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Abstract— The signals of EEG are analyzed in the identification of seizure and diagnosis of epilepsy. The visual examination process of 

EEG data by skilled physician is huge time-utilization and the judgemental process is complicated, which may vary or show inconsistency 

among the physician. Hence, an automatic process in diagnosis and detection was initiated by the Deep Learning (DL) approaches. Time Aware 

Convolutional Neural Network with Recurrent Neural Network (TA-CNN-RNN) was one among them. Deep neural networks trained on large 

labels performed well on many supervised learning tasks. Creating such massive databases takes time, resources, and effort. In many 

circumstances, such resources are unavailable, restricting DL adoption and use. In this manuscript, Generative Adversarial Networks with the 

Cramer distance (CGAN) is proposed to generate an accurate data for each lable. A spatiotemporal error factor is introduced to differentiate 

actual and genetrated data. The discriminator is learned to differentiate the created data from the actual ones, while the generator is learned to 

create counterfeit data, which are not estimated as false by the discriminator. The classical GANs have a complex learning because of the 

nonlinear and non-stationary features of EEG data which is solved by Carmer Distance in the proposed method. Finally, the sample generated 

by CGAN is given as input for the Time Aware Convolutional Neural Network with Recurrent Neural Network (TA-CNN-RNN) classifier to 

investigate experimental seizure Prediction outcome of the proposed CGAN. From the investigational outcomes, the proposed CGAN- TA-

CNN-RNN model attained classification accuracy of 94.6%, 94.8% and 95.2% on CHB-MIT-EEG, Bonn-iEEG and VIRGO-EEG than other 

existing EEG classification schemes and also provides great potentials in real-time applications. 

Keywords- Seizure, epilepsy, Cramer distance, electroencephalogram, LSTM detection and diagnosis. 

 

I.  INTRODUCTION 

An epileptic seizure is a momentary incidence of signs 

because of the exciting or asymmetrical activities of neurons in 

the brain [1]. Generally, the incidence of epilepsy in the brain is 

confirmed and examined by the visual investigation of long-term 

of recorded scalp electroencephalograms (EEGs) and it spots the 

existence of epileptic seizure that utilises vast time to process or 

to identify the epilepsy[2]. Automated diagnosis system finds the 

epileptic seizure significantly reduces the duration of process of 

diagnosis [3][4]. 

Numerous features are encompassed for the automatic 

detection or diagnosis of seizure in the brain.   The values or 

features from EEG utilized in the automatic detection of seizure 

that is the connectivity of autocorrelation, functional network 

properties, EEG’s morphology, likelihood calculations and 

nearest neighbour [5], [6]. The early diagnosis of seizure is a 

indispensable to cure the disease [7]. The repeated features in the 

domain of EEG are detected via the rhythmic actions that are 

frequently monitored in the seizures [8]. The existence of seizure 

in brain can be identified from the features of the EEG signals. 

The features are easily identifiable that are statistical, spectral, 

nonlinear features, and principal components [9]-[10]. 

The features from the signals have depicted excellence in the 

detection of definite variety of seizure [11]-[13]. The diversified 

nature of seizure made several difficulties to develop a global 

feature for the automation in the seizure recognition [14]. 

Additionally, the seizures in the brain are infrequently happening 

event and it is appropriate in training the problematical process 

of the supervised learning of seizure with the linear variety of 

Machine Learning (ML) classifiers, support vector machine 

(SVM), artificial neural network (ANN), and other 

computational models [15]-[17]. However, in traditional ML 

methods, feature and classifier selection is performed by a trial-
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and-error approach [18]. As the quantity of available data has 

grown in recent years, the effectiveness of ML methods may 

have decreased.  

