
THÈSE NO 3459 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 10 MARS 2006

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
Laboratoire de réalité virutelle

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

DEA en informatique, Université de Rennes I, France
et de nationalité française

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. C. Petitpierre, président du jury
Dr R. Boulic, directeur de thèse

Dr K. Aminian, rapporteur
Dr J.-P. Laumond, rapporteur
Prof. D. Thalmann, rapporteur

Dr J.-P. Verriest, rapporteur

interactive techniques
for motion deformation of articulated figures

using prioritized constraints

Benoît LE CALLENNEC

CONTENTS

1 Introduction 11

1.1 Context . 11

1.2 Overview of the Motion Deformation Algorithm 13

1.3 Organization of this Document . 14

1.4 Preliminaries . 14

1.4.1 Concepts and Definitions . 14

1.4.2 Mathematical Notation and Conventions 15

2 Related Work 17

2.1 Motion Generation Methods . 17

2.1.1 Keyframing . 17

2.1.2 Procedural Methods . 18

2.1.3 Physics-Based Methods . 19

2.1.4 Motion Capture . 20

2.2 Motion Editing Methods . 22

2.2.1 Signal Processing . 22

2.2.2 Physics-Based Methods . 23

2.2.3 Spacetime Constraints . 24

2.2.4 Per-Frame IK Plus Filtering . 25

2.3 Motion Database-Based Methods . 26

2.3.1 Data Retrieval . 26

2.3.2 Motion Combination . 29

3 Designing Postures Using Inverse Kinematics 31

3.1 State of the Art in Inverse Kinematics . 33

3.1.1 Analytical Methods . 33

3.1.2 Numerical Methods . 34

3.1.3 Cyclic-Coordinate-Descent Method 36

3.1.4 Hybrid Methods . 36

3.1.5 Conclusion . 37

3.2 An HAnim Inverse Kinematics Solver . 37

3.2.1 The HAnim Standard . 37

3.2.2 Inverse Kinematics Problem Statement 38

3.2.3 Inverse Kinematics Numerical Resolution 39

3.2.4 Damping the Solution . 41

3.2.5 Dealing with Conflicting Tasks: the Priority Strategy 41

3.3 Experimental Results: HBalance . 44

3.3.1 Postures Design . 45

3.3.1.1 End-Effectors Position and Orientation Control 45

3.3.1.2 Center of Mass Position Control 46

3.3.1.3 Joint Recruiting Level 48

3.3.2 Benchmarking . 49

3.3.2.1 Exponential Map Versus Euler Angles 49

3.3.2.2 Integration Step and Damping Factor 51

3.3.3 Damped Least Squares Inverse Versus Transpose 53

3.4 Discussion and Conclusion . 55

4 Motion Deformation Constraints Definition and Design 57

4.1 State of the Art in Constraints Formulation 58

4.2 The Shape-Constraints: a Versatile Representation of End-Effectors Trajec-
tories . 59

4.2.1 Overview . 60

4.2.2 Specification of a shape-constraint 61

4.2.3 Shape-Constraints Modes . 63

4.2.4 Shape-Constraints Examples . 66

4.3 Footplant Constraints . 66

4.3.1 Specification of a footplant constraint 68

4.3.2 Dynamic Priority Swap . 69

4.4 Balance Control . 71

4.5 Conclusion . 72

5 Prioritized Motion Deformation 75

5.1 State of the Art in per-frame IK plus filtering 76

5.2 Per-Frame Inverse Kinematics . 81

5.3 Enforcing Continuity . 82

5.3.1 Filtering the Adjustments . 82

5.3.2 Constraints Activation/Deactivation 83

5.4 Convergence and Stopping Criteria . 85

5.5 Experimental Results . 87

5.6 Discussion and Conclusion . 89

6 Geometric Constraint Detection for Motion Capture Animation 95

6.1 Constraints Definition . 96

6.2 State of the Art in Constraints Detection 97

6.3 Method Overview . 98

6.3.1 Displacement Matrices Extraction: 99

6.3.2 Instantaneous Constraint Detection 100

6.3.3 Computation of the Effective Constraints 100

6.3.4 Final Filtering . 101

6.4 Intrinsic Constraint Detection . 101

6.4.1 Displacement Matrices Extraction 101

6.4.2 Instantaneous Constraint Detection 103

6.4.3 Computation of the Effective Constraints 109

6.4.3.1 Robust Temporal Connection Estimation 112

6.4.3.2 Space Constraints Computation 114

6.4.3.3 Line Constraints Computation 118

6.4.3.4 Point Constraints Computation 121

6.4.4 Final Filtering . 122

6.5 Experimental Results . 122

6.5.1 Global versus Local Estimation 123

6.5.2 Static versus Dynamic Estimation of the SVD-related parameters . 124

6.5.3 Naive versus LMedS method . 125

6.5.4 Walking-Running-Walking Motion 126

6.5.5 Walking Around Motion . 126

6.5.6 Sitting on a Stool . 127

6.5.7 Line Constraints Detection . 127

6.5.8 Point Constraint Detection . 134

6.5.8.1 Dice . 134

6.5.8.2 Desk Lamp . 134

6.5.8.3 Walking Around Motion 134

6.5.9 Computational Cost Consideration 138

6.6 Discussion and Conclusion . 138

7 Conclusion 139

7.1 Contributions . 139

7.2 Future Work . 141

A Mathematical Demonstrations Related to Constraint Detection 143

A.1 Global versus Local Displacement Matrix Formulations 143

A.1.1 Global Formulation of Residual Error 144

A.1.2 Local Formulation of Residual Error 145

A.1.3 Numerical Comparisons Between Both Formulations 145

B Tasks Description for the Examples of Chapter 3 149

B.1 Example of Figure 3.3: The Thinker by Auguste Rodin 149

B.2 Example of Figure 3.4: Center of Mass Control 150

Remerciements

Cette thèse a été financée par le Fonds National Suisse de la Recherche Scienti-
fique, et effectuée au laboratoire de Réalité Virtuelle (VRLab) de l’école polytechnique
fédérale de Lausanne (EPFL). Je tiens tout d’abord à remercier sincèrement mon direc-
teur de thèse, Ronan Boulic, pour m’avoir encadré avec autant de patience et de dis-
ponibilité. Je tiens aussi à le remercier pour avoir su me soutenir et m’encourager dans
les moments difficiles. Je remercie aussi le professeur Daniel Thalmann, directeur du
laboratoire, qui m’a permis de travailler principalement sur ce projet. Je remercie aussi
les membres du jury de thèse, le professeur Jean-Paul Laumond, le professeur Jean-
Pierre Verriest, le professeur Kamiar Aminian ainsi que le professeur Daniel Thalmann
pour le soin qu’ils ont apporté à l’examen de cette thèse. Enfin, je remercie le profes-
seur Claude Petitpierre pour avoir présidé ce jury. Je souhaite remercier Pascal Glardon,
avec qui j’ai discuté, des heures durant, d’animation de personnages et en particulier
de la façon dont un humain posait les pieds par terre perdant ainsi toute crédibilité aux
yeux de nos collègues. J’aimerais aussi remercier Thierry Michelot, Nicolas Elsig et
Mireille Clavien pour avoir modélisé les nombreux personnages que j’ai torturés. Je re-
mercie Helena Grillon pour avoir entièrement relu cette thèse et pour m’avoir permis
de la rendre beaucoup plus compréhensible. Je remercie Julien Pettre pour ses diverses
critiques sur les versions préliminaires de ce manuscrit, Lorna Herda et Raquel Urta-
sun pour nos conversations techniques que je n’ai toujours pas comprises ainsi que les
admins Jan Ciger et Etienne de Sevin pour m’avoir expliqué en particulier que ça ne
s’appelait pas “mulot” mais “souris”. Sur un plan plus personnel, je souhaite remercier
Ronan pour avoir été quelqu’un de très accessible et patient avec moi, Pascal, Ander-
son, Pablo et Schubert pour nos soirées philosophie et poésie à Satellite, Nicolas, Sylvie,
Thierry, Ali et Mehdi pour leur amitié ainsi que Helena, Barbichette et Jojo (les petits
nouveaux) pour leur jovialité et leur sympathie. Je souhaite aussi remercier tous mes
amis Bretons pour m’avoir hébergé lors de mes retours au pays et pour m’avoir accueilli
à coups de galettes et de kouign amann. Je souhaiterais remercier ma mère ainsi que
Jacquounet pour m’avoir toujours soutenu dans mes choix et m’avoir permis de mener
à bien mes projets. Enfin, je souhaiterais remercier Benoı̂t Le Callennec sans qui, rien
de cela n’aurait été possible.

Résumé

Depuis déjà plusieurs années, animer des humains virtuels de manière convaincante
est devenu extrêmement demandé dans plusieurs domaines de l’industrie. Dans les jeux
vidéos par exemple, les humains virtuels sont souvent les personnages principaux. S’ils
n’étaient pas animés de manière réaliste, alors tous les efforts faits pour donner aux
joueurs un sentiment d’immersion seraient ruinés. Parallèlement, les films générés par
ordinateur sont devenus très populaires et ont donc augmenté les exigences en terme
de qualité d’animation. En effet, les humains virtuels sont maintenant devenus les nou-
velles stars de films comme Final Fantasy ou Shrek et sont parfois même utilisés pour
créer des effets spéciaux dans des films comme Matrix. Dans ce contexte, les anima-
tions des humains virtuels ne doivent plus uniquement être réalistes, comme dans le cas
des jeux vidéos, mais doivent de plus être expressives comme pour de vrais acteurs.
Bien que le fait de créer des animations à partir de zéro soit encore très répandu, cela
exige des compétences artistiques ainsi que beaucoup d’heures de travail (si ce n’est
des jours) pour créer quelques secondes d’animation. Pour toutes ces raisons, la capture
de mouvements est devenue très intéressante pour générer des animations : au lieu de
les créer, l’idée est tout simplement de reproduire les mouvements d’un acteur. Cepen-
dant, la capture de mouvements n’est pas parfaite et nécessite plusieurs améliorations.
En effet, la capture de mouvements est un processus qui implique des techniques et des
équipements complexes. Cela se traduit souvent par des animations bruitées qui doivent
être éditées. De plus, il est très difficile d’exactement prévoir ce que doivent être les
animations finales. Par exemple, il arrive souvent que le réalisateur d’un film décide
de changer le script. Dans ce cas, les animateurs doivent modifier certaines partie d’un
mouvement voire sa totalité. Le but de cette thèse est de fournir aux animateurs des
outils interactifs pour les aider à facilement et rapidement modifier des animations
préexistantes. Dans un premier temps, nous présentons notre moteur de cinématique
inverse utilisé pour appliquer des contraintes cinématiques à chaque temps d’une ani-
mation. Nous proposons ensuite un système de déformation de mouvements permettant
à l’utilisateur de spécifier des contraintes et d’éditer une animation initiale afin qu’elle
puisse être exploitées dans un nouveau contexte (personnages, décors, etc). Finalement,
nous présentons un algorithme semi-automatique pour extraire les caractéristiques im-
portantes d’une animation obtenue par capture de mouvements. Ces caractéristiques
peuvent par exemple aider les animateurs à spécifier les contraintes importantes qu’une
animation devra respecter.

Abstract

Convincingly animating virtual humans has become of great interest in many fields
since recent years. In computer games for example, virtual humans often are the main
characters. Failing to realistically animate them may wreck all previous efforts made to
provide the player with an immersion feeling. At the same time, computer generated
movies have become very popular and thus have increased the demand for animation
realism. Indeed, virtual humans are now the new stars in movies like Final Fantasy
or Shrek, or are even used for special effects in movies like Matrix. In this context,
the virtual humans animations not only need to be realistic as for computer games,
but really need to be expressive as for real actors. While creating animations from
scratch is still widespread, it demands artistics skills and hours if not days to produce
few seconds of animation. For these reasons, there has been a growing interest for
motion capture: instead of creating a motion, the idea is to reproduce the movements of
a live performer. However, motion capture is not perfect and still needs improvements.
Indeed, the motion capture process involves complex techniques and equipments. This
often results in noisy animations which must be edited. Moreover, it is hard to exactly
foresee the final motion. For example, it often happens that the director of a movie
decides to change the script. The animators then have to change part or the whole
animation. The aim of this thesis is then to provide animators with interactive tools
helping them to easily and rapidly modify preexisting animations. We first present
our Inverse Kinematics solver used to enforce kinematic constraints at each time of
an animation. Afterward, we propose a motion deformation framework offering the
user a way to specify prioritized constraints and to edit an initial animation so that
it may be used in a new context (characters, environment,etc). Finally, we introduce
a semi-automatic algorithm to extract important motion features from motion capture
animation which may serve as a first guess for the animators when specifying important
characteristics an initial animation should respect.

Keywords: Inverse Kinematics, Motion Editing, Motion Capture, Constraint Detection

CHAPTER 1

Introduction

In this thesis, we propose interactive tools capable of helping animators to easily and rapidly
edit motion capture animations in order to produce high-end animations.

1.1 Context

Convincingly animating virtual humans has become of great interest in many fields in re-
cent years. In computer games for example, virtual humans are often the main characters.
Failing to realistically animate them may annihilate all previous efforts made to provide the
player with an immersion feeling. In parallel, computer generated movies have become very
popular and thus have increased the demand for animation realism. Indeed, virtual humans
are now the new stars in movies such as Final Fantasy or Shrek, or are even used for special
effects in movies such as Matrix. In this context, not only do virtual human animations need
to be realistic as for computer games, but also really need to be expressive as for real actors.

This task is inherently difficult for two reasons. First of all, humans are naturally experts
when it comes to looking at other humans. Hence, any subtle inaccuracy in a virtual human
animation leads to a strange feeling for human observers: we do not precisely know what
is wrong, but we know that something is wrong. Secondly, the human body is a complex
architecture containing a lot of DoFs. As it is not acceptable to change each articulation
parameters by hand, complex algorithms must be developed to ease the animation of such
structures.

11

Chapter 1. Introduction

The manual design of key postures, also known as keyframing, is still a widespread tech-
nique as it offers the animators great control over the results. Another technique is to proce-
durally generate human animations using predefined mathematical functions which we can
tune using specific, low level parameters. Other algorithms use dynamics to produce hu-
man animations. However, these methods tend to produce motions which look mechanical
or even passive. Indeed, human motion is not entirely dictated by mathematics or physical
laws.

For these reasons, there has been a growing interest for motion capture: instead of creat-
ing a motion from scratch, the idea is to reproduce a motion. The motion of a live performer
is recorded using mechanical armatures, magnetic sensors or cameras before being applied
to virtual humans. This technique is widely used it allows to reproduce subtle details of
human movements in a very short period of time.

However, motion capture is not perfect and still needs improvements. Indeed, the motion
capture process involves complex techniques and equipments. This often results in noisy
animations which must be edited. Moreover, it is hard to exactly foresee the final motion.
For example, it often happens that the director of a movie decides to change the script. The
animators then have to change part of or the whole animation.

One method consists in adjusting each posture of the animation by hand to correct un-
wanted artifacts. While it is still used in many computer-generated imagery (CGI) animation
companies, this demands great efforts and artistic skills. For this reason, it is of interest to
use high-level constraints which the animators may use to adjust a whole animation. For
example, instead of specifying each point of the trajectory of a hand, an animator may define
a high-level constraint specifying important locations this hand should pass through and its
whole trajectory may then be automatically generated.

Afterward, given a set of high-level constraints specified by the user, we should be able
to realistically deform an animation to satisfy these constraints. It may happen that these
latter are not simultaneously achievable because they are conflicting. The animator must
then decide which of them are very important and which may be only partly achieved by
specifying priorities.

The first step of the editing process is to define important characteristics of the initial
motion the animator needs to keep. In many animations however, these characteristics are
numerous: specifying all of them by hand may be tedious and take several hours. It is then
of interest to provide the animators with a first guess of these important constraints.

In this thesis, we propose a motion deformation framework offering the user a way to
specify prioritized constraints to deform an initial motion capture animation. These prior-
itized constraints are useful as they directly reflect the user needs when conflicts between
constraints occur. Moreover, we provide the user with a semi-automatic algorithm to detect
important constraints in motion capture animations.

12

1.2. Overview of the Motion Deformation Algorithm

1.2 Overview of the Motion Deformation Algorithm

Our motion deformation algorithm belongs to the class of per-frame IK plus filtering meth-
ods. It is summarized in Figure 1.1. The main idea is that a motion may be decomposed into

Output
 Motion

User guided
 constraint
 detection

Constraint creation
 and editing

 User's
evaluation

 Still needs
improvements

"Perfect"
 results

Input
 Motion

Prioritized IK

Per-frame IK

For each frame

Optional
Filtering

Figure 1.1: Overview of the motion deformation framework.

independent frames. Then, given a set of user-specified high-level constraints, each frame
is adjusted so that it achieves the predefined constraints as much as possible. Finally, the
resulting motion is filtered to remove potentially added discontinuities. This latter stage of
the algorithm may destroy the results obtained from the previous one. As a consequence, a
per-frame IK plus filtering algorithm is inherently iterative.

We additionally propose a semi-automatic algorithm to extract important motion features
from a motion capture animation. This algorithm being particular enough in the context of
motion editing, we develop it in Chapter 6.

13

Chapter 1. Introduction

1.3 Organization of this Document

This document is organized as follows:

• In Chapter 2, we review related work on human computer animation. We mainly focus
our discussion on motion editing techniques.

• In Chapter 3, we present our numerical IK solver used to enforce user-specified con-
straints during the motion deformation process.

• In Chapter 4, we propose high-level constraints which the user can manipulate to edit
an animation.

• In Chapter 5, we present our motion deformation algorithm. It is in charge of de-
forming an initial animation in order for the final one to respect a set of user-specified
constraints.

• In Chapter 6, we propose a semi-automatic algorithm to detect geometric constraints in
motion capture animations. This method is particularly useful in helping the animator
specify the set of original constraints.

• In Chapter 7, we conclude this dissertation. In particular, we summarize the contribu-
tions of this thesis and suggest future work.

1.4 Preliminaries

1.4.1 Concepts and Definitions

In this document, we often refer to specific notions that may vary depending on the context.
For example, the notion of goal is not the same whether we are considering postures or
motions. We hereafter choose the following terminology for the remainder of this document:

Kinematic Chain: we call a kinematic chain any chain of links (or joints) with an end-
effector at its free-end. The topmost joint is called the root of the kinematic chain.

Articulated Figure: we call an articulated figure any skeletal structure modeled as a
hierarchy of joints. This representation is especially useful in an animation context. We use
the HAnim standard to represent the articulated figures [HAnim]. Technical details about
this representation and all associated issues (joint types, joint limits, etc) are explained in
detail in [Baerlocher, 2001; Aubel, 2002]. It is important to note that an articulated figure
may contains numerous kinematic chains. For example, a kinematic chain may be defined
from the shoulder to the wrist, from the hip to the toe, etc.

14

1.4. Preliminaries

Task: we call a task any specific goal to achieve in an Inverse Kinematics context. Hence,
we are only interested in the final posture of the articulated figure which achieves (or not)
the specified goal.

Constraint: we call a constraint any specific goal to achieve in a motion editing context.
In this case, we do not only consider the final posture of the articulated figure achieving (or
not) the specified goal but are also interested in the motion to achieve it (or not).

Motion Representation: we define a motion as a continuous function of timem(t) =
(pr(t), q1(t), · · · , qnjoints

(t)) where p(t) and q0(t) represent the global position and orien-
tation of the root node and qi(t) is the local transformation of the ith joint.

Posture Representation: Considering the previous notation, the posture of a virtual
character at a given time tα is defined asm(tα) = (pr(tα), q1(tα), · · · , qnjoints

(tα)). How-
ever, this notation implicitly considers that this posture is part of an animationm(t). Hence
we use this definition only when we are dealing with motion editing issues as it is only rel-
evant in that context. We use the notation θ instead when referring to the state vector of an
articulated figure when dealing with Inverse Kinematics issues.

Abbreviations: In this thesis, we use the following abbreviations:

• IK for Inverse Kinematics,
• DoF(s) for Degree(s) of Freedom,
• CoM for Center of Mass.

1.4.2 Mathematical Notation and Conventions

In this document, we use the column vector convention and right handed coordinate frames.
Scalars are denoted by small letters such as s. Vectors are denoted by small boldface letters
such as v. Matrices are denoted by capital boldface letters such asM . Additional notations
are introduced when necessary.

15

Chapter 1. Introduction

16

CHAPTER 2

Related Work

In this chapter, we present previous work on character animation. In the first section, we
focus our attention on motion generation methods that is those which create new animations
from scratch. We then review motion editing methods: those are used to modify a single
preexisting animation to produce new ones. Finally, we present techniques using motion
databases. It is important to note that some methods may belong to several categories at the
same time. In these cases, we only consider their most important contribution to decide how
they should be classified.

2.1 Motion Generation Methods

In this section, we consider a motion generation method any algorithm able to create an
animation without any motion as input.

2.1.1 Keyframing

Keyframing borrows its name from the traditional hand animation technique [Lasseter, 1987].
It is composed of two steps. First, the animator specifies key postures for the character being
animated: the keyframes. These keyframes are placed at specific times in the animation.
Then, an algorithm computes inbetween frames by interpolating between these keyframes.
While defining keyframes may be directly done using direct kinematics for simple objects,
it becomes rapidly tedious and time consuming as soon as the total number of the animated

17

Chapter 2. Related Work

Figure 2.1: Wally B.’s zip off shows use of squash and stretch, anticipation, follow through,
overlapping action, and secondary action (source: [Lasseter, 1987]).

object’s DoFs increases. This is particularly noticeable for character animation as typical
virtual humans may contain up to fifty DoFs without considering the fingers.

For that reason, specific algorithms have been developed to ease keyframes definition.
Instead of defining each joint value of the virtual human, the animator only needs to specify
the desired location of a body part. Then, each joint value directly or indirectly controlling
this body part location is automatically computed. This technique is known as IK. As we
dedicate an entire chapter to IK, a review of the most significant works in this field may be
found in Chapter 3.

The interpolation algorithm is a crucial factor in the appearance of the final animation.
Inbetween frames may be generated using linear interpolation. However, this technique is
rarely employed as it usually generates unnatural motions. A more convenient method is to
use cubic splines as they produce smooth and continuous curves.

The keyframing technique is still widespread as it offers the animators a total control
over the final animation. Nevertheless, it requires that they deeply understand the underlying
algorithms to be able to foresee the results. In addition, it demands a lot of experience and
artistic skills to produce expressive animations. Finally, the animator must generally define
a set of keyframes which is quite dense in order to obtain realistic motions.

2.1.2 Procedural Methods

Figure 2.2: Walking crowd with different gaits (source: [Boulic et al., 2004]).

Procedural methods rely on handcrafted algorithms to automatically generate motions.
These algorithms may be thought of as time varying functions controlling low-level motion
parameters. Perlin [Perlin, 1995] applied procedural texture synthesis techniques to create
real-time responsive characters. The author managed to generate a wide variety of motions.
Additionally, Perlin and Goldberg [Perlin and Goldberg, 1996] proposed the Improv system
to create lifelike animated characters. Chin et al. [Chi et al., 2000] applied Laban Motion
Analysis to retrieve the qualitative aspects of movements. In particular, they focused on
the shape and effort properties. These parameters was then adjusted in real-time to alter

18

2.1. Motion Generation Methods

the “meaning and the dramatization enacted by the synthetic actor”. Finally, Boulic et al.
[Boulic et al., 2004] proposed a walking engine controlled by high-level parameters such as
style, speed or target location. It is important to note that a virtual human is considered as
an active system: it can move and react by itself without any external force. This means that
procedural methods often use some kind of behavioral systems to enhance the believability
of the generated character animations.

One procedure is in general dedicated to one class of animations. Hence, whenever the
user needs some new motions, he has to redesign new algorithms. However, procedural
methods are in general difficult to design. Indeed, it requires an in-depth understanding of
the underlying parameters to effectively generate the expected motions. Finally, procedural
methods rarely generate animations as realistic as motion capture ones because they fail to
reproduce subtle human motion details.

2.1.3 Physics-Based Methods

Figure 2.3: A dynamic virtual stuntman falls to the ground, rolls over, and rises to an erect
position, balancing in gravity (source: [Faloutsos et al., 2001a]).

Physics-based methods could be also thought as procedural methods. However, instead
of relying on hand-designed functions only, they also consider physical laws in order to com-
pute new motions. The character is first considered as a structure of body parts for which
we precisely know the mass distribution. Average mass distribution may be easily found in
the biomechanical literature [Winter, 2004]. The problem is then to find the joint torques
which produce the expected motion. Hodgins et al. [Hodgins et al., 1995] presented joint
controllers producing a wide range of motions such as stand, run at various speeds, ride a bi-
cycle and perform a gymnastic vault. They used finite state machines to control the different
phases of the motion and proportional-derivative control laws for low-level joints control.
This technique has been further extended by Wooten and Hodgins in [Wooten and Hodgins,
2000] to generate transitions between leaping, tumbling, landing, and balancing motions.
However, a joint controller is specific to one class of motion and it is often difficult to com-
pose them to obtain more complex behavior. To this end, Faloutsos et al. [Faloutsos et al.,
2001a] [Faloutsos et al., 2001b] presented a framework allowing users to compose simple

19

Chapter 2. Related Work

joint controllers to create more complex ones. Individual controllers only need to determine
if it is able to take control of the character dynamics depending on its current state: this
is the pre-conditions. Given these information, a supervisor controller is build to resolve
more complex tasks based on a combination of the simple ones provided by the individual
controllers. Furthermore, they proposed a learning algorithm to semi-automatically teach
the controllers appropriate pre-conditions. They demonstrated the validity of their frame-
work using a virtual stuntman able to preserve balance and to recover from a fall. Ko and
Badler [Ko and Badler, 1996] presented a two-step process for generating dynamically sound
walking motion. A kinematics locomotion generator first produces walking motions which
are dynamically modified to maintain balance and to respect stress constraints. Laszlo et
al. [Laszlo et al., 1996] applied limit cycle control to cyclic motions such as walking to
ensure that the underlying joint controllers still provide stable motions after small distur-
bances. While these methods can generate a wide variety of motions, these latter are limited
to the virtual character they have been made for. This limitation severely reduces the poten-
tial reusability of joint controllers. Hodgins and Pollard [Hodgins and Pollard, 1997] then
proposed a method to automatically adapt existing joint controllers to new characters. Their
algorithm is applied in two stages. The joint controllers parameters are first approximately
scaled with respect to the proportions of the new and the original character (sizes, masses
and moments of inertia). Afterward, the new parameters are fine-tuned with simulated an-
nealing. In particular, they demonstrated the efficiency of their method on a running child
based on the joint controllers designed for an adult. Neff and Fiume [Neff and Fiume, 2002]
proposed to enhanced the natural looking of physically generated motions by modeling the
tension and the relaxation of the character. They demonstrated that these parameters could be
introduced at joint level by taking antagonist muscles influence into account. Furthermore,
they introduced in [Neff and Fiume, 2005] a prototype system allowing the animator to first
explore the same space of solutions using high-level interfaces such as scripting and then to
refine the animation using low-level parameters. While these methods are able to generate
motions that are physically correct, they often produce mechanical animations. Moreover, it
requires a deep understanding of the physical parameters to be able to foresee the output mo-
tions. Finally, the computational times are generally too prohibitive to use such techniques
for interactive applications.

2.1.4 Motion Capture

Motion capture employs additional hardware to produce animation [Menache, 1999]. There
exists several different types of motion capture systems:

• Optical: the system is composed of a computer controlling a set of infrared cameras
capturing the three-dimensional position of reflective markers. The entire motion of
the performer is then reconstructed based on the trajectory of these markers. Chai and
hodgins [Chai and Hodgin, 2005] introduced a technique employing video cameras
and a small set of retro-reflective markers to create a low-cost, easy-to-use optical
motion capture system.

• Electromagnetic: the system is composed of electromagnetic sensors. These latter

20

2.1. Motion Generation Methods

Figure 2.4: Users wearing a few retro-reflective markers control the full-body motion of avatars
by acting out the motion in front of two synchronized cameras. From left to right: walking,
running, hopping, jumping, boxing, and Kendo (source: [Chai and Hodgin, 2005]).

measure their relative position and orientation to a magnetic reference. The motion of
the performer is then immediately known that is why these systems are often used for
real-time motion capture.

• Electromechanical: the system is composed of a suit similar to exoskeletons but
equipped with potentiometers measuring the orientation of the performer articulations.

• Video-based: this class of techniques is becoming a very active field of research.
The basic idea is to extract the motion of a performer given a video sequence. The
main difficulty comes from the fact that often only one camera is used. Moreover, no
additional hardware is used other than a simple camera.

Motion capture is now an intensively used technique to produce character animation.
Indeed, it is able to capture very subtle details of human motions that makes the final results
often more realistic than other methods. However, motion capture needs extensive post-
processing to obtain usable animations. A motion capture animation is never perfect and
always needs additional adaptation to take into account varying parameters:

1. The proportions of the virtual humans are often different than those of the performer,

2. The environment is different: the animation needs additional adjustments to ensure
that the virtual character is accurately interacting with the surrounding environment,

3. The final animations are often noisy. The noise may come directly from the rawmotion
capture data or may be added during the post-processing steps.

In this thesis, we propose in particular an interactive framework to edit such animations.

21

Chapter 2. Related Work

2.2 Motion Editing Methods

In this section, we review methods used for editing animations. We consider an algorithm
as being a motion editing method as soon as one if its main goal is to preserve the important
characteristics of the initial motion.

2.2.1 Signal Processing

Figure 2.5: Emotion-based running examples with step-constraints (source: [Unuma et al.,
1995]).

Several previous works considered each animation curve independently as a time-varying
signal. They then applied signal processing techniques to modify an input motion. In partic-
ular, Bruderlin and Williams [Bruderlin and Williams, 1995] adapted multiresolution filter-
ing, multitarget interpolation, waveshaping and displacement mapping to character anima-
tion. Simultaneously, Witkin and popović [Witkin and Popovic, 1995] described a technique
called motion warping combining time warping and displacement mapping. The user con-
veniently places keyframes for editing an input animation which serves as a set of spatial
constraints. Afterward, the displacement maps are computed for each animation curve as
these latter are warped independently. Finally, the interpolation between keyframes is based
on the changes (displacement maps) instead of being based on the absolute motion curves
values. In [Unuma et al., 1995], Unuma et al. described a simple method to represent peri-
odic motions using the so-called rescaled Fourier functional model. Then, the motions was
easily interpolated, extrapolated, or subtracted with other motions.

These methods are in general difficult to use because the manipulation of a time-varying
signal is fastidious and non-intuitive when the animator desires to modify a motion with
some precise requests. Furthermore, they do not ensure that original kinematic constraints
are preserved. When using motion warping for example, if the keyframes are not correctly
placed, then the final motion may violate important geometric constraints such as the feet
penetrating the ground or sliding.

Amaya et al. [Amaya et al., 1996] presented a technique extracting the emotional compo-
nent of a motion and applying it to other motions to add emotions. Their method is divided
into three main steps. First, the same motion is captured with different emotions: neutral,
sad, angry, etc. Then, the emotional component is extracted by subtracting the neutral mo-

22

2.2. Motion Editing Methods

tion to the emotional one. Finally, this component is applied to another neutral motion to add
similar emotional content.

2.2.2 Physics-Based Methods

Figure 2.6: Close up stills showing marker placement (lighter spheres show motion capture,
darker are virtual markers) (source: [Zordan and Horst, 2003]).

While it has been shown that a motion does not necessarily have to be physically correct
to be visually appealing [Reitsma and Pollard, 2003; O’Sullivan et al., 2003], physical laws
have been widely used to improve animations’ realism. Some methods constrained the zero
moment point of the character to remain inside its support polygon [Tak et al., 2002][Das-
gupta and Nakamura, 1999][Ko and Badler, 1996] which is a requirement for physical cor-
rectness. In [Shin et al., 2003], the authors estimated the character’s mass distribution using
reference motions known to be physically correct. Then, they touched up the animation
using different physical laws. During flight stages, they ensured that its total angular mo-
mentum was conserved. During ground stages, they used a simplified formulation of the
Zero Moment Point to ensure that the character was dynamically balanced. [Pollard and Re-
itsma, 2001] and [Yamane and Nakamura, 2003] used a dynamics filter to track a reference
motion while enforcing dynamic constraints. In [Zordan and Hodgins, 2002], the authors
controlled a physical simulation using motion capture data. The virtual human was then able
to dynamically react to external forces such as a punch. Zordan and Van Der Horst [Zordan
and Horst, 2003] proposed a novel approach to convert 3D markers position to joint angles
using dynamics. The method uses an inverse dynamics approach (instead of IK) to compute
each frame. Each marker is controlled by a spring force attracting it to a correct location.
Using internal forces, some consistency is added to avoid joint limits violation. Moreover,
they enforced footplants by using friction external forces. Zordan et al. [Zordan et al., 2005]
presented a technique mixing physical simulation and motion capture animations to simulate
unexpected impacts onto virtual characters. When an impact occurs, the physical simula-
tion drives the animation while a specialized search routine determines the best plausible
re-entry into the motion database following the impact. Neff and Fiume [Neff and Fiume,
2003] introduced the concept of aesthetic edits. Edits are procedural operations which di-
rectly influence the animation expressiveness. They in particular presented three edits: the

23

Chapter 2. Related Work

succession (how the motion spread to the body), the amplitude (similar to a scale operator)
and the extent (the spatial range of arms motion).

2.2.3 Spacetime Constraints

Figure 2.7: Top: Simple input animation depicting hopscotch (a popular child game consisting
of hops, broad jumps and a spin jump). Bottom: Synthesized realistic hopscotch animation
(source: [Liu and Popovic, 2002]).

The spacetime constraints method may be used to synthesis new motions or to edit ex-
isting ones using either kinematics or dynamics constraints. This resolution method is suffi-
ciently different from previous ones that we prefer to dedicate a whole section to this tech-
nique. Furthermore, the spacetime constraints formulation originated numerous works in
character animation.

