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Abstract 

Background and Objectives: 

This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature 

selection and classification algorithms for colon cancer diagnosis. The need for this research derives from 

the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of 

death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified 

in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug 

discovery process.  

Methods: 

In this research, a three-phase approach was proposed and implemented: Phases One and Two examined 

the feature selection algorithms and classification algorithms employed separately, and Phase Three 

examined the performance of the combination of these.  

Results: 

It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with 

the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector 

Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also 

found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy 

and performance, and was faster in terms of time analysis (94%).  

Conclusions: 

It is concluded that applying feature selection algorithms prior to classification algorithms results in better 

accuracy than when the latter are applied alone. This conclusion is important and significant to industry 

and society. 
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1. INTRODUCTION 

According to the World Health Organization, “cancer is considered among the leading causes of death over 

the world, with approximately 14 million cases and 8.2 million cancer-related deaths every year” [1]. Cancer 

arises from genetic mutations of normal cells. These mutations cause damage to the DNA and affect the life 

cycle of the cells causing them to reproduce in an uncontrolled manner, and perhaps resulting in the 

formation of malignant tumors (cancers) [1]. According to Stewart and Wild, colon cancer has been identified 

as the fourth most common cause worldwide of cancer-related death [2].  

The diagnosis of a complicated genetic disease like cancer is normally based on tumor tissue, irrational 

characteristics, and clinical stages [4]. In treating cancer, early detection can dramatically increase the 
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chances of survival. Thus, time plays a crucial role in treating the disease. Imaging techniques, which are 

the main method of detection and diagnosis, are only useful once the cancerous growth has become visible. 

Another common method used to identify cancer cells is by searching and classifying large amounts of 

genetic data [5].  

This paper evaluates the performance of the most popular feature selection and classification algorithms 

implemented for the colon cancer dataset. The paper will determine which algorithms demonstrated the 

highest accuracy in the colon cancer feature selection and classification process, and finally show which one 

quickly corresponds to high accurate classification.  

The paper is structured as follows: Section Two provides the background and literature review, while 

Section Three will discuss the DNA microarray data and the techniques used. Section Four gives an account 

of the overall methodology of the work. Section Five discusses the experimental preparation which were 

carried out, while section Six expounds the results of the experiments and section Seven presents the results 

discussion and analysis. Finally, section Eight concludes the article. 

2. BACKGROUND AND LITERATURE REVIEW 

 

Feature selection and classification algorithms had shown massive and high performance applications in 

machine learning to assist the medical field for scientific research [51, 52, 53]. Hassan and Subasi in their 

research [51] had exposed that the use of feature selection and the namely leaner programming boosting 

(LPBoost) classification algorithm enabled epilepsy seizures monitoring and made patient management 

easy. In addition, the authors in [52] applied an eminent ensemble learning based classification model, 

namely bootstrap aggregating (Bagging) to detect Epileptic seizure. Their results showed high performance 

accuracy in comparison with previously published studies. While the authors in [53], proposed a machine 

learning algorithm to distinguish brain signals (EEG) that control motor imagery tasks for a given subject. 

They employed recursive feature elimination selection technique along with composite kernel support vector 

machine as a classification algorithm to rank the brain segments regions according to their relevance in 

order to distinguish motor-imagery tasks. In [54], Hassan and Haque implemented a real-time 

computationally efficient algorithm to detect bleeding in the small intestine using wireless capsule 

endoscopy videos that generates a large volume of images. These frames of images have been classified by 

the support vector machine as a classifier to detect gastrointestinal hemorrhage that made it easy for 

clinicians. On the other hand, the main process which studies large amount of genes simultaneously and is 

applied as a base for all gene extraction dataset is known as Microarray Technology [5]. Therefore, it can 

be used to examine the gene expression levels from a very large set of genes concurrently in order to generate 

gene expression data that can readily be analyzed further [3]. Shah and Kussaik examined that it is costly 

to collect genetic data. They found that not all genes extracted are useful, thus insisting on selecting the 

most appropriate genes from the massive genes dataset. This will remove the uninformative and redundant 

genes, drops noise, and complexity, leaving the interactive genes [2]. A typical gene classification involves 

the following activities: pre-processing (gene expression reduction and normalization), feature selection, and 

then gene or feature classification. Jaeger et al. established that, when a sequence of related microarray 

genes is examined under different conditions, they will be expressed differentially or mutated under these 

conditions [9]. This phenomenon is known as feature selection. It is a core problem in machine learning 

studies to discover techniques which will determine which genes best differentiate among the classes of 

cancer cells [9]. Khobragade and Vinayababu found that cancer tumor sorting process is applied to classify 

tissues into types, such as cancer versus normal. Thus, selecting informative, interacting and related gene 

subset not only reduces computational time and effort, but also increases the accuracy of classification that 

reflects the efficiency process [7, 57]. Moreover, most of the genes are redundant; to address this issue, 

feature selection methodology is implemented first to select and extract out a subset of small group of genes 

[45]. According to Saeys et al., feature selection techniques are broadly divided into three kinds in relation 
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to classification techniques, filter, wrapper and embedded methods [10-11].  As indicated by Mohd Saberi, 

et al. the filter method is expressed when applying the gene selection method individually away from the 

classification approach. Otherwise, it is considered as a wrapper approach [44]. Thereafter, the selected 

features will flow as an input and enter into the process of the classification algorithm.  Moreover, Alba et 

al., analyzed that wrapper technique engages a machine-learning algorithm to compute the classification 

method accuracy [12]. Hua et al. found that the wrapper technique has the major disadvantage of taking 

more time to run, thus requiring a longer computation process [13].  In contrast, Hua et al. justified that 

embedded method, is the combination of both (filter and wrapper) techniques. The embedded method 

reflects the advantage of combining the classification techniques, but is less efficient compared with 

wrapper techniques [13]. Jeyachidra and Punithavalli found that several gene selection and classification 

algorithms developed in the domain of machine learning [46]. Some of these algorithms reflected good 

results compared to others in terms of accuracy alone, but there is still a need for work to be undertaken to 

compare feature selection and classification algorithms in respect of their performance when applied to a 

cancer dataset. Thus, time analysis is an important element in the comparison study between algorithms. 

