server network, 52, 273
clock speed, 47, 388
closed (logic), 69
closed formula, 29
closed system, 16, 157
closed under, 69
closed under stuttering, 76
closure, 70
closure, reflexive, transitive, 34
closure, transitive, 34
cloud computing, 53, 379
Cloud9, 275
cluster, 53, 354
CMC, 91
CMPXCHG, 50

code contract, 39
code coverage, 174
code coverage criterion, 20
code instrumentation, 112, 164
code safety properties, 169
CodeMeter License Central, 349, 385
coffee machine, 184
coherency granularity, 51
CoIn, 112
collapse compression, 108, 145
collection

– list, 53
– map, 53
– set, 53

collision, 108
combinator, 250
combinatorial explosion, 91, 155, 163
command

– basic, 45
– compound, 45

command (PROMELA), 44
Common Explicit-State Model Interface, 112
Common Lisp, 172
Common Object Request Broker Architec-

ture, 116
common trace, 346
communication, 48, 142
communication cost, 49
communication overhead, 52
communication performance failure, 277
commutativity, 104
compare-and-swap, 112
Compare-And-Swap, 50
compassion, 95
compiler, 60, 172
compiler backend, 172
compiler frontend, 172, 177
compiler optimization, 159
complement Büchi automaton, 79
complete, 3, 25

– model checker, 90
– model-based testing with execution,

239
– model-based testing without execu-

tion, 239
– SAT solver, 27
– test generation, 210
– test suite, 210

complete abstraction, 163
complete trace, 36
completeness of DFSFIFO, 127
completeness of DFSFIFO with POR, 136
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completeness threshold, 3, 94, 288
complex type, 44
complexity, 1, 59
complexity of S, 34
component, 1, 163, 176
component automata, 43, 103
component interaction automata, 112
component-based architecture, 249
composed test objective, 310
composed type, 44
composite transition (PROMELA), 133
composition, 7, 96, 177, 260

– asynchronous parallel, 42
– full parallel, 42
– restricted parallel, 42
– synchronous parallel, 42

compositional testing, 189
compositionality, 302
compositionally, 115
compound command, 45
compound statement, 45
computable, 25, 239
computably enumerable, 239
computation tree, 67, 201
Computation Tree Logic, 74
Computation Tree Logic∗, 70
concasts, 161
concatenated full path, 266
concatenated full trace, 266
concatenated path, 33
concatenated transitions, 34
concatenation (PROMELA), 45
concatenation of LTS paths, 35
concatenation of paths, 33
concatenation of TCs, 204
concatenation of traces, 36
concatenation,FSM, 38
concatenation,trace in an FSM, 38
concolic testing, 174
concolic unit testing engine, 174
concrete test case, 207, 249
concurrency, 252
concurrency optimizations, 111
concurrency utility, 53
concurrent object, 48
concurrent testing, 272
concurrently, 138, 276
condition, 21
condition for CMC, 91
conditional model checking, 91, 93, 154
conference protocol, 374
confidence, 13, 20

configuration, 325
conflicting clause, 55
confluence reduction, 103
conform, 183
conformance index, 310
conformance testing, 183
Conformiq, 274
Conformiq Designer, 44, 245, 251
Conformiq Grid, 274
Conformiq Modeling Language, 252
congestion, 52, 277
conjunctive Büchi automaton, 78
conjunctive normal form, 27
connected graph, 28, 203
Consistency, 278
consistency model, 51
constraining execution, 47
constraint satisfaction problem, 27
constraint solver, 27, 249, 326
constraint solving, 241, 252
Construction and Analysis of Distributed Pro-

cesses, 247
container data type, 349
contention, 50, 51, 138, 142, 273, 388
contention for the network resource, 52, 277
context switch, 169
Contiki OS, 176
continuation-passing style, 157
continuous, 33
continuous refines checks, 345
continuous integration, 343
continuous systems, 186
continuous time Markov chain, 113
contract, 39, 142
contract-based testing, 348
contraction, 60
control

– by the SUT, 184
– by the tester, 184

control flow, 157, 174
control flow analysis, 157
control flow construct (PROMELA), 45
control flow coverage criteria, 21
control flow graph, 20, 21
control parallelism, 50
controllable nondeterminism, 194, 350
conventional testing, 2
convergent, 188
CORBA, 116, 274
Cord, 251
core theory, 31
corner cases, 239
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correct, 13
corrected sample standard deviation, 355
correctness, 1, 2
correctness, 276
correctness by lazy scheduling, 58
costs in PRISM, 113
countable set, 9
counter, 115
counterexample, 68, 113

– shortest, 131
counterexample for a bound, 94
counterexample path, 206
counterexample test case, 206
counterexample trace, 206
counterexamples, 277
countermeasures to a TO period, 315
covariant types, 328
cover, 20
cover via TOs proviso, 293
coverage, 7, 327

– Straces of S, 216
– code, 20
– requirements, 22
– specifications, 22
– states of Mdet, 216
– states of Sdet, 216
– transitions of Sdet, 216

coverage criteria, 216, 216, 283
– nondeterministic, 216
– on test cases, 216

coverage criteria for uncontrollable nonde-
terminism, 290

coverage criterion, 6, 20, 243, 287
coverage distribution, 302
coverage distribution for nondeterminism on

output, 303
coverage efficiency, 302
coverage efficiency for nondeterminism on out-

put, 303
coverage level, 20, 304
coverage of faultable(S) in isolation, 221,

331
coverage proviso, 292
coverage task, 20, 352
CPU, 47
CPU bound, 49
CPU time, 353, 371
CPU-bound, 389
crash failures, 142, 278
CRASH scale, 232
cross product, 42
crossover, 288

CruiseControl, 343
CSP, 27, 43
CT (completeness threshold), 94
CTL, 74
CTL operators, 74
m , 70
CTMC, 113
current number of phases, 265
current number of restarts, 265
customer feedback, 343
customer requirement, 343
CUTE tool, 174
cyber-physical system, 13
cycle, 33
cycle detection, 112, 144
cycle implementation proviso, 104
cycle proviso, 6, 104
cycle warning, 316, 368
cycle warning threshold, 316, 333
cycle, LTS, 35
cycle,FSM, 38
cycleClosing proviso, 105
cycling heuristic, 249, 288, 317

D
d, 21
D, 172
D, 30
DΣFOL , 30
DAG (directed, acyclic graph), 28, 203
DART tool, 174
data, 40
data centers, 53
data flow coverage, 334
data flow coverage criteria, 21
data grid, 53
data type abstraction, 102
data-dependent control flow, 40
database, 53
datagram, 52
DbC, 39
dd anomaly, 21
deadlock, 89
deadlock detection, 89, 103
Deadlock detection, 109
deadlocks, 142
debugging, 167, 328, 343
decentralization, 273, 276
decentralized, 273
decentralized network, 52
decision, 21
decision strategy, 327
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decompose, 96
decomposition, 18, 97
deconstruct, 46
deductive verification, 2, 241
deep state, 350
deep TO, 374
def-clear path, 21
def-use pairs, 21
default decision strategy, 327
default variable initialization, 41
defect, 19
definitions of done, 343
Demand Based Switching, 388
demonic completion, 61, 199, 229
dependency proviso, 105
dependency relation, 104
dependent, 104
dependent metric, 49
deploy, 163
deployment, 281
depth bound, 285

– decrement function, 285
– increment function, 285
– maximal, 285
– minimal, 285
– threshold, 285

depth bound decrement function, 285
depth bound increment function, 285
depth bound threshold, 285
depth bounds, 254
depth of a test case, 204
depth-first search, 99

– incremental, 122
– nested, 99

depthS (TS), 34
depth(T) (of a test case), 204
derivation engine, 250
descriptive statistics, 372
design diversity, 43
design-by-contract, 4, 39, 173
desired functional behavior, 59
desired state, 295, 305, 306
dest(s,→), 34
dest(s,→∗), 34
dest(s,→+), 34
dest(s,→) (in an FSM), 38
destination, 34
destination of a finite path

– FSM, 38
– TS, 33

dest(·) (destination of a path
– LTS), 35

– TS), 33
destS(·, ·), 34
determinism, 319
deterministic, 36
deterministic LTS, 36
deterministic test case generation algorithm,

6
deterministic transition system, 34
determinization, 196, 325
determinized suspension automaton, 196
development phase, 1, 18
deviation, 19
DFS, 99

– incremental, 122
– nested, 99

DFSprune,NPC(S→∗ s, int workerNumber), 138
DFSFIFO, 125
DFSFIFO, vii, 5
DFSincremental, 122
DHCP, 116
♦ operator, 73
diamond operator, 73
dilemma between software complexity and

quality, 1
DIR, 110
directed automated random testing, 174
directed test generation, 23
directed, acyclic graph, 28, 203
directly reachable, 34
discharge function, 260
discharge function for o, 264, 310
discharge proviso, 293
dischargeable, 260
discharged, 254, 260
discharging, 7, 293
disclosure of the system, 14
discrete system, 186
discrete-time Markov chain, 113
disjunctive Büchi automaton, 79
disk I/O contention, 354
distance, 312
distanceo, 312
distorted weights, 314
distributed LazyOTF, vii, 6, 275, 280
distributed lazyotf , 351
distributed architecture, 52
distributed assertions, 176
distributed component, 48
distributed computing, 48, 272
distributed executor service, 53, 278, 281,

363
distributed hash table, 53
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distributed model-based testing, 274
distributed node, 48
distributed shared memory, 48
distributed shared memory system, 48
distributed system, 155
distributed systems, 252
distributed tree, 273
divergent trace, 131
DiVinE, 44, 101, 110, 112, 145
DiVinE modeling language, 112
division by zero, 173
do, 46
document late, 55
DoD, 343
does not suppress TOs, 306
Dolev-Yao threat model, 176
domain-specific language, 233
dominance algorithm, 157
dormant, 19
DPLL, 27
driver, 250
DSE, 173, 176
DΣFOL , 30
DSL, 233
DSM, 48
d_step, 47
DTMC, 113
Dumont language, 325
DVE, 110, 112
dynamic, 2
dynamic bound, 265
dynamic bound heuristics, 285
dynamic coverage, 24
dynamic coverage level, 24
Dynamic Host Configuration Protocol, 116
dynamic information, 6, 243, 254, 264, 284
dynamicInfo, 254
dynamic load-balancing, 57, 112
dynamic polymorphism, 252
dynamic reordering, 28
dynamic scheduling, 57, 61
dynamic symbolic execution, 173, 335
dynamic testing, 13, 14, 155
dynamic verification, 25
dynamicInfo, 267

