
Chapter 7
Analysing Symbolic Music
with Probabilistic Grammars

Samer Abdallah, Nicolas Gold, and Alan Marsden

Abstract Recent developments in computational linguistics offer ways to approach
the analysis of musical structure by inducing probabilistic models (in the form of
grammars) over a corpus of music. These can produce idiomatic sentences from a
probabilistic model of the musical language and thus offer explanations of the musical
structures they model. This chapter surveys historical and current work in musical
analysis using grammars, based on computational linguistic approaches. We outline
the theory of probabilistic grammars and illustrate their implementation in Prolog
using PRISM. Our experiments on learning the probabilities for simple grammars
from pitch sequences in two kinds of symbolic musical corpora are summarized. The
results support our claim that probabilistic grammars are a promising framework
for computational music analysis, but also indicate that further work is required to
establish their superiority over Markov models.

7.1 Introduction

Music is, arguably and amongst other things, structured sound. Music analysis is
that branch of musicology which aims to explain the structure of pieces of music,
in the sense of giving an account both of the relationships between different parts
of the same piece, and the relationships between the piece and patterns common to
other pieces of music. Theories of music analysis thus typically identify, classify,
and relate musically meaningful parts of a work or works. These structural aspects of
a piece of music, on the small and large scales, are crucial to its impact.
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Music analysis, whether formal or informal, thus relies on “data”: this includes
the piece itself in sonic and/or symbolic form, but also, in most cases, a wealth of
background knowledge and experience to make both the structure of a piece of music
and the derivation of that structure explicit and so open to scrutiny.

We observe that listeners come to be able to perceive structure in pieces of music
through mere exposure, though they might not be able to give an account of how they
have come to perceive this structure, nor might they be able to justify it. In both these
respects, music resembles language: speakers are able to understand and construct
grammatical sentences, but they often require training to be able to explain what
makes a sentence grammatical.

Shannon’s (1948) work on information theory perhaps offers some explanation
for this, in short, indicating that structure exists in any departure from complete
randomness (this is explored further in the next section). Humans learn probabilities
implicitly from exposure, and so effectively learn to perceive structure. This suggests
that probabilistic modelling may offer a fruitful approach to music analysis (and one
that likely demands a computational approach).

The field of computational linguistics has recently developed techniques that can
be applied in the analysis of musical structure. These can induce models over a
corpus of music. Such models take the form of probabilistic grammars from which
idiomatic sentences can be produced. The derivation and application of the grammar
rules thus offers an explanation of the musical structures modelled by them.

This chapter surveys historical and current research in computational linguistics
applied to symbolic music analysis (by which we mean analysis of music in the form
of symbolic, score-like data). The principles and operation of key developments are
discussed, and we summarize our recent feasibility studies in using probabilistic
programming techniques to provide tractable computation in this framework.

7.2 Information and Structure

Information theory provides a number of concepts that can help us to understand and
quantify what we mean by ‘structure’. Shannon’s (1948) information theory is, to a
large degree, concerned with the notion of uncertainty, quantified as entropy, and
how the reduction of uncertainty can be considered a gain in information. Entropy
is a function of probability distributions, and probability distributions can represent
subjective beliefs, that is, the degrees of belief that an intelligent agent (whether
biological like ourselves or artificial like our computers) places in a set of mutually
exclusive propositions.1 These degrees of belief can be based on any knowledge
currently possessed by the agent in combination with any prior or innate dispositions
it may have.

1 Indeed, this subjectivist view of probability was espoused by, among others, de Finetti (1975),
while Cox (1946) showed that, given certain reasonable assumptions, any system for reasoning
consistently with numerical degrees of belief must be equivalent to probability theory.
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Psychologists such as Attneave (1954) and Barlow (1961) proposed that percep-
tual systems in animals are attuned to the detection of redundancy in sensory signals,
which means, essentially, the ability to predict one part of the sensory field from
another. Often, the reason for such sensory regularities is the presence of coherent
objects and processes in the outside world, so detecting and accounting for redun-
dancy can enable the mind to see beyond the mass of sensory signals to relevant
phenomena in the world. Redundancy of this sort ensues whenever different parts of
the sensory field depart from complete statistical independence. This can be taken as
a definition of what ‘structure’ is, and perceptual learning can be seen as a process
of detecting statistical regularities on exposure to structured objects, and thereby
making inferences about events in the world. This idea has successfully accounted
for many features of perceptual processing (Knill and Pouget, 2004).

Thus, the use of probabilistic models, an approach on which we shall elaborate
further in Sect. 7.4, is not merely a computational device: it is at the heart of our
current understanding of human perception and cognition (Knill and Richards, 1996)
and also addresses ideas about the role of uncertainty and expectation in music
(Meyer, 1956).

A distinct, but related branch of information theory is algorithmic information
theory, which is built on the idea that any object which can be represented as a
sequence of symbols can also be represented by a computer program which outputs
those symbols when run. Sometimes, a very short computer program can output a
very long sequence of symbols, and hence, an ostensibly large object may be specified
by a much smaller program. The Kolmogorov complexity (Li and Vitányi, 2009) of
such an object is defined as the length of the smallest program that outputs the object
when run, and can be considered a measure of the amount of information in the
original object. As such, it is related to the minimum description length principle
(Rissanen, 1978). Kolmogorov complexity also forms the basis of Martin-Löf’s
(1966) definition of a random object as one which does not admit of any smaller
description and therefore cannot be compressed; this corresponds loosely with the
notion of redundancy described above.

Given the close connection between predictability and compressibility (Cover
and Thomas, 1991), and the probabilistic basis of optimal compression algorithms,
we observe that in both theoretical frameworks (Shannon’s information theory and
algorithmic information theory), structure can be defined as that which enables an
apparently large object to be represented more efficiently by a smaller description.
The probabilistic approach and its subjectivist interpretation also emphasize that
predictability (and hence compressibility) depend on the expectations of the observer,
and thus can accommodate the subjectivity of perception in a natural manner. In
addition, while the Kolmogorov complexity of an object is claimed to be an objective
measure, in practice, it must be approximated by using compression programs that
encode implicit or explicit assumptions about the data to be compressed and that are
usually based on probabilistic models.
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7.3 Theories of Structural Music Analysis

There are various established approaches to structure in music analysis, each of which
gives quite a different account of what a musical structure is. A Schenkerian analysis
(Schenker, 1935), for example, reveals the structure of a piece of music in hierarchical
layers of reduction, resulting in something like a tree or some other kind of restricted
directed graph (Fig. 7.1).2 A paradigmatic and syntagmatic analysis in the manner of
Nattiez (1975), on the other hand, divides the piece into units (syntagms) and groups
those units by recurrence or resemblance into paradigms. At a higher level, then, the
structure of the piece can be shown as a sequence of syntagms, each of which is an
instance of a particular paradigm (Fig. 7.2). Theories of form, dating back to the
nineteenth century, identified themes and other kinds of segments of music, assigning
each to a role within one of a number of established formal patterns such as Sonata
Form, Rondo or Binary.