DL methods have been incorporated into all disease 

detection applications because of its superior signal and images 

representation [19]. In several areas of medicine, including the 

identification of epileptic seizures, such methods have led to 

significant advancements [20]. Considerable effort has been put 

into developing DL models for epilepsy detection including 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), deep belief networks (DBNs), Autoencoders 

(AEs), and CNN-RNNs and CNN-AEs [21]–[23]. As more and 

more effective models for the early identification of epileptic 

seizures are proposed, the number of DL-based studies in this 

field has increased. For instances, the CNN based epileptic 

seizures detection models can correctly recognized irregular 

inter-ictal discharges as non-seizures, but could not detect the 

ictal state and slower oscillations [24]. To improve the 

performance of CNN for detecting seizures ictal state and slower 

oscillations, Recurrent Neural Network (RNN) is combined with 

CNN model. The seizure detection at the early stage is necessary 

and it is significant to detect with the computational algorithms.  

For the efficient epilepstic seizure detection, Time-aware 

CNN with RNN (TA-CNN-RNN) was proposed to extract 

features from signals for different time and frequency [25]. TA-

CNN-RNN was incorporated with the position information into 

CNN via an attention mechanism. LSTM is used as RNN in this 

work. The training epoch used in the RNN greatly reduces the 

number of training-phase errors, which in turn boosts the RNN's 

accuracy. TA-CNN-RNN demonstrated the capability to deliver 

notable efficiencies on a widespread variety of supervised 

training processes if learned on widespread gathering of labeled 

samples. However, TA-CNN-RNN required the vast amount of 

relevant information in datasets.  

In order to overcome the issues of collecting large annotated 

datasets, Generative Adversarial Networks along the Cramer 

distance (CGAN) is integrated to reduce the amount of labeled 

data required for identification tasks.  In this model, GAN [26] 

is adopted to generate required labelled data. The discriminator 

is learned to differentiate the created data from the actual ones, 

while the generator is learned to create counterfeit data, which 

are not estimated as false by the discriminator. During EEG data 

creation, GANs have a complex learning because of the 

nonlinear and non-stationary features of EEG data. To combat 

this issue, Cramer Distance [27] is used to compare sample 

distribution.  The Cramer Distance is the alternative solution to 

Wasserstein metric which effectively leverages effective 

probabilistic forecasting results. The Cramer Distance is applied 

on the GANs model to provide more stable learning and 

increased diversity in the generated samples. Finally, the 

generated dataset by CGAN is given as input to TA-CNN-RNN 

classifier for the efficient prediction of seizure from EEG signals 

for epilepsy disease. 

The rest of the sections are emphasised as follows, previous 

works and literature is described in the Section 2, the detection 

and diagnosis of epilepsy in the EEG signal is attained by the 

proposedDL approach is detailed in Section 3, the numerical 

outcome of the experiment is provided in Section 4 and the 

proposed TA-CNN-RNN model is concluded with future 

suggestion. 

II. RELATED WORKS 

The EEG brain signals are utilised for the identification of 

epilepsy with the DL techniques. An ensemble approach of 

pyramidal one dimensional convolutional neural network (P-1-

D-CNN) was utilized in the identification epileptic disorder. The 

approach was not effective when it uses huge number of learning 

parameters [28]. The scalogram based CNN (SCNN) was 

utilised for the identification of five class EEG records [29]. The 

Self-Aware Distributed ML model [30] was designed, which 

allocates the complicated and ER-consumed machine learning 

algorithm from edge to cloud according to the idea of self-

consciousness for epilepsy identification in the real world. 

The epilepsy was identified by the wavelet basedDL 

technique whereas ternary and binary classification were 

accomplished with this approach. The DL process eliminates the 

extraction of features and directly classifies the epilepsy [31]. 

Additionally, associate petri net and fuzzy entropy was 

incorporated with wavelet-based EEG processing. This 

approach was effective in the identification of epilepsy. The 

negative predication may lead to the misclassification [32]. 

Time-Frequency Localised Bi-orthogonal Wavelet Filter was 

used for the classification and the classification is attained for 

diversified classes [33]. 

The shortcomings in the existing systems are considered and 

rectified in this paper. The necessity of huge semi-supervised 

learning technique and annotated datasets is assimilated to deep 

learner to minimize the quantity of labeled sample needed via 

adopting GAN with Cramer distance and a spatiotemporal error 

factor for a DL setting. 

