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Abstract

Patients suffering from epileptic seizures are usually treated with medication

and/or surgical procedures. However, in more than 30% of cases, medication

or surgery does not effectively control seizure activity. A method that predicts

the onset of a seizure before it occurs may prove useful as patients might be

alerted to make themselves safe or seizures could be prevented with therapeutic

interventions just before they occur. Abnormal neuronal activity, the preictal

state, starts a few minutes before the onset of a seizure. In recent years, different

methods have been proposed to predict the start of the preictal state. These

studies follow some common steps, including recording of EEG signals, prepro-

cessing, feature extraction, classification, and postprocessing. However, online

prediction of epileptic seizures remains a challenge as all these steps need further

refinement to achieve high sensitivity and low false positive rate. In this paper,

we present a comparison of state-of-the-art methods used to predict seizures

using both scalp and intracranial EEG signals and suggest improvements to
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existing methods.
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1. Introduction

Epilepsy is a common neurological disorder in which patients suffer seizures.

Being able to predict the onset of a seizure before it occurs is important since

this may facilitate the prevention of accidents and injury that can occur during

seizures and additionally may help with pre-seizure delivery of medication or5

other interventions [1]. Electrical activity in the brain can be monitored using

electroencephalogram (EEG) signals [2], which can be recorded from the scalp

of patients, referred to as scalp EEG [3], or by implanting electrodes inside

brain tissues during surgery, referred to as intracranial EEG signals (iEEG) [4].

During any seizure, electrical activity in the brain changes abruptly and can be10

monitored using EEG signals.

Figure 1: Interictal, preictal, ictal and postictal states of seizures from three channels of

1-hour recordings.

Figure 1 shows plots of multiple-channel EEG signals of 1-hour recordings of

the first three channels of recordings. The preictal state is of interest as it starts

some minutes before the seizure and the timely detection of the start of the
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preictal state may be used to help prevent seizures [5]. Detecting the preictal15

state involves a distinction between the interictal state and the preictal state

[6]. In a typical seizure prediction system, EEG signals are sampled at a rate

of 200 Hz [7] to 5000 Hz [8] within a window of 1-5 seconds. When an EEG

signal is classified as preictal, an,alarm can be generated to trigger medication,

stimulation or to take physical measures to prevent injury [9]. Researchers [10–20

25] have proposed a variety of machine learning methods for the prediction of

seizures. However, obtaining a high sensitivity rate of classification between the

interictal and the preictal state and low false positives remain a major chal-

lenge. A typical model for predicting seizures consists of preprocessing of EEG

signals for (i) noise removal, (ii) feature extraction and selection for reducing25

large amounts of data, (iii) classification for differentiating between the preictal

and the interictal state and (iv) postprocessing for decreasing false positives.

Researchers have used the Butterworth filter [17], notch filter [18, 26–30], and

common spatial pattern filter [31] in pre-processing to remove noise from the

EEG signals that appeared during the recording of these signals. Many studies30

have also applied empirical mode decomposition [31], continuous wavelet trans-

forms [32], and discrete wavelets transform [33] in preprocessing. Multiple fea-

tures in the time domain have been extracted by a variety of methods, including

statistical moments [31], spectral entropy [34], approximate entropy [35][36], and

Hjorth parameters [37], including mobility and complexity. Frequency domain35

features include power spectral density, signal energy, and spectral moments

[31]. A few studies have used Principle Component Analysis (PCA) [38–41] for

feature selection. Once features have been extracted, classification between the

interictal and the preictal state is required. Different studies have shown that

Support Vector Machine (SVM) [17][41–48] has performed as a better classifier40

than others for differentiating the preictal and the interictal states. However,

current studies have also successfully used convolution neural networks (CNN)

[19] for classification. For postprocessing methods different researchers have

applied Kalman filtering [10][49][50][44], and statistical validation methods, in-

cluding random predictor [51], bootstrapping [32], and Poisson predictor, have45

3



been used as postprocessing methods.