E
E, 70
m ), 86
E�, 74
E♦, 74
E¬ F, 74

E¬G, 74
E¬X, 74
ECTL∗

– semantics, 86
eager, 54, 270
eager encoding, 55
eager micro-traversal sub-phase, 318, 319,

336, 339
eager micro-traversal sub-phase optimization,

318, 353
eager micro-traversal sub-phases, 339
eager SMT, 55
eager SMT solving, 31
earliest counterexample, 131
earliest NPC w.r.t. progress, 127, 136
early backtracking, 144
early bug detection, 2
early termination, 56
EclEmma, 328
Eclipse Modeling Framework, 252
economics, 1
ECTL∗, 85
ECTL∗, 85
even(p), 86
EF, 74
efficiency

– parallel, 49
EFSM, 246
EG, 74
elastic, 53
else (PROMELA), 45
embedded, 53
embedded device, 161, 163
embedded software, 2
embedded system, 1, 13, 155, 157, 161
EMC, 173
EMF, 252
empircal, 348
emptiness check, 98
emptiness proviso, 105
empty string, 10
enabled, 35

– state, 199
enabled(s), 35
enabledS(s), 35
enabledness, 104
encapsulated, 250
encoding for LTL BMC, 106
end, 46
end label, 46
end state, 71
end state validity, 109
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ENDFS, 111
energy, 163
energy consumption, 18, 162
Enhanced Intel SpeedStep, 388
enumeration (PROMELA), 44
enums in Dumont, 325
environment, 1, 60, 61
environment abstractions, 61
environmental data, 161
environmental influences, 184
epistemological frame problem, 184
epistemological restrictions, 194
ε, 10
equality, 189
equality in Dumont, 325
equally expressive, 80
equidistribution, 307
equivalence check, 179
equivalence of property descriptions in tem-

poral logics, 69
equivalent mutant, 24, 179
ER, 74
Erlang, 204
Erreichen gewünschter Zielzustände, viii
error, 19
error path, 90, 117
error screen, 184
ESAWN, 161
ESAWN packet, 162
ET (exhaustiveness threshold), 222
ETF, 40
EU, 74
Euler diagram, 68, 70
evaluation function, 69
evaluation function for FOL, 30
evaluation function for PROP, 26
even out, 303, 308
even(p), 80
event driven, 163
event-driven, 157, 176
eventually invariant, 129
eventually operator, 73
EW, 74
EX, 74
ex., 10
exception handling, 46, 328, 349, 385
exceptional, 195
exceptions, 184
exclusive privilege, 47
EXE tool, 173
executable, 44, 45
executable sequence, 45

executable specification languages, 274
executable test case, 207
executable test steps, 241
execution sub-phase, 253
execution-based model-checking, 173, 275
exh⇒disch proviso, 294
exhaustive, 183, 209

– model-based testing with execution,
239

– model-based testing without execu-
tion, 239

exhaustive model checking, 93
exhaustive test generation, 210
exhaustive test generation genexec, 210
exhaustive test suite, 210
exhaustive test suite for S, 210
exhaustiveness, 7
exhaustiveness for an ioco variant, 228
exhaustiveness of genTC, 213
exhaustiveness of genTS, 216
exhaustiveness threshold, 6, 222, 288
exhaustiveness thresholds, vi
Pexh⇒ disch, 294
m ), 70
m ), 86
exists, 10
∃ (as path quantifier for ECTL∗), 86
∃ (as path quantifier), 70
exit criteria, 226
exit criterion, 23, 24, 223, 245
exit criterion for a sprint, 343
exit criterion for an agile task, 343
exitCriterion , 253
expansion, 333
expansion of an STS, 41
expected, 184
expected value, 355
experiment, 203, 391
experiment archive, 328, 354
experiment sample, 391
experiment sample set, 391
experimental attrition, 370
experimental mortality, 370
Experimente, viii
experiments, 7
explicit enumeration, 92
explicit nondeterminism, 157, 172
explicit path MC, 174
explicit path model checking, 174
explicit reset, 186
explicit state MC, 241, 251, 252
explicit state model checking, 92
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explicit symbolic path model checking, 174
exploration, 325
exploratory testing, 2
explored, 140
explorer, 250
exponential decrease of POR, 134
expressible, 80
extended Büchi automaton, 77
Extended Computation Tree Logic∗, 85
extended FSM, 246
Extended Secure Aggregation for Wireless

sensor Networks, 161
Extended Table Format, 40
Extended-Büchi, 77
extends (test cases), 214
external discharge, 276, 281
external nondeterminism, 194
Extreme Programming, 342

F
F (function symbols), 29
F flag, 331
F operator, 73
F-Soft, 177
f.a., 10
fagg (aggregation function), 162
fail

– of a test case, 206
– of a test run, 206
– of a test suite, 206

fail fast, 58, 233
failure, 19
failure analysis problem, 256
failure detection, 13, 20
failure recovery, 204
fairness, 95, 133
fairness constraint, 6
fairness of the SUT, 186
fairness proviso, 295
fairnessS≈S , 222
fairnessstrong, 109
fairnessstrong(a), 95
fairnessweak, 109
fairnessweak(a), 95
faithful, 59
fake progress cycle, 132
false (PROMELA), 44
false, 9, 9
false alarms, 25
false negative, 25

– for a test generation, 210
false positive, 25

– cycle warning, 316
– for a test generation, 210

false positives, 158
false sharing, 51, 143
fancy TO, 352
fancylinear, 314
fancynonlinear, 314
fast heuristics, 268
fast-path-slow-path, 142
fault, 19, 176
fault finding effectiveness, 20
fault handling, 349, 385
fault injection, 23
fault tolerance, 328
fault-based testing, 23
fault-tolerance, 43, 53, 179, 186, 204, 280
fault-tolerant, 272, 273, 277
fault/failure model, 19
faultable(·) (for Straces), 203
faultable(·) (for states), 202
faultable reduced suspension traces, 203
faultable states, 202
FAuST, 173
fdistr(·) (coverage), 302
fdistr(·) (for nondeterminism on output), 303
feasibility, 4
feature, 1, 260, 329
feature change, 346
Feature Driven Development, 342
feature interaction problem, 163, 176
feature oriented software development, 176
feature requirement, 176
FeaVer, 176
feedback, 23, 331
fi , 45
F bi , 106
FIFO, 125
FIFO buffer, 41
FIFO queue, 125
files, 184
final state, 37
Findbugs, 4
FindBugs, 344
finingPath2W , 302
finite, 36
finite ∪ infinite trace semantics, 73
finite automaton, 37
finite graph, 28
finite path, 33
finite state machine, 37, 176
finite system, 3
finite trace semantics, 72
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finitely branching, 204
finitely monotonically increasing path2W o to-

wards TO, 312
finitely monotonically increasing sequence,

305
finitization, 157
first come first serve, 127
first order formula, 29
first order logic, 28
first order structure, 30
fitness evaluation, 288
fitness function, 305
fix-point, 105

– greatest, 105
– least, 105

fixed-point decimals in Dumont, 325
FixedSizeBitVectors theory, 31
FL (forgetful transformation), 35
flags, 331
flexible, 344
F b¬L,i, 106
floating point values, 113
FLTL, 72
fluent interface, 233
Fmod (forgetful transformation), 206
FMs, 2
fnew(·) (coverage), 302
fnew(·) (for nondeterminism on output), 303
FOL, 28
for all, 10
∀ (as path quantifier), 73
forgetful transformation for labels (FL), 35
forgetful transformation for model compo-

nent (Fmod), 206
forgetful transformation for TC component

(FTC), 206
forgetful transformation for weights (Fw),

297
fork, 174, 278
FORM, 29
FORMΣFOL , 29
FORMΣFOL(Var), 29

– semantics, 30
formal description, 2
formal interface, 39
formal method, 25
formal methods, 2, 240
formal parameter, 44
formal specification, 17
formal type parameter, 327
formal verification, 25
Fortran, 172

Fortschritt mittels Transitionen, viii
forward traceability, 17
fragment of CTL, 153
free(·), 29
free variables, 29
frequency, 163, 388
FS0 , 106
FSHELL, 175
FSM, 37
SFSM , 37
FSM-based testing, 186, 218
FSMGen, 176
FSP language, 247, 248
F bT , 106
FTC (forgetful transformation), 206
full fence, 51
full parallel composition, 42
full path sequence, 265
full symmetry, 107
full TC seq, 265, 301
full test case, 265
full test case sequence, 265
full trace sequence, 265
full weighted test case sequence, 301
full WTC seq, 301
fully expand, 137
fully expanded, 103
function parallelism, 50
function symbols, 29
functional, 18
functional abstraction, 59
functional behavior, 59
functional requirement, 2, 14
functional requirement specification, 18
functional testing, 14, 183
functional verification, 25
future, 50
fuzzy traceability, 333
Fw (forgetful transformation), 297

G
G operator, 73
game, 251
game theory, 307
gap, 60
garbage collection, 354
garp, 116
gate, 40
Gb, 122
gc, 354
gcc, 51
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gen, 209
general coverage criterion, 330
General Inter-Orb Protocol, 116
generalized NPC conjunctive Büchi automa-

ton, 129
generalized theoretical foundation, 6
generateLicense, 349, 385
genetic algorithm, 288
Genetic Network Analyzer, 110
genexec, 209
genTC(S, s̈), 211
genTS(S, s̈, b), 215
genWTS(S, π, b), 299
Gewichte, viii
giop, 116
glass-box testing, 14
global LTS, 46
global model checking, 93
global progress state, 115
global property, 176
global state, 46
global variable (PROMELA), 44
globally operator, 73
GLSL, 172
GNA, 110
GNU Compiler Collection, 51
GNU Unix to Unix Copy, 116
Go, 172
goal proviso, 295
good adversary, 307
GO packet, 163
goto, 46
graph