Spacetime constraints refers to techniques computing a whole motion at once instead
of computing each frame independently. As it considers a motion as a single entity, it is
then possible to define constraints for the entire duration of the animation. Witkin and Kass
[Witkin and Kass, 1988] first introduced this formulation to the graphics community. They
considered the problem of synthesizing and/or editing an animation as a constrained opti-
mization problem. The animators specifies how the final character should perform the mo-
tion, for example by minimizing the energy expenditure. This defines the objective function
to optimize. Additionally, the users defines what the character should do. For example, a
starting and ending postures for the character. This specifies the constraints for the con-
strained optimization problem. The authors used this method in particular to generate a
hurdle jump for Luxo. They also included constraints enforcing the laws of physics and cre-
ated an objective function minimizing the amount of energy the character must expend with
its muscles. As this method is governed by the laws of physics, the results are physically
correct. To reduce computational cost, Cohen [Cohen, 1992] used spacetime windows to
focus on specific parts of the current animation and to provide the animators with interactive
feedbacks. Gleicher and Litwinowicz [Gleicher, 1997] [Gleicher and Litwinowicz, 1998]
proposed to apply the spacetime constraints technique to edit preexisting animations. As
they started with an example motions, the problem was simpler because they did not have
to specify motion details but instead had to ensure that the final solution stayed as close
as possible to the initial one. Moreover, Gleicher [Gleicher, 1998] applied the spacetime
constraints technique to perform motion retargetting. The user defines a set of constraints
that the retargetted motion should preserve. Based on this set of constraints, the spacetime
solver tries to find a motion that satisfies the previous set of constraints while minimizing

24

2.2. Motion Editing Methods

an objective function. In his algorithm, Gleicher used an objective function minimizing the
distance to the initial posture (in a joint value sense). In [Popovic and Witkin, 1999], New-
ton’s laws were applied on a simplified character to minimize computational costs. Rose et
al. [Rose et al., 1996] minimized energy consumption to obtain realistic transitions between
motions. Liu and Popović [Liu and Popovic, 2002] introduced a method for rapid proto-
typing of realistic motions. Starting from a simple animation generated using keyframing,
physical laws are enforced to produce a more realistic one, with physics. Given an input
animation, they first detect position and sliding constraints in order to separate the anima-
tion into constrained and unconstrained (flight) stages. Afterward, they generate transitions
between these stages by suggesting the user a set of previously learned transition poses. Fi-
nally, they compute the final animation by minimizing the mass displacement, the velocity
of the DoFs and by ensuring static balance. This optimization is subject to constraints on the
linear and angular momentum that directly depend on whether the character is on the ground
or airborne. Generating physically realistic animations using optimization often requires to
compute first derivative of joint torques which is of quadratic complexity. This inevitably
leads to scale problems. Indeed, when the number of DoFs increases, the computation times
become rapidly prohibitive. Fang and Pollard [Fang and Pollard, 2003] then demonstrated
that Newton-Euler equations of motion are rewritable to allow first derivatives of aggregate
forces and torques to be computed in linear time. Abe et al [Abe et al., 2004] used a frame-
work similar to the one presented in [Liu and Popovic, 2002] to generate a variety of motions
given an input one. They then generated a variety of motions in real-time by using simple
interpolation. Finally, Safonova et al. [Safonova et al., 2004] introduced a technique to gen-
erate motions using an optimization in a low-dimensional space. First, a set of reference
motions is defined by the animator to build the low-dimensional space using Principal Com-
ponent Analysis. The constraints are expressed in the world frame and then projected onto
the low-dimensional space previously built. Finally, the motion is generated by optimizing
its ”representation” in the low-dimensional space (i.e. the PCA coefficient over time). To
enforce kinematics constraints, they also used a simple IK solver. The optimization uses
an objective function which tries to minimize the torques, the jerkiness and the deviation to
original motions. The final result are represented using B-Splines representing the values of
the PCA coefficients over time.

The main drawbacks are directly related to this formulation which uses a constrained
optimization problem. Indeed, the constrains and the objective functions have to be mathe-
matically defined. This is particularly difficult when the animator is mostly interested in the
style of the final animation. For example, it is difficult (if not impossible) to mathematically
define a “walk sadly” constraint. Moreover, this approach requires solving a single math-
ematical problem for the entire motion. This leads to very large constrained optimization
problems that are usually very difficult to solve.

2.2.4 Per-Frame IK Plus Filtering

Our framework belongs to this class of motion editing techniques. We already gave its
overview in Figure 1.1. We give a more in-depth state of the art on these class of motion
editing techniques in Chapter 5 for the interested reader. As far as our knowledge goes, the

25

Chapter 2. Related Work

first work applying IK on a per-frame basis was introduced by Boulic in using the Coach-
trainee metaphor. In [Lee and Shin, 1999], Lee and Shin introduced the Per-Frame Plus
Filtering class of motion editing techniques. Choi and Ko [Choi and Ko, 2000] used an In-
verse Kinematic solver to enforce constraints in an online manner. A similar technique was
described in [Shin et al., 2001] where a concept of importance was introduced to choose, at
each frame, whether a constraint is relevant or not. Monzani et al. [Monzani et al., 2000]
proposed to use an intermediate skeleton to solve the problem of motion retargetting. Kovar
et al. [Kovar et al., 2002b] used a specialized IK solver to solve the specific problem of foot-
sliding. Kulpa et al. [Kulpa et al., 2005] used a Cyclic Coordinate Descent to enforce spatial
constraints. Moreover, they proposed a method so that the motion adaptation is morphology-
independent. Finally, Gleicher [Gleicher, 2001] proposed a taxonomy of constraint-based
techniques. Our techniques provides several improvements over existing methods. In partic-
ular, we propose to use prioritized constraints to solve conflicts. We also propose a simple
control of the trajectory of the CoM so that we can add significant deformation to an initial
animation and still ensure that the final character is balanced. Finally, we also provide new
classes of constraints to help the animators specify their needs.

2.3 Motion Database-Based Methods

Even though techniques relying on motion databases to produce new ones are beyond the
scope of this thesis, we give an overview of the most significant works in this field. We first
present generic methods to retrieve data from a database. In particular, we present methods
focusing on motion retrieval. We present afterward methods combining motions such as
blending and motion graphs techniques.

2.3.1 Data Retrieval

The vast majority of the following techniques are based on the same idea:

1. perform a dimension-reduction transform to project the sequence-space S onto the
feature-space F ,

2. define a correct similarity metrics in F ,

3. find good potential matches in F (without discarding good matches),

4. post-process the results in the S to keep only good matches.

Agrawal et al. [Agrawal et al., 1993] proposed a method to search for whole sequences of
data in a database. Given N sequences of length n, they first apply n-point Discrete Fourier
Transform (DFT) and keep the first f coefficients only. Thus, a sequence is projected onto a
f-dimensional point. Finally, all these f-points are organized for fast searching (using R∗ −
Trees [Beckmann et al., 1990], R − Trees [Jagadish, 1990] [Sellis et al., 1987] [Guttman,
1984], linear quadtrees [Orenstein, 1986] or grid-files [Nievergelt et al., 1984]). Given a
query Q with a tolerance ε, they then apply the n-point DFT. The f-dimensional points that

26

2.3. Motion Database-Based Methods

Figure 2.8: Retrieval result of walk-forward (source: [Liu et al., 2003]).

are at a distance less than ε are then retrieved. To ensure that all potential positive matches
are found, the distance in feature-space must underestimate (or even match) the distance
in the sequence-space. Faloutsos et al. [Faloutsos et al., 1994] extended this method to
subsequences matching. They compute the corresponding trail of each sequence in feature-
space by performing the DFT on each subsequence using a sliding window of length w.
Storing all the resulting trails in aR−tree is not efficient. So, they first divide trails into sub-
trails. Then, each Minimum Bounding Rectangle (MBR) is computed and stored. Finally,
they use a hierarchical MBR representation. To search a subsequence, they project it into the
feature-space and retrieve all the subsequences whose MBR contains the previous projected
point. To search queries longer than w, they divide the query into p sub-queries of length w.
Then, each sub-queries is performed with a tolerance of ε√

p
. Finally, the results are merged

to remove false matches. Chan and Pu [Chan and Fu, 1999] proposed a similar method
using wavelet for features extraction. Moreover, they introduce the v-shift similarity: the
average of the sequences is subtracted before computing the Euclidean distance. Rafiei and
Mendelzon [Rafiei andMendelzon, 1997] proposed a set of linear transformations applied on
the index allowing a wider range of possible queries. Keogh et al. introduced in [Keogh et al.,
2001] a new simple technique for dimension reduction called Adaptive Piecewise Constant
Approximation (APCA). Each time serie is compressed by:

• Approximating it with a set of segments (of varying length),

• Replacing each segment by its mean.

Finally, the time-serie is associated to the set of the mean values. The authors also introduced
2 new metrics:

27

Chapter 2. Related Work

• An approximate Euclidean measure that is very close to the corresponding Euclidean
metrics but may overestimate the errors in feature-space (compared to the metrics in
the original space) leading to false dismissals.

• An exact Euclidean measure that does underestimate the errors but is less accurate.

In [Vlachos et al., 2003], Vlachos et al. used a method which can accommodate two differ-
ent metrics: The Longest Common SubSequence (LCSS) and the Dynamic Time Warping
(DTW).

One restriction is that these methods directly rely on numeric metrics. Doing so com-
pletely discard semantics information. For example, two sequences could be quite different
in shape but represent the same logical event.

A common strategy to easily retrieve motions from a database is to first annotate these
motions and then, depending on these annotations, retrieve the corresponding animations.
Moreover, special editing operations are often required such as cropping the frames of inter-
est. However, this technique is limited to only short animations (clips). Indeed, the longer an
animation is, the less intuitive the annotation process becomes. Moreover, if an animation is
too long, the final annotations tend to become useless. Liu et al. [Liu et al., 2003] proposed a
method to retrieve motions from example queries. First, the hierarchy is divided considering
5 sets of joints from parent to children joints (root, LHip, RHip, Chest, etc). Then, all the
motions of each set of joints (one after the other from the parents to the children) are classi-
fied using dynamic clustering. Similar motions are associated to the node and a sample set
representing the clusters is extracted and put in the node. This process is repeated until level
5 is reached. To retrieve a motion, each set of joints of the query (from top to bottom) is
considered independently. They choose the k-nearest motions (contained in few nodes) and
repeat the process until a leaf is reached. Instead of computing similarity between two entire
motions, they extract keyframes representing the motions and compute the distance based
on these keyframes two extract the matches. Emering et al. [Emering et al., 1998] used a
similar approach to hierarchically recognize live motion captured animations. A motion is
divided into 5 layers:

1. CoM velocity,

2. end-effectors velocities,

3. CoM position,

4. end-effectors positions,

5. whole body posture (joints values).

Then the motion retrieval is performed starting with the first layer. The potential candidates
are then checked using the second one and so on. This approach builds a coarse-to-fine mo-
tion retrieval (starting with a low-cost similarity metrics with low discrimination and ending
with a high-cost similarity metrics with a high discrimination). This technique achieves real-
time rates which is its main contribution. However, it is difficult to prove that it does not end
with false dismissals, which is an important property of common data retrieval algorithms.

28

2.3. Motion Database-Based Methods

Kovar and Gleicher [Kovar and Gleicher, 2004] used motion clips as requests. First, a match
web is constructed for each pair of motions in the database. Then, given a query (which
already belongs to the database), all the segments that satisfy a specific distance criteria are
retrieved. These results are then used as intermediate queries to initiate new searches. Fi-
nally, the retrieval stops when no new clips are added. This method is quite powerful and
gives good results. However, using a motion clip as a request is not suited to retrieve a mo-
tion from scratch as the user needs to first browse the database to find an initial guess. Thus,
instead of using motion clips and corresponding annotations to query a motions database,
Sakamoto et al. [Sakamoto et al., 2004] proposed a method based on key-postures to retrieve
adequate clips from a data set. The whole database is first projected onto a two-dimensional
space using Self-Organizing Map (SOM) while keeping topological relations of metrics in
the higher space. Key-nodes are then kept by first clustering the nodes in the Motion Map
and for each resulting region, choosing the closest node to its center to represent the whole
cluster. Finally, clips are retrieved based on key-nodes chosen by the user on the Motion
Map. Jenkins and Matarić [Jenkins and Mataric, 2002] used a motion capture database, per-
form dimension reduction using spatio-temporal isomap. Afterward, the result is clustered
to extract behaviors. Finally, this process is repeated to extract behaviors of higher level.
Cardle et al. [Cardle et al., 2003] applied the common data retrieval method to motions. In
[Keogh et al., 2004], Keogh et al. proposed a method using uniform scaling for their simi-
larity criterion instead of using the Euclidean distance or dynamic time warping. To evaluate
the distance between a query Q and a candidate C, all the possibilities are computed (i.e all
the possible scaling factors). To prune the search, they introduced a lower-bound distance
using Maximum Bounding Envelope. Finally, they proposed a simple but effective way to
index the data (high-dimensional as it is motions) to speedup the search. These methods
do not take the environment into account. In particular, while retrieving motions interacting
with objects in the scene, the post-processing (motion editing) due to the enforcement of
interaction constraints tends to annihilate all the benefits of these methods. For example, if
one wants to retrieve all the “sit down” motions to apply them onto a chair, the time spent
to first define the constraints, and then to enforce them so that the character effectively sits
down correctly would be prohibitive. Hence, these methods still require motion editing to
ensure that the retrieved motion will correctly interact with the surrounding environment.

2.3.2 Motion Combination

A common method to produce new motions given example ones is to blend them accord-
ing to weights. However, directly interpolating between weighted motions is not practical.
Indeed, manually determining the weights for each motion is not acceptable for animators.
Hence, motion blending techniques often provide high-level parameters to control this in-
terpolation. Rose et al. pioneered this field by introducing in [Rose et al., 1998] a method
to parametrized the motions contained in a database using verbs and adverbs. The verbs
represent the type of motion and the adverbs the interpolation parameters (the weights). The
main problem is then to construct a continuous application that, given an adverb, returns the
interpolation parameters. This is commonly called multivariate interpolation. The authors
solved this problem first using a low order linear polynomial to roughly approximate the

29

Chapter 2. Related Work

Figure 2.9: In addition to matching the annotations, a specific frame or motion can be forced
to be used at a specific time. Here, the person is forced to pass through a pushing frame in the
middle of the motion while running before and after the pushing (source: [Arikan et al., 2003]).

adverbs space. Then, Radial Basis Functions were used to locally adjust the polynomial.
They additionally constructed a verb graph. As a result, given a set of verbs and adverbs,
they were able to compute associated weights for computing the needed motions. Park et al.
[Park et al., 2002] used a similar technique to provide a continuous control for real-time loco-
motion. Kovar and Gleicher [Kovar and Gleicher, 2003] then introduced registration curves
to automatically compute allowed transitions between motions instead of doing it manually.
Finally, Glardon et al. [Glardon et al., 2004] proposed a hierarchical space reduction based
on Principal Components Analysis (PCA). They then linearly interpolated the weights in the
PCA space to generate new walking and running motions. Mukay and Kuriyama [Mukai and
Kuriyama, 2005] improved the RBF-based interpolation using geostatistics. Finally, Park et
al. proposed in [Park et al., 2004] the memory-based motion simulation. Given a task to
perform, their algorithm first extracts relevant preexisting motions from a motion database:
the root motions. Each root motion is then adapted by correcting each animation curve in-
dependently. These latter are first segmented in strictly increasing parts, strictly decreasing
parts and stationary parts. Each segment is then adapted to preserve the overall shape of the
animation curves and to satisfy the desired goal.

Other methods focused on “attaching” motion clips one after each other to construct
potentially infinite animations. These methods are known as motion graphs [Kovar et al.,
2002a; Arikan and Forsyth, 2002; Lee et al., 2002]. The idea is to precompute a graph
of motion clips to encode potentially acceptable transitions. These latter are automatically
constructed by identifying frames where motions are similar. Then, they used path search
algorithms to extract new motions satisfying user-defined constraints such as a posture at a
specific time or a path to follow. Arikan et al. [Arikan et al., 2003] further extended this
technique to take motion annotations into account. The user first needs to annotate few mo-
tions. Then, based on a Support Vector Machine classifier, new annotations are automatically
added to the remainder of the database. They were able to generate motions that first wave,
then run and finally walk. Finally, Reitsma and Pollard [Reitsma and Pollard, 2004] em-
pirically evaluated the ability of a particular motion graph to reach different portions of the
environment.

30

CHAPTER 3

Designing Postures Using Inverse
Kinematics

Motion capture has recently become an appealing method to animate virtual characters.
Indeed, one of its great advantages is its ability to rapidly produce very convincing motions
with a limited amount of effort. However, the process leading from data acquisition to an-
imation retargetting often introduces artifacts which the animators have to correct. Hence,
animators still need important control over the results to correct and adjust any undesirable
character’s posture. For example, foot sliding is a common problem when dealing with mo-
tion captured animation. In fact, if the performer and the virtual character do not have the
same limb size, such artifacts may occur and must be manually corrected.

One way to correct the posture of a virtual character is to use forward kinematics: the
animator manually specifies the state vector (i.e. the posture) θ = (pr, q1, · · · , qnjoints

).
The position of the end-effectors e we are interested in is then easily computed using the
following kinematic equations:

x = f(θ) (3.1)

where x is the current position and/or orientation of the end-effectors and f the function
which computes x given the state vector θ.

The computation of the solution is very fast as the function f is well-defined: it is the
composition of all the transformations from the end-effector up to the root of the hierarchy.
Unfortunately, forward kinematics inherently is a trial-and-error process which is tedious and

31

Chapter 3. Designing Postures Using Inverse Kinematics

time consuming if the number of DoFs present in the virtual character is important (typically
more than fifty for human models without considering the fingers). For example, if the
animator needs to position the foot of a virtual character in order for it to be on the ground,
he has to specify the joint values for the root of the hierarchy, the hip, the knee and finally the
ankle. Then, if the foot cannot be correctly positioned because the joint value of the hip is
not adequate for example, the animator needs to change all the joint values for all the joints
from the hip down to the foot. Indeed, moving the hip also moves the knee, the ankle and the
foot at the same time. Hence, the animator has to perform subsequent adjustments to obtain
the expected results.

For that reason, tools to help animators have been extensively developed during the last
years. In particular, IK provides capabilities to easily and rapidly define postures. Instead of
specifying the value of each joint of the hierarchy by hand, the animator provides the desired
position x of the end-effectors. The IK is then in charge of automatically determining a
posture θ that satisfies the specified tasks. We then need to solve:

θ = f−1(x) (3.2)

where x is the desired position of the end-effectors (i.e. the tasks) and f−1 the function
that computes the state vector θ given x.

If there are less than seven DoFs in the hierarchy, then f−1 is well-defined and can be
analytically computed. Analytical IK has the advantage of being extremely fast to compute.
Furthermore, it leads to a finite number of solutions. As a result, all the solutions may be
computed and the optimal solution can be chosen afterward depending on some predefined
criteria (collision avoidance, energy consumption, closest one, etc).

However, if the hierarchy contains too many DoFs (typically more than seven) then f−1

is very difficult to compute. In this case, we need to use specific numerical methods to
iteratively converge toward a solution. These methods work for any kind of hierarchy but
are often more difficult to control than analytical ones. In particular, if there are few tasks
with respect to the number of DoFs in the hierarchy, then the problem may have an infinite
number of solutions: it is said to be underconstrained or redundant. We then need to choose
the best solution among all the possibilities.

The control of complex articulated figures using IK often requires that we simultaneously
apply multiple tasks. For example, a task may control the position of a hand to simulate a
reaching action while another task controls the balance of the virtual human. These config-
urations may lead to conflicts between tasks because some are not achievable at the same
time, whilst they can be separately. Conflicts may arise when one or more joints are shared
by several tasks. Several strategies have been proposed to resolve those conflicts. A first
possibility is to find a trade-off solution, where no task is achieved exactly, but each residual
error is minimized. This solution consists in assigning a weight to each task to control the
distribution of the residual error: this is known as the weighting strategy. A second possibil-
ity is to sort the tasks by order of priority, in order to satisfy the most important tasks first.
This solution is known as the priority strategy.

In this chapter we first present related work on IK. Then, we introduce our priority-
based numerical IK solver in Section 3.2. In Section 3.3 we present experimental results and

32

3.1. State of the Art in Inverse Kinematics

improvements (different parameterizations of complex articulations, different convergence
methods, IK parameters, etc). We also present benchmarks we have performed to emphasize
its good convergence properties. Finally we conclude this chapter by discussing its advan-
tages and limitations with respect to previous approaches.

3.1 State of the Art in Inverse Kinematics

This section presents a state of the art of the major contributions in IK. Due to the vastness
of this field (in robotics as well as in computer graphics), this review is not intended to
be exhaustive but proposes some guidelines to help deciding which method is best suited
depending on the problem we are dealing with.

3.1.1 Analytical Methods

It has been shown that for articulated figures containing up to six DoFs, the nonlinear kine-
matic equations are analytically solvable if the kinematic chain is carefully designed. For
example, an articulated figure made of six revolute joints has an analytical solution if and
only if three neighboring joint axes have an intersection [Paul, 1981; Craig, 1986]. Analyti-
cal resolution of the IK problem has several advantages:

1. The solution is very fast to compute. This is especially important in computer graphics
since real-time interaction with virtual humans is an important issue when designing
animation tools for animators.

2. The set of solutions is finite and then can be entirely computed. In robotics for ex-
ample, it may be important to test all the possible solutions (that is all the postures of
the robot manipulator satisfying the task) and then choose the best one to deal with
external considerations such as collisions with the environment.

3. The solutions are repeatable: the set of solutions is always the same given a specific
task (no matter what the initial posture is). The animators may then redesign the same
posture even after numerous manipulations of the virtual human.

Korein presented in [Korein, 1985] a method to analytically solve the IK problem for
anthropomorphic arms. The exposition deals with two problems: the control of the position
only using four DoFs and the control of the position/orientation using seven DoFs. The
algorithm may be decomposed as follows:

1. Compute the elbow joint angle respecting its joint limits.

2. Determine the circle to which the elbow is constrained to lie. This determine the
interval for the swivel angle.

3. Compute the arcs of this circle respecting the joint limits of the shoulder (and the wrist
while controlling the orientation). This gives acceptable intervals for the swivel angle.

33

Chapter 3. Designing Postures Using Inverse Kinematics

4. Choose an adequate value for the swivel angle.

5. Finally solve the IK problem knowing the elbow position and angle.

Tolani presented a similar technique in [Tolani et al., 2000] to solve a part of the IK
problem and used a numerical method to take into account joint limits (see Section 3.1.4).

3.1.2 Numerical Methods

Newton-Raphson Methods

The Newton-Raphson method is a technique to iteratively compute the solution of systems
of nonlinear equations [Ortega and Rheinboldt, 2000]. In the IK context, the problem is then
to find the root θ∗ of the following set of nonlinear equations given a good approximation of
the solution θ0:

g(θ) = f(θ)− x = 0 (3.3)

Using a first-order approximation of f about θ0 leads to a set of linear equations character-
ized by a Jacobian matrix relating differential changes of θ to differential changes of x. The
system is then solved to find an approximation of the solution. It is important to note that due
to the nonlinearity of g, this solution is accurate only when a good estimation of the solution
is used as the starting point. In other words f(θ0) − x must be sufficiently small to ensure
that this method converges toward a good solution. As it is rarely the case, we have to solve
sub-problems by converging toward intermediate goals, each intermediate solution being the
starting point for the next sub-problem.

Resolved Motion Rate Control Methods

Whitney introduced in [Whitney, 1969] the resolved motion rate control method. Given
a velocity task (speed and direction) for an end-effector, his approach computes the rates
(angular speed) of the joints satisfying the task. Such a task could be to move along a straight
line or a constant axis rotation. By differentiating the kinematic equations, he obtains a set
of equations relating the velocity of the end-effector to the angular velocities of the joints
thanks to the Jacobian. Finally, given the velocity of the end-effector (the task) and using
a weighted pseudoinverse to invert the Jacobian, he solves the problem in order to find the
adequate angular velocities of the joints. Numerous methods have extended this technique
to deal with position tasks by integration of the velocities previously computed. Though this
is not strictly the case, these methods are often also referred to as Resolved Motion Rate
Control Methods.

Liégeois then proposed in [Liégeois, 1977] an extension of the general solution of the
linearized kinematic equations. By exploiting the null space of the Jacobian, this method is
used to minimize an additional criterion such as the deviation of the joints from their neutral
posture (the middle of their range of motion). Following this, Klein and Huang [Klein and
Huang, 1983] investigated the main drawbacks of using the pseudoinverse for controlling
redundant manipulators. In particular, they showed that if one constrains the end-effector

34

3.1. State of the Art in Inverse Kinematics

onto a cycling path (a square in their example), the state vector cannot be known in advance
for a specific location of the end-effector on that square. Even worse, the configuration of
the kinematic chain tends to drift after each cycle. They proposed to use the redundant space
left by the primary task to minimize an additional criterion in order to avoid these kinds of
behaviors. Hanafusa et al. [Hanafusa et al., 1981] proposed an analysis of the manipulabil-
ity and the redundancy of a kinematic chain. They qualitatively expressed the redundancy
as being the set of vectors mapped to 0 by the Jacobian J (i.e. N(J), the null space of
J). They then used this redundancy to solve the kinematic problem for two different tasks
with order of priority. Nakamura et al. [Nakamura et al., 1987] presented the idea of task-
priority when dealing with IK in more detail. Similarly, Maciejewski and Klein proposed in
[Maciejewski and Klein, 1985] a formulation of the task-priority scheme with a simplified
formula. The highest priority task is used to constrain the end-effector to follow a specified
trajectory. The lower one is created in order for the obstacle avoidance point (the point of
the chain which is closest to an obstacle) to be repulsed from the closest obstacle. Sicil-
iano and Slotine [Siciliano and Slotine, 1991] generalized this concept to handle an arbitrary
number of priority-tasks using a recursive formulation. Finally Baerlocher [Baerlocher and
Boulic, 1998] proposed an efficient and recursive solution speeding up the computation of
the projectors onto N(J).

Singularities is an unavoidable problem when controlling articulated figures. Nakamura
and Hanafusa [Nakamura and Hanafusa, 1986] introduced the singularity-robust inverse (or
damped least squares inverse) as an alternative to the classical pseudoinverse to overcome
the problem of singularities. Instead of minimizing the residual error at all costs (hence pro-
ducing huge variations of the joint values near singularities) they proposed to simultaneously
minimize the residual error and the solution norm. These two components are scaled in or-
der for the solution’s norm to have a high weight while in the proximity of singularities and
the residual error to become the most important criteria to minimize while in a singular-free
area of the configuration space. Maciejewski and Klein proposed in [Maciejewski and Klein,
1988] more sophisticated methods to dynamically determine the damping factor depending
on the smallest singular value. This method has the advantage not to perturb the solution
for well-conditioned configurations (i.e. far from a singular configuration) while retaining
the important characteristics of the damped least squares solution on (or in the neighbor-
hood of) a singular configuration. Finally, Chiaverini proposed in [Chiaverini, 1997] a new
formulation of the task-priority resolution scheme to overcome the problem of algorithmic
singularities. It is worth noting that this last mentioned paper makes the frequent mistake of
using the damping least squares inverse to compute the projectors. In fact, important prop-
erties of the pseudoinverse do not hold anymore. This leads to a violation of the priority
hierarchy as demonstrated in [Baerlocher and Boulic, 1998].

Jacobian Transpose Method

The Jacobian transpose method is quite similar to the resolved motion rate control one but
instead of using a pseudoinverse of the Jacobian, it directly relies on its transpose. It has been
introduced by Wolovich and Elliot in [Wolovich and Elliot, 1984]. Welman [Welman, 1993]
discussed this method for interactive manipulation. Sciavicco and Siciliano [Sciavicco and
Siciliano, 1988] extended the Jacobian transpose method to redundant manipulators. Hence,

35

Chapter 3. Designing Postures Using Inverse Kinematics

they can handle collision avoidance as well as joint limits using the problem’s redundancy.
Das et al. [Das et al., 1988] also extended this method in order to satisfy a second criterion.
However, while in singular configurations, they suggested to use a singular value decomposi-
tion as an alternative method for the projection onto the null space of the Jacobian. Doing so,
they lose the advantage of using the transpose instead of the pseudoinverse of the Jacobian.

Each iteration of the Jacobian transpose method is very fast to compute since it does not
need any computation of a pseudoinverse. However, this method is known to have very poor
convergence characteristics and, for most manipulator configurations, it takes many more
iterations before reaching a goal. As a consequence, the overall computation time is often
worse than those of pseudoinverse-based methods.

3.1.3 Cyclic-Coordinate-Descent Method

The Cyclic-Coordinate-Descent (CCD) method is an iterative heuristic technique which min-
imizes an objective function by considering one joint at a time. Each iteration traverses the
kinematic chain from the most distal joint to the base. Blow proposed in [Blow, 2002] an
extension to the CCD to handle joint limits for an arm-like kinematic chain. As for the Jaco-
bian transpose method, whilst the cost of a single iteration is very low, it suffers from poor
convergence properties. Moreover, this method considers one joint at a time beginning with
the most distal one. As a result, if the goal is close to the end-effector, only a few joints
participate to the achievement of the task, leading to unpleasant configurations. Welman
[Welman, 1993] also proposed a comparison between the Jacobian transpose and the CCD
methods. Finally Kulpa et al. proposed in [Kulpa et al., 2005] a hierarchical CCD adapted
to human-like figures in order to improve the realism of resulting postures. The skeleton is
firstly subdivided into six groups of joints. A hierarchical CCD is then applied to each inde-
pendent subgroup to ensure that only joints which are necessary to the tasks’s achievement
are actually used. Their CCD-based IK solver additionally handles priorities as well as CoM
positioning.

3.1.4 Hybrid Methods

Lee and Shin presented in [Lee and Shin, 1999] a specialized IK solver dealing with human-
like figures. The overall method is an optimization-based method which computes the joint
value of a given a set of constraints. In order to reduce the number of variables to optimize
for (hence speeding up the algorithm), the hierarchy is chopped so that joint values for the
limbs are specifically solved using an analytical IK solver.

Tolani et al. [Tolani et al., 2000] presented a specialized IK method for Human-Arm-Like
chains. Their algorithm uses a combination of analytical and numerical methods to deal with
anthropomorphic limbs with seven DoFs. The redundant DoF is set by specifying the swivel
angle. In cases where the goal is not reachable (because of joint limits for example), they first
divide the problem into an analytical and a numerical part. They then use an optimization
method to solve the reduced numerical problem.

Similarly, Shin et al. in [Shin et al., 2001] proposed an hybrid method to handle human-
like articulated figures with 4 end-effectors (one for each limb) potentially having different

36

3.2. An HAnim Inverse Kinematics Solver

weights. They decomposed the IK problem into three sub-problems. The root position is
first adjusted in order to minimize the weighted distance to the goals. Afterward, they ensure
that all the goals are reachable given the new root position. To do so, the goals define 3D
balls corresponding to the range of the root to ensure that they are reachable. Those 3D balls
then define an intersection area that must contain the new root position. If it is not the case,
then it is projected onto this surface. The body posture of the character is then optimized by
minimizing an objective function. Finally, the posture of each limb is computed so that the
goals are achieved. These two last steps are quite similar to the technique used in [Lee and
Shin, 1999].

3.1.5 Conclusion

In the previous sections, we have reviewed the most important works on IK. In the next
section, we present our IK solver. It is based on the resolved-motion rate control and this, for
several reasons. First of all, we need to deal with any kind of hierarchies. As a consequence,
analytical methods are not satisfactory as they are limited in the number of DoFs they can
handle. Secondly, we need to achieve interactive rates. Jacobian transpose-based methods
are known to have very bad convergence properties. Hence, this is clearly not a method to
investigate. While the Cyclic-Coordinate-Descent method has proved to be reliable in some
specific contexts, we believe that it is hardly usable in general. In particular, it often relies on
some heuristics to compute the final solution. These heuristics are often directly dependent
on the hierarchy. Finally, our IK solver uses priorities to arbitrate conflicts. Whilst weights
may be used in such situations, priorities lead to a more intuitive solution as the tasks are
hierarchically sorted to compute the final solution.

3.2 An HAnim Inverse Kinematics Solver

In this section, we first present the importance of using a standard such as HAnim. Then,
the IK problem is stated using a numerical approach. Finally, we review the strategy to
resolve conflicts between tasks: the priority strategy. Note that the original algorithm is
presented in more detail in [Baerlocher, 2001]. However, for clarity purposes, it is important
to summarize it in order for the reader to clearly understand the issues we are dealing with.

3.2.1 The HAnim Standard

HAnim is a standard which provides an abstract representation for modeling three dimen-
sional human figures [HAnim]. Hence it allows for instance to exchange data between differ-
ent HAnim-compliant applications. As we want to handle any kind of articulated structure
(either human-like or multi-legged robots) we have thus adopted this standard.

The architecture of our IK solver is organized around HAnim-compliant data structures.
This choice makes the algorithm more generic.

One of its most important advantages is the extension of the family of joint types. We are

37

Chapter 3. Designing Postures Using Inverse Kinematics

now able to parametrize complex three dimensional articulations with a single exponential
map. In prior approaches, these complex articulations were decomposed in a succession of
three revolute joints with a common center of rotation. Although it is theoretically valid, this
parameterization is subject to the gimbal-lock singularity [Watt and Watt, 1992]1. Adopt-
ing the new joint types with their exponential map parameterization remove this singularity
provided that we choose an adequate initial configuration for the articulation.

3.2.2 Inverse Kinematics Problem Statement

The IK problem can be stated as follows: given a kinematic chain parametrized by a state
vector θ with njoints joints and n DoFs (with n ≥ njoints) and given a task to satisfy x =
(x1, · · · ,xm) with mtasks sub-tasks and m the dimension of the so-called task-space (with
m ≥ mtasks), determine a solution to the following system of nonlinear equations:

x = f(θ) (3.4)

where x and f are known.

Consider for example a kinematic chain made of njoints joints parametrized using unit
quaternions and a single task expressed in SE(3), then the function f may be defined as:

f : R3 × S3njoints −→ SE(3)

(pr, q1, · · · , qnjoints
) �−→ Mt(pr)

1∏
i=njoints

Mr(qi)

whereMt(pr) is the transformation matrix corresponding to the global position of the root of
the hierarchy andMr(qi) is the transformation matrix corresponding to the unit quaternion
qi.

So, the problem could be thought of as determining the state vector θ providing the
function f and a task to satisfy x. So, we must solve:

θ = f−1(x) (3.5)

As previously stated, the approach to solve this equation is quite different depending on the
number of DoFs of the kinematic chain. If the kinematic chain is simple enough (i.e., con-
tains less than seven DoFs), then an analytical resolution is well-suited [Paul, 1981; Craig,
1986; Tolani et al., 2000]. Otherwise, a numerical resolution of the IK problem must be
considered. In our context, flexibility and genericity are major issues: we need to deal with
arbitrary complex articulated figures (such as a whole virtual human) without restriction.
Hence, we chose to solve the IK problem using a numerical algorithm.

1This occurs when the y-axis rotation is ±π/2. We then lose one DoF as both x-axis and z-axis become
aligned.

38

3.2. An HAnim Inverse Kinematics Solver

3.2.3 Inverse Kinematics Numerical Resolution

Overview of the Resolution Method

Equation (3.4) cannot be solved by simple inversion of the function f since it is generally
nonlinear. Hence, we need to use more sophisticated methods. Our algorithm is based on
the Newton-Raphson method which is similar to resolved motion rate. Each step i of the
iterative algorithm may be summarized as follows:

1. Linearize function f about state vector θi.

2. Compute the Jacobian matrix J obtained during the linearization of function f .

3. Solve the resulting set of linear equations for a small joint values increment Δθ by
inverting the Jacobian matrix. We must take special care when dealing with singular
Jacobian matrices.

4. Take the new configuration θi+1 = θi +Δθ as the new starting point for the next step.
Note that f(θi+1) must be closer to the solution than f(θi), otherwise, the algorithm
may not converge toward a solution.

These steps are iteratively repeated in order for the algorithm to finally converge toward a
solution which locally satisfies the residual error of equation (3.5).

