1,526 research outputs found

    AI Methods in Algorithmic Composition: A Comprehensive Survey

    Get PDF
    Algorithmic composition is the partial or total automation of the process of music composition by using computers. Since the 1950s, different computational techniques related to Artificial Intelligence have been used for algorithmic composition, including grammatical representations, probabilistic methods, neural networks, symbolic rule-based systems, constraint programming and evolutionary algorithms. This survey aims to be a comprehensive account of research on algorithmic composition, presenting a thorough view of the field for researchers in Artificial Intelligence.This study was partially supported by a grant for the MELOMICS project (IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC- 5123) from the Consejería de Innovación y Ciencia de Andalucía

    Analysing symbolic music with probabilistic grammars

    Get PDF
    Recent developments in computational linguistics offer ways to approach the analysis of musical structure by inducing probabilistic models (in the form of grammars) over a corpus of music. These can produce idiomatic sentences from a probabilistic model of the musical language and thus offer explanations of the musical structures they model. This chapter surveys historical and current work in musical analysis using grammars, based on computational linguistic approaches. We outline the theory of probabilistic grammars and illustrate their implementation in Prolog using PRISM. Our experiments on learning the probabilities for simple grammars from pitch sequences in two kinds of symbolic musical corpora are summarized. The results support our claim that probabilistic grammars are a promising framework for computational music analysis, but also indicate that further work is required to establish their superiority over Markov models

    SCHUBOT: Machine Learning Tools for the Automated Analysis of Schubert’s Lieder

    Get PDF
    This paper compares various methods for automated musical analysis, applying machine learning techniques to gain insight about the Lieder (art songs) of com- poser Franz Schubert (1797-1828). Known as a rule-breaking, individualistic, and adventurous composer, Schubert produced hundreds of emotionally-charged songs that have challenged music theorists to this day. The algorithms presented in this paper analyze the harmonies, melodies, and texts of these songs. This paper begins with an exploration of the relevant music theory and ma- chine learning algorithms (Chapter 1), alongside a general discussion of the place Schubert holds within the world of music theory. The focus is then turned to automated harmonic analysis and hierarchical decomposition of MusicXML data, presenting new algorithms for phrase-based analysis in the context of past research (Chapter 2). Melodic analysis is then discussed (Chapter 3), using unsupervised clustering methods as a complement to harmonic analyses. This paper then seeks to analyze the texts Schubert chose for his songs in the context of the songs’ relevant musical features (Chapter 4), combining natural language processing with feature extraction to pinpoint trends in Schubert’s career

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models

    Creative Support Musical Composition System: a study on Multiple Viewpoints Representations in Variable Markov Oracle

    Get PDF
    Em meados do século XX, assistiu-se ao surgimento de uma área de estudo focada na geração au-tomática de conteúdo musical por meios computacionais. Os primeiros exemplos concentram-se no processamento offline de dados musicais mas, recentemente, a comunidade tem vindo a explorar maioritariamente sistemas musicais interativos e em tempo-real. Além disso, uma tendência recente enfatiza a importância da tecnologia assistiva, que promove uma abordagem centrada em escolhas do utilizador, oferecendo várias sugestões para um determinado problema criativo. Nesse contexto, a minha investigação tem como objetivo promover novas ferramentas de software para sistemas de suporte criativo, onde algoritmos podem participar colaborativamente no fluxo de composição. Em maior detalhe, procuro uma ferramenta que aprenda com dados musicais de tamanho variável para fornecer feedback em tempo real durante o processo de composição. À luz das características de multi-dimensionalidade e hierarquia presentes nas estruturas musicais, pretendo estudar as representações que abstraem os seus padrões temporais, para promover a geração de múltiplas soluções ordenadas por grau de optimização para um determinado contexto musical. Por fim, a natureza subjetiva da escolha é dada ao utilizador, ao qual é fornecido um número limitado de soluções 'ideais'. Uma representação simbólica da música manifestada como Modelos sob múltiplos pontos de vista, combinada com o autómato Variable Markov Oracle (VMO), é usada para testar a interação ideal entre a multi-dimensionalidade da representação e a idealidade do modelo VMO, fornecendo soluções coerentes, inovadoras e estilisticamente diversas. Para avaliar o sistema, foram realizados testes para validar a ferramenta num cenário especializado com alunos de composição, usando o modelo de testes do índice de suporte à criatividade.The mid-20th century witnessed the emergence of an area of study that focused on the automatic generation of musical content by computational means. Early examples focus on offline processing of musical data and recently, the community has moved towards interactive online musical systems. Furthermore, a recent trend stresses the importance of assistive technology, which pro-motes a user-in-loop approach by offering multiple suggestions to a given creative problem. In this context, my research aims to foster new software tools for creative support systems, where algorithms can collaboratively participate in the composition flow. In greater detail, I seek a tool that learns from variable-length musical data to provide real-time feedback during the composition process. In light of the multidimensional and hierarchical structure of music, I aim to study the representations which abstract its temporal patterns, to foster the generation of multiple ranked solutions to a given musical context. Ultimately, the subjective nature of the choice is given to the user to which a limited number of 'optimal' solutions are provided. A symbolic music representation manifested as Multiple Viewpoint Models combined with the Variable Markov Oracle (VMO) automaton, are used to test optimal interaction between the multi-dimensionality of the representation with the optimality of the VMO model in providing both style-coherent, novel, and diverse solutions. To evaluate the system, an experiment was conducted to validate the tool in an expert-based scenario with composition students, using the creativity support index test