Also, the authors in [55] exposed the highest accuracy for colon cancer classification found by KNN (K-

Nearest Neighbors) and Neural Network classifier among other classification algorithms, however they 

claimed out that other optimization techniques can be added to classification algorithms. Many algorithms 

have been implemented for the selection and classification of cancer genes [29]. These include Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Analysis of Variance (ANOVA), Information Gain 

(IG), Relief Algorithm (RA), and t-statistics (TA). The classification algorithms that exhibit good 

performance are Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, Neural 

Networks (NN), and Decision Tree (DT) [29].  

Many studies have been conducted to study the process of cancer classification using microarray genetic 

data, including colon cancer. A selection of the recent and most relevant work is reviewed in the following 

sections. 

2.1. Algorithms Reviewed 

 

Table 1 presents a summary of findings of recent studies on colon cancer classification accuracy:  

 
Table 1: Literature review on colon cancer classification accuracy  

NO. REFERENCE 
METHOD ACCURACY 

[%] FEATURE CLASSIFIER 

1.  
Microarray data analysis for cancer classification 

[14] 

• Information Gain (IG) 

• Relief Algorithm (RA) 

• t-statistics (TA) 

Support Vector 

Machine (SVM) 
99.9 

2.  
Colon cancer prediction with genetics profiles using 

evolutionary techniques [15] 

• Mutual Information 

(MI) 

Genetic 

Programming (GP) 
100.0 

3.  
Colon cancer prediction with genetics profiles using 

evolutionary techniques [15] 
• t-statistics (TA) 

Genetic 

Programming (GP) 
98.33 

4.  
Colon cancer prediction with genetics profiles using 

evolutionary techniques [15] 
• t-statistics (TA) Decision Tree (DT) 85.00 

5.  
Gene selection using genetic algorithm and support 

vector machines [16] 
• Genetic Algorithm (GA) 

Polynomial Kernel 

SVM 

RBF Kernel SVM 

93.6 

6.  
A hybrid of genetic algorithm and support vector 

machine for features selection and classification of 

gene expression microarray [17] 

• New Genetic Algorithm 

(New-GA) 

Support Vector 

Machine (SVM) 
98.3871 

7.  
A hybrid of genetic algorithm and support vector 

machine for features selection and classification of 

gene expression microarray [17] 

• Genetic Algorithm (GA) 
Support Vector 

Machine (SVM) 
90.3226 

8.  
A hybrid of genetic algorithm and support vector 

machine for features selection and classification of 

gene expression microarray [17] 

• Genetic Algorithm (GA) 
Support Vector 

Machine (SVM) 
85.4839 
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9.  
Ensemble machine learning on gene expression 

data for cancer classification [18] 
--- Single C4.5 (DT) 95.16 

10.  
Machine learning in DNA Microarray analysis for 

cancer classification [19] 

• Information Gain (IG) 

• Mutual Information (MI) 

Linear Kernel 

SVM 

RBF Kernel SVM 

71.0 

11.  
Machine learning in DNA Microarray analysis for 

cancer classification [19] 
• Euclidean Distance (ED) 

Cosine Kernel 

KNN 

Pearson Kernel 

KNN 

93.9 

12.  
Particle swarm optimization for gene selection in 

classifying cancer classes [20] 

• Improved Particle 

Swarm Optimization 

(IPSO) 

--- 94.19 

13.  
Particle swarm optimization for gene selection in 

classifying cancer classes [20] 

• Binary Particle Swarm 

Optimization (BPSO) 
--- 86.94 

14.  
Applying Data Mining Techniques for Cancer 

Classification from Gene Expression Data [21] 
• t-GA Decision Tree (DT) 89.24 

15.  
Applying Data Mining Techniques for Cancer 

Classification from Gene Expression Data [21] 
• Genetic Algorithm (GA) Decision Tree (DT) 88.80 

16.  
Applying Data Mining Techniques for Cancer 

Classification from Gene Expression Data [21] 
• t-statistics (TA) Decision Tree (DT) 77.42 

17.  
Applying Data Mining Techniques for Cancer 

Classification from Gene Expression Data [21] 
• Information Gain (IG) Decision Tree (DT) 77.26 

18.  
Applying Data Mining Techniques for Cancer 

Classification from Gene Expression Data [21] 
• GS Method Decision Tree (DT) 69.35 

19.  
Integrating Biological Information for Feature 

Selection in Microarray Data Classification [22] 

• Information Gain with 

Association Analysis 

Support Vector 

Machine (SVM) 
93.55 

20.  
Integrating Biological Information for Feature 

Selection in Microarray Data Classification [22] 
• Information Gain (IG) 

Support Vector 

Machine (SVM) 
90.33 

21.  
Colon cancer prediction with genetic profiles using 

intelligent techniques [23] 
• t-statistic (TA) RBF Kernel SVM 84.085 

22.  
Hybrid Methods to Select Informative Gene Sets in 

Microarray Data Classification [24] 
• Genetic Algorithm (GA) 

Neural Network 

(NN) 
94.92 

23.  
Hybrid Methods to Select Informative Gene Sets in 

Microarray Data Classification [24]  
• Genetic Algorithm (GA) Decision Tree (DT) 96.79 

24.  
Classification of human cancer diseases by gene 

expression profiles [56] 

• Information Gain & 

Standard Genetic 

Algorithm 

Genetic 

Programming 
85.48 

 

Table 1 shows that 13 out of the 24 methods achieved 90% or above of classification accuracy when applied 

to the colon cancer dataset, while the remaining achieved classification accuracy of between 69% and 89%. 

