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Fault-Injection through Model Checking
via Naive Assumptions

about State Machine Synchrony Semantics

Sabina Joseph

(Abstract)

Software behavior can be defined as the action or reaction of software to external and/or

internal conditions.  Software behavior is an important characteristic in determining

software quality.  Fault-injection is a method to assess software quality through its’

behavior.  Our research involves a fault-injection process combined with model checking.

We introduce a concept of “naive assumptions” which exploits the assumptions of

execution order, synchrony and fairness.  “Naive assumptions” are applied to inject faults

into our models.  We use linear temporal logic to examine the model for anomalous

behaviors.  This method shows us the benefits of using fault-injection and model

checking and the advantage of the counter-examples generated by model checkers.  We

illustrate this technique on a fuel injection Sensor Failure Detection system and discuss

the anomalies in detail.
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Chapter 1

Introduction

We introduce a process of combining fault-injection with model checking through “naive

assumptions” in this thesis.  “Naive assumptions” are defined as the various assumptions

that can be made about execution order, synchrony and fairness.  Our method is carried

out on a state machine model of a fuel injection Sensor Failure Detection (SFD) system.

We specify the state based representation of the Sensor Failure Detection (SFD) system in

a model checking tool while injecting faults through “naive assumptions” and inputs.  We

make “naive assumptions” about execution synchrony, i.e., we take advantage of loosely

specified semantics of the Sensor Failure Detection (SFD) system and the power of

asynchronous process interactions in the model checker.  Our Sensor Failure Detection

(SFD) system models are indeed “naive” with respect to any assumptions about

synchrony, execution order and fairness.  Once the models are specified, we formulate

different properties in Linear Temporal Logic (LTL) to validate different requirements.

Based on the properties and the results, we classify the results from the properties into

different fault classes and discuss the anomalies in each fault class.
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The failure of a computer system or software can lead to a myriad of problems.

Since a failure in software can result in bad repercussions, the importance of software

quality cannot be overemphasized.  In this age, where computers are omnipresent, from

watches, everyday appliances, to cars, and planes, it is essential that we have good

techniques for assessment of software quality.  In spite of this, today’s techniques are not

sufficient.  Software quality is defined as the totality of features and characteristics of

software that bear on its ability to satisfy stated or implied needs.  Software quality is not

an easy characteristic to measure, as it can be determined through an assortment of factors

such as the development process, skills of people involved, clarity and interpretation of

specifications, management, and environment.  A few software quality assessment

techniques used today are metrics, formal methods, and testing.  These techniques do add

to the quality of software but they do not capture the true nature of software which lies in

its’ behavior.

Software behavior is the action or reaction of software to a change in external

and/or internal conditions. Software fault-injection focuses on the behavior of the

software.  Fault-injection tries to determine how good or bad the software will behave

under anomalous circumstances.  It injects faults into the software and observes how the

software behaves in response to the injected faults.  Fault-injection is a technique which

when applied to software tests the software under reasonable anomalies but the key is to

see what happens under unreasonable anomalies.  Unreasonable anomalies are

nonsensical circumstances which may seem insipid but it is essential to view the behavior

of the software under these conditions.  The success of fault-injection lies in the
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interpretation of the results.  It is not to be used as a standalone software assessment

method but rather in a combination with the other methods such as testing, formal

methods and metrics.  The greatest benefit from it, is when the software doesn’t behave as

anticipated in response to the injected faults.  Since we are looking at behavior, we need

the capability to be able to search through all states and transitions that a software can go

through.  A method, which enables us to do this, is model checking.  Model checking is a

technique under the formal methods umbrella.  It exhaustively searches through all paths

that a program can go through to ascertain that a certain property never occurs.  Properties

are usually specified in some form of temporal logic formula.  A model checker runs

through the validation process and if it finds an undesirable behavior, that is, if a property

is shown to exist in the software, it will generate a counter-example in the form of a trace

or sequence of events.  These counter-examples are test cases that activate the anomaly.

Thus, model checking provides an automatic tool for test case generation.  The counter-

examples also constitute the results of fault-injection through model checking.

The main objectives of the thesis are:

� To propose methods to inject faults through model checking via “naive

assumptions”.

� To apply these methods on a case study.

� To formulate Linear Temporal Logic (LTL) formulas to verify and validate the

models.

� To classify and interpret the results, related requirements and the properties.



4

The rest of this thesis is organized into four chapters which review (Chapter 2) the

related work and literature related to the present investigation; describe (Chapter 3) the

methodology and case study; describe and discuss (Chapter 4) the results of the

investigation; summarize and conclude (Chapter 5) by pointing out the need for future

work.  Appendix A contains the source code for the asynchronous Sensor Failure

Detection (SFD) system model in Spin. Appendix B contains the source code for the

synchronous Sensor Failure Detection (SFD) system model in Spin.  Appendix C contains

an example of a counter-example.
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Chapter 2

Related Work

This chapter presents a review of the related literature to this thesis.  The contents of the

chapter are organized as

� Fault-injection

� Model checking

� Linear Temporal Logic (LTL)

� Spin

2.1 Fault-Injection

A failure in a computer can result in a simple discomfort or major economic losses.

Sometimes, human lives are lost, as in the Therac-25 accident.  The causes of these

failures range from physical faults, maintenance errors, design and implementation

mistakes to user or operator mistakes.  The use of computer systems in our daily lives has

increased our dependence on computer systems.  All this makes it very important to

ascertain the software quality but this is easier said than done.  Academia, industry and
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government are all working towards improving software quality through research and

experiments.  But the present assessment techniques for software quality are not

sufficient.  The main reason that most of these techniques focus on the software process

rather than the software product.  Process refers to a prescribed development technique

being used within the software development lifecycle and product refers to software or

hardware [5].  Formal methods that is a process-oriented technique, don’t give the

required confidence of how the software will behave when released into the real world.

Another reason why process-oriented assessment may not be the right approach to predict

software quality, is the fact that a process involves a series of steps.  Hence it has the

potential of being botched as it maybe applied in an erroneous manner due to the lack of

proper training and knowledge [5].

Software testing is a product-oriented assessment of software quality.  But there

are drawbacks to testing.  Random testing which is used to make predictions of future

behavior of software is only as good as the number of tests performed.  The solution to

this is exhaustive testing, which is both impractical and cannot demonstrate the capability

of the software when it encounters an undesirable circumstance.  Software metrics are

another product oriented assessment.  Metrics focus on program structure and statistics

[13].  Due to this, metrics cannot capture the essence of software.  This is not to imply

that testing, formal methods and metrics do not add to the value of software.  They have

their advantages and when the right technique is used at the right time and place, it does

improve software quality.  But the characteristic that defines software quality is software

behavior.  Software behavior is dynamic in nature as it is the action and reaction of the
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software to a change in external and/or internal conditions.  It can vary with respect to the

connotation and situation the software is used in.  According to Jeffrey Voas [13],

“software behavior can be viewed without looking at the software’s developmental

history, organization in which it is developed and/or technique used by developers.”

Fault-injection techniques are quantifiable and focus on software behavior.  Software

fault-injection purposely injects faults into the software and checks to see the behavior of

software in response to the injected faults.  Before explaining the background, history,

methods and tools of fault-injection, we define the related terms in the next section.

2.1.1 Nomenclature

Software verification is the process of evaluating a system or component to determine

whether the products of a given development phase satisfies the requirements imposed at

the start of that phase [33].  Software validation is the process of evaluating a system or a

component during or at the end of the development process to determine whether it

satisfies specified requirements [33].  An anomaly is some event which if present in a

software can change the behavior of the software in the future by corrupting some value

in the software.  A fault is a flaw in the program.  A fault is a preanomaly event that, if

executed and given some set of inputs, will corrupt a value in the program.  An error is a

mental mistake or fallacy made by a programmer that results in a fault [5].  Software

failure is a result of a software action or reaction which deviates from the specified

requirement.  Software testing is the process of executing a program or system with the

intent of finding an error.  A test case has an identity and is associated with program

behavior.  A test case has a set of inputs and list of expected outputs.  Fault tolerance is
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the ability of a system or component to continue normal operation despite the presence of

hardware or software failures. Other terms will be explained as and when deemed

necessary.

2.1.2 Fault-Injection Background

Fault-injection focuses on determining how well or bad a piece of software behaves under

a range of anomalous circumstances.  It is incapable of determining correctness.  It is only

capable of illustrating the kinds of outputs a program can produce under anomalous

conditions.  Hence it is interesting and important to observe the behavior of the software

under reasonable and unreasonable anomalies.  Unreasonable  anomalies are nonsensical

circumstances which may seem insipid but it is essential to view the behavior of the

software under these conditions.  According to Jeffrey Voas [5], “fault-injection is not

concerned with “why” a certain anomalous event may have occurred with respect to some

executing code, all fault-injection is concerned with is “what” happens after an event

simulated by fault-injection occurs.”

There are many kinds of faults, such as hardware faults occurring during system

operation, permanent faults caused by irreversible device failures, intermittent faults

which tend to fluctuate between periods of erroneous activity and dormancy and software

faults caused by incorrect specification, design or coding of a program. The number of

anomalies that can occur is large but the following are the candidates for fault-injection:

1.  Problems that arise from code defects.  2.  Problems related to human factor errors.

3.  Problems with corrupt data being read in from stored files and 4.  Problems caused by
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external failures.  In this thesis, we are concerned with software faults and anomalies

from code defects and human factor errors.

2.1.3 History

Fault-injection techniques fall under the branch of processes called fault-based.  The

earliest work in software fault-injection can be traced to Harlan Mill’s fault seeding

approach which emerged as early as 1972.  Fault-seeding is a fault-based technique that

estimates both the number of faults remaining as well as their type.  Mill’s work involved

estimating reliability using fault seeding [5].  The next work in fault-injection was

software mutation.  It is concerned with modifying the syntax of the code.  Fault-injection

can be applied to hardware and software systems.  Fault-injection is not just present in

software but its’ roots can be seen in other scientific and manufacturing disciplines.  In

medical world, in order to see if an antidote for a poison works, it is tested on other living

beings before it is tested on human beings.  The poison and the antidote are injected into

another living being and once the results are satisfactory only then is it approved for

human beings.  In the manufacturing industry, metals are tested for their strength by

applying pressure on them to test their malleability before it can be used in the

manufacturing industry.

According to Clark [1], there are three types of fault-injection experiments:

system abstraction, fault model and injection method, and dependability measure. Fault-

injection has been performed on hardware and software of computer systems.  Due to the

complex nature of hardware systems, it is difficult to inject faults into internal nodes.  On
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the other hand, simulation fault-injection gives access to internal nodes and makes it easy

to inject faults plus simulated fault-injection is low-cost and can be applied much earlier.

It can also support all kinds of abstractions such as architectural, electrical, logical, and

functional.  Any fault-injection experiment requires selection of a fault model.  For

transient faults, an inversion model is used where a fault produces an error with the

opposite logical value [1].   Other models range from detailed device-level  to simplified

functional-level models, to represent faults.  Once a fault model is chosen, the next step is

to decide where to insert a fault.

For physical systems, faults can be injected into IC leads, circuit board connectors,

and system back plane through corrupt signals.  One can use heavy-ion radiation and/or

power supply disturbances to inject internal faults into hardware.  Trace injection for

injecting faults into a computer system uses custom-monitoring hardware or software to

periodically sample machine state or record memory references on an operational system.

The acquired trace is used to simulate system behavior, as errors that mimic faults in the

instrumented components are inserted into the trace.  State mutation can be used for

injecting faults using scan paths, program debuggers, and system calls.

2.1.4 Fault-Injection Fundamentals

Faults can be injected into inputs, different points in the code and different locations in

the state space.  The results of the injected faults are seen in the output and different

locations in the state space.  There are different locations in the state space of the code

where faults can be injected.  These locations are termed as fault-injection points.  Fault-
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injection points can be locations where values of variables are changed, variables are

initialized, conditional statements are executed which affect the control flow, function

calls, return statements and input/output statements.  According to Jeffrey Voas [5], one

requirement for fault-injection is to use legal inputs; “legal inputs refers to all members

from the input value space, that is, those inputs upon which the software is expected to

work.”  The reasons are, legal inputs are useful if collecting metrics and makes it easier to

classify the outputs.  Outputs are very important to fault-injection.  Without the

appropriate training, expertise, tools and methods to study the outputs, fault-injection

would be futile.

“Instrumentation is a way to collect information about what is occurring internally

in the software and processing that information. [5]”  It can be done intrusively and non-

intrusively.  Fault-injection is intrusive if code is modified whereas it is non-intrusive if it

is done from the outside through external tools.  Fault-injection is costly so it should be

applied at the right place.  In [5], some broad rules for deciding whether the code is ready

for fault-injection are: (1) The code complies on a system (2) The code is deterministic

(3) The code does not include infinite loops or if the code runs continuously, there is at

least some reasonable way to determine when one run of the code ends and the other

begins.

2.1.5 Fault-Injection Applications

Fault-injection was not used in educational institutions and in research projects until the

mid-1980’s.  We have detailed a few applications in fault-injection.  Choi and Iyer
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applied fault-injection to study error propagation in a jet-engine controller.  They used the

Focus simulation environment to inject transient faults into one of the two

microprocessors in an HS1602 jet-engine controller.  They detected the most potent

locations for incorporating additional fault-tolerant features.  Karlsson et al. [27]

combined radiation and power supply disturbances to examine the propagation of internal

errors to the bus of an MC6809E.  They injected transient faults into this microprocessor

by exposing it to heavy ions and pulses into the power supply.  Chillarege and Iyer [28]

were among the first to measure fault and error latency in memory via trace injection.

They also employed trace injection to investigate the relationship between system

workload and memory error latency.  Czeck and Siewiorek [29] used simulated fault-

injection to study the effects of gate-level faults on program behavior in the IBM RT PC.

Czeck and Siewiorek later constructed a model for predicting faulty system behavior from

workload attributes such as instruction type, control flow structure and instruction mix.

Chillarege and Bowen [30] ushered the concept of failure acceleration to increase the

speed at which a system transitions between good, erroneous, and failed states during

fault-injection experiments.  They attained this by decreasing the fault and error latency

and increasing the probability of a fault causing a failure without altering the fault model.

Goswami and Iyer [31] studied in detail, the impact of latent and correlated transient

errors on a commercial fault-tolerant system’s availability through the triple-modular

redundant (TMR) processing core of the Tandem Integrity S2.
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2.1.6 Fault-Injection Tools

Fault-injection experiments are not based around any formal system, hence, there is no

generalized principles for fault-injection.  Due to this, most fault-injection experiments

concern particular systems so it is difficult to apply those same methods to a different

system.  Also the complexity of today’s systems implies large fault spaces.  Due to all

this, fault-injection tools integrate tools with methods to conduct experiments.  We

present a few fault-injection tools in existence.  Messaline, developed by PAAS-CNRS

(Laboratory for the Analysis of Systems Architectures at the National Center for

Scientific Research), France, is based on formalized methodology.  The result is a flexible

testbed capable of simultaneously injecting multiple, pin-level faults into different target

systems to collect coverage, latency, and error-propagation measurements with a host

computer managing fault-injection.  Fiat (Fault-Injection-Based Automated Testing)

environment used software implemented fault-injection to set and clear bytes in the

memory images of programs to evaluate the dependability of fault-tolerant distributed

systems.  Ferrari (Fault and Error Automatic Real-Time Injector) traps instructions

affected by the fault so that a routine can be executed to mimic system behavior in the

presence of the real fault.  Focus simulation environment conducts fault sensitivity

experiments on chip-level designs by injecting transient faults through a runtime

modification of the circuit.  The Depend environment is a joint dependability and

performance evaluation tool that analyzes fault-tolerant architectures at the system level.

