1,517 research outputs found

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    04451 Abstracts Collection -- Future Generation Grids

    Get PDF
    The Dagstuhl Seminar 04451 "Future Generation Grid" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl from 1st to 5th November 2004. The focus of the seminar was on open problems and future challenges in the design of next generation Grid systems. A total of 45 participants presented their current projects, research plans, and new ideas in the area of Grid technologies. Several evening sessions with vivid discussions on future trends complemented the talks. This report gives an overview of the background and the findings of the seminar

    DYNAMICO: A Reference Model for Governing Control Objectives and Context Relevance in Self-Adaptive Software Systems

    Get PDF
    International audienceDespite the valuable contributions on self-adaptation, most implemented approaches assume adaptation goals and monitoring infrastructures as non-mutable, thus constraining their applicability to systems whose context awareness is restricted to static monitors. Therefore, separation of concerns, dynamic monitoring, and runtime requirements variability are critical for satisfying system goals under highly changing environments. In this chapter we present DYNAMICO, a reference model for engineering adaptive software that helps guaranteeing the coherence of (i) adaptation mechanisms with respect to changes in adaptation goals; and (ii) monitoring mechanisms with respect to changes in both adaptation goals and adaptation mechanisms. DYNAMICO improves the engineering of self-adaptive systems by addressing (i) the management of adaptation properties and goals as control objectives; (ii) the separation of concerns among feedback loops required to address control objectives over time; and (iii) the management of dynamic context as an independent control function to preserve context-awareness in the adaptation mechanism

    The Current State of Normative Agent-Based Systems

    Get PDF
    Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling

    Proceedings of the 2005 IJCAI Workshop on AI and Autonomic Communications

    Get PDF

    The Genealogy of Biomimetics: Half a Century’s Quest for Dynamic IT

    Get PDF
    Abstract. Biologically inspired approaches to the design of IT are presently flourishing. Investigating the scientific and historical roots of the tendency will serve to prepare properly for future biomimetic work. This paper explores the genealogy of the contemporary biological influence on science, design and culture in general to determine the merits of the tendency and lessons to learn. It is argued that biomimetics rests on bona fide scientific and technical reasons for the pursuit of dynamic IT, but also on other more external factors, and that biomimetics should differentiate the relevant from the superficial. Furthermore the search for dynamic capacities of IT mimicking adaptive processes can bring is put forward as both the history and raison d’être of biomimetics. 1. Lifelike – á la mode Biology is enjoying enormous attention from different scientific fields as well as culture in general these days. Examples are legion: The victorious naturalization project in philosophy and psychology spearheaded by cognitive science in the second half of the 20th century; the exploration of biological structures in the engineering of materials or architectures [1]; a dominant trend of organismoid designs with ‘grown’ curves replacing straight lines to convey a slickness and efficiency not previously associated with life; 1 World Expo 2005 being promoted under the slogans “Nature’s Wisdom ” and “Art of Life”; 2 and biology’s new status as the successor of physics as the celebrity science which gets major funding and most headlines. These examples are neither historically unique nor culturally revolutionary. Life and nature have been fetishized before. Yet the fascination with the living has never previously dominated with such universality and impetus, as we presently experience. So we might ask: What is the reason for this ubiquitous interest in life and is it a result of cultural and scientific progress or merely an arbitrary fluctuation soon to be forgotten again? 1 Think of cars, sports apparel, furniture, mobile phones, watches, sunglasses etc
    corecore