– single-rooted, connected, directed, acyclic,
203

– single-rooted, connected, finite, directed,
acyclic, 28

graphical user interface, 233
GraphML, 249
GraphViz, 249
gray-box testing, 15
greatest fix-point, 105
greedy, 54, 263, 296
Grid broker scheduler, 273
grid computing, 273
GridUnit, 273
Group Address Registration Protocol, 116
guarantee of discharging, 293
guarantee of discharging all test objectives,

293
guard, 43, 249

– in PROMELA, 45

– in STSs, 40
guard (POR), 103
guard-based POR, 103, 137
guarded command, 43, 112
guarded command language, 43
GUI, 325
guidance, 3, 23, 24, 256
guidance heuristic, 264
guidance heuristics, 7, 223, 254, 259, 286,

336
guides, 249

H
Hadoop, 52, 273, 275
HadoopUnit, 273
halt, 89
hang, 115
happy path, 19, 195
hardware, 388
Hardware Lock Elision, 51
hardware raid, 354
hardware transactional memory, 50
hardware-in-the-loop, 237
hash collision, 108
hash compaction, 108, 112
hash function, 108
hash table, 99
Haskell, 172, 274
hazard, 179, 228
Hazelcast, 48, 53, 276, 278, 336
Hazelcast Management Center, 278
heap, 94
heap symmetry reduction, 112
heavyweight formal method, 2
heavyweight specification, 3, 218
help command, 332
helping pattern, 142
hesitant alternating automaton, 101
heuristics, 6, 159, 283

– guidance, 286
– meaningfulness, 283
– phase, 258, 284
– test purpose, 286
– test selection, 283, 286

hidden I/O between components, 189
hide an action, 189
hierarchical refinement, 229
high performance computing, 49
high performance verification, 109
high volume automated testing, 274
HIL, 237
history, 266, 267
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HLE, 51
Hoare triple, 39
hold, 66
homing sequences, 204
homomorphic, 310
horizontal scalability, 49
horizontal tracing, 18
hot spot, 316, 368
human communication, 2
human error, 19
hybrid systems, 186
hyper-threading, 275

I
I (interpretation function), 35
I flag, 331
i-prot, 116
i-Protocol, 116
I/O contention, 388
I/O-bound, 389
IDE, 343
iδ, 204, 336
iδ caching, 336
idempotence, 3
IdGenerator, 53
idle mode, 370
idleness, 186
if , 45
IF, 248
if and only if, 10
IF specification, 247
iff, 10
ignoring problem, 104
I lazy(·), 263
illegal pointer access, 158, 169, 173
ILR, 172
image finite, 197
immutability, 328
imperative, 44
imperative languages, 43
implementation, 18
implementation, 276
implementation independent, 22
implementation of parallelism, 111
implementation relation, 202, 229
implementations, 7
Implementierung, viii
implicit enumeration, 92
implicit nondeterminism, 157, 172
implicit output transition to fail , 326
implicit precedence, 26, 30
implicit reset, 186

implicit scheduling, 57
implicit state model checking, 92
implicit synchronization, 57
in(·), 194
in-memory, 53
in-memory database, 53
inactive, 260
in∩(·), 228
in∩Sτ∗ (·), 228
incident, 2
incomplete, 60, 291
incomplete reduction, 108
inconsistent state, 204
incremental depth-first search, 122
incremental depth-first search with FIFO,

125
incremental hashing, 111
incremental process, 19
incremental solving, 334
incremental tree compression, 112
independent, 104
independent observation, 355
independently, 21
indeterminism of nature, 194
indivisibly, 47
INDUCING, 263
inducing state, 258, 285
inducing states, 254
inducing superstate, 258
inducingness, 258
inequalities between p2W TO and p2W 6TO,

306
inequality in Dumont, 325
inert process, 41
infinite data structure, 67
infinite data structures, 54, 110
infinite model checking, 94
infinite state model checking, 94
infinite system, 2
infinite systems, 186
infinite trace semantics, 71
infinitely branching, 212, 290
infix, 194
influencing parameter, 370
informationally unencapsulated, 184
informed compression, 112
inhibited, 184
init, 188
init, 33
init , 44
init process, 44
initial state, 32, 37
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initial states, 40
initializer, 44
initS , 33
initSdet , 196
initSudet , 228
inlined, 156
inlining, 21
input, 184, 187
input action, 42
input completion, 199
input coverage criteria, 22
input gate, 234
input output symbolic transition systems, 40
input prefix, 42
input-complete S, 199
input-complete initialized STS with I/O, 234
input-enabled

– S, 199
– state, 199

inSτ∗ (·), 194
Insense, 177
instantiated state (for STSs), 41
instantiator, 250
instruction coverage, 328
instruction reordering, 51
instruction sets, 172
instrumentation, 14, 173
integer overflow, 158, 173
integer underflow, 158, 173
integers in Dumont, 325
integrated, 18
integration test, 328
integration testing, 18, 189
Intel, 50
Intel Core i3-2100 processor, 275
Intel Xeon E5430, 354
intelligent code completion, 343
interaction, 325, 329, 331
interaction coverage, 334
interaction points, 41
interaction variable, 40
interactive, 250
interactive theorem proving, 3
interactive verification, 25
interface abstraction, 184, 207
interface automata, 251
Interface based on a Partitioned Next-State

function, 110
interleaving, 42

– in SPIN, 47
intermediate language, 172
intermediate logic representation, 172

intermediate representation, 157, 173, 177
– LLVM, 172

internal, 188
internal discharge, 276, 353, 371
internal nondeterminism, 194
internal transition, 188
Internet, 53
Internet Protocol, 52, 116

– Version 4, 52
– Version 6, 52

interpretation
– first order logic, 30
– Kripke structure, 35
– propositional logic, 26
– STS, 41

interpretation function, 35
interprocedural, 175
introspection window, 339
intrusion detection, 161
intrusion model, 176
Ints theory, 31
INV, 39
invalid bit shift, 173
invalid frees, 173
invalid memory access, 173
invariant, 4, 39

– of DFSprune,NPC, 128
invariant under stuttering, 76
invisibility proviso, 104
invisible, 105
IOchooser, 250
ioco, 202
ioco theory, 183
iocoChecker, 233, 251, 261
iocoF , 227
IOSTS, 40
IOT SA(LI , LU ), 199
IOT SA(LI , LU , x1, . . . , xn), 199
IOT SA(LI , LU , x1, . . . , xn, ∗), 199
IOT SA(LI , LU , x1, . . . , xn,+), 199
IP, 52
IPv4, 52
IPv6, 52
IR, 157
irregular topology, 374
irregular underspecification of input, 228,

350
is within, 93
IΣFOL , 30
ISIS, 345
ISO 26262, 4
isomorphic, 28
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iteration modeling, 55
iterative deepening, 122
iterative process, 19

J
Jambition, 252
Jararaca, 248, 249
Java, 44, 325
Java bytecode, 172, 173
Java Modeling Language, 3
Java Pathfinder, 173
Java Virtual Machine, 173
JBoss, 371
Jenkins, 343
JIT compiler, 173
JML, 3, 39, 44
job queue, 163
job scheduler, 370
Joshua, 273
JPF, 173
JTorX, viii, 7, 110, 249, 325
JTorX GUI, 250
JTorX Guides, 249
jtorx log, 249
Julia, 172
JUnit, 243, 273, 275
justice, 95

K
keyword, 60, 208
keyword driven testing, 60, 208
kill a model-based mutant, 261
kill a mutant, 23
kind of testing, 14
KLEE, 176, 316
KLEE tool, 174
Kleene closure operator, 10
Kleene’s closure operators, 33
KleeNet, 176
Komposition, viii
Kripke frame, 32, 36
Kripke structure, 34
Kripke structure with state vector seman-

tics, 91
kripke structures, 34
SKripke,<ω (Kripke structures for finite trace

semantics), 71
SKripke,≥ω (Kripke structures for infinite trace

semantics), 71
SKripke,Σsv , 91

L
l−→, 35

L, 35
L (for STSs), 40
label, 35

– in SPIN, 46
label (for STSs), 40
labeled Kripke structure, 36
labeled kripke structures, 36
labeled transition, 35
labeled transition system, 35
labeled transition system with inputs and

outputs, 187
labeled transition system with inputs and

outputs and internal transition, 188
labeled transition systems, 35
lambdas, 55
Landau notation, 119, 196, 197, 241, 242,

244, 267, 268, 299
language containment check, 98
lasso, 33
lasso, LTS, 35
lasso,FSM, 38
latency, 48, 367
lazily, 51, 94, 223, 229, 230, 248, 253, 278,

280, 338, 345
lazy, vi, 5, 54

– cache removal, 338
– SMT, 55
– tabu search, 338
– variable reordering, 28

lazy encoding, 55
lazy evaluation, 54
lazy full expansion due to progress, 137
lazy initialization, 54
lazy model checking, 56
lazy on-the-fly MBT, vii, 6, 253
lazy progress traversal, 121
lazy scheduling, 57
lazy SMT, 55
lazy SMT solving, 31
lazy specification, 55
lazy store operations, 113
lazy systematic unit testing, 55
lazy task creation, 57
lazy technique, 6
lazy techniques, 6
lazy threads, 57
lazy traversal sub-phase, 336, 339
lazy traversal sub-phase optimization, 318,

353
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lazy traversal sub-phases, 317, 339
lazy visibility proviso

