46 research outputs found

    Tool for spatial and dynamic representation of artistic performances

    Get PDF
    This proposal aims to explore the use of available technologies for video representation of sets and performers in order to serve as support for composition processes and artistic performer rehearsals, while focusing in representing the performer’s body and its movements, and its relation with objects belonging to the three-dimensional space of their performances. This project’s main goal is to design and develop a system that can spatially represent the performer and its movements, by means of capturing processes and reconstruction using a camera device, as well as enhance the three-dimensional space where the performance occurs by allowing interaction with virtual objects and by adding a video component, either for documentary purposes, or for live performances effects (for example, using video mapping video techniques in captured video or projection during a performance)

    Interfaces for human-centered production and use of computer graphics assets

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Animation de personnages 3D par le sketching 2D

    Get PDF
    Free-form animation allows for exaggerated and artistic styles of motions such as stretching character limbs and animating imaginary creatures such as dragons. Creating these animations requires tools flexible enough to shape characters into arbitrary poses, and control motion at any instant in time. The current approach to free-form animation is keyframing: a manual task in which animators deform characters at individual instants in time by clicking-and-dragging individual body parts one at a time. While this approach is flexible, it is challenging to create quality animations that follow high-level artistic principles---as keyframing tools only provide localized control both spatially and temporally. When drawing poses and motions, artists rely on different sketch-based abstractions that help fulfill high-level aesthetic and artistic principles. For instance, animators will draw textit{lines of action} to create more readable and textit{expressive} poses. To coordinate movements, animators will sketch textit{motion abstractions} such as semi-circles and loops to coordinate a bouncing and rolling motions. Unfortunately, these drawing tools are not part of the free-form animation tool set today. The fact that we cannot use the same artistic tools for drawing when animating 3D characters has an important consequence: 3D animation tools are not involved in the creative process. Instead, animators create by first drawing on paper, and only later are 3D animation tools used to fulfill the pose or animation. The reason we do not have these artistic tools (the line of action, and motion abstractions) in the current animation tool set is because we lack a formal understanding relating the character's shape---possible over time---to the drawn abstraction's shape. Hence the main contribution of this thesis is a formal understanding of pose and motion abstractions (line of action and motion abstractions) together with a set of algorithms that allow using these tools in a free-form setting. As a result, the techniques described in this thesis allow exaggerated poses and movements that may include squash and stretch, and can be used with various character morphologies. These pose and animation drafting tools can be extended. For instance, an animator can sketch and compose different layers of motion on top of one another, add twist around strokes, or turning the strokes into elastic ribbons. The main contributions of this thesis are summarized as follows: -The line of action facilitating expressive posing by directly sketching the overall flow of the character's pose. -The space-time curve allowing to