Many datasets of EEG signals for humans and canine are publicly available,

including scalp EEG dataset and intracranial EEG signals. We will compare

methods on two datasets only. Features are extracted by dividing the samples

into groups of multiple seconds known as windows, which are selected from a50

fixed length of EEG signals (one second to a few minutes). A nonoverlapping

window is more suitable in many cases for the prediction of seizures.

Figure 2: Epileptic seizure prediction system

In this paper, we present a comparison between multiple epileptic seizure

prediction methods using scalp EEG and iEEG datasets. Section 2 discusses
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the latest developments in seizure prediction methods. Section 3 presents a55

detailed overview of publicly available EEG datasets, Section 4 explains the

measures of evaluating the methods, Section 5 gives a detailed analysis of exist-

ing methods, and Section 6 summarises the existing methodology and suggests

potential improvements to current techniques.

2. Epileptic Seizures Prediction Methods60

EEG signals can be divided into two types based on the method of recordings:

scalp EEG signals [52], which are recorded by placing electrodes on the scalp of

the subjects, and intracranial EEG (iEEG) [53, 54] signals, in which electrodes

are implanted on the brain by performing surgery. Figure 2 shows a flowchart

of a typical epileptic seizure prediction system. The phases of the prediction65

system are (i) data acquisition, (ii) preprocessing of EEG signals, (iii) feature

extraction, (iv) classification, and (v) validation of results in the postprocessing

step. We will discuss each part in detail in the following subsections.

2.1. Preprocessing

Preprocessing of EEG signals is required to remove noise and can be achieved70

by converting a multiple channel EEG signal into a surrogate channel [55, 56] or

by applying band-pass filters. A surrogate channel can be obtained by averaging

or by applying Common Spatial Pattern (CSP) filtering [31][57]. Researchers

have also applied the Butterworth bandpass filter [17][58–60], notch filter [18],

wavelet transform [33][61–64], and empirical mode decomposition as preprocess-75

ing of EEG signals. Chu et al. [12] and Truong et al. [13] have used the Fourier

transform to remove noise from EEG signals. Teixeira et al. [23] have selected

a few channels instead of using all channels for seizure prediction in their pro-

posed model. However, channel selection works in focal epilepsy cases in which

a specific portion of the brain is affected.80

Usman et al. [31] have applied empirical mode decomposition for removing

noise from EEG signals. Sharma et al. [65] have applied the wavelet transform
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for noise removal. It has been observed that the Butterworth filter, wavelet

transform, and Fourier transform give a better Signal to Noise Ratio (SNR)

when applied to seizure prediction from EEG signals . However, another im-85

portant factor that can give better SNR and also decrease computational cost

by reducing the number of channels is Common Spatial Filtering (CSP). CSP

converts multiple channels into a single surrogate channel with increased SNR

and between class variance. In the future, CSP may be applied in its different

variants to increase performance. The following subsections explain CSP and90

the wavelet transform.

2.1.1. Common Spatial Filtering

The common spatial pattern filter [66] converts a multiple- channel EEG sig-

nal into a single-surrogate-channel EEG signal, thus increasing SNR [67] and po-

tentially resulting in higher discrimination between multiple EEG states. which95

could lead to better classification between multiple states of EEG signals. The

CSP method increases SNR by increasing variance between multiple states. As-

sume that X1 and X2 represents signals from two different states of EEG signals

then filter coefficients can be computed as follows:

R1 =
(X1X

t
1)

trace(X1Xt
1)

(1)

R2 =
(X2X

t
2)

trace(X2Xt
2)

(2)

R = R1 +R2 (3)

[Evec,Eval] = eig(R) (4)

w =
√
D−1Evect (5)

S1 = wR1w
t (6)
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S2 = wR2w
t (7)

[B,D] = eig(S1, S2) (8)

Filter = βtw (9)

Eq. (9) gives the coefficients of the common spatial filter. Multiple-channel100

EEG signals can be converted into a surrogate channel by multiplying a signal

with filter coefficients.

