697 research outputs found

    Accurate and automatic NOAA-AVHRR image navigation using a global contour matching approach

    Get PDF
    The problem of precise and automatic AVHRR image navigation is tractable in theory, but has proved to be somewhat difficult in practice. The authors' work has been motivated by the need for a fully automatic and operational navigation system capable of geo-referencing NOAA-AVHRR images with high accuracy and without operator supervision. The proposed method is based on the simultaneous use of an orbital model and a contour matching approach. This last process, relying on an affine transformation model, is used to correct the errors caused by inaccuracies in orbit modeling, nonzero value for the spacecraft's roll, pitch and yaw, errors due to inaccuracies in the satellite positioning and failures in the satellite internal clock. The automatic global contour matching process is summarized as follows: i) Estimation of the gradient energy map (edges) in the sensed image and detection of the cloudless (reliable) areas in this map. ii) Initialization of the affine model parameters by minimizing the Euclidean distance between the reference and sensed images objects. iii) Simultaneous optimization of all reference image contours on the sensed image by energy minimization in the domain of the global transformation parameters. The process is iterated in a hierarchical way, reducing the parameter searching space at each iteration. The proposed image navigation algorithm has proved to be capable of geo-referencing a satellite image within 1 pixel.Peer ReviewedPostprint (published version

    Satellite image georegistration from coast-line codification

    Get PDF
    This paper presents a contour-based approach for automatic image registration in satellite oceanography. Accurate image georegistration is an essential step to increase the eff ectiveness of all the image processing methods that aggregate information from diff erent sources, i.e. applying data fusion techniques. In our approach the images description is based on main contours extracted from coast-line. Each contour is codifi ed by a modifi ed chain-code, and the result is a discrete value sequence. The classical registration techniques were area-based, and the registration was done in a 2D domain (spatial and/or transformed); this approach is feature-based, and the registration is done in a 1D domain (discrete sequences). This new technique improves the registration results. It allows the registration of multimodal images, and the registration when there are occlusions and gaps in the images (i.e. due to clouds), or the registration on images with moderate perspective changes. Finally, it has to be pointed out that the proposed contour-matching technique assumes that a reference image, containing the coastlines of the input image geographical area, is available

    Satellite image georegistration from coast-line codification

    Get PDF
    Martech 2007 International Workshop on Marine Technology, 15-16 november 2007, Vilanova i la GeltrĂş, Spain.-- 2 pages, 3 figuresThis paper presents a contour-based approach for automatic image registration in satellite oceanography. Accurate image georegistration is an essential step to increase the eff ectiveness of all the image processing methods that aggregate information from diff erent sources, i.e. applying data fusion techniques. In our approach the images description is based on main contours extracted from coast-line. Each contour is codifi ed by a modifi ed chain-code, and the result is a discrete value sequence. The classical registration techniques were area-based, and the registration was done in a 2D domain (spatial and/or transformed); this approach is feature-based, and the registration is done in a 1D domain (discrete sequences). This new technique improves the registration results. It allows the registration of multimodal images, and the registration when there are occlusions and gaps in the images (i.e. due to clouds), or the registration on images with moderate perspective changes. Finally, it has to be pointed out that the proposed contour-matching technique assumes that a reference image, containing the coastlines of the input image geographical area, is availablePeer reviewe

    Assessment of DEM derived from very high-resolution stereo satellite imagery for geomorphometric analysis

    Get PDF
    ABSTRACTVery high-resolution satellite stereo images play an important role in cartographical and geomorphological applications, provided that all the processing steps follow strict procedures and the result of each step is carefully assessed. We outline a general process for assessing a reliable analysis of terrain morphometry starting from a GeoEye-1 stereo-pair acquired on an area with different morphological features. The key steps were critically analyzed to evaluate the uncertainty of the results. A number of maps of morphometric features were extracted from the digital elevation models in order to characterize a landslide; on the basis of the contour line and feature maps, we were able to accurately delimit the boundaries of the various landslide bodies

    Application of Generalized Partial Volume Estimation for Mutual Information based Registration of High Resolution SAR and Optical Imagery

    Get PDF
    Mutual information (MI) has proven its effectiveness for automated multimodal image registration for numerous remote sensing applications like image fusion. We analyze MI performance with respect to joint histogram bin size and the employed joint histogramming technique. The affect of generalized partial volume estimation (GPVE) utilizing B-spline kernels with different histogram bin sizes on MI performance has been thoroughly explored for registration of high resolution SAR (TerraSAR-X) and optical (IKONOS-2) satellite images. Our experiments highlight possibility of an inconsistent MI behavior with different joint histogram bin size which gets reduced with an increase in order of B-spline kernel employed in GPVE. In general, bin size reduction and/or increasing B-spline order have a smoothing affect on MI surfaces and even the lowest order B-spline with a suitable histogram bin size can achieve same pixel level accuracy as achieved by the higher order kernels more consistently

    Measurement of soil tillage using uav high-resolution 3d data

    Get PDF
    PTDC/CTA-OHR/32360/2017 UIDB/04647/2020 UIDP/04647/2020Remote sensing methodologies could contribute to a more sustainable agriculture, such as monitoring soil preparation for cultivation, which should be done properly, according to the topographic characteristics and the crop’s nature. The objectives of this work are to (1) demonstrate the potential of unmanned aerial vehicle (UAV) technology in the acquisition of 3D data before and after soil tillage, for the quantification of mobilised soil volume; (2) propose a methodology that enables the co-registration of multi-temporal DTMs that were obtained from UAV surveys; and (3) show the relevance of quality control and positional accuracy assessment in processing and results. An unchanged-area-matching method based on multiple linear regression analysis was implemented to reduce the deviation between the Digital Terrain Models (DTMs) to calculate a more reliable mobilised soil volume. The production of DTMs followed the usual photogrammetric-based Structure from Motion (SfM) workflow; the extraction of fill and cut areas was made through raster spatial modelling and statistical tools to support the analysis. Results highlight that the quality of the differential DTM should be ensured for a reliable estimation of areas and mobilised soil volume. This study is a contribution to the use of multi-temporal DTMs produced from different UAV surveys. Furthermore, it demonstrates the potential of UAV data in the understanding of soil variability within precision agriculture.publishersversionpublishe

    Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing

    Get PDF
    We have monitored a large landslide that causes extensive damage by using Terrestrial Laser Scanners (TLS) and Global Positioning System (GPS) receivers. Our surveys have confirmed that the slope undergoes a continuous change. When using TLS some operational difficulties arise. We have used different TLSs types to better evaluate the reliability of our surveys; a full wave TLS has allowed to make easier the data filtering. All surveys have been framed in the same absolute reference system; this has been done by connecting both targets and laser stations to a Global Navigation Satellite System (GNSS) Permanent Reference Stations network. A direct comparison among the DEMs allows to infer the movements of the landslide

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given
    • …
    corecore