– C2Tlazy, 138
– C2Slazy, 138

Lδε, 191
leader, 116
leader election protocol, 116
leaderDKR, 116
leaf node, 162
least fix-point, 105
LED, 163
length of a path in a TS, 33
length of a path in an LTS, 35
length of a trace, 35
lengthdischarge), 320
Lε, 188
Lεδ, 191
level 0 OTF, 56
level 1 OTF, 56
level 2 OTF, 56
License Central, 231
lifting, 234
lightweight, 175, 343, 344
lightweight formal method, 3
lin-lin plot, xx, 356
linear, 67
linear Kripke structure with finite length, 67
linear refinement, 208
linear scaling, 49
linear speedup, 49, 151
linear test case, 195
linear time formula, 70
Linear Time Logic, 74, 75
linear time property, 66, 67
link mobility, 41
list collection, 53
list modulo a given depth, 262
lists in Dumont, 325
livelock, 115
livelock detection, 89, 109
livelocks, 89, 95, 142, 189
liveness, 95
liveness check, 109
liveness properties, 109
liveness property, 68
LL/SC/VL, 51
LLBMC, 172
LLDET, 131
Llivelock , 117
LLVM, 112, 172
LLVM compiler infrastructure, 172
LLVM Compiler Infrastructure, 174

LLVM intermediate representation, 172
LLVM IR, 172, 174
LNDFS, 111
load, 388
load balancing, 50, 143, 278
load balancing, 143
Load-Linked, Store-Conditional, Validate, 50
local LTS, 46
local progress state, 115, 133
local properties, 167
local property, 167
local queue, 143
local stack, 138
local state, 46, 115
local transitions, 111
local variable (PROMELA), 44
localBackup, 349, 385
location, 40
location variable, 40, 314
lock-free, 50, 142
lock-free hash table, 141
lock-free program, 142
lockless, 142
lockless shared hash table, 111
locks, 111
lockstep, 47, 242, 256
log-lin plot, xx, 356
logging, 328
logic, 31
logical encoding, 157
logical input map, 175
loop body execution, 156
loop unwinding, 288
lossless abstraction, 59, 207
lossy abstraction, 59, 155, 207
lossy hashing, 108
LOTOS, 43, 247, 248
low coupling, 273
low energy, 162
Low-Level Bounded Model Checker, 172
low-level logging, 329
l(s), 36
Lτ , 188
Lτδ, 191
LTL, 74, 75, 109
LTL−X , 76
LTS, 35

– deterministic, 36
– nondeterministic, 36

LTS semantics of PROMELA, 46
LTS with I/O, 187
LTS with I/O and τ , 188
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LTSMIN, 249
LT S(LI , LU ), 187
LT S(LI , LU , ∗), 187
LT S(LI , LU , x1, . . . , xn, ∗), 187
LT S(LI , LU ,+), 187
LT S(LI , LU , x1, . . . , xn,+), 187
LT S(LI , LU , , δ, ε), 191
LT S(LI , LU , δ, ε, ∗), 191
LT S(LI , LU , ε), 188
LT S(LI , LU , ε, ∗), 188
LT S(LI , LU , ε, δ), 191
LT S(LI , LU , ε, δ, ∗), 191
LT S(LI , LU , τ, ∗), 188
LT S(LI , LU , τ, δ), 191
LT S(LI , LU , τ, δ, ∗), 191
LT S(LI , LU , x1, . . . , xn), 187
LTSmin, 101
LTSMIN, 109
Lua, 172

M
macro mechanism, 60
maintenance, 15, 237, 287
make progress, 115
malicious, 162
manager, 250
Manifesto for Agile Software Development,

342
manual test case generation, 15
manual testing, 15
manual verification, 25
manually, 155
map, 52
map collection, 53
MAPLE, 110
MapReduce, 52, 278
MapReduce Master, 52
MarginSafetyMiniTT, 318
Markov decision process, 113
masked, 21
master, 52
master/slave network, 52
Max, 308
maximal bound, 258
maximal depth bound, 285
maximal environment, 61
maximal paths, 33
maximal test run, 206
maximal test run path, 206
maximal test run trace, 206
maximal value, 355
MaxMax, 308

max(p2W ,max(. . . )) (aggregation), 307
max(p2W ,min(. . . )) (aggregation), 307
max(x), 355
MBT, 4, 238
MBTAD, 345
MC, 3, 90
MC/DC, 21
mCRL2, 43, 110, 111, 249
MDD, 107
MDP, 113
mean adversary, 307
mean value, 355
meaningful, 20, 203, 213, 283
meaningfulness, vii
meaningfulness heuristics, 283
meaningfulness weight heuristics, 297
median, 355
median(x), 355
medicine, 1
memory, 184
memory barrier, 51
memory block, 51
memory bound, 49
memory consistency, 51
memory consistency model, 51, 113
memory errors, 158, 173
memory fence, 51
memory model, 51

– bit-precise, 172
memory requirement, 371
memory requirements, 353
Mersenne Twister, 351, 371
message (process algebra), 41
message passing, 41, 48
message passing implementation, 52
message passing interface, 48
message sequence chart, 250
meta level, 6, 7
meta-mutant, 179
meta-state, 196
Metaebene, viii
metaheuristic, 290, 337
metric, 310
metric-driven, 289
minimal bound, 258
minimal depth bound, 285
minimal value, 355
minimization, 111
minimized automata compression, 107
minimized automaton compression, 92
minimum robustness specification, 232
Minisat2, 27, 158
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min(x), 355
MISRA C standard, 157
misses, 25
mistake, 19
mitigation, 296
mitigation of LazyOTF’s guidance, 292
mitigation via weights, 302
mobility, 41
MOD, 185
model, 34

– behavioral property, 66, 66
– FOL, 30
– for abstraction, 59
– for ioco, 185
– propositional, 26
– temporal logic, 69

model checking, v, 3, 90, 240
– bounded, 93
– conditional, 91
– exhaustive, 93
– explicit state, 92
– implicit state, 92
– infinite state, 94
– offline, 93
– on the fly, 93
– software bounded, 94
– symbolic implicit via BDDs, 105

model nondeterminism of the LTS, 189
Model Programs, 251
model-based mutant, 261
model-based mutation testing, 261
model-based testing, 3, 238
model-based testing (abstr. def.), 237
model-oriented testing, 238
modeling language, 177
Models, 69
Modelslin, 69
Modified Condition/Decision Coverage, 21
modularization, 43, 47, 60
monitor, 161
monitoring, 14, 271
monitoring application, 161
monitoring execution step, 44
monotonic POR, 103
Moore’s law, 47
more expressive than, 80
mortality, 370
move towards TO in the current traversal

sub-phase, 312
mpC, 273
MPI, 48
MTBDD, 113

mtype (PROMELA), 44
Muller automaton, 77
multi-core, 274
multi-core BFS, 146
multi-core computing, 48
multi-core DFS, 147
multi-core multiprocessing, 48
multi-terminal binary decision diagram, 113
multi-threaded, viii, 142, 252
multi-threaded DFSFIFO, 6
multi-threading, 48, 138, 272, 278
multi-valued decision diagram, 107
multicast, 52, 116
multicast group, 52, 116
multiple instruction streams, multiple data

streams, 48
multiprocessing, 48, 274
multitasking, 169
MurPHI, 112
mutant, 23
mutation, 288
mutation kill ratio, 24
mutation operator, 23
mutation score, 24
mutation testing, 23
MySQL, 371

N
n (sample size), 355
named arguments, 40
named channel, 41
NameNode, 52
NDFS, 99
negation normal form, 75, 91
negative test, 19
nesC, 163
nested depth-first search, 99
nested dfs, 98
nested parallelism, 57
nested type, 177
network, 52

– master/slave, 52
– peer-to-peer, 52

network simulator, 167
never, 44
never claim, 109, 118
never claim process, 44
next time operator, 70
next-free LTL formulas, 76
next-state function, 111
next-state interface, 110
nightly tests, 266, 272
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no operation, 188
node, 48
node in a sensor network, 161
non-emptiness game, 101
non-functional, 18
non-functional abstraction, 59
non-functional requirement, 2, 14
non-functional requirement specification, 18
non-functional testing, 14
non-functional verification, 25, 113
non-maximal paths, 33
non-normal distribution, 371
non-parameterized statistical tests, 371
non-progress cycle, 117
non-progress cycle check, 117
non-progress cycles, 109
non-redundant TS, 215
non-structural coverage criteria, 22
non-uniform memory architecture, 48
nondeterminism, 155, 157, 185, 186, 194
nondeterminism (abstr. def.), 60
nondeterminism of the LTS, 195, 334, 350
nondeterminism on output, 195, 350
nondeterministic branching, 195, 350
nondeterministic choice point, 194
nondeterministic choice points, 60
nondeterministic choices, 60
nondeterministic LTS, 36
nondeterministic resolution, 60, 284
nondeterministic system, 195
nondeterministic systems, 186
nondeterministic transition system, 34
nondeterministic, static coverage criteria, 216,

216
nonfancy, 314
NOP, 188
normal form, 28
normalized, 303
notInStack proviso, 105
np_, 46
NP, 284
NP hard, 283
NP-complete, 27
NPC, 117
NPC check, 117
NPCφ, 129
NS-2, 167
null, 41
NULL platform, 163
nullness, 328
NUMA, 48
number of test steps, 265

NuSMV, 97

O
ω, 9
o (test objective), 260, 264, 310
ω + 1, 9
OBDD, 28
object-based DSM system, 48
Objective-C, 172
Observable MC/DC, 21
observable nondeterminism, 194
observation, 184
observation objective, 248
observer, 53
observer pattern, 329
occam, 43
od, 46
odecTO, 352
ö (active test objectives), 260
öcov TO, 351
(öi)i∈[1,...,p], 315
öinit , 310
öSisolTO, 352
off-the-fly MBT, 243
offline, 242

– model checking, 93
– tableau-based LTL model checking, 97

offline MBT, 243
offline MBT (abstr. def.), 242
offline technique, 56
offline test selection, 289
OMC/DC, 21, 179
Omega constraint solver, 251, 335
ω-automaton, 76, 76
ω-regular language, 129
OMG, 116
omission failure, 277
OMNeT++, 167
on-the-fly, 210
on-the-fly determinization, 197
on-the-fly MBT, 245
on-the-fly MBT (abstr. def.), 242
on-the-fly model checking, 93
on-the-fly performance, 117
on-the-fly technique, 56
on-the-flyness, vii, 56, 93, 131, 150
on-the-flyness for MBT, 259
one pass, 130
one pass algorithm, 131
One-Way-Catch-Them-Young, 112
oNFRSML TO, 352
online MBT, 245
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oom, 145, 354, 355, 370
Opaal, 110
open, 61
open addressing, 111
open architecture, 331
open source, 53, 163
open system, 16
OPEN/CAESAR, 39, 110, 248
OpenMP, 48
operating software, 163
operator basis, 26, 29, 73
operator precedence, 26, 30
optimal test suite, 283
optimistic, 307
optimization, 6, 157
optimization for MC, 111
optimizer, 172
oracle, 16
OracleSafetyTree, 318
ordered

