
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Creative Support Musical Composition
System:

a study on Multiple Viewpoints
Representations in Variable Markov

Oracles

Nádia de Sousa Varela de Carvalho

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Gilberto Bernardes de Almeida

July 23, 2020

Creative Support Musical Composition System:
a study on Multiple Viewpoints Representations in

Variable Markov Oracles

Nádia de Sousa Varela de Carvalho

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Jacob
External Examiner: Prof. Maria Navarro Cáceres
Supervisor: Prof. Gilberto Bernardes de Almeida

July 23, 2020

Abstract

The mid-20th century witnessed the emergence of an area of study that focused on the automatic
generation of musical content by computational means. Early examples focus on offline process-
ing of musical data and recently, the community has moved towards interactive online musical
systems. Furthermore, a recent trend stresses the importance of assistive technology, which pro-
motes a user-in-loop approach by offering multiple suggestions to a given creative problem.

In this context, my research aims to foster new software tools for creative support systems,
where algorithms can collaboratively participate in the composition flow. In greater detail, I seek
a tool that learns from variable-length musical data to provide real-time feedback during the com-
position process.

In light of the multidimensional and hierarchical structure of music, I aim to study the repre-
sentations which abstracts its temporal patterns, to foster the generation of multiple ranked solu-
tions to a given musical context. Ultimately, the subjective nature of the choice is given to the user
to which a limited number of ‘optimal’ solutions are provided.

A symbolic music representation manifested as Multiple Viewpoint Models combined with
the Variable Markov Oracle (VMO) automaton, are used to test optimal interaction between the
multi-dimensionality of the representation with the optimality of the VMO model in providing
both style-coherent, novel, and diverse solutions. To evaluate the system, an experiment will be
conducted to validate the tool in an expert-based scenario with composition students, using the
creativity support index test.

Keywords: Musical Composition, Pattern Analysis, Variable Markov Oracle, Context-dependent,
Variable-length, Multiple Viewpoints, Musical Representations

i

ii

Resumo

Em meados do século XX, assistiu-se ao surgimento de uma área de estudo focada na geração au-
tomática de conteúdo musical por meios computacionais. Os primeiros exemplos concentram-se
no processamento offline de dados musicais mas, recentemente, a comunidade tem vindo a explo-
rar maioritariamente sistemas musicais interativos e em tempo-real. Além disso, uma tendência
recente enfatiza a importância da tecnologia assistiva, que promove uma abordagem centrada em
escolhas do utilizador, oferecendo várias sugestões para um determinado problema criativo.

Nesse contexto, a minha investigação tem como objetivo promover novas ferramentas de soft-
ware para sistemas de suporte criativo, onde algoritmos podem participar colaborativamente no
fluxo de composição. Em maior detalhe, procuro uma ferramenta que aprenda com dados musi-
cais de tamanho variável para fornecer feedback em tempo real durante o processo de composição.

À luz das características de multidimensionalidade e hierarquia presentes nas estruturas musi-
cais, pretendo estudar as representações que abstraem os seus padrões temporais, para promover a
geração de múltiplas soluções ordenadas por grau de optimização para um determinado contexto
musical. Por fim, a natureza subjetiva da escolha é dada ao utilizador, ao qual é fornecido um
número limitado de soluções ’ideais’.

Uma representação simbólica da música manifestada como Modelos sob múltiplos pontos de
vista combinada com o autómato Variable Markov Oracle (VMO), é usada para testar a interação
ideal entre a multidimensionalidade da representação e a idealidade do modelo VMO, fornecendo
soluções coerentes, inovadoras e estilisticamente diversas. Para avaliar o sistema, será realizado
um teste para validar a ferramenta num cenário especializado com alunos de composição, usando
o modelo de testes do índice de suporte à criatividade.

Keywords: Composição Musical, Análises de Padrões, Variable Markov Oracle, Representações
Múltiplas, Dependentes de contexto, Tamanho variável, Representações Musicais

iii

iv

Acknowledgements

I would like to express my deep gratitude to Professor Gilberto for his patient advice, enthusiastic
incentives and valuable critiques of this research work.

I would also like to extend my thanks to the composers who have enthusiastically answered
my request and participated in the evaluating process.

Finally, I wish to thank my family and, in particular, my parents for their constant support and
encouragement throughout my studies, both in the musical and informatic fields.

Nádia de Sousa Varela de Carvalho

v

vi

“ Music can never have enough of saying over again what has already been said,
not once or twice, but dozens of times; hardly does a section, which consists

largely of repetition, come to an end, before the whole story is happily told
all over again.”