Each of these analytical approaches has three common factors:

Segmentation The music is divided into meaningful units.
Classification Segments are assigned to classes.
Relation Segments are related to each other according to their role in forming

patterns of significance with other segments.

In the case of syntagmatic and paradigmatic analysis, the first two factors are clear,
and the third often follows in a later stage of the analysis where patterns in sequences
of instances of paradigms are identified, or a pattern in the occurrence of particular
paradigms, or in their evolution. In the case of Schenkerian analysis, the first two
factors work together, as groups of notes are identified as prolongations of notes at a

Fig. 7.1 An example Schenkerian analysis of the opening of Mozart’s piano sonata in A major,
K. 331. Notes on lower staves are considered to elaborate the structural notes with which they
align or between which they occur on the staff above. Notes on the upper two staves with smaller
noteheads are considered to elaborate notes with larger noteheads, and ones with solid noteheads
to elaborate ones with open noteheads. The beam links the three notes forming the Urlinie which
Schenker considered to constitute the fundamental line of every proper piece of tonal music

2 For an explanation of the relation of Schenkerian analyses to trees and graphs, see Marsden (2005).
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Fig. 7.2 An example syn-
tagmatic and paradigmatic
analysis of the opening of
Mozart’s piano sonata in A
major, K. 331. The melody
is divided into six syntagms,
identified as 1–6, and orga-
nized into two paradigms, a
and b

higher level. The patterns of those higher-level notes in turn govern the relations of
the lower-level units. Even such an apparently different approach to musical structure
as set theory (Forte, 1973) employs these three factors: groups of adjacent notes
are separated from other notes (segmentation); the pitch-class set of each group is
identified (classification); and the structure of the piece is considered to be determined
in part by the relations between the pitch-class sets.

These three are also factors in language, and grammars exist to explain how a
sentence falls into a relational structure of words (segments) according to the parts
of speech (classes). We therefore consider the idea of grammar to be applicable to
the analysis of musical structure not only because of the oft-remarked correspon-
dence between Schenkerian reduction and parsing a sentence, but also because of a
deeper correspondence between the factors determining structure in both music and
language.

This is not to deny that there are also obvious and significant differences between
language and music, in particular the often multidimensional (in the sense that a
musical event can usually be characterized in multiple ways, such as pitch, duration,
loudness, timbre, etc.) and polyphonic nature of music. These characteristics may
necessitate the development of grammars that go beyond those commonly used in
linguistics, though we note that even natural language can sometimes be described in
a multidimensional way (Bilmes and Kirchhoff, 2003).

Furthermore, we find grammars particularly suited to computational analysis of
music because (a) they are liable to implementation in computer software, and (b)
they can be learned or derived from examples of sentences or pieces of music. The
latter consideration is important, first, because it is evident that most people come to
be able to perceive structure in music simply by exposure to it,3 and second, because
crafting a grammar ‘by hand’ is not always practical for music (as we discuss below).

3 We do not claim, however, that people will necessarily come to be able to produce musical
structures simply by exposure.
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7.3.1 Links to Linguistics

It is in the field of computational linguistics that grammars have been best developed,
and so we will briefly review some of the important developments in linguistics
before narrowing our focus to grammars in music later in this section.

Languages and Grammars A language is, in theoretical terms, defined as follows:
given a well-defined set of symbols, or alphabet, a sentence is a finite sequence of
such symbols, and a language is a set of sentences. This set may be finite or infinite;
for example, if we take as our alphabet the set of lower-case latin letters a,b,c etc.,
then

{pat, pet, pit, pot, put} (L1)

is a finite language, while the languages

{ab,abab,ababab,abababab, . . .} (L2)
{ab,aabb,aaabbb,aaaabbbb, . . .} , (L3)

continued in the obvious way, are both infinite. A grammar specifies, by means
of rewrite or production rules, a recursive generative process which produces such
sentences and therefore defines a language. More formally, a grammar consists of a
set of terminal symbols that will form the alphabet of the language, a disjoint set of
non-terminal symbols, a set of production rules describing how certain sequences of
symbols may be re-written, and a distinguished non-terminal called the start symbol
(conventionally S). For example the language (L1) results from the following rules
for non-terminals S and V :

S→ pVt,

V → a | e | i | o | u ,
(G1)

where V → a | e | . . . is shorthand for the multiple rules V → a,V → e, etc. Similarly,
language (L2), sometimes referred to as (ab)n, results from

S→ ab | abS (G2)

and (L3) (or anbn) from

S→ ab | aSb . (G3)

Note that the two infinite languages involve recursive production rules, that is, non-
terminals that can expand to a sequence containing themselves.

As well as providing a recipe for generating strings from the language, a grammar
also defines a way to analyse a given sentence in terms of the sequence of rule
applications that could have been used to generate it, a process known as parsing.
Thus, parsing seeks an explanation of the observed sequence in terms of possible
generative structures and their semantic implications.



7 Analysing Symbolic Music with Probabilistic Grammars 163

A particularly important class of grammars is that of the context-free grammars.
A context-free grammar (or CFG) is a grammar in which only single non-terminal
symbols appear on the left-hand side of production rules. All of the examples above
are context-free grammars. Parsing a sequence using a CFG results in a syntax tree;
for example, the sentences abab and aabb can be parsed using grammars (G2) and
(G3) respectively as follows:

S

S

ba

ba

S

bS

ba

a

grammar (G2) grammar (G3)

Hierarchy of Grammars Chomsky (1957) classified grammars on the basis of their
production rules into a hierarchy, with simple “regular” grammars at the bottom,
followed by “context-free”, “context-sensitive”, and finally “unrestricted” grammars
at the top. Each level up is more general than the level below. For example, gram-
mars (G1) and (G2), as well as being context-free, are also members of the more
restricted class of regular grammars. There is an intimate relationship between the
levels of the hierarchy and the complexity of the computing machine, or automaton,
that is required to judge whether or not a given sequence is grammatical. Grammars
higher in the hierarchy can produce languages with more complex structures, but
require more computational resources (time and memory) to process. For example,
regular grammars require only a finite state automaton for recognition of grammati-
cal sequences; CFGs require a push-down automaton, which essentially means an
automaton with an arbitrarily deep stack in order to keep track of arbitrarily deep
recursive structures; while unrestricted grammars require a Turing tape for recogni-
tion, or a Turing machine, which is the most general type of computing machine, for
further processing. Given that natural languages are for human consumption, this
places limits on the complexity of the grammars that might describe them, especially
when the situation demands real-time production or understanding (e.g., during con-
versation). For this reason, the consensus seems to be that natural languages are
“mildly” context-sensitive. Whether or not the same applies to music is an interesting
question. Johnson-Laird (1991) suggests that, during jazz improvisation, limitations
on working memory demand that improvised structures can be described by at most
a regular grammar, whereas precomposed structures, like the chord sequence, may be
described by a context-free grammar (CFG) or higher. Similarly, we might posit that,
on a first listening, only structures describable by a regular grammar are accessible,
but repeated listening (and analysis) might reveal more complex structures, the utility
of which is to explain surface features which may have seemed surprising or arbitrary
when analysed using the simpler grammar.

