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Abstract - Mutual information (MI) has proven its 
effectiveness for automated multimodal image 
registration for numerous remote sensing applications 
like image fusion. We analyze MI performance with 
respect to joint histogram bin size and the employed 
joint histogramming technique. The affect of 
generalized partial volume estimation (GPVE) utilizing 
B-spline kernels with different histogram bin sizes on 
MI performance has been thoroughly explored for 
registration of high resolution SAR (TerraSAR-X) and 
optical (IKONOS-2) satellite images. Our experiments 
highlight possibility of an inconsistent MI behavior with 
different joint histogram bin size which gets reduced 
with an increase in order of B-spline kernel employed in 
GPVE. In general, bin size reduction and/or increasing 
B-spline order have a smoothing affect on MI surfaces 
and even the lowest order B-spline with a suitable 
histogram bin size can achieve same pixel level accuracy 
as achieved by the higher order kernels more 
consistently.  

Keywords: high resolution satellite image registration, 
mutual information, bin size, generalized partial volume 
estimation 

1 Introduction 
Registration is a fundamental task in image processing and 
is used to align two or more images acquired at different 
times, from different sensors or from different view points. 
Thus, usually all remote sensing based applications require 
registration of images as an intermediate step. Depending 
upon the type of application, image registration may be 
called as multimodal, template, viewpoint or temporal 
registration. Mathematically, the problem of registering an 
input image (I) to a reference image (R) can be expressed 
as [1]: 

                      ( ) ( )( )( ), ,R x y g I T x y=                 (1)                                                                                                                                

where T is a transformation function which maps two 
spatial coordinates x and y, to the new spatial coordinates 
x' and y' (Equation 2) and g is a one dimensional (1D) 
intensity or radiometric interpolation function, 
           

                          ( ), ( , )x y T x y′ ′ =                           (2)                        
The task of registration is to find an optimal 

spatial and intensity transformation such that images get 
aligned according to a predefined criterion. This task can 
be broken down into the following major components [2]: 
 

i. Feature space: It extracts the information in 
images that will be used for matching them. 

ii. Similarity metric: It determines the degree of 
match and mismatch between the images. 

iii. Transformation: It defines the mapping of 
location of points in one image to new locations 
in another image. 

iv. Search space and strategy: Search space is used 
to find the optimal transformation to align the 
images.  

 
On the basis of feature space, image registration 
techniques can be classified into the following [3]: 

 
i. Feature based techniques. 

ii. Intensity based techniques. 
 

Feature based techniques depend on accurate 
identification of features or objects that describe important 
landmarks, sharp edges or shapes, which however may 
often be difficult to extract. Alternatively, in intensity 
based techniques, images are registered based on a relation 
between pixel intensity values of two images. This makes 
the registration process to emphasize on feature matching 
rather than on their detection.  
 

Automatic intensity based image registration is 
generally mapped as an optimization problem with an 
objective of maximizing the similarity metric function 
between the two images in a predefined search space. Two 
such similarity metrics, maximized to register SAR and 
optical images are cluster reward algorithm and mutual 
information [4]. Cluster reward algorithm involves 
computation of an expression based on estimated joint and 
individual histograms of the reference and the input 
images. On the other hand, mutual information involves 
computation of entropy values based on estimated joint 
histogram of input and reference image involved in the 
registration process. Details on cluster reward algorithm 
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can be found in the cited reference whereas MI has been 
discussed in a later section of this paper. MI also has been 
extensively used for registration of biomedical multi 
modal images [5]. The performance of both the mentioned 
similarity metrics depends profoundly on an accurate 
estimation of the joint histogram and so it might be 
affected by joint histogram bin size and the employed joint 
histogramming technique. 
  