Zuckerkandl, 1956

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Definition and Objectives . 2
1.3 Methodology . 2
1.4 Document Structure . 3
1.5 Publication . 3

2 Knowledge Support Systems for Music: A literature review 5
2.1 Knowledge Support Music Systems . 6

2.1.1 Important Concepts in Music Informatics 6
2.1.2 An Overview of CAAC Systems . 7

2.1.2.1 CAAC Systems that use Statistical Modeling 7
2.1.2.2 CAAC Systems that use Deep Learning 9

2.2 Computational Representation of Symbolic Musical Structures 9
2.2.1 String Modeling . 10

2.2.1.1 String Modeling of Monophonic Music 10
2.2.1.2 String Modeling of Polyphonic Music 11

2.2.2 Multiple Viewpoint Models . 12
2.2.3 Geometric Modeling . 13
2.2.4 Multidimensional Point Sets . 14
2.2.5 Models based on Formal Grammars and Syntax Trees 15
2.2.6 Graph-based representations . 18

2.3 Generative Algorithms . 19
2.3.1 Compression algorithms . 19

2.3.1.1 Lempel-Ziv 77 and 78 . 19
2.3.1.2 Burrows–Wheeler transform 20
2.3.1.3 SIA-based algorithms . 20

2.3.2 Genetic Algorithms . 21
2.3.3 Markov Models . 22

2.3.3.1 N-grams . 22
2.3.3.2 Hidden Markov Models . 23
2.3.3.3 Variable Order Markov Models 23

2.3.4 Factor Oracle . 24
2.3.5 Variable Order Markov Oracle . 26
2.3.6 Deep Learning Techniques . 26

2.4 Summary . 27

ix

x CONTENTS

3 Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint
Model Approach 29
3.1 Unpacking a Musical Score . 30
3.2 MusicXML . 32
3.3 Music21 . 33
3.4 Abstracting multiple viewpoints from parts . 33

3.4.1 Part Segregation: Separation of Voices 33
3.4.2 The Part Events’ Viewpoints . 34

3.4.2.1 Metadata Viewpoints . 34
3.4.2.2 Basic Viewpoints . 34
3.4.2.3 Duration Viewpoints . 36
3.4.2.4 Pitch Viewpoints . 36
3.4.2.5 Expression Viewpoints . 36
3.4.2.6 Time Viewpoints . 37
3.4.2.7 Key Viewpoints . 37
3.4.2.8 Phrase Viewpoints . 37
3.4.2.9 Derived Viewpoints . 38

3.5 Abstracting multiple viewpoints from inter-part dependencies 39
3.5.1 Metadata and Duration Viewpoints . 40
3.5.2 Key Viewpoints . 40
3.5.3 Chord Viewpoints . 40

3.6 From part events to a new Musical Score . 42

4 My Musical Suggester 45
4.1 Architecture . 45
4.2 Representation Sub-Module . 47

4.2.1 Multiple Viewpoint Models . 47
4.2.2 Segmentation of events . 49
4.2.3 Multiple Viewpoint Weights . 50

4.3 Generation Sub-Module . 51
4.3.1 Variable Order Markov Oracle . 52
4.3.2 Generation of sequences . 55

4.3.2.1 Single-Part Generation . 56
4.3.2.2 Generation of synchronized Multiple Parts 58
4.3.2.3 Ordering the Generated Sequences 62

4.4 Interface Module . 62
4.4.1 Standalone Application . 62
4.4.2 The Database Menu . 63
4.4.3 The Viewpoints Menu . 64
4.4.4 The Generation Menu . 66

5 Evaluation and Results 69
5.1 Evaluation protocols . 69

5.1.1 Task-Oriented Test . 69
5.1.2 Creative Support Index . 71

5.2 Results . 73
5.2.1 Task-Oriented Test . 73
5.2.2 Creative Support Index . 73

CONTENTS xi

6 Conclusions 77
6.1 Summary . 77
6.2 Contribution . 77
6.3 Future Work . 78

References 79

A Table of Viewpoints 85

B Creativity Support Index Form 95
B.1 Part I . 96
B.2 Part II . 97

xii CONTENTS

List of Figures

2.1 The first four bars of J. S. Bach’s Courante of his Suite No. 1 in G major, BWV
1007 . 10

2.2 Geometric Modeling for the first four bars of J. S. Bach’s Prelude Courante of his
Suite No. 1 in G major, BWV 1007 . 15

2.3 Multidimensional Point Sets projection of onset time and chromatic pitch for the
first four bars of J. S. Bach’s Prelude Courante of his Suite No. 1 in G major,
BWV 1007 . 16

2.4 Multidimensional Point Sets projection of onset time and diatonic pitch for the
first four bars of J. S. Bach’s Prelude Courante of his Suite No. 1 in G major,
BWV 1007 . 17

3.1 Organization of All Viewpoints. Dotted arrows represent relations of Viewpoint
categories to events and full arrows represent dependencies between Viewpoint
categories. 30