Formalisms A variety of grammar formalisms have been proposed in order to deal
with linguistic structures that cannot be described simply in a context-free way; these
include tree adjoining grammars (Joshi et al., 1975), definite clause grammars or
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DCGs (Pereira and Warren, 1980), extraposition grammars (Pereira, 1981), a variety
of unification based grammars (Shieber, 1985), and type-theoretical grammars such
as Lambek calculus (Lambek, 1958) and combinatory categorical grammars or CCGs
(Steedman, 2001; Steedman and Baldridge, 2011). A unifying idea behind all these
grammar formalisms is that they attempt to provide a system, or meta-language, for
specifying grammars, that is just powerful enough to describe linguistic structures in
the domain of interest, but not so powerful that it leads to intractable computations.
In the case of both natural languages and music, this seems to require something
more than a (finite) CFG, but less than an unrestricted grammar. With the exception
of the DCG formalism, which is Turing complete (i.e., capable of performing any
computation performable by a Turing machine), the carefully limited complexity of
these meta-languages means that generation and parsing is computationally tractable
and so practically usable. Thus we may think of the grammar formalism as a kind of
special purpose programming language, which is, in the terminology of programming
language design, a high-level, declarative, domain specific language (DSL) designed
to make sentence structure easy to describe.

Parsing A wide variety of parsing technologies have been studied. DCGs written in
Prolog can be translated directly into an executable program that can both generate
and recognize sentences from the language: Prolog’s execution strategy results in top
down (recursive descent) parsing; however, this can be inefficient for very ambigu-
ous grammars. More efficient parsers can be written using dynamic programming
techniques to avoid redundant computations; these chart parsers include the bottom-
up CKY algorithm (Younger, 1967) and Earley’s top-down parser (Earley, 1970).
The close relationship between Earley’s algorithm and tabling or memoization in
general purpose logic programming (also known as Earley deduction) is well-known
(Pereira and Warren, 1983; Porter, 1986), and can be carried over very elegantly to
functional programming languages such as Scheme and Haskell using memoizing
parser combinators (Frost and Hafiz, 2006; Johnson, 1995; Norvig, 1991).

Probabilistic Grammars When a grammar is extended to cover a wide corpus,
then the number of production rules and/or the size of the lexical database means that
parsing can become very expensive due to the resulting high degree of ambiguity. It
was recognized that a majority of these alternative parses would be nonsensical, and
that this notion could be characterized by noticing that certain words or constructs
are much more likely to occur than others. Thus, though it is conceivable that “[the
man] [saw [the dog with a telescope]]”, it is much more likely that “[the man] [[saw
[the dog]] [with a telescope]]”. A grammar augmented with probabilities becomes a
probabilistic language model, capable of being used in either direction: assigning
probabilities to sentences and their syntax trees, or generating idiomatic as opposed
to merely grammatical sentences.

Perhaps the simplest examples are probabilistic context-free grammars (PCFGs),
which consist of a CFG supplemented with, for each non-terminal, a probability dis-
tribution over the possible expansions of that non-terminal. The inside-out algorithm
(Baker, 1979) can compute the probabilities of alternative parses. Efficient algorithms
for probabilistic parsing were developed during the 1990s (Abney, 1997; Collins,
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1999; Goodman, 1998; Stolcke, 1995) and have gone on to revolutionize compu-
tational linguistics, resulting in the current state-of-the-art in parsing and natural
language understanding.

Probabilistic grammars can support grammar induction, which is a form of in-
ductive learning where the grammar rules are not given, but must be inferred from a
collection of sample sentences. This is analogous to the situation in which a child
finds itself in the first few years of life: beginning with no knowledge of nouns, verbs,
etc., the child gains enough implicit grammar to produce (more or less) grammatical
utterances simply from hearing spoken language. This process has been modelled in
several ways; for example, Kurihara and Sato (2006) used rule splitting to explore
the space of grammar rules and Bayesian model selection criteria to choose from the
resulting grammars; Bod (2006) applied his data oriented parsing method, which
builds a collection of commonly occurring syntactic sub-trees, to both language and
music; and O’Donnell et al. (2009) used Bayesian nonparametric models to achieve
a similar goal.

One family of probabilistic grammars is based on so-called ‘log-linear’ or ‘undi-
rected’ models, which involve assigning numerical likelihoods to grammatical fea-
tures in such a way that they need not sum to one, as probabilities are required to
do (Abney, 1997; Charniak, 2000; Collins, 1997, 2003). These can yield flexible
probability models, but, due to this lack of normalization, suffer from some technical
difficulties in learning their parameters from a corpus. Goodman’s (1998) probabilis-
tic feature grammars retain much of the flexibility but avoid these problems by using
directed dependencies to obtain a properly normalized probability model. Probabilis-
tic extensions of CCG have been developed (Hockenmaier, 2001; Hockenmaier and
Steedman, 2002), also using log-linear models, with statistical parsing and parameter
learning algorithms (Clark and Curran, 2003, 2007).

7.3.2 Grammars in Musicology

While the parallels between music and linguistics go back much further (Powers,
1980), the application of formal grammars in music began in the 1960s. Winograd
(1968) used a grammar formalism called “systemic grammar” to define a grammar
for music, covering cadential and harmonic progression, chord voicing and voice
leading, and presented a LISP implementation to parse a given fragment. Despite the
use of heuristics to guide the search, high computational complexity meant that the
system was limited to analysing relatively small fragments.

Kassler (1967) made steps toward formalizing Schenker’s theory , encoding recur-
sive functions to describe the process of elaboration from Ursatz to middleground for
the top and bass voices in a polyphonic score, showing that the resulting grammar
was decidable, meaning there exists an algorithm (given in the paper) which can
determine in a finite number of steps whether or not a given musical sequence is
a member of the language defined by the grammar. Software, using backtracking
search and written in APL, was presented in later work (Kassler, 1976, 1987).
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Another system notable for its wide scope and technological sophistication was
Ebcioğlu’s (1987) CHORAL, which was implemented in a custom logic program-
ming language and included nondeterminism and heuristically-guided “best-first”
backtracking search. It was applied to harmonizing chorales in the style of J. S. Bach.

Other researchers have focused on narrower goals, such as melody analysis (Baroni
et al., 1983; Lindblom and Sundberg, 1970), jazz chord analysis (Pachet, 2000; Pachet
et al., 1996; Steedman, 1984; Ulrich, 1977) and grammars for melodic improvisation
(Johnson-Laird, 1991). Smoliar’s (1980) system was notable in that it did not attempt
to do Schenkerian analysis automatically, but instead provided the analyst with a
collection of tools to facilitate the process.

The Generative Theory of Tonal Music (GTTM) of Lerdahl and Jackendoff (1983)
was perhaps one of the more complete attempts to account for structure in music,
including melodic phrase structure, metrical structure, and hierarchical reduction
similar to that described by Schenker. Lerdahl and Jackendoff expressed their theory
in generative rules, but their approach was not computational. Subsequent attempts
to implement the theory (e.g., Hamanaka et al., 2006, 2007, see also Chaps. 9 and 10,
this volume) have encountered difficulty with their ‘preference rule’ concept.