draft full coordinated movements with a single stroke---applicable to arbitrary characters. -A fast and robust skeletal line matching algorithm that supports squash-and-stretch. -Elastic lines of action with dynamically constrained bones for driving the motion of a multi-legged character with a single moving 2D line.L'animation expressive permet des styles de mouvements exagerés et artistiques comme l'étirement de parties du corps ou encore l'animation de créatures imaginaires comme un dragon. Créer ce genre d'animation nécessite des outils assez flexible afin de déformer les personnages en des poses quelconques, ainsi que de pouvoir contrôler l'animation à tout moment dans le temps. L'approche acutelle pour l'animation expressive est le keyframing: une approche manuelle avec laquelle les animateurs déforment leur personnage un moment spécifique dans le temps en cliquand et glissant la souris sur une partis spécifique du corps---un à la fois. Malgré le fait que cette approche soit flexible, il est difficile de créer des animations de qualité qui suivent les principes artistiques, puisque le keyframing permet seulement qu'un contrôle local spatiallement et temporellement. Lorsqu'ils dessinent des poses ou des mouvements, les artistes s'appuient sur différentes abstractions sous forme de croquis qui facillitent la réalisation de certain principes artistiques. Par example, certains animateurs dessinent des lignes d'action afin de créer une pose plus lisible et expressive. Afin de coordonner un mouvement, les animateurs vont souvent dessiner des abstractions de mouvement comme des demi-cercles pour des sauts, ou des boucles pour des pirouettes---leur permettant de pratiquer la coordination du mouvement. Malheureusement, ces outils artistiques ne font pas partis de l'ensemble d'outils de keyframing actuelle. Le fait que l'on ne puisse pas employer les même outils artistiques pour animater des personnages 3D a une forte conséquence: les outils d'animation 3D ne sont pas employés dans le processus créatif. Aujourd'hui, les animateurs créent sur du papier et utilisent le keyframing seulement à la fin pour réaliser leur animation. La raison pour laquelle nous n'avons pas ces outils artistiques (ligne d'action, abstractions de mouvement) en animation 3D, est parce qu'il manque une compréhension formelle de ceux-ci qui nous permettrais d'exprimer la forme du personnage---potentiellement au cours du temps---en fonction de la forme de ces croquis. Ainsi la contribution principale de cette thèse est une compréhension formelle et mathématique des abstractions de forme et de mouvement courrament employées par des artistes, ainsi qu'un ensemble d'algorithme qui permet l'utilisation de ces outils artistiques pour créer des animations expressives. C'est-à-dire que les outils développés dans cette thèse permettent d'étirer des parties du corps ainsi que d'animer des personnages de différentes morphologies. J'introduis aussi plusieurs extentions à ces outils. Par example, j'explore l'idée de sculpter du mouvement en permettant à l'artiste de dessigner plusieurs couches de mouvement une par dessus l'autre, de twister en 3D les croquis, ou encore d'animer un croquis ligne comme un élastique. Les contributions principales de cette thèse, aussi résumé ci-dessous: -La ligne d'action facilitant la création de poses expressives en dessinant directement le flow complet du personnage. -La courbe spatio-temporelle qui permet de spécifier un mouvement coordoné complet avec un seul geste (en dessinant une seule courbe), applicable à n'importe quel personnage 3D. -Un algorithme de matching rapide et robuste qui permet du ``squash and stretch''. -La ligne d'action élastique avec des attachements dynamiques à la ligne permettant d'animer un personnages à plusieurs jambes (bras) avec une seule ligne 2D animée