3.2 Part division of the first six measures of J. S. Bach’s Fugue I in C Major, BWV
846 from the Well Tempered Clavier (First Book). 31

3.3 Part division of the first two measures of J. M. Whyte’s We shall hear a voice, an
immortal voice (1890). 31

3.4 Part division of the first four measures of the 3rd Movement (Rondo Alla Turca)
of Mozart’s Piano Sonata No. 11, K.331. 32

3.5 Voice making in a passage with 2-note chords that should be divided in two voices 33
3.6 Organization of Part Viewpoints, by category. 35
3.7 Original and Chordified Versions of the first five measures of J.S. Bach’s Cantata,

"Schwingt freudig euch empr", BWV 36 . 40
3.8 Organization of Inter-Part Viewpoints. 41

4.1 General Architecture of My Musical Suggester. 45
4.2 Structure of My Musical Suggester’s Representation Sub-Module. 46
4.3 Structure of My Musical Suggester’s Generation Sub-Module. 47
4.4 Structure of My Musical Suggester’s Interface Module. 47
4.5 Process of Extracting the Multiple Viewpoints for both Part and Inter-Part Events,

starting from Part extraction to normalization of features. 48
4.6 VMO in 4.6b constructed with the duration length information of the notes in the

score in 4.6a. 53
4.7 VMOs constructed with different threshold values from the same sequence and

same feature weights. 55

xiii

xiv LIST OF FIGURES

4.8 Three Conditions in a generation from a single oracle, that started with a threshold
LRS of 2 and probability of taking forward links of 26%. The algorithm used
to choose sfx is the one that chooses uniformly among all the possible suffix (or
reverse suffix) links given the current state. The current state is annotated by a
green box and the next real state by a blue circle. In the jump by suffix links, a red
box is used to annotate the state to which the jump occurs. 59

4.9 A multiple part model, in which the last VMO, surrounded by a green box, matches
the artificial line extracted from inter-part information. 60

4.10 In Figure 4.10a, we can observe a block identification for a forward transition,
where the current state is the one in the green box and the transition chosen was
the one made by the blue arrow in the artificial line. The block stored is the one in
the blue box. In Figure 4.10b, we can see the respective musical score. 61

4.11 General Features of the GUI. 63
4.12 The Database Menu with music on the database path, and a few music selected to

parse. 64
4.13 The Viewpoints Menu after clicking on View Automatic Weights. 65
4.14 The Generation Menu after clicking on Create Oracle. 66

5.1 Instructions of First Task. 70
5.2 Instructions of Second Task. 72
5.3 CSI average score by factor, measured from 0 (less relevance of the software in

this factor) to 20 (higher relevance of the software in this factor). 74
5.4 Average values of factors importance, measured from 0 (less interest) to 5 (higher

interest). 75

B.1 Part I of Creativity Support Index . 96
B.2 Part II of Creativity Support Index . 97

List of Tables

2.1 Different possible Pitch Encodings for the example in Figure 2.1, using the various
possible techniques presented in Section 2.2.1.1, S.1. 11

2.2 Different possible Rhythm Encodings for the example in Figure 2.1, using the
various possible techniques presented in Section 2.2.1.1, S.2. 12

2.3 List of possible basic and derived viewpoints and their description 13
2.4 List of some basic and derived viewpoints for the first two bars’ events of Figure 2.1 14

xv

xvi LIST OF TABLES

Abbreviations

AO Audio Oracle
CAAC Computer-aided algorithmic composition
CSI Creativity Support Index
FO Factor Oracle
VMO Variable Markov Oracle

xvii

Chapter 1

Introduction

1.1 Context and Motivation

The mid-20th century witnessed the emergence of an area of study that focus on the automatic

creation of musical content by computational means. Early examples focus on offline processing

of musical data. Gradually, new communities have been established with their focus on musical

informatics in societies such as Sound and Music Computing (SMC)1, the International Computer

Music Association (ICMA)2 and the International Society for Music Information Retrieval (IS-

MIR)3. Recently, those communities have expanded towards interactive online musical creation.

Furthermore, a recent trend stresses the importance of computer-assisted technology, which pro-

motes a human-in-loop approach by offering multiple suggestions to a given creative problem [78].

In light of the creative challenge most authors face when addressing a new work, independent

of the support they use to express their creativity, is a possible lack of creative flow once they stare

at a blank page. Unlocking this initial process with some initial co-creative brainstorming between

human and computer can help a fluid craft of a narrative. In this context, our research aims to foster

new software tools for creative support systems, where algorithms can collaboratively participate

in the composition flow and assist in the process. As composers, we often turn to support tools

that help us in achieving new ideas in order to overcome blockages and frustration. We feel

that there is not yet a tool that does it in an efficient manner, as most that can be encountered

in the actuality have not reached the artistic community in the form of applications, just small

research systems, and those that have, do not allow for transparent solutions, adapted to the needs

of the user at different times, without requiring a great degree of learning involvement. In that

sense, we propose to develop a co-creative tool that unlocks the creative potential of a composer,

offering real-time feedback, through the suggestion of musical sequences that can foster new ideas

to populate and disrupt the creative process.