2.1.2. Wavelet Transform

Wavelets [33] are defined as sharp waves with zero mean values. Wavelets

have localization capability in both time and frequency domain. The wavelet105

transform is a very effective tool for signal processing due to it localization prop-

erty. Many researchers have used the wavelet transform for the preprocessing of

EEG signals. The wavelet transform can be divided into two types: including

Continuous Wavelet Transform (CWT) [68] and Discrete Wavelet Transform

(DWT) [7]. In CWT, signals are convolved and matched with a wavelet basis110

function in continuous time and frequency. Signals in CWT also need to be con-

verted into digital signals. The original signal is the weighted sum of a wavelet

basis function in continuous domain. If f(t) is a continuous function in time t,

then CWT is defined as:

Wa,b =

∫ +∞

−∞
f(t)

1√
|a|
ψ∗(

t− b
a

)dt (10)

115

where a and b are a set of real numbers, * represents complex conjugation, and

ψ is the mother wavelet. Wavelet function can be defined as

ψa,b(t) =
1√
|a|
ψ(
t− b
a

) (11)
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Combining Eq. (10) and Eq. (11), we get the following expression.

Wa,b =

∫ +∞

−∞
f(t)ψa,b(t)d(t) (12)

The wavelet function becomes narrower with the increase of a and is dis-

placed in time with varying values of b. Therefore, a is a scaling factor and b is120

a localizing factor.

2.1.3. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) [69][70] decomposes a signal into

oscillatory functions called Intrinsic Mode Function (IMF). This decomposition

of a signal into multiple IMFs is similar to the Fourier transform and wavelet125

transform. As noise in the signal is present in high frequency components, EMD

is applied to get relatively low-frequency components. Let x(t) be referred to

as signal, and for every IMF, it must fulfill these two conditions:

1) The total count of peak values and zero crossings must be equal, or differ by

only one.130

2) At any point given in the signal, the average envelope defined by local minima

and local maxima is zero.

Algorithm 1 shows how an IMF is obtained from the given signal f(t).

Algorithm 1: Intrinsic mode function

Input: Signal f(t)

Output: Intrinsic mode function

1 initialize. Interpolate between minima and maxima to generate

envelopes el(t) and em(t) ;

2 Compute the local mean. Extract h1(t)=x(t)−a(t); Apply the two

conditions to determine whether it is a valid IMF;

3 Repeat the above steps till a valid IMF is obtained.

2.2. Feature Extraction

Many univariate [5] and multivariate features [75] can be extracted for135
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Table 1: Description of features of a seizure prediction system

Feature Description

Statistical moments [17][71–73]
These include mean, variance, skewness, and kurtosis. Variance represents the spread of the data, skewness gives

information about the symmetry of the data and kurtosis gives information about peaks in the data.

Spectral moments [12][18]
Frequency domain features include spectral centroid, variational coefficient, and spectral skewness, which gives us

useful information about variation in the data.

Hjorth parameters [74][17][23]
Famous in extracting features from EEG signals, they include mobility and complexity. Mobility gives average

frequency, whereas, complexity represents variation in frequency.

Entropy [62]
Entropy provides mutual information between samples and is considered to be a good feature in discrimination

between multiple states of seizures in EEG signals.

Approximate entropy [17][23] It quantifies the irregular behaviour of signals.

Lyapunov exponent [17][22][23] It characterize the separation rate between close trajectories.

PCA [21][38–41] Principal component analysis reduces dimensions of data into principal components with higher variance.

classification between the preictal and the interictal states. These features

include Hjorth parameters [71][76], Lyapunov exponent [77–79], spectral en-

tropy [34, 79, 80], approximate entropy [35], correlation [1], spectral power [49],

statistical [71–73] and spectral moments [81][82]. Hjorth parameters include

complexity and mobility. Statistical features extracted in time domain include140

mean, standard deviation, skewness, and kurtosis. Spectral moments are fre-

quency domain features consisting of spectral centroid, variational coefficients,

and spectral skewness. Researchers [83][84] have also applied PCA for feature

extraction. Table 1 shows a brief description of several features.