The rest of the sections are emphasized as follows, previous 

works and literature is described in the Section 2, the detection 

and diagnosis of epilepsy in the EEG signal is attained by the 

proposed deep learning approach is detailed in Section 3, the 

numerical outcome of the experiment is provided in Section 4 

and the proposed TA-CNN-RNN model is concluded with future 

suggestion 
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III. IMPROVING SEIZURE PREDICTION USING 

CGAN 

In this research, a new regeneration method is developed 

depending on the CGAN and a spatiotemporal error factor. The 

spatiotemporal error factor regenerates data through determining 

the Mean Square Error (MSE) from time-series attributes, 

general spatial attributes and power spectral density attributes. 

The GAN encompasses a generator and a discriminator, which 

are fine-tuned to reduce the 2-player min-max issue. The 

discriminator is learned to differentiate the produced data from 

the actual data, whereas the generator is learned to create 

counterfeit data, which are not estimated as false by the 

discriminator while generating EEG data, GANs have a difficult 

learning because of the nonlinear and non- stationary attributes 

of EEG data. To resolve this challenge, Cramer Distance is used 

to compare sample distribution Fig. 2 shows the proposed 

model. 

A. Re-Construction of EEG Signals 

For the EEG signal reconstruction, the EEG signal in LSS is 

denoted as 𝑧 ∈ 𝑆𝑁×𝑇𝑆1×𝑅 that is from the distribution of signal 

𝐷𝐿   and the EEG signal in HSS is denoted as 𝑥 ∈ 𝑆𝑁×𝑇𝑆2×𝑅 that 

is from the distribution of signal 𝐷𝐻 .  In the description, the 

count of the channel is signified as 𝑁. The LSS-EEG signal’s 

samples of trial and HSS-EEG signal’s samples of trial is 

denoted as 𝑇𝑆1 and 𝑇𝑆2,  respectively.The motor-based task 

and their count is denoted as  𝑅 . The main intent of 

reconstruction is to devise an operation  𝑓𝑛(𝑧) which denote  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Framework for Epilepsy detection using CGAN-TA-CNN-RNN 

Classifier 
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       𝑓𝑛(𝑧): 𝑧→ 𝑥                                                        (1) 

the 𝑧 as LSS-EEG signal and x as HSS-EEG signal as Eq. (1). 

During a process of regeneration, the attribute maps the samples 

of LSS-EEG from DL into DC that is particular distribution and 

the aim is altering a particular distribution that is near to the 

actual distribution DH via deviating 𝑓𝑛(𝑧).  The process of 

regeneration encompasses 2 methods. During the process of 

creation, the data alters EEG information from 𝐷𝐿  to the 𝐷𝐶 . 

The process of reconstruction of EEG is treated as the alteration 

procedure of EEG from a distribution to the other distribution.  

Generally EEG data are non-stationary and nonlinear, the 

noise model in the data makes complication and non-uniformly 

maps the reconstruction relationship that is distributed. The 

distribution of HSS-EEG and LSS-EEG has no clear suggestion 

where the signals are correlated. The LSS-EEG reconstruction 

is complicated process with the traditional techniques. 

Conversely, the noise model’s uncertainties and the relationship 

in reconstruction mapping are avoided by utilizing Deep Neural 

Networks (DNNs).  

B.GAN with Cramer Distance  

Fig. 2 depicted the overall of functionality of CGAN. 