As the creative process is individual and subjective, as a composer writes using their own

interests, language and techniques, the system has to learn from variable-length data, as a user

1http://www.smcnetwork.org/
2http://www.computermusic.org/
3https://ismir.net/

1

2 Introduction

may want to learn from a small number of notes or measures or a database of musical pieces

(either their own or from other composers) and it cannot only learn from a certain style, as each

composer has its manner of creating.

1.2 Problem Definition and Objectives

Following that view, our work aims to answer the following research question: how to find a

balance between the universes of computational representations of a variable musical context, ab-

stract the patterns that best define it and generate both style-coherent, novel, and diverse solutions

from them.

To answer this question, and in a search for supporting the unlocking of the creative composi-

tion process, we defined the following three objectives for our research:

• To develop a system for creative support that learns from musical data of variable size and

structure and that provides real-time feedback during the composition process;

• To study the representations that abstract temporal patterns of hierarchical and multidimen-

sional musical structures, and

• To implement a system that generates multiple solutions, e.g. variations and continuations,

for a given musical context, ordered by their similarity to the original, so that the user can

make his choice or even, from time to time, provoke the composer to come up with new

ideas.

1.3 Methodology

To this end, we intend to develop a knowledge-support system that uses the multiple viewpoint

models suggested by Conklin and Witten [21] to encode information from symbolic musical sur-

faces. We choose this representation structure as they are the ones that allow for the best coding

of structures with flexible information, due to the manner in which they incorporate derivative

information from the basic data with a higher level of abstraction and hierarchy (for example, the

beginning and end of musical phrases and metrics).

We will then combine these representations with the Variable Markov Oracle automata to

study an optimal balance between the amount and typology of information encoded in the multiple

viewpoints and its implications in the model’s generative capabilities. Adapting the amount and

typology of musical information is sought have important creative bias in the generative output.

The resulting application, MyMusicalSuggester is planned to be manifested as a standalone

software or as a plugin for the MuseScore4 notation software, given the familiarity of the target

audience with this environments. That way, the users can ask for and receive suggestions to

continue their compositions directly in their notation software. Due to the subjective nature of

4https://musescore.org/en

1.4 Document Structure 3

the composition process and the possible lack of existing content that suits a given composer, the

use of a style-driven datasets from which MyMusicalSuggester learns musical structures is not

mandatory. Instead, the composer can use a stylistically varied database that they can compile

by parsing a collection of works of their choice. Alternatively, composers can use the datasets

supplied with the application. The user has the possibility of guiding the whole process, in order

to achieve results better adapted to their needs.

Finally, we will evaluate MyMusicalSuggester in the field, by developing and realizing tests

with composers and analysing their comments, considering the creative potential of the application

as a support system for the composition activity, as well as applying the Creative Support Index

test for comparison of results.

1.4 Document Structure

This dissertation includes sixth chapters.

Chapter 1 1 presents an introduction to the context, the motivation and objectives of the re-

search documented in this dissertation.

Chapter 2 2 comprises a review of related literature, divided into three topics: 1) an historical

perspective of knowledge support musical systems (primarily ones that endorse computer-aided

algorithmic composition) that have been implemented with similar objectives, 2) representations

that abstract information from musical sequences, and, lastly, 3) algorithms that extract temporal

patterns from these representations, from which generation of new musical sequences can be done.

Chapter 3 3 details the encoding of multiple-viewpoints from symbolic music manifestations

along with the integration with existent libraries for element-extracting.

Chapter 4r 4 presents a detailed architecture of MyMusicalSuggester, expanding on its vari-

ous modules and the connections between them.

Chapter 5 5 explains the evaluation process and discusses the results, as well, as the potential

of the system in the creative musical field.

Finally, Chapter 6 6 presents a summary of the research, its main conclusions and highlights

its original contributions. Moreover, it also promotes future challenges and open questions related

to the work.

1.5 Publication

This research led to a paper that was accepted for presentation and publication in the proceedings

of the International Conference on Computational Creativity, ICCC 20205 as:

• Carvalho, N., Bernardes, G. (2020). Balanced Tunes: A review of symbolic representations

and the modeling techniques that capture temporal hierarchy of musical surfaces. Coimbra,

2020.