– binary decision diagram, 28
ordered binary decision diagram, 28
ordinal, 9

– smallest infinite, 9
ORDINARY, 263
original encoding of LTL BMC, 106
oRSML TO, 351
OTF, 56, 245
OTF limit proviso, 291
out(·), 194
out-of-memory, 354, 355, 370
out-of-order execution, 51, 113
output, 184, 187
output (PROMELA), 45
output action, 42
output gate, 234
output prefix, 42
output-complete S, 199
output-enabled, 203, 309

– S, 199
– state, 199

outSδτ∗ (·), 194
outSτ∗δ(·), 194
over-approximation, 228
overall number of test steps, 353
overall worst case space complexity of all

traversalSubphase, 268
overall worst case space complexity of deter-

minization, 197
overall worst case time complexity of all traversal

Subphase, 268

overall worst case time complexity of deter-
minization, 196

overflow, 310
owcty, 112, 145

P
p, 21
P , 138, 275
P (number of processes), 49
P (predicate symbols), 29
Pvanishing, 293
p+ (depth bound threshold), 285
p− (depth bound threshold), 285
packages for transmission, 349, 385
packet fragmentation, 164, 176
padding, 51
pagination, 232, 264, 349, 385
pan.c, 109
parallel, 108, 110, 272
parallel composition, 42

– asynchronous, 42
– full, 42
– restricted, 42
– synchronous, 42

parallel composition operator, 42
parallel computing, 47
parallel efficiency, 49
parallel instance, 48
parallel interaction, 48
parallel interleavings, 195
parallel language mpC, 273
parallel model-based testing, 274
parallel overhead, 49, 147
parallel performance metrics, 49
Parallel QuickCheck, 274
parallel scalability, 49, 53, 138, 277
parallel schedulings, 50
parallel speedup, 49, 147
parallel test automation, 252
parallelization, 6, 47

– in search-based software testing, 317
parallelized, 47, 137
parameterized transition system, 334
parantheses in plots, 355, 370
partial coverage, 333
partial function, 34, 36
partial knowledge, 333
partial order, 230
partial order reduction, vi, 6, 103, 190
partial specification, 228
Partition tolerance, 278
partition tolerant, 278

488



Index

partitioner, 250
pass

– of a test case, 206
– of a test run, 206
– of a test run path, 206
– of a test suite, 206

pass, 326
passendste Abstraktionsgrad, viii
passive nodes, 116
passive testing, 14
path coverage, 173
path divergence, 241
path explosion, 174
path in a TS, 33

– length, 33
path in an FSM, 38
path in an LTS, 35

– length, 35
path quantifier

– existential, 70, 86
– universal, 73

path reduction, 112
path sequence, 265
path2W (π), 298
path2Wprob, 321
pathological, 291, 306
paths pruned at depth b, 215, 299
paths fail (Sdet), 213
paths(·) (finite paths set, LTS), 35
paths(·, ·) (paths set, LTS), 35
paths<max(·) (non-maximal paths set, LTS),

35
paths<max(·, ·) (non-maximal paths set, LTS),

35
pathsfin(·) (finite paths set, LTS), 35
pathsfin(·, ·) (finite paths set, LTS), 35
pathsfinmax(·) (maximal finite paths set, LTS),

35
pathsfinmax(·, ·) (maximal finite paths set, LTS),

35
pathsmax(·) (maximal paths set, LTS), 35
pathsmax(·, ·) (maximal paths set, LTS), 35
pathsω(·) (infinite paths set, LTS), 35
pathsω(·, ·) (infinite paths set, LTS), 35
pathsmax(·, ·) (maximal paths set, TS), 33
paths(·) (paths set, TS), 33
paths(·, ·) (paths set, TS), 33
paths<max(·) (non-maximal paths set, TS),

33
paths<max(·, ·) (non-maximal paths set, TS),

33
pathsfin(·) (finite paths set, TS), 33

pathsfin(·, ·) (finite paths set, TS), 33
pathsfinmax(·) (maximal finite paths set, TS),

33
pathsfinmax(·, ·) (maximal finite paths set, TS),

33
pathsmax(·) (maximal paths set, TS), 33
pathsω(·) (infinite paths set, TS), 33
pathsω(·, ·) (infinite paths set, TS), 33
pathsV(Sdet), 213
PB, 145
PBS, 363
pc , 46
PCOs, 16
Pcoverage, 292
PcoverViaTOs, 293
PCTL, 113
pcurr (current phase number), 265
PDFSFIFO, 138
Pdischarge, 293
peephole POR, 103
peer-to-peer, 53
peer-to-peer network, 52, 273, 276
performance, 14, 18, 59, 186, 240
performance of interaction, 48
performance quantity, 353
period (öi)i∈[1,...,p], 315
persistence, 53
persistence property, 129, 153
persistent set POR, 103
peterson mutual exclusion, 112
Pfair , 295
PGA, 275
Pgoal , 295
phase heuristics, 6, 254, 258, 284, 299
phase of LazyOTF, 253
phase proviso, 295
Phasen-Heuristik, viii
phases of the software development process,

17
phaseVariant, 295
physical limitations, 47
physical system, 183
(πi)i∈[1,...,1+pcurr) (path sequence), 265
| π |, 33
π-calculus, 41
pid (PROMELA), 44
πfull (concatenated full path), 266
(πfulli )i∈[1,...,1+rcurr) (full path sequence), 265
piggyback (SPIN), 145
π≥k, 33
π≤k, 33
PInputDefault, 309
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PINS, 110
pins, 110
PINS2PINS wrappers, 111
PLASTIC Framework, 252
plug-in, 252
pluggable type checking, 4, 328
plural observation objective, 287
+(p2W ,max(. . . )) (aggregation), 307
+(p2W ,mean(. . . )) (aggregation), 307
+(p2W ,min(. . . )) (aggregation), 307
+(p2W ,+(p ·z0, (1−p) ·mean(. . . ))) (aggre-

gation), 308
+(p2W ,+(. . . )) (aggregation), 307
point of control and observation, 16
point of entry, 21
point of exit, 21
pointer analysis, 112
pointer dereference error, 171
pointerless, 142
polyadic communication prefix, 42
polymorphic, 125
polymorphic method, 122, 134, 253, 276, 299
population, 355, 374
POR, 103, 112

– cartesian, 103
– guard-based, 103
– monotonic, 103
– peephole, 103
– persistent set, 103
– probe set, 103
– sleep set, 103
– stubborn set, 103

Portable Batch System, 370
positional arguments, 40
possibilistic, 60, 186
POST, 39
postcondition, 4, 39

– of DFSprune,NPC, 128
– of model checking, 90, 92
– of model-based testing, 238
– of NPC checks, 117
– of test case generation, 209

potential state, 196
potentially infinite data structure, 54
potentially most meaningful, 283
P→OTF , 291
power consumption, 49
power-management technology, 388
PowerPC, 172
Pphase, 295
practical application, 7

pragmatic approach of quantifying probabil-
ity, 308

praktischer Einsatz, viii
PRE, 39
precedence, 26, 30
precondition, 4, 39

– of DFSprune,NPC, 128
– of model checking, 90, 92
– of model-based testing, 238
– of NPC checks, 117
– of test case generation, 209

predicate, 21
predicate abstraction, 102, 176, 177
predicate symbols, 29
preemption, 89
prefix, 33
prefix, LTS, 35
prefix, trace, 36
prefix,FSM, 38
prefix,trace in an FSM, 38
preprocessing, 159
Presburger arithmetic, 31
primer, 250
primitive type, 44
primitive types, 44
printf (), 45
prioritization of faults, 299
priority of operators, 26, 30
PRISM, 44, 113
privilege, 47
probabilistic behavior, 113
probabilistic concast, 161
probabilistic CTL, 113
probabilistic mitigation, 292
probabilistic model checker, 113
probabilistic property, 113
probabilistic structures, 113
probabilistic weights, 320
probability, 186
probability distribution, 113, 371
probability of a path, 113
probe set POR, 103
procedural programming languages, 43
process, 47
process (abstr. def.), 41
process (software development), 17
process algebra, 41, 110
process algebraic parallel composition oper-

ators, 42
process algebraic specifications, 189
process calculus, 41
process declaration (PROMELA), 44
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process starvation, 109
process type declaration, 44
processor load, 388
proctype, 44
product backlog, 343
product lines, 176
product release date, 272
program counter, 46, 94
program monitoring, 14
program slicing, 3, 72, 102, 107
programmatic, 233
progress, vi, 115, 115, 142

– label, 46
– state, 46

progress, 46
progress (abstr. def.), 89
progress cycle, 126
progress state, 115, 115

– global, 115
– local, 115, 133

progress state semantics, 132
progress transition, 6, 7, 132
progress transition semantics, 132
progress_counter, 122
Prolog, 249, 326
PROMELA, 44, 110, 176, 248, 249
promise, 50
promise broken, 50
promise kept, 50
promise pending, 50
promote memory to register, 172, 178
Prop, 69
PROP, 26
PROPΣ, 26
PROPΣ