Rasekhi et al. [17] and Teixeira et al. [23] have extracted 22 univariate fea-

tures, including statistical and spectral moments, entropy, Hjorth parameters,

and Lyapunov exponent. It has been observed that statistical features perform

better in both scalp EEG and intracranial EEG signals. However, spectral fea-

tures perform better only in the case of scalp EEG signals. Howbert et al. [20]

have extracted spectral features for an iEEG dataset and have obtained a sen-

sitivity of 73%, whereas, Chu et al. [12] have observed a sensitivity of 86.67%

on a scalp EEG dataset with spectral features. Convolutional neural networks

are proving to be good feature extraction methods as features extracted through

CNN give better sensitivity. Xiang et al. [85] have achieved 90% sensitivity with

fuzzy entropy. We have observed that spectral features and those extracted from

CNN give better inter-class separability. In future, if we use these features with

better classification methods, we should be able to achieve better sensitivity.
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Statistical and spectral moments and univariate features can be extracted as

follows: statistical moments include, mean, standard deviation, and skewness

which can be computed through Eq. (13), Eq. (14), and Eq. (15), respectively.

µ =
1

N

N∑
i=1

(xi) (13)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (14)

β =
1

N

N∑
i=1

(xi − µ)3 (15)

where xi is the EEG signal and N is the number of samples.145

Spectral features are frequency domain features and include spectral cen-

troid, variational coefficient, and spectral skewness. These features can be com-

puted easily with the help of power spectral density. Power spectral density is

computed by Eq. (16).

P (w) =

N∑
n=1

ry[n]e−jwn (16)

where, ry denotes autocorrelation of the signal xn. Spectral centroid, variational

coefficient, and spectral skewness can be computed by Eq. (17), Eq. (18), and

Eq. (19), respectively.

Cs =

∑
w wP (w)∑
w P (w)

(17)

σ2
s =

∑
w(w − Cs)

2P (w)∑
w P (w)

(18)

βs =

∑
w((w − Cs)/σs)

3P (w)∑
w P (w)

(19)

Lyapunov exponents [77] are useful in determining the aperiodic behavior of

signals. Assume that ||δxi(0)|| and ||δxi(t)|| are the distances of two points in

ith direction. Then the Lyapunov exponent can be computed as:

λi = lim
t→∞

1

t
log2
||δxi(t)||
||δxi(0)||

(20)
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Hjorth parameters include mobility and complexity, which are useful for the

classification of EEG signals[76]. Hjorth activity can be defined as variance of

EEG signal in time.

Activity = var(t) (21)

Mobility(y(t)) =

√
Activity(dy(t)

dt )

Activity(y(t))
(22)

Complexity(y(t)) =
Mobility(dy(t)

dt )

Mobility(y(t))
(23)

2.3. Classification150

Support Vector Machine (SVM) [86] has been widely used for the classifi-

cation of EEG signals. Other classifiers that can be used include the k-nearest

neighbor classifier [87] and the Gaussian mixture model (GMM)[88]. Convolu-

tional neural networks (CNN) [89] are also useful for classification. SVM and

CNN perform well in classification between multiple states of seizures. However,155

GMM, logistic regression, and ensemble classifiers have also been used. Figure

3 shows a comparison of the classification sensitivity and specificity of different

methods in using scalp EEG signals, whereas; Figure 4 compares the sensitiv-

ity and specificity obtained by applying different methods on intracranial EEG

signals. Similarly, Figure 5 compares the False Positive Rates (FPR) of differ-160

ent seizure prediction methods on scalp EEG datasets, and Figure 6 compares

the FPR of seizure prediction methods on intracranial EEG. We have concluded

from these graphs that methods that have used SVM and CNN for classification

have achieved greater sensitivity, specificity and lowest false positive alarms.

2.3.1. Convolutional Neural Networks165

Convolutional Neural Networks (CNN) [89] and extreme learning machines

[90][91] give better classification sensitivity for both scalp and intracranial EEG

datasets. Hussein et al. [92] and Truong et al. [13] have applied convolutional

neural networks and have observed a sensitivity of 93% and 81.2%,respectively,
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Figure 3: Comparison of seizure prediction methods using scalp EEG signals

Figure 4: Comparison of seizure prediction methods using iEEG signals

in a scalp EEG dataset. Acharya et al. [19] have applied CNN to iEEG dataset170

and classified it with a 95% sensitivity. In the following subsections, we explain

covolutional neural networks and support vector machine in detail.