The common algorithms that showed high contribution accuracy in terms of classifications are SVM, GP, 

and DT.  It should be noted that SVM and Genetic Programming have high accuracy results as classifiers 

when combined with Information Gain and Genetic Algorithms (90% - 100%). The combination of GA and 

SVM has an accuracy of 85%. GA Method combined with Decision Tree gave the least accurate result: 69%. 

The table, also presents a finding of different accuracy results with use of the same classification algorithm, 

i.e. GA+SVM (90% and 85%) and IG+SVM (99.9% and 90%).  

2.2.  Time Analysis Comparison 

 

Time analysis is considered as part of the computational complexity principle that describes how an 

algorithm uses resources computationally. The complexity of any algorithm is computed using the Big O 

notation, which is the expression in the growth rate of a function that describes its higher bound, and is 

described by the following scheme [47]: 
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“O(g(n)) = {f |∃ c > 0, ∃ n0, > 0, ∀ n ≥ n0: 0 ≤ f ≤ cg(n)}”      (1) 

 

While, “f ∈(g(n)) if, and only if, there exists positive constant c and n0, such that for all n ≥ n0” [34]. Note 

that the time calculated is the one which was used to build up the process model in the Weka tool. Table 2 

illustrates the time complexity (Big O) for most of the feature selection algorithms discussed, while Table 3 

presents the same for the classification algorithms: 

 
Table 2: Time complexity in feature selection algorithms  

ALGORITHM TYPE TIME COMPLEXITY NOTATION 

Genetic Algorithm [35 – 36] Polynomial 

𝑂(𝑛2) Or it can be expressed by O(gens × n × m); where 

gens is the generation, n represents the size of population, 

and m represent the individual size. 

Particle Swarm Optimization [37] Polynomial 
O(m × n); here m represents initial number of particles, and 

n represents the number of iterations. 

Information Gain [38] Logarithmic O (n  × log n); here n represents the number of samples. 

 
Table 3: Feature classification algorithms time complexity 

ALGORITHM TYPE TIME COMPLEXITY NOTATION 

Support Vector Machine [39 – 40] 
 Polynomial 

(Cubic) 

𝑂(𝑛3); here n represents the training points number for a 

classical SVM. 

Naïve Bayes [41] Polynomial 
O(m × n); here m represents number of samples, and n 

represents the number of features. 

Decision Tree [42 – 43] Polynomial 
𝑂(𝑚 × 𝑛2); here m represents the number of training data 

and n represents the Number of attributes.  

Genetic Programming [49 – 50] Logarithmic O (n  × log n); here n represents the Number of samples. 

 

 

Weka is used widely within other research in the area of the study [58]: 

http://www.cs.waikato.ac.nz/~ml/weka/ 

The two common methods used in Weka for evaluating data are leave-one-out cross validation (LOOCV) 

and k-fold cross validation. These methods are used when a real dataset is not available. The contents of 

the dataset are randomly apportioned into training and testing sets, and different predictors are then 

compared. LOOCV is a method applied on (n-1) testers and then verified on the remaining ones [9]. The 

method is reiterated n times in which each sample is left out once at the end [9]. In the k-fold cross validation 

method, data is arbitrarily allocated to 10 non-overlapping groups (default division of folds) of 

approximately equal size [48]. 

2.3.      Summary of the Current State of study and limitations 

 

There are noteworthy discrepancies between the proposed approach and the previous studies on colon 

cancer selection and classification algorithms, as well as on accuracy detection. The following points are 

discussed about the limitations on the exiting work reflecting the advantage of current studies: 

 

• Table 1 shows 24 different feature selection algorithms as well as classification algorithms,13 algorithms 

showed 90% or above accuracy using different tools. 

• Using the same algorithms and same datasets leads to different accuracy results, as shown by Yeh et al. 

[21] and Yang and Zhang [24]. 

• Most of state of the art work explored that SVM gives very competitive results as a classifier algorithm, 

while PSO shows very good results as a selection algorithm. 

• For example, to the best of the authors’ knowledge, no studies were reported in the literature that 

analyzed the direct relationship between the accuracy of the algorithms implemented and the 

performance of the time taken to select and classify the features. 

http://www.cs.waikato.ac.nz/~ml/weka/
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• This paper evaluates the performance of the most popular feature selection and classification algorithms 

implemented for the colon cancer dataset. The paper will determine that algorithms demonstrated the 

highest accuracy in the colon cancer feature selection and classification process, and finally shows which 

one quickly corresponds to high accurate classification. 

• In this work, the hybridization that has more than one feature selection using the same dataset shows 

very good results. 

 

Our proposed system, detects the relationship between the algorithm accuracy and the time it requires to 

detect the colon cancer tumors. This system links the efficiency of algorithms’ performance to the accuracy 

of the algorithms that have been presented in literature so far. 

3. DNA MICROARRAY DATASET AND TECHNIQUES 

 

This section presents an account of how the numeric dataset is generated for the experiments, and defines 

the feature selection and classification algorithms. 

3.1.  Background of Datasets 

 

A classic microarray is composed of a large amount of DNA particles spotted in order over a solid material 

[19]. This technique can examine the gene information in a less time [19].   
 

Currently it is difficult to obtain a central database for human genome data [25]. However, there are plenty 

of public available gene expression datasets commonly used by researchers in the field of cancer selection 

and classification experiments. Lists of the most publicly available colon cancer datasets can be found in [6, 

8, 26, 27, 28]. 

 

Alon et al. established that the colon cancer dataset is a collection of different expressions that consists of 

62 samples (collected from 62 patients) [32] as showing Table 4.  It is noteworthy that the “tumour” tissues 

were obtained from tumours parts of the colon, while the “normal” tissues were derived from healthy tissues 

of the same colons. According to Archetti et al., approximately 6500 human genes are represented, 2000 of 

which were extracted and collected. They have shown the better contributions to the expression levels 

measured [37].   