In the presented work, we evaluate MI 
performance consistency in terms of employed joint 
histogramming technique and histogram bin size. We 
present our analysis using normalized MI [6] as the 
similarity metric and generalized partial volume 
estimation as joint histogramming technique for 
histograms of various bin sizes [7]. Employment of 
generalized partial volume estimation suppresses 
appearance of interpolation induced artifacts. These are 
defined as periodic patterns noticed on plotting mutual 
information as a function of some geometric 
transformation at sub pixel level [8]. Apart from equal 
sample spacing of the images, noise has also been 
demonstrated as a reason for artifact appearance [9]. We 
perform all our tests with equally sample spaced images 
(1m resolution) and having inherent different noise types. 
As interpolation induced artifacts are not the main concern 
of the presented work we present analysis done at pixel 
level movement, though we depict the roughness of MI 
surfaces generated by different order B-spline kernels. 
 

For mutual information based image to image 
registration, process turn around time, implementation 
memory requirements and generated MI surface 
smoothness gets affected by joint histogram bin size. For 
SAR to SAR image registration, speckle reduction and 
selection of an appropriate joint histogram bin size to 
generate smooth MI surfaces has been advocated [10]. On 
the basis of evaluated bilinear and partial volume 
histogramming techniques, presented work in [10] 
reported limitations of MI for SAR to SAR image 
registration due to inherent presence of multiplicative 
speckle noise. In the context of behavior and consistency, 
MI performance with respect to GPVE and different bin 
sizes has never been thoroughly examined. In line with the 
built background, prime objectives of the presented work 
may be enumerated as: 
 

i. To evaluate performance of generalized partial 
volume estimation employing B-spline kernels 
with different support sizes for MI based 
registration of high resolution optical and SAR 
imagery. 

ii. To study the affect of joint histogram bin size on 
MI surfaces produced by GPVE for images 
acquired over different land cover classes. 

 
The following sections elucidate mutual information, 
generalized partial volume estimation, methodology 

adopted for the carried out evaluation followed by a final 
discussion and conclusions of the results obtained. 
 
2.  Mutual Information 
 
Mutual information has evolved from the field of 
information theory. MI describes a statistical dependence 
between two random variables (e.g. A and B) expressed in 
terms of variable entropies.  

      ( ) ( ) ( ) ( ), ,MI A B H A H B H A B= + −       (3)                  

             ( ) ( ) ( ), |MI A B H A H A B= −              (4) 

           ( ) ( ) ( ), |MI A B H B H B A= −                (5)         
where H(A) and H(B) are the Shannon entropies of A and 
B respectively, H(A, B) is the joint entropy and H(A|B) is 
the conditional entropy of A given B and H(B|A) is the 
conditional entropy of B given A.  Considering two 
remote sensing images to be registered as the two random 
variables, MI is a symmetric relation that always achieves 
values greater than zero. Registration of two images A and 
B is based on maximization of MI (A, B) (Equation 3). 
The marginal entropies and the joint entropy can be 
computed from [11],    

            ( ) ( ) ( )logA A
a

H A p a p a= −∑              (6) 

        ( ) ( ) ( )logB B
b

H B p b p b= −∑                    (7) 

   ( ) ( ) ( ), ,
,

, , log ,A B A B
a b

H A B p a b p a b= −∑       (8) 

Where pA(a)  and pB(b) are the marginal probability mass 
functions and  pA,B (a,b) is the joint probability mass 
function. These probability mass functions can be obtained 
from, 

              ( ) ( )
( ),

,

,
,

,A B

a b

h a b
p a b

h a b
=
∑

                       (9)    

                ( ) ( ), ,A A B
b

p a p a b=∑                      (10) 

                   ( ) ( ), ,B A B
a

p b p a b=∑                       (11) 

Where h is a joint histogram (JH) of the two images 
involved. It is a 2D matrix with the intensity values of one 
image along one axis and the intensity values of the other 
image along the other axis. The value h (a, b) is the 
statistic number of corresponding pairs having intensity 
value a in the first image and intensity value b in the 
second image. Thus, it can be seen from Equations (3) to 
(11) that the joint histogram is the only requirement for MI 
computation between any two images. The joint histogram 
bin size needs a vigilant selection as it can have significant 