    Creative Chord Sequence Generation for Electronic Dance Music

    Get PDF
    This paper describes the theory and implementation of a digital audio workstation plug-in for chord sequence generation. The plug-in is intended to encourage and inspire a composer of electronic dance music to explore loops through chord sequence pattern definition, position locking and generation into unlocked positions. A basic cyclic first-order statistical model is extended with latent diatonicity variables which permits sequences to depart from a specified key. Degrees of diatonicity of generated sequences can be explored and parameters for voicing the sequences can be manipulated. Feedback on the concepts, interface, and usability was given by a small focus group of musicians and music producers.This research was supported by the project I2C8 (Inspiring to Create) which is funded by the European Union's Horizon 2020 Research and Innovation programme under grant agreement number 754401

    Automated manipulation of musical grammars to support episodic interactive experiences

    Get PDF
    Music is used to enhance the experience of participants and visitors in a range of settings including theatre, film, video games, installations and theme parks. These experiences may be interactive, contrastingly episodic and with variable duration. Hence, the musical accompaniment needs to be dynamic and to transition between contrasting music passages. In these contexts, computer generation of music may be necessary for practical reasons including distribution and cost. Automated and dynamic composition algorithms exist but are not well-suited to a highly interactive episodic context owing to transition-related problems including discontinuity, abruptness, extended repetitiveness and lack of musical granularity and musical form. Addressing these problems requires algorithms capable of reacting to participant behaviour and episodic change in order to generate formic music that is continuous and coherent during transitions. This thesis presents the Form-Aware Transitioning and Recovering Algorithm (FATRA) for realtime, adaptive, form-aware music generation to provide continuous musical accompaniment in episodic context. FATRA combines stochastic grammar adaptation and grammar merging in real time. The Form-Aware Transition Engine (FATE) implementation of FATRA estimates the time-occurrence of upcoming narrative transitions and generates a harmonic sequence as narrative accompaniment with a focus on coherent, form-aware music transitioning between music passages of contrasting character. Using FATE, FATRA has been evaluated in three perceptual user studies: An audioaugmented real museum experience, a computer-simulated museum experience and a music-focused online study detached from narrative. Music transitions of FATRA were benchmarked against common approaches of the video game industry, i.e. crossfading and direct transitions. The participants were overall content with the music of FATE during their experience. Transitions of FATE were significantly favoured against the crossfading benchmark and competitive against the direct transitions benchmark, without statistical significance for the latter comparison. In addition, technical evaluation demonstrated capabilities of FATRA including form generation, repetitiveness avoidance and style/form recovery in case of falsely predicted narrative transitions. Technical results along with perceptual preference and competitiveness against the benchmark approaches are deemed as positive and the structural advantages of FATRA, including form-aware transitioning, carry considerable potential for future research

    Generation of Two-Voice Imitative Counterpoint from Statistical Models

    Get PDF
    Generating new music based on rules of counterpoint has been deeply studied in music informatics. In this article, we try to go further, exploring a method for generating new music based on the style of Palestrina, based on combining statistical generation and pattern discovery. A template piece is used for pattern discovery, and the patterns are selected and organized according to a probabilistic distribution, using horizontal viewpoints to describe melodic properties of events. Once the template is covered with patterns, two-voice counterpoint in a florid style is generated into those patterns using a first-order Markov model. The template method solves the problem of coherence and imitation never addressed before in previous research in counterpoint music generation. For constructing the Markov model, vertical slices of pitch and rhythm are compiled over a large corpus of dyads from Palestrina masses. The template enforces different restrictions that filter the possible paths through the generation process. A double backtracking algorithm is implemented to handle cases where no solutions are found at some point within a generation path. Results are evaluated by both information content and listener evaluation, and the paper concludes with a proposed relationship between musical quality and information content. Part of this research has been presented at SMC 2016 in Hamburg, Germany

    A standard format proposal for hierarchical analyses and representations

    Get PDF
    In the realm of digital musicology, standardizations efforts to date have mostly concentrated on the representation of music. Analyses of music are increasingly being generated or communicated by digital means. We demonstrate that the same arguments for the desirability of standardization in the representation of music apply also to the representation of analyses of music: proper preservation, sharing of data, and facilitation of digital processing. We concentrate here on analyses which can be described as hierarchical and show that this covers a broad range of existing analytical formats. We propose an extension of MEI (Music Encoding Initiative) to allow the encoding of analyses unambiguously associated with and aligned to a representation of the music analysed, making use of existing mechanisms within MEI's parent TEI (Text Encoding Initiative) for the representation of trees and graphs
    corecore