Linearization of equation (3.5)

Let h be a nonlinear function of one variable x and x∗ be a root of h. We use the Newton-
Raphson method to solve the nonlinear equation h(x) = 0. It consists in replacing the
nonlinear function h at the iteration i by a linear function about the current configuration xi.
Hence, each iteration of the algorithm is defined as:

xi+1 = xi − h′(xi)−1h(xi) (3.6)

where h′(xi) is the first derivative of function h at point xi with respect to parameter x. If we
consider the set of nonlinear equations expressed in equation (3.4), we want to find a solution
for the following equation:

g(θ) = f(θ)− x = 0 (3.7)

Using equation (3.6) we can find a solution to the previous equation using the Newton-
Raphson algorithm:

θi+1 = θi − J−1(θi)g(θi) (3.8)

where J(θi) is them×n Jacobian matrix of all first-order partial derivatives of function f (as
well as g since f and g only differ about a constant vector which vanishes when computing
the partial derivatives). Hence, given the unknown joint values increment Δθ = θi+1 − θi

we have:
Δθ = −J−1(θi)g(θi) (3.9)

39

Chapter 3. Designing Postures Using Inverse Kinematics

Replacing g results in:
Δθ = −J−1(θi)(f(θi)− x) (3.10)

Finally, using the known task increment Δx = x− f(θi) leads to:

Δθ = J−1(θi)Δx (3.11)

Computing the Jacobian Matrix

The Jacobian matrix J maps differential changes of the joint values dθ to differential changes
of the task coordinates dx and is a function of the current configuration θ. The task Jacobian
matrices for revolute and ball-and-socket joints are summarized in [Baerlocher, 2001].

Solving the Linear System

Equation (3.11) can be solved in order to obtain a joint values increment Δθ after having
computed the Jacobian matrix J and a desired task increment Δx. However, this system is
usually underconstrained as the dimension of the task space is often lower than the one of
the joint space. As a result, the Jacobian is not directly invertible. Hence, instead of using
the inverse J−1 of the Jacobian matrix J , we use the pseudoinverse J†.

Moreover, the solution space can be partitioned into two orthogonal subspaces: the null
space of J ,N(J), which provides the set of solutions that do not contribute to the satisfaction
of the problem, and its orthogonal complementN(J)⊥ which of course, contributes. Hence,
a general solution is composed of two terms: a particular solution with minimum norm
(belonging to N(J)⊥) to satisfy equation (3.11) as well as possible, and a homogeneous
solution (belonging to N(J)) which can be used to satisfy an additional criterion. Hence,
the problem can be summarized to solving the linear equation:

Δθ = J†(θi)Δx + PN(J)z (3.12)

where PN(J) is the orthogonal projection operator onto N(J) and z an arbitrary vector. The
vector z can be used to optimize a specific criterion such as minimizing the distance to a
reference configuration [Liégeois, 1977].

Choice of Intermediate Goals

As stated before, the Newton-Raphson method must be initialized with a good starting point
because of the nonlinearity of function f . In other words the difference between the current
state f(θ) and the task to achieve x must be small. This is rarely the case as in common
situations, the end-effector is far from the goal to be achieved. The tracking error defined
as being Δx − (f(θi+1) − f(θi)) is thus too large: the algorithm may not converge to a
satisfactory solution. Hence, we need to divide the problem into smaller ones by choos-
ing intermediate goals between the starting location of the end-effectors and the task to be
achieved x in order for Δx to be sufficiently small. Press et al. [Press et al., 1992] proposed
the line search and backtracking method which consists in scaling down the solution until
the tracking error is below a given threshold. Watt and Watt described in [Watt and Watt,

40

3.2. An HAnim Inverse Kinematics Solver

1992] a trial and error method: if the tracking error is too important, the task increment Δx
is subdivided and the solution recomputed. This process is repeated until the tracking error
is acceptable. While these methods generally require less inversions of the Jacobian matrix,
they need additional evaluations of the function f . Hence, the selected method is to use
empirically computed fixed-length steps instead. This method has the advantage of being
simple [Baerlocher, 2001].

3.2.4 Damping the Solution

The problem becomes ill-conditioned in the proximity of singularities: the norm of the re-
sulting solutionΔθ tends to infinity [Maciejewski, 1990]. This is unacceptable as it violates
the small increments hypothesis of equation (3.11) and tends to result in undesired behaviors
of the kinematic chain. For this reason we must use a damping factor λ to constrain the norm
of the solution to remain under a specific threshold. We discuss the damping factor impact
in Section 3.3.2.2.

Hence, the following weighted combination of tracking error and solution norm is mini-
mized instead of minimizing the tracking error alone:

‖J(θ)Δθ −Δx‖2 + λ2 ‖Δθ‖2 (3.13)

where λ weights the relative importance of tracking error versus norm of the solution.
When λ = 0, only the tracking error is minimized and it is equivalent to the previous solution.
As a consequence, when λ increases, the solution norm is forced to decrease.

To minimize the error of equation (3.13) we use the so-called damped least squares
inverse. This technique has been proposed by Nakamura et al. [Nakamura and Hanafusa,
1986]. The damped least squares inverse of J is defined as follows when λ > 0:

J†λ

= JT (JJT + λ2Im)−1 (3.14)

Finally, using damped least squares inverse, the IK problem can be stated as solving the
following linear equation:

Δθ = J†λ

(θi)Δx + PN(J)z (3.15)

The next section presents our algorithm to solve conflicts between tasks.

3.2.5 Dealing with Conflicting Tasks: the Priority Strategy

When manipulating multiple tasks, it may happen that some of them cannot be achieved
simultaneously while they can separately: these tasks are said to be in conflict. Two main
methods have been proposed to resolve these conflicts: the weighting and the priority strate-
gies. The weighting strategy tries to minimize the distribution of the residual error among
the tasks using weighted tasks. This method leads to a compromise where none of the tasks
is precisely achieved. On the other hand, the priority strategy uses priority layers to reflect

41

Chapter 3. Designing Postures Using Inverse Kinematics

relative importance between tasks. The tasks belonging to the highest priority layer are en-
forced first. Then, those of the next priority layer are satisfied as much as possible without
disturbing the previous ones, and so on. Figure 3.1 conceptually explains the difference be-
tween weighting and priority strategies. Moreover, Figure 3.2 shows a practical example of
conflicting tasks and the solution depending on the methods. Consider the conceptual exam-
ple of Figure 3.1 using three tasks, T1, T2 and T3 where priority T1 < priority T2 < priority
T3. The solution belongs to the solution set of T3. All solutions on the green arc minimize the
residual error to T2. The resulting solution is then the point from the green arc minimizing
the residual error to T1. Conversely, the weighting strategy leads to a compromise solution
(shown in red) where no task is achieved.

Whole solution set

Solution set of T

Solution set of T

Solution set of T

1

2

3

Figure 3.1: Conceptual illustration of the difference between weighting and priority strategies
(priority T1 < priority T2 < priority T3). Green: Solution using priority strategy. Red: Solution
using weighting strategy.

In general, it is unpleasant for an animator to obtain a compromise between conflicting
tasks. He should be able to specify which tasks should be achieved first and which ones
are less important. For example, if we consider a collision avoidance task, it is obvious that
it should have top priority and must be achieved regardless of the other tasks. Clearly, the
weighting method is not always appropriate to handle multiple tasks: the animator should be
able to impose relative priority between tasks.

The priority method is an extension of the numerical method presented in the previous

Figure 3.2: Comparison between weighting and priority strategies. Left: Initial configuration
with conflicting tasks. Middle left: Solution using weighting strategy to solve conflicts. Middle
right: Solution using priority strategy to solve conflicts (the left task has a higher priority than
the right one). Right: Solution using priority strategy to solve conflicts (the left task has a lower
priority than the right one).

42

3.2. An HAnim Inverse Kinematics Solver

sections. It recursively exploits the null space of the Jacobian of each priority layer.

We have shown in Section 3.2.3 that it is possible to exploit the redundancy of the prob-
lem to minimize a specified cost function represented by a (potentially arbitrary) vector z.
Indeed, by projecting this vector onto the null space N(J) of the Jacobian matrix J , we can
ensure that we do not disturb the specified tasks while minimizing the cost function as much
as possible. It is also possible to exploit this vector to express a secondary task with a lower
priority.

Suppose we have two tasks T1 and T2 to achieve, T1 being more important than T2. Then
we must resolve two different equations (one for each task):

J1Δθ = Δx1 and J2Δθ = Δx2

As task T2 is less important than task T1, we have to project its solution onto the null
space of J1 to ensure that it does not disturb the solution for task T1. Moreover, the solution
for the task T1 participates (in a positive or negative way) to the achievement of task T2. We
must then compensate for this in the secondary task. Thus, more formally, using (3.15) we
must solve:

Δθ = J†λ1

1 Δx1 + PN(J1)(J2
†λ2

(Δx2 − J2J
†λ1

1 Δx1))

where Δx2 − J2J
†λ1

1 Δx1 is the new secondary task taking into account the displacement
J2J

†λ1

1 Δx1 due to the achievement of the first task. However, while this solution is math-
ematically correct, it badly tracks the secondary task. Indeed, this equation finds the best
solution satisfying task T2 and projects it onto the null space of J1 afterward. Hence, the
final solution for task T2 is not necessarily the best one after restriction to the null space of
J1. A better solution is to directly compute the solution after restriction to the null space of
J1. We then have to solve:

Δθ = J†λ1

1 Δx1 + (J2PN(J1))
†λ2 (Δx2 − J2J

†λ1

1 Δx1) (3.16)

This approach can be generalized to an arbitrary number of tasks with multiple levels of
priority. Consider t tasks Tp ordered from the highest priority (p = 1) to the lowest (p = t).
Without loss of generality, we consider that they all have different priorities (since two tasks
with the same priority level may be merged, to form a single augmented task). Siciliano
and Slotine [Siciliano and Slotine, 1991] proposed an efficient and recursive scheme dealing
with an arbitrary number of priorities. Baerlocher [Baerlocher, 2001] extended this method
to speed up the projectors computation. Hence, the final algorithm is summarized as follows:

Δθp = Δθp−1 + J̃†λp

p (Δxp − JpΔθp−1)

Δθ1 = J̃†λ1

1 Δx1

with J̃p = JpPN(JA
p−1)

where PN(JA
p) = PN(JA

p−1) − J̃†
pJ̃p

and PN(JA
0) = In

JA
p is the augmented Jacobian defined as:

43

Chapter 3. Designing Postures Using Inverse Kinematics

JA
p =

⎡
⎢⎢⎢⎣

J1

J2
...

Jp

⎤
⎥⎥⎥⎦ (3.17)

Each step of this algorithm may be thought of as:

1. Adjust the desired task incrementΔx in order to compensate for the displacement due
to the partial solutions of higher priority levels.

2. Search the best partial solution for the adjusted task increment Δx̂p. The search is
restricted to the null space of JA

p−1 to ensure the enforcement of the hierarchy of
priorities.

3. Update the projector by removing the range of J̃T
p (i.e by projecting the subsequent

Jacobians onto its null space) in order for so that it to no longer be available for tasks
of lower priority.

The last step consists in minimizing an additional criterion to take advantage of any
remaining redundancy.

With this framework, we are now able to find a solution to the IK problem. The next
section shows the application resulting from the implementation of this algorithm. This
application provides tools to test and to enhance our IK solver. Moreover, some benchmarks
have been performed on several key parameters of the IK solver. An implementation of
the transpose Jacobian method is also available in order to perform comparisons with the
numerical resolution we have implemented.

3.3 Experimental Results: HBalance

In this section, we present tests and benchmarks we have done using the test-platform we
have implemented: HBalance. This framework was necessary for several reasons:

• To confirm the correctness of the established Jacobians implementation,
• To evaluate the influence of key parameters variations on the behavior of the IK solver,
• To compare robustness and computing performances with respect to prior approaches
(Euler-angle based representation of complex joints, Jacobian transpose method,...).

HBalance provides the user with almost all the features of the IK. For example, we can
control the position/orientation of different effectors, control the position of the CoM of the
virtual human, weight the influence of each articulation during the convergence process,
determine the number of joints recruited to satisfy a given task, etc.

In prior approaches, complex three dimensional articulations such as the shoulder were
decomposed into three simple revolute joints (one DoF), each of them being parametrized

44

3.3. Experimental Results: HBalance

Figure 3.3: Using HBalance to design postures. Left: The Thinker by Auguste Rodin. Middle
left: Initial configuration we started with. Middle right and right: Two views of the designed
posture. Remark: The final designed posture is not exactly the same as the model due to the
difference in proportions between “The Thinker” and our virtual character.

by a single axis of rotation. We then obtained the equivalent of the Euler angles parameteri-
zation.

The IK solver previously presented is now applied to joint hierarchies compliant with
the HAnim standard. This standard provides in particular the possibility to represent com-
plex three dimensional articulations with a unique joint parametrized by an exponential map.
Hence, the gimbal-lock singularity can now be avoided. Furthermore, the exponential map
parameterization is more intuitive to represent joint limits. Performing some comparisons
between chains of joints containing exactly the same number of DoFs but using these two
different parameterizations was essential to highlight the advantages of representing a com-
plex three dimensional articulation with a single joint instead of a chain of revolute joints.

Our IK solver needs some key parameters (and more particularly an integration step and
a damping factor) to converge toward a goal. Thus, it seems essential to be able to precisely
tune these variables to well-understand their respective meaning and their relative influence.
For this reason, this application also provides capabilities to modify these parameters in order
to evaluate their respective influence during convergence process.

Finally, to stress the overall advantages of good convergence properties over low com-
putational cost of our method, this application contains an implementation of the classical
Jacobian transpose method.

3.3.1 Postures Design

HBalance is an application based on and made for the IK solver previously exposed. It
provides fundamental features such as the control of effectors in position and/or orientation,
CoM position control, joint limits, joint weighting, joint recruiting, etc.

3.3.1.1 End-Effectors Position and Orientation Control

One of the most important features of an IK solver is to precisely control end-effectors posi-
tion and orientation. This is very useful in a number of applications such as:

45

Chapter 3. Designing Postures Using Inverse Kinematics

• Posture editing: as previously stated, it is faster and easier for an animator to pre-
cisely design postures for virtual humans using IK. The posture editing may be used in
animation to define keyframes or in the industry to check the reachability of different
objects in a car or even to visualize the different postures obtained with the same task
but for different virtual humans (and potentially different limb sizes).

• Motion editing: during the deformation process, motion editing algorithms induce
artifacts (foot sliding, loss of environmental constraints, etc) to the initial motion. IK
gives a great flexibility to such algorithms as it provides an easy way to impose specific
constraints in order to ensure that important motion characteristics are preserved before
and after the deformation. We discuss the use of IK for motion editing in chapter 5.

In this sense, it is extremely important for an IK solver to give the animators the possibility
to robustly position and orient end-effectors.

Figure 3.3 shows an example of a posture designed using HBalance. Given a starting
sitting posture, four tasks were required for the positioning of the legs, one to precisely
position the pelvis, four to design the arms postures and two to constrain the orientation
of the hands. The tasks controlling the legs were given a high priority. Those of the arms
were given a medium one while those controlling the orientation were considered as the least
important ones. See Appendix B.1 for a complete description of the set of tasks.

It is important to note that in our implementation, the hierarchy is subdivided into two
main parts: the upper body (the spine, the arms and the head) and the lower body (the legs).
Indeed, the root of the hierarchy is positioned at the pelvis in order for it to be the only joint
which can translate. As a result, in this classical “reach while sitting” example, the root of
the hierarchy (i.e. the pelvis) has to be recruited while the thighs are constrained to specific
locations to accurately simulate the “bend forward” posture.

3.3.1.2 Center of Mass Position Control

To remain realistic, postures computed using IK should stay balanced as much as possible.
As a consequence, the CoM position control has become of real interest with the develop-
ment of virtual humans. Using the inverse kinetics method presented by Boulic et al. in
[Boulic et al., 1996] it is now possible to precisely and realistically control the CoM position
to ensure that the virtual character is balanced. Hence, given an articulated figure and a mass
distribution, our algorithm is able to take into account a position constraint on the CoM.
Figure 3.4 shows an example of postures with and without CoM control.

The starting configuration is the HAnim standard posture (upper left of Figure 3.4) and
is also used as the reference configuration to force the character to remain as close as pos-
sible to its starting posture. The right foot is constrained to stay on the ground using two
high-priority constraints. The right hand is constrained to reach a location far beyond the
reachable space of the virtual character. See Appendix B.2 for a complete description of the
set of tasks. As shown in the upper right of Figure 3.4, the final posture obtained without
constraining the CoM position is not realistic. Hence, we use a task which constrains the
CoM of the virtual character to project between its feet. As a consequence, the final posture
is balanced and the results are more realistic (bottom left of Figure 3.4). Finally, an object

46

3.3. Experimental Results: HBalance

Figure 3.4: Example of a designed posture with HBalance: it immediately shows that a precise
CoM position control results in more realistic postures. Upper left: Initial configuration. Upper
right: Final posture without any CoM control. Bottom left: Final posture with CoM control.
Bottom right: Final posture with CoM control. In addition, the virtual character is carrying an
umbrella.

47

Chapter 3. Designing Postures Using Inverse Kinematics

Figure 3.5: Examples of a reaching task with different joint recruiting levels. Left: The task
uses the left arm as well as the spine to achieve the specified task (front and side views). right:
The task uses the left arm only to achieve the specified task (front and side views).

is added to emphasize the influence of the CoM position onto the final posture (bottom right
of Figure 3.4). Note the difference in posture to compensate for the additional weight of the
umbrella. It is important to note that we do not consider any dynamic information during
the computation of the virtual character’s posture. As a consequence, our IK solver may
sometimes generate solutions which contain excessive joint torques for common humans.

3.3.1.3 Joint Recruiting Level

A common approach in IK techniques is to directly consider the underlying structure. For ex-
ample, human-like characters can be advantageously partitioned into smaller sub-hierarchies
(limbs, spine,...). These latter are then controlled in a more efficient way by an IK solver
dedicated to this problem. As we aim at providing a general framework to control any kind
of hierarchy, this specialization is not satisfactory. Conversely, considering all the possible
joints to control the position and/or orientation of an end-effector may prove to be counter-
productive. While controlling the position of the wrist for example, it is important to choose
whether we want the spine to participate or not. Thus, our IK solver allows a task to recruit
all or part of the joints from its parent joint up to the root of the hierarchy. This is very
useful for the animators as they can manually discard joints that should not participate to the
achievement of the task. We can then easily define kinematic chains of varying lengths pro-
viding the user with more control over the final results. Figure 3.5 shows different postures
obtained by changing the joint recruiting level.

The joint recruiting is submitted to one strict design rule which guarantees the enforce-
ment of the hierarchy of priorities. It concerns those parts of the skeleton where multiple
tasks may recruit part of their joints; in these regions, the rule requires joint sets associated
to high-priority tasks to include any joint set associated to lower priority tasks. Failing to do
so may lead to diverging solutions.

The problem of multiple overlapping kinematic chains was first addressed in [Badler
et al., 1980]. However, instead of using an algorithmic scheme to solve this problem, we
allow joints to be shared by multiple tasks as long as the following minimal recruiting rule is
met: let Ti be a task of priority i, Rec(Ti) its associated set of recruited joints and Anc(Ti)

48

3.3. Experimental Results: HBalance

Figure 3.6: Shoulders joint limits using spherical polygons.

all the joints that may be recruited by Ti (its ancestors). Then, for priority levels a > b we
must have:

Rec(Tb) ∩ Anc(Ta) ⊂ Rec(Ta) (3.18)

This rule could be checked at task definition time and solutions could be proposed to the
animator if it is not met.

3.3.2 Benchmarking

3.3.2.1 Exponential Map Versus Euler Angles

In computer graphics, virtual characters are often represented as hierarchies of joints linked
together by segments. However, prior approaches decompose complex three dimensional
articulations such as the shoulder into three simple revolute joints (one DoF), each of them
being parametrized by a single axis of rotation. We then obtain the equivalent of the Euler
angles parameterization. In this way, an articulation which was parametrized by a quater-
nion or an exponential map is transformed into a chain of simple articulations parametrized
by Euler angles. However, although this method is valid in theory, it presents two major
drawbacks. Indeed, it is difficult to intuitively and effectively represent the domain of pos-
sible configurations reachable for this kind of articulation. Moreover, it suffers from the
gimbal-lock singularity.

As our IK solver is based on the HAnim standard, we are now able to parameterize com-
plex three dimensional articulations directly with a single exponential map. This method is
much more intuitive and efficient to represent the range of reachable configurations by an ar-
ticulation using spherical polygons or elliptic cones as shown in Figure 3.6. The exponential
map parameterization is also well-suited to avoid singularities if we choose an adequate ini-
tial position for the considered articulation beforehand in order for the anatomical constraints
to prevent the articulation from being in the neighborhood of a singular configuration. Con-
sider an exponential map er = [sx, sy, sz]. As stated in [Baerlocher, 2001] and later in
[Aubel, 2002], the exponential map has a singularity in the direction d = [0, 0,−1]T with
s2

x + s2
y = π2. This means that if we are to avoid singularities, we have to find a zero position

49

Chapter 3. Designing Postures Using Inverse Kinematics

0 10 20 30 40 50 60
20

25

30

35

40

45

50

55

Total Number of Degrees of Freedom

Ite
ra

tio
ns

 N
um

be
r

0 10 20 30 40 50 60

Total Number of Degrees of Freedom

Av
er

ag
e

C
om

pu
ta

tio
na

l C
os

t p
er

 It
er

at
io

n
(m

s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.7: Benchmarks performed depending on the type of joints used. Red Curve: Revo-
lute joints. Blue Curve: Ball-and-Socket joints. Left: iterations number comparison. Right:
Computational cost comparison.

in order for joint limits to prevent the articulation from reaching this direction. For a “nor-
mally built” human, this is quite simple but has to be done on a joint basis. For example, the
shoulder’s zero position in our framework corresponds to an abduction of π/2 with respect
to the HAnim standard [Aubel, 2002].

Performing some comparisons between chains of joints containing exactly the same num-
ber of DoFs but using these two different parameterizations was essential to highlight the
advantages of representing complex three dimensional articulations with ball-and-sockets
joints instead of chains of revolute joints. We must first notice that the expression of the
Jacobian matrix for the exponential map parameterization is much more complex than the
one for the Euler angles (see [Baerlocher, 2001] for details). However, this computation is
performed only once for a three dimensional articulation parameterized with an exponential
map while it is performed three times (one for each axis of rotation) for the same three di-
mensional articulation parameterized with Euler-angles. Furthermore, as the bottleneck of
the algorithm is the inversion of the Jacobian matrix, its dimension is a critical issue. How-
ever, the Jacobian matrix has the same dimensions in both parameterizations as exponential
map and Euler angles are both represented with three dimensional vectors.

The benchmarking has been performed on a Xeon, 3.2GHz, 1Go RAM. We have tested
our IK solver using eight different goals for kinematic chains with varying numbers of DoFs.
The results have then been averaged to estimate the mean of the iterations number to reach
one goal and the computational cost for one iteration. Figure 3.7 shows that even if the expo-
nential map parameterization is more complex than the Euler angles parameterization, and
more particularly for the computation of the Jacobian matrix, the performances in terms of
final computation time and iterations number are similar: the difference in terms of computa-
tional cost is essentially due to function call overhead. As a conclusion, this parameterization
provides an intuitive way to represent joint limits, is singularity-free for well-chosen initial
configurations and is similar to the Euler angles parameterization in terms of convergence
and efficiency.

50

3.3. Experimental Results: HBalance

Figure 3.8: Test configuration to analyze the impact of integration step and damping factor in
the IK solver.

3.3.2.2 Integration Step and Damping Factor

As already stated in Section 3.2.4, the problem becomes ill-conditioned in the proximity of
singularities. As a result, the solution norm tends to infinity. To overcome this problem,
we use a regularization technique called damped least squares. This technique introduces
a parameter λ: the so-called damping factor. As λ increases, the solution norm is forced
to decrease. Thus, the higher the damping factor, the more regular the convergence but the
longer the process. Hence, it is important to find a good trade-off between regularity and
computational cost.

Furthermore, the results we obtain after solving equation (3.5) represent joint velocities.
As a consequence, we need to integrate the solution over time using an integration step to
find the new joint values increments. Hence, another important variable of our IK solver
is the integration step. If it is too high, it violates the condition of small increments and
the process can not converge at all. On the other hand, if it is to small, it slows down the
convergence at performances cost.

One important issue was therefore to compare the mutual influence of the integration step
and the damping factor on our IK solver in terms of iterations number.

The test configuration we retained is shown in Figure 3.8. We chose this configuration
for several reasons:

1. A simple kinematic chain: the kinematic chain is one meter long and contains twenty
Ball-and-Socket joints for a total of sixty DoFs. We could have used a human limb
instead. However, this is too specific and would have led to other issues biasing the
results we are interested in. Indeed, the topology, the joint limits and/or the type of
joints (i.e their DoFs) of the arm (or leg) directly influence the convergence of the IK
solver. Consider the arm for example: the iterations numbers are very dissimilar from
one task to another even when they are close to each other.

2. A non-singular starting posture: each joint of the kinematic chain is initialized to a
non-null rotation so that we do not begin in a singular configuration.

51

Chapter 3. Designing Postures Using Inverse Kinematics

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
0 10 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
5 15

Figure 3.9: Influence of the integration step and the damping factor on the convergence pro-
cess. The color scale indicates the iterations number. Left: Tests using reachable goals (no
singular configuration). Middle: Tests using unreachable goals (singular configurations may
occur). Right: Same diagram as the middle one with 0<damping factor<20.

3. several tasks: instead of choosing a single task to analyze the influence of the inte-
gration step and the damping factor, we discretize the cube surrounding the kinematic
chain into one thousand voxels (its edge length is defined as the length of the kinematic
chain). The center of each voxel then represents a task to satisfy.

For each pair of parameters (integration step, damping factor), we then run the IK
solver for all the tasks. We consider that the IK solver has converged if the kinematic
chain is stable (i.e. the current configuration and the previous one are identical) and if
the distance between the end-effector and the goal is minimal (0 if the goal is reach-
able). Moreover, we stop the IK solver after one thousand iterations.

Finally the results are averaged between reachable goals (singularity-free configura-
tions) and non-reachable goals (potentially leading to singular configurations).

Figures 3.9 and 3.10 summarize the results we obtained. Blue areas locate “good conver-
gence” configurations while red ones emphasize no convergence configurations: the solver
was unable to converge before the limited iterations number. We can notice that:

1. Very high values of the integration step (more than 1.6 in our examples) lead to insta-
bilities preventing the kinematic chain to reach the specified goals before the maximum
iterations number.

2. Very high values of the damping factor (more than 40 in the current examples) lead to
poor convergence properties preventing the kinematic chain from reaching the speci-
fied goals before the maximum iterations number.

3. As expected, the damping factor has a real impact onto the convergence for singu-
lar configurations while it is less important in non-singular ones. This is particularly
noticeable in cases where the damping factor is null. In singular configurations, the
algorithm is not able to converge while it is for reachable goals.

As shown in Figures 3.9 and 3.10, the iterations number depending on the IK parameters
is similar for both hierarchies. Indeed, they only differ by a scaling factor. However, different

52

3.3. Experimental Results: HBalance

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
0 10 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

200

300

400

500

600

700

800

900

1000

In
te

gr
at

io
n

st
ep

Damping factor
5 15

Figure 3.10: Same benchmarks as in Figure 3.9 but with a kinematic chain twice smaller (fifty
centimeters long). Left: Tests using reachable goals (no singular configuration). Middle: Tests
using unreachable goals (singular configurations may occur). Right: Same diagram as the middle
one with 0<damping factor<20.

Figure 3.11: Reachable space for kinematic chains varying in size using the transpose method.
The surrounding cube containing the goals to reach is scaled accordingly. The green balls indi-
cate goals actually reached. Left: Two meters long kinematic chain. Middle: One meter long
kinematic chain. Right: Fifty centimeters long kinematic chain.

kinematic chains (in topology, DoFs, joint limits...) generally lead to dissimilar results in
term of iterations number.

It is difficult to find a general compromise between the integration step and the damping
factor. On one hand, if the damping factor is too low, the process can not converge at all
in case of singularity. On the other hand, if the damping factor is too high compared to the
integration step, the convergence time is too prohibitive. However, using an integration step
of one and a damping factor of ten works well for the majority of examples we have tested.

3.3.3 Damped Least Squares Inverse Versus Transpose

We use the damped least squares inverse of the Jacobian (DLS) to compute one iteration of
the algorithm. Another technique is the Jacobian transpose method as discussed in Section
3.1. It is known to be fast to compute but it also has very poor convergence properties. The
analysis of these two methods has provided us with results on the advantages and drawbacks
of the DLS method.

53

Chapter 3. Designing Postures Using Inverse Kinematics

Figure 3.12: Paths followed by the end-effector depending on the IK method. Left: Initial
configuration. Middle: Transpose of the Jacobian. Right: Damped least squares inverse of the
Jacobian.

The test configuration is similar to the one used for the benchmarks in Section 3.3.2.2
(see Figure 3.8). Conversely to the DLS method which provides a solution of minimum
norm, the transpose method may sometimes lead to diverging solutions. For example, when
the joints are almost collinear, the final norm of the solution is too important, leading to
instabilities of the kinematic chain. Figure 3.11 shows the goals for which the transpose
method actually converges to a solution. We can notice that the length of the kinematic
chain directly influences the number of reachable goals. Indeed, the longer the kinematic
chain, the more important the task increment thus leading to instabilities. This could be
overcome by multiplying the task by a gain factor. This factor may be computed depending
on the length of the kinematic chain in order to reduce instabilities. This gain factor should
depend on the current configuration as the actual end-effector displacement (obtained thanks
to the previously computed joints increment solution) also directly depends on the current
configuration [Craig, 1986].

Furthermore, Figure 3.12 shows the paths followed by the end-effector to converge to-
ward an arbitrarily chosen goal (the white sphere). We can notice that the path followed by
the end-effector for the DLS method is much more direct than the one using the transpose
method.

Finally, as expected the transpose method has very poor convergence properties near the
goal. As a result, although the transpose of the Jacobian is faster to compute than its DLS
inverse, it needs much more steps to converge. In the example of Figure 3.12, the DLS
method converges in 29 iterations and 8.2 ms (approximately 0.28 ms / iteration), while the
transpose method converges in 82 iterations and 14.7 ms (approximately 0.18 ms / iteration),
which is twice as long to achieve this simple task. Hence, while the transpose method is
faster for computing one step, it takes much more iterations to converge toward a specific
goal and as a result, it is less efficient than the DLS method.

54

3.4. Discussion and Conclusion

3.4 Discussion and Conclusion

In this work we have first detailed, based on the work of Baerlocher [Baerlocher, 2001], a
numerical resolution framework capable of solving multiple tasks simultaneously, and which
supports both task-priority and weighting strategies for the resolution of conflicts.

We have then presented an HAnim-compliant application providing different kinds of
features such as body parts position control, CoM position control, joint weighting, joint
recruiting level, etc.

Prior techniques decompose complex three dimensional articulations such as the shoulder
into three simple revolute joints. This parameterization is then equivalent to the Euler angles
and suffers from several drawbacks: lack of intuitiveness and gimbal-lock singularity. We
have shown that the exponential map parameterization is more appropriate than the previous
one to represent complex articulations. While it is more complex than the Euler angles
parameterization, its performances in terms of final computation time and iterations number
are equivalent. Moreover, exponential maps provide an intuitive way to represent joint limits
and is singularity-free for well-chosen initial configurations.

Thanks to this test-platform, we have performed benchmarks and comparisons on several
key parameters of the IK solver. Among others, we have compared the mutual influence of
the integration step and the damping factor. No general equation relating the integration step,
the damping factor and the convergence behavior seems to be pertinent. Indeed, the conver-
gence behavior is closely related to the considered hierarchy of joints and to the starting
configuration. However, we have experienced that a damping factor of ten and an integration
step of one work well for the vast majority of examples we have tested.

At this point, we have presented our IK solver and performed several tests to highlight
its efficiency. This is particularly critical as we want to build a motion editing framework
using a per-frame IK plus filtering scheme. Its efficiency is directly related to the underlying
IK solver. So far, we have presented a way to design postures using our IK solver. How-
ever, our main interest is to edit motion capture animations using a constraint-based motion
editing algorithm. The next chapter explicitly details the definition of a constraint in our
framework. In particular, we present three classes of constraints dedicated to end-effector
trajectory editing, footplant editing and balance control.

55

Chapter 3. Designing Postures Using Inverse Kinematics

56

CHAPTER 4

Motion Deformation Constraints
Definition and Design

Our main goal is to develop a constraint-based motion editing framework. That is, we
want to modify an existing animation usingMotion Deformation Constraints (for simplicity,
they are called constraints in the remainder of this manuscript). These constraints are often
explicitly created by the animator. As a result, any motion editing framework must provide
the animator with a set of predefined tools to ease the constraint definition.

In the previous chapter, we have presented how to edit a virtual character’s posture using
tasks. It is important to note that tasks are quite different from constraints in our discussion:
while tasks are used for designing postures, constraints are used to edit animations. They
represent trajectories in space as well as in time.

In this chapter, we present three classes of constraints to help the animator editing ani-
mations. We first present a versatile class of constraints allowing the user to intuitively and
precisely control the trajectory of end-effectors: the shape-constraints. Then, we present
constraints entirely dedicated to footplants editing. Indeed, these constraints are often re-
quired when editing an animation. As a result, defining a specific class handling footplants
editing is of great interest in our framework. Furthermore, Reitsma and Pollard [Reitsma and
Pollard, 2003] and O’Sullivan et al. [O’Sullivan et al., 2003] have shown that even though a
motion is not physically correct, it can still be believable if the deviation from physical cor-
rectness is not too important. Thus, to avoid producing animations containing unbalanced
frames which lead to unpleasant results, we also introduce a constraint for the CoM position
control so that the character seems to stay balanced during the entire animation.

57

Chapter 4. Motion Deformation Constraints Definition and Design

4.1 State of the Art in Constraints Formulation

Energy Functions

As far as our knowledge goes, the most general formulation of constraints was introduced
by Witkin et al. in [Witkin et al., 1987]. They presented a catalog of constraints expressed as
energy functions. All the energy functions constraining a virtual character are first summed
together: this results in a single energy function representing the whole set of individual
constraints. This energy function is then optimized to find the solution which best satisfies
the constraints. However, representing constraints as mathematical functions is not intuitive
and sometimes difficult. For example, expressing constraints such as “grace” or “dance-like-
Travolta” using a mathematical formulation is merely impossible. Moreover, this method
suffers from all the problems due to optimization: occurrence of local minima, gradients
sometimes complex to express, prohibitive computational cost, etc.

Physics-Based Constraints

Several previous works used physical laws to improve animations’ realism. In [Popovic and
Witkin, 1999], Newton’s laws were applied on a simplified character to minimize computa-
tional costs. Rose et al. [Rose et al., 1996] generated realistic transitions between motions
by constraining the motion to minimize the energy consumption. Liu and Popović [Liu and
Popovic, 2002] used an optimization subject to constrains on the linear and angular momen-
tum which directly depend on whether the character is on the ground or airborne. Some
methods constrained the Zero Moment Point of the character to remain inside its support
polygon to ensure that it was dynamically balanced [Tak et al., 2002][Dasgupta and Naka-
mura, 1999][Ko and Badler, 1996]. Enforcing the Zero Moment Point to remain inside its
support polygon is an appealing constraint. However, it is well-defined for planar grounds
but is difficult to generalize to uneven terrains [Sardain and Bessonnet, 2004]. Moreover,
it leads to computationally expensive methods. In [Shin et al., 2003], the authors used a
simplified formulation of the Zero Moment Point to achieve interactive rates. [Pollard and
Reitsma, 2001] and [Yamane and Nakamura, 2003] used a dynamics filter to track a refer-
ence motion while enforcing dynamic constraints such as joint acceleration or contact forces.
In [Zordan and Hodgins, 2002], maintained balance by constraining the CoM to remain as
close as possible to the center of support, or by adjusting the desired reference motion by
offsetting the joint angles of the legs similarly as in [Wooten and Hodgins, 2000]. Finally
Pai and Patton demonstrated the relationship between velocity and position of the CoM and
proposed a prediction model to decide whether the balance can be maintained or not [Pai and
Patton, 1997].