affect on the accuracy and speed of a MI based registration 
process.  For example, a scene from TerraSAR-X [12] 
may have intensity values from the entire possible 
dynamic range of [0, 65535] (16 bit radiometry) and the 
corresponding scene from IKONOS-2 [13] may have 
intensity values in range [0, 2047] (11 bit radiometry). For 
a MI based registration in the mentioned scenario, the JH 
size without any intensity binning would be 65536 x 2048, 
leading to memory and computational issues. Generally, 
JH size can be taken care off by linear intensity binning 
technique. Work presented with 8 bit images in [14] 
enhanced both images linearly in the range (0 to 255) 
followed by division by a factor of 4 to reduce the bin size 
to 64. In practice, scenes from sensors having high 
radiometric resolution may not show a good distribution of 
intensity values over the whole histogram. Therefore, to 
avoid linear contrast enhancement and its possible 
influence on MI function we suggest the following 
intensity binning formulation: 

      ( )( )orgDN
max_dn = round _ 1newDN bin size× −    (12)   

Where DNorg is the original intensity value, bin_size is the 
possible number of distinct intensity values in the new 
range, max_dn is the maximum intensity recorded in the 
original image and DNnew is the newly scaled digital 
number according to the bin size selected. 

For the presented work we have employed the 
normalized MI implementation to reduce the sensitivity of 
MI on changes in overlap [6]. 

 
                   ( ) + H(B)

H(A,B)( ,  )  H AMI A B =                (13) 

 

3.0 Generalized Partial Volume 
Estimation 

For optimizing the MI registration function, input image 
might be transformed several times over the reference 
image grid. However, in many cases, the transformed 
input image might not coincide with the target reference 
image grid. Therefore, an exact joint histogram may not be 
obtained and some approximation becomes inevitable. For 
joint histogram estimation, one step and two step 
histogramming techniques have been utilized in the past 
[9]. For the presented work one step joint histogramming 
technique namely generalized partial volume estimation 
(GPVE) has been used [7].  In this section we briefly 
describe GPVE along with the utilized interpolating 
kernels. Let I and R be the input and the reference image 
respectively and T be a transformation that is applied to 
input image grid points. Assuming T maps the grid point 
(xi, xj) in image I onto the point with coordinate, (yi + ∆i, yj 
+ ∆j) in the reference image R, where (yi, yj) is a grid point 

in R and 0 ≤ ∆i, ∆j < 1. GPVE is mathematically described 
as 

 
( ( , ), ( , ))i j i jh I x x R y p y q+ + + = 

                                          1 2( )* ( )i jf p f q− ∆ − ∆  
                                                                         (14) 
 
In the equation above f1 and f2 refers to the kernel function 
selected, p and q specify the pixels involved in the joint 
histogram updating procedure depending upon the support 
of the selected kernel functions f1 and f2. Two conditions 
governing kernel function (same or different) selection are 
non negative increments to the joint histogram and the 
sum of the updated amount should equal to one for each 
corresponding pair of points (xi, xj) and (yi + ∆i, yj + ∆j).  
 
Normally, B-spline functions fits in the role of the kernel 
functions mentioned in Equation 14. Basis splines (B-
splines) are one of the most commonly used family of 
spline functions. These are derived by several self 
convolutions of a basis rectangular function.  

                      ( ) {1,     0 x 0.5
1 0,    elsewhereh x ≤ <=                           (15)              

A B-spline of degree n or order n + 1 can be derived 
through n self convolutions of the function described in 
Equation 15. 

        1 1 1

N - 1 times

( ) =  ( )  ( ) ... (x)Nh x h x h x h∗ ∗          (16) 

On selecting B-splines as kernel functions for GPVE the 
support of the selected B-spline decides the number of grid 
points that are involved in the updating procedure of the 
joint histogram. When an input image (I) is transformed to 
the reference image(R) grid by a selected transformation 
function (T) there can be two possibilities: 
 

i. (Case 1) Transformed grid point of I is coincident 
with a grid point in R  

ii. (Case 2) Transformed grid point of I is 
surrounded with grid points in R. 