Artificial Neural Networks (ANN) [93] have been designed like the complex

neural network of the human brain. They are made as a result of connecting

neurons. Similarly, like biological neurons, artificial neural networks take inputs175

and combine them into outputs. However, the output of each layer of artificial

neural networks is the weighted sum of the previous layer. Distortion in lay-

ers because of translation may lead to poor accuracy of these artificial neural

networks. Therefore, convolutional neural networks are widely used as they are
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Figure 5: Comparison of false positive rates of seizure prediction methods using scalp EEG

signals

Figure 6: Comparison of false positive rates of seizure prediction methods using intracranial

EEG signals

shift and translation invariant. Figure 7 shows three layers of ANN, including180

input layer, hidden layer, and output layer.

CNN is a subset of deep learning [95][96] widely used for medical signal

processing such as MRI and tomography analyses. In CNN, like ANN, the

output of the current layer is computed with the help of weights and bias of the

previous layer. Weights and bias may be computed for each layer with the help185

of Eq. (24) and Eq. (25).

∆Wl(t+ 1) = −xλ
r
Wl −

x

n
(
∂C

∂Wl
) +m∆Wl(t)) (24)
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Figure 7: Convolutional neural networks [94]

∆Bl(t+ 1) = −x
n

(
∂C

∂Bl
) +m∆Bl(t) (25)

where, W represent weights, l is the layer number, B denotes bias, and x, n, m,

t are regularization parameters. Convolutional neural networks consists of three

types of layers: convolutional layer, pooling layer, and fully connected layer.

Convolutional layer: This layer consists of multiple filters known as “filter”.190

These filters are convolved with EEG signals, and this layer controls how much

filter must be convolved. Eq. (26) shows the convolution between input signal

and filter. The output of convolution is a feature map.

yk =

N−1∑
n=0

xnhk−n (26)

where h is filter and N represents number of elements of x.

Pooling layer: This layer performs a down sampling of the signal. It reduces195

the neurons’ dimensions from a convolutional layer to reduce computational cost

and avoid overfitting. The max. pooling method is used in this layer to select

a feature map and to reduce output neurons.

Fully connected layer: This layer consists of connections to all activations of

previous layers. The activation function can be a rectified linear unit or softmax.200
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2.3.2. Support Vector Machines

Bandarabadi et al. [18] have applied support vector machines but have

not performed preprocessing of the intracranial EEG dataset; therefore, a low

sensitivity of 75.8% has been observed by the authors. Similarly, Raseki et al.

[17] have applied SVM on an iEEG dataset and have observed a sensitivity of205

73.9%. We have concluded that SVM do not perform well for intracranial EEG

signals. However, for scalp EEG signals, SVM give better sensitivity. Xiang et

al. [85] have applied SVM for the classification of a scalp EEG dataset and have

observed a sensitivity of 90%.

Support Vector Machine (SVM) [86] was introduced in the 1990s as a set of210

algorithms for two-class classification. SVM has been widely applied for differ-

ent classification problems, including biometric recognition, text classification,

data analysis, face classification, and biomedical signal processing for the classi-

fication of multiple diseases. SVM can be classified into two types: one is linear

SVM and the other is nonlinear classification.215

Linear SVM. The aim of SVM is to map the given features into a higher di-

mensional feature space and find a good hyperplane. This hyperplane gives

optimal separation between two classes. This optimal separation is known as

hard margin SVM. These hard margins are good only for the classification of

linear data. Assume that we have training data that are linearly separable S =220

(x1, y1), . . . , (xl,yl), where X denotes the input space and Y = −1, +1 is

the binary classification. The class of the feature vector is determined based on