It does this by a library of objects to behaviorally model a system’s hardware components

while the objects automatically inject the faults.  React is a software testbed that abstracts
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multiprocessor systems at the architectural level through simulated fault-injection to

measure dependability.

2.1.7 Fault-Injection Limitations

Fault-injection consists of a family of techniques, experiments and methods.  Hence if it

is not used properly like any other method the result can be disastrous.  We need to

understand when, where and why fault-injection needs to be used before it is used.

Software fault-injection simulates the events which let’s us observe the behavior of the

software in the future.  But there is no way possible to know all the faults which can be

simulated as the list of anomalies for any software is intractable.  Fault-injection cannot

prove correctness of software.  The process of determining where to inject the faults is

complex.  We need a thorough understanding of the inputs and outputs we need to cover.

The most important aspect in fault-injection is the interpretation of the results.  Hence we

need appropriate methods and expertise in place to interpret the results.  Fault-injection

experiments, techniques, methods and their results exemplify the anomalies simulated,

inputs employed and the scrutiny of the results [5].  Fault-injection is a dynamic

technique by nature and is employed to study the behavior of a product, which can be the

software or hardware.

2.2 Formal Methods

Formal methods is the use of concepts from formal logic and discrete mathematics in the

specification, design and building of computer systems and software.  Formal methods

logically calculates if the requirements are consistent with the design and if the properties
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present are due to the requirements [32].  It translates a non-mathematical specification of

the system into a formal specification using some formal language [32].  Formal methods

help better understanding of the problem, helps detect defects early, gives an abstract

view of the system and detects problems which may not have been detected with

traditional testing.  They can be applied either in all or selected stages of the software

development lifecycle, all or selected sub-components of the system, all or selected

system functions or a combination of all of these in varying degrees.  Formal methods has

its’ limitations in the sense, that specifications can be misinterpreted during formal

specification and  proofs can be miscalculated.  It is not to be used as a standalone

method to assess software quality but rather in combination with other software

assessment methods.  Formal methods can include abstraction, formal specifications,

model checking and proofs.  Abstraction is ignoring needless detail, picking out the

applicable detail which helps to focus on the most significant properties and not get tied

up in complex detail.  Formal specification uses a formal language to translate a non-

mathematical model of the system.  Proofs involve using a set of rules to credibly debate

the validity of the system requirements.  This thesis focuses on the model checking

technique of formal methods.

2.2.1 Model Checking

Model checking is an automatic method for verifying correctness of systems that has been

successfully applied to the verification of industrial systems.  The technique is especially

aimed at the verification of reactive, embedded systems, that is, systems that are in

constant interaction with the environment.  Characteristic for model checking is that it
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can be relatively easy to apply at any stage of the existing software process without

causing major disruptions.  To apply model checking to the verification of systems, we

need the description of the behavior of the system in some state based formalism.  In state

based formalisms, the behavior of the system is described in terms of local state changes

or events.  The global behavior of the system is given as the state-space generated from

the system description.  State space is the complete range of values held by all the state

variables.  A model checking algorithm is an automatic procedure that verifies that the

property Phi expressed in temporal logic holds in the state space of the system M, that is,

it gives an answer to the question M |= Phi.

A model checker takes a description of several concurrent, finite state machines as

input and effectively analyzes the expanded computation tree for given properties.  A

computation tree is an abstract structure that consists of a possibly infinite set of all

possible execution paths [9].  An example of a computation tree would be:  following is a

state machine of two concurrent processes P1 and P2 [9].

Figure 1: State Machine of two Concurrent Processes

1

2 3

1

2 3
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The state space for this machine is the union of both these processes that is the Cartesian

product which is represented by {(1,1), (1,2), (1,3), (2,2), (2,1), (2,3), (3,3), (3,1), (3,2)}.

A computation tree with a start state of (2,2) is

Figure 2: Computation Tree of two concurrent processes

The computation tree is from only one start state.  We can have other trees from the

remaining eight states from the state space.  The tree contains infinitely many nodes,

repeated many times.  Model checkers will explore all the paths in a computation tree.

As seen from the computation tree, the state space size is infinite and even for finite state

systems the state space is extremely large and grows at an exponential rate.  Searching

such trees exhaustively can lead to the state space explosion problem.  Model checkers

use various methods to cope with this problem.  Redundant states can be eliminated from

searches due to memory-less properties of finite state machines, binary decision diagrams,

(2,2)

(2,3) (3,2)

(3,3) (2,1) (3,3) (1,2)

(3,1) (1,3) (2,2) (3,1) (3,1) (1,3) (1,3) (2,3)

(…) (…) (…) (…) (…) (…) (…)
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and partial order reduction are used to overcome this problem.  On our part we can

tighten our abstraction removing irrelevant states, model checking only independent sub-

components in the system, and partitioning the system.

Model checking is based on formal logic.  The computation tree is checked to see

if certain properties  are obeyed.  A model checker can be used to determine whether or

not the model contains paths that satisfy a specific property or requirement behavior.

There are three categories of properties that can be checked in the model.

� Liveness property - some paths in the model should exhibit this property

� Invariance property - all paths in the model should exhibit this property

� Safety property - no paths in the model should exhibit this property

Safety and invariant properties are complements of each other and both require that all

paths in the model be searched.  Temporal logic is used to express the properties or

requirement behaviors in model checking.

2.2.2 Linear Temporal Logic

Temporal logic, which was invented as a means of formalizing natural language

statements about events in time, has proved to a powerful tool for specifying the behavior

of reactive systems.  It originated in philosophy as a branch of logic dealing with the

topology of time, but for the past 20 years has found its’ way into software verification.

By using temporal logic, the properties of systems can be specified in a more behavior

oriented fashion.  Temporal logic describes state changes of a system by a truth value,

which is given to each proposition in each state.  The possible moves from state to state
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are also specified.  Hence the formulas of temporal logic include Boolean operators and

temporal operators such as the formula should be true in “some future state” (eventually)

denoted by  � or in “all future states” (always) denoted by [], among the many other

temporal formulas.  There are many variations on temporal logic such as Linear Temporal

Logic (LTL), Branching Temporal Logic (BTL), Real-time Temporal Logic (RTTL),

Computation Tree Logic (CTL).  Linear Temporal Logic (LTL)  views time as a sequence

of states.  The choice for the next state is either deterministic or non-existent.  Linear

Temporal Logic (LTL) adds two more additional operators until (U) and since (S).  Given

a model m and a temporal formula p we represent the notion that p holds at a position i

>= 0 in  m by

� (m, i ) |= p

� (m, i ) |= [] p is equivalent to, for all (k >= i), (m, k) |= p

          In other words [] p is true if and only if p is true now and in all the future states

� (m, i ) |= � p is equivalent to, for some (k >= i), (m, k) |= p

      In other words � p is true if and only if p is true now or in some future state

� (m, i ) |= p U q is equivalent to, for some (k >= i), (m, k) |= q and for every  j

      such that i <= j < k, (m, j) |= p

      In other words q holds at some time in the future with p true until that time

� (m, i ) |= p S q is equivalent to, for some k, 0<= k <= i, (m, k) |= p and for

every j  such that k < j <= i, (m, j) |= p

      In other words q has held true some time in the past since which time p has

      held true

The three properties of invariance, liveness and safety are represented as:
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� Invariance – [] p

� Safety - ~� p

� Liveness – [] (p -> � q)

2.2.3 Spin

Spin is a model checking tool among the many other model checking tools such as SMV,

Murphi.  It supports the design and verification of concurrent systems.  Spin accepts

design specifications in a verification modeling language called PROMELA (Process

Meta Language) and requirements are modeled as correctness claims in Linear Temporal

Logic (LTL).  PROMELA hides the details that are related to process interactions and

allows you to model the specific abstractions.  Each statement in Spin is either executable

or blocked [34].  A statement is executable if it satisfies its’ conditions when the

statement is encountered otherwise it is blocked.  Skips, assignments and Boolean

variables are always executable.

The specification of the concurrent system in PROMELA is done through one or

more user-defined proctypes or process templates which interact through shared variables

and message channels [7].  A process can be blocked in certain cases if it contains a

statement which is blocked but this depends on the context of the statement.  All

statements and processes in Promela are executed randomly that is they are asynchronous

unless otherwise specified.  In Promela, a process can be instantiated either separately in

an “init” process or by the “active” keyword.  If there are a certain set of statements which

should be executed without interruption they can be declared as an atomic sequence.
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Atomic statements execute until any statement in the atomic block gets blocked.  The

variables can be local or global and the messages channels can be asynchronous or

synchronous.  For a more detailed look at Promela syntax and semantics look at [34].

Spin translates each process template into a finite automaton.  The global state

space automaton of the system is obtained by computation of an asynchronous

interleaving product of automata such that there is one automaton per asynchronous

process template.  In Spin, the Linear Temporal Logic (LTL) correctness claims specify

erroneous system behaviors that is behaviors that are undesirable to us.  Spin translates

the Linear Temporal Logic (LTL) correctness claims into Büchi automaton.  A Büchi

automaton is an automaton defined over infinite input sequences, rather than finite ones

as in standard finite state machine theory [7].  The Büchi automaton is included in the

Promela code as a “never”  claim.  This “never”  claim is invoked after every state change

during verification.

Spin performs the validation by computing the synchronous product of the Büchi

automaton and the global state space automaton obtaining another Büchi automaton. If

this Büchi automaton terminates or ends in a acceptance cycle then the Linear Temporal

Logic (LTL) claim was violated that is the undesired behavior was present in the system.

An acceptance cycle is a cycle where a state with an accepting label occurs infinitely

often [7].  In this event, Spin will produce a “trail”  file containing the counter-example

which exhibits the path or execution where the undesired behavior was found.  Spin has

the capability of producing multiple “trail”  files to show other paths where the undesired
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behavior was found.  If the Büchi automaton is empty it means that the original Linear

Temporal Logic (LTL) correctness claim was not satisfied by the system or that the

undesired behavior is not found in the system.

In simulation, Spin executes the model in three ways: (1)  If random simulation is

chosen, Spin will non-deterministically select one execution path if more than one path

exists and executes the model.  (2)  If interactive simulation is chosen, the user can

choose an execution path if more than one choice exists and executes the model.  (3)  If

guided simulation is chosen, Spin will use the “trail”  file to produce the execution of the

counter-example.  Since the “trail”  file is extremely cryptic for us to read, guided

simulation is chosen to produce output which is more readable and which shows the steps

of the counter-example.  In Callahan et al [16] recognized that the counter-examples are

indeed test templates which can be used to create test oracles that drive and verify an

actual test sequence on an implementation.

This thesis as mentioned before is about fault-injection through model checking

via “naive assumptions”.  We would like to mention related work in fault-injection

through model checking by Paul Ammann and Paul Black [8].  They have used mutation

analysis to generate test cases from formal specifications in model checking.  They define

syntactic operators, each producing a slight variation on a given model.  The operators

represent mutation analysis on a model checking specification.  They also recognize after

[16] that counter-examples are indeed test cases.  They define two classes of operators:

(1)  first, produce test cases from which a correct implementation must differ.  (2)
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second, produce test cases with which it must agree.  In addition they have also proposed

a new reduction method for model checkers for generating test sets also using a different

soundness rule.

This chapter introduced all the related work and fundamentals in fault-injection,

model checking, linear temporal logic and Spin.  The next chapter will explain in detail

about the methodology and a description of the case study.
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Chapter 3

Description and Case Study

This chapter introduces the approach used for injecting faults through model checking via

“naive assumptions” and its’ application to the Sensor Failure Detection (SFD) system

using Spin.  First, it briefly depicts the approach and the “naive assumptions”. Second, it

describes the Sensor Failure Detection (SFD) system.  Finally, the process undertaken in

building the models in the model checker based on “naive assumptions” is illustrated.

3.1  Approach

Fault-injection means inserting faults into the program and observing the behavior of the

program in response to the injected faults.  Fault-injection can be used to study the effects

of hardware and software faults.  Faults can be injected into inputs, different points in the

code and different locations in the state space.  The results of the injected faults are seen

in the output and different locations in the state space.  Although fault and anomaly was

stated in Chapter 2 on Page 7, it is worth stating it again.  An anomaly is some event

which if present in a software can change the behavior of the software in the future by

corrupting some value in the software.  A fault is a flaw in the program.  A fault is a

preanomaly event that, if executed and given some set of inputs, will corrupt a value in
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the program.  When one injects faults into a program through one of the many fault-

injection methods, it also results in an injection of anomalies.  By observing the program

to study its’ behavior, we are determining the anomalies.  Fault-injection takes a global

view of the impact of an anomaly.

Model checking, as described in Chapter 2 on Page 15, is used to verify and

validate a system through process interactions.  The power of model checking lies in its’

exhaustive verification and generation of counter-examples if a property is violated.  This

research focuses on using the dynamic aspect of fault-injection together with the power of

model checking.  We are provided models of the fuel injection system in Simulink and

the Sensor Failure Detection (SFD) system in Stateflow.  The approach is applied to the

fuel injection Sensor Failure Detection (SFD) system.  Stateflow is a tool which is a

variant of David Harel’s statechart, which is described in detail in this chapter.  The first

step in our research is to specify the Sensor Failure Detection (SFD) system in a model

checking tool Spin.  Spin is explained in detail in Chapter 2 on Page 20.  Fault-injection

is used to determine the fault tolerance of the model checking models of the Sensor

Failure Detection (SFD) system.  During the specification of the Sensor Failure Detection

(SFD) system in Spin, three fault-injection methods are used.  The first two are based on

“naive assumptions” and the third is done through inputs.  We define “naive

assumptions” as the various assumptions, which can be made about execution order,

synchrony and fairness.  We use model checking to examine interleaved execution of

processes under various assumptions of execution order, synchrony and fairness.  In other

words, we make no a priori assumptions about execution order, synchrony and fairness.
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The states in the Sensor Failure Detection (SFD) system model in Stateflow as

shown in Figure 4 on Page 30 are specified as processes in Spin. We use “naive

assumptions” of asynchronous and synchronous executions to inject faults which takes

advantage of the loosely specified semantics of the Sensor Failure Detection (SFD)

system combined with asynchronous process interactions of the model checker. In other

words, we can specify the Sensor Failure Detection (SFD) system in a model checker as

two separate models.  One model will have the states as asynchronous processes and the

second as synchronous processes.  Indeed our models are “naive” with respect to any

assumptions about synchrony.  These “naive assumptions” are combination of code and

state space fault-injection as explained in Chapter 2, Section 2.1.4 on Page 10.  It is code

based fault-injection as we are changing the behavior of the Sensor Failure Detection

(SFD) system.  We are also injecting faults in the state space as we are changing the flow

of control in the model by synchronizing and asynchronizing the executions, which in

turn modifies the state of the model between execution steps.  The third fault-injection

method is to change the inputs of the model as outlined in Chapter 2, Section 3.4 on Page

43.  All of these three approaches are described in the rest of this chapter through the

Sensor Failure Detection (SFD) system case study.  Once the models have been specified,

Linear Temporal Logic (LTL) properties are used to validate the behavior of the model

and in turn discover the anomalies and errors.
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3.2  Sensor Failure Detection System

3.2.1  Overview of Fuel Injection System

The model in Figure 3 on Page 28 represents a simple fault tolerant fuel injection system

for throttle body fuel injection.  The fault tolerant fuel injection system is a model

provided to us in Matlab.  Matlab is a high-performance language for technical

computing.  It integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical

notation.  The control algorithms of the fault tolerant fuel injection system are

implemented in Simulink block diagrams as seen in Figure 3 on Page 28.  Simulink, a

companion program to Matlab, is an interactive system for simulating nonlinear dynamic

systems.  The control logic for detecting and responding to sensor failures is implemented

in a Stateflow diagram, which represents the Sensor Failure Detection (SFD) system.  It is

embedded as a block in the fuel injection system.