Geometric Constraints

Geometric constraints are much more intuitive because they directly specify a goal for a
specific body part: a point can be constrained to a specific position [Gleicher, 1997], [Gle-
icher, 1998], or can be constrained to move along a line [Witkin et al., 1987]. [Liu and

58

4.2. The Shape-Constraints: a Versatile Representation of End-Effectors Trajectories

Popovic, 2002] and [Witkin and Popovic, 1995] used keyframes to specify motion features.
Keyframes may be considered as a set of geometric constraints that determine the position
and/or orientation of each joint.

Bindiganavale and Badler [Bindiganavale and Badler, 1998] introduced interaction con-
straints to map a motion from one character to another, each having a different morphology.
Gleicher ([Gleicher, 1997], [Gleicher, 1998]) introduced a kind of interaction constraint: a
point that should have the same motion as another point, a constant distance between two
points and/or, a constant orientation between two points. [Witkin et al., 1987] used a para-
metric model and allows the specification of geometric constraints with interactions such as
surface attachment or collision constraints.

4.2 The Shape-Constraints: a Versatile Representa-
tion of End-Effectors Trajectories

Constraint-based motion editing techniques require the user to specify the important features
the final motion should achieve. Providing interactive tools to construct such constraints is
a key point when designing motion editing methods. Systems failing to do so tend to be
incomplete as it is not reasonable to ask the user to specify constraints in mathematical form.

In particular, constraints representing the trajectory of end-effectors are very useful. Un-
fortunately, it is not feasible to require the animator to precisely know the whole trajectory
of a specific articulation or of a body part. Most of the time, he only knows a set of specific
points the end-effector has to pass through. As a result, it is needed to find an efficient inter-
polation method so that given a set of points in space we can generate an entire trajectory for
an end-effector.

A common way to represent trajectories in space is to use cubic interpolation splines such
as Cardinal splines for example. However, this type of interpolation offers little flexibility
as, by definition, the final spline is always smooth in space. As a result, it is not easy to have
trajectories containing sharp corners when wished for. For example, consider the motion of
the right wrist which first reaches a location, then stays stationary for a while and finally
goes back to its initial position. In such a situation, we should be able to decide whether the
desired end-effector’s trajectory is smooth or not at locations where it stays stationary for a
period of time.

Another important issue when editing an end-effector’s trajectory is whether the original
trajectory contains important features or not. In cases when the initial motion is entirely
altered, the final end-effector’s trajectory may be totally designed from scratch. On the other
hand, when the original trajectory contains features the animator really wants to keep in
the final animation, the final trajectory should be defined relatively to the initial one. For
example, suppose the initial animation is a virtual character waving at someone. Suppose
we only want to change the global location of the waving motion. Then, the animator only
wants to smoothly add an offset to the initial motion instead of entirely redefining the waving
motion from scratch.

In the next sections, we introduce a class of constraints representing end-effectors trajec-

59

Chapter 4. Motion Deformation Constraints Definition and Design

tories that are continuous in space as well as in velocity and smooth except at specific points.
A prior work similar to ours but applied to animation interpolation was presented in [Steke-
tee and Badler, 1985]. Moreover, these constraints may be defined using different modes
so that the user may decide whether he wants to take into account the initial end-effector’s
trajectory or not.

4.2.1 Overview

In this section we give an overview of the construction of a shape-constraint given an anima-
tor’s specifications. We define a shape-constraint as a pair of curves (S(u), T (t)) with u the
parameter of curve S and t the parameter of curve T . S(u) defines the end-effector’s tra-
jectory in space. T (t) is used to control the timing of S(u). The parameter t then represents
the current time in the animation. These curves are automatically constructed given a set of
constraint points specified by the animator.

Constraint Points

A constraint point for a shape-constraint is equivalent to a control point when dealing with
splines. However, it also handle timing information to ensure that the end-effector passes
through the specified locations at the requested times. More formally, a constraint point
P (Plocation, Pbegin, Pend) is defined by:

1 - A three dimensional location Plocation: this location is used to interpolate the final tra-
jectory of the end-effector at each time. It is set by the animator in the world space
to facilitate its manipulation. However, for flexibility purposes, the position of a con-
straint point is internally stored relatively to a reference point as a three dimensional
displacement map (see Section 4.2.3 for further explanation). This three dimensional
location is used as a control point for the trajectory curve S(u).

2 - A begin time Pbegin: specifies the starting time at which the end-effector should reach
Plocation. This time is used as a control point for the time curve T (t).

3 - A end time Pend: specifies the ending time at which the end-effector should depart
from Plocation. This time is used as a control point for the time curve T (t).

The time interval [Pbegin, Pend] then defines a duration during which the end-effector
should remain stationary at the specified location Plocation. It is important to note that the
constraint points are the only objects that the animator needs to explicitly specify to construct
a shape-constraint.

Constructing a Shape-Constraint

For clarity purposes, we focus our discussion on shape-constraints containing a single con-
straint point only. However, as the method is straightforward, it is very easily extended
to cases with several constraint points. The construction of a shape-constraint that holds

60

4.2. The Shape-Constraints: a Versatile Representation of End-Effectors Trajectories

Initial trajectory

Constraint point

Shape-constraint
S begin

S end

begin
P

end
P[,]

Figure 4.1: Example of a shape-constraint with a single constraint point.

over a period of time [Sbegin, Send] and which contains a constraint point P defined by
(Plocation, Pbegin, Pend) consists in the following steps (this example is conceptually illus-
trated in Figure 4.1):

1 - The first (resp. the last) control point of S(u) is created at the initial end-effector’s
position at time Sbegin (resp Send)

2 - The tangent of the first (resp. the last) control point of S(u) is adjusted with respect to
the velocity of the end-effector in the input motion.

3 - The location Plocation of the constraint point P is added to S(u) as a control point.

4 - If the end-effector must stay stationary for a period of time at location Plocation then
S(u) is made sharp at the corresponding control point.

5 - Finally, T (t) is computed so that S(T (tα)) = Plocation for Pbegin ≤ tα ≤ Pend.

The animator only needs to define the timing of the shape-constraint as well as the con-
straint points the shape-constraint has to pass through. The trajectory and time curves are
then automatically computed.

4.2.2 Specification of a shape-constraint

In this section, we detail the construction of trajectory and time curves separately.

61

Chapter 4. Motion Deformation Constraints Definition and Design

The Trajectory Curve

The trajectoryS(u) of an end-effector is represented as aKochanek-Bartels spline [Kochanek
and Bartels, 1984]. This class of C1 continuous interpolating cubic splines is based on Her-
mite interpolation basis functions. That is, each segment [Pi, Pi+1] of the spline is defined
as:

S(u) = Pih1(u) + Pi+1h2(u) + Dih3(u) + Di+1h4(u) (4.1)

where 0 ≤ u ≤ 1, Di (resp. Di+1) is the tangent at control point Pi (resp. Pi+1) and the hj

are the Hermite interpolation basis functions.

In order to offer greater flexibility, each control point has two different tangents: the
source derivative and the destination derivative. Each of these tangents is directly influenced
by three parameters: tension, continuity and bias. These parameters are useful to explicitly
change (or even break) the continuity of the curve at the control point. Given the tension t,
the continuity c and the bias b, the source derivative DSi and the destination derivative DDi

are computed as follows for a control point Pi (see [Kochanek and Bartels, 1984] for further
details):

DSi =
(1− t)(1− c)(1 + b)

2
(Pi − Pi−1) +

(1− t)(1 + c)(1− b)

2
(Pi+1 − Pi) (4.2)

and

DDi =
(1− t)(1 + c)(1 + b)

2
(Pi − Pi−1) +

(1− t)(1− c)(1− b)

2
(Pi+1 − Pi) (4.3)

In addition, the first tangent (i.e. the destination derivative of the first control point) and
the last one (i.e. the source derivative of the last control point) are set to the velocity of the
end-effector on the initial trajectory. In this way, there is no discontinuity when going from
the initial trajectory to the deformed one or when going back to the initial one.

Given this formulation, we are now able to add sharp corners to an end-effector’s tra-
jectory by setting the tension parameter of a specific control point to 1 when required. Re-
consider the example of the wrist in which we need to adjust its position so that it reaches
a stationary location over a period of time. In this case, there is no need for the trajectory
to be smooth in space. The control parameters of the corresponding control point are then
adjusted to add a sharp corner to the trajectory (the tension is set to one).

In addition, we need to reparameterize S(u) so that the interval of time [Pbegin, Pend]
corresponds to the same value of parameter u. This reparameterization is handled by the
time curve T (t).

The Time Curve

The time curve T (t) is defined as an increasing piecewise linear function. This function
establishes the correspondence between each time of the animation t and the parameter u of
S(u). It is constructed as follows:

62

4.2. The Shape-Constraints: a Versatile Representation of End-Effectors Trajectories

0

u

t

beginS beginP endP

beginSbeginP -

endS

beginS - - (beginPendP -)endS

Figure 4.2: Example of a time curve corresponding to a shape-constraint starting at time Sbegin,
ending at time Send and containing one constraint point defined as (Plocation, Pbegin, Pend).

• Each segment corresponding to a time interval between two constraint points is linear,
with a slope of one, so that when the time in the animation is increased by Δt, it is
increased by Δu = Δt in the trajectory curve.

• Each segment corresponding to a time interval [Pbegin, Pend] is constant so that all the
values in the time interval [Pbegin, Pend] correspond to the same value of u in S(u).

Figure 4.2 shows an example of the time curve corresponding to the shape-constraint shown
in Figure 4.1.

Finally, given a time tα, the corresponding three-dimensional end-effector’s position P
in the shape-constraint is then defined as:

P = S(T (tα)) (4.4)

4.2.3 Shape-Constraints Modes

When editing the trajectory of an end-effector, it is often desirable to be able to choose
whether we want to take the initial trajectory into account or not. In other words, sometimes
we need to define an absolute trajectory in space and sometimes we prefer to add a relative
displacement in order to keep the final trajectory of the end-effector as close to the initial
one as possible. To do so, we extend the concept of displacement map [Witkin and Popovic,
1995] [Bruderlin and Williams, 1995] to the three-dimensional case. Each control point
of the trajectory curve is expressed in a reference frame (not necessarily in the end-effector
frame) as seen in Figure 4.3. The representation of the trajectory curve then differs depending
on the mode of the shape-constraint.

63

Chapter 4. Motion Deformation Constraints Definition and Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

d1

d2

d3

P1

P2

P3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.3: For clarity, we consider the reference as being the original motion. The constraint
points P1, P2 and P3 are stored as the displacements d1, d2 and d3 with respect to the reference.
P1 and P3 last for 15 frames. The animation is composed of 250 frames (10 seconds). The final
shape-constraint is only active between frames 10 and 240. Left: Original trajectory in space.
The blue dots indicate the initial positions of the end-effector while the red dots indicate the final
desired positions. Right: Associated time curve using normalized time.

Absolute Mode

To construct the trajectory curve, we first add the origin of the reference frame to each control
point of S(u). The trajectory curve is then the Kochanek-Bartels spline constructed from
these control points: it represents the final trajectory of the end-effector. Figure 4.4 shows
the initial trajectory curve as well as the final trajectory of the end-effector. This shape-
constraint’s mode is useful whenever the animator needs to entirely reshape the trajectory of
an end-effector.

Relative Mode

In this mode, the trajectory is the Kochanek-Bartels spline constructed from the control
points of S(u). The trajectory is then added to the reference trajectory to obtain the final one.
This results in a trajectory that is smoothly deformed while retaining the global shape of the
initial one as much as possible. Figure 4.5 shows the trajectory curve and the associated final
trajectory. This shape-constraint’s mode may be used in cases when the animator only wants
to add an offset to the initial trajectory. For example, consider two virtual characters shaking
hands. With this mode, it is possible to offset the global location of the right hands of the
character while preserving the important features of the initial motion (the shaking itself).

Relative with Condensation Mode

We use the same method as for the relative mode. However, as the reference trajectory is
moving while the end-effector should stay stationary, we readjust the trajectory curve so
that the final trajectory pauses at required points even if the reference one is moving. This

64

4.2. The Shape-Constraints: a Versatile Representation of End-Effectors Trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

d1

d2

d3

P1

P2

P3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

P1

P2

P3

Figure 4.4: The dashed line represents the reference trajectory. Left: Trajectory curve in
absolute mode. Right: Final trajectory.

d1

d2

d3

-0.6
-0.5

-0.4
-0.3

-0.2

-0.1
0

0.1
0.2

0.3
0.4
0.5
0.6

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

P2

P1

P3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

P1

P2

P3

Figure 4.5: The dashed line represents the reference trajectory. Left: Trajectory curve in relative
mode. Right: Final trajectory.

65

Chapter 4. Motion Deformation Constraints Definition and Design

d1

d2

d3

-0.6
-0.5

-0.4
-0.3

-0.2

-0.1
0

0.1
0.2

0.3
0.4
0.5
0.6

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

P2

P1

P3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

P1

P2

P3

Figure 4.6: The dashed line represents the reference trajectory. Left: Trajectory curve in relative
with condensation mode. Right: Final trajectory.

corresponds to subtracting the displacement in the reference trajectory for periods of time for
which the end-effector is required to stay stationary. Figure 4.6 shows the trajectory curve
and the associated final trajectory. It is important to note that for this specific mode, the time
curve is set to the identity as we handle the fact that the end-effector has to stay stationary
directly with the trajectory curve. This class is used in particular to correct artifacts such
as foot sliding (see Section 4.3). Indeed, in this case, we want to adjust the location of the
foot so that it stays stationary for predefined periods of time while it is moving in the original
animation. These adjustments are gradually introduced to the initial motion to retain as many
of its original characteristics as possible.

4.2.4 Shape-Constraints Examples

Figure 4.7 shows several examples of shape-constraints in different modes. In particular,
note the sharp corner of the absolute shape-constraint when the middle constraint-point lasts
for a period of time (Top right of Figure 4.7).

4.3 Footplant Constraints

A particularly important feature that any motion editing framework should offer is an intu-
itive and efficient way to edit footplants. Indeed, motion capture data often (if not always)
contains artifacts. A particularly noticeable artifact is when a foot is moving while it should
stay planted on the ground [Kovar et al., 2002b]. Hence, correcting all these footskates is a
key point when producing high-end animations. It is therefore also of interest to be able to
change the position and/or the orientation of footplants so that they correctly interact with
the surrounding environment.

The shape-constraints previously presented allow the animator to efficiently and intu-
itively edit the trajectory of end-effectors. However, a footplant is much more complicated

66

4.3. Footplant Constraints

Figure 4.7: Examples of shape-constraints with different modes. Blue dots: Initial trajectory.
Green curve: Generated shape-constraint. Top left: Absolute shape-constraint. Top right:
Absolute shape-constraint with the middle constraint-point lasting for 40 frames. Bottom left:
Relative shape-constraint. Bottom right: Relative shape-constraint with condensation.

67

Chapter 4. Motion Deformation Constraints Definition and Design

Figure 4.8: The four main events defining a footplant. Top left: Before the footplant. Top
middle: Heel strike event. Top right: Toe strike event. Bottom left: Heel off event. Bottom
middle: Toe off event. Bottom right: After the footplant.

than a single trajectory. Indeed, it often operates on several parts of the body at the same
time. For example, the heel’s and toe’s positions are very important when defining a foot-
plant. Moreover, a footplant is decomposed in a sequence of important events that must
occur at specific times. As a result, footplants editing requires a complex management of
end-effectors position and timing. We thus found it useful to define a specific class of high-
level constraints dedicated to footplants adjustments.

4.3.1 Specification of a footplant constraint

A footplant is defined using four important events:

1. Heel Strike (HS): instant when the heel touches the ground

2. Heel Off (HO): instant when the heel leaves the ground

3. Toe Strike (TS): instant when the toe touches the ground

4. Toe Off (TO): instant when the toe leaves the ground

For example, if we consider a classical walking animation, the sequence of events is
[HS, TS,HO, TO] as shown in Figure 4.8.

Footplant constraints are then defined using the following low-level constraints:

68

4.3. Footplant Constraints

1. One shape-constraint SCheel controlling the heel position. This constraint controls the
events HS and HO using a constraint point CPheel which lasts from HS until HO.

2. One shape-constraint SCtoe to control the toe position. This constraint controls the
events TS and TO using a constraint point CPtoe which lasts from TS until TO.

As the foot is considered as a rigid body, the distance between the toe and the heel
must remain constant. This directly implies that the distance between both shape-constraints
defining the footplant must be constant as well. However, this is hardly manageable because
at creation time, we only know the position of the heel and the toe:

• at the beginning of the footplant adjustment (the beginning of the shape-constraints),
• during the period of time constraining both heel and toe (corresponding to the time
interval [TS,HO]),

• at the end of the footplant adjustment (the end of the shape-constraints).

As a consequence, the constraints on the heel and the toe may not be achievable simul-
taneously during some period of time. We then must decide which trajectory (between the
heel and the toe ones) is the most important one.

4.3.2 Dynamic Priority Swap

Statically choosing which of the heel or the toe trajectories is the most important is not
acceptable. Indeed, as shown in Figure 4.9, if the heel trajectory is assigned a higher priority,
the toe penetrates the floor during interval of time [HO,TO]. Conversely, if the toe trajectory
is considered as the most important one, the heel penetrates the floor during interval of time
[HS,TS].

We make the assumption that constraints handling contact with other objects in the scene,
and particularly with the ground, must be more important than those handling position “in
the air”. For example, consider two points p1 and p2, p1 being on the surface of an object and
p2 being in space without any collision with any object in the scene. In this configuration,
if we slightly move p1 and p2 (for example introducing an error of 1mm), it is visually
more noticeable that p1 is not at its correct position than p2. As a consequence, the heel
constraint should be assigned a higher priority while being on the ground (that is period of
time [HS,HO]). Similarly, the toe constraint should be assigned a higher priority during
period of time [TS,TO]. However, this is not possible because intervals [HS,HO] and
[TS,TO] overlap during period [TS,HO] (see Figure 4.10). However, in this case, both
constraints are achievable as it corresponds to the situation in which both the heel and the
toe are on the ground: the priority is then not as important and may be “arbitrarily” chosen
without affecting the results. As a consequence, we must assign a higher priority to the heel
constraint during period [HS,TS]. Similarly, we must assign a higher priority to the toe
constraint during period [HO,TO]. We then have to dynamically swap the priorities during
time interval [TS,HO]. We arbitrarily chose to swap the priorities at time HO. Figure 4.10
schematically summarizes the dynamic priority swap concept. It is important to note that

69

Chapter 4. Motion Deformation Constraints Definition and Design

Figure 4.9: Comparison of footplant enforcement with and without dynamically swapping the
priorities between the heel and the toe. From left to right: heel strike, toe strike, heel off and
toe off. Top row: Footplant adjustment: we dynamically swap the priorities between the heel
and the ankle. Middle row: Footplant adjustment: the ankle has a higher priority level. The
position of the toe at event TO is clearly inaccurate: the foot penetrates the ground. Bottom row:
Footplant adjustment: the toe has a higher priority level. The position of the ankle at event HS is
clearly inaccurate: the foot penetrates the ground.

70

4.4. Balance Control

HS TS HO TO

Both constraints are achievable

The heel constraint is

 the most important

The toe constraint is

 the most important

Dynamic priority swapDynamic priority swap

Figure 4.10: Dynamically swapping the priorities between the heel and the toe constraints.

as both constraints are achievable when we swap the priorities (and are actually achieved),
no discontinuity occurs. However, in the general case, if we swap the priorities between
two constraints, the final result may contains discontinuities if one of the constraints is not
achieved.

The purpose of the footplant constraints is not to modify the path of the motion but to
locally adjust the animation since large adjustments may lead to large rotations of the pelvis
and the root joint when the legs are fully extended. A solution could be to identify such
situations and avoid too important rotational components by stretching the legs as in [Kovar
et al., 2002a]. However, such a solution is not acceptable because changing the size of the
limbs may be problematic when using the animation in other applications. Instead, we rely
on our IK solver by reducing, when needed, the recruiting level of the footplant constraints
so that the pelvis and the root joint do not participate to the achievement of the solution
anymore. Furthermore, as our motion editing algorithm aims at adjusting the location of
footplants, it would probably fail when the target positions are too far from their original
locations.

4.4 Balance Control

In our framework, we choose to control the CoM position through inverse kinetics [Boulic
et al., 1996]. Unbalanced postures are then adjusted to improve realism or to apply some
additional effects. The final CoM position P ′

CoM first needs to be estimated. For this, we
consider the initial CoM’s position PCoM in the input motion (and its corresponding position
P ′

CoM in the output motion) as well as a set A of na points on the body in the input motion
(and the corresponding set of points A′ in the output motion). A may be different from one
motion to another, and as a result, A′ may be different as well. P ′

CoM is then defined using
the relation:

P ′
CoM −

∑na

i=1 A′
i

na

, A′ = PCoM −
∑na

i=1 Ai

na

, A (4.5)

whereAi (resp. A′
i) is the position of the ith point ofA in the input motion (resp. output mo-

tion).
∑na

i=1 Ai/na is the position of the barycenter ofA in the input motion and
∑na

i=1 A′
i/na

is its corresponding position in the output motion. For example, when the animator changes
the position of the footplants, A being composed of the heel and toe joints of each leg, the

71

Chapter 4. Motion Deformation Constraints Definition and Design

final CoM position takes into account the final location of the feet to compute the goal for
the CoM (see Section 5 for examples on footplants editing).

Figure 4.11 shows the initial trajectories of a character’s CoM and the barycenter of A
for a simple walking animation. In this example, A is composed of the heel and toe joints of
each leg. It is interesting to note the high correlation between the two trajectories from cycle
to cycle, as highlighted by the superposition of the red curves (figure 4.11 Right).

-0.055 -0.05 -0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015
0

1

2

3

4

5

6

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15CoM's trajectory
Barycenter's trajectory

Relative 2D displacement

Frontal displacement

Lateral displacement Lateral displacement

Frontal displacement

Figure 4.11: Left: Input trajectories of the CoM and the barycenter of A for a walking motion
Right: Relative 2D displacement between the CoM and the barycenter of A. The units are
different on both axes to highlight the details.

A 3D displacement map may be added to the resulting curve to produce new behaviors.
Notice that the choice ofA is crucial as it directly influences the deformed motion. However,
in most cases, it remains intuitive: for example, for classical walking or running motions, A
should contain points of the feet.

While this method cannot ensure that the character is dynamically balanced, it has the
advantage of treating the balance constraint as any other constraint in our framework. More-
over, as the deformed motion is usually close enough to the initial one, the adjustments are
small, and constraining the CoM position to its original trajectory often provides good re-
sults. However, for highly dynamic motions, or when adding drastic changes to the initial
animation, physical laws should be taken into account.

4.5 Conclusion

In this chapter, we have presented important constraints integrated in our motion editing
framework. These constraints may then be used to modify an initial animation so that it fits
the animator’s requirements.

In particular, we have introduced a versatile class of constraints: the shape-constraints.
The animator is now able to design a wide range of spatial trajectories. Moreover, these con-

72

4.5. Conclusion

straints may contain stationary points represented by sharp corners in the trajectory. Further-
more, these constraints can be expressed in a reference frame allowing relative constraints
between joints, to shift a joint position or to define an absolute trajectory.

As discussed before, footplants are a recurring problem when dealing with raw motion
capture data. We have then presented a class of constraints dedicated to the adjustment
of the position and/or orientation of footplants. Additionally, we have presented a simple
approach to adjust unbalanced postures by controlling the position of the CoM thanks to
inverse kinetics. This approach offers the animator the possibility to improve the overall
quality of the final animation.

In the next chapter, we detail our algorithm for computing the final animation achieving,
as much as possible, the constraints specified by the animator.

73

Chapter 4. Motion Deformation Constraints Definition and Design

74

CHAPTER 5

Prioritized Motion Deformation

Producing high-quality character animations is still a research area of interest. One popular
technique to achieve this is motion capture, as it is able to create realistic animations in a
short period of time. Unfortunately, one of its major advantages is also its major drawback:
the animation is recorded by mimicking the motion of a performer. Thus, the final animation
must be planned before the capture is done and is only valid for virtual humans having the
same proportions as the live performer. For this reason, these animations are not directly
reusable and need additional adaptations.

Recently, motion databases have become commercially available. Given a motion database,
it now becomes a new challenge to create the animations we need for each virtual human we
want to animate. Graph-based motion synthesis [Arikan and Forsyth, 2002][Kovar et al.,
2002a][Lee et al., 2002] and blending techniques [Kovar and Gleicher, 2003][Park et al.,
2002][Perlin, 1995] consider the database as a whole to construct new motions. The result-
ing animations are built from finely crafted combinations of the input data. These techniques
are well-suited for video games for example. Conversely, motion editing techniques adapt a
single animation to fit specific needs [Menache, 1999].

Our method aims at adding significant deformations to an input motion, while retaining
as many of its characteristics as possible. The initial animation is deformed using prioritized
constraints. The key feature of this technique is that prioritized constraints are sorted into
priority-layers. Constraints belonging to the highest priority-layer are enforced first. Then,
those of the next priority-layer are satisfied as much as possible without disturbing the previ-
ous ones, and so on. It is important to note the difference between weighted and prioritized
constraints (see figure 3.1 for an analogy with conflicting tasks in an IK context). When con-

75

Chapter 5. Prioritized Motion Deformation

flicts arise between constraints, the weighting strategy leads to a compromise where none of
the constraints are met while the priority strategy ensures that the important constraints are
achieved and less important one are satisfied as much as possible.

Motion deformation constraints presented in chapter 4 are integrated in this framework.
Additionally, motion deformation constraints to control end-effector orientation and/or to
attract the results toward the input motion have been included. As a consequence, the an-
imator is able to deform an animation in a very flexible way, with an arbitrary number of
priority-layers and constraints.

In our framework, each frame is individually deformed with an IK solver so that a set
of predefined constraints is satisfied. Being a per-frame approach, a filtering process is used
to smooth the results when needed. This algorithm can be repeated, within an interactive
design loop, to reenforce important constraints.

Per-frame IK plus filtering methods have already been presented in chapter 2. The next
section examines them in more detail. Section 5.2 describes the motion deformation algo-
rithm. In Section 5.3, we tackle issues related to the continuity of the final motion. In Section
5.4 we analyze the convergence properties of our algorithm. In Section 5.5, we demonstrate
how our method can be applied to deform a wide range of motions. Finally, we discuss its
limitations and we conclude in Section 5.6.

5.1 State of the Art in per-frame IK plus filtering

In this section we detail major per-frame IK plus filtering works. In particular, we highlight
their important advantages and drawbacks for future comparisons with our framework.

The Coach-Trainee Metaphor

Boulic and Thalmann [Boulic and Thalmann, 1992] presented the first example of a motion
editing using IK on a per-frame basis to enforce constraints. This paper clearly sets the
foundations for future work using this approach. The authors used a numerical IK solver
in order to simultaneously handle two tasks: the primary and the secondary tasks. The
primary task is responsible for kinematics constraints. These latter are defined using half-
space constraints in order for the user to easily define basic needs such as feet not penetrating
the floor. The primary task is called the trainee. The secondary task is in charge of tracking
the original motion so that the corrected motion does not deviate too much from the initial
one. This task is called the coach. This motion editing algorithm has been applied to correct
movements generated by a walking engine.

Hierarchical Motion Editing

Lee and Shin [Lee and Shin, 1999] introduced the first example of per-frame IK plus filtering.
Their interactive motion editing system addresses many common tasks such as retargetting,
transitions and/or editing. They introduced two key concepts of per-frame IK plus filter-

76

5.1. State of the Art in per-frame IK plus filtering

Figure 5.1: Correction of a walking motion (source: [Boulic and Thalmann, 1992]).

Figure 5.2: Transitions between walking and sneaking (source: [Lee and Shin, 1999]).

ing methods: the intra-frame and the inter-frame consistencies. The intra-frame consistency
represents the set of spatial constraints a virtual human must achieve at each frame of the
animation. This is usually done by using an IK solver. The inter-frame consistency specifies
that neighboring adjusted frames have to be as similar as possible to avoid adding jerkiness
in the final animation. This is usually done by filtering the changes to the initial motion in
order not to add high frequencies. The inevitable consequence is that it potentially destroys
intra-frame consistency. As a result, these phases are usually iteratively repeated. Their
system makes specific choices for each key aspect of the approach: the IK solver and the
filtering process.

They implemented a highly specialized IK solver for human-like articulated figures (see
Section 3.1.4 for more details). The final implementation is very fast. The authors have had
to make several sacrifices in order to achieve such performances. By construction, their IK
solver can handle human-like articulated figures only. Secondly, the set of constraints that

77

Chapter 5. Prioritized Motion Deformation

it can handle is limited. Finally, it is not practical if the final postures significantly deviate
from the input ones.

The authors enforced inter-frame consistency using a hierarchical B-spline-based filter.
Each displacement map is adaptively refined by hierarchically fitting B-splines defined by
uniform sequences of knots. The more knots we use, the finer the results. The main problem
of using B-spline-based filtering is that it becomes computationally expensive if the number
of knots in the B-splines is large. Indeed, the problem of fitting a B-spline to scattered data
points is reduced to finding the set of control points which best interpolates the data points.
This is done by minimizing an objective function using a least-squares method.

Online Motion Editing

Figure 5.3: Snapshots taken from the retargetted motion (source: [Choi and Ko, 2000]).

In specific contexts (video games, real-time performance, etc), motion editing systems
can only rely on past and present frames: future frames are a-priori unknown. They then have
to process each frame and display them on the fly. Such applications may be found in games
for example where the animations must react to unpredictable events. These systems are
inherently per-frame methods as they cannot take the future into account and cannot change
the past as it has already been displayed.

Choi and Ko presented in [Choi and Ko, 2000] the first work on online motion retarget-
ting. Their IK solver is based on the motion rate control method. The primary task is to track
the motion of the end-effectors. The secondary task is to imitate the motion of the source
character as much as possible. As a consequence, the inter-frame consistency is implicitly
enforced.

A similar technique was presented by Shin et al. in [Shin et al., 2001]. As in the work
of Lee and Shin [Lee and Shin, 1999], their IK solver is specialized in handling human-
like articulated figures (see Section 3.1.4 for more detail). The novelty of their approach
is that each end-effector is given an importance that may dynamically change in order to
decide which of the position of end-effectors and the posture of the limbs must be preserved.
Indeed, if the characters do not have the same size and/or proportions, they generally cannot
be simultaneously achieved. The importance value is directly related to the distance between
end-effectors and surrounding objects in the scene. Finally, the online motion filtering stage

78

5.1. State of the Art in per-frame IK plus filtering

relies on a Kalman filter because it is capable to predict and to adjust the results. The major
limitation of this technique is the concept of importance that is similar to a weighting strategy.
Moreover, the filtering process uses Kalman filters. Whilst these are online filters, that is,
they do not need any information about future frames, they have been designed to be applied
to linear systems which is not the case when considering human motions, which usually
contain periods of severe nonlinearity. Hence, it may happen that the filter totally loses track
of the initial signal and produces undesired results.

Figure 5.4: Morphology-independent motion adaptation (source: [Kulpa et al., 2005]).

Finally, Kulpa et al. [Kulpa et al., 2005] proposed an efficient implementation of the
Cyclic Coordinate Descent algorithm to adapt an animation in real-time. While Shin et al.
[Shin et al., 2001] used a simplified skeleton, Kulpa et al. proposed a methodology to repre-
sent motion in order for the related data as constraints to be independent from the underlying
hierarchy instead. Hence, important constraints such as foot-contacts are preserved while
scaling the skeleton. Whilst this method does not use any kind of filtering, it provides very
good results for real-time motion adaptation of virtual characters. To ease the adaptation,
the underlying skeleton is divided into groups, each of which being an individual kinematic
chain. This has the advantage to ease the computation of a solution. However, as no synergy
exists between groups, it may lead to unrealistic results. Moreover, they proposed a control
scheme to constrain the CoM to its original position. This method works well in cases where
the feet are located at the same place in the initial and the adjusted motions. However, if we
need to change the position of the feet, this algorithm leads to unbalanced postures.

Motion Retargetting

Monzani et al. proposed in [Monzani et al., 2000] a method to retarget animations to charac-
ters having both geometrical and topological differences using an intermediate skeleton. This
latter serves as a bridge between all the potential skeletons we need to map the animation
to. This method uses a numerical IK solver similar to ours. Hence, using the optimization
vector reduces the need to filter the results as each adjusted posture is attracted to its ini-
tial configuration. To achieve smooth transitions between original end-effectors trajectories
and constraints trajectories, the authors decided to add an ease-in period (resp. an ease-out

79

Chapter 5. Prioritized Motion Deformation

Figure 5.5: Motion conversion to various characters. The original motion is captured on the red
skeleton on the left (source: [Monzani et al., 2000]).

period) before (resp. after) the constraints are activated (resp. deactivated). During the ease-
in period, the end-effector trajectory is linearly interpolated to smoothly reach the specified
goal. During the ease-out period, they preferred to linearly interpolate the postures instead
of the trajectories because of potential conflicts between constraints leading to discontinu-
ities when one of them is deactivated. According to the authors, this method only gives
good results when the adapted motion remains close to the original one. In particular, linear
interpolation may produce noticeable discontinuities because it does not take end-effectors
velocity into account.

Footskate Cleanup

Figure 5.6: Original versus cleaned motions (source: [Kovar et al., 2002b]).

Kovar et al. proposed in [Kovar et al., 2002b] a method dedicated to the problem of
footsliding removal. Their algorithm uses analytical methods only as the root and the spine
orientation are not adjusted in their framework. This method is basically divided into three
steps. First the root position is computed. Then, each limb posture is independently adjusted
so that each end-effector reaches its goal. During this stage, each limb may be additionally
stretched to avoid sharp changes. Finally, the resulting displacement maps are smoothly
propagated to surrounding frames to avoid discontinuities. While this method works well

80

5.2. Per-Frame Inverse Kinematics

for the specific problem of footsliding removal, it lacks in genericity and may not work
for general motion editing problems. Furthermore, the IK solver they used does not allow
user-defined end-effectors specification.

In the next sections we present our motion deformation framework.

5.2 Per-Frame Inverse Kinematics

Our approach is similar to the one presented by Choi et al. in [Choi and Ko, 2000]. We
use the numerical IK solver presented in chapter 3 in order to define prioritized constraints
while deforming an animation. Moreover, the iterative construction of the solution channels
the convergence through intermediate solutions, enforcing the highest prioritized constraints
first. In this way, if the iterations number of the IK solver is not large enough to ensure that
all the prioritized constraints are met, it at least ensures that the most important ones are
achieved.

One important issue while deforming animation on a per-frame basis is the choice of
a starting configuration. Several works directly rely on the associated posture in the input
motion [Lee and Shin, 1999][Shin et al., 2001][Kovar et al., 2002b]. This configuration
choice is only acceptable for methods where the final animation stays close to the initial one.
Indeed, as the IK solver starts from the original posture, neighboring deformed postures may
be quite dissimilar and the low-pass filtering step inevitably leads to unpleasant results.