Cramer distance poses the similar distance properties as 

Wessertein metric and it faces the drawback of sample unbiased 

gradient. For two EEG signal distributions, 𝑧 ∈ 𝑆𝑁×𝑇𝑆1×𝑅 that 

is from the distribution of signal 𝐷𝐿  and the EEG signal in HSS 

is denoted as 𝑥 ∈ 𝑆𝑁×𝑇𝑆2×𝑅  that is from the distribution of 

signal 𝐷𝐻 . The Cramer distance among the LSS and HSS is 

given as Eq. (2) 

𝐶2
2(𝐿, 𝐻) ≔ ∫ (𝐷𝐿(𝑥) − 𝐷𝐻(𝑥))2∞

−∞
𝑑𝑥                             (2) 

The square root of Cramer distance and their relevant 

member of the metric family 𝐶𝑝 is given as Eq. (3) 

 

Figure 2. Frameworks CGAN 

𝐶𝑝(𝐿, 𝐻) ≔ (∫ |(𝐷𝐿(𝑥) − 𝐷𝐻(𝑥))|𝑝𝑑𝑥
∞

−∞
)

1/𝑝
                 (3)         

The Cramer distance metric has dual forms with the integral 

probability and it is given as Eq. (4) 

(𝐿, 𝐻) = |  𝑓𝑛(𝑥)𝑥~𝐿
𝐸 −  𝑓𝑛(𝑥)𝑥~𝐻

𝐸 |𝑓𝑛∈𝐹𝑞

𝑠𝑢𝑝
                      (4) 

Where,  𝐹𝐻: = {𝑓𝑛: 𝑓 is generally continuous, ‖
𝑑𝑓

𝑑𝑥
‖

𝑞
≤ 1} 

where 𝐻 is the conjugate exponent of 𝐿 that is 𝐿 − 1 + 𝐻1 = 1. 

It is a dual form that utilises to prove the Cramer distance.  

The GAN is composed of discriminator 𝐷𝐼 and generator 

𝐺𝐸, which optimises the min-max issue in two layers. The EEG 

signal reconstruction is determined by discriminator 

(𝐷𝐼𝜃𝐷𝐼
)and generator(𝐺𝐸𝜃𝐺𝐸

) is given as Eq. (5) 

 

𝐿𝐺𝐴𝑁(𝐷𝐼𝜃𝐷𝐼
, 𝐺𝐸𝜃𝐺𝐸

)𝜃𝐷𝐼

𝑚𝑎𝑥 =
𝜃𝐺𝐸

𝑚𝑖𝑛
𝐸𝑥~𝐷𝐻

[𝑙𝑜𝑔𝐷𝐼𝜃𝐷𝐼
(𝑥)] +

𝐸𝑧~𝐷𝐿
[log (1 − 𝐷𝐼𝜃𝐷𝐼

(𝐺𝐸𝜃𝐺𝐸
(𝑧)))]                  (5) 

where the expectation vector is denoted by 𝐸(. ). If the 𝐷𝐼 

attains the actual information, it can gratify 𝐷𝐼𝜃𝐷𝐼
(𝑥) = 1 to 

differentiate the actual information. At this point, 𝐷𝐼𝜃𝐷𝐼
(𝑥) = 1 

influences the anticipation for 𝑙𝑜𝑔𝐷𝐼𝜃𝐷𝐼
(𝑥). If the DI attains the 

created information it can gratify 𝐷𝐼𝜃𝐷𝐼
(𝐺𝐸𝜃𝐺𝐸

(𝑧)) = 0  to 

created information that is discriminated. Here, 

𝐷𝐼𝜃𝐷𝐼
(𝐺𝐸𝜃𝐺𝐸

(𝑧)) = 0  attains the expectation for (1-

𝐷𝐼𝜃𝐷𝐼
(𝐺𝐸𝜃𝐺𝐸

(𝑧)) = 0). Consequently, the optimal function of 

minimax is developed using the expectation function. The 

common regeneration notion is to learn a GE to fool a dissimilar 

DI, which is learned to discriminate to reconstruct the HSS-

EEG data from the actual HSS-EEG data. In building EEG data, 

GANs have a complex learning because of the non-stationary 

and nonlinear features of EEG data. To combat the issues in 

learning architecture of the actual GAN, rather than utilizing the 

Jensen–Shannon divergence, the CGAN architecture utilises   

Cramer distance to compare the distribution of sample. 