 
Table 4: Gene expression dataset used in the study 

TYPE OF 

DATASET 

TOTAL NO. OF 

SAMPLES 

NO. OF GENES ACROSS 

THE SAMPLES 

CLASSIFICATION 

TYPE 
NO. OF SAMPLES 

Colon Cancer 

[32 – 33] 
62 2000 

Tumour 40 

Normal 22 

 

 

 

 

3.2.  Feature Selection and Classification Techniques 

 
Feature selection over DNA microarray focuses on filter methods [8].  It should be noted that not all the 

genes measured are required for further analysis because some of them they are uninformative (i.e. not 
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related) to the classification of cancer; this may affect the operation of some machine learning algorithms 

[30]. 

 

A set of algorithms that have previously demonstrated effectiveness in solving classification problems 

applied in machine learning studies has been adopted for the current study [19].  Chitode and Nogari 

defined classification as the process of discovering a prototype that designates and discriminates among 

different data classes (types) [8].  Classification accuracy is measured in terms of the proportion of expected 

samples to the overall number of samples, as represented in Equation 1 below [31]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
      (2) 

 

Most of the cancer classification models proposed is derived from the statistical and machine learning 

studies [25]. Based on their survey of previous studies, Ying and Jiawi contend that “there is no single 

classifier that is superior to the rest” [25]. It is noteworthy from these studies of proposed algorithms that 

most studies were interested only with classification accuracy in the analysis of the data without paying 

much attention to the algorithm running time. In summary, it is found that: 

• DNA microarray technology offers a method of numerically analyzing the data, but needs normalization 

for experiment conducting. 

• The searching algorithms undertake the process of identification of informative genes. 

• The classification algorithms undertake the process of classifying the feature data into cancer or normal. 

4. METHODOLOGY 

 

This section will discuss the methodology of the work that was carried out, including the flowchart, data 

sources, and instrumentation. The approach has three component parts: (1) study and analysis of the 

performance of the feature selection algorithms as applied to the colon dataset; (2) analysis of the 

performance of the classification algorithms across the same dataset and (3) analysis of the performance of 

the combination of both selection and classification algorithms. 

4.1.  Proposed System  

 

The flow chart shown in Figure 1 illustrates how the experimental system was planned to operate in terms 

of applying feature selection and classification algorithms within the three phases discussed earlier.  

4.2. Data sources and tools 

 

The data used in the study were extracted from one of the public cancer datasets [32] that have been 

extensively used by researchers in the field; these were available free of charge online, as discussed in 

Section 3.1. The computational tool used for all the experiments described was the Weka Machine Learning 

package and its associated libraries; see Section 2.2 above. The computing environment for the experiments 

used a PC with the Windows 8.1 operating system, a 1.8 GHz Intel Core i5 processor and 8 GB of installed 

RAM. 
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Fig. 1: Proposed system flowchart/ workflow 

 

5. EXPERIMENTAL PREPARATION 

 

In this section, the experimental preparation is described as follows: (1) Definition of experiment methods; 

(2) Data preparation; and (3) The experimental Setup. 
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5.1.  Definition of experimental methods 

 

As the number of samples used in the experiments was small, cross validation was adopted as the measure 

of performance. The procedure was repeated 10 times to make each set acts as a test set; see Sections 2.2 

and 3.1 for related background information. 

5.2.  Data Preparation 

 

One of the challenges posed by genetic data analysis is the small number of samples compared to the 

associated large number of genes. One way of addressing this situation is to use feature reduction, which 

transforms the raw data into a form that is suitable for analysis. A normalization procedure may be used 

for this, where classification algorithms are able to use the gene expression measurements just as they are.  

Once the data have been prepared, the next step is the feature selection process that reduces the 

dimensionality of the dataset.  Thus, before using the colon dataset in our work, we normalized the data 

using the min-max normalization procedure by applying the following formula: 

 

x[i] = 
(x[𝑖] − minValue) 

 (maxValue − minValue)
  (3) 

 

Where x is the attribute, i represents the amount of the samples, minValue represents the lowest value of 

each attribute, and maxValue represents the highest value of each attribute. 

5.3.  Experimental setup 

 

The parameter settings for the Genetic Algorithm and the Particle Swarm Optimization algorithms are 

presented in Table 5. For each algorithm, these parameter values were changed one by one until adopt the 

objective values based on the solution quality and high performance results. Default parameters were used 

for the remainder of the algorithms, as they had demonstrated good results in the experiments. Appendix 

A, presents the default parameters and also describes some several random test evaluations that were 

conducted to select the anticipated parameters; which account for and reflects the reasoning behind the 

selection of the parameters. 

 
Table 5: Gene expression dataset used in the study 

PARAMETER GENETIC ALGORITHM 
PARTICLE SWARM 

OPTIMIZATION 

Population Size 100 200 

No. of Generations 50 100 

Rate of Crossover  0.6 --- 

Rate of Mutation  0.01 --- 

C1 --- 1.0 

C2 --- 2.0 

6. RESULTS 

 
The experiments took place in multiple phases. Phase One was to implement the feature selection 

algorithms (GA, PSO, and IG) across the dataset; Phase Two was to implement the classification algorithms 

only using the original dataset without prior application of any feature selection algorithms; Phase Three 

was to implement the hybridization and combining techniques of the feature selection and classification 

algorithms together. More details of the analysis of these phases, and the discussion of results, are 

presented in the following sections. 
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6.1.  On Phase One 

 

The experiment in this phase studied the difference between the selection algorithms GA, PSO and IG in 

relation to the number of genes selected from the normalized benchmark colon dataset described above in 

association with the list of parameters given in Table 5 and in Appendix A.  