 
Depending upon the support of employed B-spline kernels 
in x and y directions different grid points get involved in 
joint histogram updating procedure for the two mentioned 
scenarios. For B-spline kernels (order 2 to 7), Table 1 
tabulates the number of grid points involved in joint 
histogram updating procedure for the two cases. The ratio 
of maximum to minimum number of updated entries in the 
joint histogram updating procedure (max-min ratio), a 
factor reducing the artifacts appearance in the similarity 
metrics surfaces is also enlisted in Table 1. As expected, 
the max-min ratio tends to 1 as order of interpolating B-
spline kernel increases.   
 
 



Table1: B-spline kernel characteristic behavior as 
interpolating functions in GPVE 

Order Support Case 1 Case 2 Ratio 
Linear 3 * 3 1 4, 2 4.00 

Quadratic 5 * 5 9 6, 4 2.25 
Cubic 5 * 5 9 12, 16 1.78 

Quartic 7 * 7 25 20, 16 1.56 
Quintic 7 * 7 25 30, 36 1.44 
Sextic 7 * 7 49 42,36 1.36 

 
Including the ones mentioned in Table 1, the order 1 B-
spline (Equation 15) can also be utilized as an 
interpolating kernel (nearest neighbor interpolation). 
 
4.0 Dataset and Methodology 
 
We present this analysis utilizing geo referenced high 
resolution SAR and optical imagery. SAR image has been 
procured by the recently launched German satellite 
TerraSAR-X and the optical imagery has been acquired 
by IKONOS-2 over Germering area near Munich (west).  
 
Table 2: Details of TerraSAR-X and IKONOS-2 imagery 

 
TerraSAR-X offers various imaging modes in single or 
dual polarization including strip map, high resolution spot 
light, spot light and the scan SAR mode [12]. Table 2 
tabulates the characteristics of TerraSAR-X and 
IKONOS-2 scenes used in the presented work. 

 
For a thorough MI analysis, three land cover 

classes namely urban, forest and roads/fields have been 
selected. Subsets from full image scenes (Table 3) were 
extracted using UTM zone 32 co-ordinates. The selected 

image sub scenes are provided in compressed form for 
visualization in Figure 1.  
 

Table 3: Details of the experimental datasets 
 Dataset 1 Dataset 2 Dataset 3 

Land cover Roads/Fields Urban Forest 

Size (pixel) 401 x 401 501 x 501 501 x 501 

Scene 

Extent 

677769.0, 
533523.0 

to 
678169.0, 
5335123.0 

675618.0, 
5334013.0 

to 
676118.0, 
5333513.0 

676820.50 
5335889.0 

to 
677320.50 
5335389.0 

DN  Range 
(SAR 
OPTICAL) 

[0, 4262] 
[58, 1030] 

[0, 15490] 
[1, 1745] 

[0, 583] 
[87, 617] 

 
The MI behavior has been analyzed in a simple 

experimental set up which identifies PAN as input and 
SAR as the reference image. The input image was put to a 
translation in x and y direction ranging from -20 to +20 
pixels at an increment of 1 pixel in both the directions. MI 
values between the input and reference images as a 
function of x and y translation have been plotted. Ideally, 
MI should achieve maximum value in the search space at 
perfect alignment (0, 0), if there is no relative 
georeferencing error with in the images. The main motive 
is to study the dependence of MI behavior on GPVE and 
on the selected joint histogram bin size. Conducting such 
an experiment also gives an opportunity to highlight 
relative georeferencing differences between the IKONOS 
and TerraSAR-X datasets, if any. The details of three 
datasets used in the above described scenario are tabulated 
in Table 3.  
 
5.0 Experiments and Observations 
 
The experiments here allow us to visualize and analyze 
mutual information behavior in terms of consistency and 
smoothness of the surfaces generated. For the targeted 
analysis, following interpolating kernels for Equation 14 
have been selected: 
 

i. B-spline order 1 both x and y axis (K1) 
ii. Cubic B-spline (order 4) for both x and y axis 

(K4) 
iii. Sextic B-spline (order 7) for both x and y axis 

(K7) 
 
The kernels for GPVE have been selected on the basis of 
support, order, ratio of maximum to minimum entries 
updated in JH. The characteristic behaviors of various B-
spline kernels for GPVE have been tabulated in Table 1. 
B-spline order 4 and B-spline order 7 come under the 
category of one step joint histogram estimation as these 
directly estimate the joint histogram without resorting to 
the interpolation of intensity values at the transformed grid 
points on the reference grid. On the other hand, B-spline 