In [Choi and Ko, 2000] and [Monzani et al., 2000], each configuration is entirely depen-
dent on the previous deformed one for the IK solver. Similarly, we also make the assumption
that each character’s posture in the output motion is similar to the previous one. However,
joints which are not recruited by constraints should exactly reproduce their original motion.
Hence, in our framework we additionally make the distinction between joints participating
to the deformation and the others.

Let minitial(t) = (pr(t), q1(t), · · · , qnjoints
(t)) be the initial motion. Furthermore, let

mdeformed(t) = (p′
r(t), q

′
1(t), · · · , q′

njoints
(t)) be the deformed one. For a given instant of

time tα, the starting state of the deformed posturemdeformed(tα) is then defined as:

mdeformed(tα) = (p∗
r(tα), q∗

1(tα), · · · , q∗
njoints

(tα))⊕ d(tα) (5.1)

where (the same holds for p∗
r(tα)):

q∗
i (tα) =

{
q

′
i(tα −Δt) if the joint is controlled

qi(tα) otherwise

for 1 ≤ i ≤ njoints. Δt is the time interval between two consecutive frames. Each adjusted
posture is then attracted toward its corresponding one in the input motion, thanks to the
optimization vector described in chapter 3.

81

Chapter 5. Prioritized Motion Deformation

5.3 Enforcing Continuity

A commonly accepted assumption follows from the observation that high frequencies in
motion are important as they generally carry much of the naturalness of an animation [Witkin
and Popovic, 1995][Gleicher, 1998][Gleicher, 2001]. Hence, high frequencies must not be
disturbed and should be added or removed with care.

High frequencies may be principally added during the IK step (because each frame is
independently adjusted) and because of the constraints activation/deactivation.

5.3.1 Filtering the Adjustments

Adjusting each frame individually may violate the inter-frame consistency. Thus, to ensure
that our approach effectively produces natural looking motions, we need to low-pass filter
the deformation we want to add to the original animation. Doing so, we ensure that no high-
frequencies are added (or removed) to the original motion. During the IK step, each joint
is attracted toward its original value using the optimization vector described in Chapter 3.
Since surrounding postures in the original motion are close to each other, we then ensure
that we minimize the deviation from the original motion as much as possible. Moreover, as
we are working in an offline framework, we have a total control over the iterations number
of the IK solver. Hence, providing that the iterations number is large enough, we also ensure
that the residual errors due to the lower priority constraints, and in particular the optimization
vector, are minimized as much as possible. As a result, we also limit the risks of adding dis-
continuities to the final animation. In cases where the iterations number is too low however,
there is no guarantee regarding the continuity of the results.

In the vast majority of motions we have edited, attracting the deformed motion toward
the original one was sufficient to avoid adding discontinuities. Hence, in these cases, no
filtering was used. However, it may happen that the original motion is particular enough that
any deformation would generate artifacts in the final motion. For example, when a leg is
nearly fully extended, a small adjustment to the toe position induces important changes to
the articulations of the leg. In such cases, we need to low-pass filter the added deformation.
We use a Finite Impulse Response (FIR) filter (a convolution) to perform this task. If the
discontinuity is too important, this filtering process significantly alters important constraints
and we need one more pass.

It may also happen that the original motion contains noise such as jerkiness in the end-
effectors position. Enforcing position constraints on these end-effectors then produces ar-
tifacts since we need to add high frequencies to the original animation to compensate for
this erratic motion. A solution may be to stretch the skeleton as in [Kovar et al., 2002b].
However, as previously explained in section 4.3, this solution is not acceptable in our frame-
work because changing the size of the limbs may be problematic when using the animation
in other applications. We instead prefer to filter the results and to allow the end-effectors to
not strictly achieve their task in order to avoid adding artifacts.

Furthermore, the CoM position control is also very useful to avoid the occurrence of
discontinuities in the translation components of the root of the hierarchy. Indeed, as these
latter are not considered while attracting the deformed posture toward the original one, the

82

5.3. Enforcing Continuity

IK solver tends to translate the root as much as possible to limitate the deviation of the
remaining joints from the initial posture. Hence, while adding realism to the final motion,
the CoM control also improves the robustness of our approach.

Finally, it is important to emphasize that as we use a numerical IK solver and thus can
attract the solution toward the original animation, discontinuities only occur in very marginal
cases.

5.3.2 Constraints Activation/Deactivation

Another issue when dealing with continuity is the activation/deactivation of constraints. In
our framework, the position constraints are not considered as locations in space but as con-
tinuous trajectories instead. Hence, to enforce a position constraint at a specific time tα, we
define a shape-constraint between times tα −Δtcb

and tα + Δtce where Δtcb
is the duration

to go from the original trajectory to the goal location and Δtce the duration to go from the
goal location back to the original trajectory.

Time

Priority

Highest prioritized constraint
Lower prioritized constraint (achieved)
Lower prioritized constraint (not achieved)

3C

2C
1C

1t 2t 3t 4t 5t 6t 7t 8t

Figure 5.7: General scheme of conflicting prioritized constraints. The constraint C1 is activated
a time t1. When C2 is activated, C1 is still achieved. At time t3, all the constraints are met. At
time t4, C1 and C3 conflict. C3 has a higher priority and is achieved while C1 minimizes the
residual error. Finally, C1 is achieved at time t5 before C3 is deactivated.

Moreover, the animator must take special care when dealing with conflicting constraints.
Figure 5.7 shows an example of conflicting prioritized constraints. We must ensure that when
a constraint is deactivated, the conflicting constraints immediately below it in the hierarchy
of priorities are achieved. Failing to do so may lead to discontinuities.

For example, consider the example of a 2D point whose trajectory is along the x axis
(see figure 5.8). To edit its motion, we use two shape-constraints C1 and C2, C1 having
a lower priority than C2. In this particular configuration, these constraints conflict. C1 is
active during frames 30 to 60 while C2 is active during frames 10 to 40. During the period
of activity of C2, C1 has no impact on the final trajectory. When C2 is deactivated, C1 is not
achieved. Thus the deformed trajectory “jumps” onto C1 producing a discontinuity in the
trajectory of the 2D point.

83

Chapter 5. Prioritized Motion Deformation

Algorithm 1 Time and space consistency enforcement between potentially conflicting con-
straints

STEP 1: SORT POTENTIALLY CONFLICTING CONSTRAINTS
1: PCCSETS ← ∅ /* Potentially conflicting constraints sets */
2: CONSTRAINTSLIST ← the list of constraints defined by the user
3: alreadyOverlapped← false
4: overlappedSet← ∅
5: for all constraint C in CONSTRAINTSLIST do
6: alreadyOverlapped← false
7: for all set S in PCCSETS do
8: if ¬alreadyOverlapped then
9: if activityOverlapping(C, S) then
10: S ← S + C
11: overlappedSet = S
12: alreadyOverlapped← true
13: end if
14: else
15: if activityOverlapping(C, S) then
16: overlappedSet← overlappedSet + S
17: remove S
18: end if
19: end if
20: end for
21: if ¬alreadyOverlapped then
22: newSet← C
23: PCCSETS ← newSet
24: end if
25: end for

STEP 2: ENFORCE TIME AND SPACE CONSISTENCY IN EACH SET
26: for all set S in PCCSETS do
27: activeConstraints← ∅
28: for all constraint C in S do
29: for all constraint activeC in activeConstraint do
30: if C and activeC control the same end-effector then
31: Change the constraint with lower priority so that it connects to the higher pri-

ority one in time and space. If both have the same priority, then identically
modify both to connect them in space and time.

32: end if
33: end for
34: activeConstraints← activeConstraints + C
35: end for
36: end for

84

5.4. Convergence and Stopping Criteria

X

Y

Frame 40

Frame 41

C

C

2

1

Figure 5.8: Configuration leading to discontinuities: the shape-constraintC1 has a lower priority
than the shape-constraint C2. Green points: Original animation. Red points: Deformed ani-
mation. Yellow points: Superposition of original and deformed animations. Blue curves: The
specified shape-constraints. Note the discontinuity between frames 40 and 41.

C2

C1

C2

C1

C2

C1

C2

C1

Figure 5.9: Time and space consistency enforcement. Left: Initial configuration. Middle left:
C1 has a lower priority than C2. Middle right: C1 and C2 have the same priority. Right: C1 has
a higher priority than C2.

In our framework, we solve this problem by enforcing a time and space consistency
between potentially conflicting constraints controlling the same end-effector. We assume
that two constraints are potentially conflicting if their periods of activity overlap in time. All
the constraints are first sorted in sets containing all the constraints having overlapping activity
period. Hence, a set contains all the constraints that may directly or indirectly disturb the
achievement of the others in the same set. Then, the activity period of constraints controlling
the same end-effector as well as their position in space are adjusted so that they are connected
in time and space. In this way, we avoid the problem of overlapping activity periods shown
in Figure 5.8 as well as gaps between consecutive constraints controlling the same end-
effector. Our method is detailed in Algorithm 1. Figure 5.9 shows some results of the time
and space enforcement. Note that the final curve is different depending on the priority of the
constraints.

5.4 Convergence and Stopping Criteria

Analyzing the convergence of our motion editing algorithm for an entire animation is similar
to analyzing its convergence for a single frame. Furthermore, we exclude from our dis-
cussion configurations which diverge by construction. For example, as detailed in section
3.3.1.3, if the rule stated by Equation 3.18 is not met, the IK solver cannot converge, and as

85

Chapter 5. Prioritized Motion Deformation

C1

C2

C3

C1

C2

C3

0 10 20 30 40 50 60 70 80 90 100

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0

R
es

id
ua

l e
rr

or
Iterations number

Total residual error

C1

C2

C3

Figure 5.10: Convergence of the algorithm for three conflicting constraints C1, C2 and C3

where priority C1 > priority C2 > priority C3. Left: Initial configuration. Middle: Final
configuration. Right: Residual error for each constraint. Note that higher priority constraints
may disturb the convergence of lower priority ones.

a consequence, our motion editing algorithm cannot either.

We choose a test configuration exhibiting convergence interaction between conflicting
constraints (see left of Figure 5.10).

The kinematic chain contains 3 DoFs and is controlled by three constraints:

1. C1 controls the position of the chain’s tip. It has the highest priority. This constraint
is only concerned by vertical alignment of the end-effector and the goal. Hence, the
end-effector is free to move along the vertical line passing through the goal (the white
ball).

2. C2 controls the position of the CoM of the kinematic chain. It has a middle priority.
As for C1, C2 is only concerned by vertical alignment of the chain’s CoM and the goal
(the red cube).

3. C3 controls the position of the joint just under the chain’s tip. It has the lowest priority.
As for C1 and C2, C3 is only concerned by vertical alignment the end-effector and the
goal (the red ball).

We choose this case as it may be considered as the worst one for several reasons. First
of all, the number of DoFs is much lower than in the case of a virtual human. Hence, high
priority constraints tend to limitate the remaining space for lower priority ones to converge.
As a result, the influence of high priority constraints onto lower priority ones is very im-
portant as these latter are not able to compensate for the disturbance induced by the former.
Secondly, the number of constraints controlling the same kinematic chain is large. Finally,
the constraints have opposite goals: C1 greatly disturbs C2 and C3 as the direction to achieve
their respective goals are almost opposite.

86

5.5. Experimental Results

The residual errors are shown in the right of Figure 5.10. As expected, while minimizing
εC1 (the residual error related to C1), the algorithm increases εC2 and εC3 (the residual errors
related to C2 and C3). Once C1 is achieved, εC2 then strictly decreases. Even though C2

and C3 are conflicting, minimizing εC2 also minimizes εC3 except between frames 20 and 40
approximately. Finally, when C2 has reached its goal, εC3 also strictly decreases.

The construction of the solution ensures that once a constraint has reached its goal, it
cannot be disturbed by lower priority ones. Then, in the worst case, the algorithm first
minimizes the residual error related to the constraint of highest priority. Once this is done, it
minimizes the residual error related to the constraint just below in the hierarchy of priorities
and so on. We can then conclude that the algorithm always converges as long as we do not
consider diverging configurations which cannot be satisfied by construction.

Now that we know our algorithm converges, we must decide when it has converged
enough, that is we must choose a stopping criterion. We could choose a static threshold
for the total residual error beneath which we consider that the algorithm has converged.
However, in some cases, one constraint (or more) is not achievable. Hence, our algorithm
would not stop at all. To overcome this problem, we use a more common stopping criterion
which is the variation of the total residual error.

Additionally, we use a static threshold to limitate the maximum iterations number. This
may be useful for the animators who wants to obtain a quick and coarse estimation of the
final animation. As shown in Figure 5.10, if the algorithm is stopped before it has time to
converge, it at least ensures that high priority constraints are achieved since the solution is
constructed so that it channels the convergence through intermediate solutions which enforce
the highest prioritized constraints first. As a consequence, using priorities to specify the
importance of constraints is suitable to build a coarse to fine architecture: we first give the
user a rough estimation of the final animation and hierarchically refine the solution to achieve
more aesthetic results.

5.5 Experimental Results

The final system is integrated into AliasTM/Maya5 as plug-ins and MEL scripts. Figure 5.11
shows a screenshot of the application. For this particular example, it took less than one
minute to create the required constraints. Indeed, the end-user only needs to specify the
timing of each shape-constraint as well as the position and timing of the points it has to
pass through. Moreover, assigning a priority to each constraint is straightforward as the only
point which matters is the relative priority between them. For example, a set of constraints
C1, C2 and C3 with priorities 2, 10 and 15 gives the same results as with priorities 1, 2 and 3.
Finally, though it has not been used to generate the results presented in this section, the user
can assign a weight to each constraint. Thus, when two or more constraints with the same
priority-level conflict, the conflict is solved using the weighting strategy.

We used our motion deformation algorithm to create a wide range of animations. All the
animations are generated on an IBM T40p (Pentium M 1.6 GHz, 1Go RAM, ATI mobility
FireGL 9000).

87

Chapter 5. Prioritized Motion Deformation

Figure 5.11: Motion deformation system integrated into AliasTMMaya R© 5

Karate Motion

In this example, the right foot is constrained to follow its original trajectory (high-priority).
The left ankle of the character is constrained to reach a higher location (low-priority). Finally,
the CoM is controlled to enforce balance (middle-priority). Once again, the priority level
assigned to each constraint allows to decide whether to keep the left foot planted, or to
constrain the right foot to reach its goal at all costs. In figure 5.12 we demonstrate that
controlling the CoM position as well as assigning priorities to constraints may facilitate
the process of motion deformation. In figure 5.13, we constrained the right ankle to reach
goals at different heights. All these examples were generated in less than 2 seconds with
visualization.

Editing Footplants

The initial animation contains 200 frames (8 seconds) and 8 footplants which we modified.
Additionally, the CoM is controlled to enforce balance (low-priority). To obtain the cat-
walk, we also used a rotational constraint and a shape-constraint on the torso. The deformed
animations shown in figure 5.14 were generated in approximately 40 seconds without visu-
alization. Once again, it is important to emphasize that the purpose of footplant constraints
in our framework is not to edit the whole path of the motion but to locally correct artifacts
such as footslidings instead.

88

5.6. Discussion and Conclusion

Figure 5.12: Left: Deformed motion. The ankle’s goal cannot be reached without disturbing
higher priority constraints. Middle left: The CoM is not controlled anymore resulting to unbal-
anced postures. Middle right: Resulting motion using weighting constraints. The location of
the right foot is disturbed. Right: Original motion

Golf Swing

In this example, the initial animation contains 66 frames (3 seconds approximately). The
toes have been first corrected so that they do not slide on the ground anymore. The the left
hand motion (the one to which the golf club is attached) has then been modified in order to
amplify the overall swing. Finally, the right hand is constrained to follow the trajectory of the
left one. Additionally, the CoM is controlled to enforce balance. The deformed animation
shown in figure 5.15 was generated in approximately 1 second without visualization.

Putting it all together

Finally, we applied our method to a walking animation to obtain a “climbing stairs” mo-
tion. We used different classes of constraints. We used four shape-constraints to design the
“walking on stairs pattern” and one shape-constraint to constrain the relative position of the
right elbow with respect to the torso. The orientation of the right arm was also constrained
in order for the character to hold a tray horizontally. Finally, the CoM of the character was
equally constrained. The final result is shown in figure 5.16. The whole animation needed
two passes as the filtering process significantly disturbed the footplant constraints. Finally,
the whole animation was generated in approximately 40 seconds without visualization.

5.6 Discussion and Conclusion

In this chapter we have presented an interactive method for adding significant changes to an
animation. However, some improvements may be added to enhance its robustness.

The actual filtering process is simple but suffers from one drawback: our method be-
comes inherently off-line. We could improve our method by using on-line filters such as in

89

Chapter 5. Prioritized Motion Deformation

Figure 5.13: Reaching goals at different heights.

[Tak et al., 2002] and [Shin et al., 2001].

The main characteristics of such filters are the support (the size of the convolution) as
well as the weights assigned to each value. However, it was not possible to choose generic
values because the results had to be filtered in very marginal situations only.

As we directly rely on the input motion to estimate the CoM’s position in the resulting
animation, it becomes difficult to use in cases where the original motion is too noisy. We
could improve the robustness of our approach by first cleaning the input motions (filtering
and enforcing important constraints) using commercial tools.

We have presented in Section 5.3 an algorithm to avoid discontinuities due to of conflict-
ing constraints controlling the same end-effector. However, discontinuous trajectories may
be generated in various contexts. For example, it may be due to the overlapping kinematic

Figure 5.14: Left: Original motion. Middle left: Footplants are enforced. Middle right: The
position and orientation of the original footplants are modified to obtain a catwalk. Right: The
heights of the footplants are modified for the character to walk on steps

90

5.6. Discussion and Conclusion

Figure 5.15: A golf swing motion. Left character: Initial motion. Right character: Edited
motion.

91

Chapter 5. Prioritized Motion Deformation

Figure 5.16: Example of a deformed animation with five shape-constraints, one rotational-
constraint and CoM position control.

chains themselves, the different priorities of the constraints, their recruiting level, their ac-
tivity period, interdepending constraints, etc. Badler et al. proposed in [Badler et al., 1980]
an algorithmic solution to handle conflicts between overlapping kinematic chains. They did
not consider priorities or even dynamically changing recruiting level, and thus made choices
which could not be done in our framework. In our framework, we only consider conflicts
between constraints controlling the same end-effector since it represents the most common
situation when generating discontinuous trajectories. If we wanted to handle all the possible
cases, the algorithm would be much more complex than the one presented in [Badler et al.,
1980]. Additionally, in many cases, there is no optimal solution. As a consequence, such
an algorithm would have to make a lot of compromises and choices which would be too
subjective to be generic and robust. For this reason, we preferred to let the animator decide
whether it is better to decrease the priority of a constraint or to change its recruiting level for
example.

Our framework improves classical motion editing techniques, as animators can add large
deformations without ending up with unbalanced results. Moreover, the priority concept
greatly helps when animators need to arbitrate conflicting constraints. Our algorithm allows
to assign a priority to each constraint. This priority is used to arbitrate conflicts between
constraints. Our scheme ensures that high-priority constraints won’t be disturbed by low-
priority ones. Furthermore, we have proposed a simple and efficient algorithm to avoid
generating discontinuous end-effectors trajectories while adding new constraints. Finally,
while we have mainly focused our discussion on motion deformation, our method is also
well-suited to deal with retargetting problems.

92

5.6. Discussion and Conclusion

For the moment, all these constraints must be explicitly specified by the animator. How-
ever, in some cases specifying all the constraints by hand is a tedious and time-consuming
process. We found useful to be able to automatically detect the initial set of constraints the
user could be interested in.

In the next chapter, we present a method which is able to detect geometric constraints so
that the animator only needs to adjust them instead of specifying them all by hand.

93

Chapter 5. Prioritized Motion Deformation

94

CHAPTER 6

Geometric Constraint Detection for
Motion Capture Animation

Constraint-based motion editing techniques are designed to change existing motion se-
quences while retaining as many of their initial characteristics as possible. These charac-
teristics are often rendered explicit using geometric constraints (simply called constraints in
the remainder of this chapter) i.e. some parts of the virtual character remain stationary with
respect to some reference frame for a period of time. However, in some cases, manually
defining all these constraints can prove to be time-consuming. Consequently, it is often de-
sirable to automate the detection of such constraints in order to simplify and speed up the
motion editing process.

We divide constraints into two subcategories:

1. Intrinsic Constraints: they represent constraints that are only related to the motion
of the virtual character. They can be detected by considering only the animation itself.
For example, footplants are intrinsic constraints. The right hand of a character rotating
around an axis fixed in the world coordinate system is also an intrinsic constraint.

2. Interaction Constraints: they represent an interaction between the virtual character
and objects in the scene. As a consequence, they cannot be detected by considering the
character’s animation alone: we must also take the motion of some objects of interest
in the scene into account. For example, if the character grabs a bottle on the table and
moves it to another location, there is an interaction constraint between the hand and
the bottle: the hand is stationary with respect to the bottle.

95

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

It is important to note that interaction constraints with stationary objects are considered
as intrinsic constraints as they can be detected by only considering the motion of the virtual
character.

In this chapter, we present a framework which helps the animator edit the motion of a
virtual character by semi-automatically detecting the intrinsic constraints in the initial an-
imation (we later explain why no constraint detection algorithm can be fully automated).
The animator is then free to edit (or remove) these constraints so as to retain only those of
interest (some constraints turn out to be useless depending on the result the animator wants
to achieve).

The next section gives a definition of the constraints we are interested in. Section 6.2
reviews previous work on constraint detection. Section 6.3 provides an overview of our
method. In Section 6.4, we present our algorithm for semi-automatically detecting intrinsic
constraints in motion. In Section 6.5 we present experimental results. Finally, we discuss its
limitations and conclude in Section 6.6.

6.1 Constraints Definition

The purpose of this chapter is to present a method to semi-automatically detect constraints
related to specific body parts of a virtual character. As stated before, they are directly related
to its motion. Hence, if we only consider the motion of a body part, we can then identify
three types of constraints:

• the body part is stationary in space. This is a space constraint,
• the body part is rotating around a line. This is a line constraint,
• the body part is rotating around a point. This is a point constraint.

Moreover, all these constraints share a common property: they each occur during a specific
time interval [tbegin, tend].

The next sections separately detail these constraints.

Space Constraints

A space constraint emphasizes the fact that if we apply the motion of the considered body
part to all the points in space, then they all remain stationary. In particular, the body part is
also stationary. This occurs when all 6 DoFs of a body part are fixed. A space constraint is
then parametrized with:

• a position in space,
• an orientation in space.

Space constraints are the most meaningful constraints as they represent events in the motion
that are easily identified. For example during a walking motion, a space constraint occurs
each time one foot stays planted on the ground.

96

6.2. State of the Art in Constraints Detection

Line Constraints

A line constraint emphasizes the fact that if we apply the motion of the considered body part
to all the points in space, then all the points lying on a specific line (and only those) remain
stationary. In particular, the body part rotates around this line. This occurs when 5 DoFs of
a body part are fixed (3 for the translation and 2 for the rotation).

A line constraint is then parametrized with:

• an origin in space
• a direction in space.

A line constraint may be assimilated to a revolute joint: it only has one DoF. For example,
a line constraint occurs when one is opening a door: the hand rotates around the axis of
rotation of the door.

Point Constraints

A point constraint emphasizes the fact that if we apply the motion of the considered body
part to all the points in space, then a single point remains stationary. In particular, the body
part rotates around this point. This occurs when the 3 DoFs of the translation of a body part
are fixed.

A point constraint is then parametrized with:

• a position in space.

A point constraint may be assimilated to a spherical joint: it has three DoFs. For example,
a point constraint occurs when the fortune teller cleans her crystal ball: the right hand rotates
around the center of the ball.

Sliding Constraints

Sliding constraints may be assimilated in particular to prismatic joints, cylindrical joints,
planar joints or screw joints. These constraints are more difficult to detect and necessitate
complex minimization techniques that our algorithm cannot handle: indeed, our main focus
is to develop interactive methods and it is often hard to combine minimization methods with
interactive rates. As a consequence, this group of constraints is not handled by our algorithm.

6.2 State of the Art in Constraints Detection

Very few results on automatic (or even semi-automatic) constraint detection can be found in
the literature. A classical application of constraint detection is the identification of footplants
in motions. Several methods [Kovar et al., 2002a; Menardais et al., 2004] used specific
thresholds on the position and velocity of the feet to detect these constraints. Similarly,

97

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Lee et al. extended this approach in [Lee et al., 2002] to body segments and objects in
the environment. They consider their relative velocity and position to decide whether a body
segment is in contact with an object in the scene or not. However, the thresholds used in these
techniques are closely related to the nature of the considered motions. As a consequence,
they have to be finely tuned depending on whether the virtual character is walking, running,
jumping, etc.

In [Bindiganavale and Badler, 1998] the authors presented a method mapping the ani-
mation of a subject being motion captured (the primary agent) to another virtual character
having different proportions (the secondary agent). They essentially focused on motions
containing interactions with the surrounding environment and thus introduced a method to
detect interactions between the character and objects in the environment. The main point of
their technique is to identify collisions between end-effectors and the objects in the scene.
However, to avoid checking for collision at every frame of the animation, they supposed
that potential frames of interest are located at the zero-crossing of the second derivative of
the end-effectors. Finally, they used tagged-objects having predefined sites of interest to, in
particular, avoid checking for collisions with all the objects in the scene.

Finally, Liu and Popović [Liu and Popovic, 2002] proposed a generic method to detect
intrinsic constraints. All the points remaining stationary from one frame to another are first
computed. These spaces of stationary points may be of dimension:

• 1: all the points on a line in space remain stationary
• 3: all the points in space remain stationary

They then compute the intersections of these points with body parts of the character to de-
termine the dimension and duration of the intrinsic constraints. It is important to note that
despite what was stated in [Liu and Popovic, 2002], no rigid transformation exists such that
a single point or all the points belonging to a plane remain stationary from one frame to
another.

However, all these methods prove to be unreliable if the original motion is noisy such
as motion capture data. In the next sections we propose a technique to semi-automatically
extract intrinsic constraints (from the motions themselves) using motion capture animations
as input. We demonstrate, using several examples, that our algorithm is robust enough to
accurately detect constraints even with highly noisy data.

6.3 Method Overview

To simplify the exposition and without loss of generality, we focus our discussion on the
detection of constraints related to a single animated object. Formally, the problem of detect-
ing all the constraints related to a given object O with respect to a reference frame R (e.g.
the world coordinate system or the local frame of a moving object) over a period of time is
to identify their duration as well as their parameters depending on their type (space, line or
point). Our algorithm is composed of the successive stages shown in Figure 6.1. Basically,
given the animation of an object, we first detect its associated constraints between each pair

98

6.3. Method Overview

User’s Input
(Adding Template Constraints,

Adjusting Constraints, ...)

Instantaneous Constraints
Detection

Space Constraints
Computation

Line Constraints Computation

Point Constraints
Computation

Displacement Matrices
Extraction

Min duration
Min dimension

Final Filtering

Objects’ Animations

maxσ maxε

distanceΔangleΔ

Figure 6.1: Overview of the constraint detection algorithm. Boxes: Stages of the algorithm.
Diamond: User’s input: he may manually add constraints (called template constraints), remove
wrong constraints, etc. Ellipsoids: Important algorithm’s parameters.

of successive frames: the instantaneous constraints. Then, each of these instantaneous con-
straints are merged as much possible with its neighbors to end up with a minimal set of
constraints. Each of these steps is summarized in the next sections and detailed in Sections
6.4.1, 6.4.2, 6.4.3 and 6.4.4.

6.3.1 Displacement Matrices Extraction:

We are interested in the constraints related to a given object O with respect to a reference
frameR over a period of time. In our framework, the motions of O andR are expressed in
the world coordinate system. As a consequence, the first step of our algorithm is to express
the relative motion of object O with respect to the reference frame R. This results in a
sequence of displacement matrices expressing the displacement of O inR from each frame
to the next one. The displacement matrices extraction step is explained in more detail in

99

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Section 6.4.1.

6.3.2 Instantaneous Constraint Detection

The problem of constraint detection is similar to identifying all the points in space remain-
ing stationary for each displacement matrix. As previously stated, these fixed points define
stationary geometries that may be of dimension:

• 1: all the points on a line in space remain stationary,
• 3: all the points in space remain stationary.

In the remainder of this chapter, these stationary geometries are referred to as instantaneous
constraints, as they only last for one frame.

Special care must be taken during this step, as we are dealing with motion capture data.
Indeed, in such a context, high-dimensional constraints rarely (or never) occur. For exam-
ple, even though an object is visually still, it is numerically moving. In other words, while
its associated displacement matrix should be the identity it is never the case. We, therefore
introduce two parameters, σmax and εmax in our algorithm, which increase its robustness
during the instantaneous constraint detection stage. These parameters directly depend on the
noise present in the original data. They are exploited in the singular value decomposition
used during this stage. This is why, they are often referred to as the SVD-related parameters.
The animator can interactively change them to detect the expected instantaneous constraints.
However, this is often far from being sufficient and practical. As a consequence, given a
small set of predefined constraints determined by the animator (which we refer to as template
constraints in the remainder of this chapter), we automatically estimate these parameters to
considerably reduce manual tweaking. We explain their importance and their computation
in more detail in Section 6.4.2. At the end of this stage, we end up with a list of instanta-
neous constraints. Note that their parameters are already known at this stage. That is, for a
space instantaneous constraint, we know its position and orientation, for a line instantaneous
constraint, we know its origin and its direction and for a point instantaneous constraint, we
know its position.

6.3.3 Computation of the Effective Constraints

The previous stage provides a list of instantaneous constraints lasting one frame only. How-
ever, this is not the minimal set of constraints we are interested in: we need to estimate their
real duration as well as their real position by merging possible neighboring instantaneous
constraints as much as possible.

Space Constraints Computation: If during n consecutive frames there are n−1 space
instantaneous constraints, we can advantageously replace all of them by a single space con-
straint lasting n frames. We then need to compute the average position of those n− 1 space
instantaneous constraints. Once again, it is important to note that as we are dealing with

100

6.4. Intrinsic Constraint Detection

motion capture data, space instantaneous constraints may not be consecutive in time while
they should in practice. As a result, we also allow space constraints which are close in space
as well as in time to be merged. This stage is explained in more detail in Section 6.4.3.2.

Line Constraints Computation: Given the results of the previous stage, we nowmerge
space instantaneous constraints and/or line instantaneous constraints as much as possible to
determine the exact duration and the exact position of line constraints . Due to the noisy
nature of the data, we introduce thresholds (Δangle and Δdistance) to decide whether two
lines in space are the same or not. In the remainder of this chapter, they may be referred to
as the line-related parameters. Note that some particular space constraints may be removed
to extend the duration of line constraints. Moreover, as stated before in the case of space
constraints, a line constraint may not be continuous in time while it should be in practice.
Hence, line constraints that are close in space as well as in time are merged. We give more
detail about line constraints computation in Section 6.4.3.3.

Point Constraints Computation: At this stage, the final point constraints are com-
puted depending on the intersections of several lines constraints. Here again, some particular
line constraints may be removed to extend the duration of point constraints. For the same
reasons as above, point constraints that are close in space as well as in time are merged.
Finally, two points that are visually the same may be numerically different. For this reason,
as for the line constraints, we consider a distance threshold (Δdistance) to decide whether two
points are identical or not. This is detailed in Section 6.4.3.4.

6.3.4 Final Filtering

The user may not be interested in all the constraints. He could instead focus on constraints
lasting for a minimum amount of frames and/or being of a specific dimension. This stage
filters the previous results so that constraints not meeting the user’s requirements are ignored.

6.4 Intrinsic Constraint Detection

In this section, we detail all the steps presented in Section 6.3. We are essentially concerned
in detecting intrinsic constraints. In this section the term “constraints” refers to intrinsic
constraints if not explicitly stated otherwise.

6.4.1 Displacement Matrices Extraction

As previously stated, the first step of the algorithm is to express the motion of object O
with respect to a reference frame R. As we focus on intrinsic constraint detection, the
reference frame is equivalent to the world coordinate system (see Figure 6.2 for a conceptual
description of the matrices involved in this computation).

101

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

World Frame

Object O at frame i

Object O at frame i+1
Wi

Wi+1

D i

Figure 6.2: Transformations used to compute the displacement matrix Di from frame i to
frame i + 1. Wi is the transformation from theO local coordinate system at frame i to the world
coordinate system. Wi+1 is the transformation from theO local coordinate system at frame i+1
to the world coordinate system. Di is the O displacement matrix between frame i and frame
i + 1.

The only data we can rely on correspond to the animation of object O. This latter may
be viewed as a sequence of transformation matrices giving the position of object O at each
frame of the animation. As a consequence, let us consider Wi the matrix transforming, at
frame i, a point p expressed in the O local coordinate system to xi expressed in the world
coordinate system. More formally we have:

x̂i = Wip̂ (6.1)

with x̂i (resp. p̂) the homogeneous coordinates of point xi (resp. point p). Similarly, at
frame i + 1, we have:

ˆxi+1 = Wi+1p̂

= Wi+1Wi
−1Wip̂

= Wi+1Wi
−1x̂i

We can then define the displacementDi of point x between frame i and frame i + 1 as:

Di = Wi+1Wi
−1 (6.2)

This formulation is similar to the one presented in [Liu and Popovic, 2002]. It represents
the displacement of object O with respect to the world coordinate system. However, this
global formulation is not correct as it introduces a bias in subsequent stages of the algorithm.
Indeed, in this formulation, the displacement matrixDi is directly dependent on the global
position of objectO at frames i and i + 1. We explain in Section 6.4.2 why this may lead to
inaccuracies in our algorithm.

102

6.4. Intrinsic Constraint Detection

We therefore reformulate the problem by expressing the displacement Di of object O
with respect to its previous position:

Di = Wi
−1Wi+1Wi

−1Wi

= Wi
−1Wi+1

This local formulation is much more accurate as it is independent from the global position
of object O. In Appendix A.1 we demonstrate that the global formulation is not correct in
our context and why we should use the local formulation instead.

We are now able to compute all the displacement matricesDi related to the animation of
object O. The next section details our algorithm to estimate, for each displacement matrix,
all the points in space remaining stationary. These points serve as a basis to determine the
final set of constraints we are looking for.

6.4.2 Instantaneous Constraint Detection

Given the displacement matrix Di of an object O from frame i to frame i + 1, we need to
find all the points p remaining stationary in space. More formally, we have to solve:

Dip̂ = p̂ (6.3)

where p̂ is the homogeneous coordinates of a point p expressed in the O local coordinate
system at frame i andDi the displacement matrix ofO from frame i to frame i + 1.

Thus, we need to solve:
(Di − I4)p̂ = 0 (6.4)

In our framework, we are interested in finding all the solutions of Equation 6.4. Indeed,
suppose that the displacement matrix Di represents a rotation along an axis Raxis. It is
clearly not satisfactory to know that a specific point (actually lying on the axis Raxis) is
stationary is space: we need to determine the equation of that axis of rotation. As a conse-
quence, a straightforward method finding a single solution (the least squares for example) is
not usable.

AsDi is a rigid transformation, it can be rewritten as:

Di =

[
Ri ti

03 1

]
(6.5)

withRi and ti respectively the rotational and translational components ofDi.