The controller is combined with a simple model for airflow and fuel mixing so

that the entire feedback control system can be simulated.  A sensor failure can be

simulated by clicking on the series of switches to short-circuit individual sensors. The

system is designed to use redundant sensor information to accommodate any single

failure. When more than one sensor fails or when engine speed is excessive, the fuel

system is disabled for safety reasons and it is enabled if the speed decreases or sensors

recover.  Figure 3 on Page 28 illustrates the Simulink diagram of the fuel injection system

with the Sensor Failure Detection (SFD) system embedded in the center as the control

logic unit.
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Figure 3: Simulink diagram of the Fuel Injection System
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3.2.2 Overview of Stateflow

The Sensor Failure Detection (SFD) system is specified in Stateflow and provided to us.

Stateflow uses a variant of the finite state machine notation established by David Harel.

A finite state machine is a representation of a reactive system. In a reactive system, the

system transitions from one state to another prescribed state, provided that the condition

defining the change is true.  A Stateflow diagram is a graphical representation of a finite

state machine where states and transitions form the basic building blocks of the system.

Additionally, Stateflow enables the representation of hierarchy, parallelism, and

history.  Hierarchy enables the organization of complex systems by defining a

parent/offspring object structure. A system with parallelism can have two or more

orthogonal states active at the same time.  History provides the means to specify the

destination state of a transition based on historical information.  Figure 4 on Page 30

illustrates the Stateflow diagram of the Sensor Failure Detection (SFD) system that is the

embedded control logic unit for the fuel injection system.
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Figure 4: Stateflow diagram of the Sensor Failure Detection system

3.2.3  Description of Sensor Failure Detection System

Our research is concerned with anomalies and the errors present behind the anomalies in

the Sensor Failure Detection (SFD) system.  The Sensor Failure Detection (SFD) system

has four sensors as shown in Figure 4, the Oxygen, Pressure, Throttle and Speed sensors

depicted by the first four states.  The failures and recoveries for these sensors are input
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from the fuel injection model in Simulink by the user clicking on the switches to simulate

the sensor failures and recoveries.  The engine speed is simulated from the Simulink

model.  The timed event “t” is also generated by the Simulink model, which is a

countdown to the engine exceeding the oxygen threshold.  The failure counter state keeps

track of the number of failed and recovered sensors.  The fueling state has two purposes,

if there is more than one failure or engine speed is excessive, the fueling injection system

is disabled or if there is no failure or one failure or it is in warmup, the fuel injection

system is enabled.

3.2.4  Semantics of the Sensor Failure Detection System

The activity or inactivity of the states changes dynamically based on events and

conditions.  The dashed boxes represent AND, in other words, parallel states and the solid

boxes represent OR, in other words, mutually exclusive states.  Each state has a default

value which is represented by the dangling arrow.  Transitions have a condition, which

specifies that a transition occurs given that the specified condition is true.  For example:

o2_normal transitions to o2_fail only if ego > max_ego.  Transitions also have a

transition action, which is executed if the transition destination is determined to be valid.

For example: if ego > max_ego and if o2_fail is determined to be a valid state then

Sens_Failure_Counter.INC is executed immediately and o2_normal transitions to

o2_fail.

A connective junction is used to represent a decision point, it is like an “if”

statement.  For example: in the fueling state if in(o2_normal) is true in other words



32

oxygen sensor state is in o2_normal, warmup mode transitions to a connective junction

where a decision is made whether to go to normal mode or single_failure mode.  A

history junction is used to represent a historical decision point.  A circle and a “h” inside

the circle represents a  history junction.  A transition into a history junction will take it to

the last visited state.  States and transitions are organized in a hierarchy.  For example: in

the fueling state, the running mode is the parent of the low_emmissions mode and

rich_mixture mode.  A transitions’ hierarchy is described in terms of the transitions’

parent, source and destination.  Hence all transitions out of the running sub-state in the

fueling state is evaluated before any transitions inside low_emmissions mode and

rich_mixture mode are evaluated.

3.2.5  Typical Run of Sensor Failure Detection System

At initialization, all the states enter their default state for example: oxygen_sensor_mode

is initialized to o2_warmup, pressure_sensor_mode is initialized to press_norm and so

on. After t > o2_t_thresh, o2_warmup transitions to o2_normal.  This triggers fueling

state to transition from warmup mode to either normal mode or single_failure mode

depending on how many sensors have failed.  If any sensors fail or recover, the

appropriate transitions are made in the sensor states and the fueling state.  In the same

way, if engine speed decreases or increases, the changes are made in fueling state.
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3.3 Application of Approach

3.3.1 Abstraction Process

Any abstraction must not completely deviate from the original hence it must preserve

some properties of the original.  According to Amman and Black [8], abstractions can be

measured by soundness and completeness.  Soundness in an abstraction measures if

properties in an abstraction are also present in the original.  Completeness in an

abstraction measures if the properties in the original are also present in the abstraction.

The first step in the construction of the models in Spin based on our “naive

assumptions”, is abstraction of our model.  This means separating from the fuel injection

Sensor Failure Detection (SFD) system those aspects of the design that are directly

relevant to the properties we are interested in proving correct.  In this research, the

Stateflow diagram of the Sensor Failure Detection (SFD) system is the only part of the

fuel injection system being validated.  Hence the Simulink model of the fuel injection

system is not modeled in Spin.  This takes away all the complex and mathematical

functions present in the fuel injection system.  But there are three things from the

Simulink model, which needs to be abstracted.  They are the user simulation of sensor

failures and recoveries, the change of engine speed both of which are a series of switches,

and the timed event t.  The timed event t is a countdown for oxygen state exceeding

oxygen threshold.

Each of the four sensor states was modeled as a separated process or proctype in

Spin.  The Sens_Failure_Counter and fueling state was also modeled as separate
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proctypes.  The failure and recovery of the four sensors and the change of engine speed

was handled randomly such that if any sensor randomly failed or recovered, it could

choose to go to recovered or failed respectively.  Also if engine speed randomly increased

it could choose to decrease and vice versa.  In the fueling state proctype, the sub-states of

running mode and disabled mode was modeled as two separate labels such that each one

could go to the other label when the label is called in a goto statement.  The timed event t

was also modeled as a separate process such that a variable t was randomly increased by a

constant value each time.

Spin derives its’ global state space by computing the product of all the

asynchronous automata.  Our first abstraction of the Sensor Failure Detection (SFD)

system resulted in a huge state space explosion problem.  There are a number of ways to

reduce the state space, some of which were used to contain our state space.  The first step

taken was to see if any variables types could be changed to reduce the memory

consumption, such as certain variables which were bytes were changed to bit type and so

on.  Next step was to define equivalence classes.  This was done by identifying subsets in

the Sensor Failure Detection (SFD) system which were mutually disjoint such that the

union of all these sets was the original set.  This led us to identifying five such subsets

that is the four sensors and the process depicting the change in engine speed.  We also

noted that the separate process for the Sensor_Failure_Counter was not needed and could

be embedded in each of the four sensor proctypes but the fueling state proctype was

indeed needed.  Hence now instead of eight processes we only have seven processes.



35

The third step was to see if any of the processes could be modified.  What this

means is to see if anything else could be abstracted out of the processes to further

simplify them?  The process, which was illustrating the timed event t, was increasing a

variable t randomly by a constant.  This variable t was only needed to evaluate the

condition t > o2_t_thresh for the oxygen sensor state.  So in other words after this

condition was evaluated, t was no longer needed.  Hence the proctype for this timed event

t was modified to only increase t for this condition and after this condition was evaluated

this proctype was no longer evaluated.  After this reduction, the state space was greatly

contained and the explosion problem was overcome.

3.3.2 Asynchronous Model

The crux of this research is fault-injection through model checking via “naive

assumptions”.  The “naive assumptions” are asynchronous and synchronous executions.

Hence the first step is to specify the Sensor Failure Detection (SFD) system as an

asynchronous model using the Spin tool.  Since Spin is used to verify asynchronous

processes, the specification of the Sensor Failure Detection (SFD) system is simplified.

Each of the sensors is modeled as asynchronous processes.  All the transitions are

conditions implemented in an ‘if’ or a ‘do’ loop.  The simulation of the sensor failures

and recoveries is done randomly such that based on the current state of a sensor, the

sensor can choose to go to either failed or recovered.  Each time a sensor fails or recovers

the sensor failure counter is immediately either incremented or decremented respectively

and the sensor state is changed respectively.  The initial state of all the sensors is set to
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normal.  At startup, each sensor state is changed based on the value of the sensors.  For

example: if the speed_sensor_mode is fail at startup, the state of the speed_sensor_mode

is set to speed_fail.  Once the model goes through startup, the sensor failures and

recoveries are simulated randomly.  The only difference is the oxygen sensor state, which

doesn’t progress until the condition for t is evaluated. The timed event t is also specified

as a separate asynchronous proctype.  The variable t is increased by a constant until it

goes beyond the oxygen threshold.  Figure 5 on Page 36 and Figure 6 on Page 37

illustrates the specification of the oxygen sensor and the timed event t respectively.

Figure 5: Oxygen Sensor Process



37

Figure 6: Timed Event t Process

The engine speed is translated as a separate asynchronous proctype wherein speed

can either decrease or increase based on its’ current speed.  The fueling state is also

specified as a separate asynchronous proctype.  The parent and child hierarchy within the

running mode of fueling state is handled by two inner loops.  Two separate labels

separate both the sub-states of running mode and disabled mode.  Figure 7 on Page 38

partly illustrates the fueling state proctype.  For a complete illustration of the

asynchronous model, please see Appendix A.
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Figure 7: Fueling State Process

This completes the specification of the asynchronous model.  In order to find the

faults that have been injected into the system, the behavior of this model will be validated

using Linear Temporal Logic (LTL) properties in Chapter 4.
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3.3.3 Synchronous Model

The second model is specified based on the “naive assumption” of synchronous

execution.  The approach is to synchronize the Sensor Failure Detection (SFD) system

model in Spin.  Hence the Sensor Failure Detection (SFD) system is synchronized left to

right, top to bottom as depicted in Figure 4 on Page 30.  The order of the synchronized

proctypes are the timed event t followed by the oxygen sensor state, pressure sensor state,

throttle sensor state, speed sensor state and the fueling state.

The sensor failures and recoveries are simulated randomly that is depending on

the current state of a sensor, the sensor can either fail or recover.  The significant

difference between this and the asynchronous model is once a sensor has been changed, it

can’t change back again until the respective sensor state and the fueling state indicates the

changed state.  This is done by a turn taking variable, which indicates which sensor has

changed.  For example: if the throttle_sensor has been set to fail from norm, the throt_syn

will be set to change such that the throttle_sensor_mode has to be set to throt_fail and

fueling state has to indicate this failure, then throt_syn will be set to nochange.  The

throt_syn is the turn taking variable which prevents throttle_sensor from being reset until

throttle_sensor_mode has shown the effects of the failed throttle_sensor that is the

throttle_ sensor_mode has to go to failure and the fueling state has to show the effect of

the fact that there is at least one sensor which is failed.  After this the throttle_sensor can

again change randomly.  Hence sensor failures are synchronized to a certain extent.

Figure 8 on Page 40 illustrates the proctype for the sensor failures and recoveries.
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Figure 8: Change Sensors Values Process

The timed event t proctype is the first among the synchronized processes.  The

variable t is incremented by a constant each time the proctype is executable.  The variable

synchronize handles the turn taking for the synchronized proctypes.  Once the variable t is

beyond the value of o2_t_thresh, the timed event t proctype no longer increments t but

just sets the synchronize variable to execute the oxygen proctype.  Figure 9 illustrates the

timed event t proctype.

Figure 9: Timed Event t Process
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Each of the sensors is modeled as synchronous processes. Each time a sensor fails

or recovers the sensor fail_cnt is immediately either incremented or decremented

respectively and the respective sensor state is changed.  The initial state of all the sensor

is set to normal.  But at startup each sensor state checks for the initial value of the

sensors.  For example: if the speed_sensor is fail at startup the state of the

speed_sensor_mode is set to speed_fail.  The only slight difference is the oxygen sensor

that doesn’t progress until the condition for t is evaluated.  Figure 10 illustrates the

oxygen_sensor_mode.

Figure 10: Oxygen Sensor Process

The fueling state proctype is the last synchronized process.  This process is

exactly the same at the asynchronous model.  The only difference is that it is
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synchronized and is only executable when it is its’ turn.  Also if there has been no change

with engine speed or any sensors the turn is simply passed on to the timed event t

proctype as there is no change in the fueling state.  For a complete listing of fueling state

proctype and a complete source code of the synchronous model, look at Appendix B.  The

engine speed is also increased and decreased randomly.  The only difference is when

engine speed is changed it cannot change back again until fueling state proctype shows

the effects of the changed engine speed.  For example: when speed is increased, it cannot

be decreased immediately until fueling state is set to overspeed mode which allows the

engine speed to change randomly again.  Figure 11 illustrates the engine speed proctype.

Figure 11: Engine Speed Process
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3.4 Input Fault-Injection

The third and final fault-injection method is based on the input space of a program.  This

fault-injection method is applied on the asynchronous and synchronous Sensor Failure

Detection (SFD) system models.  Input space constitutes all the inputs of a program.  It

makes sense to only work with legal inputs that is inputs that come from the domain

space of a program.  The reason is the idea behind fault-injection on inputs is to corrupt

the legal inputs and see what happens.  Inputs can come from various sources such as

external, internal events, sensors, and randomly generated inputs.  In the Sensor Failure

Detection (SFD) system, the inputs come from sensors and engine speed.  There are five

inputs in the Sensor Failure Detection (SFD) system which are the oxygen, throttle,

pressure, speed sensors and the engine speed.  Since all the inputs are randomly simulated

in the models we don’t need to inject faults into the input during the execution of the

program as Spin will look at all possible values of the inputs during program execution.

The only case, which needs to be considered, is initial or startup values of the inputs.

Hence different values of the inputs are injected for the engine speed and sensors into

both our models during startup and the behavior of the Sensor Failure Detection (SFD)

system models are studied with all these initial values.  For example: in one case at

startup, sensors are normal but engine speed exceeds max_speed and the behavior of the

Sensor Failure Detection (SFD) system is observed to see its’ response to the increased

engine speed.  The method is illustrated on the Sensor Failure Detection (SFD) system in

the next chapter.