 

There are two main classical methods for feature selection: the first one is the filter method, which makes 

an independent assessment over the dataset attributes; the second one is the wrapper method, which applies 

an evaluation of learning algorithm; thus the learning algorithm will be wrapped into the selection 

technique [44]. 

 

Feature selection identifies the relevant genes within the colon cancer dataset. This step is used to select 

the best attributes of the dataset. Using the Weka data-mining tool, feature selection can be applied using 

three methods, as presented in Table 6. 

 
Table 6: Attribute evaluation methods for attribute selections 

ATTRIBUTE 

SUBSET 

EVALUATOR 

METHOD 

NAME FUNCTION 

CfsSubsetEval 

It is a basic filter algorithm where feature subsets are evaluated by 

the predictive capability of each feature in association with the degree 

of redundancy between them 

WrapperSubsetEval Assesses the attributes by using a learning algorithm 

FilteredSubsetEval 
A technique that runs a random subset evaluator over the data that 

was randomly filtered 

  

Table 7 presents the number of selected features (genes) using the GA and the PSO algorithms by applying 

different attribute evaluation methods for attribute selections. 

 
Table 7: Number of features retrieved by applying GA and PSO as feature selection algorithms on the colon dataset  

FEATURE SELECTION USING CFSSUBSETEVAL METHOD 

GA 412 

PSO 29 

FEATURE SELECTION USING WRAPPERSUBSETEVAL METHOD 

GA + SVM 958 

GA + Naïve Bayes 817 

GA + DT 465 

PSO + SVM 112 

PSO + Naïve Bayes 122 

PSO + DT 543 

FEATURE SELECTION USING FILTEREDSUBSETEVAL METHOD 

GA + SVM 205 

GA + Naïve Bayes 482 

GA + DT 62 

PSO + SVM 104 

PSO + Naïve Bayes 175 

PSO + DT 38 

 

From Table 7, it is apparent that in general the PSO algorithm had reduced the number of selected genes 

much better compared with GA. When applied using the CfsSubsetEval Method, PSO had selected 29 genes, 

which is almost 14 times less than GA using the same method. Also, when applied using the 

WrapperSubsetEval method along with SVM, 112 genes were selected, compared with the GA when 

wrapped with the same algorithm (SVM) or with other classification algorithms using the same method. In 

addition, when it was applied using the FilteredSubsetEval method, it showed good results also with the 
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DT algorithm (38 genes selected) in comparison with the GA using the same method as well. However, the 

classifier approach applied with GA using Decision Tree (DT), gave good results (62 genes selected). 

 

Note that the IG (Information Gain) and the MI (Mutual Information) are used as ranking methods for 

feature selection. A threshold value is required for these algorithms, so a value of 0 was selected as a 

threshold; if the weight of features is greater than 0 they will be selected, otherwise they will be discarded. 

In our experiments is showed high contribution (134 genes selected). Thus, genes with discriminative values 

equal to zero were discarded. 

 

Another proposed combination algorithm was constructed by combining feature selection algorithms. First, 

it applied GA followed by PSO as a hybrid combined feature selection procedure. Thus, GA was applied 

initially to the original benchmark colon dataset to select a feature subset, and then the PSO was applied 

later over the newly selected subset. We reversed the algorithms and applied initially the PSO, then 

subsequently the GA as a hybrid feature selector, as previously. Table 8 and Table 9 respectively present 

the results, and reflect how GA/PSO using classifier subset evaluation can select subsets with fewer 

features. The proposed combined algorithms show highly selective and accurate results.  

 
Table 8: Applying GA/PSO as a hybrid features model using the efficiency of the different selection methods 

METHOD NO. OF FEATURES SELECTED BY GA/PSO 

Using CFS 22 

Using Wrapper (DT) 24 

Using Classifier (Naïve Bayes) 4 

 
Table 9: Applying PSO/GA as a hybrid feature selection model using the efficiency of the different selection methods 

METHOD NO. OF FEATURES SELECTED BY PSO/GA 

Using CFS 12 

Using Wrapper (DT) 10 

Using Classifier (Naïve Bayes) 13 

 
Figure 2 summarizes the feature selection difference between all the methods applied so far. It is noticeable 

that GA selects more data (more than 400 genes) in comparison to PSO, which selects fewer (29 – 100 genes). 

It is found that the combination of GA and PSO together results in fewer genes being selected (4 genes).  

 



1:12     •     M. Al-Rajab, J. Lu, and Q. Xu 

 

 
 

 
Fig. 2:  Feature subset selections using feature algorithms 

 

6.2.  On Phase Two 

 

In this phase, classification algorithms (SVM, Naïve Bayes, Decision Tree, and Genetic Programming) were 

implemented using the default parameters in Weka, without the contribution of any feature selection 

algorithm, thus only machine learning algorithms were implemented. The experiments were conducted with 

the first 10, 50, 100, 500, 1000, 1500, and 2000 (the whole colon dataset) attributes using cross validation 

and applying the default parameters (see Appendix A).  

 

Figure 3 presents the records obtained for accuracy of classification compared to the number of genes as an 

input. It may be observed that SVM results in better accuracy over other classification algorithms (86%) 

when applied to the full dataset, while Naïve Bayes has the lowest accuracy (52%). 
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Fig. 3: Classification accuracy for different gene samples 

 

Figure 4 shows the time taken to classify the various gene samples. It can be seen that for a smaller number 

of genes, almost all the classification algorithms require less time (processing is almost instantaneous), but 

for a large number of genes it is observed that the Genetic Programming takes more time (up to 6 seconds). 

That is, when the amount of input increases, the function of Genetic Programming has a big O(𝑛𝑙𝑜𝑔𝑛).  So, 

SVM is considered to be an accurate and fast classification algorithm compared to others. 