<w,x>+b=0 and f(x)=sign<w,x+b>, where w is perpendicular to hyperplane,

while the changing values of b are parallel to the hyperplane. This hard-margin

classification is not suitable for real-world applications as it perfectly trains the225

classifier for training data and real-world data contains noise; therefore, to get

a better performance against test data, we need soft margins. To get a soft-

margin classification, we introduce a term C, which is a penalizing factor for

every misclassification.
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Nonlinear SVM:. Many real-world applications of classification cannot be per-230

formed with the help of linear SVM. Therefore, we need to map the data into

higher-dimension feature space and replace the inner product of these features

with a kernel function. In this way, with the help of a kernel function, the

data becomes linearly separable. The most popular kernel functions include the

radial basis function and the multilayer perceptron.235

2.4. Postprocessing

Many methods used for seizure prediction have been proposed by various

authors, but only a few have done statistical validation. This postprocessing

step is necessary for validating the classification results. These statistical vali-

dation techniques include the Poisson process random predictor [97][98], k-fold240

validation [99], moving average filter [100], and Kalman filtering[49]. In k-fold

cross validation, data are divided into k different sets and the classifier is trained

using k-1 sets and tested with one set. The Poisson predictor random processor

creates chance predictors for a comparison with a seizure prediction model. If

the model predicts a seizure, then it must perform better than the chance pre-245

dictors of the Poisson-process. Only in this case, the model is validated to have

a correct classification. The Kalman filter is also used as postprocessing step

to remove false alarms generated by classifiers. Truong et al. [13] and Teixeria

et al. [23] have applied the Kalman filter as postprocessing for scalp EEG and

iEEG signals, and it has been observed that the Kalman filter provides better250

validation against false alarms for scalp EEG signals than for iEEG signals.

Howbert et al. [20] have used the Poisson process random predictor on iEEG

signals but could not achieve good results. On the other hand, Xiang et al. [85]

and Acharya et al. [19] have applied k-fold cross validation and have achieved

good results on both scalp EEG and iEEG signals.255

3. Datasets

EEG signals can be recorded in two ways. One is by placing multiple elec-

trodes on the scalp of patients and the other, intracranial EEG, is by placing

16



electrodes within the brain during surgery. Many researchers have worked on

two famous datasets that are publicly available. Table 2 compares scalp EEG260

and intracranial EEG datasets.

3.1. CHB-MIT Dataset

EEG data collected from Children’s Hospital Boston and the Massachusetts

Institute of Technology [101] are publicly free and available on www.physionet.org.

This dataset consists of continuous recordings of EEG signals of 22 subjects, in-265

cluding 5 male and 17 female patients. The ages of the female patients range

from 1.5 to 19 years, whereas the ages of the male patients range from 3 to 22

years. Data have been recorded by placing 23 electrodes on the scalp of each

subject. This scalp EEG dataset has been sampled at 256 Hz. It has been

recorded and saved in European data format (EDF), which can be converted270

into .mat files in MATLAB. All files have been annotated for ictal states and

give information about the start and end of the seizure state. The preictal state

can be assumed as the state before the start of the ictal state[102].

3.2. American Epilepsy Society Dataset

This dataset has been recorded by the American Epilepsy Society in collabo-275

ration with the University of Freiberg [103]. The dataset consists of intracranial

EEG recordings of 7 subjects, including 5 dogs and 2 humans. An intracranial

dataset is recorded by implanting electrodes inside the brain through surgical

procedures. The data recorded from dogs have been acquired using 16 elec-

trodes and sampled at 400 Hz, whereas the data recorded from humans have280

been acquired using 16 electrodes and sampled at 5000 Hz. The data have been

annotated for the interictal and the preictal state and are saved in .mat files.

Table 2: CHB-MIT and American Epilepsy Society datasets

Dataset No. of Subjects Type No. of channels Sampling rate (Hz) No. of seizures Recording (Hrs.)

CHB-MIT [101] 22 humans Scalp EEG 23 256 198 644

American Epilepsy Society [103]
5 dogs iEEG 16 400 - 658

2 humans iEEG 16 5000 - 21.3

17



4. Evaluating the Performance of Methods

Sensitivity and specificity are important measures in assessing the perfor-

mance of a seizure prediction method. Sensitivity measures the True Positive

Rate (TPR), whereas specificity gives the True Negative Rate (TNR). We can

define sensitivity and specificity through Eq.(27) and Eq.(28).