More recent years have seen developments in computational linguistics, espe-
cially probabilistic grammars, filtering back into musicological work. For example,
Steedman’s chord grammar has inspired a number of researchers to apply more sophis-
ticated grammar formalisms to more general harmonic models (Granroth-Wilding,
2013; Granroth-Wilding and Steedman, 2012; Rohrmeier, 2006, 2011; Steedman,
2003).

On the melodic side, Mavromatis and Brown (2004) reported that they had been
able to design a grammar for Schenkerian analysis as a Prolog DCG. Schenker’s
melodic elaborations are similar to grammar production rules but because some of
them, such as the introduction of neighbour notes or passing notes, depend on two
adjacent notes, they cannot be written as a context-free grammar if the melody is
represented as a sequence of pitches. Instead, Mavromatis and Brown represented
melodic sequences as sequences of pitch intervals and were thus able to devise a
CFG to embody melodic elaborations. However, practical obstacles to a working
implementation were encountered, due to the large number of rules required.

Gilbert and Conklin (2007) also adopted this approach and designed a PCFG to
model both melodic and rhythmic elaborations. Their grammar included five basic
melodic elaborations (including the repeat, neighbour, passing, and escape types of
ornamentation used in our experiments, described in Sect. 7.5). Figure 7.3 shows
how a short melodic sequence can be represented as a sequence of pitch intervals and
described in terms of a syntax tree using two of the elaboration rules (the term rule
simply emits a terminal symbol). We will build on this grammar later in Sect. 7.5.

Issues of how to represent tree-like elaboration structures to enable a grammar-
based analysis were examined by Marsden (2005), who showed that adopting an
interval-based encoding, though sufficient to allow a context-free description for
some types of melodic elaboration, is not sufficient in general to cope with other
musical structures such as suspensions and anticipations which are (locally) context-
dependent in a fundamental way. He went on to develop software for the analysis of
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I(-2):rep

I(-2):term
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I(0):term
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Fig. 7.3 An example of a syntax tree for a short sequence of melodic intervals. The grid below is a
piano-roll representation of the notes with the arrows showing the pitch (in semitones) and time
intervals between successive notes

short fragments based on bottom-up chart parsing, heuristics for ranking the quality
of analyses, and pruning (similar to beam search) to limit the search space (Marsden,
2007, 2010, 2011).

Kirlin and Jensen (2011) and Kirlin (2014) also base their probabilistic model of
musical hierarchies on the elaboration of intervals, adopting Yust’s (2009) triangu-
lated graphs as their structured representation, rather than the trees of conventional
grammatical analysis. Another recent grammar-based approach to music analysis is
that of Sidorov et al. (2014), who implement a non-probabilistic form of grammar
induction.

In the literature on music theory, Temperley (2007) is the most prominent appli-
cation of a probabilistic approach. Most of the book is concerned with recognition
of high-level features such as metre and key rather than structures at the level of
phrases and notes, but it does include a discussion of a possible approach to modelling
Schenkerian analysis through a probabilistic grammar (pp. 172–179). This chapter
could be seen in part as a response to Temperley’s challenge to Schenkerian theorists
to demonstrate how the theory ‘reduces the uncertainty of tonal music’ (p. 179).

7.4 Probabilistic Models

A probabilistic model (henceforth, simply ‘model’) of a domain is essentially an
assignment of probabilities to things in that domain. It is these probabilities which
determine how surprising a thing is and, in the case of a partially observed temporally
unfolding object such as a piece of music, how it might continue.

Although models and data may seem rather abstracted from issues of music, if one
considers ‘data’ to be one or many musical works in symbolic form and a ‘model’
as, for example, a structural analysis of a single piece, or a music theory for a large
corpus of works, the application of these concepts becomes clearer.
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7.4.1 Model Selection Criteria

The most effective models are adaptable to new situations (such as new musical
styles) on the basis of observations. Even when listening to an individual piece, our
expectations are fluid and adaptable: a theme or motif is less surprising when heard a
second time or in some subsequent variation.

In all practical cases, the data is finite. Unless we have very specific information
about how the data was generated, it will not be possible to determine a single
‘correct’ probabilistic model. For one thing, it is not possible to extract the infinite
amount of information required to determine real-valued parameters from data that
contains only a finite amount of information about them; for example, neither the
mean and variance of a Gaussian distribution, nor the probability of a biased die
rolling a six can be determined with certainty from a finite sequence of observations.
In another, deeper sense, if the amount if data is limited in an essential way, such that
there cannot be any more data (for example, the set of pieces composed by Ravel)
then it can be argued that an objective probability distribution describing this set
does not exist. To give another example, in a certain literal sense, the only pieces
in the style of Mozart are the ones he actually wrote. However, musicians regularly
use this concept, and broadly mean ‘if Mozart had written another piece, then it
might have been like this’. This of course is contrafactual, making clear why an
objectively ‘correct’ model is not possible. Thus candidate models must be evaluated
to determine which is the most plausible given the data available.

A number of familiar machine-learning issues arise in this problem of ‘model
selection’. One is over-fitting, where an overly complex model becomes too tightly
coupled to incidental rather than essential features of the data, leading to poor gener-
alization. Conversely, an overly simple model may under-fit, and not capture enough
of the regularities that are in the data.

Bayesian model selection criteria offer a theoretically and philosophically ap-
pealing approach to addressing these issues (Dowe et al., 2007; Kass and Raftery,
1995). Bayesian inference is underpinned by the consistent use of probability to
capture the inferrer’s uncertainty about everything under consideration, including
the models themselves (and their parameters). An inferring agent with modelM
with parameters θ ∈Θ (where Θ is the parameter space) can initially only set those
parameters as an uncertain probability distribution (the prior distribution P(θ |M)).
After observing some data D, the agent will update the state of its belief, giving a
posterior distribution:

P(θ |D,M) =
P(D|θ ,M)P(θ |M)

P(D|M)
, (7.1)

This accounts for the prior and the likelihood that the model with parameters θ could
have produced the data. To best predict a new item of data d, given the model and
observations so far, the agent needs to compute
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P(d|D,M) =
∫

Θ

P(d|θ ,M)P(θ |D,M) dθ .

As long as the agent remembers the posterior distribution P(θ |D,M), the data is no
longer needed. The evidence (the denominator in (7.1)) is computed thus

P(D|M) =
∫

Θ

P(D|θ ,M)P(θ |M) dθ . (7.2)

With multiple candidate models, inference takes place on distributions over those
models (rather than parameters) with prior P(Mi) and posterior

P(Mi|D) =
P(D|Mi)P(Mi)

P(D) . (7.3)

If the prior over models P(Mi) is relatively flat (i.e., no model is distinctly more
probable than others), then the evidence is the key determinant of the relative plausi-
bility of each model after data observation. The posterior distribution can be used
to make predictions and decisions (model averaging) and if a decision is required,
the model with the greatest evidence can be selected. While it is clear that the evi-
dence P(D|M) rewards models that are able to fit the data well in some part of their
parameter space—since P(D|θ ,M) will be large in this region—it also penalizes
models that are more complex than the data can support.