 TerraSAR-X IKONOS-2 
Mode High resolution 

spot light (HS) 
Reverse Scanning 

Spectral 
Resolution 

9.65 GHz 450 - 900 nm 

Spatial 
Resolution 

1m 1m (panchromatic) 

Bits per 
pixel 

16 bit 11 bit 
 

Angle Incidence Angle 
50.80° 

Nominal Collection 
Elevation: 63.51°  

Date of 
Acquisition 

25/12/07 14/10/07 

Scene 
Extent 

670500.0, 
 5338000.0 

to 
680000.0, 
5329000.0 

671973.37, 
5336857.19 

to 
679100.37, 
5330854.19 

Processing 
Level 

Enhanced 
ellipsoid 

corrected using a 
DEM 

Standard 
geometrically 

corrected 



order 1 kernel involves nearest neighborhood interpolation 
of intensity values at the transformed grid points on the 
reference grid before updating the joint histogram (two 
step joint histogram estimation). Presented analysis has 
been done at pixel level movement therefore eliminating 
the need and affects of interpolation for B-spline order 1 
kernel and thus reducing it to a one step technique. 
 

 

 
(a) 

 

 
               (b) 

 

                  (c) 

 

 
                (d) 

 

(e)     

 

                 (f) 

Figure 1: PAN and SAR images used in analysis. Sub 
figure a, c and e are the PAN images representing land 
cover classes roads/fields, urban and forest respectively.  
Sub figures b, d and f are the SAR images representing 
land cover classes roads/fields, urban and forest 
respectively. 

Figure 1a, 1c, 1e courtesy of European Space Imaging 
© European Space Imaging 

The MI performance for the three datasets namely 
roads/fields, urban and forests (Table 3) have been 
tabulated in Table 4, 5 and 6 respectively. These enlist the 
co-ordinates of the peak achieved by MI curve in search 
space of [-20, 20] pixels in x and y direction for various 

datasets with original and with intensities scaled to 
different bin sizes. The joint histogram size, defined as 
count of distinct intensity value pairs possible from input 
image (PAN) and reference image (SAR) is also provided 
along with. For reliable joint histogram estimation, ratio of 
number of image samples to the number of the joint 
histogram entries should be about 64 [15]. The suggested 
ratio has been tabulated in Table 4, 5 and 6 to visualize its 
affect on MI performance.  

 
Since mutual information has proven its 

effectiveness as a registration similarity metric, the 
accuracy assessment of the peaks obtained by MI for 
various datasets has not been done (except for visual 
observation). We present a consistency analysis of MI 
peaks in terms of bin size and B-spline kernel selected 
with an assumption that the registration peak achieved by 
MI in most of the cases is the true registration peak for 
that dataset. As all the three datasets have been extracted 
from a single full scene it also becomes interesting to note 
the differences in registration peaks for the three datasets. 
Some differences in the registration peaks can be expected 
due to the very different ground conditions in the three 
selected areas. 

 
 In case of dataset 1 (land cover class roads/fields), 

for various bin size and B-spline kernel combinations MI 
mostly produced peak at x translation of 12 pixels and y 
translation of -5 pixels (Table 4). The same peak for the 
original intensity values and intensity values scaled down 
till bin size of 32 was observed for B-spline kernels 4 and 
7. MI ambiguous behavior was observed for B-spline 
kernel 1 for original intensity values and bin size 32. As 
expected, MI performance became unreliable as bin size 
was reduced to very low values (16 and 8). The 
recommended ratio of image samples to joint histogram 
entries of around 64 did not appear as a necessary 
condition for this dataset as MI for the three B-spline 
kernels showed consistent performance for ratio ranging 
from 0.4 to 291.3. 
 