According to the design of CGAN, the optimization of min-max 

issue is attained by 𝐷𝐼𝜃𝐷𝐼
 and 𝐺𝐸𝜃𝐺𝐸

. It can be equated as Eq. 

(6) 

𝐿𝐶𝐺𝐴𝑁(𝐷𝐼𝜃𝐷𝐼
, 𝐺𝐸𝜃𝐺𝐸

)𝜃𝐷𝐼

𝑚𝑎𝑥 =
𝜃𝐺𝐸

𝑚𝑖𝑛
𝐸𝑥~𝐷𝐻

[𝐷𝐼𝜃𝐷𝐼
(𝑥)] +

𝐸𝑧~𝐷𝐿
[𝐷𝐼𝜃𝐷𝐼

(𝐺𝐸𝜃𝐺𝐸
(𝑧)))] + λ𝐸𝑥~𝐷𝑅

[(‖∇𝑥(𝐷(�̃�))‖)2 − 1)2]      

                                                                                        (6)                                                                                                                                                                                    

In the issue of min–max, the Cramer distance is calculated 

using the initial 2 expressions. The final expression is the 

gradient consequence for the normalization of the network. In 

the expression of penalty, 𝐷𝑅 signifies the uniform distribution 

of samples �̃� across straight lines joining sets of created and 

actual data. ∇𝑥(·) is the gradient estimator, and a penalty term 
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for a constant weighting parameter is signified as the parameter 

𝜆.  In fact, the CGAN architecture eliminates drips the last 

sigmoid layer and the log function to maintain the gradient 

value during learning the min-max issue. 𝐷𝐼𝜃𝐷𝐼
 and 𝐺𝐸𝜃𝐺𝐸

 are 

learned optionally through fine-tuning one and upgrading 

another. 

C.  Loss function of TSF-MSE  

The transformation of the generator is permitted for the 

distribution of information from low to maximum sampling 

ratio, another portion of error factor necessitates CGAN 

framework. This will preserve the content information and 

detail of the EEG data. A broadly utilised error factor for the 

detail and data content is the MSE. Generally, MSE is estimated 

by reducing the error by pointwise in processing the signals, the 

temporal MSE is estimated via reducing the instance sampling 

of loss by pointwise among the patches of LSS-EEG and HSS-

EEG using the interval is given as Eq. (7) 

 𝐿𝑇−𝑀𝑆𝐸(𝐺𝐸𝜃𝐺𝐸
) = 𝐸(𝑥,𝑦) [

1

𝑇2 ‖𝐺𝐸(𝑧(𝑡)) − 𝑥(𝑡)‖
𝑃

2
]      (7) 

In distinction with scans, EEG data are multi-channel time-

series information and the spatial and spectrum attributes 

should be taken during regeneration. To support the 

GAN/CGAN design to build highly precise HSS-EEG data, the 

spatial MSE LS-MSE among channels and the spectrum MSE 

LF-MSE among data batches must also be addressed along with 

the temporal MSE LT-MSE across intervals. 

Common Spatial Patterns (CSP) and Power Spectral 

Density (PSD) attributes are broadly utilised to retrieve spatial 

attributes and spectrum attrebutes from EEG data, 

correspondingly. The CSP techniques is utilised for 

determining the best projection vectors to reflect the actual EEG 

data to a novel space for acquiring the best spatial resolution 

and prejudice among diversified labels of EEG data. The PSD 

technique is utilised for determining the energy ranges on 

precise bands to comprise a spectra. Utilising such techniques, 

the spatial MSE 𝐿𝑆−𝑀𝑆𝐸  and the spectrum MSE 𝐿𝐹−𝑀𝑆𝐸  are 

determined for the GE Eq. (8), Eq. (9) 

     𝐿𝑆−𝑀𝑆𝐸(𝐺𝐸𝜃𝐺𝐸
) = 𝐸(𝑥,𝑧) [

1

𝐶2 ‖𝐺𝐸(𝐶𝑆𝑃(𝑧(𝑐)) −

𝐶𝑆𝑃(𝑥(𝑐))‖
𝐹

2
]                                                                 (8) 