44

In this chapter, we described the fuel injection Sensor Failure Detection (SFD) system.

We also outlined our abstraction process and how we overcame the state space explosion

problem. We then went on to apply our fault-injection techniques to the Sensor Failure

Detection (SFD) system and specified two models in the Spin tool.  The next chapter will

validate the two Sensor Failure Detection (SFD) system models using Linear Temporal

Logic (LTL) properties and explain the results of the validation.
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Chapter 4

Analysis, Results, and Discussion

In the previous chapter, we specified two separate state models of the Sensor Failure

Detection (SFD) system in Promela based on two “naive assumptions”.  This chapter

describes the Linear Temporal Logic (LTL) properties applied to both our models in order

to discover the anomalies.  First, the classification of the results from the properties are

described.  Next, the results for each fault class are interpreted.

4.1 Counter-Examples

In the previous chapter, we explained and demonstrated three ways to inject faults,

through “naive assumptions” of asynchronous and synchronous executions and through

inputs.  The Sensor Failure Detection (SFD) system is an existing model in Stateflow and

was provided to us.  We applied “naive assumptions” of asynchronous and synchronous

executions to specify two models of the Sensor Failure Detection (SFD) system in the

model checking tool Spin.  Both our models are indeed “naive” with respect to any

assumptions of synchrony.  These assumptions also led to determinism and

nondeterminism in our models.  We also injected faults through the inputs in both these

models using our third method of injecting faults explained in Section 3.4 on Page 43.  In
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order to discover the anomalies in the models as the result of our three fault-injection

methods, Linear Temporal Logic (LTL) correctness claims are used.  These Linear

Temporal Logic (LTL) claims represent undesirable behaviors in the Sensor Failure

Detection (SFD) system.  Together with the state model and a Linear Temporal Logic

(LTL) correctness claim or property, the Spin tool will automatically produce a validator

or a “never”  clause.  This “never”  clause is a Büchi automaton.  When a validator or

Büchi automaton is executed, Spin will either produce a “trail”  file if a “never” claim is

violated that is the undesirable behavior is found to exist in our system.  A “trail”  file by

itself is cryptic hence it is run by guided simulation to produce a counter-example, which

shows that an undesirable behavior is present in the model through a sequence of events.

Counter-examples produced by Spin constitute the outputs of the Linear Temporal Logic

(LTL) properties.  The counter-examples represent test templates that can serve as test

cases as they contain the inputs and the resulting outputs.  These test cases enable us to

see the related requirements that have been violated in our models.  By observing the test

cases we can detect errors in our specification, which enable us to correct the errors.

Thus the test cases help us maintain fidelity between the specification and our models.

The counter-examples also serve as the outputs for fault-injection.  The generation of the

outputs or test cases is automatic and built into the Spin tool.  The test cases or outputs

can then be studied by going through the sequence of events in the “trail”  file.  The

approach used to go through the counter-examples is to step through each state change

recorded in them.
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The Spin tool has the capability to generate more than one “trail”  file.  We can

also set the search depth in Spin that is basically how deep in the computation tree we

want to go in order to find the anomaly.  In some cases, we might only need to go to a

very short depth and the anomaly is visible in the sequence of events but in other cases

we might need to go to a greater depth in the computation tree.  We may determine that

the anomaly is present at a certain depth, but there may be other anomalies present at

deeper depths of the computation tree if we go further but they are masked by the

previous anomaly.  In order to get to the deeper anomalies in the computation tree, we can

do one or a combination of these three steps: First, we can correct the previous anomalies;

Second we can change the Linear Temporal Logic (LTL) property to make it more

specific;  Finally, we can generate muliple “trail”  files and execute the “trail”  files

through guided simulation to produce counter-examples to see if different anomalies are

present.  The approach we follow to get to the deeper anomalies depends upon the kind of

anomalies detected.  Depending upon the anomalies detected we might find it may be

easier to correct the previous anomalies or change the property or it may be best to

generate multiple “trail”  files.

4.2 Property Classification

We base the requirements of the Sensor Failure Detection (SFD) system on the

functionality gathered from the semantics and transition conditions in the Sensor Failure

Detection (SFD) system.  The Linear Temporal Logic (LTL) claims or properties are

formulated to validate the requirements of the Sensor Failure Detection (SFD) system.  In

all, we validate thirty Linear Temporal Logic (LTL) properties on both our models.  Most
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of these thirty properties fail in the verification that is they generate counter-examples

indicating the presence of undesirable behavior in our models.  We decided the best way

to interpret and observe the results of these properties are to classify only those

properties, which fail in the verification into different categories.  Our approach is to

classify the outputs or test cases from the Linear Temporal Logic (LTL) properties

generated by the Spin tool.  By classifying the outputs or test cases we in turn classify the

properties and the related requirements.  In order to arrive at the classifications, we

observe the outputs through a series of questions:

� Do the outputs represent an errant anomaly? (that violates a desired property)

� What are the sequences of events that represent this anomaly?

� Which fault-injection method results in the simulation of this anomaly?

� What error causes this anomaly?

� Is there a general category of anomalies? (i.e., a common pattern among the

sequence of events that represents the behavior of the program)

� What are the requirements behind each Linear Temporal Logic (LTL)

property?

� Do the Linear Temporal Logic (LTL) properties represent liveness, invariance

or safety properties?

Based on the answers to the above questions, we found five fault classes that

categorized all the outputs of the Linear Temporal Logic (LTL) properties.  These five

fault classes are:

� Race Condition
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� Ambiguity

� Missing Requirement

� Inconsistent Requirement

� Loss of Failures and Recoveries

We call the above classifications as fault classes as we are looking at the outputs that

contain trace sequences of events that lead to the anomalous behavior and also

determining the reason behind the anomaly that is the error.  In each fault class, there are

related requirements of the Sensor Failure Detection (SFD) system based on the

functionality gathered from the semantics and transition conditions of the Sensor Failure

Detection (SFD) system.  By observing the error behind each anomaly we see the

requirements that have been violated.  We also state Linear Temporal Logic (LTL)

properties in each fault class used to validate each of these requirements.  Thus by

classifying the outputs indirectly classified the properties and their related requirements.

Even though there are many requirements and Linear Temporal Logic (LTL) properties in

each fault class, all the outputs from the properties exhibit the same anomaly represented

by that fault class.  For example: all the properties in the race condition fault class seen in

Table 1 on Page 53-54 generate outputs, which have the race condition anomaly.  The

sequence of events in the outputs may be different but eventually all the outputs contain

the race condition anomaly.

In certain fault classes, there are properties, which generate outputs that exhibit

two different anomalies.  For example: a property in the Missing Requirement fault class
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and Loss of Failures and Recoveries fault class is the same but upon observing the

outputs, we see two different anomalies hence the property is present in both the fault

classes.  Certain fault classes contain anomalies, which are the results of the faults

injected through either one or all, or a combination of the three fault-injection methods

explained in the previous chapter.  In other words, certain fault classes exhibit anomalies

only in the asynchronous model or some cases in only the synchronous model and in

some cases they are present in both models.  As stated before the third fault-injection

method of injecting faults into the inputs as explained in Section 3.4 on Page 43 applies

to both our models. Even though both the asynchronous and synchronous models are

different they intersect on the anomalies, as some anomalies are present in both our

models.  In the next few sections, all the properties in each of the fault classes is

explained in detail.  Each fault class is followed by a detailed explanation of the results

and their interpretation.  Since the outputs or “trail”  files can be very large, it was

decided to include just one counter-example for all the fault classes in Appendix C to

show an example of a Spin guided simulation of a “trail”  file.

4.3 Fault Classes

4.3.1 Race Condition

In normal terms, race condition takes place at two or more receive events, where the order

of the incoming messages is arbitrary. The existence of race condition arises from

nondeterminism in the program flow and leads to unpredictable interleaving of threads

within a program.  Upon observing the outputs generated by the properties in Table 1 on

Page 53-54, we conclude that all the outputs exhibit the race condition anomaly.  The
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properties in Table 1 characterize potential failures resulting from violations of liveness

and invariance properties.  In order to understand the reason behind the race condition, we

need to remember that all of the properties in Table 1 are validated on the asynchronous

model.  Hence the race condition anomaly is due to the asynchronous “naive

assumptions”.

All the related requirements, R1-R4 in this fault class signify the functionality of

the Sensor Failure Detection (SFD) system that we have gathered from the semantics and

transition conditions of the Sensor Failure Detection (SFD) system.

R1: If there are sensor failures and recoveries, there should be a transition eventually

to the appropriate sub-states in the fueling state.  Hence there are sub-states in

fueling state, which should not get starved.

R2: If the fueling state has a certain sub-state as its’ current state then the condition

for being in that sub-state should always be true.  For example: if fueling_state is

in single_failure mode then there should be one sensor failure.

R3: If eventually the timed event t does exceed o2_t_thresh then eventually the

oxygen sensor state should go to o2_normal.  Hence timed event t and oxygen

sensor state should not get starved.

R4: If either one or all or a combination of the sensors are failed and/or engine has

exceeded the speed at the startup or initial state of the system then eventually the

system must indicate the sensors failed or the engine overspeed.
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In order to determine if the above requirements (R1-R4) are present in our

models, we formulate Linear Temporal Logic (LTL) properties as shown in Table 1 on

Page 53-54.  We explain which properties in Table 1 cover which requirements, R1-R4.

We expound one property in Table 1 for each requirement, R1-R4.  Properties 1 through

5 cover R1 in Table 1.  For example: P1 (property 1) states [](p -> <>q) where p is the

occurrence of a multiple sensor failures and q is the indication of it.  [] and � are

temporal logic operators which mean ‘always’ and ‘eventually’ respectively. The term

“[]x” means in all future states x is true and the term “�x” means that at some future

state x is true.  In the Spin tool, the symbol for ‘eventually’ it is <> instead of �.  The

formula in P1 expresses the condition that in all future states if fail_cnt exceeds one then

in some future state fueling_state must go to shutdown mode.   Properties 6 through 8

cover R2.  For example: The formula in P6 states that in all future states if fueling_state

is in shutdown mode then fail_cnt exceeds one for that state.  Property 9 covers R3.  For

example: The formula in P9 states that taking into account all future states if in some

future state t exceeds o2_t_thresh then in some future state oxygen sensor state or

o2_mode must progress to o2_normal.  Properties 10 through 13 cover R4.  For example:

The formula in P10 states that if at the initial state o2_mode has failed then in some future

state fail_cnt must be at one to indicate the failure.
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Property
No

Table 1: Linear Temporal Logic Properties

P1 Formula: [](p -> <> q)
Symbol:  #define p (fail_cnt > 1)
              #define q (fueling_state == shutdown)

P2 Formula: [](p -> <> q)
Symbol:  #define p (speed > MAX_SPEED)
              #define q (fueling_state == overspeed)

P3 Formula: [](p -> <> q)
Symbol:  #define p (fueling_state == shutdown) && (fail_cnt <= 1)
              #define q (fueling_state == single_failure)

P4 Formula: [](p -> <> q)
Symbol:  #define p (fueling_state == normal) && (fail_cnt == 1) &&
              (speed < MAX_SPEED)
              #define q (fueling_state == single_failure)

P5 Formula: [](p -> <> q)
Symbol:  #define p (fueling_state == single_failure) && (fail_cnt == 0) &&
              (speed < MAX_SPEED)
              #define q (fueling_state == normal)

P6 Formula: [] (p -> q)
Symbol:  #define p (fueling_state == shutdown)
               #define q (fail_cnt > 1)

P7 Formula: [] (p -> q)
Symbol:  #define p (fueling_state == single_failure)
              #define q (fail_cnt == 1)

P8 Formula: [] (p -> q)
Symbol:  #define p (fueling_state == overspeed)
              #define q (speed > MAX_SPEED)

P9 Formula:  [](<> p -> <> q)
Symbol:  #define p (t > o2_t_thresh)
              #define q (o2_mode == o2_normal)

P10 Formula:  p -> <> q
Symbol:  #define p (o2_sensor == fail) && (press_sensor == norm) &&
              (throt_sensor == norm) && (speed_sensor == norm)
              #define q (fail_cnt == 1)

P11 Formula: p -> <>q
Symbol:  #define p (speed_sensor == fail) && (throt_sensor == fail) &&
              (o2_sensor == norm) && (press_sensor == norm)
              #define q (fail_cnt == 2) && (fueling_state == shutdown)

P12 Formula: p -> <> q
Symbol:  #define p (speed_sensor == fail) && (throt_sensor == fail) &&
              (o2_sensor == norm) && (press_sensor == norm)
              #define q (fail_cnt == 2)
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P13 Formula:  p -> <> q
Symbol:  #define p (o2_sensor == norm) && (press_sensor == norm) &&
              (throt_sensor == norm) && (speed_sensor == norm) &&
              (speed == 35)
              #define q (fueling_state == overspeed)

Table 1: Race Condition

4.3.1.1 Results

We have explained the requirements based on the Sensor Failure Detection (SFD) system

and Linear Temporal Logic (LTL) properties formulated to validate the requirements.

When the properties in Table 1 failed during verification that is the Spin tool generates

outputs or counter-examples, which indicates that the properties and in turn the

requirements are violated in our model.  By observing the trace sequence of events in the

outputs, we conclude that all the outputs have the race condition anomaly.  The sequence

of events that exhibit this anomaly is the sensors are getting set back and forth without

letting other processes execute.  For example: In the output of the first property in Table 1

on Page 53, even though fail_cnt exceeds one, fueling_state is not able to go to shutdown

mode as the sensors are randomly getting set back and forth due to which shutdown mode

is getting starved out.  This randomness of the sensors is present in all of the properties

due to which even though a certain condition is true the transition to the destination state

is not occurring.  As stated before, the race condition anomaly is only present in our

asynchronous model and through the faults injected in the inputs.  This race condition

was also preventing us from observing other anomalies, which maybe present in the

Sensor Failure Detection (SFD) system.  In order to observe other anomalies, we can
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correct the race condition anomaly by synchronizing our model.  Hence by specifying a

model of the Sensor Failure Detection (SFD) system through assumption of complete

asynchrony led to the revelation of potential race faults.

4.3.2 Ambiguity

This fault class is termed ‘ambiguity’ as the anomaly exhibited in this fault class based on

observing the outputs from the properties in Table 2 on Page 56 is due to an ambiguous

requirement in the Sensor Failure Detection (SFD) system.  An ambiguous requirement is

a requirement which creates doubtfulness or uncertainty in its’ interpretation.  In the

Stateflow diagram of the Sensor Failure Detection (SFD) system Figure 4 on Page 30,

there are two conditions under which fueling state exits from the running sub-state to

disabled sub-state.  But there is no clear condition stating, which one takes precedence if

both conditions are true at the same time.  R1 states the requirement, which we

formulated based on the absence of a precedence condition.

R1: There is no precedence between the two transition conditions exiting running sub-

state and entering the disabled sub-state.

In order to determine if the above requirement R1 is present in our models, we

formulate Linear Temporal Logic (LTL) properties as shown in Table 2 on Page 56.