– semantics, 26
propagate, 19
property, 34

– behavioral, 66
– temporal, 65

property check, 112
property description, 89
property descriptions in temporal logics, 68
property relevance, 333
property-based random testing, 274
property-based testing, 3, 274
Proplin, 69
propositional formula, 26
propositional logic, 26
propositional variable, 34
propositional variables, 26
protocol initialization, 161

proviso
– ample decomposition, 103
– cover via TOs (PcoverViaTOs), 293
– coverage (Pcoverage), 292
– cycle, 104
– cycle implementation, 104
– cycleClosing, 105
– dependency, 105
– discharge (Pdischarge), 293
– emptiness, 105
– fair (Pfair), 295
– goal (Pgoal), 295
– invisibility, 104
– lazy visibility C2Tlazy, 138
– lazy visibility C2Slazy, 138
– notInStack, 105
– OTF limit (P→OTF ), 291
– phase (Pphase), 295
– vanishing (Pvanishing), 293
– visibility, 105
– visibility C2T, 136
– visibility C2S , 136

provisos framework, 322
prune state space, 47
pruned, 158
Ps̈ (behavioral property for a TG), 260
Psafety ∧ Pliveness, 68
pseudo-random number generator, 275
pseudorandom number generator, 351, 371
Penabled(s̈)[s̈

l−→ s̈′], 320
pure, 328
Python, 172

Q
QF, 31
QML, 252
qualification problem, 185
quality, 186
quality management, 345
quantifier-free, 31
QuickCheck, 3, 274
quiescence, 16, 186, 190, 207
quiescent, 191
quotient structure, 107

R
?r (reified implicit reset capability), 262
R, 73, 172
Rabin automaton, 77
Rabin-Scott powerset construction, 197
race condition, 276
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race conditions, 3, 195, 207
radiation, 184
RAID, 388
ramification problem, 185
random, 167, 245, 270
random receive (PROMELA), 45
random test selection, 286
random testing, 274
random waiting, 116
random walk, 113, 175, 255, 286, 357
randomized next-state function, 138
randomly ordered next-state function, 138
randomness, 241
rapid delivery, 344
rate of progress, 49
RC5 cipher, 167
rcurr (current restart number), 265
reachability, 118
reachability properties, 240
reachability property, 65, 68, 260, 264
reachable, 34
reached TG, 260
reactive system, 157
read matrix, 111
read-acquire, 51
real superstate, 196
real-time, 273, 278
real-time behavior, 142
real-time constraint on →, 186
real-time system, 33
reassembling errors, 164, 176
receive

– random (PROMELA), 45
– standard (PROMELA), 45

receive (process algebra), 41
receive (PROMELA), 45
receive queue, 164
recomputation, 354
recomputed, 369
record (PROMELA), 44
records in Dumont, 325
recurrence, 95
recurrent restarts, 262
recurrently, 142
recurrently increasing, 295
recursive depth, 156
red-green-refactor-cycle, 343
reduce, 52
reduced exhaustive test suite, 223
reduced ordered binary decision digram, 28
reduced traces, 234
reduction heuristic, 248, 288, 290

reduction rate, 146
reductions, 112
reductions, 112
redundancy, 53, 208
refactor, 343
refinement, 6, 60, 207, 229, 235
refinement hierarchy, 247, 345
refinement relation, viii
refines, 230
refinesF , 230
reflexive, 188, 230
reflexive closure, 34
reflexive, transitive closure, 36
reflexivity, 3
refusal, 186, 207
refusal testing, 184
register, 94
regression bug, 19
regression test, 343
regression testing, 19, 237
regular expression, 248, 286
reified implicit reset capability, 262
reifies quiescence, 197
relational operators in Dumont, 325
relative speedup, 49, 147, 366
relative standard error of means, 355
release memory barrier, 51
release operator, 73
relevant behaviors, 102
reliability, 1, 13
reliable, 369
reliable reset capability, 186, 262, 351
remoteBackup, 349, 385
removeAll, 349, 385
removeExpired, 349, 385
removeLicense, 349, 385
renaming, 42
reordering, 51
reordering optimizations, 51
repeatability, 319
repetition, 46
replication, 42
reproducibility, 20, 318, 319, 337
reproduction operator, 288
REQ, 18, 167
request-response pattern, 349, 385
requirement, 167, 329
requirements, 2, 17, 333

– vague, 333
requirements conformance testing, 22
requirements coverage, 22, 252, 271, 310
requirements phase, 18
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requirements traceability, 17
requirements-based testing, 22
reset property, 95
resolving nondeterminism, 195
resource, 115
resource constrained, 163
resource consumption, 59
response messages, 349, 385
response property, 129
response time, 48
REST, 53
restart, 262, 266
restart heuristic, 262
restart property, 292
restart sequence, 265
restricted parallel composition, 42
restriction, 42
retain moving towards a TO, 313
return on investment, 341
reuse, 107
revealing, 20
reviews, 14
(ri)i (restart sequence), 265
right level of abstraction, 7
right-associativity, 26
right-unique, 195
right-unique relation, 34
risk management, 13
roadmap, 1, 13, 32, 39, 65, 66, 70, 116, 121,

134, 138, 145, 156, 161, 183, 187,
208, 227, 247, 284, 325, 341, 349

ROBDD, 28
robust, 19
robust testing process, 205
robustness, 14, 18, 179, 240
robustness testing, 232
ROI, 341
root cause, 19
rotation, 107
round, 116
round bracket, 26, 30
RSEM, 355
RSEM(x) relative standard error of mean,

355
Ruby, 172
run (PROMELA), 45
runtime conformance monitoring, 271
runtime error, 158
runtime trace semantics, 72
runtime verification, 14, 96
Rust, 172

S
S, 32
S (for STSs), 40
Σ, 34
Σsv(X) (variables for X), 106
I, 40
V, 40
|S|, 34
S0, 32
safety check, 108
Safety Integrity Level, 4
safety properties, 108
safety property, 68
safety standards, 4
safety-critical, 161
safety-critical software, 2, 4
safety-critical systems, 1
SAL, 101
sample, 355, 355, 374
sample mean, 355
sample size, 355, 371
S , 199
SAT, 27, 177
SAT modulo theories, 31
SAT solver, 27, 92
SAT-solver, 106
SATABS, 177
satisfies

– Büchi automaton, 77
– behavioral property, 66, 66
– ECTL∗, 86
– first order logic, 30
– propositional logic, 26
– temporal logic, 69, 69

sawtooth phase heuristic, 326, 361
sax, 249
SBMC, 3, 94
SBST, 288
Scala, 172
scalability, 147, 353

– parallel, 49, 138
scalable, 49
scalable up to P , 49
scalar evolution analysis, 172, 178
scales linearly, 49
scales well, 49
scaling of a parallel program, 49
SCC, 97, 101, 262
scenario, 287
scenario (in Spec Explorer), 251
scheduling, 163, 195, 273
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– in SPIN, 47
scheduling of tasks, 54
schema-based mutation, 179
scope, 44
Scrum, 342
Sδ, 191
Sδτ∗ , 191
S , 199
Sdet, 196
Sdet, 196
SDL, 248
search heuristics in EXE, 174
search-based software testing, 241, 288, 316,

337
search-space explosion, 3
secondary operator, 86
secondary operators, 26, 29, 73–75
security protocol, 176
seeds, 275
selection, 45
selection hypotheses, 185
selective data hiding, 102, 107
Selenium, 273
selenium grid, 273
self-clustering, 53
self-discovering, 53
self-loop, 71
SEM, 355
semantics, 40, 70, 74, 75, 85
semantics of CTL∗, 71
semantics of ECTL∗, 86
semantics of FORMΣFOL(Var), 30
semantics of PROPΣ, 26
semi-decidable, 239
SEM(x) standard error of mean, 355
send

– sorted (PROMELA), 45
– standard (PROMELA), 45

send (process algebra), 41
send (PROMELA), 45
sensor, 161
separation of mechanism and policy, 329
SEQ, 247
sequence (PROMELA), 45
sequential, 48, 51, 127, 147
sequential composition, 42
sequential composition (PROMELA), 45
sequential consistency, 51, 113
server machine, 273
service, 177
service oriented architecture, 116
service-oriented architecture, 53, 231, 349

set collection, 53
set of initially active TOs, 310
set theoretic semantics, 71
SETAGG packet, 163
SET packet, 163
ΣFOL, 29
(σfulli )i∈[1,...,1+rcurr) (full trace sequence), 265
shadow copy of the heap, 112
shape analysis, 112
shared memory, 48, 142
shared memory abstraction, 48
shared memory architecture, 48
shared memory programming, 48
shared reduced ordered binary decision dia-

grams, 28
shared state storage, 138
shared-nothing architecture, 48
sharing in functional programming, 54
short (PROMELA), 44
short vector, 111
shortest counterexample, 131
showLicenses, 349, 385
(σi)i∈[1,...,1+pcurr) (full trace sequence), 265
sibling states, 34
sibling transitions, 34
side effect, 32, 157, 174
side effects, 184
sifting algorithm, 28
SIGAR framework, 371
σfull (concatenated full trace), 266
Σsv, 91
signature, 34
signature for first order logic, 29
signature for propositional logic, 26
SIL, 237
silent prefix, 42
simplifications, 159
simulated parallelism, 47
simulated SUT, 210, 220
simulation, 165
simulation, 165
simulation API, 247
simulative execution, 173
single point of failure, 52, 53
single unwinding, 33
single-rooted graph, 28, 203
singular observation objective, 287
sink, 162
Sisol , 222
size of S, 34
size of a cycle, 33
size of a TC, 204
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size of an OBDD, 28
SKEY, 168
skip (PROMELA), 45
SKripke, 35
SKripke,1 (one initial state), 35
SKripke,finite, 35
SKripke,labeled , 36
SKripke,labeled,finite, 36
SKripke,linear , 67
slave, 52
Σlazy, 263
[[S, L]]b, 106
SLC , 349, 385
Slede, 176
sleep set POR, 103
SLF4J, 329
slicing, 176
slicing rules, 159
slicing scenario, 251
SLOC, 338
slot, 110
SLTS , 35
SLTS,finite, 35
small scope hypothesis, 93, 130, 150, 288
Smart Wireless, 161
smells, 184
SMT, 31, 106, 241
SMT logic, 31
SMT solver, 31, 174, 257, 334
SMT solvers, 92
SMT-LIB, 158, 172
SMT-LIB 2.0, 334
SMT-LIB 2.0 standard, 31
SMV, 101
SNA, 48
SOA, 231
SOAP, 53
software BMC, 94
software bounded MC, 94, 155
software bounded model checking, 3, 94
software bug, 1
software development, 7
software development platform, 163
software development process, 17, 341
software engineering, 17
software engineering process, 17, 55
software life cycle process, 17
software requirements, 18
Software System Award, 108
software testing, 13
software transactional memory, 51
software verification, 25

software-in-the-loop, 237
sometimes operator, 73
sorted send (PROMELA), 45
sound, 3, 25