To see why this is so, consider that, for a given size of dataset, P(D|M) is a
probability distribution over the space of complete datasets and therefore only has
a finite amount of probability mass to spread out over that space. Simple models
are only able to assign significant probability mass to a small set of datasets, while
complex models betray their complexity by being able to assign probability mass to a
much larger space of datasets. Figure 7.4 shows how this results in trade-off when we
wish to choose a model for a particular observed dataset D1. In short, modelM1 is
too inflexible and a poor fit, whileM3 is flexible enough but unnecessarily complex.
ModelM2 out-performs both.

This automatic penalty for overly-complex models gives us a formal expression of
Ockham’s razor, the philosophical principle that, other things being equal, we should
choose the simplest explanation for observations.

Simplicity can also be expressed in terms of the minimum message length principle
(Wallace and Boulton, 1968) and the related minimum description length principle
(Rissanen, 1978). These state that models that produce the shortest possible descrip-
tion of the data (including the description of any necessary model parameters) should
be selected. The close relationship between compression and probabilistic structure
means that this is essentially the same as the Bayesian approach (MacKay, 2003),
with some minor differences (Baxter and Oliver, 1994).

The relationship between message length, the Bayesian evidence, and model
complexity can be illuminated further by recalling that, for optimal compression,
an object x should be encoded by a message of length d− logP(x)e bits (assuming
logarithms to the base 2), where P(x) is the probability that both sender and receiver
assign to x and d·e is the operation of rounding-up to an integer value. If the ob-
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Fig. 7.4 An illustration of how model complexity and data-fit interact to determine the Bayesian
evidence. The x-axis represents the space of all possible datasets of a given size (in most cases this
will be a very high-dimensional space, but one dimension is sufficient to illustrate the principle).
The curves are the probability distributions over datasets assigned by each of three models, so the
total area under each curve is the same. M1 is not flexible enough to assign much probability to
the observed dataset D1, while M3 is flexible enough to assign probability to a great variety of
datasets, including D1. In doing so, however, it must spread out its probability mass more thinly. By
being just flexible enough, M2 receives greater evidence than either M1 or M3

ject to be transmitted is a dataset D, then clearly, the modelMi with the greatest
evidence P(D|Mi) will yield the shortest message, encoding the entire dataset in
approximately − logP(D|Mi) bits.

Looking more closely at how the evidence relates to the model parameters θ ,
we can reason that a well-fitting model would assign a high probability to the data
for a certain optimal value of θ , say θ̂ . Given that P(D|θ̂ ,M) is relatively high, a
relatively short message of length approximately − logP(D|θ̂ ,M) bits could be sent
to describe the dataset, but only if sender and receiver had agreed on θ̂ beforehand.
Since θ̂ depends on the data that only the sender has access to, this is not possible, so
the sender must send a message approximately − logP(θ̂ |M) bits long describing
θ̂ first. If the model is complex in the sense of having a large parameter space, this
message may be large enough to offset any gains obtained from using a complex
model to increase P(D|θ̂ ,M).

The above considerations mean that the length of the message describing a dataset
D will be approximately

− logP(D|θ̂ ,M)− logP(θ̂ |M) =− logP(D, θ̂ |M) . (7.4)

This is not the same as the − logP(D|M) bits we estimated before considering the
parameters. How can we resolve this discrepancy?

Bits Back Coding Let us look again at the length of the message required to send
D and θ : this depends on P(D,θ |M) which, for a fixed dataset, is proportional
to P(θ |D,M), the posterior distribution over the parameters given the data. If this
distribution is relatively broad, it defines a region of Θ over which the total coding
cost is approximately minimal. If, instead of sending the optimal value θ̂ , the sender
sends a value chosen at random from the posterior distribution, the coding cost will
remain about the same, but this extra freedom of choice can allow an additional
message to be sent at no extra cost. This is the basis of the ‘bits back’ coding scheme,
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first described by Wallace (1990), but so named by Hinton and van Camp (1993). We
can see how this accounts for the discrepancy noted above as follows:

P(D,θ |M) = P(θ |D,M)P(D|M) ,

logP(D,θ |M) = logP(θ |D,M)+ logP(D|M) ,

logP(D|M) = 〈logP(D,θ |M)〉−〈logP(θ |D,M)〉 ,
− logP(D|M) = 〈− logP(D,θ |M)〉−H(Pθ |D,M) ,

(7.5)

where 〈·〉 denotes an expectation with respect to the posterior P(θ |D,M), and H(·)
is the entropy of the given probability distribution. Thus, the difference between
the theoretical message length − logP(D|M) and the average message length for
sending both D and θ when θ is chosen randomly from the posterior P(θ |D,M) is
the entropy of the posterior.

Variational Free Energy Representing uncertainty about model parameters, com-
puting the evidence and doing model averaging can be expensive operations computa-
tionally and approximations are often needed. For some models, variational Bayesian
learning (Jordan et al., 1998; MacKay, 1997) can be a good solution, combining
an efficient representation of uncertainty about parameters with a tractable learning
algorithm, delivering an estimate of the evidence as a function of the variational free
energy F . As with the bits back coding scheme, it too is defined by focusing on the
posterior distribution P(θ |D,M). However, instead of trying to work with the exact
posterior, we choose to approximate it with a distribution Q(θ) chosen from a more
tractable class of distributions. The free energy is then defined as a function of this
variational distribution Q:

F(Q) =−〈logP(D,θ |M)〉Q + 〈logQ(θ)〉Q (7.6)

where 〈·〉Q denotes an expectation with respect to θ drawn from the variational
distribution Q(θ). Note that this is the same, except for the reversal of sign, as the
third line of (7.5) with Q replacing the true posterior Pθ |D,M. This tells us that F(Q)
is the effective number of bits required to transmit the dataset after using the bits
back coding scheme to recover an extra H(Q) bits encoded in a random choice of θ

from Q(θ). It can be shown that F is an upper bound on − logP(D|M), minimized
when Q is as close as possible to the true posterior in a certain sense:

F(Q) =− logP(D|M)+D(Q||Pθ |D,M), (7.7)

where D(·||·) is the Kullback–Leibler divergence, a measure of distance between two
probability distributions, and non-negative. Variational Bayesian methods search the
chosen space of variational distributions to find a Q that minimizes the free energy,
and so, after the procedure is complete, we can use F(Q) instead of the true evidence
for model comparisons.

Thus, we come to the methodology we adopt for our subsequent modelling ex-
periments: given a dataset and a number of candidate models, we fit each model
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using variational Bayesian learning and use the variational free energy to compare
them—the lower the free energy, the better the model. The variational free energy
itself indicates how much information is needed to transmit the dataset using the bits
back coding scheme with the optimal variational distribution Q.