We then reformulate Equation 6.4 as follows:

(Ri − I3)p + ti = 0 (6.6)

Ap = −ti (6.7)

Using a singular value decomposition, we can express matrixA as:

A = UΣV T (6.8)

103

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

with U and V being 3× 3 orthogonal matrices and Σ a 3× 3 diagonal matrix [Press et al.,
1992]. Matrix Σ is a diagonal matrix containing the 3 singular values σi=1,2,3 (with σ1 >
σ2 > σ3) of matrix A. Moreover, matrices U and V span the range and the nullspace
of matrix A: the columns of U , whose same-numbered elements σi are nonzero, are an
orthonormal set of basis vectors which span the range. The columns of V , whose same-
numbered elements σi are zero, are an orthonormal basis for the nullspace [Press et al.,
1992].

To solve our problem we then need to compute:

1. A basis for the nullspace ofA,

2. A particular solution pparticular to Equation 6.7.

As stated before, a basis of the nullspace of A is computed by taking the columns of V
whose same-numbered elements σi are zero. Generally, no σi is exactly zero. We therefore
introduce a threshold σmax beneath which the singular values are zeroed.

The particular solution pparticular (in the least squares sense) corresponding to Equation
6.7 is computed as:

pparticular = −A−1ti

= −V Σ−1UT ti

At this point, we should obtain all the solutions we are interested in: they are given by the
particular solution pparticular and the basis of the nullspace of A. Unfortunately, Equation
6.7 is not always consistent. In this case, this method actually produces a solution while it
should not. We then need to additionally check whether such a solution is relevant or not. To
do so, we compute the residual error ε of Equation 6.7. This residual error is defined as:

ε = ‖Apparticular + ti‖ (6.9)

Then, whether ε is under a specific threshold εmax or not determines if the solution can be
retained or must be discarded.

In summary, we can directly influence the solution of Equation 6.7 using two parameters:

1. σmax: threshold beneath which the singular values are zeroed. The number of null
singular values defines the dimension of the instantaneous constraint,

2. εmax: residual error of equation 6.7 (after zeroing the singular values smaller than
σmax) beneath which the solution is acceptable.

The problem of detecting instantaneous constraints can then be reformulated as estimat-
ing these SVD-related parameters so that we effectively detect the expected instantaneous
constraints. An accurate estimation of the SVD-related parameters is crucial for the algo-
rithm. Indeed, if they are underestimated (resp. overestimated), the algorithm detects too
few (resp. too many) instantaneous constraints. Several issues then arise:

104

6.4. Intrinsic Constraint Detection

• It is not reasonable to ask the animator to provide such parameters as the results tend
to be difficult to foresee.

• These parameters are very different from one motion to another.
• Motions containing aberrant frames (called hereafter outliers in the remainder of this
chapter) are quite common. In such a situation, estimation is much more arduous.

Hence, we rely on the animator to provide a small set of predefined constraints (the template
constraints) to help the algorithm calibrate these parameters and then accurately detect the
instantaneous constraints for the entire animation.

Template Constraint Specification

To specify a template constraint, the user only needs to specify a time interval [tbegin, tend]
as well as the type of constraints expected (i.e. space, line or point). As a consequence,
a template constraint may be thought of as a set of consecutive displacement matrices for
which we precisely know in advance the solution of the instantaneous constraint detection.

For instance, if the user specifies that a line constraint should occur during time interval
[tbegin, tend], we know that for all associated displacement matrices, σ3 must be inferior to
σmax. Moreover, we also know that for each displacement matrix, the associated residual
error ε must be inferior to εmax. Hence, in theory, these displacement matrices are sufficient
to estimate the SVD-related parameters.

However, as we are dealing with motion capture data, the presence of noise (and par-
ticularly, the presence of outliers) tends to bias the estimation of these parameters. In the
next section, we propose an algorithm to overcome this problem. We first begin by defining
what we call an outlier in our context. We then show that a naive (straightforward method)
is clearly insufficient. We finally detail our method to robustly estimate the SVD-related
parameters based on a template constraint.

Robust Computation of the Instantaneous Constraints

In this paragraph, we focus our discussion on the estimation of the SVD-related parame-
ters based on a single template constraint only. In the next paragraph, we detail how this
method is extended to handle several template constraints simultaneously.

Before detailing our algorithm, we first need to define what we consider as an outlier.
An outlier is an observation that lies outside the overall pattern of a distribution [Moore and
McCabe, 1999]. In our case, we must slightly restrict this definition. Indeed, an outlier is
a particular datum biasing the estimation of some model. In our case, the model we want
to estimate is the SVD-related parameters. This means that we must consider outliers only
while estimating the SVD-related parameters. As a result, in our context, an outlier is a
frame which is labeled (by the user) as being part of a template constraint while it should
not: the so-called aberrant frame.

Given a template constraint, a possible naive method is to first estimate the σmax param-
eter so that the solution of Equation 6.7 is of the required dimension for each associated

105

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

displacement matrix. Afterward, we can easily compute the εmax threshold to accept the
solution at frames where the template constraint has been specified. This naive method is
summarized in Algorithm 2.

Algorithm 2 Naive method to estimate the SVD-related parameters
D← displacement matrices corresponding to the specified template constraint
σmax = maximum singular value so far (initialized to infinity)
εmax = maximum residual error so far (initialized to infinity)
requireddim = required dimension
for all Di in D do

S = extract σ4−requireddim
from Di

E = compute residual error given Di and S
if S > σmax then

σmax = S
end if
if E > εmax then

εmax = E
end if

end for

However, such an approach is far from being efficient as it leads to an inaccurate estima-
tion of the parameters resulting in the detection of too many instantaneous constraints.

Indeed, supposing that a template space constraint of dimension three has been specified
between frame a and frame b (i.e. the considered object remains stationary between frame a
and frame b). Supposing also that during this period of time, the frame i (with a < i < b) is
an outlier. In this case, σmax is overestimated to ensure that the solution of Equation 6.7 is
of dimension three for the specified interval and particularly for the intervals [i− 1, i] and
[i, i + 1].

Moreover, this overestimation of σmax directly influences the estimated εmax. Indeed, the
residual error of equation 6.7 where the singular values have been zeroed is very important.
As a consequence εmax is overestimated as well. Finally, the algorithm tends to detect too
many instantaneous constraints.

We propose a robust estimation of the SVD-related parameters based on the least median
of squares method (LMedS) [Rousseeuw and Leroy, 1987] to identify and reject potential
outliers. Let SV be the set of singular values containing:

• all the σ1 corresponding to the associated displacement matrices if the specified tem-
plate constraint is a space constraint,

• all the σ3 corresponding to the associated displacement matrices if the specified tem-
plate constraint is a line constraint.

We want to find all the σi ∈ SV that significantly deviate from the others:

1. For each σi ∈ SV , we compute the median of its squared residualsMi as:

Mi = med r2
i (σi, SV)

106

6.4. Intrinsic Constraint Detection

where r2
i (σi, SV) is the residual error associated to σi with respect to SV .

2. We retainMmin (and its associated singular value σmed) the smallestMi among all the
Mis

3. We then compute the robust standard deviation as

σ̂ = 1.4826[1 + 5/(NSV − 1)]
√

Mmin

whereMmin is the minimal median and NSV the number of singular values.

4. Finally, we reject all the singular values such that:

r2
i (σi, SV) ≥ (2.5σ̂)2

The reader can refer to [Rousseeuw and Leroy, 1987] for a more detailed explanation of the
LMedS method. It is important to note that in our method, we do not perform any random
selection as the space of possible solutions is SV . We can therefore afford to estimate all
the possible solutions as there are relatively few. σmax is then the maximum of all the good
singular values remaining in SV . Finally, εmax is estimated so as to detect the expected
instantaneous constraints using the same method.

Figure 6.3 shows a comparison of both methods in the case of footplant detection. The

Given template constraint

Detected instantaneous constraints using the naive method

Detected instantaneous constraints using the LMedS method

X

Y

First footplantSecond footplant

Figure 6.3: Detecting footplants: while the LMedS-based method detects two footplants, the
naive method yields to an erroneous estimation by merging both footplants into a single one.

animation represents two footplants. In this example, we immediately see that while the
animation contains two footplants, the naive method only detects one. The first frames of the
animation are very noisy. Indeed, we can easily see that whereas the foot is labeled as being
stationary, it is actually rotating (and also moving in translation). This motion induces an
important bias in the estimation of parameter σmax. This wrong estimation directly produces
a wrong estimation of parameter εmax as well. Using the LMedS method, this bias is avoided
and our method produces the expected results.

Figure 6.4 shows the numerical values corresponding to the example shown in Figure 6.3.
While beginning frames are specified as being a template constraint by the animator, they
should not be retained during the computation of the SVD-related parameters. While our

107

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

0 5 10 15 20 25 300

0.005

0.01

0.015

0.02

0.025

Time (frames)

Si
ng

ul
ar

 v
al

ue
s

σ max = 0.021521
εmax = 0.007609

σ max = 0.01159
εmax = 0.0037144

Maximum Singular value
LMedS
Naive method

Figure 6.4: Comparison between naive and LMedS methods.

Walk Run Walk

Figure 6.5: Test motion: the character first walks, then runs and finally walks again.

robust estimation effectively detects and rejects these outliers, the naive one produces wrong
estimations. As a consequence, the naive method detects too many instantaneous constraints
(actually, at each frame) while our method clearly identifies the two footplants we want to
detect.

The next section presents a method handling several template constraints at once.

Dynamic Estimation of the SVD-related parameters

We have shown so far how to automatically estimate the parameters related to instantaneous
constraint detection: the so-called SVD-related parameters. Given a single template con-
straint, we estimate the SVD-related parameters for the whole motion. However, if the mo-
tion is long enough, it often contains different actions. Each of these actions may lead to
different noise patterns and then, SVD-related parameters which are correct for a particular
part of the motion, may not be suited for the entire movement. For example, let us consider a
motion in which the virtual character first walks, then runs and finally walks again as shown
in figure 6.5. In this case, it is likely that for the time interval during which the character is
running, the SVD-related parameters are higher than for the parts of the motion for which
the character is walking. Figure 6.6 shows, for each frame, the maximum singular value as
well as the associated residual error for the considered motion.

108

6.4. Intrinsic Constraint Detection

0 50 100 150 200 250 300 350

Time (frames)

M
ax

im
um

 si
ng

ul
ar

 v
al

ue

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350

Time (frames)

R
es

id
u

a
l

er
ro

r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 6.6: The maximum singular value and the corresponding residual error for the animation
shown in Figure 6.5. Left: Maximum singular value. Right: Associated residual error

As a consequence, it is not satisfactory to consider static SVD-related parameters for the
entire animation. Hence, we propose a coarse to fine approach to represent the SVD-related
parameters. Each of these parameters is represented using a cubic interpolation spline. For
each given template constraint, we robustly compute, using the previously detailed method,
the associated SVD-related parameters. Each parameter is then used as two control points in
its associated spline: one control point for the begin frame of the template constraint, and one
for its end frame. Figure 6.7 shows an example of the splines associated to the SVD-related
parameters after adding a set of several template constraints.

Doing so, we ensure that the SVD-related parameters are accurate for the period of time
defined by a given template constraint. Subsequent additions of template constraints then
refine the curves associated with the SVD-related parameters. As a consequence, the SVD-
related parameters are dynamically changed to ensure an accurate instantaneous constraint
detection.

In this section, we have shown how to compute constraints between two frames: the
so-called instantaneous constraints. Moreover, we have detailed a robust algorithm able to
estimate key parameters of our method even when the initial motion is noisy and/or when
the animator mislabels frames as being part of a template constraint. This stage of the al-
gorithm provides us with a list of instantaneous constraints. As it is not the minimal set of
constraints we are interested in, we need to estimate them by merging possible neighboring
instantaneous constraints as much as possible.

6.4.3 Computation of the Effective Constraints

In this section, we describe our method to compute the effective constraints. Given a list of
instantaneous constraints, we need to compute the minimal set of constraints. Thus, we need
to merge instantaneous constraints as much as possible. For instance, if during n consecutive
frames there are n − 1 space instantaneous constraints, we want to replace all of them by a
single space constraint lasting for n frames. The merging process may then be decomposed

109

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

0 50 100 150 200 250 300 350

Time (frames)

M
ax

im
um

 si
ng

ul
ar

 v
al

ue

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350

Time (frames)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

id
ua

l e
rr

or
 (x

 1
0

)

-3

Figure 6.7: Dynamic SVD-related parameters estimation using cubic interpolating splines. The
associated animation is shown in Figure 6.5. Left: Maximum singular value (in red) and corre-
sponding threshold spline (in blue). Right: Residual error (in red) and corresponding threshold
spline (in blue). The units are different from Figure 6.6 to highlight the details.

into two successive steps:

1. First estimate the real duration of the constraints,

2. Then estimate their average position depending on their dimension and the previously
computed duration.

We consider the following requirements while merging instantaneous constraints:

1. We want to promote high-dimensional constraints. Indeed, we believe that it is se-
mantically more important for the animator to know that a specific part of the virtual
character is stationary in space rather than knowing that this latter is rotating around
a specific axis of rotation. As a result, when conflicts arise we decide to first promote
space constraints, then line constraints and finally point constraints. We then process
the constraints in this order to ensure that low-dimensional constraints computation
does not disturb high-dimensional ones.

2. We do not want constraints to overlap in time. As a consequence, if a constraint
already occurs at a specific frame, it is not necessary to search for constraints of lower
dimension.

In order to merge two constraints, we need to check for some requirements:

• In space: we need to check for some kind of intersection between both constraints.
For example, two line constraints may intersect and result in a line if they are the same
or a point otherwise.

• In time: we need to check whether the constraints are temporally connected or not: the
ending frame of the first constraint corresponds to the beginning frame of the second

110

6.4. Intrinsic Constraint Detection

one. For example, two line constraints may intersect in space but occur at different
times (they are separated by several frames). In this case, they should not be merged.

Two constraints have to meet both requirements to be merged. While the concept of temporal
connection is independent from the dimension of the constraints, it is not the case for the
concept of space intersection.

When the motion contains outliers, the method presented in the previous section discards
the associated frames during the instantaneous constraint detection step. As a consequence,
when we estimate whether two constraints are temporally connected or not, we have to take
these frames into account to avoid ending up with artificially sliced constraints.

Space Constraints
Computation

Line Constraints Computation

Point Constraints
Computation

Space constraints
Different line constraints

Point constraints
Unconstrained frames

Figure 6.8: Given a list of instantaneous constraints, the successive merging stages produce a
new list of constraints with a robust estimation of their respective duration. This notation is used
throughout the next sections.

The next sections detail our algorithm for computing the final set of constraints given a
set of instantaneous constraints. We first begin by presenting a robust approach to estimate
whether two constraints are temporally connected or not. We then detail the algorithm, for
each dimension, to decide whether we can merge them or not. Figure 6.8 shows an overview
of the successive merging stages. Note that each merging stage also computes the average
parameters for each computed constraint.

111

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

6.4.3.1 Robust Temporal Connection Estimation

As instantaneous constraints are computed with respect to thresholds that are estimated as
conservatively as possible (to avoid detecting too many instantaneous constraints) it may
happen that a constraint is separated into two pieces in spite of being continuous in time.
Consider a simple example in which a particle is supposed to stay stationary for 10 frames
(shown in Figure 6.9). Suppose also that the particle animation contains noise: the particle

XX XX XX

Space instantaneous constraint

XX No instantaneous constraint

Step 1

Step 2

Figure 6.9: A simple particle supposed to stay stationary. Green spheres: Good frames. Red
spheres: Aberrant frames. During step 1, the algorithm computes the instantaneous constraints.
During step 2, the instantaneous constraints are merged when possible.

suddenly moves during three frames (the so-called aberrant frames). During the first step, the
instantaneous constraints are computed. No instantaneous constraint is detected concerning
the aberrant frames. When we try to merge the instantaneous constraints during the second
step, we end up with two different constraints as they are temporally disconnected. In this
case, we do not obtain the expected results: even though the particle is moving during three
frames, we would like to ignore these latter and merge those two constraints into a single
one.

Therefore, we propose to consider a frame tolerance when checking whether two con-
straints are temporally connected or not. This frame tolerance is defined once and then used
whatever situation we are in. However, when two constraints are spatially close to one an-
other, it is likely that even though they are temporally disconnected, they represent the same
constraint: hence the frame tolerance should be large. Conversely, when two constraints are
spatially far from each other in space, it is likely that even though they are temporally dis-
connected by only a few frames, they represent two different constraints: hence, the frame
tolerance should be small.

This problem can then be stated as: given some distance d(C1, C2) between two con-
straints C1 and C2, what is the frame tolerance for considering them as being temporally
connected?

For this, we need to determine a function ftol : R −→ N returning a number of frames
with respect to the chosen distance d(C1, C2). Moreover, we require ftol to respect the fol-

112

6.4. Intrinsic Constraint Detection

lowing conditions:

ftol(d) =

{
Fmax if d = 0
0 if d > dmax

(6.10)

Fmax is the maximum number of frames allowed between two constraints in order to
consider them as temporally connected. dmax is the maximum acceptable distance between
two constraints in order to consider them as temporally connected.

We additionally want the function ftol to severely decrease when the parameter d in-
creases: we then consider the functions of the form f(d) = �α exp−βd� where �x� is the
floor function giving the largest integer less than or equal to x.

Using the first condition of Equation 6.10, we have:

ftol(0) = Fmax with Fmax ∈ N

�α� = Fmax

α ∈ [Fmax, Fmax + 1[

We finally choose α = Fmax (6.11)

Then using the second condition of Equation 6.10, we have:

ftol(dmax) = 1

and ftol(dmax+) = 0

Then we have:

Fmax exp−βdmax = 1

Which leads to β =
log(Fmax)

dmax

As a result, we use the following function to define the frame tolerance between two
constraints:

ftol : R → N

ftol(d) = �Fmax exp−
d log(Fmax)

dmax �
Figure 6.10 shows the function ftol with Fmax = 10 frames and dmax = 10 centimeters.

We can then robustly compute for any pair of constraints their frame tolerance as returned
by the function ftol. If the frame tolerance given by function ftol is superior to the number
of frames separating two constraints, then both constraints are temporally connected. In the
remainder of this chapter, the connected function implicitly considers this frame tolerance.

One question still remains to be answered before we can use ftol: what kind of distance
should we use? This distance may only consider the position of the constraints as it is the
only information we have at that time. However, the position of a constraint depends on
its dimension: the position of a space constraint (resp. a line constraint) may be defined
as a location (resp. an origin) in space plus an orientation (resp. a direction). In this case,
the distance may consider both the Euclidean and the angular distances. As we are mixing

113

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

9

10

Distance (meters)

Fr
am

e
to

le
ra

nc
e

Figure 6.10: Frame tolerance with Fmax = 10 frames and dmax = 10 centimeters.

quantities having different units, we should weight those two distances to end up with one
distance function. However, we also need to work with point constraints. As a point has
no orientation in space, such a distance function is inappropriate. We may then define two
distance functions: one considering the Euclidean and angular distance when working with
space and line constraints and another one only considering the Euclidean distance when
working with point constraints. However, we found this solution far from being practical:
indeed, two different distance functions imply two different frame tolerance functions. For
genericity purposes, we therefore chose to use the Euclidean distance to compute the frame
tolerance. While this choice is theoretically not correct, it proves to be in practice. In fact,
most animations are stored as joint orientations for kinematic chains. Thus, slightly changing
an orientation induces a translation: the amount of noise on the orientation and the translation
are correlated. As a consequence, it is sufficient, in practice, to consider the Euclidean
distance when estimating the frame tolerance.

6.4.3.2 Space Constraints Computation

In this section, we detail our algorithm for computing the duration of the space constraints
given the initial list of instantaneous constraints resulting from the previous stages. We
also explain how the average parameters of the computed constraints are estimated (i.e. the
translation and the orientation components).

The computation of the duration of the space constraints involves two particular func-
tions: the mergeable and the merge functions (used in lines 7 and 8 of Algorithm 3).

Mergeable Function In the particular case of space constraints, we consider that two
space constraints C1 and C2 are mergeable if and only if they are temporally connected in
time.

Figure 6.11 schematically describes this function: if the frame tolerance is more than 2
frames, then C1 and C2 are mergeable. Otherwise, they are considered as being distinct.

114

6.4. Intrinsic Constraint Detection

C1 C2

Yes No
connected(,)?C1 C2

Figure 6.11: Definition of themergeable function for two space constraints.

Merge Function Similarly, in the particular case of space constraints, the result of the
merging of two space constraints C1 and C2 is a space constraint C3 which continuously
spans C1 and C2. Its translation and its orientation is computed with respect to those of
C1 and C2 (see next paragraph). Figure 6.12 schematically describes this function. If C1

Yes No
mergeable(,)?

C3 C3 C4

C1 C2

C1 C2

Figure 6.12: Results of the merge function sequentially applied to a list of instantaneous con-
straints.

and C2 are mergeable, we end up with a single space constraint. Otherwise, C1 and C2 are
considered as being distinct.

Given these functions, we compute the space constraints using Algorithm 3. Basically,
we traverse the initial list of instantaneous constraints by considering only space instanta-
neous constraints. Line instantaneous constraints are ignored during the computation. Then,
for each neighboring space constraint, we check whether we can merge them or not (i.e.
whether they are temporally connected or not). If it is possible, we then replace both con-
straints with a single one. Note that as we want to promote high-dimensional constraints,
any potential in-between line instantaneous constraint vanishes.

At this point, we have computed the duration of a space constraint corresponding to
several instantaneous space constraints, each of these being parametrized by a translation
and an orientation. We then have to compute its average translation and orientation.

115

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Algorithm 3 Space constraints computation
1: ICLISTinitial ← Initial list of instantaneous constraints
2: CLISTfinal ← ∅ /* Final list of constraints */
3: ICinbetween ← ∅ /* List of line instantaneous constraints between two consecutive
space constraints */

Require: ICLISTinitial contains at least one space instantaneous constraint
4: ICactive ← First space instantaneous constraint in ICLISTinitial

5: for all remaining ICcurrent in ICLISTinitial do
6: if ICcurrent is a space instantaneous constraint then
7: ifmergeable(ICactive, ICcurrent) then
8: ICactive = merge(ICactive, ICcurrent)
9: ICinbetween ← ∅
10: else
11: CLISTfinal ← CLISTfinal + ICactive

12: CLISTfinal ← CLISTfinal + ICinbetween

13: ICactive ← ICcurrent

14: end if
15: else
16: ICinbetween ← ICinbetween + ICcurrent

17: end if
18: end for
19: CLISTfinal ← CLISTfinal + ICactive

20: CLISTfinal ← CLISTfinal + ICinbetween

116

6.4. Intrinsic Constraint Detection

Averaging Translations and Orientations The average of a list of translations is the
barycenter of all the translations. Conversely, the computation of the average of orientations
is much more difficult to tackle due to the non-linearity of the orientation space. Several
techniques have been implemented to solve this problem using unit quaternions. A simple
method is to compute the average on each component independently. The result is then re-
normalized to ensure that it is effectively a unit quaternion [Azuma and Bishop, 1994]. While
this method is simple and fast to compute, the result is not accurate as it turns a non-linear
problem into a linear one. The average of two quaternions q1 and q2 may be accurately com-
puted using the slerp(ω, q1, q2) function (spherical linear interpolation) [Shoemake, 1985] ω
being the interpolation parameter. In this case, ω is set to 1/2. To evaluate the mean of n
unit quaternions, the slerp function is then hierarchically applied on each pair of quaternions.
The resulting quaternion then replaces these latter. For example, if we need to average 3 unit
quaternions q1, q2 and q3, we have to compute slerp(1/3, slerp(1/2, q1, q2), q3). However, this
method needs to define an order on the quaternions as it is not associative. As a consequence,
the resulting average may be different depending on the order we choose. Buss and Fillmore
[Buss and Fillmore, 2001] proposed to consider the problem as a weighted least squares
minimization problem. While this method seems to be mathematically correct, it needs nu-
merical iterations to find the solution and thus is subject to local minima problems. Finally,
Park et al. [Park et al., 2002] introduced a global linearization method. Each quaternion is
first projected onto the plane tangent to some reference quaternion using the logarithm map
(see Figure 6.13). Then, the average is linearly computed on this plane. Finally, the result

Figure 6.13: Unit quaternions averaging (Park et al. [Park et al., 2002]).

is reprojected onto the quaternion space using the exponential map. This method needs to
choose a reference quaternion which is as close as possible to all the quaternions. To do so,
they introduced a minimization method based on the geodesic norm. However, in the worst
case, the number of quaternions they have to average is still relatively small. They can then
afford to minimize an objective function to estimate a good reference quaternion to start with.
In our case, the number of quaternions we want to average may be as large as the duration
of the entire animation. Hence, it is computationally too expensive to used such numerical
methods. Moreover, their method is mainly concerned with blending motions together. As a
result, the quaternions they need to average are potentially “far” from each other. In our con-

117

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

text however, all these orientations are actually very close to each other. Indeed, we would
not have detected any space constraint if it were not the case. We therefore choose to use
the same method as [Park et al., 2002] but using a faster approach to estimate the reference
orientation by linearly averaging the quaternions. Then the result is re-normalized to ensure
that we still have a unit quaternion. This result serves as the reference orientation to compute
the tangent plane to project the unit quaternions.

6.4.3.3 Line Constraints Computation

In this section, we detail our algorithm to compute the duration of line constraints given
the list of constraints resulting from the previous stage. This list contains space constraints
and line instantaneous constraints only. The user may define a minimal durationminduration

for constraints he is interested in. We then rely on this parameter to decide whether a space
constraint previously computed may be discarded to increase the duration of a line constraint
or not.

The computation of line constraints involves three particular functions: the equality func-
tion (used in line 26 of Algorithm 4), the mergeable function (used in lines 10 and 19 of
Algorithm 4) and the merge function (used in lines 11, 20 and 27 of Algorithm 4).

Equality Function Two line constraints are equal if they are temporally connected and
if they represent the same line in space. More formally, let us consider two line constraints
Cline1 and Cline2 . Then, Cline1 and Cline2 are equal if and only if:

1. dEuclidean(Cline1 , Cline2) < Δdistance,

2. dangular(Cline1 , Cline2) < Δangle and,

3. Cline1 and Cline2 are temporally connected.

with dEuclidean(Cline1 , Cline2) the minimal Euclidean distance between Cline1 and Cline2 and
dangular(Cline1 , Cline2) the minimal angle between Cline1 and Cline2 . Δdistance is a threshold
determining a maximum distance to consider two lines as intersecting. Δangle is a threshold
determining a maximum angle between two vectors to consider them as parallel.

Mergeable Function We consider that a line and a space constraint Cline and Cspace are
mergeable if and only if:

1. The minimal allowed duration minduration (set by the user) is superior to the duration
of Cspace,

2. Cline and Cspace are temporally connected.

In such a case, Cspace is considered as too short and is removed during the filtering stage. In
other words, it is removed if it allows to increase the duration of neighboring line constraints.

Figure 6.14 schematically describes this function: if the minimal duration (set by the
animator) for a constraint is more than 2 frames and the frame tolerance is more than 2
frames then Cline and Cspace are mergeable.

118

6.4. Intrinsic Constraint Detection

Cline

C lasting 2 framesspace

Yes No

Min > 2
duration

&
connected(,)?CspaceCline

Figure 6.14: Definition of themergeable function for one line and one space constraint.

Merge Function The result of the merging of a line constraint Cline and a space con-
straint Cspace which are mergeable is a line constraint which continuously spans Cline and
Cspace with the same origin and direction as Cline. More formally, if Cline and Cspace are
respectively defined during time intervals [aline, bline] and [aspace, bspace], the result of the
merging of Cline and Cspace is a line constraint C ′

line identical to Cline but defined during
interval [min(aline, aspace),max(bline, bspace)].

Yes No
mergeable(,)?Cline Cspace

C lasting 2 framesspace

Cline

Figure 6.15: Results of themerge function depending on themergeable function.

Figure 6.15 schematically describes this function. If Cline and Cspace are mergeable, then
we find a single line constraint. Otherwise, we end up with two different line constraints.

Given these three functions, we compute the line constraints using Algorithm 4. Basically,
we traverse the given list of constraints. Line constraints are merged if they are temporally
connected and if they are equal. Moreover, space constraints may be removed to increase the
duration of line constraints when these latter are mergeable. Finally, the average line origin
and direction are computed by independently averaging the directions and the origins. The
directions are averaged using the technique explained in Paragraph 6.4.3.2. Note that the
final direction has to be re-normalized.

119

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Algorithm 4 Line constraints computation
1: CLISTinitial ← Initial list of constraints
2: CLISTfinal ← ∅ /* Final list of constraints */
3: Cactive ← First constraint in CLISTinitial

4: for all remaining Ccurrent in CLISTinitial do
5: if Ccurrent is a space constraint then
6: if Cactive is a space constraint then
7: CLISTfinal ← CLISTfinal + Cactive

8: Cactive ← Ccurrent

9: else
10: ifmergeable(Cactive, Ccurrent) then
11: Cactive = merge(Cactive, Ccurrent)
12: else
13: CLISTfinal ← CLISTfinal + Cactive

14: Cactive = Ccurrent

15: end if
16: end if
17: else
18: if Cactive is a space constraint then
19: ifmergeable(Cactive, Ccurrent) then
20: Cactive = merge(Cactive, Ccurrent)
21: else
22: CLISTfinal ← CLISTfinal + Cactive

23: Cactive = Ccurrent

24: end if
25: else
26: if Cactive == Ccurrent then
27: Cactive = merge(Cactive, Ccurrent)
28: else
29: CLISTfinal ← CLISTfinal + Cactive

30: Cactive = Ccurrent

31: end if
32: end if
33: end if
34: end for

120

6.4. Intrinsic Constraint Detection

6.4.3.4 Point Constraints Computation

In this section, we detail our algorithm to compute the duration of the point constraints
given the list of constraints resulting from previous stages. It is important to note that at
this point, we do not consider space constraints anymore. Indeed, space constraints which
were potentially removable due to their short duration have already been merged with line
constraints when possible. As a result and for clarity, in the remainder of this section, we
consider that the initial list of constraints contains line constraints only.

The computation of point constraints given a list of line constraints involves two particu-
lar functions: themergeable function (used in line 14 of Algorithm 5) and themerge function
(used in line 15 of Algorithm 5). Note that the functions used in lines 6 and 7 of Algorithm
5 are related to lines and not to points.

Mergeable Function This function is similar to the one regarding line intersection.
Thus, we consider that a point constraint Cpoint and a line constraint Cline are mergeable
if and only if:

1. The minimal allowed duration minduration (set by the user) is superior to the duration
of Cline,

2. Cpoint and Cline are temporally connected.

Indeed, in such a case, Cline is too short and is removed during the filtering stage. As a
consequence we may directly remove it if it allows to increase the duration of neighboring
point constraints.

Merge Function This function is also very similar to the one defined for line constraints
computation.

Thus, the result of the merging of two line constraints C1 and C2 which are mergeable
(but not equal, or they would have been merged during the previous stage of the algorithm) is
a point constraint Cpoint which continuously spans C1 and C2, the intersection between both
lines defined by C1 and C2 being its position. More formally, if C1 and C2 are respectively
defined during time intervals [a1, b1] and [a2, b2], the result of the merging of C1 and C2 is a
point constraint C ′

point defined during interval [min(a1, a2),max(b1, b2)] and whose position
is at the intersection of C1 and C2.

Moreover, the result of themerging of a point constraintCpoint and a line constraint Cline

which are mergeable is a point constraint which continuously spans Cpoint and Cline with the
same position as Cpoint. More formally, if Cpoint and Cline are respectively defined during
time intervals [apoint, bpoint] and [aline, bline], the result of the merging of Cpoint and Cline is a
point constraint C ′

point defined during interval [min(apoint, aline),max(bpoint, bline)].

Given these two functions, we compute the point constraints using Algorithm 5. Basically,
we traverse the given list of constraints. Line constraints are merged if they are connected
in time and intersect in space. Note that at this point, mergeable line constraints may not be
equal as this case is handled during the previous stage. Moreover, line constraints may be
removed to increase the duration of point constraints when they are mergeable.

121

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Algorithm 5 Point constraints computation
1: CLISTinitial ← Initial list of constraints without considering space constraints
2: CLISTfinal ← ∅ /* Final list of constraints */
3: Cactive ← First constraint in CLISTinitial

4: for all remaining Ccurrent in CLISTinitial do
5: if Cactive is a line constraint then
6: ifmergeable(Cactive, Ccurrent) then
7: Cactive = merge(Cactive, Ccurrent)
8: else
9: CLISTfinal ← CLISTfinal + Cactive

10: Cactive = Ccurrent

11: end if
12: else
13: /* Cactive is a point constraint */
14: ifmergeable(Cactive, Ccurrent) then
15: Cactive = merge(Cactive, Ccurrent)
16: else
17: CLISTfinal ← CLISTfinal + Cactive

18: Cactive = Ccurrent

19: end if
20: end if
21: end for

6.4.4 Final Filtering

The user may not be interested in all the previously detected constraints. He may instead
focus on constraints lasting for a minimum amount of frames minduration and/or being of
a specific dimension dim. This stage filters out the previous results so that constraints not
meeting the user’s requirements are ignored. Hence, the final list of constraints resulting
from previous stages is traversed. Each constraint not meeting the requirements is discarded
and removed from the list.

6.5 Experimental Results

In this section, we present some experimental results of our constraint detection algorithm.
To ease the discussion, we need to introduce some terms:

1. False positive constraint: we consider a constraint as being a false positive if it is
detected while it should not,

2. False negative constraint: we consider a constraint as being a false negative if it is
not detected while it should.

122

6.5. Experimental Results

The same terms are used at a finer granularity when dealing with frames that should or should
not be constrained. The first sections serve to highlight important characteristics of our algo-
rithm. In particular, we show a practical example demonstrating that the global formulation
of the displacement matrices is not accurate. We then show that a dynamic estimation of the
SVD-related parameters is important when a motion is composed of several different mo-
tions. Moreover, we show that a robust estimation of the SVD-related parameters greatly
increases the efficiency of the algorithm when working with highly noisy motions or when
the user mislabels a constraint. Finally, we show, on a wide range of motions, the accuracy
of our algorithm.

6.5.1 Global versus Local Estimation

In this example, we show that the global formulation is clearly not correct and leads to results
which depend on the global position of the virtual human. The initial motion is the one
shown in Figure 6.5. For clarity purposes, we essentially focus our discussion on detecting
time intervals during which the left foot is planted as these results are similar for the virtual
character’s right foot.

The initial animation is composed of 350 frames (14 seconds). It is manually labeled
to compare the results of our algorithm. The motion contains 4 constraints related to the
left foot during the walking stages and 6 constraints during the running stage. The results
shown in Figure 6.16 have been obtained by specifying a template constraint of dimension
three between frames 34 and 40. This template constraint corresponds to a footplant during

3500 50 100 150 200 250 300

Time (frames)

Manual labeling

Local formulation

Global formulation

Walk Run Walk

Figure 6.16: Constraint detection using global and local formulation. Space constraints are
indicated using a red cross at each frame.

123

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

the walking stage of the animation. As explained in Section 6.4.1, the global formulation of
the displacement matrices leads to results that are directly dependent on the global location
of the animation. The farther the virtual character, the higher the residual error. Thus, as
the animation starts at location (0, 0, 0) and ends at location (17, 0, 0), the virtual character
is going away from the origin of the world. As a consequence, as the specified template
constraint occurs at the beginning of the animation, the corresponding estimated SVD-related
parameters are low compared to those associated to the end of the animation (even though
the animation is strictly the same). For this reason, if we use the global formulation of
the displacement matrices, we only detect the first footplant. Subsequent footplants require
higher value for the SVD-related parameters and thus are not detected. On the other hand, if
we use the local formulation of the displacement matrices, the SVD-related parameters are
no longer dependent on the global location of the animation. We then detect all the footplants
occurring during the walking stages.