5http://computationalcreativity.net/iccc20/

4 Introduction

Chapter 2

Knowledge Support Systems for Music:
A literature review

Music informatics has been historically exploring the notion that musical structure can be modeled

and predicted algorithmically, taking advantage of information theory principles and the postulate

of music as a low entropy phenomenon. Modeling and predicting or generating musical structures

is built upon the temporal and hierarchical nature of those structures, by typically informing the

algorithms using a sequence of past events [20]. Different degrees of inter-dependency can be

captured by these models across the adopted representation of the constituent elements of the

musical surface as discrete and finite alphabets. Algorithmic models capture different traits from

the musical surface, depending on the adopted intra- and inter-opus musical material. These range

from tonal music principles to stylistic idiosyncrasies of a composer or the recurrent patterns in a

composition.

The balance between familiarity to known compositional traits, captured by these algorithmic

methods and the introduction of varied, unfamiliar and unpredictable structures is of utter impor-

tance in the design of generative systems. This balance can be represented by the Wundt curve,

a hedonic function which relates the levels of novelty and expectation to the ’pleasantness’ of

creative work [9].

As Roads states in [72, p.3],"a central task of composition has always been the management

of the interaction amongst structures on different time scales." Roads [72] identifies the following

nine time scales of music: Infinite, Supra, Macro, Meso, Sound Object, Micro, Sample, Subsample

and Infinitesimal. From an operational standpoint, we will be working on the Meso and Sound

Object scales, as we are interested in the divisions of musical form that group the basic units of

musical structure into hierarchies of phrase structures. In greater detail, we seek a representation

at the Sound Object level in order to abstract patterns formed in the Meso time scale.

The review of the literature for this research has been divided into three main sections. In

5

6 Knowledge Support Systems for Music: A literature review

Section 2.1, we review existing knowledge support systems in the domain of computer-aided al-

gorithmic composition. In Section 2.2, we introduce the problem of analyzing and representing

symbolic musical structures, where a piece of music is transformed into a higher-level descrip-

tion derived from the basic surface representation [20], Finally, in Section 2.3, we present ways

to automatically discover recurrent musical patterns from the representations, to generate style-

coherent, novel and diverse musical sequences.

A large bulk of the literature review relative to the representation of symbolic musical struc-

tures is also presented in Chapter 3 due to its instrumental role in this research.

2.1 Knowledge Support Music Systems

The first experiments in the field of music informatics date from the middle of the 20th-Century,

about a decade after the first electronic digital computers. Early research in the field of gained

special momentum in 1956 when the first work composed by a computer system was presented on

the television [4]. Over the last seventy years, this area of study has expanded greatly across the

following two major lines of research:

• Statistical models combined with discrete-event systems, such as Markov chains.

• Deep Learning techniques, provided by the introduction of tools such as Magenta, a library

for python and javascript that interfaces with Tensorflow models, specifically for music.

Before reviewing these systems, some important concepts on music informatics should be

presented to better introduce the reader to the context of this dissertation.

2.1.1 Important Concepts in Music Informatics

Generative music was a term coined by Brian Eno in 1995 to describe any music created by

a system, that is ever-different and changing [31]. This concept has been interpreted in different

manners: from a linguistic approach, one can create structures using analytic theoretical constructs

that are explicit enough such as generative grammars; from an interactive field, it refers to the non-

use of discernible musical inputs during the generation process; and, from a biological perspective,

it means a non-deterministic, non-repeatable music [91].

Procedural music refers to musical structures generated from abstract set of rules set in motion

by a human composer but without its direct involvement. Audible outcomes are typically less rel-

evant as the algorithms behind them, i.e., the generative process [72]. This is especially interesting

within contexts where it is necessary to create music that can change or respond to different states

or events at varying degrees, usually in real-time.

Computer-aided composition (CAC) refers to the generation of musical content by computa-

tional means and it allows composers to design computer processes in order to generate musical

structures. It typically manifests as "offline" rendering processes [12]. However, these systems

2.1 Knowledge Support Music Systems 7

lack the specificity of using generative algorithms, and we can include in its examples notation or

sequencing software, as they aid the composers in their creative process by computational means.

Computer-aided algorithmic composition (CAAC) systems are inspired by algorithmic pro-

cesses, used in Western music since several centuries ago, and implement them in computer soft-

ware that facilitates the generation of new music by means other than the manipulation of direct

music representation [3]. These systems expand on compositional design models by computa-

tional resources, allowing for the (semi-) automatic employment of various algorithmic techniques

at different levels of the composition process [4].

Since 1995, a great number of CAAC systems have been proposed with the aim of facilitating

the generation music by means other than the manipulation of direct music representations. They

can be characterized by seven properties [3]:

1. The level of musical structures produced by the system;

2. The relationship between the computation of musical structures and their output;

3. The proximity of a system to a particular musical idiom, style, genre, or form; 4) its possi-

bility for extension;

4. The proximity of a system to a particular musical idiom, style, genre, or form; 4) its possi-

bility for extension;

5. The type of event production that it offers (either generation of events from indirect music

representations or transformation of direct music representations);

6. The sources for producing sound and event data; and

7. The environment that exposes the system’s abstractions to the user, by presenting an artificial

language to their design and configuration, only allowing the user to provide input data for

processing, without more involvement or an interactive system that allows the user to issue

commands and receive responses to which they can answer with a new command.