7.4.2 Probabilistic Programming

While probabilistic modelling is a powerful technique for solving problems involving
uncertainty, the translation of a model into a working computer program can become
laborious if all the mathematical machinery has to be implemented from scratch.
The development of graphical models or Bayesian networks (Pearl, 1988) made it
possible to provide software libraries that require only a high level description of the
model as a network of nodes and edges. However, the graph notation has limitations
when it comes to models with an unknown or unbounded number of objects in
the domain of interest. This motivated the development of more flexible languages
for specifying and working with a broad class of probabilistic models, including
grammars, Bayesian networks and probabilistic process models. The differences
between language and music suggest that we will need such flexibility to go beyond
the capabilities of linguistic grammar formalisms to model musical structure.

The idea behind probabilistic programming is to simplify this process by com-
bining the flexibility of general purpose programming constructs (such as structured
data types, recursion, functions, etc.) with probabilistic primitives in a high-level
programming language, allowing the description of probabilistic models at a high
level of abstraction and having the underlying framework provide the appropriate
inference and learning functions automatically.

This is ideal for problems where some unobserved underlying structure is thought
to give rise to observable consequences and an estimate of the underlying structure is
desired. The probabilistic expression of the problem implies a resulting ‘posterior’
probability distribution over underlying structures and well-known general methods
such as Markov chain Monte Carlo algorithms can be used to direct and give structure
to the search over the solution space. It also means there is a clear separation between
the exact statement of the problem and any approximations invoked to solve it.

Probabilistic programming is currently an active research topic in both artificial
intelligence and cognitive modelling and marries the power of Bayesian methods with
the flexibility and computational completeness of general programming languages.

Many probabilistic programming languages have been proposed and developed,
including probabilistic Horn abduction (Poole, 1991, 1993), stochastic logic program-
ming (Muggleton, 1996), PRISM (Sato and Kameya, 1997), Markov logic (Domingos
and Richardson, 2007), IBAL (Pfeffer, 2001), Church (Goodman et al., 2008), and
Hansei (Kiselyov and Shan, 2009).

PRISM (Sato and Kameya, 1997) supports efficient exact inference for a wide
class of discrete-valued models, with PRISM equivalents of standard models such as
hidden Markov models and PCFGs resulting in the equivalent of efficient standard
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inference and learning algorithms for these models. PRISM also supports a limited
form of Bayesian learning for a wide class of discrete-valued models including hidden
Markov models and probabilistic context-free grammars (PCFGs), resulting in the
equivalent of efficient standard inference and learning algorithms for these models.
PRISM has been used to implement probabilistic grammars for natural languages
and estimate their parameters (Sato et al., 2001) and for grammar induction using
Variational Bayes for model selection (Kurihara and Sato, 2006). It has already been
used for music modelling (Sneyers et al., 2006), and as the basis for a probabilistic
constraint logic programming (CLP) system which was also used for music modelling
(Sneyers et al., 2009).

MIT Church (Goodman et al., 2008) on the other hand, uses approximate, random-
sampling based inference mechanisms and can support a wider class of models, at
the expense of greater computational requirements as compared with exact inference
algorithms when these exist. Alternative implementations of Church have also been
developed that address exact inference for some programs (Stuhlmüller and Goodman,
2012; Wingate et al., 2011a,b).

Hansei (Kiselyov and Shan, 2009) is an example of the embedded DSL approach,
where an existing language (OCaml) is augmented with probabilistic primitives. It
inherits from the host language a sophisticated type system, higher order program-
ming facilities, a module system and libraries, all of which aid in the development of
robust and flexible models.

7.4.3 Building Probabilistic Grammars in PRISM

PRISM (PRogramming In Statistical Modelling) (Sato and Kameya, 1997) is an
attractive approach for the development of probabilistic grammars for several reasons:
grammars and interpreters can be encoded very simply by virtue of its inheritance of
Prolog’s definite clause grammar (DCG) notation and meta-programming facilities, it
can mimic Earley’s efficient chart parsing without work from the programmer (using
tabling provided by the underlying B-Prolog implementation), and it includes an
efficient implementation of variational Bayesian inference (Kurihara and Sato, 2006;
Sato et al., 2008).

To give a flavour of how PRISM can be used to encode probabilistic grammars,
we will implement the grammar (G3) from Sect. 7.3.1. The non-probabilistic form of
the grammar can be implemented trivially in Prolog using the DCG notation as:

ab −→ [a,b].
ab −→ [a], ab, [b].

The non-terminal S is represented by the DCG goal named ab with zero arguments,
referred to as ab//0. (Some notes about Prolog syntax are provided in the appendix.)
Given this program, Prolog environments are capable of answering queries about
whether or not a given string is grammatical, and of generating strings from the
language:
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?- phrase(ab,[a,a,b,b]).
yes
?- phrase(ab,[a,a,a,b]).
no
?- phrase(ab,X).
X = [a,b] ?;
X = [a,a,b,b] ?;
% etc...

To develop this into a PCFG, we must use a PRISM ‘switch’ to encode probability
distributions over the alternative expansions of each non-terminal. This can be done in
more than one way, but in this example, we will assign a label to each expansion rule.
Then we will define a switch with the same name as the associated non-terminal and
ranging over the labels of the expansion rules of that non-terminal. Finally, we modify
the definition of ab to include an explicit random choice using the msw/2 PRISM
primitive, followed by a call to DCG goal (::)//2 (written without parentheses using ::
as a binary operator) which takes two parameters: the name of the non-terminal and
the name of the chosen rule. The complete program is

:− op(500,xfx,::).
values(ab, [stop, recurse]).

ab −→ {msw(ab,Label)}, ab::Label.
ab :: stop −→ [a, b].
ab :: recurse −→ [a], ab, [b].

Once loaded, the grammar can be used in several ways: (a) for generatively sam-
pling from the implied probability distribution over sentences; (b) for analytically
computing the probability of observing a given sentence; and (c) for estimating the
parameters from a list of samples using variational Bayesian learning (note that the
variational free energy quoted by PRISM is the negative of the free energy as usually
defined):

?- sample(ab(X)).
X = [a,a,b,b]
yes
?- prob(ab([a,a,b,b]),P).
P = 0.25
yes
?- set_prism_flag(learn_model,vb).
yes
?- get_samples(50,ab(X),Data), learn(Data).

% ...various statistics about learning...
Final variational free energy: -78.533991360
% ...more statistics about learning...

Data = [ab([a,a,b,b]),ab([a,b]),ab([a,a,b,b])|...]
yes

Now that the grammar is embedded in a Turing complete probabilistic programming
language, extending it beyond what is possible using a CFG is relatively straightfor-
ward. For example, we can write a probabilistic DCG for the language anbncn by
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using a parameterized non-terminal ab//1 similar to ab//0, but returning the number4

of repeats of a and b, and then adding a parameterized recursive non-terminal c//1 to
produce that many copies of c:

values(ab, [stop, recurse]).

abc −→ ab(N), c(N).
ab(N) −→ {msw(ab,Label)}, ab(N) :: Label.
ab(zero) :: stop −→ [].
ab(succ(N)) :: recurse −→ [a], ab(N), [b].
c(zero) −→ [].
c(succ(N)) −→ [c].