Regarding the duration of the detected constraints, our algorithm returns, for the whole
animation, 4 false positive frames which slightly enlarge the actual constraints. This means
that in comparison to the animator labeling, each detected constraint is accurate more or less
one frame. However, who is objectively right? Our algorithm or the user? This question is
really hard to answer especially when dealing with noisy motion capture data: footplants are
rarely sharp and may lead to variations in the labeling even among animators.

Finally we may notice that, compared to the manual labeling, our algorithm returns six
false negative constraints occurring during the running stage. This is overcome using the
dynamic estimation of the SVD-related parameters as shown in the next section.

6.5.2 Static versus Dynamic Estimation of the SVD-related pa-
rameters

In this section, we use the same motion as above. In most constraint detection methods,
thresholds are statically fixed. For example, methods using the position and the velocity of
the feet to determine whether they can be considered as stationary or not use predefined min-
imal values of the height and the velocity of the foot beneath which they detect a footplant.
The direct consequence of such methods is that the thresholds have to be reevaluated for each
new motion. Indeed, depending on the noise present in the initial animation or even depend-
ing on the type of motion, these latter may vary. Even worse, a single movement may contain
different types of animation. Hence, static thresholds can be accurate for a specific part of
the animation and totally inaccurate for the others. Figure 6.17 clearly demonstrates this
statement. In this example, we first specify a template constraint during the walking stage of
the animation between frames 34 and 40 (see case A). As previously noted, no space con-
straint occurring during the running stage is detected. Conversely, if the template constraint
is specified during the running stage of the animation between frames 156 and 160 (see case
B), we then end up with too many false positive frames. Indeed, space constraints occurring
during the walking stages are detected but their duration is clearly inaccurate. While the
first detected space constraint is supposed to last from frame 34 to frame 41 according to the
manual labeling, it actually lasts from frame 25 to frame 44. This result is not acceptable as
it corresponds to 12 false positive frames.

124

6.5. Experimental Results

3500 50 100 150 200 250 300

Time (frames)

Manual labeling

Walk Run Walk

Static thresholds Template constraints

A

B

Figure 6.17: Constraint detection using static estimation of the SVD-related parameters

As a result, in our framework, the SVD-related parameters are dynamically estimated
using splines updated each time the user adds a template constraint. Using the same template
constraints as for the example of Figure 6.17, the results are shown in Figure 6.18. We first
detect space constraints occurring during the walking stages (case A). Then, the SVD-related
parameters are refined by adding a template constraint during the running stage (case B). In
this case, all the space constraints are accurately detected. We must note however that space
constraints occurring during the transitions from walking to running and later from running
to walking are not entirely satisfactory: their duration is not long enough. This is easily
explainable by the fact that these transitions are obtained using linear blending, introducing
much more slidings. This problem can be overcome using additional template constraints or
more simply, by editing their duration.

6.5.3 Naive versus LMedS method

In this section we show the advantages of using a robust estimation of the SVD-related pa-
rameters based on the LMedS method. The initial motion is a “sitting on a stool” animation.
It is composed of 400 frames (16 seconds). For clarity purposes, we again only consider
space constraints related to the left foot. According to the manual labeling, the initial mo-
tion contains, in particular, a constraint between frames 50 and 69. However, the motion is
very noisy and mislabeling may occur. In our example, consider that the user is mistaken
and thus specifies a constraint between frames 50 and 75, which consists in a relative error
of 6 frames. The results are shown in Figure 6.19. While the algorithm should detect two
constraints between frames 50 and 206, it actually detects only one. Moreover, the dura-

125

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

3500 50 100 150 200 250 300

Time (frames)

Manual labeling

Walk Run Walk

Dynamic estimation Template constraints

A

B

Figure 6.18: Constraint detection using dynamic estimation of the SVD-related parameters

tion of most detected constraints is not satisfactory. In particular, the next to last detected
constraint lasts for too many frames. Conversely, using our robust estimation based on the
LMedS method gives accurate results. We effectively detect the right number of constraints.
Moreover, their duration is correctly detected: the difference between manual labeling and
our algorithm is less than 5 frames (see next to last and last constraints) using one template
constraint only.

6.5.4 Walking-Running-Walking Motion

In this section, we graphically show the results of our algorithm. Figure 6.20 shows the final
results of the space constraints detection related to the left foot. Figure 6.21 focuses on one
space constraint to highlight that even though the motion contains footslidings, our method
accurately detects corresponding constraints. All 10 space constraints related to the left foot
are detected using only two template constraints: one during a walking stage and the other
one during the running stage.

6.5.5 Walking Around Motion

In this example, the virtual character walks around during 400 frames (16 seconds). We
detect the space constraints associated to both feet. We only need to specify 2 template
constraints: one for the right foot and one for the left one. The results are shown in Figure
6.22. All the constraints are correctly detected. However, some are ambiguous. When the

126

6.5. Experimental Results

3500 50 100 150 200 250 300

Time (frames)

Manual labeling

Naive method

Specified template constraint

LMedS method

400

Figure 6.19: Constraint detection using naive and LMedS methods

character turns, footplants are quite difficult to identify even for the animator. In this case,
it may happen that the detected constraints are too short or even sliced while they maybe
should not.

6.5.6 Sitting on a Stool

In the example of Figure 6.23, we want to detect constraints associated with the body parts
attached to the ankles. Two template constraints have been specified (one for each body part)
to help the algorithm estimate the SVD-related parameters. Our algorithm is able to detect
all the constraints related to the ankles. However, some footplants are very complex. For
example, while the virtual character is turning around the stool, the foot is on the ground but
rotating around the toe. This type of footplant is difficult to accurately detect as the foot is
not stationary but rotates around a point instead.

In the example of Figure 6.24, we applied our algorithm to detect constraints related to
the hips. This is very useful to reposition the stool when the character is not correctly sitting
on it for example.

6.5.7 Line Constraints Detection

In this section, we present results of line constraints detection. So far, we have assimilated
footplants as being only related to the time interval during which the body part attached to
the ankle remains stationary. However, one may want to define a footplant more precisely

127

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Figure 6.20: Final space constraints detected related to the left foot.

using the following sequence:

1. A line constraint from Heel Strike to Toe Strike: the heel is planted on the ground
while the foot is rotating around an axis passing approximately through it,

2. A space constraint from Toe Strike to Heel Off: the foot is planted on the ground
and remains stationary.

The initial motion is a walking animation composed of 200 frames (8 seconds). We first
begin by specifying a template constraint between frames 80 and 92 to detect the time inter-
vals during which the foot stays stationary on the ground. Afterward, we manually define
a line constraint by adding a template constraint just before a footplant (between frames 74
and 80). The results of the constraint detection are shown in Figure 6.25. Our algorithm
precisely detects all the constraints as the overall false positive/negative frames is 1 for the
entire motion. This happens during the first footplant. While the line constraint should end
exactly when the shape constraint starts, it actually ends 1 frame earlier. However, these
results are still correct as the animator only needs, in the worst case, to edit one constraint
instead of having to label 4 space constraints and 4 line constraints. Note also that due to the
noisy nature of the initial motion, slight differences may occur between line constraints. For
example, the first one is clearly different than the others.

128

6.5. Experimental Results

Figure 6.21: Detection of a constraint related to the body part attached to the ankle (from upper
left to bottom right). The points indicates the vertices associated to the constrained body part.
Upper and Bottom Rows: The constraint is not active. Middle Rows: The constraint is active.

129

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Figure 6.22: Walking around animation. The constraint detection is applied to the body parts
attached to the ankles. The constraints are displayed in green when they are active and in blue
otherwise. Second and Forth Rows: The footplant is hard to detect as the foot is rotating.

130

6.5. Experimental Results

Figure 6.23: Constraint detection applied on body parts attached to the ankles. The constraints
are displayed in green when they are active and in blue otherwise. The animation goes from top
left to bottom right (breadth first).

131

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Figure 6.24: Constraint detection applied on body parts attached to the hips. The constraints are
displayed in green when they are active and in blue otherwise. Top Row: Constraints 1 second
before being active (left) and when they are just activated (right). Middle Row: Constraints just
before being deactivated (left) and 1 second later (right). Bottom Row: Constraints 1 second
before being active (left) and when they are just activated (right).

132

6.5. Experimental Results

Figure 6.25: Line constraint detection applied on body parts attached to the left ankle. The
constraints are displayed in green when they are active and in blue otherwise. Left Column:
The line constraints are active. Right Column: The space constraints become active.

133

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

6.5.8 Point Constraint Detection

Even though our algorithm can handle point constraint detection, its benefit in a context of
motion editing is moderate for several reasons:

• these constraints rarely occur in motion capture animations. Thus, it is often simpler
to specify them by hand when needed.

• While space constraints are easy to identify, point constraints require more attention
in general. Indeed, it is quite simple to estimate whether an object is stationary or not
but more complex to decide whether it is rotating around a point or not.

However, the detection of such constraints may be of interest for many other applica-
tions such as motion indexation for example. The constraint detection may be used to au-
tomatically extract motion features from animations to ease subsequent retrieval from large
databases. These motion features may also be used to reconstruct a motion given a set of
constraints for example. We therefore show, in this section, that our algorithm is effective
in detecting point constraints. We have tested point constraint detection on a wide variety of
synthetic animations. We have also tested our algorithm on motion capture animations. We
show, in particular, that even though point constraint detection becomes difficult using noisy
data, it may be of interest to retrieve some semantical information from a given animation.

6.5.8.1 Dice

The initial animation contains 130 frames (approximately 5 seconds). It represents two dice
rolling on a dice carpet. We detected the point constraints on both dice. The results are
shown in Figure 6.26. Note that as we are working with synthetic animations, the noise is
not as large as in motion capture animations and we can use minimal thresholds handling
numerical errors.

6.5.8.2 Desk Lamp

The initial animation contains 180 frames (approximately 7 seconds). It represents a desk
lamp looking at a ball before looking toward the camera. We detected the point constraints
associated to the lampshade. The results are shown in Figure 6.27. Our algorithm detects
two point constraints. The first one corresponds to the time interval during which the lamp is
looking at the ball. The second one is located at the base of the lampshade when the lamp is
turning to look at the camera. It actually corresponds to a joint of the underlying hierarchy.

6.5.8.3 Walking Around Motion

In this section, we reuse the example shown in Figure 6.22. As previously stated, when
the character is turning, footplants become difficult to identify. It may then be of interest
to identify such events. The results are shown in Figure 6.28. As expected, our algorithm
detects a point constraint each time the virtual character sharply turns while the left foot is

134

6.5. Experimental Results

Figure 6.26: Point constraint detection applied on two dice rolling on a carpet. The constraints
are displayed in green when they are active and in blue otherwise.

135

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

Figure 6.27: Point constraint detection applied on the shade of a desk lamp. The desk lamp
is looking at a ball before looking toward the camera. The constraints are only displayed when
active.

136

6.5. Experimental Results

Figure 6.28: Walking around animation. The constraint detection is applied to the body parts
attached to the ankles. The constraints are displayed in green when they are active and in blue
otherwise. In this case, we also detect point constraints.

137

Chapter 6. Geometric Constraint Detection for Motion Capture Animation

planted on the ground even though the animation is noisy. These point constraints may then
serve to precisely annotate “turning footplants” for example.

6.5.9 Computational Cost Consideration

The detection algorithm may be divided into two parts when considering the computational
cost: the Singular Value Decomposition while computing the instantaneous constraints and
the merging stages. Regarding the walking-running-walking motion example, it took 11.3 ms
to compute the instantaneous constraints and 4.4 ms to compute the final set of constraints.
The results are similar for the walking around motion example, it took 13 ms to compute the
instantaneous constraints and 4.2 ms to compute the final set of constraints. Additionally, it
took 8 ms to compute the instantaneous constraints and 2.9 ms to compute the final set of
constraints. Our algorithm is therefore totally suited for interactive applications as animators
are able to perform several constraints detection by changing requirements (i.e. type of
needed constraints, minimal duration...) with results computed at interactive rates.

6.6 Discussion and Conclusion

In this chapter, we have presented a method which helps the animator label the motion of
any type of object in a scene. We have presented a robust semi-automatic method detect-
ing geometric constraints in noisy motion-capture data. We have also demonstrated that the
local formulation of the displacement matrices is more accurate than the global formula-
tion. Given a small set of template constraints (specified by the animator) we automatically
estimate key parameters (the SVD-related parameters) characterizing the noise in the data.
We have detailed a robust approach to detect instantaneous constraints to discard potential
outliers when estimating the SVD-related parameters. Furthermore, we have shown that a
dynamic estimation of the SVD-related parameters is much more accurate in cases where
the motion capture animation contains several types of motions. It is important to empha-
size that animators actively participate in the geometric constraint detection process, as the
concept of the “importance” of constraints is difficult to determine automatically. In [Shin
et al., 2001], Shin et al. used some heuristics to estimate the importance of some constraints
(end-effectors position, joint angles...). However, this method is dedicated to motion retar-
getting and could only be adapted with difficulty to a general motion editing process. The
final result is always left to the appreciation of the animator who confirms, adjusts and/or
deletes constraints depending on their subjective “importance”. Finally, we have shown that
our method is efficient to detect constraints related to complex articulation figures such as
virtual humans. These constraints may then be used to help the animator edit the initial
animation.

138

CHAPTER 7

Conclusion

In this thesis, we have proposed a motion deformation framework offering the user a way
to specify prioritized constraints to deform an initial motion capture animation. Moreover,
we have provided the user with a semi-automatic algorithm to detect important constraints
in motion capture animations. In the following sections, we briefly summarize our contribu-
tions as well as future work.

7.1 Contributions

In the next sections, we present the main contributions related to the important parts of this
thesis.

Designing Postures Using Inverse Kinematics

We have presented our IK solver based on the work of Baerlocher [Baerlocher, 2001], a
numerical resolution framework capable of solving multiple tasks simultaneously, and which
supports both task-priority and weighting strategies for the resolution of conflicts.

We have then presented an HAnim-compliant application providing different kinds of
features such as body parts position control, CoM position control, joint weighting, joint
recruiting level, etc.

Additionally, we have shown that the exponential map parameterization is more appro-
priate than Euler angles to represent complex articulations. While it is more complex than
the Euler angles parameterization, its performances in terms of final computation time and

139

Chapter 7. Conclusion

iterations number are equivalent. Moreover, exponential maps provide an intuitive way to
represent joint limits and is singularity-free for well-chosen initial configurations.

Thanks to this test-platform, we have performed benchmarks and comparisons on several
key parameters of the IK solver. Among others, we have compared the mutual influence of
the integration step and the damping factor. No general equation relating the integration step,
the damping factor and the convergence behavior seems to be pertinent. Indeed, the conver-
gence behavior is closely related to the considered hierarchy of joints and to the starting
configuration. However, we have experienced that a damping factor of ten and an integration
step of one work well for the vast majority of examples we have tested.

Motion Deformation Constraints Definition and Design

We have presented important constraints integrated in our motion editing framework. These
constraints may then be used to modify an initial animation so that it fits the animator’s
requirements.

In particular, we have introduced a versatile class of constraints: the shape-constraints.
The animator is now able to design a wide range of spatial trajectories. Moreover, these
constraints may contain stationary points breaking (or not) the continuity of the trajectory.
Furthermore, these constraints can be expressed in a reference frame allowing relative con-
straints between joints, to shift a joint position or to define an absolute trajectory.

Additionally, we have presented a class of constraints dedicated to the adjustment of the
position and/or orientation of footplants. Finally, we have presented a simple approach to
adjust unbalanced postures by controlling the position of the CoM thanks to inverse kinetics.
This approach offers the animator the possibility to improve the overall quality of the final
animation.

Prioritized Motion Deformation

We have presented an interactive method for adding significant changes to an animation.
Our framework improves classical motion editing techniques, as animators can add large
deformations without ending up with unbalanced results. Moreover, the priority concept
greatly helps when animators need to arbitrate conflicting constraints. Our algorithm allows
to assign a priority to each constraint. This priority is used to arbitrate conflicts between
constraints. Our scheme ensures that high-priority constraints won’t be disturbed by low-
priority ones. Furthermore, we have proposed a simple and efficient algorithm to avoid
generating discontinuous end-effectors trajectories while adding new constraints. Finally,
while we have mainly focused our discussion on motion deformation, our method is also
well-suited to deal with retargetting problems.

Geometric Constraint Detection for Motion Capture Animation

We have presented a method which helps the animator label the motion of any type of object
in a scene. We have presented a robust semi-automatic method detecting geometric con-

140

7.2. Future Work

straints in noisy motion-capture data. We have also demonstrated that the local formulation
of the displacement matrices is more accurate than the global formulation. Given a small set
of template constraints (specified by the animator) we automatically estimate key parameters
(the SVD-related parameters) characterizing the noise in the data. We have detailed a robust
approach to detect instantaneous constraints to discard potential outliers when estimating
the SVD-related parameters. Furthermore, we have shown that a dynamic estimation of the
SVD-related parameters is much more accurate in cases where the motion capture anima-
tion contains several types of motions. Finally, we have shown that our method is efficient
to detect constraints related to complex articulation figures such as virtual humans. These
constraints may then be used to help the animator edit the initial animation.

7.2 Future Work

To conclude, we suggest in the next sections, some directions for future research.

Designing Postures Using Inverse Kinematics

The main drawback of numerical IK is its ability to produce non-realistic postures. Devel-
oping an accurate model of joints may then be of interest to constrain the final postures a
little more and to ensure that they are not only feasible but also that they are the most plau-
sible. While our model includes joint limits, it is clearly not sufficient. A model taking joint
coupling into account would certainly enhance results. It would also be useful to introduce
biomechanical parameters such as maximum joint torques or moving axis of rotation for
articulations such as the knee for example.

Prioritized Motion Deformation

In our motion deformation algorithm, the consistency of the whole set of constraints is not
evaluated. As a result, the final animation as “asked by the animator” may be erratic. Devel-
oping an algorithm which would be able to advise the animators when they are potentially
wrong would be an important advantage over previous methods.

Geometric Constraint Detection for Motion Capture Animation

Finally, we think that the automatic generation of constraints would speed up the entire
process of motion editing. Using our geometric constraints detection algorithm, it could be
possible to automatically generate constraints to edit the motion. While this problem might
seem easy at first sight, it is not. Indeed, if we consider footplant constraints for example,
it is not only important to know the periods of time during which the feet stay stationary. It
is also important to know how it moves before and after the footplant. Indeed, footplants
are quite different depending on whether the virtual human is walking, running or climbing
stairs for example.

141

Chapter 7. Conclusion

142

APPENDIX A

Mathematical Demonstrations
Related to Constraint Detection

A.1 Global versus Local Displacement Matrix Formu-
lations

As previously detailed in Section 6.4.1, we want to solve the following equation:

(Di − I4)p̂ = 0 (A.1)

AsDi is a rigid transformation, it can be rewritten as:

Di =

[
Ri ti

03 1

]
(A.2)

with Ri and ti respectively the rotational and translational components of Di. We then
reformulate Equation A.1 as follows:

(Ri − I3)p + ti = 0 (A.3)

Ap = −ti (A.4)

Using a singular value decomposition, we can express matrixA as:

A = UΣV T (A.5)

with U and V being 3× 3 orthogonal matrices and Σ a 3× 3 diagonal matrix [Press et al.,
1992]. Matrix Σ is a diagonal matrix containing the 3 singular values σi=1,2,3 (with σ1 >
σ2 > σ3) of matrixA.

143

Appendix A. Mathematical Demonstrations Related to Constraint Detection

Suppose now that all the sigmas in matrix Σ are small enough to be considered as null
(we then have a constraint of dimension 3). Then, the particular solution pparticular corre-
sponding to Equation A.4 is:

pparticular = −A−1ti

= −V Σ−1UT ti

= −V 03U
T ti

= [0,0,0]T

The residual error is then defined as ε = ‖Apparticular + ti‖ = ti.

Moreover, letWi the matrix that transforms at frame i, a point p expressed in theO local
coordinate system to pi expressed in the world coordinate system. Wi can be decomposed
as:

Wi =

[
RWi

tWi

03 1

]
(A.6)

In next section, we demonstrate that using a global formulation, the residual error is
modified by translation: the same animation provides different residual errors depending on
its global position in the scene. In Section A.1.2 we show that the local formulation is more
efficient as it gives residual errors that are independent of the animation global position.

A.1.1 Global Formulation of Residual Error

As previously stated in Section 6.4.1, the displacement matrix Di in this case is expressed
as:

Di = Wi+1Wi
−1 (A.7)

Using Equation A.6, we can rewriteDi as:

Di =

[
RWi+1

RWi

T tWi+1
−RWi+1

RWi

T tWi

03 1

]
(A.8)

The residual error is then defined as:

ε = ti = tWi+1
−RWi+1

RWi

T tWi
(A.9)

At that point, we add a translation component to theWi andWi+1 matrices. In other words:

tWi
→ tWi

+ tΔ

tWi+1
→ tWi+1

+ tΔ

144

A.1. Global versus Local Displacement Matrix Formulations

Then, if ‖tΔ‖ tends to infinity, we have:
lim

‖tΔ‖→∞
‖ε‖ = lim

‖tΔ‖→∞
‖tWi+1

+ tΔ −RWi+1
RWi

T (tWi
+ tΔ)‖

= lim
‖tΔ‖→∞

‖tWi+1
+ tΔ −RWi+1

RWi

T tWi
−RWi+1

RWi

T tΔ)‖
= lim

‖tΔ‖→∞
‖tΔ −RWi+1

RWi

T tΔ)‖
= lim

‖tΔ‖→∞
‖(I3 −RWi+1

RWi

T)tΔ)‖
= lim

‖tΔ‖→∞
‖CtΔ)‖

= ∞

A.1.2 Local Formulation of Residual Error

As previously stated in Section 6.4.1, the displacement matrixDi is expressed as:

Di = Wi
−1Wi+1 (A.10)

Using Equation A.6, we can rewriteDi as:

Di =

[
RWi

T RWi+1
RWi

T (tWi+1
− tWi

)
03 1

]
(A.11)

The residual error is then defined as:

ε = ti = RWi

T (tWi+1
− tWi

) (A.12)

At that point, we add a translation component to theWi andWi+1 matrices. In other words:

tWi
→ tWi

+ tΔ

tWi+1
→ tWi+1

+ tΔ

Then, if ‖tΔ‖ tends to infinity, we have:
lim

‖tΔ‖→∞
‖ε‖ = lim

‖tΔ‖→∞
‖RWi

T (tWi+1
+ tΔ − tWi

− tΔ)‖
= lim

‖tΔ‖→∞
‖RWi

T (tWi+1
− tWi

)‖
= ‖RWi

T (tWi+1
− tWi

)‖
= constant

A.1.3 Numerical Comparisons Between Both Formulations

In this section, we numerically show that our formulation is independent of the global posi-
tion of the animation while the previous one is not. The test animation we used is shown in
Figure 6.5.

145

Appendix A. Mathematical Demonstrations Related to Constraint Detection

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

Time (frames)

R
es

id
ua

l e
rr

or

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

Time (frames)
R

es
id

ua
l e

rr
or

Figure A.1: Residual errors for the animation shown in Figure 6.5 with different starting po-
sitions in space. Left: The character initial position is [0,0,0]. Its final position is [17,0,0].
Right: The character initial position is [−17,0,0]. Its final position is [0,0,0].

0 50 100 150 200 250 300 350

Time (frames)

R
es

id
ua

l e
rr

or

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300 350

Time (frames)

R
es

id
u

a
l

er
ro

r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure A.2: Residual errors for the animation shown in Figure 6.5 with different starting po-
sitions in space. Left: The character initial position is [0,0,0]. Its final position is [17,0,0].
Right: The character initial position is [−17,0,0]. Its final position is [0,0,0].

146

A.1. Global versus Local Displacement Matrix Formulations

Figure A.1 clearly shows that the more the character moves away from the origin, the
higher the residual error.

Figure A.2 shows that our formulation is independent from the global position of the
animation in the scene: for the same walking motion, we approximately get the same residual
error.

147

Appendix A. Mathematical Demonstrations Related to Constraint Detection

148

APPENDIX B

Tasks Description for the Examples
of Chapter 3

B.1 Example of Figure 3.3: The Thinker by Auguste
Rodin

Joint Type Priority Recruiting Level
Ankles Positional 15 4 (Up to the root)
Hips Positional 10 2 (Up to the root)

Left wrist Positional 9 9 (Up to the root)
Root (located near the pelvis) Positional 9 0 (Itself)

Right elbow Positional 8 8 (Up to the root)
Left elbow Positional 7 8 (Up to the root)
Right wrist Positional 4 1 (right wrist + right elbow)
Right wrist Rotational 1 0 (Itself)
Left wrist Rotational 1 0 (Itself)
All Optimization Lowest All joints

Remark: This set of tasks is very flexible: changing the priority and/or the recruiting
level of a task may give the same results. What really matters is that the relative impor-
tance between tasks is well defined. For example, the position of the ankles is given a high
priority because whatever the final posture is, we want the ankles to stay stationary while
manipulating the virtual character.

149

Appendix B. Tasks Description for the Examples of Chapter 3

B.2 Example of Figure 3.4: Center of Mass Control

Joint Type Priority Recruiting Level
Heels Positional 15 5 (Up to the root)
Toes Positional 15 7 (Up to the root)

Right hand Positional 5 10 (Up to the root)
All CoM 10 3 (All joints)
All Optimization Lowest All joints

150

List of Figures

LIST OF FIGURES

1.1 Overview of the motion deformation framework. 13

2.1 Wally B.’s zip off shows use of squash and stretch, anticipation, follow
through, overlapping action, and secondary action (source: [Lasseter, 1987]). 18

2.2 Walking crowd with different gaits (source: [Boulic et al., 2004]). 18

2.3 A dynamic virtual stuntman falls to the ground, rolls over, and rises to an
erect position, balancing in gravity (source: [Faloutsos et al., 2001a]). . . . 19

2.4 Users wearing a few retro-reflective markers control the full-body motion
of avatars by acting out the motion in front of two synchronized cameras.
From left to right: walking, running, hopping, jumping, boxing, and Kendo
(source: [Chai and Hodgin, 2005]). 21

2.5 Emotion-based running examples with step-constraints (source: [Unuma et al.,
1995]). 22

2.6 Close up stills showing marker placement (lighter spheres show motion cap-
ture, darker are virtual markers) (source: [Zordan and Horst, 2003]). 23

2.7 Top: Simple input animation depicting hopscotch (a popular child game
consisting of hops, broad jumps and a spin jump). Bottom: Synthesized
realistic hopscotch animation (source: [Liu and Popovic, 2002]). 24

2.8 Retrieval result of walk-forward (source: [Liu et al., 2003]). 27

2.9 In addition to matching the annotations, a specific frame or motion can be
forced to be used at a specific time. Here, the person is forced to pass through
a pushing frame in the middle of the motion while running before and after
the pushing (source: [Arikan et al., 2003]). 30

151

List of Figures

3.1 Conceptual illustration of the difference between weighting and priority strate-
gies (priority T1 < priority T2 < priority T3). Green: Solution using priority
strategy. Red: Solution using weighting strategy. 42

3.2 Comparison between weighting and priority strategies. Left: Initial configu-
ration with conflicting tasks. Middle left: Solution using weighting strategy
to solve conflicts. Middle right: Solution using priority strategy to solve
conflicts (the left task has a higher priority than the right one). Right: Solu-
tion using priority strategy to solve conflicts (the left task has a lower priority
than the right one). 42

3.3 Using HBalance to design postures. Left: The Thinker by Auguste Rodin.
Middle left: Initial configuration we started with. Middle right and right:
Two views of the designed posture. Remark: The final designed posture
is not exactly the same as the model due to the difference in proportions
between “The Thinker” and our virtual character. 45

3.4 Example of a designed posture with HBalance: it immediately shows that a
precise CoM position control results in more realistic postures. Upper left:
Initial configuration. Upper right: Final posture without any CoM control.
Bottom left: Final posture with CoM control. Bottom right: Final posture
with CoM control. In addition, the virtual character is carrying an umbrella. 47

3.5 Examples of a reaching task with different joint recruiting levels. Left: The
task uses the left arm as well as the spine to achieve the specified task (front
and side views). right: The task uses the left arm only to achieve the speci-
fied task (front and side views). 48

3.6 Shoulders joint limits using spherical polygons. 49

3.7 Benchmarks performed depending on the type of joints used. Red Curve:
Revolute joints. Blue Curve: Ball-and-Socket joints. Left: iterations num-
ber comparison. Right: Computational cost comparison. 50

3.8 Test configuration to analyze the impact of integration step and damping
factor in the IK solver. 51

3.9 Influence of the integration step and the damping factor on the convergence
process. The color scale indicates the iterations number. Left: Tests using
reachable goals (no singular configuration). Middle: Tests using unreach-
able goals (singular configurations may occur). Right: Same diagram as the
middle one with 0<damping factor<20. 52

3.10 Same benchmarks as in Figure 3.9 but with a kinematic chain twice smaller
(fifty centimeters long). Left: Tests using reachable goals (no singular con-
figuration). Middle: Tests using unreachable goals (singular configurations
may occur). Right: Same diagram as the middle one with 0<damping
factor<20. 53

152

List of Figures

3.11 Reachable space for kinematic chains varying in size using the transpose
method. The surrounding cube containing the goals to reach is scaled ac-
cordingly. The green balls indicate goals actually reached. Left: Two me-
ters long kinematic chain. Middle: One meter long kinematic chain. Right:
Fifty centimeters long kinematic chain. 53

3.12 Paths followed by the end-effector depending on the IK method. Left: Initial
configuration. Middle: Transpose of the Jacobian. Right: Damped least
squares inverse of the Jacobian. 54

4.1 Example of a shape-constraint with a single constraint point. 61

4.2 Example of a time curve corresponding to a shape-constraint starting at time
Sbegin, ending at time Send and containing one constraint point defined as
(Plocation, Pbegin, Pend). 63

4.3 For clarity, we consider the reference as being the original motion. The con-
straint points P1, P2 and P3 are stored as the displacements d1, d2 and d3

with respect to the reference. P1 and P3 last for 15 frames. The anima-
tion is composed of 250 frames (10 seconds). The final shape-constraint is
only active between frames 10 and 240. Left: Original trajectory in space.
The blue dots indicate the initial positions of the end-effector while the red
dots indicate the final desired positions. Right: Associated time curve using
normalized time. 64

4.4 The dashed line represents the reference trajectory. Left: Trajectory curve
in absolute mode. Right: Final trajectory. 65

4.5 The dashed line represents the reference trajectory. Left: Trajectory curve
in relative mode. Right: Final trajectory. 65

4.6 The dashed line represents the reference trajectory. Left: Trajectory curve
in relative with condensation mode. Right: Final trajectory. 66

4.7 Examples of shape-constraints with different modes. Blue dots: Initial
trajectory. Green curve: Generated shape-constraint. Top left: Abso-
lute shape-constraint. Top right: Absolute shape-constraint with the mid-
dle constraint-point lasting for 40 frames. Bottom left: Relative shape-
constraint. Bottom right: Relative shape-constraint with condensation. . . 67

4.8 The four main events defining a footplant. Top left: Before the footplant.
Top middle: Heel strike event. Top right: Toe strike event. Bottom left:
Heel off event. Bottom middle: Toe off event. Bottom right: After the
footplant. 68

153

List of Figures

4.9 Comparison of footplant enforcement with and without dynamically swap-
ping the priorities between the heel and the toe. From left to right: heel
strike, toe strike, heel off and toe off. Top row: Footplant adjustment: we
dynamically swap the priorities between the heel and the ankle. Middle row:
Footplant adjustment: the ankle has a higher priority level. The position of
the toe at event TO is clearly inaccurate: the foot penetrates the ground.
Bottom row: Footplant adjustment: the toe has a higher priority level. The
position of the ankle at event HS is clearly inaccurate: the foot penetrates the
ground. 70

4.10 Dynamically swapping the priorities between the heel and the toe constraints. 71

4.11 Left: Input trajectories of the CoM and the barycenter of A for a walking
motion Right: Relative 2D displacement between the CoM and the barycen-
ter of A. The units are different on both axes to highlight the details. 72

5.1 Correction of a walking motion (source: [Boulic and Thalmann, 1992]). . . 77

5.2 Transitions between walking and sneaking (source: [Lee and Shin, 1999]). . 77

5.3 Snapshots taken from the retargetted motion (source: [Choi and Ko, 2000]). 78

5.4 Morphology-independent motion adaptation (source: [Kulpa et al., 2005]). . 79

5.5 Motion conversion to various characters. The original motion is captured on
the red skeleton on the left (source: [Monzani et al., 2000]). 80

5.6 Original versus cleaned motions (source: [Kovar et al., 2002b]). 80

5.7 General scheme of conflicting prioritized constraints. The constraint C1 is
activated a time t1. When C2 is activated, C1 is still achieved. At time t3,
all the constraints are met. At time t4, C1 and C3 conflict. C3 has a higher
priority and is achieved while C1 minimizes the residual error. Finally, C1 is
achieved at time t5 before C3 is deactivated. 83

5.8 Configuration leading to discontinuities: the shape-constraint C1 has a lower
priority than the shape-constraint C2. Green points: Original animation.
Red points: Deformed animation. Yellow points: Superposition of original
and deformed animations. Blue curves: The specified shape-constraints.
Note the discontinuity between frames 40 and 41. 85

5.9 Time and space consistency enforcement. Left: Initial configuration. Mid-
dle left: C1 has a lower priority than C2. Middle right: C1 and C2 have the
same priority. Right: C1 has a higher priority than C2. 85

5.10 Convergence of the algorithm for three conflicting constraints C1, C2 and
C3 where priority C1 > priority C2 > priority C3. Left: Initial configura-
tion. Middle: Final configuration. Right: Residual error for each constraint.
Note that higher priority constraints may disturb the convergence of lower
priority ones. 86

5.11 Motion deformation system integrated into AliasTMMaya R© 5 88

154

List of Figures

5.12 Left: Deformed motion. The ankle’s goal cannot be reached without dis-
turbing higher priority constraints. Middle left: The CoM is not controlled
anymore resulting to unbalanced postures. Middle right: Resulting mo-
tion using weighting constraints. The location of the right foot is disturbed.
Right: Original motion . 89

5.13 Reaching goals at different heights. 90

5.14 Left: Original motion. Middle left: Footplants are enforced. Middle right:
The position and orientation of the original footplants are modified to obtain
a catwalk. Right: The heights of the footplants are modified for the character
to walk on steps . 90

5.15 A golf swing motion. Left character: Initial motion. Right character:
Edited motion. 91

5.16 Example of a deformed animation with five shape-constraints, one rotational-
constraint and CoM position control. 92

6.1 Overview of the constraint detection algorithm. Boxes: Stages of the algo-
rithm. Diamond: User’s input: he may manually add constraints (called
template constraints), remove wrong constraints, etc. Ellipsoids: Important
algorithm’s parameters. 99

6.2 Transformations used to compute the displacement matrixDi from frame i
to frame i + 1. Wi is the transformation from theO local coordinate system
at frame i to the world coordinate system. Wi+1 is the transformation from
theO local coordinate system at frame i + 1 to the world coordinate system.
Di is theO displacement matrix between frame i and frame i + 1. 102

6.3 Detecting footplants: while the LMedS-based method detects two footplants,
the naive method yields to an erroneous estimation by merging both foot-
plants into a single one. 107