Even though there is only requirement R1 we have three properties in Table 2 as the first

property in Table 2 is validated on the asynchronous model but the next two are validated

on the synchronous model.  We expound one property in Table 2.  For example: P2 states
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that for all future states if fail_cnt exceeds one for any future state then eventually

fueling_state must be equal to shutdown mode for some future state.

Property
No

Table 2:  Linear Temporal Logic Properties

P1 Formula:  ([] <> p) -> <> q
Symbol:  #define p (speed > MAX_SPEED) && (fail_cnt > 1)
              #define (fueling_state == overspeed)

P2 Formula:  [] (p -> <> q)
Symbol:  #define p (fail_cnt > 1)
              #define q (fueling_state == shutdown)

P3 Formula:  [] (p -> <> q)
Symbol:  #define p (speed > MAX_SPEED)
              #define q (fueling_state == overspeed)

Table 2: Ambiguity

4.3.2.1 Results

As mentioned before there are two transitions exiting the running sub-state in fueling

state, one is for speed > max_speed and the other for enter(MultiFail) which means if

fail_cnt exceeds one.  According to the Stateflow diagram there is no clear statement or

condition, stating which one of these transitions should be taken if both conditions are

true at the same time, thus there is an inherent ambiguity.  We have explained the

requirement based on absence of this precedence condition in the Sensor Failure

Detection (SFD) system and Linear Temporal Logic (LTL) properties formulated in Table

2 to validate the requirement.  When the properties in Table 2 are validated, the Spin tool

generates outputs or counter-examples which indicates that the properties and in turn the

requirement R1 is violated in our models.  By tracing the sequence of events in the
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outputs, we observe that the requirement R1 is not violated but rather the ambiguity in the

R1 creates an undesirable behavior in our models.  Due to this ambiguity, whenever both

conditions are true the transition to overspeed mode is always taken and the transition to

shutdown mode is never taken.  Thus shutdown mode is always getting starved out and

there is no fairness.

Our definition of “naive assumptions” is the various assumptions that can be

made about execution order, synchrony and fairness.  Based on our “naive assumptions”

we constructed two models of the Sensor Failure Detection (SFD) system.  Both our

models are naive with respect to any fairness.  Hence this anomaly due to the ambiguous

requirement is present in both the asynchronous and synchronous fault-injection models.

This assumption of fairness led to the discovery of the anomalous behavior due to the

ambiguity in requirement, R1.  Even though the anomaly is the same upon observing the

outputs from the properties in Table 2, different properties are used to discover the

anomaly in our two models.  The first property generates a counter-example on the

asynchronous model and the last two generate counter-examples on the synchronous

model.  When the second and third properties are validated on the asynchronous model it

resulted in the race condition anomaly, but did not show the anomaly due to the

ambiguous requirement.  It may have been the case that the anomaly due to the ambiguity

in requirement is present at a deeper depth in the computation tree but the race condition

anomaly prevents us from observing it.  Hence we had to change the second and third

properties for the asynchronous model resulting in the first property in Table 2 on Page

56 in order to see the anomaly due to the ambiguous requirement.
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4.3.3 Missing Requirement

A missing requirement is a requirement, which is, absent from the specification.  This

fault class is termed ‘missing requirement’ as the anomaly exhibited in this fault class

based on observing the outputs from the properties in Table 3 on Page 59 is due to a

missing requirement in the Sensor Failure Detection (SFD) system.  In the Stateflow

diagram of the Sensor Failure Detection (SFD) system Figure 4 on Page 30, there is a

transition with no transition condition in the fueling state.  In the running sub-state of the

fueling state the transition from the warmup junction to normal mode has no transition

condition.  This transition contradicts with the transition coming into normal mode from

single_failure mode as that transition has a transition condition such that fail_cnt must be

equal to zero.  As per the redundant sensor information in the Sensor Failure Detection

(SFD) system, if there is more than one sensor failure the system is disabled by

transitioning into shutdown mode and if there is one failure it should go into

single_failure mode.  The anomaly in this fault class occurs due to the fact that the

missing requirement contradicts the redundant sensor information.  This missing

requirement violates safety properties.  R1 states the requirement for the redundant sensor

information.

R1: If fail_cnt is one then fueling_state transitions into single_failure mode or if

fail_cnt is more than one then fueling_state transitions into shutdown mode.

In order to determine if the above requirement R1 is present in our models, we

formulate Linear Temporal Logic (LTL) properties as shown in Table 3 on Page 59.  The

property in Table 3 verifies if our models exhibit behavior, which is a contradiction to the
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requirement, R1.  For example: P1 in Table 3 on Page 59 states that all future states

considered, in some future state fueling_state is in normal mode and fail_cnt is equal to

one.  All the properties in this fault class have been validated on both the asynchronous

and synchronous models.  When a Linear Temporal Logic (LTL) property is entered in

Spin, it automatically negates this and creates the “never”  clause on this negated

property.  Hence the Spin tool checks to see if a desired behavior never happens in the

model.  To validate that an undesired behavior never happens, we can either negate the

property or we can select the option to indicate that the above property represents an

undesired behavior that is no executions of this behavior is allowed.  We select the latter

option and Spin will create a “never”  clause for the above formulas ‘as is’ without

negating it.  Once the selection is made, Spin checks to see if P1 and P2 in Table 3 are

satisfied at any point in our models.

Property
No

Table 3:  Linear Temporal Logic Properties

P1 Formula:  [] (<> p)
Symbol:  #define p (fueling_state == normal) && (fail_cnt == 1)

P2 Formula:  [] (<> p)
Symbol:  #define p (fueling_state == normal) && (fail_cnt > 1)

Table 3: Missing Requirement

4.3.3.1 Results

As per the redundant sensor information in the Sensor Failure Detection (SFD) system, if

there is more than one sensor failure the system is disabled by transitioning into shutdown

mode and if there is one failure it should go into single_failure mode.  This redundant
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information contradicts the absence of no transition condition from the warmup junction

to normal mode.  We have explained the requirement for the redundant sensor

information and Linear Temporal Logic (LTL) properties formulated in Table 3 on Page

59 to validate the requirement.  When the properties in Table 3 are validated, the Spin

tool generates outputs or counter-examples which indicates that the properties and in turn

the requirement R1 is violated in our models.  By tracing the sequence of events in the

outputs, we observe that the requirement R1 is violated in both our models.  Both the

properties in Table 3 represent the same anomaly due to the missing transition condition

but exhibit a different sequence of events in the output.

Upon observing the outputs for the first property in Table 3, the sequence of

events that represent the anomaly happens when fueling_state is in warmup mode and

o2_mode is in o2_normal so warmup transitions to the junction.  Then if fail_cnt is equal

to one, instead of warmup mode transitioning to single_failure mode, it transitions to

normal mode even though both transitions are executable.  The reason is due to the

missing condition, there is no transition condition to transition to normal mode.  In the

Spin tool, if more than one choice is available, it randomly chooses any path.  Hence

when fail_cnt is equal to one, both the transition to normal mode or single_failure mode

can be taken even though the transition to single_failure mode has a condition of fail_cnt

equal to one, it can choose to go to normal mode as both transitions hold true.  This

anomalous behavior is seen in the outputs by the first property and the second property

shows a different sequence of events.  In the outputs of the second property in Table 3,  if

fail_cnt exceeds one, and fueling_state is in warmup mode and o2_mode is in o2_normal,



61

again the transition to normal mode can be taken even though it should be exiting

running and going into shutdown mode.  Both the transition to normal mode and the

transition for exiting running mode and going into shutdown mode hold true at the same

time.  The outputs from both the properties in Table 3 violate the redundant sensor

information as seen in our requirement, R1 and it happens due to the missing transition

condition.  An example of a Spin generated counter-example by running a “trail”  file

through guided simulation for P1 in Table 3 on the asynchronous model is included in

Appendix C.

4.3.4 Inconsistent Requirement

Inconsistent requirements are requirements, which can lead to erratic and irregular

behavior.  This fault class is termed ‘inconsistent requirement’ as in the Stateflow

diagram of the Sensor Failure Detection (SFD) system, the transition in the fueling state

exiting from warmup mode has a transition condition that o2_mode must be in

o2_normal.  The anomaly in this fault occurs due to an inconsistency with the transition

condition exiting out of warmup mode.  In any throttle body fuel injection system a

simple requirement is that the system must progress beyond its’ warmup state when

started up.  R1 specifies this requirement:

R1: fueling_state must progress from its’ warmup mode.

In order to determine if the above requirement R1 is present in our models, we must

formally prove that it is not violated in our models.  In Spin there are three ways to

validate a property.  They are, by interactive simulation, asserts statements, and Linear

Temporal Logic (LTL) formulas.  Instead of formulating a Linear Temporal Logic (LTL)
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property we show this anomaly due to an inconsistent transition condition by interactive

simulation, and observing the output of the simulation.  The anomaly is present in both

the asynchronous and synchronous model.

4.3.4.1 Results

The transition condition of in(o2_normal) which means oxygen sensor state should be in

o2_normal is inconsistent.  This transition condition of in(o2_normal) violates the

requirement R1 on Page 61 in certain sequence of events.  We observe the outputs from

an interactive simulation to exhibit this anomalous behavior in both our “naive” models.

The following events exhibit the anomaly as seen in the output from interactive

simulation:

� The timed event t is less than o2_t_thresh, fueling_state is in warmup mode,

oxygen sensor state is in o2_warmup, running_history is in warmup mode,

and fail_cnt is zero

� Either in the next state change or in a future state speed exceeds max_speed

which takes fueling_state to overspeed mode, and all the remaining states stay

the same as mentioned above

� While fueling_state is in overspeed mode, t exceeds o2_t_thresh which takes

the oxygen sensor state to o2_normal, fail_cnt is still zero and speed is still

greater than max_speed

� o2_mode fails which takes oxygen sensor state to o2_fail, fail_cnt becomes

one
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� speed decreases to below max_speed and fueling_state goes to warmup mode

due to running_history being in warmup mode

� fueling_state cannot transition to single_failure mode even though fail_cnt is

one as oxygen sensor state is not in o2_normal but in o2_fail

Hence even though oxygen sensor has failed the fueling_state is not indicating this

failure.  In fact, the only way for fueling_state to get out of warmup mode is to have

another sensor failure, which would take the fueling_state to shutdown mode.  In other

words fueling_state is stuck in warmup mode.  This behavior clearly violates the

requirement, R1 and is due to the transition condition of in(o2_normal) which is

inconsistent as seen from the above sequence of events.  This anomaly was initially found

by formal specification and we have shown the existence of it in the Sensor Failure

Detection (SFD) system through formal verification.

4.3.5 Loss of Failures and Recoveries

In any sensor failure detection system one of the main characteristic is that all sensor

failures and recoveries should be indicated.  But in the synchronous Sensor Failure

Detection (SFD) system model, there is a loss of sensor failures and recoveries. Upon

observing the outputs generated by the properties in Table 4 on Page 64, we conclude that

all the outputs exhibit a loss of sensor failures and recoveries.  The properties in Table 4

characterize potential failures resulting from violations of safety properties.  Requirement

R1 specifies that sensor failures and recoveries should always be indicated in the fueling

state:

R1: All sensor failures and recoveries must be indicated in the fueling_state.
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In order to determine if the above requirement R1 is present in our models, we

formulate Linear Temporal Logic (LTL) properties as shown in Table 4 on Page 64. All

the outputs generated by the properties in Table 4, indicate a loss of sensor failures and

recoveries even though the sequence of events leading to the loss of sensor failure and

recoveries by each property is different.  We expound one property from Table 4.  P2

states that considering all future states, in some future state fueling_state must be in

single_failure mode, fail_cnt must be equal to zero, speed must not exceed max_speed,

fueling_state should indicate that there are no changes to any of the sensors and

fueling_state must be executable. All the formulas were verified on our synchronous

model.

Property
No

Table 4:  Linear Temporal Logic Properties

P1 Formula:  [] (<> p)
Symbol:  #define p (fueling_state == normal) &&(fail_cnt == 1) && (speed <
              MAX_SPEED) && (fueling_syn == nochange) &&
              (synchronize == 5)

P2 Formula:  [] (<> p)
Symbol:  #define p (fueling_state == single_failure) &&(fail_cnt == 0) &&
              (speed < MAX_SPEED) && (fueling_syn == nochange) &&
              (synchronize == 5)

P3 Formula:  [] (<> p)
Symbol:  #define p (fueling_state == warmup) &&(fail_cnt == 1) && (speed
<
              MAX_SPEED) && (fueling_syn == nochange) &&
              (synchronize == 5) && (t > o2_t_thresh)

Table 4: Loss of Failures and Recoveries
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4.3.5.1 Results

Even though the synchronous model has been explained in the previous chapter, it will be

worthwhile to reiterate it briefly.  The synchronous processes and their order of execution

are the timed event t, oxygen, pressure, throttle and speed sensor states and then finally

the fueling state.  There are two more processes for simulating the sensor failures and the

engine speed but they are random in execution.  The point to note is even though sensor

failures and engine speed processes are random they are synchronized in the sense that

once a sensor fails or recovers or there is a change in the engine speed, the processes are

locked from changing back again.  The sensors and engine speed can only change back

again after the present change is noted in the respective sensor states and in the fueling

state.  For example if engine speed exceeds, the engine speed is blocked from decreasing

until  fueling_state transitions to overspeed mode.

The best way to explain the loss of sensor failures and recoveries is to go through

the sequence of events that exhibit the anomalous behavior for the second property in

Table 4.

� fueling_state is in single_failure mode and running_history is in

single_failure mode and fail_cnt equals to one

� then if speed  exceeds max_speed which transitions fueling_state to overspeed

mode but running_history is still in single_failure mode and fail_cnt is equal

to one, and execution proceeds to the timed event t

� either in the next state or in a future state if speed decreases below max_speed

and fail_cnt equals to zero indicating there are no sensor failures, this makes
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fueling_state exit out of overspeed mode and go to single_failure mode due to

running_history and execution goes to the timed event t as per the

synchronized processes and their order

� then when fueling_state process is reached again instead of single_failure

mode transitioning to normal mode as fail_cnt equals to zero fueling_state

cannot see this failure recovery

This happens due to the fact that fueling_state makes only one transition at a time hence

when speed decreased and fail_cnt went to zero it only took into consideration the

lowered speed and transitioned to single_failure mode.  But it has no memory of the fact

that in the next execution it should go to normal mode due to the sensor recovery.  The

loss of sensor failure and recoveries anomaly is only present in the synchronous model.

4.4 Properties with No Errors

In the previous section, we classified all the outputs or test cases, which were, generated

by the properties that in turn classified all the properties and the related requirements.

There were a number of properties, which generate no counter-examples, or in other

words the properties are not violated in both our models as seen in Table 5 on Page 68-

69.  All the requirements, R1-R5 in this fault class signify the functionality of the Sensor

Failure Detection (SFD) system that we have gathered from the semantics and transition

conditions of the Sensor Failure Detection (SFD) system.

R1: If t is less than or equal to o2_t_thresh then oxygen sensor state should be in

o2_warmup.

R2: If all sensor states are in normal then fail_cnt should be equal to zero until one or



67

more sensors fail or fail_cnt is zero if no sensors fail.

R3: fail_cnt should never be less than zero or greater than four since there are

only four sensors.