   𝐿𝐹−𝑀𝑆𝐸(𝐺𝐸𝜃𝐺
𝐸) = 𝐸(𝑥,𝑧) [

1

𝑁2 ‖𝐺𝐸(𝑃𝑆𝐷(𝑧(𝑛)) −

𝑃𝑆𝐷(𝑥(𝑛))‖
𝐹

2
]                                                                (9) 

where the feature extractors of CSP and PSD are CSP(·) and 

PSD(·) correspondingly. The actual and generated EEG signal’s 

channel is given as c and the count of the channel is 𝐶, batch of 

the signal is n and the count of generated signal batch is 𝑁. For 

accessibility, the 𝑇𝑆𝐹 error is calculated by weighing 3 MSEs 

Eq. (10) 

    𝐿𝑇𝑆𝐹−𝑀𝑆𝐸(𝐺𝜃𝐺
) = λ𝑇 . 𝐿𝑆−𝑀𝑆𝐸(𝐺𝜃𝐺

) +

λ𝑆. 𝐿𝑆−𝑀𝑆𝐸(𝐺𝜃𝐺
) + λ𝐹 . 𝐿𝑆−𝑀𝑆𝐸(𝐺𝜃𝐺

)                                   (10) 

where 𝜆𝑇 , 𝜆𝑆, 𝜆𝐹  are the weights of 3 diversified MSEs, 

correspondingly. Additionally, the EEG data are spatially and 

temporally rational with a normalization error 𝐿𝑇𝑉(𝐺𝐸𝜃𝐺𝐸
) ) 

depending on overall deviation is utilised in the GEN Eq. (11) 

𝐿𝑇𝑉(𝐺𝐸𝜃𝐺𝐸
) =

1

𝐶𝑇
∑ ∑ ‖∇𝑧𝐺𝐸𝜃𝐺𝐸

(𝑧)𝑐,𝑡‖𝑇
𝑡=1

𝐶
𝑐=1                (11) 

where the gradient estimator is signified as 𝛻𝑧(·),  the 

gradient normalization error can support spatial and temporal 

consistency of the regeneration. Fusing formulas CGAN, TSF 

loss and regularization loss, the total mutual regeneration error 

factor is given by Eq. (12) 

𝐿𝑇𝑆𝐹−𝑀𝑆𝐸(𝐺𝐸𝜃𝐺𝐸
)𝜃𝐺𝐸

𝑚𝑎𝑥 + λ1𝐿𝐶𝐺𝐴𝑁(𝐷𝐼𝜃𝐷𝐼,𝐺𝐸𝜃𝐺𝐸
) +

𝜃𝐺𝐸

𝑚𝑖𝑛
 

                            λ2𝐿𝑇𝑉(𝐺𝐸𝜃𝐺𝐸
)                                      (12)                                                                       

Where the tradeoff of the controlling weights are indicated 

as 𝜆1 and 𝜆2that lies between the CGAN adversarial, the TSF-

MSE and the TV losses. The architecture of CGAN-EEG is 

trained by diverse batches of EEG signals and utilised in every 

single trial. The framework is trained for the effective 

classification of the epilepsy in the EEG signal. 

IV. RESULT AND DISCUSSION 

In this section, the outcome of the epilepsy classification by the 

proposed and existing approach is discussed. The data in the 

Bern-Barcelona EEG database is collected from patients with the 

incidence of epilepsy that comprises non-focal and focal 

channels with 1024Hz. The database holds 3750 pairs of signals 

recorded from the channels of EEG and the recorded samples are 

divided into slots of windows with the interval of ten seconds, 

which results the sample of 10240. For this experiment, the 

publicly accessible EEG databases which are already used in 

many published articles are used. CHB-MIT Scalp EEG 

Database [34], Bonn iEEG dataset [35], and VIRGO EEG 

dataset [36] are used in this paper. The experiment is 

accomplished in the Matlab with the computation atmosphere’s 

RAM 8.00 GB and CPU2.30 GHz. The numerical outcomes of 

the experiment is evaluated using the performance metrics 

namely accuracy, precision, f-measure and recall. Fig. 3 display 

the EEG signal and the EEG with the incidence of epilepsy. P-

1D-CNN (28), S-CNN [29] and TA-CNN-RNN [25]. 
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Figure 3. Representation of Normal EEG and EEG with Epilepsy 