 

  
Fig. 4: Classification time for different gene samples 
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6.3.  On Phase Three: 

 

The procedure in this phase is to apply the classification algorithms after applying efficient selection 

algorithms, i.e. those which were implemented in Phase One earlier (section 6.1). Default parameters for 

classification algorithms were applied (see Appendix A), and the same experimental conditions and tools 

were used as for Phases One and Two (sections 6.1 and 6.2). The experiments were conducted by using a 

number of respectively selected features (genes) from the reduced colon dataset attributes. The detailed 

data are presented in Appendix B. 

 

 
(a)                                                                               (b)     (c) 

Fig. 5: Accuracy of classification for hybridization with GA using multiple feature selection techniques 

 

As shown in Figure 5, it is found that both GA/SVM using the three attribute evaluation techniques in (a), 

(b), and (c) perform more accurately than others, above 80% accuracy; the analysis of time complexity for 

GA/SVM is O (𝑛3 +  𝑛2), as the SVM has a polynomial (cubic) time complexity notation, which is higher than 

others. However, the GA/DT and GA/GP outperform other algorithms in terms of classification accuracy; 

they achieve to 90% accuracy. It is apparent that GA/Naïve Bayes is the least accurate. 

 

Figure 6 shows that GA/Naïve Bayes takes less time to classify different genes if applied with all selection 

techniques (almost instantaneous), but results in reduced accuracy, as indicated, while GA/GP is more 

accurate but also takes longer (up to 4 seconds) than other algorithms. 
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Fig. 6: Classification time for different gene samples using the hybridization with GA 

 

However, it is apparent from figure 7 (a, b, & c) that PSO/SVM achieves better average classification 

accuracy by applying the CFS (87%) and wrapper methods (87%); the time complexity of PSO/SVM is 

O(𝑀𝑁 +  𝑛3), while PSO/DT performs better using the classifier method; the time complexity of PSO/DT is 

O(𝑀𝑁 + 𝑚𝑛2).  

 

   
(a)                                (b)    (c) 

Fig. 7:  Accuracy of classification for hybridization with PSO using different feature selection techniques 

 

Figure 8 shows that PSO/SVM and PSO/DT take less average time (almost instantaneous) to classify 

different genes. That is, they showed high classification accuracy with minimal time, whereas PSO/GP 

takes longer (up to 3 seconds). 
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Fig. 8: Classification time for different gene samples using the hybridization with PSO 

 

 
 

Fig. 9: Accuracy of classification for hybridization with IG  
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outperforms all other algorithms in relation to classification accuracy with the full dataset (134 genes, 

around 88.7%), but IG/SVM still generates similar results for accuracy. IG/Naïve Bayes performs less well 

than the other algorithms (81%). 
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Figure 10 shows that, with a small number of genes (fewer than the first 100), IG/Naïve Bayes and IG/DT 

are almost instantaneous, but with the full dataset selected, IG/GP takes longer (almost 1.5 seconds).  
 

 
           Fig.10: Classification time for different gene samples using the hybridization with IG 

7. DISCUSSION AND ANALYSIS 

 

Based on the above results, it is found that the PSO as a selection algorithm outperforms the others. 

However, IG is efficient in ranking the genes and hence in selecting the best-ranked ones thereafter. 

From the previous experiments and as presented in Figure 11, the PSO/SVM method demonstrated the 

highest average accuracy (87%) in terms of classifying colon cancer datasets compared with the other 

algorithms presented earlier. IG/SVM (86%) and IG/DT (86%) demonstrate very good classification 

accuracy. PSO/DT has less classification accuracy (71%). 

 

 
Fig. 11: Hybrid classification algorithms average accuracy 
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Finally, Table 10 concludes all the average accuracies resulted from the previous experiments when applied 

to full data set. There were found to be 12 algorithmic methods that have accuracy above 80% when applied 

to the full dataset; three algorithms have accuracy of 90% or more. One algorithm scored below 50%. 

 
Table 10: Hybrid average accuracy applied on selected feature subsets and on full selected datasets 

SELECTION 

METHOD 
ALGORITHMS 

AVERAGE 

ACCURACY [%] 

FULL DATA SET 

ACCURACY [%] 

CFS 

GA/ SVM 81 79 

GA/ Naïve Bayes 64 65 

GA / DT 74 74 

GA/ GP 80 90 

Wrapper 

GA/ SVM 80 84 

GA/ Naïve Bayes 59 59 

GA / DT 72 90 

GA/ GP 78 74 

Classifier 

GA/ SVM 77 82 

GA/ Naïve Bayes 52 45 

GA / DT 71 73 

GA/ GP 75 71 

CFS 

PSO/ SVM 87 89 

PSO/ Naïve Bayes 75 82 

PSO/ DT 82 79 

PSO/ GP 84 81 

Wrapper 

PSO/ SVM 87 94 

PSO/ Naïve Bayes 61 58 

PSO/ DT 72 71 

PSO/ GP 77 84 

Classifier 

PSO/ SVM 66 66 

PSO/ Naïve Bayes 55 55 

PSO/ DT 71 71 

PSO/ GP 64 68 

Information 

Gain Ranker 

IG/ SVM 86 84 

IG/ Naïve Bayes 81 79 

IG / DT 86 89 

IG/ GP 85 84 

 

Many approaches in the literature had touched the colon cancer classification accuracy as presented in 

Table 1 section 2.1, which achieved 93.6% as with Shatoa et al. [16], and Cho et al. [19], while Huey et al. 

[22] achieved 93.5%, others like Yeh et al. achieved 89.2% [21], Salem et al. achieved 85.48% [56], and other 

contributions achieved 84% as with Alladi et al. in [23]. This investigation using PSO/SVM achieved a better 

outcome, i.e. 94%. That is, better classification accuracy when applied to all selected features using the 

wrapper selection method based on the parameters and experimental conditions applied and by using the 

same colon cancer dataset.  