Table 4: X and Y co-ordinates of peak produced by MI for 
land cover class roads/fields (dataset 1) 

K1 K4 K7 Size (JH) Ratio 
 15, -5 12, -5 12, -5 469x843 0.4 

1024 12, -5 12, -5 12, -5 332x466 1.0 
512 12, -5 12, -5 12, -5 254x209 3.0 
256 12, -5 12, -5 12, -5 139x125 9.3 
128 12, -5 12, -5 12, -5 78x76 27.1 
64 12, -5 12, -5 12, -5 42x43 89.04 
32 15, -5 12, -5 12, -5 23x24 291.3 
16 0, 4 0, 4 0, 4 12x13 1030.8 
8 12, 20 12, 20 12, 20 7x7 3281.7 

 
 For dataset 2 (land cover class urban), MI mostly 

produced peak at x translation of 12 pixels and y 
translation of -4 pixels (Table 5). MI showed little 
ambiguity for B-spline Kernel 1 with original intensity 
values and for bin sizes 1024, 512 and 32. Ambiguity was 



also observed for B-spline kernel 4 with original intensity 
values but MI showed consistent peak till bin size 64 with 
B-spline kernel 7. Interestingly for this particular dataset, 
MI showed a peak very near to the original peak for bin 
sizes of 8. In this case, consistent MI behavior is observed 
for ratio ranging from 0.09 to 120.73 again exhibiting high 
flexibility as far as this parameter is concerned.  
 

Table 5: X and Y co-ordinates of peak produced by MI for 
land cover class urban (dataset 2) 

K1 K4 K7 Size (JH) Ratio 
 18, -7 14, -5 12, -4 1270x 

2057 
0.09 

1024 11, -4 12, -4 12, -4 807x284 1.06 
512 11, -4 12, -4 12, -4 436x166 3.4 
256 12, -4 12, -4 12, -4 228 x 97 11 
128 12, -4 12, -4 12, -4 118 x 56 36.8 
64 12, -4 12, -4 12, -4 61 x 33 120.8 
32 11, -3 11, -3 11, -3 32 x 20 381.3 
16 10, 6 10, 6 10, 6 16 x 13 1175 
8 11, -2 11, -2 11, -2 8 x 8 3820 

 
In case of dataset 3 (land cover class forests), MI 

mostly produced peak at x translation of 10 pixels and y 
translation of -2 pixels (Table 6). MI achieved the peak of 
(10, -2) for B-spline kernel 1 only with a bin size of 64 
and achieved peak at (20, 17) for original intensity values 
and bin size of 1024. MI behavior for B-spline kernel 3 
was also ambiguous with peaks varying from (20, 15) to 
(11, -2) and (10, -2) for various bin sizes. As order of the 
B-spline kernel was increased to 7, MI showed a 
consistent registration peak at (10, -2) for original intensity 
images till bin size of 32. Again, large registration errors 
or MI failures were recorded for very small bin sizes (16 
and 8) and the image sample size and histogram entries 
ratio showed a high dynamic range.  

 
Table 6: X and Y co-ordinates of peak produced by MI for 

land cover class forest (dataset 3) 
      K1   K4   K7 Size (JH) Ratio 

 20, 17 20, 15 10, -2 408x444 1.4 
1024 20, 17 20, 15 10, -2 408x444 1.4 
512 20, 18 10, -2 10, -2 339x393 1.9 
256 11, -2 10, -2 10, -2 175x209 6.9 
128 11, -2 11, -2 10, -2 90x111 25.13 
64 10, -2 11, -2 10, -2 46x57 95.73 
32 11, -1 11, -2 10, -2 24x31 337.4 
16 19, 11 20, 10 20,11 13x16 1207 
8 20, 10 20, 11 20,11 7x8 4482 

 
 After reviewing the consistency in MI behavior for 
various B-spline kernels and joint histogram bin size now 
we turn attention towards generated MI surfaces. For 
brevity we show surfaces generated by the three kernels 
for original intensity values and intensity bin size reduced 
to 64 for dataset 2 (land cover class urban). To 
summarize, MI showed different registration peaks for the 
three kernels with original intensity values but on scaling 
the intensity values to bin size of 64 MI behavior became 
consistent for all the three kernels. The MI surfaces can be 

visualized in Figure 2-5. As clearly visible from the 2 
dimensional surfaces generated B-spline order 1 generates 
rough MI surface using original intensity values but the 
smoothness and consistency of the same increases by 
reducing the bin size to 64. Similar behavior is depicted 
by B-spline order 4 though it generates much smoother 
MI surface as compared to B-spline order 1. As observed, 
B-spline order 7 generated smooth MI surfaces with a 
consistent behavior. 
 