R4: If any one sensor or a combination or sensors have failed then the fail_cnt should

indicate the right number of failed sensors.

R5: If fueling state is in overspeed mode and running_history is in single_failure

mode then if speed decrements and there are no multiple sensor failures then

fueling_state must go to single_failure mode due to the running_history.

All the properties in Table 5 are formulated to verify if the requirements R1-R5

are violated in both our models.  All the properties characterize potential failures resulting

from violations of invariance properties on the timed event t, sensor failure counter and

the fueling state. We explain which properties in Table 5 cover which requirements, R1-

R5.  We expound one property in Table 5 for each requirement, R1-R5.  P1 covers R1

and the formula states that for all future states if t is less than or equal to o2_t_thresh then

o2_mode must be in o2_warmup.  U is another binary temporal logic operator that stands

for ‘until’.  The term ‘x U y’ means that x is true until y is true after which x may or may

not be true.  x must be true from the initial state and y must hold before x becomes false

and y must be true in some state.  There is also a weaker version of the until operator

which basically states that y need not be true at some future state and that x may always

hold.  This operator is not supported in Spin but can be formulated in Spin using other

operators.  P2 covers R2 and the formula states that in all future states if all sensors are

normal then fail_cnt is equal to zero until one or more sensors fail or always fail_cnt is
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equal to zero.  Properties 3 and 4 covers R3 and states that fail_cnt must not go beyond

the minimum and maximum values of zero and four respectively.  Properties 5 through 8

covers R4.  For example: P6 shows that for all future states if all sensors have failed then

fail_cnt must equal four.  Property P9 covers R5 and states that in all future states if

fueling_state is in overspeed mode and running_history is in single_failure mode then

eventually fueling_state will not be in normal mode or warmup mode until fueling_state

is in single_failure mode and speed < max_speed or fueling_state is in shutdown mode

and speed < max_speed.  All the properties in Table 5 validated all their respective

requirements R1-R5 that is all the requirements are present in both our models.

Property
No

Table 5:  Linear Temporal Logic Properties with no errors for both  models

P1 Formula:  [] (q -> p U (r || [] (p)))
Symbol:  #define p (fail_cnt == 0)
              #define q (o2_mode == o2_normal) && (press_mode ==
              press_normal) && (throt_mode == throt_normal) && (speed_mode
              == speed_normal)
              #define r (o2_mode == o2_fail) && (press_mode ==  press_fail) &&
             (throt_mode == throt_fail) && (speed_mode == speed_fail)

P2 Formula:  [] (p -> q)
Symbol:  #define p (t <= o2_t_thresh)
              #define q (o2_mode == o2_warmup)

P3 Formula:  [] ! (p)
Symbol:  #define p (fail_cnt > 4)

P4 Formula:  [] ! (p)
Symbol:  #define p (fail_cnt < 0)

P5 Formula:  [] (p -> q)
Symbol:  #define p (o2_mode == o2_fail) && (press_mode == press_normal)
              && (throt_mode == throt_normal) && (speed_mode ==
              speed_normal)
              #define q (fail_cnt == 1)

P6 Formula:  [] (p -> q)
Symbol:  #define p (o2_mode == o2_fail) && (press_mode == press_fail)
              && (throt_mode == throt_fail) && (speed_mode ==  speed_fail)
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              #define q (fail_cnt == 4)
P7 Formula:  [] (p -> q)

Symbol:  #define p (o2_mode == o2_normal) && (press_mode ==
              press_normal) && (throt_mode == throt_normal) && (speed_mode
              == speed_normal)
              #define q (fail_cnt == 0)

P8 Formula:  [] (p -> q)
Symbol:  #define p ((o2_mode == o2_fail) && (press_mode == press_fail)
              && (throt_mode == throt_normal) && (speed_mode
              == speed_normal)) || ((o2_mode == o2_fail) && (press_mode ==
              press_normal) && (throt_mode == throt_fail) && (speed_mode
              == speed_normal)) || ((o2_mode == o2_fail) && (press_mode ==
              press_normal) && (throt_mode == throt_normal) && (speed_mode
              == speed_fail))
              #define q (fail_cnt == 2)

P9 Formula:  [] (p -> <> r U (q || [] r))
Symbol:  #define p (fueling_state == overspeed) &&(running_history ==
              single_failure)
              #define q ((fueling_state == single_failure) & (speed <
              MAX_SPEED) || (fueling_state == shutdown) & (speed <
              MAX_SPEED))
              #define r (fueling_state != normal) && (fueling_state != warmup)

Table 5: Linear Temporal Logic properties without errors for both models
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4.5 Discussion

This chapter brought together the fault-injection methods applied in Chapter 3 with model

checking to determine the behavior of the Sensor Failure Detection (SFD) system.  We

classified the outputs from the properties so that it would aid in their presentation and

understanding.  But this classification enabled us to see anomalies, patterns of anomalies,

and the related requirements, which were, violated in the two Sensor Failure Detection

(SFD) system models.  We presented five fault classes that were identified based on the

outputs of the properties.  We also outlined those properties that yielded no outputs in our

models.  Based on the results, we can draw the following points:

� Anomalies in the asynchronous model such as race conditions were no longer

present in the synchronous model.  This was due to the fact that the race

condition anomaly was due to complete asynchrony and synchronizing the

Sensor Failure Detection (SFD) system model, corrected the race condition.

This demonstrates how examining the outputs or test cases for the cause

behind the anomalous behavior can enable us to correct the errors in our

model and maintain fidelity between our model and the specification.

� In some cases, anomalies, which were present in both models such as missing

requirement, occurred at different depths in the computation tree. The Missing

requirement anomaly occurs much earlier during validation in the

asynchronous model than in the synchronous model.  This is because in the

synchronous model a greater number of steps had to be executed due to

synchronization.
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� Certain anomalies were only present in the synchronous model such as loss of

sensor failures and recoveries.  The reason behind why the anomalies in the

synchronous model were not present in the asynchronous model is due to the

fact that fairness is established in the synchronous model.  Hence the “naive

assumption” of fairness led to the discovery of potential anomalies.

� Some Linear Temporal Logic (LTL) properties detected anomalies in the

asynchronous model but the same properties showed different anomalies for

the synchronous model.  This is the case of uncovering anomalies where once

the race condition anomaly was no longer present other anomalies were

uncovered.  We call this “peeling the onion” as there are many anomalies

present in the asynchronous model that can be filtered out under some

synchrony assumptions.  This process of “peeling the onion” leads us to other

anomalies present at deeper depths in the computation tree.

� There were some cases where Linear Temporal Logic (LTL) properties

applied to synchronous model showed anomalies but could not detect the

same anomaly for the asynchronous model.  In this case the Linear Temporal

Logic (LTL) property was changed by introducing further conditions for the

asynchronous model which then showed the same anomaly.

� Fault-injection through inputs had the race condition anomaly in the

asynchronous model but did not produce any counter-examples for the other

model.
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� Test cases or counter-examples enabled us to maintain fidelity between our

models, specification and implementation.  In addition some anomalies

demonstrated how we had misinterpreted certain requirements in the Sensor

Failure Detection (SFD) system.

� Both our Sensor Failure Detection (SFD) models are different but they

intersect in the cases where anomalies are present in both the models.  Figure

12 on Page 71 illustrates as to which anomalies were present in which of our

models and which anomalies were present in both our models.  Fault-injection

through inputs which was applied to both our models only had the race

condition anomaly in the asynchronous model.

Figure 12: Difference between our SFD Models

In this chapter, we detailed all the Linear Temporal Logic (LTL) properties, which were

formulated to discover all the anomalies in the Sensor Failure Detection (SFD) system.
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We classified all the properties that generated counter-examples into five fault classes and

described each fault class.  The next chapter concludes the thesis by discussing some final

thoughts and future work.
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Chapter 5

Conclusions and Future Work

This chapter summarizes and concludes the thesis, in addition to discussing about future

directions.  This thesis describes and discusses the research, methods and results of fault-

injection through model checking via “naive assumptions”.  We injected faults using

three methods: “naive assumptions” of asynchronous and synchronous executions and

through inputs.  The methods and results were conducted on a fuel injection Sensor

Failure Detection (SFD) system, a model provided to us in Stateflow.  We started with a

detailed description of the system and then described the notion of  “naive assumptions”.

We used the “naive assumptions” to specify two models of the Sensor Failure Detection

(SFD) system in the model checking tool Spin.  Through these “naive assumptions” we

injected faults into our models, hence our models are indeed “naive” with respect to

synchrony, fairness and execution order.  We also injected faults in both our models

through inputs using various combinations of the inputs during system startup.

In order to detect the anomalies present in our models, Linear Temporal Logic

(LTL) properties were used to exhaustively validate the models.  Some of the properties

validated generated counter-examples that is the related requirements represented by the
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properties were violated.  As stated before, the counter-examples generated by Spin the

model checking tool upon running the guided simulation of the “trail”  files when an

undesirable behavior is present are actually test cases.  We studied all the test cases and

based on our observations we identified five fault classes.  These five fault classes

include: race conditions, missing requirements, ambiguities, inconsistent requirements,

and improper failure and recovery. Classifying the test cases also in turn classified our

properties and the related requirements validated by the properties.  We took each fault

class and showed examples of anomalous behaviors in the Sensor Failure Detection

(SFD) system by going through the generated test cases.  We also stated all those

properties, which did not show any anomalous behavior in our models.  In conclusion of

the work, we drew comparisons and analogies between the two Sensor Failure Detection

(SFD) system models based on the anomalies detected, related requirements violated and

Linear Temporal Logic (LTL) properties validated.

The results of this investigation have shown that combining fault-injection with

model checking can help detect potential complex anomalies.  Fault-injection allows us to

examine potential anomalous program behaviors and model checking searches through all

paths in a model looking for violations of linear temporal logic formulas.  The counter-

examples generated by a model checker, which serve as test cases aids developers in

keeping the fidelity between the models, specification, and the source code during

development.  This can be achieved by studying the test cases for the errors behind the

anomaly, correcting the error in the source code during development, and identifying

inconsistencies in the specification.  This characteristic of model checking is very helpful
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when we are checking for invariant and safety properties that are very difficult to verify in

an implementation.  Our “naive assumptions” helped us create different models while

injecting faults that led to the discovery of different anomalies as we had different

semantic interpretations of the Sensor Failure Detection (SFD) system. We have shown

that anomalies present in one model may not be present in another model and when an

anomaly is fixed in one model, it can reveal another anomaly.  Although a state-based

model must exist which in our case it did, it is not a problem if it doesn’t as there are

plenty of ways to model a design in state machine theory.  In spite of all this, we are

aware of the limits of fault-injection and model checking.  Fault-injection is only as good

as the faults injected and anomalies simulated.  Fault-injection cannot prove correctness

but only shows how bad the software can behave in the future.  The main point in fault-

injection is the correct interpretation of the results without which all the efforts would be

wasted.  Model checking is only successful if we are able to abstract the relevant aspects

of the design, know which properties we want verified and specify the properties in a

concise way.  But nevertheless, both are good software quality assessment techniques and

when combined can given interesting and meaningful results.

We utilized two “naive assumptions” of asynchronous and synchronous

executions in addition to inputs to inject the faults.  In the asynchronous model, all the

processes were asynchronous and in the synchronous model, synchronization was

achieved by assuming left to right, top to bottom execution order in the statechart.  But

there could be other possibilities such as cyclic or acyclic synchronization of processes or

complete synchronization or partial synchronization.  In the future, other “naive
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assumptions” such as removing certain transitions, different interpretations for the

transition conditions, interruption of execution to inject faults, and reading the inputs

from the command line during which faults could be injected can also be explored.  There

could also be other Linear Temporal Logic (LTL) properties, which can be validated for

this model.  Based on the fact that this thesis examined a finite state machine model, there

could be further work into establishing a general class of “naive assumptions” which can

be applied to inject faults in model checking.  One can also conduct mutation analysis

studies specific to the Sensor Failure Detection (SFD) system and based on the results

establish a general class of mutation operators.
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Appendix A

Spin Source Code for Asynchronous Model

#define o2_t_thresh 2
#define MAX_SPEED 30

mtype = {o2_warmup, o2_normal, o2_fail, press_normal, press_fail, throt_normal, throt_fail, 
speed_normal, speed_fail, no_state, single_failure, normal, warmup, running, disabled, 
overspeed, shutdown, no_hist, fail, norm};

byte t;

/*used to set sensor values only at startup*/
byte o2_sensor = norm, press_sensor = norm, throt_sensor = norm, speed_sensor = norm;

/*failure counter*/
byte fail_cnt = 0;

/*used to simulate speed change*/
byte speed ;

/*used to indicate all the sensor states, fueling state and running history, startup values have
already been set*/
mtype o2_mode = o2_warmup;
mtype press_mode = press_normal;
mtype throt_mode = throt_normal;
mtype speed_mode = speed_normal;
mtype fueling_mode = running;
mtype fueling_state = warmup;
mtype running_history = warmup;
byte count = 0;

/*function asynchronously changes press sensor and state and increases failure counter*/
active proctype Pressure_Sensor_Mode() {
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/*At startup it changes press state to fail depending on the startup values for press_sensor,
disables press_sensor as only used for startup*/

if
:: atomic{press_sensor == fail -> press_mode = press_fail; press_sensor = 2; fail_cnt = 
fail_cnt + 1;}
:: atomic{press_sensor == norm -> press_sensor = 2;}
fi;

/*after startup the following changes press state asynchronously*/
do
:: (press_mode == press_normal) ->

atomic{press_mode = press_fail; fail_cnt = fail_cnt + 1;}
:: (press_mode == press_fail) ->

atomic{press_mode = press_normal; fail_cnt = fail_cnt - 1;}
od;

}

/*function asynchronously changes o2 sensor and state and increases failure counter*/
active proctype O2_Sensor_Mode() {

/*if t goes beyond t > o2_t_thresh o2 goes to normal*/

if
:: atomic{t > o2_t_thresh -> o2_mode = o2_normal;}
fi;

/*At startup it changes o2 state to fail depending on the startup values for o2_sensor, disables
o2_sensor as only used for startup*/

if
:: atomic{(o2_sensor == fail) && (t > o2_t_thresh) -> o2_mode = o2_fail; o2_sensor =

2; fail_cnt = fail_cnt + 1;}
:: atomic{(o2_sensor == norm) && (t > o2_t_thresh)-> o2_sensor = 2;}
fi;

/*after startup the following changes o2 state asynchronously*/
do
:: (o2_mode == o2_normal) ->

 atomic{o2_mode = o2_fail; fail_cnt = fail_cnt + 1;}
:: (o2_mode == o2_fail) ->

atomic{o2_mode = o2_normal; fail_cnt = fail_cnt - 1;}
od;

}

/*function asynchronously changes throt sensor and state and increases failure counter*/
active proctype Throttle_Sensor_Mode() {

/*At startup it changes throt state to fail depending on the startup values for throt_sensor,
disables throt_sensor as only used for startup*/

if
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:: atomic{throt_sensor == fail -> throt_mode = throt_fail; throt_sensor = 2; fail_cnt = 
fail_cnt + 1;}
:: atomic{throt_sensor == norm -> throt_sensor = 2;}
fi;