On the other hand, in this investigation using GA/DT and GA/GP had 90% classification accuracy that 

outperforms the results of Yeh et al. (89%) [21] and Salem et al (85%) [56] respectively. Also, by using IG/DT 

the classification accuracy had 89%when applied to the whole dataset, which outperforms the results (77%) 

in [21] using almost same experiment conditions as well as the same dataset.  

To our knowledge, the classification of colon cancer studies presented in Table 1 earlier, didn’t report the 

efficiency of algorithms in terms of time performance analysis except in the study of Salem et al [56] where 

the complexity time is almost equivalent to O(𝑛2 (n log n + 𝑛2)). In their work, they implemented the model 

of using the selection algorithm first (IG), followed by a reduction algorithm (sGA), and at the end applied 

the classification algorithm (GP). In this paper, we studied the algorithms related in three distinct phases 

and found that applying feature selection algorithm, followed by a classification algorithm only (PSO/ SVM) 

improved the classification accuracy 94% and  resulted in a more efficient time O(𝑀𝑁 + 𝑛3) when compared 
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with the results of others in the literature (especially when compared with the time analysis work of [56] in 

terms of time analysis using the same dataset and the selection of population size but with some minor 

difference in the parameters rate for the GA algorithm, as indicated in Appendix A).  

We found that our work takes almost an instantaneous time in seconds to classify genes (almost 0 seconds) 

while the other work such as in [56] takes more extensive time to do the same job. For that, our algorithm 

is considered computationally less expensive when compared with others. 

8. CONCLUSIONS AND FUTURE WORK 

 

In conclusion, the paper has achieved its objective by studying the enactment of the common feature 

selection and classification algorithms for the colon cancer dataset, but the new motivation was to compare 

the accuracy of and analyze the time complexity for these algorithms to determine which algorithm provides 

the most accurate output in correlation with time complexity analysis. The study was implemented over a 

colon cancer dataset of 2000 genes, by applying three typical and main feature selection algorithms: Genetic 

Algorithm, Particle Swarm Optimization, and Information Gain, and using four common classification 

algorithms: Support Vector Machine, Naïve Bayes, Decision Tree, and Genetic Programming. A three-phase 

experimental design was followed: 

• Phase One studied the difference among multiple selection algorithms, and found that the PSO 

algorithm outperforms the GA algorithm when applied directly to select subset features that reduce the 

population size for the classification algorithm either using the CFS, the wrapper approach or the 

classifier approach. 

• In Phase Two, classification algorithms were implemented alone without the contribution of any 

selection algorithm; it was found that SVM has better classification accuracy with a big O(𝑛3). 

• In Phase Three, a comparison between applying a hybrid combination of selection and classification 

algorithms was undertaken. The best algorithm that expressed the high performance with a big growth 

rate of time complexity was the hybridization of the PSO combined with the SVM (average 87%) but 

when applied to all the feature subset selection it achieved an accuracy up to 94%. 

The results of the experiments figured that applying feature selection algorithms prior to classification 

algorithms results in better accuracy than when the latter are applied alone. Without feature selection, use 

of SVM as a classifier yielded (85%) accuracy, compared with when implemented with a feature selection 

algorithm first: PSO/SVM (94%). Moreover, comparing between filter and wrapper selection methods when 

applied to the full microarray dataset, the wrapper methods yield more accurate results than the filter 

models. As a result, PSO/SVM can be considered a suitable algorithm for colon cancer selection and 

classification in medical research. Moreover, the SVM showed a polynomial (cubic) growth rate, while GA, 

IG, and PSO showed a quadratic polynomial growth rate. The other classification algorithms showed a 

quadratic polynomial growth rate. For that, SVM has the highest Big O magnitude of time complexity. 

For the future work, more efforts will be made to access other medical records for the colon cancer as well 

as to use other machine learning tools and compare the results with Weka. Moreover, the study can be 

extended to the applications of the selection and classification algorithms that have demonstrated the 

practical values in studying an expanded range of cancer datasets other than the colon cancer only. 
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APPENDIX A 

Table A1: The default parameters of the Decision Tree - C4.5 class (package name: weka.classifiers.trees.J48) 

Confidence factor for 

pruning 

Minimum number of 

instances per field 
Seed 

Subtree operation 

considered when 

pruning 

Pruned/ unpruned 

decision tree 

0.25 (default) 2 (default) 1 (default) True 
Using unpruned 

tree 

 
Table A2: The default parameters of the Naïve Bayes class (package name: weka.classifiers.bayes.NaiveBayes) 

Use Kernel Estimator 
Use Supervised Discretization to convert numeric 

attributes to nominal ones 

False False 

 
Table A3: The default parameters of the SVM class (package name: weka.classifiers.functions.SMO) 

The 

complexity 

constant C 

Epsilon 

for 

round-

off error 

Kernel 

Type 

Normalize/ 

standardize/ 

neither 

Tolerance 

Kernel 

option: 

the 

Exponent 

to use 

Random 

seed for the 

cross 

validation 

Kernel 

option: 

the size 

of the 

cache 

1 (default) 
1.0E-12 

(default) 

Polynomial 

(default) 

Normalize 

(default) 

1.0E-3 

(default) 

1.0 

(default) 
1 (default) 

250007 

(max) 

(default) 

 
Table A4: The default parameters of the Genetic Programming class (package name:  

weka.classifiers.functions.GeneticProgramming) 

Bias constant for 

exponential 

ranking selection 

Size of the 

elite 

population 

Fitness 

evaluation 

method 

Maximum 

depth of the 

program tree 

The size of the 

children 

population 

Method for 

initializing a 

population of 

program trees 

Population 

size 

0.5 (default) 5 (default) 
Standard 

classifier 
5 (default) 100 (default) 

initialized with 

Ramped Half and 

Half method 

100 

(default) 

 
Here we provide some more results pertaining the data presented in Table 5- to justify the parameter 

selection on arbitrary values. 