2.1.2 An Overview of CAAC Systems

In this section, we will be reviewing CAAC systems, taking into account the techniques they use

for abstracting musical structures and their temporal models.

2.1.2.1 CAAC Systems that use Statistical Modeling

A representative first example of CAAC is Hiller and Isaacson’s (1958) Illiac Suite, composed

using rule systems and Markov chains. Inspired by this work, a library providing standard im-

plementations of the various methods used for composing was created by Baker in 1963, called

MUSICOMP [2].

Starting in the early 1960s, Xenakis, renowned for his use of manually-drafted stochastic

algorithms in his compositions, starts adopting computers to make these methods automatic [2].

8 Knowledge Support Systems for Music: A literature review

Koening followed similar trends and implemented some techniques, such as Markov chains to

automate the generation of music, which were lately compiled in a collection of tools to facilitate

various aspects of algorithmic composition, in the AC Toolbox software [2].

In 1980, Cope developed Experiments in Musical Intelligence (EMI). The system was based

on generative models to analyze existing music and create new pieces based on them [38].

AthenaCL, the system of Ariza [4] was developed in 2005 as a software tool for creating

musical structures, using Markov transitions.

CACIE emerged in 2007 by the hand of Daichi and Iba [25] to be a system for helping com-

posers in the process of composing atonal works. It uses Tree representations of musical phrase

of music in midi format and an evolutionary (genetic) system for generating the new pieces. It

allowed for the direct manipulation of the threes by the users as well as the editing of the chromo-

somes.

MorpheuS is a music generation system proposed in 2016 by Herremans and Chew [37] that

uses pattern detection techniques (COSIATEC) to find repeated patterns in a template piece, which

are then used for applying constraints to the generation process, guided by an efficient optimization

algorithm based on evolutionary systems for a new polyphonic composition. They conclude that

the quality of the musical output could be improved by imposing more constraints such as those

related to playability and to the statistical properties of a style of music.

FlowComposer [63] uses Markov chain models for automated composition of musical lead

sheets including harmonization. The musical structures are encoded by formal string representa-

tions captured from MIDI information.

Another typical use of the statistical modeling CAAC systems is as improvisation mechanisms

that interact and follow a musician in real-time.

GenJam [10], developed in 1994 was proposed as a Jazz Improviser that builds choruses of

MIDI events on the tune of the music, by means of genetic algorithms.

Other project that builds upon human-machine co-improvisation is The OMax Project. It

consisted of a system to learn, in real-time, features of the style of a musician. The study for the

system started in 1998, but it was implemented in OpenMusic and Max and made available to the

public in 2004 by Gerard Assayag, Shlomo Dubnov, M. Chemillier and G. Bloch at IRCAM. Since

its inception, OMax has evolved in two directions: ImproteK, which adds a notion of narrative

to the improvisation and SoMax that extends on a context-guided improvisation. The DYCI2:

Dynamics of Creative Improvised Interaction) is now trying to compile the three versions on a

single program for Max/Msp [6].

The Continuator [61] was proposed in 2003 as a system that "bridges the gap between interac-

tive musical systems, limited in their ability to generate stylistically consistent material, and music

imitation systems, which are fundamentally not interactive" [61].

Freely Improvising, Learning and Transforming Evolutionary Recombination (FILTER) by [60],

uses both FOs and HMMs to learn temporal structures and a fitness function to define the balance

of novelty vs. repetition of the generated sequences.

2.2 Computational Representation of Symbolic Musical Structures 9

2.1.2.2 CAAC Systems that use Deep Learning

The use of deep learning has been growing in the last few years in the musical community. One

particular application is in the musical creation field, where it builds on the more recent techniques,

applied to available corpora, to automatically learn musical styles for generating new musical

content, proportioned by the introduction of tools such as Magenta [?].

AIVA, created also in 2016, proposes a system that can compose emotional soundtracks for

ads, video games or movies by using deep learning techniques.

BachBot, implemented in 2016 by Feynman Liang proposes the use of LSTMs to create a sys-

tem in python able to compose choral music such as J. S. Bach [45]. The results were good enough

that just half the time a user distinguished the original Bach compositions from the generated by

the system.