6. Discussion and Conclusions 
  
As per expectation, application of mutual information 
highlighted georeferencing errors present between the 
examined datasets. MI gave registration coordinates at 
(12, -5) for land cover class roads/fields, (12, -4) for land 
cover class urban and (10, -2) for land cover class forests.  
Relative georeferencing errors of these orders were 
expected because of accuracy level offered by IKONOS 
imagery at the standard geometrically corrected level [13]. 
All the three datasets showed better visual overlap when 
the input PAN image was transformed by the obtained 
registration parameters.   
 

Joint histogram bin size depending upon the joint 
histogramming technique may affect mutual information 
performance in a registration search space. The obtained 
results in terms of consistency and smoothness of 
generated MI surface clearly advocate intensity binning 
prior to mutual information based registration, especially 
for lower order B-spline kernels. Intensity binning which 
has an influence of a smoothing filter is also useful as it 
certainly reduces joint histogram sparseness and also leads 
to smoother mutual information surfaces very important 
for an optimization process. The question of best bin size 
selection still remains open as no fixed guidelines can be 
drawn from the conducted experiments. Given the limited 
nature of the examples, a ratio of 64 still works well, and 
it is possible that for other datasets this is the optimum 
ratio. In, other words, this ratio is not necessary for the set 
of data examined. As clear from observation Tables 4, 5 
and 6 that ratio as low as 0.09 (Table 4) to as high as 
337.37 (Table 6) can produce the same results.  
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Figure 2: MI surfaces generated by B-spline order 1 
kernel (a) No intensity binning, peak at (18, -7) (b) joint 
histogram bin size of 64, peak at (12, -4) 
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Figure 3: MI surfaces generated by cubic B-spline kernel 
(a) No intensity binning, peak at (14, -5) (b) joint 
histogram bin size of 64, peak at (12, -4) 

 
In general, very low and very high ratio of input 

samples to histogram size resulting from extremely large 
and small bin sizes must be avoided. A very low ratio 
imply a sparse joint histogram and on the contrary a very 
high ratio may imply too many image samples updating 
the same histogram bin making mutual information 
estimate unreliable. Too small bin sizes also lead to a 
much smoothened image with low entropy value that 
might affect the mutual information performance 
adversely. 

 

The generalized partial volume estimation offers a 
lot of flexibility in terms of available B-spline 
interpolating kernels for both in x and y direction.  A 
performance of cubic B-spline and the sextic B-spline has 
been compared to observe that the smoothness of the MI 
surfaces generated increased with the support of the B-
spline kernel. The B-spline order 1 kernel when limited to 
one step joint histogramming technique showed 
encouraging results as far as consistency is concerned. 
With a high kernel support and computational load, the 
sextic B-spline produced consistent results for various bin 
sizes selected. Though all the B-splines can be easily 
implemented with the help of look up Tables but still the 
computational load for the first order B-spline is the least.  
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Figure 4: MI surfaces generated by sextic B-spline kernel 
(a) No intensity binning, peak at (12, -4) (b) joint 
histogram bin size of 64, peak at (12, -4) 
 

With advancement in research and technology 
modern satellites like IKONOS-2 and TerraSAR-X 
provide already geocoded and terrain corrected data 
products. A useful contribution of the presented analysis 
is to highlight the magnitude of registration differences 
that might be present with in images procured from 
different agencies and with dissimilar accuracy levels. In 
an exhaustive registration parameter search, B-spline first 
order kernel with suitable intensity binning and pixel level 
movement may yield similar registration results as the 
higher order B-splines. If the application is limited by 
processing hardware then the use of first order splines 



along with suitable intensity binning is appropriate, 
however, the higher order splines in general are more 
robust. 
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