 

 
Table A5: GA parameter evaluation 

Parameter Genetic Algorithm 

Population Size 200 200 200 100 100 100 50 50 50 40 
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No. of Generations 50 100 1000 50 100 1000 50 100 1000 50 

Rate of Crossover  0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

Rate of Mutation  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total Data Selected 524 576 643 412 469 603 550 605 643 457 

 
Table A6: PSO parameter evaluation 

Parameter Particle Swarm Optimization 
Swarm Size 40 50 100 200 200 

No. of Generations 100 50 100 30 100 

C1  1.0 1.0 1.0 1.0 1.0 

C2  2.0 2.0 2.0 2.0 2.0 

Total Data Selected 454 662 224 40 29 

 

APPENDIX B 

 

Table B1, displays the classification accuracy results by applying GA as the feature selection algorithm 

using the CFS selection technique with different classification algorithms (SVM, Naïve Bayes, and Decision 

Tree).  

 
Table B1: Classification accuracies for different genes subsets using the hybridization with GA using the CFS 

technique 

NO. OF SELECTED 

GENES 

ACCURACY (%) 

GA/SVM GA/Naïve Bayes GA/DT GA/GP 

10 66.123 58.06 74.19 77.42 

25 82.26 62.90 77.42 79.03 

50 80.65 61.29 66.13 75.81 

100 93.87 64.51 72.58 82.26 

200 83.87 67.74 74.19 77.42 

300 80.65 66.13 77.42 80.65 

412 79.03 64.52 74.19 90.32 

 
Table B2, displays the classification accuracy results by applying GA as the feature selection algorithm 

using the Wrapper selection technique with different classification algorithms.  

 
Table B2: Classification accuracies for different genes subsets using the hybridization with GA using the wrapper 

technique 

NO. OF 

SELECTED 

GENES 

ACCURACY (%) 

GA/SVM GA/Naïve Bayes GA/DT GA/GP 

10 64.52 59.68 62.90 80.65 

25 79.03 56.45 64.52 77.42 

50 77.42 58.07 59.68 80.65 

100 83.87 59.68 59.68 77.42 

200 83.87 61.29 77.42 79.03 

300 83.87 59.68 90.32 79.03 

465 83.87 54.84 90.32 74.19 

 

Table B3, displays the classification accuracy results by applying GA as the feature selection algorithm 

using the Classifier selection technique with different classification algorithms.  
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Table B3: Classification accuracies for different genes subsets using the hybridization with GA using the classifier 

technique 

NO. OF SELECTED 

GENES 

ACCURACY (%) 

GA/SVM GA/Naïve Bayes GA/DT GA/GP 

10 59.68 59.68 66.13 79.03 

20 77.42 56.45 67.74 72.58 

30 75.81 53.23 67.74 70.97 

40 83.87 46.77 80.65 77.42 

50 80.65 50.00 70.03 77.42 

62 82.26 45.16 72.58 70.97 

 
Moreover, Table B4 displays the classification accuracy results by applying PSO as a feature selection 

algorithm using the CFS selection technique with different classification algorithms.  

 
Table B4: Classification accuracies for different genes subsets using the hybridization with PSO using the CFS 

technique 

NO. OF 

SELECTED 

GENES 

ACCURACY (%) 

PSO/SVM 
PSO/Naïve 

Bayes 
PSO/DT PSO/GP 

5 79.03 67.74 80.65 82.26 

10 90.32 70.97 85.48 88.71 

15 88.71 80.65 80.65 87.1 

20 88.71 70.97 82.26 80.65 

29 88.71 82.26 79.03 80.65 

 
Table B5, displays the classification accuracy results by applying PSO as feature selection algorithm using 

the Wrapper selection technique with different classification algorithms.  

 
Table B5: Classification accuracies for different genes subsets using the hybridization with PSO using the wrapper 

technique 

NO. OF 

SELECTED 

GENES 

ACCURACY (%) 

PSO/SVM 
PSO/Naïve 

Bayes 
PSO/DT PSO/GP 

10 72.58 62.90 62.90 70.97 

25 82.26 62.90 79.03 79.03 

50 90.32 64.52 72.58 83.87 

75 91.94 61.29 72.58 72.58 

100 93.55 58.07 70.97 72.58 

112 93.55 58.07 70.97 83.87 

 
Table B6, displays the classification accuracy results by applying PSO as the feature selection algorithm 

using the Classifier selection technique with different classification algorithms.  
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Table B6: Classification accuracies for different genes subsets using the hybridization with PSO using the classifier 

technique 

NO. OF 

SELECTED 

GENES 

ACCURACY (%) 

PSO/SVM PSO/Naïve Bayes PSO/DT PSO/GP 

5 64.52 59.68 64.52 53.23 

10 62.90 54.84 56.45 62.9 

15 62.90 51.61 69.90 66.13 

20 66.13 56.45 72.58 66.13 

25 67.74 54.84 77.42 67.74 

30 69.35 53.23 79.03 66.13 

38 66.13 53.23 79.03 67.74 

 

In addition, Table B7 displays the classification accuracy results of the experiment by applying the 

hybridization of IG with different classification algorithms using the 10, 25, 50, 75, 100, 110, 125 and 134 

top ranked selected genes.  

 
Table B7: Classification accuracies for different genes subsets using the hybridization with IG 

NO. OF 

SELECTED 

GENES 

ACCURACY (%) 

IG/SVM IG/Naïve Bayes IG/ DT IG/ GP 

10 85.48 83.87 83.87 85.48 

25 88.71 80.65 83.87 88.71 

50 87.10 83.87 83.87 83.87 

75 85.48 82.26 85.48 85.48 

100 87.10 80.65 87.10 82.26 

110 85.48 77.42 82.48 83.87 

125 87.10 79.03 88.71 82.26 

134 83.87 79.03 88.71 83.87 

 