– model checker, 90
– model-based testing, 239
– SAT solver, 27
– test case, 210
– test generation, 210
– test suite, 210

sound abstraction, 163
sound test generation genexec, 210
soundness for an ioco variant, 228
soundness of genTC, 213
soundness of genTS, 216
soundness of DFSFIFO, 127
soundness of DFSFIFO with POR, 136
sounds, 184
source, 34
source LoC, 338
source of a path

– FSM, 38
– TS, 33

source(·) (source of a path
– LTS), 35
– TS), 33

SP (speedup), 49
Spec Explorer, 245, 251, 287, 335
Spec#, 251
specifiable, 80
specification, 16
specification hierarchy, 345
specification language, 38
specification language front-end, 250
specification language front-ends, 110
specification mutation testing, 261
specification-driven development, 345
specifications (for ioco), 200
specifications coverage, 22
specified, 69
speedup

– (super-)linear, 365
– absolute, 49
– linear, 49
– parallel, 49
– relative, 49
– super-linear, 49

Sπ, 67
SPIN, 101, 108, 176
SPINS, 110
SPOR, 103
SPOR, 103
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sprint, 260
sprint backlog, 343
sprints, 343
S→∗ , 34
S→∗(state space), 34
SSA, 157
SSA-based, 172
Ssim S (simulated SUT), 220
SSTS , 40
stable, 272
stack buffer overflows, 173
standard configurations, 329
standard deviation, 355
standard error of mean, 355
standard receive (PROMELA), 45
standard send (PROMELA), 45
starvation-freedom, 142
starve, 89, 115
starving, 95
starving process, 109
state, 32, 37

– accepting, 37
– final, 37
– global, 46
– initial, 32, 37
– local, 46

state change, 43
state coverage in isolation, 222
state coverage of Sdet, 216
state coverage of Mdet, 216
state machine, 346
state space, 34
state space bottleneck, 374
state space compression, 107
state space explosion, v, 3, 59, 91, 155
state space partitioning, 112
state space reduction, 107
state space reduction technique, 102
state transition system, 32
state variable, 40
state vector, 46, 91
state vector semantics, 91
statement, 35
statement merging, 103, 107, 112
states of faultable(S) in isolation, 222
static, 2
static analysis, 3, 4, 14, 157, 172, 343
static code analysis, 14
static coverage, 24
static coverage level, 24
static defect, 19
static dependency matrix, 110

static polymorphism, 252
static single assignment form, 157
static testing, 13, 14, 155
statistically verified, 177
STATUS packet, 162
Sτ∗δ, 191
stdin pipe, 250
stdout pipe, 250
steep memory hierarchy, 51
steepest ascent hill climbing, 305, 317
STG, 251, 335
stimulus, 184
storing communication between JTorX and

LazyOTF, 328, 354
STP, 172, 174
STP SMT solver, 55
Straces(·), 194
Strace equivalence, 194
Strace equivalence on sets, 194
StracesSδτ∗ (·), 194
StracesSτ∗δ(·), 194
straight-line instruction throughput, 47
Streett automaton, 77
stress tests, 271
strict on-the-fly, 242
strict PDFSFIFO, 143
strictly monotonically increasing path2W o to-

wards TO, 312
strictly monotonically increasing sequence,

305
strings in Dumont, 325
strong (A-)fairness, 133
strong bisimulation, 111
strong exception safety, 204
strong fairness, 95, 101, 133
strong mutation testing, 23
strong scaling, 49
strong trace link, 346
strongly connected components, 97, 137
struct, 177
struct (PROMELA), 44
structural coverage criteria, 22
structural health monitoring, 1, 161
structure the LTS, 189
STS, 40, 233, 234, 249
STS , 32
STS with I/O, 234
STSExplorer, 334
STS,finite, 32
STSimulator, 325, 325
stubbed, 367
stubborn set POR, 103
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stutter, 76, 312
stutter equivalence, 76, 136
stutter invariant, 76
stutter-closed, 76
stuttering, 71, 76
stuttering equivalent, 104
stuttering in a finitely monotonically increas-

ing sequence, 305
sub-graph, 254, 284
sub-linear, 147
subF , 81
subF lin(·), 83
subsystem, 18
Sudet, 228
Sudet, 228
suffix, 33
suffix, LTS, 35
suffix, trace, 36
suffix,FSM, 38
suffix,trace in an FSM, 38
sum, 42
super-linear speedup, 49, 151, 365
super-linear speedup of meaningful test exe-

cution, 365
superstate, 196
supp(f(·)), 9
supp(I(·, s)), 35
supp(I(p, ·)), 35
support, 9, 35
suppress TOs, 306, 307
SureCross, 161
survival selection, 288
suspension, 190
suspension automaton, 191, 196
suspension automaton after τ abstraction,

191
suspension trace coverage of S, 216
suspension traces, 194
SUT, 16
SUT , 16
SUT , 183
sut, 350
SUV, 25, 158
[[SVd

LC
]], 350

swarm verification, 111
Swift, 172
switch, 40
switch relation, 40
switch restriction, 40
symbolic, 92, 102, 104, 173, 255
symbolic branch point, 174
symbolic constant (PROMELA), 44

symbolic execution, 173, 174, 176, 252, 275,
334

symbolic extended traces, 234
symbolic implicit state model checking via

BDDs, 105
Symbolic Java Pathfinder, 173
symbolic name, 108
symbolic path, 174
symbolic paths, 334
symbolic test generation tool, 251
symbolic transition system, 40
symbolic transition system with inputs and

outputs, 234
symbolically, 212
symmetric in its parameters, 310
symmetry reduction, 107, 112
SymToSim, 325
synchronization, 48
synchronization primitive, 53
synchronization primitives, 142
synchronize, 42
synchronous communication, 41
synchronous parallel composition, 42
synchronous product, 42
synchronous random polling, 57, 112
synchronous transmission, 41
synergetic, 255
synergetic effects, 287
synergetic TOs, 260, 357
syntax, 40, 70, 74, 85
syntax error, 178
system, 1

– open, 61
system architecture, 18
system design, 18
System Information Gatherer and Reporter,

371
system integration testing, 18
system requirements, 18
system requirements specification, 18
system specification, 18, 89
system specification description language, 38
system specifications (for ioco), 200
system structure, 18
system testing, 18
system tests, 328
system under test, 16
system under verification, 25, 161

T
T , 32
T, 35
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T flag, 331
T-Check, 175
t-test, 371
TaaS, 272
tableau-based offline LTL model checking,

97
tabu search, 317, 337
Tarjan’s DFS, 97, 190, 248
task parallel language, 61
task parallelism, 50
task queue, 164
task-parallel language, 57
τ , 188
τ (internal transition), 188
τ as unobservable communication, 189
τ abstraction, 188
τ -closed, 188
τ -closure, 188
τ -cycle, 189
taxonomy of MBT, 240
taxonomy of testing, 14
TC, 204, 265
TC (abstr. def.), 16
TC seq, 265, 301
TCI, 275
tcurr , 241, 242
tcurr(number of test steps), 265
tmaxcurr (number of overall test steps), 353
tmaxcurr , 348
tTO
curr , 267
TDD, 343
TDD cycle, 343, 343
telecommunications systems, 176
temporal logics, 68
temporal operators of CTL, 74
temporal property, 65
term, 29
TERM, 29
TERMΣFOL , 29
TERMΣFOL(Var), 29
terminate, 46
termination, 115
termination, 71
termination detection, 143, 174, 276
termination function, 295, 296
Terracotta, 371
test, 203
TEST , 185
test adapter, 207
test adapter (abstr. def.), 16
test case, 204, 265
test case (abstr. def.), 16

test case complexity, 255
test case contamination avoidance, 277
test case coverage, 216
test case execution, 205, 237
test case execution (abstr. def.), 19
test case explosion, 2, 239, 255
test case generation, 237
test case generation algorithm, 208, 209
test case prioritization, 297
test case refinement, 208
test case sequence, 265
test directive, 286
test driver, 3, 205, 271
test driver (abstr. def.), 16
test engineer, 13
test execution, 205, 206
test execution control, 278
test execution engine, 249
test execution step, 19
test generation, 173, 208
Test Generation V, 247
test goal, 260
test load distribution, 277
test manager, 273
test objective, 7, 253, 260, 264, 283

– active, 260
– basic, 310
– composed, 310

test objective (abstr. def.), 260
test objective (for weight heuristics), 310
test objectives, 351
test objectives tab, 332
test oracle, 3, 275
test oracles, 205
test purpose, 243, 245, 286
test purposes, 283
test run, 206
test run (abstr. def.), 19
test run path, 206
test run trace, 206, 260
test selection, 3, 7, 283, 289, 297

– offline, 289
test selection (abstr. def.), 259
test selection directive, 240, 248, 249, 251,

252, 286
test selection heuristics, 286, 286
test step, 16
test step during execution, 19
test suite, 204
test suite (abstr. def.), 16
test suite integrity, 278
test suite maintenance, 15
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test suite reduction, 23, 24, 223
test WC time, 353, 371
test-driven development, 15, 343
Test-Selektion, viii
Testen von Software mit BMC, viii
tester process, 131
testExecutionSubphase, 254
TESTGOAL, 263
testing, 13
Testing and Test Control Notation version