Sensitivity = TP/(TP + FN) (27)

Specificity = TN/(TN + FP ) (28)

where TP is true positive, that is correctly classified positive classes, TN is

true negative, which denotes correctly classified negative classes. Similarly, FP285

is false positive, a negative class predicted as positive, and FN is false negative,

which is positive class predicted as negative. In seizure prediction, the preictal

state is considered to be positive class and the interictal state a negative class. It

is extremely important that a proposed method predicts a preictal class correctly

for prevent the seizure, but it is also important that the method does not predict290

a preictal class incorrectly. Therefore, upon evaluation, a seizure prediction

method must achieve high sensitivity as well as specificity.

Table 3: Comparison of seizures prediction methods using scalp EEG signals

Method Preprocessing Features Classifier Postprocessing Sensitivity (%) Specificity (%) Avg. Anticipation Time (min.)

Zandi et al. [10] Zero crossings Histogram bins Variational GMM Similarity index 88.34 84.5 22.5

Cui et al. [11] Codebook Bag of waves
Extreme learning

machine
- 88 75 1

Chu et al. [12] Fourier transform Spectral features Thresholding - 86.67 63.3 45.3

Truong et al. [13]
Short-time Fourier

transform
Window of 30 sec.

Convolutional neural

networks
Kalman filter 81.2 84 5

Khan et al. [14] Wavelet transform CNN CNN - 87.8 85.8 5.83

Fei et al. [15] Butterworth filter Fractional Fourier transform BPNN - 89.5 89.75 25.5

Ibrahim et al. [16] Derivative, local mean,variance, median PDF bins Thresholding - 90.32 85.2 22.63

5. Comparison of Existing Methods

Table 3 and Table 4 compare epileptic seizure prediction methods using scalp

EEG signals and intracranial EEG signals, respectively. It has been observed295

that prediction involves effective preprocessing, feature extraction, and classi-

fication. These three steps play a vital role in the sensitivity of the system.
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Table 4: Comparison of seizures prediction methods using intracranial EEG signals

Method Preprocessing Features Classifier Postprocessing Sensitivity (%) Specificity (%) Avg. Anticipation Time(min.)

Rasekhi et al. [17] Butterworth filter
22 univariate features,

normalization
SVM

Outlier processing,

smoothing
73.9 85 -

Bandarabadi et al. [18] - Spectral features SVM - 75.8 90 -

Acharya et al. [19] Z-score normalization CNN CNN K-fold validation 88.7 90 -

Howbert et al. [20] - Spectral power Logistic regression
Poisson process

chance prediction
73 92 -

Yu et al. [21] Local mean decomposition PCA+CNN
Bayesian linear

discriminant analysis

Moving average

filter
87.7 75 21

Aarabi et al. [22] Butterworth filter

Correlation dimension

Lyapunov exponent,

nonlinear interdependence

Rule-based

decision-making

Repeated random

cross validation
91.7 88.9 14.33

Teixeira et al. [23] Electrodes selection 22 univariate features MLP Kalman filtering 73.5 85 15.58

Yuan et al. [24] Wavelet transform Diffusion distance Bayesian linear discriminant analysis Smoothing and thresholding 85.11 92 17.67

Sharif et al. [25] Chebyshev filter Fuzzy rules SVM Prediction score 91.8 92 21

In the case of scalp EEG signals, Turong et al. [13] have used convolutional

neural networks for classification (CNN) and have achieved only an 81.2% sen-

sitivity. Preprocessing and feature extraction are the main reasons for the low300

performance of CNN. On the other hand, Al Hussein et al. [92] have extracted

features with the help of CNN and performed classification with the same to

achieve a sensitivity of up to 93%. Similarly, Yu et al. [21] and Acharya et al.

[19] have applied CNN for feature extraction on intracranial EEG signals and

have observed a sensitivity of 87.7% and 88.7% after training the CNN with305

150 epochs. Xiang et al. [85] have proposed a model for predicting of seizure

using scalp EEG signals with the help of SVM and fuzzy entropy as features

to get a 90% sensitivity. However, Raseki et al. [17] and Bandarabadi et al.