2.2 Computational Representation of Symbolic Musical Structures

Representing the content of musical structures in a symbolic format is not a menial task. Firstly,

pieces of music are not physical objects, and so have no single ‘ground’ manifestation [50]. Sec-

ondly, we have to consider that the attributes that define musical content are diverse and vary in the

application domain, even when considering only symbolic musical structures. For example, the

information to learn from a musical score of an unpitched percussion instrument differs from that

of a pitched one. In the context of pattern finding, music is typically a low entropy phenomena,

from an information standpoint, as repeating content is typically adopted, such as similar intervals

and melodic contour, repeating rhythmic values or chord progressions, confined registers, timbre

and instrumentation, dynamics, pitch-class sets, and so on [20].

Two generative and reductive theories have been the basis for guiding previous works on cre-

ating structure-rich representations for music: The Schenkerian Analysis (1906-1935) and the

Lerdahl and Jackendoff’s Theory (1983). Schenkerian analysis aims at finding structural depen-

dencies among the events of a musical composition, instead labeling individual objects in a musical

score by examining "interrelationships among melody, counterpoint, and harmony" in a hierarchi-

cal manner, identifying and extracting the notes with more structural significance. [40, 16] In the

Schenkerian theory, the Ursatz is the fundamental structure, as it appears over most of the work

being analyzed and in various levels of its hierarchy.

On the other hand, Lerdahl and Jackendoff attempt to describe the structure of music from

a linguistic approach by abstracting preference-rule systems (grammars) that describe a musical

work. As these rules lack weight properties that serve to distinguish the importance of each rule

and are mainly focused on vertical segmentation of the musical surface, this system is described

by its authors as an incomplete representation. In this section, multiple computational methods

for encoding attributes from symbolic musical structures are reviewed and discussed. Provided

examples encode the musical excerpt shown in Figure 2.1.

10 Knowledge Support Systems for Music: A literature review

Figure 2.1: The first four bars of J. S. Bach’s Courante of his Suite No. 1 in G major, BWV 1007

2.2.1 String Modeling

Encoding the component objects of a music manifestation as strings is one of the oldest com-

putational techniques for representation symbolic music structures. We address monophonic and

polyphonic encode techniques separately, in Section 2.2.1.1 and Section 2.2.1.2 as they present

different difficulties, specially the second, because of their properties.

2.2.1.1 String Modeling of Monophonic Music

A common string-based encoding combines pitch and rhythm information as linear sequences,

when encoding monophonic music. In his thesis, Rizo [70] defines a formal string representation

framework for monodies in which strings are defined over a finite alphabet Σ and the empty symbol

is denoted by λ /∈ Σ. Each symbol in a string X is notated for its i-th position in the string as Xi

and a substring as X[i, j], with i and j the positions of the start and end of the substring. In these

representations, pitch and rhythm are encoded as explicit symbols, belonging to the respective

alphabets, Σp and Σr. Each note event includes a combination of two symbol, one per alphabet.

Rizo [70] equally summarizes the possible alphabet encoding techniques for pitch and rhythm as

follows:

S.1 Pitch Encoding

The pitch encoding alphabet, Σp can follow different approaches such as the Common Music

Notation (pcmn), where the note is encoded as a tuple in which the first element is the name

of the note (C-B notation), the second is the accidental and the third is the octave. Other

encoding approaches are base-n representations (the most used n values are 7, 12, 21 and

40) that encode notes as integers in the [0, n] interval, with 0 being considered the rest in

most of them, Interval and Interval from tonic (pitv and pi f t) that use the relative intervals

between successive notes or to a specific note (the tonic) to map the integer value referent to

a certain note and relative pitch contour (normal or extended) that only represents the motion

direction of the pitches in the three possible simple ways (unison, ascending, or descending)

or using a discrete interval space for better definition. The differences in pitch encoding for

the chosen example are presented in Table 2.1.

S.2 Rhythm Encoding

For the rhythm encoding alphabet, all temporal dimensions of notes are considered. They

can be represented by taking into account the absolute value of time (from 0 to end of the

piece) or duration, for which it is used a quantized resolution of time in which ’16th’ is the

2.2 Computational Representation of Symbolic Musical Structures 11

Pitch Encoding Encoded Sequence
Common music notation (pcmn) (G,^,3) (G,^,3) (D,^,3) (G,^,2) (B,^,3) (C,^,4) (D,^,4) (D,^,4)

(B,^,3) (A,^,3) (B,^,3) (D,^,3) (G,^,2) (G,^,3) (A,^,3) (B,^,3)
(G,^,3) (E,^,3) (C,^,3) (C,^,2) (A,^,3) (B,^,3) (C,^,4) (B,^,3) (A,^,3)
(G,^,3) (F,\,3) (D,^,3) (D,^,2) (D,^,3) (E,^,3) (F,\,3) (G,^,3) (A,^,3)
(B,^,3)

Base-12 (p12) 8 8 3 8 12 1 3 1 12 10 12 3 8 8 10 12 8 5 1 1 10 12 1 12 10 8 7 3
3 3 5 7 8 10 12