/*after startup the following changes throt state asynchronously*/
do
:: (throt_mode == throt_normal) ->

 atomic{throt_mode = throt_fail; fail_cnt = fail_cnt + 1;}
:: (throt_mode == throt_fail) ->

atomic{throt_mode = throt_normal; fail_cnt = fail_cnt - 1;}

od;
}

/*function asynchronously changes speed sensor and state and increases failure counter*/
active proctype Speed_Sensor_Mode() {

/*At startup it changes speed state to fail depending on the startup values for speed_sensor,
disables speed_sensor as only used for startup*/

if
:: atomic{speed_sensor == fail -> speed_mode = speed_fail; speed_sensor = 2; fail_cnt =
fail_cnt + 1;}
:: atomic{speed_sensor == norm -> speed_sensor = 2;}
fi;

/*after startup the following changes speed state asynchronously*/
do
:: (speed_mode == speed_normal) ->

 atomic{speed_mode = speed_fail; fail_cnt = fail_cnt + 1;}
:: (speed_mode == speed_fail) ->

atomic{speed_mode = speed_normal; fail_cnt = fail_cnt - 1;}

od;
}

/*function increases t to beyond t_o2_thresh for the o2 sensor state*/
active proctype Time_Counter(){

do
:: atomic{(t <= o2_t_thresh) -> t = 3;}
od;

}

/*function asynchronously changes speed from less than to greater than max_speed*/
active proctype Speed_Change_Mode(){

do
:: count == 1 -> atomic{speed = 5; count = 2;}
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:: count == 0 -> atomic{speed = 35; count = 2;}
od;

}

/*function changes fueling state depending on if there have been any sensor state changes or
speed changes*/

active proctype Fueling_Mode(){

Running: do

/*if speed> max_speed the fueling state is set to overspeed*/
:: atomic{((fueling_mode == running)  && (speed > MAX_SPEED)) -> fueling_mode = 
disabled; fueling_state = overspeed; goto Disabled;}

/*if fail_cnt > 1 the fueling state is set to shutdown*/
:: atomic{((fueling_mode == running)  && (fail_cnt > 1)) -> fueling_mode = disabled; 
fueling_state = shutdown; goto Disabled;}

/* fail_cnt > 1 or speed > max_speed, control goes to running*/
:: ((fueling_mode == running)  && (speed < MAX_SPEED) && (fail_cnt <= 1)) ->

do

:: (speed == 5) -> atomic{count = 0; speed = 0;}

/* fail_cnt > 1 or speed > max_speed, control goes to running*/
:: atomic{((fail_cnt > 1) || (speed > MAX_SPEED)) -> goto Running;}

/*if fueling state == warmup, running_history == warmup, speed < max_speed but there is one
failure, and o2 state is in normal fueling state is set to single_failure*/

:: atomic{((fueling_mode == running) && (running_history == warmup) && 
(fueling_state == warmup) && (o2_mode == o2_normal) && (fail_cnt == 1)

&& (speed < MAX_SPEED))  -> fueling_state = single_failure; running_history = 
single_failure;}

/*if fueling state == warmup, running_history == warmup, speed < max_speed  but fail_cnt != 1,
and o2 state is in normal fueling state is set to normal*/

:: atomic{((fueling_mode == running) && (running_history == warmup) && 
(fueling_state == warmup) && (o2_mode == o2_normal) && (speed < 
MAX_SPEED)) -> fueling_state = normal; running_history = normal;}

/*if fueling state == normal, running_history == normal, speed < max_speed  but fail_cnt == 1
fueling state is set to single_failure*/
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:: atomic{((fueling_mode == running) && (running_history == normal) && 
(fueling_state == normal) && (fail_cnt == 1) && (speed < MAX_SPEED)) -> 
fueling_state = single_failure; running_history = single_failure;}

/*if fueling state == single_failure, running_history == single_failure, speed < max_speed  but
fail_cnt == 0 fueling state is set to normal*/

:: atomic{((fueling_mode == running) && (running_history == single_failure) 
&& (fueling_state == single_failure) && (fail_cnt == 0) && (speed < 
MAX_SPEED)) -> fueling_state = normal; running_history = normal;}

od;
od;

Disabled: do

:: (speed == 35) -> atomic{count = 1; speed = 30;}

/*if fueling state is in overspeed and fail_cnt > 1 but speed < max_speed fueling state is set to
shutdown*/

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt > 1)) -> fueling_state = shutdown;}

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the warmup if
running_history was at warmup*/

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == warmup)) -> fueling_mode

= running; fueling_state = warmup; goto Running;}

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the normal if
running_history was at normal*/

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == normal)) -> fueling_mode =
running; fueling_state = normal; goto Running;}

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the single_failure if
running_history was at single_failure*/

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == single_failure)) -> 
fueling_mode = running; fueling_state = single_failure; goto Running;}

/*if fueling state is in shutdown, fail_cnt <= 1, fueling state is set to single_failure*/

:: atomic{((fueling_mode == disabled) && (fueling_state == shutdown) && (fail_cnt <=
1)) -> fueling_mode = running; fueling_state = single_failure; running_history = 

single_failure; goto Running;}

od;
}
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Appendix B

Spin Source Code for Synchronous Model

#define o2_t_thresh 2
#define MAX_SPEED 30

mtype = {o2_warmup, o2_normal, o2_fail, press_normal, press_fail, throt_normal, throt_fail, 
speed_normal, speed_fail, no_state, single_failure, normal, warmup, running, disabled, 
overspeed, shutdown, no_hist, change, nochange, fail, norm };

byte t;

/*used to simulate sensor failures*/
mtype o2_sensor = norm, press_sensor = norm, throt_sensor = norm, speed_sensor = norm;

/*failure counter*/
byte fail_cnt = 0;

/*used to simulate speed change*/
byte speed = 5;

/*used to indicate all the sensor states, fueling state and running history*/
mtype o2_mode = o2_warmup;
mtype press_mode = press_normal;
mtype throt_mode = throt_normal;
mtype speed_mode = speed_normal;
mtype fueling_mode = running;
mtype fueling_state = no_state;
mtype running_history = no_hist;

/* var synchronizes sensor, fueling states*/
byte synchronize=0;

/*synchronizes changes between sensor values, and speed values*/
mtype o2_syn = change, press_syn = change, throt_syn = change, speed_syn = change,
fueling_syn = change, fast = change, slow = change;
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/*function increases t to beyond t_o2_thresh for the o2 sensor state*/
active proctype Time_Counter(){

do
:: atomic{(t <= o2_t_thresh) && (synchronize == 0) -> t = t + 1; synchronize = 1;}
:: atomic{(t > o2_t_thresh) && (synchronize == 0) -> synchronize = 1;}
od;

}

/*function makes changes to the o2 state to either fail or normal depending on the value of
o2_sensor, and notifies fueling state if there has been a change through a synchronization
variable*/
active proctype O2_Sensor_Mode() {

/*if t goes beyond o2_t_thresh then o2 state goes to o2_normal*/
do
:: atomic{ (t > o2_t_thresh) && (synchronize == 1) -> o2_mode = o2_normal; 
synchronize = 2; fueling_syn = change; break;}
:: atomic{ (t <= o2_t_thresh) && (synchronize == 1) -> synchronize = 2;}
od;

/*At startup it changes o2 state to fail or normal depending on the startup values for o2_sensor*/

if
:: atomic{(synchronize == 1) && (o2_sensor == fail) -> o2_mode = o2_fail; synchronize
= 2; o2_syn = nochange; fueling_syn = change;}
:: atomic{(synchronize == 1) && (o2_sensor == norm) -> synchronize = 2; o2_syn = 
nochange;}
fi;

/*after startup for the rest of the execution, the o2 state is changed to fail or normal if the values
of o2_sensor have changed recently, if no change recently if just goes to the next process*/

do
:: atomic{(o2_sensor == fail) && (synchronize == 1) && (o2_syn == change) ->

 o2_mode = o2_fail; fail_cnt = fail_cnt + 1; synchronize = 2; o2_syn =
nochange; fueling_ syn = change;}

:: atomic{(o2_sensor == norm) && (synchronize == 1) && (o2_syn == change) ->
o2_mode = o2_normal; fail_cnt = fail_cnt - 1; synchronize = 2; o2_syn = 

nochange; fueling_syn = change;}
:: atomic{(o2_syn == nochange) && (synchronize == 1) -> synchronize = 2;}
od;

}
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/*function makes changes to the press state to either fail or normal depending on the value of
press_sensor, and notifies fueling state if there has been a change through a synchronization
variable*/
active proctype Pressure_Sensor_Mode() {

/*At startup it changes press state to fail or normal depending on the startup values for
press_sensor*/

if
:: atomic{(press_sensor == fail) && (synchronize == 2) -> press_mode = press_fail; 
fail_cnt = fail_cnt + 1; synchronize = 3; press_syn = nochange; fueling_syn = change;}
:: atomic{(press_sensor == norm) && (synchronize == 2) -> synchronize = 3; press_syn

= nochange; fueling_syn = change;}
fi;

/*after startup for the rest of the execution, the press state is changed to fail or normal if the
values of press_sensor have changed recently, if no change recently if just goes to the next
process*/

do
:: atomic{(press_sensor == fail)  && (synchronize == 2) && (press_syn == change) ->

press_mode = press_fail; fail_cnt = fail_cnt + 1; synchronize = 3; press_syn = 
nochange; fueling_syn = change;}

:: atomic{(press_sensor == norm) && (synchronize == 2) && (press_syn == change) ->
press_mode = press_normal; fail_cnt = fail_cnt - 1; synchronize = 3; press_syn =

nochange; fueling_syn = change;}
:: atomic{(press_syn == nochange) && (synchronize == 2) -> synchronize = 3;}
od;

}

/*function makes changes to the throt state to either fail or normal depending on the value of
throt_sensor, and notifies fueling state if there has been a change through a synchronization
variable*/
active proctype Throttle_Sensor_Mode() {

/*At startup it changes throt state to fail or normal depending on the startup values for
throt_sensor*/

if
:: atomic{(throt_sensor == fail) && (synchronize == 3)  -> throt_mode = throt_fail; 
fail_cnt = fail_cnt + 1; synchronize = 4; throt_syn = nochange; fueling_syn = change;}
:: atomic{(throt_sensor == norm) && (synchronize == 3)  -> synchronize = 4; throt_syn

= nochange; fueling_syn = change;}
fi;

/*after startup for the rest of the execution, the throt state is changed to fail or normal if the
values of throt_sensor have changed recently, if no change recently it just goes to next process*/

do
:: atomic{(throt_sensor == fail) && (synchronize == 3) && (throt_syn == change) ->

 throt_mode = throt_fail; fail_cnt = fail_cnt + 1; synchronize = 4; throt_syn = 
nochange; fueling_syn = change;} 
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:: atomic{(throt_sensor == norm) && (synchronize == 3) && (throt_syn == change) ->
throt_mode = throt_normal; fail_cnt = fail_cnt - 1; synchronize = 4; throt_syn = 
nochange; fueling_syn = change;}

:: atomic{(throt_syn == nochange) && (synchronize == 3) -> synchronize = 4;}
od;

}

/*function makes changes to the speed state to either fail or normal depending on the value of
speed_sensor,and notifies fueling state if there has been a change through a synchronization
variable*/
active proctype Speed_Sensor_Mode() {

/*At startup it changes speed state to fail or normal depending on the startup values for
speed_sensor*/

if
:: atomic{(speed_sensor == fail) && (synchronize == 4)  -> speed_mode = speed_fail; 
fail_cnt = fail_cnt + 1; synchronize = 5; speed_syn = nochange; fueling_syn = change;}
:: atomic{(speed_sensor == norm) && (synchronize == 4)  -> synchronize = 5;

speed_syn = nochange; fueling_syn = change;}
fi;

/*after startup for the rest of the execution, the speed state is changed to fail or normal if the
values of speed_sensor have changed recently, if no change recently it just goes to next process*/

do
:: atomic{(speed_sensor == fail) && (synchronize == 4) && (speed_syn == change) ->
 speed_mode = speed_fail; fail_cnt = fail_cnt + 1; synchronize = 5; speed_syn =

nochange; fueling_syn = change;}
:: atomic{(speed_sensor == norm) && (synchronize == 4) && (speed_syn == change) -

>
speed_mode = speed_normal; fail_cnt = fail_cnt - 1; synchronize = 5; speed_syn

= nochange; fueling_syn = change;}
:: atomic{(speed_syn == nochange) && (synchronize == 4) -> synchronize = 5;}
od;

}

/*function changes fueling state depending on if there have been any recent sensor state changes
or speed changes, if not change then it goes to the o2 process*/
active proctype Fueling_Mode(){

Running: do
/*if speed> max_speed the fueling state is set to overspeed*/

:: atomic{((fueling_mode == running)  && (speed > MAX_SPEED) && (synchronize
== 5) && (fueling_syn == change)) -> fueling_mode = disabled; fueling_state = overspeed; 

synchronize = 0; fueling_syn = nochange; fast = change; goto Disabled; }

/*if fail_cnt > 1 the fueling state is set to shutdown*/
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:: atomic{((fueling_mode == running)  && (fail_cnt > 1) && (synchronize == 5) && 
(fueling_syn == change)) -> fueling_mode = disabled; fueling_state = shutdown; 
synchronize = 0; fueling_syn = nochange; goto Disabled;}

/*if there is no change in any sensors or speed the execution is passed to timed event t process*/
:: atomic{(fueling_syn== nochange) && (synchronize == 5) -> synchronize = 0;}

/*if speed < max_speed and fail_cnt <=1*/
:: ((fueling_mode == running)  && (speed < MAX_SPEED) && (fail_cnt <= 1) && 
(synchronize == 5) && (fueling_syn == change)) ->

do
/* fail_cnt > 1 or speed > max_speed, control goes to running*/

:: atomic{(((fail_cnt > 1) || (speed > MAX_SPEED)) && (synchronize == 5) &&
(fueling_syn == change)) -> goto Running;}

/*if fueling state == warmup, running_history == warmup, speed < max_speed but there is one
failure, and o2 state is in normal fueling state is set to single_failure, and execution is passed to
timed event t process */

:: atomic{((fueling_mode == running) && (running_history == warmup) && 
(fueling_state == warmup) && (o2_mode == o2_normal) && (fail_cnt == 1)

&& (speed < MAX_SPEED) && (synchronize == 5) && (fueling_syn == change))
->fueling_state = single_failure; running_history = single_failure; synchronize = 
0; fueling_syn = nochange;}

/*if fueling state == warmup, running_history == warmup, speed < max_speed  but fail_cnt != 1,
and o2 state is in normal fueling state is set to normal, and execution is passed to timed event t
process */

:: atomic{((fueling_mode == running) && (running_history == warmup) && 
(fueling_state == warmup) && (o2_mode == o2_normal) && (speed < 
MAX_SPEED) && (synchronize == 5) && (fueling_syn == change)) ->
fueling_state = normal; running_history = normal; synchronize = 0; fueling_syn

= nochange;}

/*if fueling state == normal, running_history == normal, speed < max_speed  but fail_cnt == 1
fueling state is set to single_failure, and execution is passed to timed event t process */