[18] could only achieve a sensitivity of 73.9% and 75.8% respectively, for in-

tracranial EEG signals. These results show that SVM have not performed well310

in the case of intracranial EEG signals. Figure 8 compares ROC the curves of

multiple methods of scalp EEG signals, and Figure 9 compares the ROC curves

of intracranial methods. The method proposed by Ibrahim et el. [16] proves

to perform well for scalp EEG signals, and the model of Sharif et al. [25] gives

a better sensitivity as well as less false positive alarms per hour in the case of315

intracanial EEG signals. Another important measure in evaluating a seizure

prediction method is average anticipation time. The method proposed by Chu

et al. [12] has successfully predicted the preictal state with an average pre-

diction time of 45.3 minutes. However, FPR has been increased, which makes

the proposed method not suitable. The methods proposed by Ibrahim et al.320
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[16] and Sharif et al. [25] have successfully predicted seizures with average an

anticipation time of 22.63 minutes and 21 minutes, respectively, with relatively

low false positive alarms, which makes these methods suitable for preventing

seizures. All these studies clearly explain that a system that predicts seizures

with a higher sensitivity must be able to preprocess EEG signals effectively.325

Moreover, multivariate features must be extracted, and classification must be

done with the help of CNN or SVM as these two classifiers give better detec-

tion provided that preprocessing and features extraction have been done in an

effective manner. However, there is a trade-off between sensitivity, specificity,

and average anticipation time. It has been seen that methods with a greater330

anticipation time results in increased false alarms, which is not desirable and

could have negative affects on a patient’s health. Therefore, we must choose an

optimal setting to get a better sensitivity and average anticipation time with

minimum false alarms.

Figure 8: Comparison of the ROC curves of Scalp EEG methods

6. Conclusion and Future Work335

In recent studies, it has been observed that epileptic seizures can be pre-

vented by detecting the start of the preictal state. This can be done by recording

EEG signals either by placing electrodes on the scalp of patients or by implant-

ing electrodes inside the skull. However, prediction with high sensitivity and

less false positive rate remains a challenge. Effective preprocessing methods are340
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Figure 9: Comparison of the ROC curves of intracranial EEG methods

required so that noise induced during the recording of EEG signals is removed.

Selecting a few channels instead of using all channels or converting them into

a single surrogate channel is also a big challenge in the preprocessing. Feature

extraction and selection is also a major challenge in seizure prediction systems.

A smaller number of features with high interclass variance must be selected so345

that the overall system detects seizures effectively without increasing the com-

plexity of the overall system. In the classification phase, SVM and CNN have

been proved to perform well in terms of both sensitivity and specificity. Many

researchers have achieved better sensitivity but have not validated their results

using any standard validation method. Therefore, a postprocessing method also350

needs to be incorporated into the system, and results must be validated by more

than one method so that the performance of the classifier is validated effectively.

With the help of these modifications, we can predict epileptic seizures more ef-

fectively with greater anticipation time, increased sensitivity, and a very low

false positive rate. Table 3 shows a comparison of epileptic seizures prediction355

methods on a scalp EEG dataset, while Table 4 compares seizures prediction

methods on an intracranial EEG dataset. By comparing multiple methods, we

have been able to conclude that the channel selection for scalp EEG signals and

the Butterworth filter for iEEG signals are good for the preprocessing of EEG

signals. For extracting features, convolutional neural networks, entropy and the360

instantaneous amplitude gives good features for scalp EEG signals, while for

21



iEEG signals, correlation dimension Lyapunov exponent and nonlinear interde-

pendence in addition to CNN, provide good features. Random forests, SVM,

and stacked autoencoders have been proved to be better classifiers for scalp

EEG signals, and CNN also gives better classification for iEEG signals, how-365

ever, SVM do not perform well in the case of iEEG signals. In the future,

by combining all of the best techniques, we should be able to design a model

that will increase the true positive rate of classification between interictal and

preictal state and reduce false positive rates.
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