A. Accuracy 

It is the ratio of incidence of epilepsy in the EEG signal is 

the total count of signal investigated. The value of accuracy is 

equated as Eq. (13) 

       𝐴𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
      (13) 

Table 1. Analysis of Accuracy 

Dataset P-1D-CNN S-CNN TA-CNN-

RNN 

CGAN-

TA-CNN-

RNN 

CHB-MIT-

EEG 
86.3 87.1 89.0 94.6 

Bonn-iEEG 85.2 86.3 88.6 94.8 

VIRGO-

EEG 
86.2 87.0 88.7 95.2 

 

 
Figure 4. Accuracy vs. Different Datasets 

Fig. 4 and Table 1 shows the accuracy achieved by the 

CGAN-TA-CNN-RNN is compared with the existing 

algorithms P-1D-CNN, S-CNN and TA-CNN-RNN. The 

accuracy of CGAN-TA-CNN-RNN is {9.62%, 8.61%, 6.29%} 

higher than the P-1D-CNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} correspondingly, {11.27%, 9.85%, 7%} higher 

than the S-CNN for {CHB-MIT-EG, Bonn-iEEG, VIRGO-

EEG} correspondingly and {10.44%, 9.43%, 7.33%} higher 

than the TA-CNN-RNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} correspondingly. The realized maximum 

accuracy indicates the efficiency of the CGAN-TA-CNN-RNN 

technique. 

B. Precision 

True Positive (TP) and False Positive (FP) rates are used to 

calculate the precision. It is linearly proportional to the fraction 

of positive attributes in the entire EEG data Eq. (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                             (14) 

Table 2. Analysis of Precision 

Dataset P-1D-CNN S-CNN TA-CNN-

RNN 
CGAN-

TA-CNN-

RNN 
CHB-MIT-

EEG 
84.7 85.9 88.3 93.9 

Bonn-iEEG 84.2 85.1 87.7 94.5 
VIRGO-

EEG 
86.4 87.2 89.4 94.9 
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Figure 5. Precision vs. Different Datasets 

Fig. 5 and Table 2 shows the precision achieved by the 

CGAN-TA-CNN-RNN is compared with the existing 

algorithms P-1D-CNN, S-CNN and TA-CNN-RNN. The 

precision of CGAN-TA-CNN-RNN is {10.86%, 9.31%, 

6.34%} greater than the P-1D-CNN for {CHB-MIT-EG, Bonn-

iEEG, VIRGO-EEG} correspondingly, {12.23%, 11.05%, 

7.75%} greater than the S-CNN for {CHB-MIT-EG, Bonn-

iEEG, VIRGO-EEG} correspondingly and {9.84%, 8.83%, 

6.15%} greater than the TA-CNN-RNN for {CHB-MIT-EG, 

Bonn-iEEG, VIRGO-EEG} correspondingly. The attained 

maximum precision defines the efficiency of the CGAN-TA-

CNN-RNN technique.shows the precision achieved by the 

CGAN-TA-CNN-RNN is compared with the existing 

algorithms P-1D-CNN, S-CNN and TA-CNN-RNN. The 

precision of CGAN-TA-CNN-RNN is {10.86%, 9.31%, 

6.34%} greater than the P-1D-CNN for {CHB-MIT-EG, Bonn-

iEEG, VIRGO-EEG} correspondingly, {12.23%, 11.05%, 

7.75%} greater than the S-CNN for {CHB-MIT-EG, Bonn-

iEEG, VIRGO-EEG} correspondingly and {9.84%, 8.83%, 

6.15%} greater than the TA-CNN-RNN for {CHB-MIT-EG, 

Bonn-iEEG, VIRGO-EEG} correspondingly. The attained 

maximum precision defines the efficiency of the CGAN-TA-

CNN-RNN technique. 

