375 research outputs found

    Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images

    Get PDF
    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of image matching (pixel-to-pixel correspondence) and point cloud registration (point-to-point correspondence), as the correspondence between the image and the point cloud (pixel-to-point) is inherent to the reflectance images. False correspondences are removed by a geometric invariance check. The pixel-to-point correspondence and the computation of the rigid transformation parameters (RTPs) are integrated into an iterative process that allows for the pair-wise registration to be optimised. The global registration of all point clouds is obtained by a bundle adjustment using a circular self-closure constraint. Our approach is tested with both indoor and outdoor scenes acquired by a FARO LS 880 laser scanner with an angular resolution of 0.036° and 0.045°, respectively. The results show that the pair-wise and global registration accuracies are of millimetre and centimetre orders, respectively, and that the process is fully automatic and converges quickly

    New point matching algorithm for panoramic reflectance images

    Full text link

    Fracture mapping in challenging environment: a 3D virtual reality approach combining terrestrial LiDAR and high definition images

    Get PDF
    ArticleThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.The latest technological developments in computer vision allow the creation of georeferenced, non-immersive desktop virtual reality (VR) environments. VR uses a computer to produce a simulated three-dimensional world in which it is possible to interact with objects and derive metric and thematic data. In this context, modern geomatic tools enable the remote acquisition of information that can be used to produce georeferenced high-definition 3D models: these can be used to create a VR in support of rock mass data processing, analysis, and interpretation. Data from laser scanning and high quality images were combined to map deterministically and characterise discontinuities with the aim of creating accurate rock mass models. Discontinuities were compared with data from traditional engineering-geological surveys in order to check the level of accuracy in terms of the attitude of individual joints and sets. The quality of data collected through geomatic surveys and field measurements in two marble quarries of the Apuan Alps (Italy) was very satisfactory. Some fundamental geotechnical indices (e.g. joint roughness, alteration, opening, moisture, and infill) were also included in the VR models. Data were grouped, analysed, and shared in a single repository for VR visualization and stability analysis in order to study the interaction between geology and human activities.The authors gratefully acknowledge the assistance of the personal of the Romana Quarry and particularly Corniani M. This paper was possible because of support from the Tuscany Region Research Project known as “Health and safety in the quarries of ornamental stones—SECURECAVE”. The authors acknowledge Pellegri M and Gullì D (Local Sanitary Agency n.1, Mining Engineering Operative Unit—Department of Prevention) and Riccucci S (Centre of GeoTechnologies, University of Siena) for their support of this research

    Scan registration using planar features

    Get PDF
    Point cloud acquisition by using laser scanners provides an efficient way for 3D as-built modelling of indoor/outdoor urban environments. In the case of large structures, multiple scans may be required to cover the entire scene and registration is needed to merge them together. In general, the identification of corresponding geometric features among a series of scans can be used to compute the 3D rigid-body transformation useful for the registration of each scan into the reference system of the final point cloud. Different automatic or semi-automatic methods have been developed to this purpose. Several solutions based on artificial targets are available, which however may not be suitable in any situations. Methods based on surface matching (like ICP and LS3D) can be applied if the scans to align have a proper geometry and surface texture. In the case of urban and architectural scenes that present the prevalence of a few basic geometric shapes ("Legoland" scenes) the availability of many planar features is exploited here for registration. The presented technique does not require artificial targets to be added to the scanned scene. In addition, unlike other surface-based techniques (like ICP) the planar feature-based registration technique is not limited to work in a pairwise manner but it can handle the simultaneous alignment of multiple scans. Finally, some applications are presented and discussed to show how this technique can achieve accuracy comparable to a consolidated registration method

    A Study of Projections for Key Point Based Registration of Panoramic Terrestrial 3D Laser Scans

    Get PDF
    Abstract This paper surveys state of the art image features and descriptors for the task of 3D scan registration based on panoramic reflectance images. As modern terrestrial laser scanners digitize their environment in a spherical way, the sphere has to be projected to a two-dimensional image. To this end, we evaluate the equirectangular, the cylindrical, the Mercator, the rectilinear, the Pannini, the stereographic, and the z-axis projection. We show that the Mercator and the Pannini projection outperform the other projection methods

    AN AUTOMATIC PROCEDURE FOR COMBINING DIGITAL IMAGES AND LASER SCANNER DATA

    Get PDF

    Terrestrial laser scanner for 3D modelling of USQ Toowoomba campus

    Get PDF
    3D digital model is a virtual representation of the real world and demand for creation of these models is increasing. Various industries recognized the advantages of these types of models. Level of detail can vary for different applications, from low level detail 3D models that can be used in tourism industry, to high level detail 3D models used in construction and engineering. 3D models of built environment provide base for efficient planning of new developments and efficient management of existing buildings and areas. Modelling of 3D models is time consuming task and depends on requirements of the final model as well as on quality of acquired data. Data for 3D modelling can be acquired by utilizing various surveying technologies or by combination of them. Terrestrial Laser Scanner technology allows collection of high amount of high quality data in relatively short time. It is this capability, of collecting data with great detail, which makes this technology appropriate for data collection as a base for 3D model. If this is combined with traditional survey methods spatial certainty of the model is ensured. Although the high amount of data is advantage when creating 3D models, it can present challenge in modelling built environment and this research project will research how the acquired data can be modelled into final 3D model

    Registration between Multiple Laser Scanner Data Sets

    Get PDF

    Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning

    Get PDF
    The importance of landscape and heritage recording and documentation with optical remote sensing sensors is well recognized at international level. The continuous development of new sensors, data capture methodologies and multi-resolution 3D representations, contributes significantly to the digital 3D documentation, mapping, conservation and representation of landscapes and heritages and to the growth of research in this field. This article reviews the actual optical 3D measurement sensors and 3D modeling techniques, with their limitations and potentialities, requirements and specifications. Examples of 3D surveying and modeling of heritage sites and objects are also shown throughout the paper
    • …
    corecore