This example demonstrates the ‘bidirectional’ nature of Prolog logic variables: the
argument to ab//1 is an output value, while the argument to c//1 is an input. How-
ever, if an output argument is partially or fully instantiated on input (representing a
constraint on its value) sampling execution of the program may fail, resulting in a
form of rejection sampling: the sequence of random choices involved in sampling
a sentence from the grammar can result in the violation of a constraint, requiring
that that sample be thrown away and a new one started. This example was written
carefully to avoid such an eventuality, but in general, when creating a probabilistic
version of a DCG, the possibility of failure results in a significant complication of
the algorithms required for learning and inference (Sato et al., 2005).

For our purposes, failure can be avoided by structuring the process of rule ex-
pansion to prevent any probabilistic choice resulting in failure. Instead of using
B-Prolog’s built-in DCG compiler, we wrote a DCG meta-interpreter (in PRISM)
taking production rules written in one of two forms:

Head :: Label =⇒ Body.
Head :: Label =⇒ Guard |Body.

Guard is an ordinary Prolog goal, which, combined with pattern matching against ar-
guments in Head, determines the rule’s applicability given a particular Head. Body is
not allowed to fail if the rule is selected, meaning that during non-terminal expansion
a label (from the collection of applicable rules) is sampled from its associated switch
(defined automatically by the interpreter). The body of the selected rule is interpreted
as an ordinary DCG (with the exception of using +X instead of [X] for the emission
of terminal symbols and nil instead of [] for empty productions). Non-failing Pro-
log/PRISM goals can be included in braces and X ∼ S (equivalent to {msw(S,X)})
can be used to sample a PRISM switch S.

Consider the program in Fig. 7.7. neigh denotes the neighbour note rule which
expands a non-terminal i(P) (where P is a pitch interval in semitones, but only when
P=0). The random switch step provides a sample (between −4 and 4) resulting in the
deviation P1 to the neighbour note. term defines how the non-terminal i(P) produces
the integer P: a terminal symbol.

4 Represented algebraically where zero is zero, one is succ(zero), two is succ(succ(zero)), etc.
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7.5 Experiments with Probabilistic Music Models

The techniques described above can be used to develop a range of probabilistic
models on various corpora of music. We summarize our experiments (Abdallah
and Gold, 2014a,b) to compare the performance of several models on a corpus of
monophonic melodies in Humdrum/Kern format. This comprised four datasets from
the KernScores website at http://kern.humdrum.org: 185 Bach chorales (BWV 253–
438 excluding BWV 279), which is the same dataset used by Gilbert and Conklin
(2007), a larger set of 370 Bach chorales, and two 1000-element random subsets of
the Essen folk song collection. In the description below, these datasets are referred to
as chorales, chorales371, essen1000a and essen1000b respectively.

Several probabilistic models were implemented as PDCGs, of which six are
described here. The models, with their short names, are:

p1gram 0th order Markov model over pitches
p2gram 1st order Markov model over pitches

phmm 1st order hidden Markov model over pitches
i1gram 0th order Markov model over intervals
i2gram 1st order Markov model over intervals

gilbert2 Modified Gilbert and Conklin grammar

DCG rules for these models are presented in Fig. 7.5 (p1gram, p2gram and phmm),
Fig. 7.6 (i1gram and i2gram), and Fig. 7.7 (gilbert2).

values(nnum, X) :− numlist(40,100,X).
values(mc( ), X) :− values(nnum,X).
values(hmc( ), X) :− num states(N), numlist(1,N,X).
values(obs( ), X) :− values(nnum,X).

% start symbol for p1gram
s0 :: tail =⇒ nil.
s0 :: cons =⇒ X∼ nnum, +X, s0.

% start symbol for p2gram
s1( ) :: tail =⇒ nil.
s1(Y) :: cons =⇒ X∼ mc(Y), +X, s1(X).

% start symbol for phmm
sh( ) :: tail =⇒ nil.
sh(Y) :: cons =⇒ X∼ hmc(Y), Z∼ obs(X), +Z, sh(X).

Fig. 7.5 PDCGs for zeroth- and first-order Markov chains and first-order HMMs over pitch (encoded
as MIDI note number). The number of states in the HMM is a parameter of the model
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values(ival, X) :− numlist(−20,20,X).
values(mc( ), X) :− get values(ival,X).

% start symbol for i1gram
s0 :: tail =⇒ +end.
s0 :: cons =⇒ X∼ ival, +X, s0.

% start symbol for i2gram
s1( ) :: tail =⇒ +end.
s1(Y) :: cons =⇒ X∼ mc(Y), +X, s1(X).

Fig. 7.6 PDCG for zeroth- and first-order Markov chains over pitch interval to next note in semitones

We encode pitch using MIDI note numbers and intervals as integers, in a sequence
terminated by a Prolog end atom (notes are represented as a pitch interval in semitones
to the following note, but the final note element has no subsequent pitch to encode).
In richer models including other musical attributes such as duration or metrical stress,
the attributes of the final note could be associated with the terminating symbol.

We modify Gilbert and Conklin’s (2007) original grammar in two ways. Firstly,
a different mechanism is used for introducing new intervals not captured by the
elaboration rules: the s non-terminal, instead of being parameterized by the interval
covered by the entire sequence, simply expands into a sequence of i(P) non-terminals
with the P sampled independently from the leap distribution. Secondly, because a
note is represented by the pitch interval to the following note, the i(P) :: rep rule
has i(0), i(P) on the right-hand side instead of i(P), i(0) as in Gilbert and Conklin’s
grammar (see Fig. 7.3 for an illustration of this). Additionally, we chose the numerical
ranges of the various operations (steps, leaps, and limits for passing and escape note
introduction) as these were not specified by Gilbert and Conklin.

7.5.1 Results

The models obtained in the first part of the experiment can be used to obtain proba-
bilistic parses of melodic sequences. Examples of these are shown in Figs. 7.8 and
7.9, illustrating two analyses of individual phrases from one of the Bach chorales
(BWV 270) in the chorales dataset. In the first example, note that the high values of
relative probability (RP) on the first two parses show that this is a relatively unam-
biguous parse. Note also that all four parses share the same first and last subtrees
below the s non-terminal. In the second example, the lower values of RP indicate that
this parse is much more ambiguous than that of the first phrase. Still, there is much
common structure between these parses, so we may conclude that this grammar is
fairly confident in its analysis of, for example, the final repeated note.
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values(step, X) :− numlist(−4,4,X).
values(leap, X) :− numlist(−16,16,X).
values(passing(N), Vals) :−

( N>0→ M is N−1, numlist(1,M,I1)
; N<0→ M is N+1, numlist(M,−1,I1)
),
maplist(N1, (N1,N2),N2 is N−N1,I1,Vals).

values(escape(N), Vals) :−
( N<0→ I1 = [1,2,3,4]
; N>0→ I1 = [−1,−2,−3,−4]
),
maplist(N1,(N1,N2),N2 is N−N1,I1,Vals).