    Animation de personnages 3D par le sketching 2D

    No full text
    Free-form animation allows for exaggerated and artistic styles of motions such as stretching character limbs and animating imaginary creatures such as dragons. Creating these animations requires tools flexible enough to shape characters into arbitrary poses, and control motion at any instant in time. The current approach to free-form animation is keyframing: a manual task in which animators deform characters at individual instants in time by clicking-and-dragging individual body parts one at a time. While this approach is flexible, it is challenging to create quality animations that follow high-level artistic principles---as keyframing tools only provide localized control both spatially and temporally. When drawing poses and motions, artists rely on different sketch-based abstractions that help fulfill high-level aesthetic and artistic principles. For instance, animators will draw textit{lines of action} to create more readable and textit{expressive} poses. To coordinate movements, animators will sketch textit{motion abstractions} such as semi-circles and loops to coordinate a bouncing and rolling motions. Unfortunately, these drawing tools are not part of the free-form animation tool set today. The fact that we cannot use the same artistic tools for drawing when animating 3D characters has an important consequence: 3D animation tools are not involved in the creative process. Instead, animators create by first drawing on paper, and only later are 3D animation tools used to fulfill the pose or animation. The reason we do not have these artistic tools (the line of action, and motion abstractions) in the current animation tool set is because we lack a formal understanding relating the character's shape---possible over time---to the drawn abstraction's shape. Hence the main contribution of this thesis is a formal understanding of pose and motion abstractions (line of action and motion abstractions) together with a set of algorithms that allow using these tools in a free-form setting. As a result, the techniques described in this thesis allow exaggerated poses and movements that may include squash and stretch, and can be used with various character morphologies. These pose and animation drafting tools can be extended. For instance, an animator can sketch and compose different layers of motion on top of one another, add twist around strokes, or turning the strokes into elastic ribbons. The main contributions of this thesis are summarized as follows: -The line of action facilitating expressive posing by directly sketching the overall flow of the character's pose. -The space-time curve allowing to draft full coordinated movements with a single stroke---applicable to arbitrary characters. -A fast and robust skeletal line matching algorithm that supports squash-and-stretch. -Elastic lines of action with dynamically constrained bones for driving the motion of a multi-legged character with a single moving 2D line.L'animation expressive permet des styles de mouvements exagerés et artistiques comme l'étirement de parties du corps ou encore l'animation de créatures imaginaires comme un dragon. Créer ce genre d'animation nécessite des outils assez flexible afin de déformer les personnages en des poses quelconques, ainsi que de pouvoir contrôler l'animation à tout moment dans le temps. L'approche acutelle pour l'animation expressive est le keyframing: une approche manuelle avec laquelle les animateurs déforment leur personnage un moment spécifique dans le temps en cliquand et glissant la souris sur une partis spécifique du corps---un à la fois. Malgré le fait que cette approche soit flexible, il est difficile de créer des animations de qualité qui suivent les principes artistiques, puisque le keyframing permet seulement qu'un contrôle local spatiallement et temporellement. Lorsqu'ils dessinent des poses ou des mouvements, les artistes s'appuient sur différentes abstractions sous forme de croquis qui facillitent la réalisation de certain principes artistiques. Par example, certains animateurs dessinent des lignes d'action afin de créer une pose plus lisible et expressive. Afin de coordonner un mouvement, les animateurs vont souvent dessiner des abstractions de mouvement comme des demi-cercles pour des sauts, ou des boucles pour des pirouettes---leur permettant de pratiquer la coordination du mouvement. Malheureusement, ces outils artistiques ne font pas partis de l'ensemble d'outils de keyframing actuelle. Le fait que l'on ne puisse pas employer les même outils artistiques pour animater des personnages 3D a une forte conséquence: les outils d'animation 3D ne sont pas employés dans le processus créatif. Aujourd'hui, les animateurs créent sur du papier et utilisent le keyframing seulement à la fin pour réaliser leur animation. La raison pour laquelle nous n'avons pas ces outils artistiques (ligne d'action, abstractions de mouvement) en animation 3D, est parce qu'il manque une compréhension formelle de ceux-ci qui nous permettrais d'exprimer la forme du personnage---potentiellement au cours du temps---en fonction de la forme de ces croquis. Ainsi la contribution principale de cette thèse est une compréhension formelle et mathématique des abstractions de forme et de mouvement courrament employées par des artistes, ainsi qu'un ensemble d'algorithme qui permet l'utilisation de ces outils artistiques pour créer des animations expressives. C'est-à-dire que les outils développés dans cette thèse permettent d'étirer des parties du corps ainsi que d'animer des personnages de différentes morphologies. J'introduis aussi plusieurs extentions à ces outils. Par example, j'explore l'idée de sculpter du mouvement en permettant à l'artiste de dessigner plusieurs couches de mouvement une par dessus l'autre, de twister en 3D les croquis, ou encore d'animer un croquis ligne comme un élastique. Les contributions principales de cette thèse, aussi résumé ci-dessous: -La ligne d'action facilitant la création de poses expressives en dessinant directement le flow complet du personnage. -La courbe spatio-temporelle qui permet de spécifier un mouvement coordoné complet avec un seul geste (en dessinant une seule courbe), applicable à n'importe quel personnage 3D. -Un algorithme de matching rapide et robuste qui permet du ``squash and stretch''. -La ligne d'action élastique avec des attachements dynamiques à la ligne permettant d'animer un personnages à plusieurs jambes (bras) avec une seule ligne 2D animée