6.4 Comparison between naive and LMedS methods. 108

6.5 Test motion: the character first walks, then runs and finally walks again. . . 108

6.6 The maximum singular value and the corresponding residual error for the
animation shown in Figure 6.5. Left: Maximum singular value. Right:
Associated residual error . 109

6.7 Dynamic SVD-related parameters estimation using cubic interpolating splines.
The associated animation is shown in Figure 6.5. Left: Maximum singular
value (in red) and corresponding threshold spline (in blue). Right: Resid-
ual error (in red) and corresponding threshold spline (in blue). The units are
different from Figure 6.6 to highlight the details. 110

6.8 Given a list of instantaneous constraints, the successive merging stages pro-
duce a new list of constraints with a robust estimation of their respective
duration. This notation is used throughout the next sections. 111

155

List of Figures

6.9 A simple particle supposed to stay stationary. Green spheres: Good frames.
Red spheres: Aberrant frames. During step 1, the algorithm computes the
instantaneous constraints. During step 2, the instantaneous constraints are
merged when possible. 112

6.10 Frame tolerance with Fmax = 10 frames and dmax = 10 centimeters. . . . 114

6.11 Definition of themergeable function for two space constraints. 115

6.12 Results of the merge function sequentially applied to a list of instantaneous
constraints. 115

6.13 Unit quaternions averaging (Park et al. [Park et al., 2002]). 117

6.14 Definition of themergeable function for one line and one space constraint. 119

6.15 Results of the merge function depending on themergeable function. . . . 119

6.16 Constraint detection using global and local formulation. Space constraints
are indicated using a red cross at each frame. 123

6.17 Constraint detection using static estimation of the SVD-related parameters . 125

6.18 Constraint detection using dynamic estimation of the SVD-related parameters 126

6.19 Constraint detection using naive and LMedS methods 127

6.20 Final space constraints detected related to the left foot. 128

6.21 Detection of a constraint related to the body part attached to the ankle (from
upper left to bottom right). The points indicates the vertices associated to
the constrained body part. Upper and Bottom Rows: The constraint is not
active. Middle Rows: The constraint is active. 129

6.22 Walking around animation. The constraint detection is applied to the body
parts attached to the ankles. The constraints are displayed in green when they
are active and in blue otherwise. Second and Forth Rows: The footplant is
hard to detect as the foot is rotating. 130

6.23 Constraint detection applied on body parts attached to the ankles. The con-
straints are displayed in green when they are active and in blue otherwise.
The animation goes from top left to bottom right (breadth first). 131

6.24 Constraint detection applied on body parts attached to the hips. The con-
straints are displayed in green when they are active and in blue otherwise.
Top Row: Constraints 1 second before being active (left) and when they
are just activated (right). Middle Row: Constraints just before being deac-
tivated (left) and 1 second later (right). Bottom Row: Constraints 1 second
before being active (left) and when they are just activated (right). 132

6.25 Line constraint detection applied on body parts attached to the left ankle. The
constraints are displayed in green when they are active and in blue otherwise.
Left Column: The line constraints are active. Right Column: The space
constraints become active. 133

6.26 Point constraint detection applied on two dice rolling on a carpet. The con-
straints are displayed in green when they are active and in blue otherwise. . 135

156

List of Figures

6.27 Point constraint detection applied on the shade of a desk lamp. The desk
lamp is looking at a ball before looking toward the camera. The constraints
are only displayed when active. 136

6.28 Walking around animation. The constraint detection is applied to the body
parts attached to the ankles. The constraints are displayed in green when they
are active and in blue otherwise. In this case, we also detect point constraints. 137

A.1 Residual errors for the animation shown in Figure 6.5 with different starting
positions in space. Left: The character initial position is [0,0,0]. Its final
position is [17,0,0]. Right: The character initial position is [−17,0,0].
Its final position is [0,0,0]. 146

A.2 Residual errors for the animation shown in Figure 6.5 with different starting
positions in space. Left: The character initial position is [0,0,0]. Its final
position is [17,0,0]. Right: The character initial position is [−17,0,0].
Its final position is [0,0,0]. 146

157

List of Figures

158

Bibliography

BIBLIOGRAPHY

Yeuhi Abe, C. Karen Liu, and Zoran Popovic. Momentum-based parameterization of dy-
namic character motion. In Proceedings of ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, 2004. 2.2.3

Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient Similarity Search In
Sequence Databases. In Proceedings of International Conference of Foundations of Data
Organization and Algorithms, pages 69–84, 1993. 2.3.1

Kenji Amaya, Armin Bruderlin, and Tom Calvert. Emotion from Motion. In Proceedings of
Graphics Interface, pages 222–229, 1996. 2.2.1

Okan Arikan and D. A. Forsyth. Interactive Motion Generation From Examples. In Pro-
ceedings of ACM SIGGRAPH, Annual Conference Series, pages 483–490, 2002. 2.3.2,
5

Okan Arikan, David A. Forsyth, and OB́rien. Motion synthesis from annotations. In Pro-
ceedings of ACM SIGGRAPH, Annual Conference Series, pages 402–408, jul 2003. 2.9,
2.3.2, B.2

Amaury Aubel. Anatomically-Based Human Body Deformations. PhD thesis, EPFL, 2002.
1.4.1, 3.3.2.1

Ronald Azuma and Gary Bishop. Improving Static and Dynamic Registration in an Opti-
cal See-Through HMD. In Proceedings of ACM SIGGRAPH, Annual Conference Series,
pages 197–214, jul 1994. 6.4.3.2

Norman I. Badler, J. O’Rourke, and G. Kaufman. Special Problems in Human Movement
Simulation. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages 189–
197, jul 1980. 3.3.1.3, 5.6

159

Bibliography

Paolo Baerlocher. Inverse Kinematics Techniques for the Interactive Posture Control of Ar-
ticulated Figures. PhD thesis, EPFL, 2001. 1.4.1, 3.2, 3.2.3, 3.2.3, 3.2.5, 3.3.2.1, 3.4,
7.1

Paolo Baerlocher and Ronan Boulic. Task-priority formulations for the kinematic control
of highly redundant articulated structures. In Proceedings of International Conference on
Intelligent Robots and Systems, 1998. 3.1.2

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R* tree: An efficient and robust
access method for points and rectangles. In Proceedings of ACM SIGMOD Conference on
the Management of Data, pages 322–331, may 1990. 2.3.1

Rama Bindiganavale and Norman I. Badler. Motion Abstraction and Mapping with Spatial
Constraints. Lecture Notes in Computer Science, 1537:70–83, 1998. 4.1, 6.2

Jonathan Blow. Inverse Kinematics with Joint Limits. Game Developer Magazine, apr 2002.
3.1.3

Ronan Boulic and Daniel Thalmann. Combined Direct and Inverse Kinematic Control for
Articulated Figures Motion Editing. Computer Graphics Forum, 11(4):189–202, 1992.
5.1, B.2

Ronan Boulic, Ramon Mas, and Daniel Thalmann. A robust approach for the control of the
center of mass with inverse kinetics. Computer and Graphics, 20(5):693–701, sep 1996.
3.3.1.2, 4.4

Ronan Boulic, Branislav Ulicny, and Daniel Thalmann. Versatile Walk Engine. Journal of
Game Development, 1(1), 2004. 2.2, 2.1.2, B.2

Armin Bruderlin and Lance Williams. Motion Signal Processing. In Proceedings of ACM
SIGGRAPH, Annual Conference Series, pages 97–104, 1995. 2.2.1, 4.2.3

Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to spherical splines
and interpolation. ACM Transactions on Graphics, 20(2):95–126, 2001. 6.4.3.2

Marc Cardle, Michail Vlachos, Stephen Brooks, Eamonn Keogh, and Dimitrios Gunopulos.
Fast Motion Capture Matching with Replicated Motion Editing. In Proceedings of ACM
SIGGRAPH, Technical Sketches and Applications, 2003. 2.3.1

Jinxiang Chai and Jessica K. Hodgin. Performance Animation from Low-dimensional Con-
trol Signals. In Proceedings of ACM SIGGRAPH, Annual Conference Series, 2005. 2.1.4,
2.4, B.2

K-P. Chan and A. W-C. Fu. Efficient Time Series Matching by Wavelets. In Proceedings of
International Conference on Data Engineering, pages 126–135, mar 1999. 2.3.1

Diane M. Chi, Monica Costa, Liwei Zhao, and Norman I. Badler. The EMOTE Model for
Effort and Shape. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages
173–182, 2000. 2.1.2

160

Bibliography

Stephano Chiaverini. Singularity-Robust Task-Priority Redundancy Resolution for Real-
Time Kinematic Control of Robot Manipulators. IEEE Transactions on Robotics and
Automation, 13(3):398–410, 1997. 3.1.2

Kwang-Jin Choi and Hyeong-Seok Ko. Online Motion Retargetting. Journal of Vizualisation
and Computer Animation, 11:223–235, 2000. 2.2.4, 5.3, 5.1, 5.2, B.2

Michael F. Cohen. Interactive spacetime control for animation. In Edwin E. Catmull, editor,
Proceedings of the 19th Annual ACM Conference on Computer Graphics and Interactive
Techniques, pages 293–302, New York, NY, USA, July 1992. ACM Press. 2.2.3

John. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, 1986.
3.1.1, 3.2.2, 3.3.3

Hari Das, Jean-Jacques Slotine, and Thomas B. Sheridan. Inverse Kinematics Algorithms for
Redundant Manipulators. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 43–48, 1988. 3.1.2

Anirvan Dasgupta and Yoshihhiko Nakamura. Making feasible walking motion of humanoid
robots from human motion capture data. In Proceedings of IEEE International Conference
on Robotics and Automation, pages 1044 – 1049, may 1999. 2.2.2, 4.1

Luc Emering, Roman Boulic, and Daniel Thalmann. Interacting with Virtual Humans. IEEE
Computer Graphics and Applications, 18(1):8–11, jan 1998. 2.3.1

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-
series databases. In Proceedings of ACM SIGMOD Conference on the Management of
Data, pages 419–429, 1994. 2.3.1

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Composable Controllers
for Physics-Based Character Animation. In Proceedings of ACM SIGGRAPH, Annual
Conference Series, 2001a. 2.3, 2.1.3, B.2

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. The Virtual Stunt-
man: Dynamic Characters with a Repertoire of Autonomous Motor Skills. Computer
and Graphics, 25(6):pp. 933–953, dec 2001b. 2.1.3

Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically valid human motion.
In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages 417–426, jul 2003.
2.2.3

Pascal Glardon, Ronan Boulic, and Daniel Thalmann. A Coherent Locomotion Engine Ex-
trapolating Beyond Experimental Data. In Proceedings of Computer Animation and Social
Agent, jul 2004. 2.3.2

Michael Gleicher. Comparing constraint-based motion editing methods. Graphical Models,
63(2):107–134, mar 2001. 2.2.4, 5.3

Michael Gleicher. Motion Editing with Spacetime Constraints. In Proceedings of ACM
Symposium on Interactive 3D Graphics, pages 139–148, apr 1997. 2.2.3, 4.1

161

Bibliography

Michael Gleicher. Retargetting motion to new characters. In Proceedings of ACM SIG-
GRAPH, Annual Conference Series, pages 33–42, 1998. 2.2.3, 4.1, 5.3

Michael Gleicher and Peter Litwinowicz. Constraint-based Motion Adaptation. Journal of
Vizualisation and Computer Animation, 9(2):65–94, 1998. 2.2.3

Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings
of ACM SIGMOD Conference on the Management of Data, pages 47–57, 1984. 2.3.1

Hideo Hanafusa, Tsuneo Yoshikawa, and Yoshihiko Nakamura. Analysis and Control of
Articulated Robot Arms with Redundancy. In Proceedings of IFAC, 8th Triennal World
Congress, pages 1927–1932, 1981. 3.1.2

HAnim. Humanoid Animation Working Group. http://www.hanim.org/. 1.4.1, 3.2.1

Jessica K. Hodgins and Nancy S. Pollard. Adapting Simulated Behaviors For New Char-
acters. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages 153–162,
1997. 2.1.3

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. Animating
Human Athletics. In Proceedings of ACM SIGGRAPH, Annual Conference Series, 1995.
2.1.3

H. V. Jagadish. Spatial Search with Polyhedra. In Proceedings of International Conference
on Data Engineering, pages 311–319, 1990. 2.3.1

O. Jenkins and M. Mataric. Deriving action and behavior primitives from human motion
data. In Proceedings of International Conference on Intelligent Robots and Systems, 2002.
2.3.1

Eamonn Keogh, Themistoklis Palpanas, Victor B. Zordan, Dimitrios Gunopulos, and Marc
Cardle. Indexing Large Human-Motion Databases. In Proceedings of International Con-
ference on Very Large Data Bases, 2004. 2.3.1

Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J. Pazzani. Locally
Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. In Pro-
ceedings of ACM SIGMOD Conference on the Management of Data, 2001. 2.3.1

Charles A. Klein and Ching-Hsiang Huang. Review of Pseudoinverse Control for Use with
Kinematically Redundant Manipulators. IEEE Transactions on Systems, Man and Cyber-
netics, 13(3):245–250, mar 1983. 3.1.2

Hyeongseok Ko and Norman I. Badler. Animating Human Locomotion with Inverse Dy-
namics. IEEE Computer Graphics and Applications, 16(2):50–58, mar 1996. 2.1.3, 2.2.2,
4.1

D. H. U. Kochanek and R. H. Bartels. Interpolating Splines with Local Tension, Continuity
and Bias Control. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages
33–43, 1984. 4.2.2, 4.2.2

162

http://www.hanim.org/

Bibliography

James U. Korein. A Geometric Investigation of Reach. MIT press, 1985. 3.1.1

Lucas Kovar and Michael Gleicher. Flexible Automatic Motion Blending with Registration
Curves. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer
Animation, pages 214–224, 2003. 2.3.2, 5

Lucas Kovar and Michael Gleicher. Automated Extraction and Parameterization of Motions
in Large Data Sets. In Proceedings of ACM SIGGRAPH, Annual Conference Series, 2004.
2.3.1

Lucas Kovar, Michael Gleicher, and Fred Pighin. Motion Graphs. In Proceedings of ACM
SIGGRAPH, Annual Conference Series, pages 473–482, 2002a. 2.3.2, 4.3.2, 5, 6.2

Lucas Kovar, John Schreiner, and Michael Gleicher. Footskate Cleanup for Motion Capture
Editing. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer
Animation, pages 97–104, 2002b. 2.2.4, 4.3, 5.6, 5.1, 5.2, 5.3.1, B.2

Richard Kulpa, Franck Multon, and Bruno Arnaldi. Morphology-independent Representa-
tion of Motions for Interactive Human-like Animation. In Proceedings of Eurographics,
pages 343–352, aug 2005. 2.2.4, 3.1.3, 5.4, 5.1, B.2

John Lasseter. Principles of traditional animation applied to 3D computer animation. vol-
ume 21, pages 35–44, July 1987. 2.1.1, 2.1, B.2

Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Limit Cycle Control and its Appli-
cation to the Animation of Balancing and Walking. In Proceedings of ACM SIGGRAPH,
Annual Conference Series, pages 155–162, 1996. 2.1.3

Jehee Lee and Sung Yong Shin. A Hierarchical Approach to Interactive Motion Editing for
Human-Like Figures. In Proceedings of ACM SIGGRAPH, Annual Conference Series,
pages 39–48, 1999. 2.2.4, 3.1.4, 5.1, 5.2, 5.1, 5.2, B.2

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
Interactive Contol of Avatars Animated With Human Motion Data. In Proceedings of
ACM SIGGRAPH, Annual Conference Series, pages 491–500, 2002. 2.3.2, 5, 6.2

Alain Liégeois. Automatic supervisory control of the configuration and behavior of multi-
body mechanisms. IEEE Transactions on Systems Man and Cybernetics, 7(12):868–871,
1977. 3.1.2, 3.2.3

C. Karen Liu and Zoran Popovic. Synthesis of Complex Dynamic Character Motion from
simple animation. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages
408–416, 2002. 2.7, 2.2.3, 4.1, 4.1, 6.2, 6.4.1, B.2

Feng Liu, Yueting Zhuang, Fei Wu, and Yunhe Pan. 3D motion retrieval with motion index
tree. Computer Vision and Image Understanding, 92(2):265–284, 2003. 2.8, 2.3.1, B.2

Anthony A. Maciejewski. Dealing with the Ill-Conditioned Equations of Motion for Ar-
ticulated Figures. IEEE Computer Graphics and Applications, 10(3):63–71, may 1990.
3.2.4

163

Bibliography

Anthony A. Maciejewski and Charles A. Klein. Obstacle Avoidance for Kinematically Re-
dundant Manipulators in Dynamically Varying Environments. International Journal of
Robotic Research, 4(3), 1985. 3.1.2

Anthony A. Maciejewski and Charles A. Klein. Numerical Filtering for the Operation of
Robotic Manipulators through Kinematically Singular Configurations. Journal of Robotic
Systems, 5(6):527–552, 1988. 3.1.2

Alberto Menache. Understanding Motion Capture for Computer Animation and Video
Games. Morgan Kaufmann Publishers Inc., 1999. ISBN 0124906303. 2.1.4, 5

Stephane Menardais, Richard Kulpa, Franck Multon, and Bruno Arnaldi. Synchronization
of interactively adapted motions. In Proceedings of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, aug 2004. 6.2

Jean-Sébastien Monzani, Paolo Baerlocher, Ronan Boulic, and Daniel Thalmann. Using an
Intermediate Skeleton and Inverse Kinematics for Motion Retargeting. In Proceedings of
Eurographics, 2000. 2.2.4, 5.1, 5.5, 5.2, B.2

David S. Moore and George P. McCabe. Introduction to the Practice of Statistics, 3rd ed.
New York. W. H. Freeman, 1999. 6.4.2

Tomohiko Mukai and Shigeru Kuriyama. Geostatistical Motion Interpolation. In Proceed-
ings of ACM SIGGRAPH, Annual Conference Series, 2005. 2.3.2

Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with singularity ro-
bustness for Robot Manipulator Control. Journal of Dynamic Systems, Measurement, and
control, 108:163–171, sep 1986. 3.1.2, 3.2.4

Yoshihiko. Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-Priority Based Re-
dundancy Control of Robot Manipulators. International Journal of Robotic Research, 6
(2), 1987. 3.1.2

Michael Neff and Eugene Fiume. Modeling tension and relaxation for computer animation.
In Proceedings of ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
pages 81–88, 2002. 2.1.3

Michael Neff and Eugene Fiume. Aesthetic Edits For Character Animation. In Proceedings
of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2003. 2.2.2

Michael Neff and Eugene Fiume. AER: Aesthetic Exploration and Refinement for Expres-
sive Character Animation. In Proceedings of ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, 2005. 2.1.3

J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Transactions on Database Systems, 9(1):38–71,
1984. 2.3.1

164

Bibliography

Jack A. Orenstein. Spatial query processing in an object-oriented database system. In
Proceedings of ACM SIGMOD Conference on the Management of Data, pages 326–336,
1986. 2.3.1

James M. Ortega and Werner C. Rheinboldt. Iterative solution of nonlinear equations in
several variables. 2000. 3.1.2

Carol O’Sullivan, John Dingliana, Thanh Giang, and Mary K. Kaiser. Evaluating the vi-
sual fidelity of physically based animations. In Proceedings of ACM SIGGRAPH, Annual
Conference Series, 2003. 2.2.2, 4

Yi-Chung Pai and James Patton. Center of mass velocity-position predictions for balance
control. Journal of Biomechanics, 30(4):347–354, 1997. 4.1

Sang Il Park, Hyun Joon Shin, and Sung Yong Shin. On-line Locomotion Generation Based
on Motion Blending. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium
on Computer Animation, 2002. 2.3.2, 5, 6.4.3.2, 6.13, 6.4.3.2, B.2

Woojin Park, Don B. Chaffin, and Bernard J. Martin. Toward Memory-Based HumanMotion
Simulation: Development and Validation of a Motion Modification Algorithm. IEEE
Transactions on systems, man, and cybernetics, 34(3):376–386, may 2004. 2.3.2

Richard P. Paul. Robot Manipulators: Mathematics, Programming and Control. MIT press,
1981. 3.1.1, 3.2.2

Ken Perlin. Real time responsive animation with personality. IEEE Transactions on Visual-
ization and Computer Graphics, 1(1), mar 1995. 2.1.2, 5

Ken Perlin and Athomas Goldberg. Improv: A System for Scripting Interactive Actors in
Virtual Worlds. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages
205–216, 1996. 2.1.2

Nancy S. Pollard and Paul S. A. Reitsma. Animation of Humanlike Characters: Dynamic
Motion Filtering with a Physically plausible Contact Model. In Proceedings of Yale Work-
shop on Adaptative and Learning Systems, 2001. 2.2.2, 4.1

Zoran Popovic and Andy Witkin. Physically Based Motion Transformation. In Proceedings
of ACM SIGGRAPH, Annual Conference Series, pages 11–20, 1999. 2.2.3, 4.1

WilliamH. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C, 2nd. edition. Cambridge University Press, 1992. 3.2.3, 6.4.2, A.1

Davood Rafiei and Alberto Mendelzon. Similarity-based queries for time series data. In
Proceedings of ACM SIGMOD Conference on the Management of Data, pages 13–25,
1997. 2.3.1

Paul S. A. Reitsma and Nancy S. Pollard. Perceptual metrics for character animation: Sensi-
tivity to Errors in Ballistic Motion. In Proceedings of ACM SIGGRAPH, Annual Confer-
ence Series, pages 537–542, jul 2003. 2.2.2, 4

165

Bibliography

Paul S. A. Reitsma and Nancy S. Pollard. Evaluating Motion Graphs for Character Nav-
igation. In Proceedings of ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 2004. 2.3.2

Charles Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen. Efficient Gen-
eration of Motion Transitions using Spacetime Constraints. In Proceedings of ACM SIG-
GRAPH, Annual Conference Series, pages 147–154, 1996. 2.2.3, 4.1

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and Adverbs: Multidi-
mensional Motion Interpolation Using Radial Basis Functions. IEEE Computer Graphics
and Applications, 18(5):32–41, sep 1998. 2.3.2

P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley &
Sons, 1987. 6.4.2, 6.4.2

Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard. Synthesizing Physically Realistic
Human Motion in Low-Dimensional, Behavior-Specific Spaces. In Proceedings of ACM
SIGGRAPH, Annual Conference Series, 2004. 2.2.3

Yasuhiko Sakamoto, Shigeru Kuriyama, and Toyohisa Kaneko. Motion Map: Image-based
Retrieval and Segmentation of Motion Data. In Proceedings of ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, 2004. 2.3.1

Philippe Sardain and Guy Bessonnet. Forces acting on a biped robot. Center of pressure-zero
moment point. IEEE Transactions on Systems Man and Cybernetics, 34(5):630 – 637, sep
2004. 4.1

Lorenzo Sciavicco and Bruno Siciliano. A Solution Algorithm to the Inverse Kinematic
Problem for Redundant Manipulators. IEEE Journal of Robotics and Automation, 4(4):
403–410, aug 1988. 3.1.2

Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The R -Tree: A Dynamic Index
for Multi-Dimensional Objects. In Proceedings of International Conference on Very Large
Data Bases, pages 507–518, 1987. 2.3.1

Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. Computer puppetry:
An importance-based approach. ACM Transactions on Graphics, 20:67–94, 2001. 2.2.4,
3.1.4, 5.1, 5.1, 5.2, 5.6, 6.6

Hyun Joon Shin, Lucas Kovar, and Michael Gleicher. Physical Touch-up of Human Motions.
In Proceedings of Pacific Graphics, oct 2003. 2.2.2, 4.1

Ken Shoemake. Animating Rotation with Quaternions Curves. In Proceedings of ACM
SIGGRAPH, Annual Conference Series, pages 245–254, 1985. 6.4.3.2

Bruno Siciliano and Jean-Jacques E. Slotine. A general framework for managing multiple
tasks in highly redundant robotic systems. In Proceedings of International Conference on
Advanced Robotics, pages 1211–1216, jun 1991. 3.1.2, 3.2.5

166

Bibliography

Scott. N. Steketee and Norman. I. Badler. Parametric Keyframe Interpolation Incorporating
Kinetic Adjustment and Phrasing Control. In Proceedings of ACM SIGGRAPH, Annual
Conference Series, pages 255–262, jul 1985. 4.2

Seyoon Tak, Oh-Young Song, and Hyeong-Seok Ko. Spacetime Sweeping: An Interactive
Dynamic Constraints Solver. In Proceedings of Computer Animation and Social Agents,
pages 261–270, 2002. 2.2.2, 4.1, 5.6

Deepak Tolani, Ambarish Goswami, and Norman I. Badler. Real-Time Inverse Kinematics
Techniques for Anthropomorphic Limbs. Graphical Models, 62(5):353–388, 2000. 3.1.1,
3.1.4, 3.2.2

Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. Fourier Principles for Emotion-based
Human Figure. In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages
91–96, aug 1995. 2.5, 2.2.1, B.2

Michail Vlachos, Marios Hadjieleftheriou, and Dimitrios Gunopulos and. Indexing Multi-
Dimensional Time-Series with Support for Multiple Distance. International Conference
on Knowledge Discovery and Data Mining, 2003. 2.3.1

Allan Watt and Mark Watt. Advanced animation and rendering techniques - Theory and
Practice. Addison-Wesley, 1992. 3.2.1, 3.2.3

Chris Welman. Inverse Kinematics and Geometric Constraints for Articulated Figure Ma-
nipulation. Master thesis, Simon Frasier University, sep 1993. 3.1.2, 3.1.3

Daniel E. Whitney. Resolved Motion Rate Control of Manipulators and Human Prostheses.
IEEE Transactions on man-machine systems, 10(2):47–53, jun 1969. 3.1.2

David A. Winter. Biomechanics and Motor Control of Human Movement. Wiley, New York,
2004. 2.1.3

A Witkin and M. Kass. Spacetime Constraints. In Proceedings of ACM SIGGRAPH, Annual
Conference Series, pages 159–168, 1988. 2.2.3

Andrew Witkin and Zoran Popovic. Motion Warping. In Proceedings of ACM SIGGRAPH,
Annual Conference Series, pages 105–108, 1995. 2.2.1, 4.1, 4.2.3, 5.3

AndrewWitkin, Kurt Fleischer, and Alan Barr. Energy constraints on parameterized models.
In Proceedings of ACM SIGGRAPH, Annual Conference Series, pages 225–232, 1987.
4.1, 4.1

William A. Wolovich and Howard Elliot. A Computational Technique for Inverse Kinemat-
ics. In Proceedings of 23rd Conference on Decision and Control, pages 1359–1362, dec
1984. 3.1.2

W. L. Wooten and J. K. Hodgins. Simulating leaping, tumbling, landing and balancing
humans. In Proceedings of IEEE International Conference on Robotics and Automation,
apr 2000. 2.1.3, 4.1

167

Bibliography

K. Yamane and Y. Nakamura. Dynamics Filter-Concept and Implementation of On-line
Motion Generator for Human Figures. IEEE Transactions on Robotics and Automation,
19(9):421–432, jun 2003. 2.2.2, 4.1

Victor Zordan and Jessica Hodgins. Motion Capture-Driven Simulations that Hit and React.
In Proceedings of ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Anima-
tion, pages 89–96, 2002. 2.2.2, 4.1

Victor Zordan and Nicholas Van Der Horst. Mapping Optical Motion Capture Data to Skele-
tal Motion Using a Physical Model. In Proceedings of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pages 245–250, 2003. 2.6, 2.2.2, B.2

Victor B. Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dynamic Response for
Motion Capture Animation. In Proceedings of ACM SIGGRAPH, Annual Conference
Series, 2005. 2.2.2

168

Curriculum Vitae

Name
Date of birth
Nationality
Mother tongue
Languages

Benoı̂t Le Callennec
January 14th, 1978, in Pabu (22), France
French
French
Good knowledge of English

Education

2001-2002

Post Graduation (Virtual Reality and Multimodal Interaction)

École Polytechnique Fédérale de Lausanne (Switzerland)

Thesis: An HANIM-compliant Inverse Kinematics Solver using a Task-Priority
Strategy

2000-2001

Master of Science (Computer Science)

IFSIC, University of Rennes 1, France

Thesis: 3D models Registration

1996-2000

B. Sc in Computer Science

IFSIC, University of Rennes 1, France

Professional Activities

Fall 2001 - Winter 2005

Research assistant at the VRLab-EPFL, Lausanne, Switzerland.

Summer 2001

Development of 3DSMax plugins for 3D models generation.

Spring 2001

Master’s training period: “3D models Registration” in computer vision domain.

Fall 2000

Teaching Assistant for a Turbo Pascal Programming course

Summer 2000

Design of a web site for E-business. (www.bretagne-specialites.com)

Summer 1999

Caller position in an administrative office.

169

Publications

• Benoı̂t Le Callennec, and Ronan Boulic. Interactive Motion Deformation
with Prioritized Constraints. Graphical Models. TO APPEAR.

• Hareesh Puthiya Veettilh, Ronan Boulic, Arun Sharma, Benoı̂t Le Callennec,
Kazuya Sawada, and Daniel Thalmann. An Intuitive IK Postural Control
System for Anthropometric Digital Human Models. In proceedings of the
11th International Conference on Virtual Systems and Multimedia, October
2005.

• Manuel Peinado, Ronan Boulic, Benoı̂t Le Callennec, and Daniel Méziat.
Progressive Cartesian Inequality Constraints for the Inverse Kinematics Con-
trol of Articulated Chains. In Proceedings of Eurographics, Short Presenta-
tion session, Dublin September 2005.

• Marc Salvati, Benoı̂t Le Callennec, and Ronan Boulic. A Generic Method
for Geometric Constraints Detection, In Proceedings of Eurographics, Short
presentation session. September 2004.

• Manuel Peinado, Bruno Herbelin, Marcelo M. Wanderley, Benoı̂t Le Cal-
lennec, Ronan Boulic, Daniel Thalmann, and Daniel Méziat. Towards Con-
figurable Motion Capture with Prioritized Inverse Kinematics. In Proceed-
ings of the third International Workshop on Virtual Rehabilitation, Septem-
ber 2004.

• Benoı̂t Le Callennec, and Ronan Boulic. Interactive Motion Deformation
with Prioritized Constraints. In Proceedings of ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, August 2004.

• Ronan Boulic, Benoı̂t Le Callennec, Martin Herren, and Herbert Bay. Motion
Editing with Prioritized Constraints. In Proceedings of RichMedia, October
2003.

• Ronan Boulic, Benoı̂t Le Callennec, Martin Herren, and Herbert Bay. Exper-
imenting Prioritized IK for Motion Editing. In Proceedings of Eurographics,
Slides & Video session, September 2003.

	Title
	1 Introduction
	1.1 Context
	1.2 Overview of the Motion Deformation Algorithm
	1.3 Organization of this Document
	1.4 Preliminaries
	1.4.1 Concepts and Definitions
	1.4.2 Mathematical Notation and Conventions

	2 Related Work
	2.1 Motion Generation Methods
	2.1.1 Keyframing
	2.1.2 Procedural Methods
	2.1.3 Physics-Based Methods
	2.1.4 Motion Capture

	2.2 Motion Editing Methods
	2.2.1 Signal Processing
	2.2.2 Physics-Based Methods
	2.2.3 Spacetime Constraints
	2.2.4 Per-Frame IK Plus Filtering

	2.3 Motion Database-Based Methods
	2.3.1 Data Retrieval
	2.3.2 Motion Combination

	3 Designing Postures Using Inverse Kinematics
	3.1 State of the Art in Inverse Kinematics
	3.1.1 Analytical Methods
	3.1.2 Numerical Methods
	3.1.3 Cyclic-Coordinate-Descent Method
	3.1.4 Hybrid Methods
	3.1.5 Conclusion

	3.2 An HAnim Inverse Kinematics Solver
	3.2.1 The HAnim Standard
	3.2.2 Inverse Kinematics Problem Statement
	3.2.3 Inverse Kinematics Numerical Resolution
	3.2.4 Damping the Solution
	3.2.5 Dealing with Conflicting Tasks: the Priority Strategy

	3.3 Experimental Results: HBalance
	3.3.1 Postures Design
	3.3.1.1 End-Effectors Position and Orientation Control
	3.3.1.2 Center of Mass Position Control
	3.3.1.3 Joint Recruiting Level

	3.3.2 Benchmarking
	3.3.2.1 Exponential Map Versus Euler Angles
	3.3.2.2 Integration Step and Damping Factor

	3.3.3 Damped Least Squares Inverse Versus Transpose

	3.4 Discussion and Conclusion

	4 Motion Deformation Constraints Definition and Design
	4.1 State of the Art in Constraints Formulation
	4.2 The Shape-Constraints: a Versatile Representation of End-Effectors Trajectories
	4.2.1 Overview
	4.2.2 Specification of a shape-constraint
	4.2.3 Shape-Constraints Modes
	4.2.4 Shape-Constraints Examples

	4.3 Footplant Constraints
	4.3.1 Specification of a footplant constraint
	4.3.2 Dynamic Priority Swap

	4.4 Balance Control
	4.5 Conclusion

	5 Prioritized Motion Deformation
	5.1 State of the Art in per-frame IK plus filtering
	5.2 Per-Frame Inverse Kinematics
	5.3 Enforcing Continuity
	5.3.1 Filtering the Adjustments
	5.3.2 Constraints Activation/Deactivation

	5.4 Convergence and Stopping Criteria
	5.5 Experimental Results
	5.6 Discussion and Conclusion

	6 Geometric Constraint Detection for Motion Capture Animation
	6.1 Constraints Definition
	6.2 State of the Art in Constraints Detection
	6.3 Method Overview
	6.3.1 Displacement Matrices Extraction:
	6.3.2 Instantaneous Constraint Detection
	6.3.3 Computation of the Effective Constraints
	6.3.4 Final Filtering

	6.4 Intrinsic Constraint Detection
	6.4.1 Displacement Matrices Extraction
	6.4.2 Instantaneous Constraint Detection
	6.4.3 Computation of the Effective Constraints
	6.4.3.1 Robust Temporal Connection Estimation
	6.4.3.2 Space Constraints Computation
	6.4.3.3 Line Constraints Computation
	6.4.3.4 Point Constraints Computation

	6.4.4 Final Filtering

	6.5 Experimental Results
	6.5.1 Global versus Local Estimation
	6.5.2 Static versus Dynamic Estimation of the SVD-related parameters
	6.5.3 Naive versus LMedS method
	6.5.4 Walking-Running-Walking Motion
	6.5.5 Walking Around Motion
	6.5.6 Sitting on a Stool
	6.5.7 Line Constraints Detection
	6.5.8 Point Constraint Detection
	6.5.8.1 Dice
	6.5.8.2 Desk Lamp
	6.5.8.3 Walking Around Motion

	6.5.9 Computational Cost Consideration

	6.6 Discussion and Conclusion

	7 Conclusion
	7.1 Contributions
	7.2 Future Work

	A Mathematical Demonstrations Related to Constraint Detection
	A.1 Global versus Local Displacement Matrix Formulations
	A.1.1 Global Formulation of Residual Error
	A.1.2 Local Formulation of Residual Error
	A.1.3 Numerical Comparisons Between Both Formulations

	B Tasks Description for the Examples of Chapter 3
	B.1 Example of Figure 3.3: The Thinker by Auguste Rodin
	B.2 Example of Figure 3.4: Center of Mass Control

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