C. Recall 

It is measured depending on the epilepsy in the EEG signal 

identification at TP and False Negative (FN) values Eq. (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                       (15) 

 

 

 

Table 3. Analysis of Recall 

Dataset P-1D-

CNN 

S-

CNN 

TA-CNN-

RNN 

CGAN-TA-CNN-

RNN 

CHB-MIT-

EEG 

89.2  
90.0 

91.3 
94.5 

Bonn-iEEG 88.8  89.4 90.9 94.9 

VIRGO-EEG 91.4  91.8 92.4 95.0 

 

 

Figure 6. Recall vs. Different Datasets 

Fig. 6 shows the recall achieved by the CGAN-TA-CNN-

RNN is compared with the existing algorithms P-1D-CNN, S-

CNN and TA-CNN-RNN. The recall of CGAN-TA-CNN-RNN 

is {5.94%, 5%, 3.5%} higher than the P-1D-CNN for {CHB-

MIT-EG, Bonn-iEEG, VIRGO-EEG} correspondingly, 

{6.87%, 6.15%, 4.4%} higher than the S-CNN for {CHB-MIT-

EG, Bonn-iEEG, VIRGO-EEG} correspondingly and {3.94%, 

3.49%, 2.81%} higher than the TA-CNN-RNN for {CHB-MIT-

EG, Bonn-iEEG, VIRGO-EEG} correspondingly. The attained 

maximum recall indicates the efficacy of the CGAN-TA-CNN-

RNN. 

D. F-Measures 

It is determined by Eq. (16) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                  (16) 

Table 4. Analysis of F-Measure 

DATASET P-1D-CNN S-CNN TA-CNN-

RNN 

CGAN-

TA-CNN-

RNN 

CHB-MIT-

EEG 
86.9 88.0 89.8 94.2 

BONN-

IEEG 
86.4 87.3 89.2 94.7 

VIRGO-

EEG 
88.6 89.5 90.7 94.9 
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Fig. 7 shows  and Table 4 shows  the F-measure achieved 

by the CGAN-TA-CNN-RNN is compared with the existing 

algorithms P-1D-CNN, S-CNN and TA-CNN-RNN. The f-

measure of CGAN-TA-CNN-RNN is {8.4%, 7.1%, 4.9%} 

higher than the P-1D-CNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} correspondingly, {9.61%, 8.48%, 6.17%} 

higher than the S-CNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} correspondingly and {7.11%, 6.03%, 4.63%} 

higher than the TA-CNN-RNN for {CHB-MIT-EG, Bonn-

iEEG, VIRGO-EEG} correspondingly. The achieved maximum 

f-measure shows the efficiency of the CGAN-TA-CNN-RNN 

technique. 

 

Figure 7. F-Measure vs. Different Datasets 

V. CONCLUSION 

Epilepsy is a common cognitive illness that is characterized 

using involuntary periodic convulsions and it is detected with the 

EEG signals. EEG is the most utilised test to endorse cases of 

epilepsy. Generally, it has been demonstrated with possibly 

managing epilepsy without EEG. Attribute mining and pattern 

categorization are crucial in epilepsy prognosis. Because precise 

and useful attribute mining takes a long period to estimate, the 

typical usage of the sliding-window technique for constant EEG 

prognosis is limited in real-time. For an annotated huge dataset, 

a new regeneration model depending on the CGAN and a 

spatiotemporal error factor is proposed. The experimental results 

sgows that the proposed CGAN- TA-CNN-RNN model attained 

classification accuracy of 94.6%, 94.8% and 95.2% on CHB-

MIT-EEG, Bonn-iEEG and VIRGO-EEG which outperforms 

the existing technique. In future the approach can be extended to 

manage the huge signals with numerous channels. 
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