    AUTOMATED PAPER POP-UP DESIGN: APPROXIMATING SHAPE AND MOTION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Rituals Transforming Cultures, Cultures Transforming Rituals: Tea Importers\u27 Headquarters + Interactive Tea Museum

    Get PDF
    Throughout tea\u27s history, rituals have developed ranging from strictly obeying principles in Japanese tea ceremonies to loosely interpreting principles of tea such as drinking a bottle of iced tea in America. Locating a program to explore the historic, cultural, and political connotations of Boston, in its Inner Harbor, tea can be culturally transformed through a process of an interactive museum in conjunction with the headquarters for a tea importing company, which will explore cultural and ritual issues of tea. This exploration will further enhance these transformations of cultures and rituals that exist with the ever changing life of tea

    The Quest for Life and Intelligence in Digital Puppets.

    Get PDF
    Performers and artists wishing to make collaborative improvisations using three-dimensional computer graphics will encounter the following difficulty: the animation process lacks the functionality required for spontaneous, serendipitous, real-time interaction. While human motion capture makes such real-time interaction and the corresponding spontaneity possible, it lacks the expressivity required for non-realistic characterisation. My practice-based research study proposes digital puppetry as a solution to this problem. My focus is on credibility as opposed to realism: the expectation is that the characters will behave in a puppet-like manner as opposed to manifesting the aesthetics – in terms of both movement and visual design – found in human actor-based motion capture and three- dimensional animated cartoons. The practical element is motivated by three imperatives: to improvise, to collaborate and to perform live. The primary question this study sets out to answer is: Is it possible to achieve the same spontaneity and animation[1] in digital puppets as it is with tangible puppets and, if so, what are the mechanisms involved? Unable to find a three-dimensional computer graphics digital puppetry software and hardware solution, I have devised what I call the GLOPPID[2] method, where GLOPPID is an acronym for Goniometric[3] Live Organic Performance Puppetry Improvisation Digitalia. The GLOPPID method comprises an artistic approach and a practical solution in the form of a Human Digital Puppetry Interface. It uses off-the-shelf three-dimensional computer animation software, which I have incorporated into a pipeline customised to suit my creative process. This pipeline is configured to transform ready-made computer graphics models into digital puppets that can be used as collaborators, thereby allowing the performer to experience the same kind of spontaneity as is possible in physical puppet performance. My thesis asserts that it is possible to improvise with digital puppets, and I have devised my own solution in order to do this. I argue that the real-time, improvised manipulation of digital puppets offers creatively advantageous opportunities for spontaneity and expressivity. My research presents the technique of digital puppetry as an expansion of what I call the pro- puppetry thesis – the idea that puppets have dramatic advantages over human actors. It also contributes to the ontological discourses surrounding the Human-Machine Interface (HMI), trans-embodiment, the post-human, the illusion of life, and cybernetics. In addition, it explores how algorithms can be used in the arts, particularly in performance (see Kleber & Trojanowska 2019, p.101). It makes a timely contribution to the pool of knowledge, because I see digital puppets as zeitgeists – apt vehicles for human hopes and fears surrounding the digital and existential angst that is part of the fabric of 21st-century life. The professional digital puppetry practice undertaken and discussed in this study requires both general, transferable human-machine interacting skills, and the specific digital puppetry skills necessary for project phases such as rigging and manipulation. This practical approach prioritises the physical, as opposed to the psycho-physical. Informed by the theories and practice of human dramatic technique practitioners such as Decroux and Lecoq, it takes the basic building blocks of movement identifiable in the segmented anatomy and rotational articulations of the actor-as-puppet, rod, glove and string puppets, and configures them in their digital counterpart in order to accentuate the odd by means of atypical combinations, economy of motion, and asymmetry. My approach is underpinned by the idea that a puppet is uninhibited or influenced by its own ego, backstory, or emotions. Nevertheless, these properties are present in a channeled, and therefore changed, form that emanates from the Human in the Loop, namely, the digital puppeteer. In digital puppetry, the protagonist is a digital puppet operated by a human who is embedded at the core of the activity, and who simultaneously witnesses their own emotional responses as they are acted out in front of them. My work demonstrates that non-realistic, expressive approaches to movement performance derived from human physical theatre techniques (including theatre clowning), combined with the use of algorithm-assisted techniques of rigging and manipulation, mean that the puppets are not under the complete control of their puppeteers. Instead, their rogue nature and irrationality enables digital puppets to satirise and subvert notions surrounding computer-generated imagery and artificial general intelligence, while avoiding exile in the “uncanny valley” (Mori 1970). In this study the term puppet is used both literally and metaphorically. Deployed literally, puppet refers to a figure or object that is manipulated in real time in the presence of a puppeteer, in both tangible and intangible material formats. The term is used metaphorically in the sense that a puppet can be seen as an analogue of a human being that acts as a mirror, reflecting aspects of the human condition or predicament. My work expands upon an understanding of the quest for ‘life’ in physical puppets and the corresponding development of their ur-narrative – as described by Kohler & Jones (2009, p.346) – and extends this to include digital puppets. By combining the concept of this quest with Rokeby’s idea of technology as a “prosthetic of philosophy” (2019, p.107) and with the notion of art as a mirror, I explore how distinctive features present in digital puppetry practice can be used to express truths about being human. The work employs a practice-as-research methodology that provides moments for reflection during the creative process, and reflection on the creative outcomes: reflection-in-action and reflection-on-action. The thesis can be expressed in the form of the following formula: Extemporising with puppets + the ur-narrative of puppets + art as a mirror + technology as a mirror = a pro-digital-puppetry thesis on HMI, AGI + what it is to be human [1] The term animation used here refers not to the techniques of incremental, frame-by-frame posing of characters, but to the act of bringing them to life. [2] ‘Gloppid’ is also the name of a glove-puppet character invented for an ecologically-based travelling show performed during the 1980s (Childs 1988). [3] Goniometric refers to the measurement of the range of motion in a joint