% start symbol
s :: last =⇒ i(end).
s :: grow =⇒ P∼ leap, i(P), s.

i(P) :: term =⇒ +P.
i(P) :: rep =⇒ i(0), i(P).
i(P) :: neigh =⇒ P=0 |

P1∼ step, {P2 is −P1}, i(P1), i(P2).
i(P) :: pass =⇒ abs between(2,5,P) |

(P1,P2)∼ passing(P), i(P1), i(P2).
i(P) :: esc =⇒ abs between(1,16,P) |

(P1,P2)∼ escape(P), i(P1), i(P2).
abs between(L,U,X) :− Y is abs(X), between(L,U,Y).

Fig. 7.7 Extract from a grammar (Abdallah and Gold, 2014b) modelled on Gilbert and Con-
klin’s (Gilbert and Conklin, 2007), written in a DCG language defined in PRISM. maplist/5 and
between/3 are standard B-Prolog predicates and numlist(L,U,X) is true when X is a list of consecutive
integers from L to U. Code to initialize the switch probabilities and perform ancillary tasks is omitted

Figure 7.10 summarizes the performance of all the models per dataset over a range
of parameter values. To normalize the comparison of differently-sized datasets, the
variational free energy was divided by the total number of notes in the dataset to give
the ‘bits per note’ (bpn), offering a sense of the amount of information required to
encode each note under that model using the ‘bits back’ coding scheme (Honkela
and Valpola, 2004)—the lower this is, the better the model. Data for p1gram (the
zeroth-order Markov model over pitches) is not shown as its best-case performance
(3.7 bpn on the chorales) was consistently lower than all the other models.

We observe that the relative performance of i1gram and p2gram is what we would
expect, since a pair of consecutive pitches (a 2-gram) contains information about
both pitch interval and absolute pitch, while the latter is not available to i1gram.
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Fig. 7.8 Bach chorale BWV 270 (‘Befiehl du deine Wege’), phrase #1, top 4 parses. Nodes rep-
resenting non-terminals of the form i(N) are labelled with N and name of the rule used to expand
them, while the terminal symbols are written in boldface aligned on the bottom row. Also, the top
level sequence of i( ) non-terminals produced by recursive expansion of s using the grow rule have
been collapsed into a single level below the s node, as suggested by Gilbert and Conklin (2007).
The values labelled ‘RP’ are the posterior probabilities of each of the parses relative to that of the
most likely parse not displayed, in this case, the 5th one
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Fig. 7.9 Bach chorale BWV 270, phrase #3, top 3 parses. See Fig. 7.8 for an explanation of the RP
values—here, the values are relative to the probability of the 4th most probable parse
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Fig. 7.10 Chart showing the overall performance of each model against each dataset (Abdallah and
Gold, 2014b), measured in bits per note (lower bpn means better performance). For each model and
dataset pair, the bar shows the range of values obtained using various parameter combinations. The
chorales data extends beyond the top of the chart. Bars labelled as phmmN represent the HMMs
with N states

We also note that the HMMs have the widest range of results, most likely due to
the learning algorithm getting stuck in local optima (if this is the case, standard
techniques (multiple restarts, simulated annealing) available within PRISM might be
used to alleviate the problem).

Across all the datasets, the gilbert2 and i2gram models perform consistently well,
with the larger HMMs also performing competitively on the Essen collection. The
i2gram model achieves approximately 2.68 bpn on the chorales dataset with its best
parameter settings, comparable with the 2.67 bpn reported by Gilbert and Conklin
(2007).

The grammar-based model gives the best fit on both chorales datasets, although it
is beaten by the Markov model on the larger Essen datasets. The causes of this are
unclear from the current data but investigation of the learned parameters would likely
offer some explanation (some of these are illustrated in Fig. 7.11). One possibility
is that the Essen dataset is relying proportionately more on the s::grow rule of the
grammar to introduce new intervals. In the limit, this would reduce to a zeroth-
order Markov model equivalent to i1gram, which, as we have seen, performs much
worse than i2gram. Considering that higher-order Markov models would be likely to
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(a) gilbert2 – chorales

(b) gilbert2 – essen1000a

Fig. 7.11 Some of the switch distributions learned by fitting the gilbert2 model to the chorales and
essen1000a datasets. The leap distribution is used when introducing a new interval with the s::grow
rule. The step distribution is used when introducing a neighbour note. The intervals greyscale
images show the probability distributions over expansions of the non-terminal i(N) for different
values of N, bearing in mind that some rules are inapplicable for certain values. The Essen-fitted
model appears to have a higher entropy leap distribution, makes less use of the neigh and pass rules,
and has some curious structure in the term and esc probabilities for large intervals, all of which
suggest that the grammar as designed is not such a good fit for it

perform better still, we might also conclude that designing by hand a probabilistic
grammar (that is, the structure of the rules rather than the numerical probabilities
which have been optimized in this experiment) capable of out-performing variable
order Markov models would be a non-trivial task. Inducing grammar models over
a corpus of works using probabilistic methods like those explored here is likely to
make this more tractable and is desirable since variable-order Markov models cannot
offer the explanatory power of a grammatical analysis.
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7.6 Conclusions

This chapter has reviewed the principles, implementation, and application of grammar-
based models in structural music analysis. It presented relevant aspects of the under-
pinning principles of information theory and probabilistic inference, showing how
these can be applied to music.

The chapter concluded by showing that various probabilistic models of symbolic
music can be implemented and applied to collections of Bach chorales and the Essen
folk song collection (Abdallah and Gold, 2014b). A probabilistic grammar based on
that of Gilbert and Conklin (2007) performed best (in the sense of allowing efficient
representation of the collections) on the Bach chorales, but a more parsimonious
parameterization of the same grammar performed worse than a first-order Markov
model over pitch intervals.

In contrast to Markov models, however, grammars effect in a simple fashion the
three factors identified above as common in music analysis: segmentation, classi-
fication and relation. Segmentation is embodied in the sequences of symbols on
the right-hand side of rules, classification in the left-hand sides, and relation in the
structure of the resultant parse tree. Putting this with the results of our experiments
leads us to conclude that probabilistic grammars are a promising foundation for
further developments in computational music analysis.
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Appendix

Notes on Prolog Syntax Prolog code and data consist of terms built from a functor
and a number of arguments; e.g., a(10,b,X) is a term with a head functor a/3 (because
it has three arguments), and arguments 10 (an integer), b (an atom or symbol), and
X (a logic variable). Atoms and functor names start with a lower-case letter, while
variable names start with an upper-case letter or underscore. A solitary underscore ( )
stands for a variable whose value is not needed. Functors can be declared as prefix,
infix, or suffix operators, for example, we declare ∼ to be an infix operator, so the
head functor of P∼ leap is ∼ /2. The definite clause grammar (DCG) notation allows
grammar rules to be defined using clauses of the form Head −→ Body, where Head
is a term and Body is a list of one or more comma separated DCG goals. Within
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the body, a list [X,Y,...] represents a sequence of terminals, while a term enclosed in
braces {Goal} is interpreted as an ordinary Prolog goal.
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