7 research outputs found

    Improving Deep Learning for Seizure Detection using GAN with Cramer Distance and a Temporal-Spatial-Frequency Loss Function

    Get PDF
    The signals of EEG are analyzed in the identification of seizure and diagnosis of epilepsy. The visual examination process of EEG data by skilled physician is huge time-utilization and the judgemental process is complicated, which may vary or show inconsistency among the physician. Hence, an automatic process in diagnosis and detection was initiated by the Deep Learning (DL) approaches. Time Aware Convolutional Neural Network with Recurrent Neural Network (TA-CNN-RNN) was one among them. Deep neural networks trained on large labels performed well on many supervised learning tasks. Creating such massive databases takes time, resources, and effort. In many circumstances, such resources are unavailable, restricting DL adoption and use. In this manuscript, Generative Adversarial Networks with the Cramer distance (CGAN) is proposed to generate an accurate data for each lable. A spatiotemporal error factor is introduced to differentiate actual and genetrated data. The discriminator is learned to differentiate the created data from the actual ones, while the generator is learned to create counterfeit data, which are not estimated as false by the discriminator. The classical GANs have a complex learning because of the nonlinear and non-stationary features of EEG data which is solved by Carmer Distance in the proposed method. Finally, the sample generated by CGAN is given as input for the Time Aware Convolutional Neural Network with Recurrent Neural Network (TA-CNN-RNN) classifier to investigate experimental seizure Prediction outcome of the proposed CGAN. From the investigational outcomes, the proposed CGAN- TA-CNN-RNN model attained classification accuracy of 94.6%, 94.8% and 95.2% on CHB-MIT-EEG, Bonn-iEEG and VIRGO-EEG than other existing EEG classification schemes and also provides great potentials in real-time applications

    High-performance detection of epilepsy in seizure-free EEG recordings: A novel machine learning approach using very specific epileptic EEG sub-bands

    Get PDF
    We applied machine learning to diagnose epilepsy based on the fine-graded spectral analysis of seizure-free (resting state) EEG recordings. Despite using unspecific agglomerated EEG spectra, our fine-graded spectral analysis specifically identified the two EEG resting state sub-bands differentiating healthy people from epileptics (1.5-2 Hz and 11-12.5 Hz). The rigorous evaluation of completely unseen data of 100 EEG recordings (50 belonging to epileptics and the other 50 to healthy people) shows that the approach works successfully, achieving an outstanding accuracy of 99 percent, which significantly outperforms the current benchmark of 70% to 95% by a panel of up to three experienced neurologists. Our epilepsy diagnosis classifier can be implemented in modern EEG analysis devices, especially in intensive care units where early diagnosis and appropriate treatment are decisive in life and death scenarios and where physicians’ error rates are particularly high. Our approach is accurate, robust, fast, and cost-efficient and substantially contributes to Information Systems research in healthcare. The approach is also of high practical and theoretical relevance

    Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis

    Get PDF
    Background and Objectives: This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. Methods: In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. Results: It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Sup- port Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). Conclusions: It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society

    Random subspace K-NN based ensemble classifier for driver fatigue detection utilizing selected EEG channels

    Get PDF
    Nowadays, many studies have been conducted to assess driver fatigue, as it has become one of the leading causes of traffic crashes. However, with the use of advanced features and machine learning approaches, EEG signals may be processed in an effective way, allowing fatigue to be detected promptly and efficiently. An optimal channel selection approach and a competent classification algorithm might be viewed as a critical aspect of efficient fatigue detection by the driver. In the present framework, a new channel selection algorithm based on correlation coefficients and an ensemble classifier based on random subspace k-nearest neighbour (k-NN) has been presented to enhance the classification performance of EEG data for driver fatigue detection. Moreover, power spectral density (PSD) was used to extract the feature, confirming the presented method's robustness. Additionally, to make the fatigue detection system faster, we conducted the experiment in three different time windows, including 0.5s, 0.75s, and 1s. It was found that the proposed method attained classification accuracy of 99.99% in a 0.5 second time window to identify driver fatigue by means of EEG. The outstanding performance of the presented framework can be used effectively in EEG-based driver fatigue detection

    Epileptic EEG signal classification using convolutional neural network based on multi-segment of EEG signal

    Get PDF
    High performance in the epileptic electroencephalogram (EEG) signal classification is an important step in diagnosing epilepsy. Furthermore, this classification is carried out to determine whether the EEG signal from a person's examination results is categorized as an epileptic signal or not (healthy). Several automated techniques have been proposed to assist neurologists in classifying these signals. In general, these techniques have yielded a high average accuracy in classification, but the performance still needs to be improved. Therefore, we propose a convolutional neural network based on multi-segment of EEG signals to classify epileptic EEG signals. This method is built to overcome data limitations in the convolutional neural network training process and add the ensemble combination process. The multi-segment of EEG signal is formed by splitting the signal without overlapping each channel and converting it into the spectrogram image based on the short-time Fourier transform value. The spectrogram image is then used as input for the convolutional neural network in in-depth training and testing. The convolutional neural network model of the training results is used to classify each EEG signal segment on each test channel before entering the ensemble combination stage for the final classification. To evaluate the performance of our proposed method, we used the Bonn EEG dataset. The dataset consists of five EEG records labelled as A, B, C, D, and E. The experiments on several datasets (AB-C, AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E) which were arranged from the dataset showed that our proposed method (with segment) performs better than without segment. Our proposed method yielded the best average of classification accuracy which is 99.33%, 100%, 100%, 99.5%, 99.8%, and 99.4% for the AB-C, AB-D, AB-E, AB-CD, AB-CDE, and AB-CD-E.By these results, the proposed method can outperform several other methods on the same dataset
    corecore