    A 3D Pipeline for 2D Pixel Art Animation

    Get PDF
    Aquest document presenta un informe exhaustiu sobre un projecte destinat a desenvolupar un procés automatitzat per a la creació d'animacions 2D a partir de models 3D utilitzant Blender. L'objectiu principal del projecte és millorar les tècniques existents i reduir la necessitat que els artistes realitzin tasques repetitives en el procés de producció d'animació. El projecte implica el disseny i desenvolupament d'un complement per a Blender, programat en Python, que es va desenvolupar per ser eficient i reduir les tasques intensives en temps que solen caracteritzar algunes etapes en el procés d'animació. El complement suporta tres estils específics d'animació: l'art de píxel, "cel shader", i "cel shader" amb contorns, i es pot expandir per suportar una àmplia gamma d'estils. El complement també és de codi obert, permetent una major col·laboració i potencials contribucions per part de la comunitat. Malgrat els problemes trobats, el projecte ha estat exitós en aconseguir els seus objectius, i els resultats mostren que el complement pot aconseguir resultats similars als adquirits amb eines similars i animació tradicional. El treball futur inclou mantenir el complement actualitzat amb les últimes versions de Blender, publicar-lo a GitHub i mercats de complements de Blender, així com afegir nous estils d'art.This document presents a comprehensive report on a project aimed at developing an automated process for creating 2D animations from 3D models using Blender. The project's main goal is to improve upon existing techniques and reduce the need for artists to do clerical tasks in the animation production process. The project involves the design and development of a plugin for Blender, coded in Python, which was developed to be efficient and reduce time-intensive tasks that usually characterise some stages in the animation process. The plugin supports three specific styles of animation: pixel art, cel shading, and cel shading with outlines, and can be expanded to support a wider range of styles. The plugin is also open-source, allowing for greater collaboration and potential contributions from the community. Despite the challenges faced, the project was successful in achieving its goals, and the results show that the plugin could achieve results similar to those acquired with similar tools and traditional animation. The future work includes keeping the plugin up-to-date with the latest versions of Blender, publishing it on GitHub and Blender plugin markets, as well as adding new art styles

    Interactive techniques for motion deformation of articulated figures using prioritized constraints

    Get PDF
    Convincingly animating virtual humans has become of great interest in many fields since recent years. In computer games for example, virtual humans often are the main characters. Failing to realistically animate them may wreck all previous efforts made to provide the player with an immersion feeling. At the same time, computer generated movies have become very popular and thus have increased the demand for animation realism. Indeed, virtual humans are now the new stars in movies like Final Fantasy or Shrek, or are even used for special effects in movies like Matrix. In this context, the virtual humans animations not only need to be realistic as for computer games, but really need to be expressive as for real actors. While creating animations from scratch is still widespread, it demands artistics skills and hours if not days to produce few seconds of animation. For these reasons, there has been a growing interest for motion capture: instead of creating a motion, the idea is to reproduce the movements of a live performer. However, motion capture is not perfect and still needs improvements. Indeed, the motion capture process involves complex techniques and equipments. This often results in noisy animations which must be edited. Moreover, it is hard to exactly foresee the final motion. For example, it often happens that the director of a movie decides to change the script. The animators then have to change part or the whole animation. The aim of this thesis is then to provide animators with interactive tools helping them to easily and rapidly modify preexisting animations. We first present our Inverse Kinematics solver used to enforce kinematic constraints at each time of an animation. Afterward, we propose a motion deformation framework offering the user a way to specify prioritized constraints and to edit an initial animation so that it may be used in a new context (characters, environment,etc). Finally, we introduce a semi-automatic algorithm to extract important motion features from motion capture animation which may serve as a first guess for the animators when specifying important characteristics an initial animation should respect

    Design-led approach for transferring the embodied skills of puppet stop-motion animators into haptic workspaces

    Get PDF
    This design-led research investigates the transfer of puppet stop-motion animators’ embodied skills from the physical workspace into a digital environment. The approach is to create a digital workspace that evokes an embodied animating experience and allows puppet stop-motion animators to work in it unencumbered. The insights and outcomes of the practical explorations are discussed from the perspective of embodied cognition. The digital workspace employs haptic technology, an advanced multi-modal interface technology capable of invoking the tactile, kinaesthetic and proprioceptive senses. The overall aim of this research is to contribute, to the Human-Computer Interaction design community, design considerations and strategies for developing haptic workspaces that can seamlessly transfer and accommodate the rich embodied knowledge of non-digital skillful practitioners. Following an experiential design methodology, a series of design studies in collaboration with puppet stop-motion animators led to the development of a haptic workspace prototype for producing stop-motion animations. Each design study practically explored the transfer of different aspects of the puppet stop-motion animation practice into the haptic workspace. Beginning with an initial haptic workspace prototype, its design was refined in each study with the addition of new functionalities and new interaction metaphors which were always developed with the aim to create and maintain an embodied animating experience. The method of multiple streams of reflection was proposed as an important design tool for identifying, understanding and articulating design insights, empirical results and contextual considerations throughout the design studies. This thesis documents the development of the haptic workspace prototype and discusses the collected design insights and empirical results from the perspective of embodied cognition. In addition, it describes and reviews the design methodology that was adopted as an appropriate approach towards the design of the haptic workspace prototype
    corecore