:: atomic{((fueling_mode == running) && (running_history == normal) && 
(fueling_state == normal) && (fail_cnt == 1) && (speed < MAX_SPEED) && 
(synchronize == 5) && (fueling_syn == change)) ->
fueling_state = single_failure; running_history = single_failure; synchronize = 0;

fueling_syn = nochange;}

/*if fueling state == single_failure, running_history == single_failure, speed < max_speed  but
fail_cnt == 0 fueling state is set to normal, and execution is passed to timed event t process */
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:: atomic{((fueling_mode == running) && (running_history == single_failure) 
&& (fueling_state == single_failure) && (fail_cnt == 0) && (speed < 
MAX_SPEED) && (synchronize == 5) && (fueling_syn == change)) ->
fueling_state = normal; running_history = normal; synchronize = 0; fueling_syn

= nochange;}

/*if there is no change in any sensors or speed the execution is passed to timed event t process */
:: atomic{(fueling_syn== nochange) && (synchronize == 5) -> synchronize =

0;}

:: atomic{(fueling_syn== change) && (synchronize == 5) && (fueling_state == 
no_state) -> fueling_state = warmup; running_history = warmup; synchronize =

0; fueling_syn = nochange;}

/*if there is a change in sensors but o2_mode is still in o2_warmup and t < o2_t_thresh then
execution is passed to timed event t process */

:: atomic{(fueling_syn == change) && (synchronize == 5) && (o2_mode == 
o2_warmup) && (fueling_state != no_state) -> synchronize = 0;}

 od;
od;

Disabled: do

/*if fueling state is in overspeed and fail_cnt > 1 but speed < max_speed fueling state is set to
shutdown, speed synchronization variable is reset so that speed can change asynchronously again
and execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt > 1) && (synchronize == 5) && (fueling_syn == change))
-> fueling_state = shutdown; synchronize = 0; fueling_syn = nochange; slow= change;}

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the warmup if
running_history was at no_hist, speed synchronization variable is reset so that speed can change
asynchronously again and execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == no_hist) && (synchronize 
== 5) && (fueling_syn == change)) -> fueling_mode = running; fueling_state = warmup;
running_history = warmup; synchronize = 0; fueling_syn = nochange; slow = change;

goto Running; }

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the warmup if
running_history was at warmup, speed synchronization variable is reset so that speed can change
asynchronously again and execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == warmup) && (synchronize 
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== 5) && (fueling_syn == change)) -> fueling_mode = running; fueling_state = warmup;
synchronize = 0; fueling_syn = nochange; slow = change; goto Running; }

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the normal if
running_history was at normal, speed synchronization variable is reset so that speed can change
asynchronously again and execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == normal) && (synchronize 
== 5) && (fueling_syn == change)) -> fueling_mode = running; fueling_state = normal; 
synchronize = 0; fueling_syn = nochange; slow = change; goto Running;}

/*if fueling state is in overspeed but speed < max_speed fueling state is set to the single_failure if
running_history was at single_failure, speed synchronization variable is reset so that speed can
change asynchronously again and execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == overspeed) && (speed < 
MAX_SPEED) && (fail_cnt <= 1) && (running_history == single_failure) && 
(synchronize == 5) && (fueling_syn == change)) -> fueling_mode = running; 
fueling_state = single_failure; synchronize = 0; fueling_syn = nochange; slow = change; 
goto Running;}

/*if fueling state is in shutdown, but speed > max_speed, fueling state goes to single_failure and
notifies fueling state that there is a change in speed through a synchronization variable, sends
execution to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == shutdown) && (fail_cnt
<= 1) && (synchronize == 5) && (fueling_syn == change) && (speed > MAX_SPEED)) ->

fueling_mode = running; fueling_state = single_failure; running_history = single_failure;
synchronize = 0; goto Running; }

/*if fueling state is in shutdown, but speed < max_speed, fueling state goes to single_failure, and
execution goes to timed event t process */

:: atomic{((fueling_mode == disabled) && (fueling_state == shutdown) && (fail_cnt
<= 1) && (synchronize == 5) && (fueling_syn == change) && (speed < MAX_SPEED)) ->

fueling_mode = running; fueling_state = single_failure; running_history = single_failure;
synchronize = 0; fueling_syn = nochange; goto Running; }

/*if more than 2 sensor have failed or speed continues to be greater than max_speed then simply
send the execution to the timed event t process */

:: atomic{ ((fueling_mode == disabled) && (fail_cnt >= 2) && (fueling_state == 
shutdown) && (fueling_syn == change) && (synchronize == 5)) || ((speed > 
MAX_SPEED) && (fueling_mode == disabled) && (fueling_state == overspeed) && 
(fueling_syn == change) && (synchronize == 5)) -> synchronize = 0; fueling_syn = 
nochange;}

/*if there is no change in any sensors or speed the execution is passed to timed event t process */
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:: atomic{(fueling_syn == nochange) && (synchronize == 5) -> synchronize = 0;}

od;
}

/*This function is not synchronized but asynchronously changes sensor values, but once sensor is
changed the change takes effect in the respective sensor state before that sensor gets changed
again*/
active proctype Change_sensor_Values(){

do
:: atomic{(o2_sensor == norm) && (o2_syn == nochange) -> o2_sensor = fail; o2_syn = 
change;}
:: atomic{(o2_sensor == fail) && (o2_syn == nochange) -> o2_sensor = norm; o2_syn = 
change;}
:: atomic{(press_sensor == norm) && (press_syn == nochange) -> press_sensor = fail; 
press_syn = change;}
:: atomic{(press_sensor == fail) && (press_syn == nochange) -> press_sensor = norm; 
press_syn = change;}
:: atomic{(throt_sensor == norm) && (throt_syn == nochange) -> throt_sensor = fail; 
throt_syn = change;}
:: atomic{(throt_sensor == fail) && (throt_syn == nochange) -> throt_sensor = norm; 
throt_syn = change;}
:: atomic{(speed_sensor == norm) && (speed_syn == nochange) -> speed_sensor = fail; 
speed_syn = change;}
:: atomic{(speed_sensor == fail) && (speed_syn == nochange) -> speed_sensor = norm; 
speed_syn = change;}

od;

}

/*This function is not synchronized but asynchronously changes speed values, but once speed is
changed the change takes effect in the fueling state before speed gets changed again*/

active proctype Change_speed_value(){

do
:: atomic{(speed == 5) && (slow == change) -> speed = 35; fast = nochange;

fueling_syn = change;}

:: atomic{(speed == 35) && (fast == change) -> speed = 5; slow = nochange;
fueling_syn = change;}

od;
}
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Appendix C

Counter-example for Property 1 from Table 3

1: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
  2: proc  7 (Fueling_Mode) line 145 "sfd19" (state 11)

[((((fueling_mode==running)&&(speed<30))&&(fail_cnt<=1)))]
  3: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
  4: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 5) [((count==0))]
  5: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
  6: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 6) [speed = 35]
  7: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 7) [count = 2]
  8: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
  9: proc  7 (Fueling_Mode) line 153 "sfd19" (state 16) [(((fail_cnt>1)||(speed>30)))]
 10: proc  7 (Fueling_Mode) line 153 "sfd19" (state 17) [goto]
 11: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 12: proc  7 (Fueling_Mode) line 139 "sfd19" (state 1)

[(((fueling_mode==running)&&(speed>30)))]
 13: proc  7 (Fueling_Mode) line 139 "sfd19" (state 2) [fueling_mode = disabled]
 14: proc  7 (Fueling_Mode) line 139 "sfd19" (state 3) [fueling_state = overspeed]
 15: proc  7 (Fueling_Mode) line 139 "sfd19" (state 4) [goto]
 16: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 17: proc  7 (Fueling_Mode) line 177 "sfd19" (state 41) [((speed==35))]
 18: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 19: proc  7 (Fueling_Mode) line 177 "sfd19" (state 42) [count = 1]
 20: proc  7 (Fueling_Mode) line 177 "sfd19" (state 43) [speed = 30]
 21: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 22: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 1) [((count==1))]
 23: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 24: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 2) [speed = 5]
 25: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 3) [count = 2]
 26: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 27: proc  7 (Fueling_Mode) line 183 "sfd19" (state 48)

[((((((fueling_mode==disabled)&&(fueling_state==overspeed))&&(speed<30))&&(fail_
cnt<=1))&&(running_history==warmup)))]
 28: proc  7 (Fueling_Mode) line 184 "sfd19" (state 49) [fueling_mode = running]
 29: proc  7 (Fueling_Mode) line 184 "sfd19" (state 50) [fueling_state = warmup]
 30: proc  7 (Fueling_Mode) line 184 "sfd19" (state 51) [goto]
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 31: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 32: proc  7 (Fueling_Mode) line 145 "sfd19" (state 11)

[((((fueling_mode==running)&&(speed<30))&&(fail_cnt<=1)))]
 33: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 34: proc  7 (Fueling_Mode) line 150 "sfd19" (state 12) [((speed==5))]
 35: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 36: proc  5 (Time_Counter) line 115 "sfd19" (state 1) [((t<=2))]
 37: proc  5 (Time_Counter) line 115 "sfd19" (state 2) [t = 3]
 38: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 39: proc  7 (Fueling_Mode) line 150 "sfd19" (state 13) [count = 0]
 40: proc  7 (Fueling_Mode) line 150 "sfd19" (state 14) [speed = 0]
 41: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 42: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 5) [((count==0))]
 43: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 44: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 6) [speed = 35]
 45: proc  6 (Speed_Change_Mode) line 125 "sfd19" (state 7) [count = 2]
 46: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 47: proc  7 (Fueling_Mode) line 153 "sfd19" (state 16) [(((fail_cnt>1)||(speed>30)))]
 48: proc  7 (Fueling_Mode) line 153 "sfd19" (state 17) [goto]
 49: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 50: proc  7 (Fueling_Mode) line 139 "sfd19" (state 1)

[(((fueling_mode==running)&&(speed>30)))]
 51: proc  7 (Fueling_Mode) line 139 "sfd19" (state 2) [fueling_mode = disabled]
 52: proc  7 (Fueling_Mode) line 139 "sfd19" (state 3) [fueling_state = overspeed]
 53: proc  7 (Fueling_Mode) line 139 "sfd19" (state 4) [goto]
 54: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 55: proc  7 (Fueling_Mode) line 177 "sfd19" (state 41) [((speed==35))]
 56: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 57: proc  7 (Fueling_Mode) line 177 "sfd19" (state 42) [count = 1]
 58: proc  7 (Fueling_Mode) line 177 "sfd19" (state 43) [speed = 30]
 59: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 60: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 1) [((count==1))]
 61: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 62: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 2) [speed = 5]
 63: proc  6 (Speed_Change_Mode) line 124 "sfd19" (state 3) [count = 2]
 64: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 65: proc  7 (Fueling_Mode) line 183 "sfd19" (state 48)

[((((((fueling_mode==disabled)&&(fueling_state==overspeed))&&(speed<30))&&(fail_
cnt<=1))&&(running_history==warmup)))]
 66: proc  7 (Fueling_Mode) line 184 "sfd19" (state 49) [fueling_mode = running]
 67: proc  7 (Fueling_Mode) line 184 "sfd19" (state 50) [fueling_state = warmup]
 68: proc  7 (Fueling_Mode) line 184 "sfd19" (state 51) [goto]
 69: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 70: proc  7 (Fueling_Mode) line 145 "sfd19" (state 11)

[((((fueling_mode==running)&&(speed<30))&&(fail_cnt<=1)))]
 71: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 72: proc  4 (Speed_Sensor_Mode) line  98 "sfd19" (state 6) [((speed_sensor==norm))]
 73: proc  4 (Speed_Sensor_Mode) line  98 "sfd19" (state 7) [speed_sensor = 2]
 74: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
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 75: proc  4 (Speed_Sensor_Mode) line 103 "sfd19" (state 11)
[((speed_mode==speed_normal))]

 76: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 77: proc  4 (Speed_Sensor_Mode) line 104 "sfd19" (state 12) [speed_mode =
speed_fail]
 78: proc  4 (Speed_Sensor_Mode) line 104 "sfd19" (state 13) [fail_cnt = (fail_cnt+1)]
 79: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 80: proc  4 (Speed_Sensor_Mode) line 105 "sfd19" (state 15)

[((speed_mode==speed_fail))]
 81: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 82: proc  2 (O2_Sensor_Mode) line  55 "sfd19" (state 1) [((t>2))]
 83: proc  2 (O2_Sensor_Mode) line  55 "sfd19" (state 2) [o2_mode = o2_normal]
 84: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 85: proc  7 (Fueling_Mode) line 160 "sfd19" (state 23)

[((((((fueling_mode==running)&&(running_history==warmup))&&(fueling_state==war
mup))&&(o2_mode==o2_normal))&&(speed<30)))]
 86: proc  7 (Fueling_Mode) line 161 "sfd19" (state 24) [fueling_state = normal]
 87: proc  7 (Fueling_Mode) line 161 "sfd19" (state 25) [running_history = normal]
 88: proc  - (:never:) line  11 "./sfd131l.ltl" (state 1)

[(((fueling_state==normal)&&(fail_cnt==1)))]
 89: proc  7 (Fueling_Mode) line 150 "sfd19" (state 12) [((speed==5))]
<<<<<START OF CYCLE>>>>>
 90: proc  - (:never:) line  16 "./sfd131l.ltl" (state 7) [(1)]
 91: proc  4 (Speed_Sensor_Mode) line 106 "sfd19" (state 16) [speed_mode =
speed_normal]
 92: proc  4 (Speed_Sensor_Mode) line 106 "sfd19" (state 17) [fail_cnt = (fail_cnt-1)]
 93: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 94: proc  4 (Speed_Sensor_Mode) line 103 "sfd19" (state 11)

[((speed_mode==speed_normal))]
 95: proc  - (:never:) line  12 "./sfd131l.ltl" (state 3) [(1)]
 96: proc  4 (Speed_Sensor_Mode) line 104 "sfd19" (state 12) [speed_mode =
speed_fail]
 97: proc  4 (Speed_Sensor_Mode) line 104 "sfd19" (state 13) [fail_cnt = (fail_cnt+1)]
 98: proc  - (:never:) line  11 "./sfd131l.ltl" (state 1)

[(((fueling_state==normal)&&(fail_cnt==1)))]
 99: proc  4 (Speed_Sensor_Mode) line 105 "sfd19" (state 15)

[((speed_mode==speed_fail))]
spin: trail ends after 99 steps
#processes: 8

t = 3
o2_sensor = 1
press_sensor = 1
throt_sensor = 1
speed_sensor = 2
fail_cnt = 1
speed = 5
o2_mode = o2_normal
press_mode = press_normal
throt_mode = throt_normal
speed_mode = speed_fail
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fueling_mode = running
fueling_state = normal
running_history = normal
count = 2

 99: proc  7 (Fueling_Mode) line 150 "sfd19" (state 15)
 99: proc  6 (Speed_Change_Mode) line 123 "sfd19" (state 9)
 99: proc  5 (Time_Counter)
 99: proc  4 (Speed_Sensor_Mode) line 106 "sfd19" (state 18)
 99: proc  3 (Throttle_Sensor_Mode) line  77 "sfd19" (state 9)
 99: proc  2 (O2_Sensor_Mode)
 99: proc  1 (Pressure_Sensor_Mode) line  35 "sfd19" (state 9)
 99: proc  - (:never:) line  15 "./sfd131l.ltl" (state 9)
8 processes created
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