3, 275
testing approach, 155, 155, 167
Testing as a Service, 272
testing automata, 131
testing hypothesis, 6, 185, 188, 190, 248, 249
testing on the cloud, 272
testing with SBMC, 155, 155
testing with software bounded model check-

ing, 7, 14
Testobjekte, viii
testware, 16
text mode, 250, 333
(Tfulli )i (full TC seq), 265, 301
TG, 260
TGV, 247, 289
the free lunch is over, 47
the null platform, 163
the rest of weights being aggregated, 306
the values of AD, 342
theory, 30
theory of uninterpreted functions, 55
theory testing, 369
thread, 1, 48
thread pool, 50
threats to construct validity, 370
threats to external validity, 372
threats to internal validity, 369
threats to statistical conclusion validity, 371
threats to validity, 369, 369
throughput, 49
(Ti)i (TC seq), 265, 301
time and space complexities of ltl mc, 101
time and space complexities of ndfs, 101
time deadlocks, 112
time region, 33
timed automata, 110
timeout, 186, 188, 262
timeouts, 207, 355, 370
timing constraint, 252, 262
timing values, 186
TinyOS, 163
TO, 260, 260

TO coverage level, 310
TO editor, 330, 339
TO management, 329
tool qualification, 4, 237
tool-independent foundation, 183
top-level, 87
topological sorting, 112
topology, 107
topology of a WSN, 161
TorX, 248
TorX Explorer programs, 249
TOs, 253
TOSSIM, 167, 175
TosThreads, 177
total memory use, 149
TPOR, 103
träge Techniken, viii
trace(·) (trace of a path), 35
trace back, 343
trace in an LTS, 35
trace length, 36
trace links, 17
trace of a path, 35
trace pattern, 287
trace semantics

– finite, 71, 72
– finite ∪ infinite, 73
– infinite, 71
– runtime, 72

trace sequence, 265
trace/tree explorer, 331
traceability, 17, 333, 343

– backward, 17
– forward, 17

traceability tab, 333, 339
traces(·) (traces set), 36
traces(·, ·) (traces set), 36
traces,FSM, 38
traces<max(·) (non-maximal traces set), 36
traces<max(·, ·) (non-maximal traces set), 36
tracesfin(·) (finite traces set), 36
tracesfin(·, ·) (finite traces set), 36
tracesfinmax(·) (maximal finite traces set), 36
tracesfinmax(·, ·) (maximal finite traces set), 36
tracesmax(·) (maximal traces set), 36
tracesmax(·, ·) (maximal traces set), 36
tracesω(·) (infinite traces set), 36
tracesω(·, ·) (infinite traces set), 36
tracesSτ∗ (·), 194
transaction, 207
transaction primitive, 273
transactional memory, 50
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– hardware, 50
– software, 51

Transactional Synchronization Extensions, 51
transactions, 53
transceiver chip, 164
transform pass, 172, 179
transformation

– forgetful for labels, 35
– forgetful for model component, 206
– forgetful for test case component, 206
– forgetful for weights, 297

transformational system, 115
transistor, 47
transition, 32
transition coverage, 252
transition coverage of Sdet, 216
transition grouping, 111
transition relation, 32, 37
transition system, 32

– deterministic, 34
– nondeterministic, 34

transition system (abstr. def.), 36
transition systems, 32
transition tasks, 55
transitive, 188, 230
transitive closure, 34, 36
transparent and automatic distribution, 277
transparent POR, 104, 137
transportation, 1
trap property, 90, 270
trap variable, 241, 248
traveling salesman problem, 284
traversal sub-phase, 253, 284
traversalSubphase, 254
traverse progress, 116
T→∗ , 34
T→∗ , 35
tree compression, 107, 145
tree shaped computations, 57
treeSolver, 249, 326, 335
trema, 10
triangle phase heuristic, 326
trip count, 178
true (PROMELA), 44
true, 9, 9
truly OTF, 56
truly underspecified, 60, 158
trustworthiness, 369
truth value, 9
T (s), 34
TS, 204
TS (abstr. def.), 16

TS (transition system), 32
TSX, 51
TTCN, 248
TTCN-3, 275
TTCN-3 Control Interface, 275
T T S(LI , LU , δ), 204
tuple space model, 273
Turing complete, 41
Turing machine, 25
two literal watching, 55
two person game, 307
two-player game, 251
type(·), 40
type system, 328
typedef (PROMELA), 44

U
U, 70
Uweak, 73
U.S. National Center for Health Statistics,

372
UART, 163
UDP, 52
UDP broadcasts, 276, 336
UDP multicasts, 276, 336
uioco, 228
uioco (w/o using Sudet), 229
UML, 248, 346
UML sequence diagram, 252
UML statechart, 252
UML Testing Profile, 238
UML use case, 252
unary modality, 70
unbuffered channel, 41
uncontrollable nondeterminism, 194
undecidable, 3
under the SUT’s control, 184
under the tester’s control, 184
under-approximation, 228
underspecU , 220, 221, 228
underspecification, 157
underspecification of input, 228
underspecification of output, 218, 220
underspecification of output (abstr. def.), 228
underspecified, 228
underspecified suspension traces, 229
underspecified variable values, 157
unexpected, 184
uniform, 59
uniquely defined relation, 34
unit, 18
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unit clause, 55
unit design, 18
unit test, 328
unit testing, 18
universal constructors, 142
universal path quantification, 75
universal path quantifier, 73
universal synchronization primitive, 50
universe, 30
unlabeled, 36
unlabeled Kripke frame, 32
unlabeled Kripke structure, 34
unlabeled state transition system, 32
unless, 46
unless operator, 73
unobservable communication, 189
unquantified, 31
unreachable code, 109
unreliable, 52
unrolled, 156
unsharable resource, 89
unsigned (PROMELA), 44
unsound, 60, 108, 158
until operator, 70
unwind, 203
unwinding (code), 156
unwinding (specification), 67
update, 40, 249
update mapping, 40
update of the state vector, 46
UPPAAL, 110–112, 249
UPPAAL timed automata, 112
urefines, 231
usability, 7, 186
usage profile, 287
use case, 346
use-definition chains, 157
User Datagram Protocol, 52
user interaction, 241, 249, 256, 292, 296
user requirements, 17
user story, 343
user-supplied, 24, 94, 172, 248, 258, 283,

285–288, 290, 316, 320, 321
user-supplied assertion, 47
user-supplied assertions, 109
Utraces(·), 194, 228
UUCP, 116

V
V, 20
V-model, 17, 247, 343
V-Modell XT, 19

vague requirements, 333
valD,β , 30
valI , 26
valid end state, 46

– label, 46
valid FOL formula, 30
valid propositional formula, 26
validation, 18, 341, 343
valuation, 30
valuation tab, 332
value space of a type, 326
vanish, 302
vanishing proviso, 293
Var (for STSs), 40
variable

– global (PROMELA), 44
– local (PROMELA), 44
– propositional, 34

variable assignment (first order logic), 30
variable assignment (PROMELA), 45
variable declaration, 44
variable declaration (PROMELA), 44
variable initialization for an STS, 41
variable order, 28
variable parameters that are measured, 353
variables, 29
VCC, 173
Vd (default variable initialization), 41
VDM-SL, 274
verbose logging, 328, 354, 370, 388
verdict, 20, 203
verdict leaf, 204
verdict of a maximal test run path, 206
verdict states, 204
verdicts of a concrete test case, 207
verdicts of an abstract test case, 206
verdM(T), 206
verdS(T), 207
verification, 18, 25, 343
verification engineer, 65, 96, 115, 186
verification platform, 179
Verifier for Concurrent C, 173, 178
verify, 17
Verisoft, 173
Verkürzungsmerkmal, 59
version number, 157
versioned, 106
versioned assignment, 157
vertical traceability, 346
vertical tracing, 19
VirtualBox, 354
visibility proviso, 105
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– C2S , 136

visitor, 332
Visual Studio 2010, 251
Visual Studio 2012, 251
visualization, 325, 329, 331
Vollständigkeit, viii
voltage, 388

W
ω, 9
W, 73
ω + 1, 9
wait-free, 50
wait-free program, 142
waiting, 207
wallclock time, 353, 371
waterfall, 19
ω-automaton, 76, 76
WC time, 353, 367
WC time on S, 353
weak Büchi automata, 113
weak fairness, 95
weak fairness (SPIN), 133
weak guidance, 245
weak LTL, 113, 144, 153
weak mutation testing, 23
weak next operator, 76
weak scaling, 49
weak trace link, 346
weak until operator, 73
web service, 53, 252, 349, 385
Web Services Description Language, 53
weight function on WT T S, 297
weight function on S, 297
weight heuristics, 7, 297
weight of W, 297
weighted test case, 297
weighted test case sequence, 301
weighted test suite, 297
weights, 174
weights editor, 330, 339
(Wfull

i )i (full WTC seq), 301
white-box, 173
white-box testing, 14, 155
(Wi)i (WTC seq), 301
wireless, 161
wireless sensor network, 155, 161
within, 93
witness, 68
witnesses, 162
wlog, 10

work distribution, 50, 57, 277
work duplication, 144, 277
work pruning, 144, 277
work stealing, 57, 112, 143
worker thread, 138
workload, 49
worst case latency, 142
worst case space complexity

– of on-the-fly LTL model checking, 101
worst case space complexity of genTS, 215
worst case space complexity of genWTS, 300
worst case space complexity of LazyOTF,

269
worst case space complexity of CTL model

checking, 97
worst case space complexity of offline MBT,

244
worst case space complexity of OTF, 245
worst case test case complexity, 241
worst case test case complexity of LazyOTF,

269
worst case test case complexity of offline MBT,

244
worst case test case complexity of OTF, 245
worst case time complexity

– of offline tableau-based LTL model
checking, 101

– of on-the-fly LTL model checking, 101
worst case time complexity of genTS, 215
worst case time complexity of genWTS, 300
worst case time complexity of LazyOTF, 269
worst case time complexity of CTL model

checking, 97
worst case time complexity of offline MBT,

244
worst case time complexity of OTF, 245
wrapper, 302
write matrix, 111
write-release, 51
WS, 53
WSDL, 53
WSDL-S, 252
WSDLs, 15
WSN, 155
WTC, 297
WTC seq, 301
WTS, 297
WT T S(LI , LU , δ), 297

X
X, 70
x86/x86-64, 172
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xr assertion, 109
xs assertion, 109
Xtext, 233

Y
yEd, 385
Yeti, 275
YETI on the cloud, 275
Yices, 158

Z
Z3, 32, 158, 334, 335
Zielsuch-Heuristik, viii
Zobrist hashing, 111
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