Base-21 (p21) 13 13 4 13 19 1 4 1 19 16 19 4 13 13 16 19 13 7 1 1 16 19 1 19
16 13 11 4 4 4 5 11 13 16 19

Base-40 (p40) 26 26 9 26 38 3 9 3 38 32 38 9 26 26 32 38 26 15 3 3 32 38 3 38
32 26 21 9 9 9 15 21 26 32 38

Interval (pitv) 0 0 7 0 4 5 7 5 4 2 4 7 0 0 2 4 0 9 5 5 2 4 5 4 2 0 11 7 7 7 9 11 0 2
4

Interval from tonic (pi f t) In this case, it is the same as pitv because the first note is also the
tonic.

Contour (pc) 0 0 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1
1 1 1 1 1 1

HD-Contour (phdc) 0 0 -3 -3 4 1 1 -1 -1 -1 1 -4 -3 4 1 1 -2 -2 -2 -4 4 1 1 -1 -1 -1 -1 -2
-4 4 1 1 1 1 1

Table 2.1: Different possible Pitch Encodings for the example in Figure 2.1, using the various
possible techniques presented in Section 2.2.1.1, S.1.

most common quantization event and ’1’ usually corresponds to the elementary ’time’ event

(rtabs and rdabs, respectively). Contour can also be used with its normal or high definition

form, encoding the duration of a note as longer, equal, or shorter than the previous (or next)

note. The differences in rhythm encoding for the chosen example are presented in Table 2.2.

2.2.1.2 String Modeling of Polyphonic Music

Lemström and Pienimäki [22] propose three different methods for adopting string modeling in

polyphonic textures (two or more concurrent) voices: a Non-Interleaved, an Interleaved and an

Onset-Based representations.

The Non-Interleaved representation divides the polyphonic texture into several monophonic

lines according to composed or perceived voices and then simply represents each by an associated

(monophonic) string and stores them sequentially. This representation is most effective when

the patterns to be searched resemble an excerpt within one of the voices (Solid Occurrence), but

meaningful extraction patterns across all voices cannot be achieved from this representation.

The Interleaved representation [68] consists of sorting the notes in lexicographical order,

firstly by their onset times and then by pitch values. The method is more flexible than the non-

interleaved, yet the strict ordering enforced is not natural. It can lead to big gaps between con-

tiguously perceived notes when using edit distances to quantify how similar two musical segments

12 Knowledge Support Systems for Music: A literature review

Rhythm Encoding Encoded Sequence

Absolute time (rtabs) 0 1/2 1 3/2 2 9/4 5/2 11/4 3 13/4 7/2 4 9/2 5 21/4 11/2 6 13/2 7
15/2 8 33/4 17/2 35/4 9 37/4 19/2 10 21/2 11 45/2 13/2 47/4 12
49/4

Absolute duration (rdabs) 1/2 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/2 1/2 1/4 1/4 1/2 1/2 1/2
1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4

Contour (rc) 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 0 1 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 0 0 0
0 0

HD-Contour (rhdc) In this case, it is the same as rc because there is only changes
between close rhythm durations.

Table 2.2: Different possible Rhythm Encodings for the example in Figure 2.1, using the various
possible techniques presented in Section 2.2.1.1, S.2.

are. If transposition invariance is required, this representation is highly inefficient as it requires

computing the brute-force solution of all possible transpositions.

The Onset-Based representation [42] may be used if notes having simultaneous onsets are

modeled instead of individual notes. Careful algorithmic planning is required to avoid the combi-

natorial explosion while aligning the monophonic voices based on the onsets. When they happen

simultaneously, the notes are grouped. Comparison of musical sequences can be done straightfor-

wardly with this approach, in cases where transposition invariance is not required. As the duration

information is lost, some authors have attempted to solve this problem by fragmenting long notes

into notes of fixed duration connected by ties as in [36].

2.2.2 Multiple Viewpoint Models

The multiple viewpoint models emerged from a necessity of extending the application of statistical

modeling of music to domains where the internal structure of the events is an important factor.

They are adaptive, in the sense that a representation of a particular piece will change as that

piece progresses [21]. Pearce implemented a multiple viewpoint model in Lisp, called IDyOM

(Information Dynamics of Music) [66] [65].

The viewpoints use background domain knowledge to derive new ways of expressing events

in a sequence by introducing types (represented as τ) as abstract properties of the musical events

and for each, associating a partial function Ψτ that maps the events to this type. A viewpoint com-

prises one such function and the set of all sequences that can be represented using elements of the

respective type. A multiple viewpoint model is comprised of a collection of different viewpoints.

As the viewpoints can have correlations, a new type was introduced: the product type (τx⊗τy),

whose elements are the cross product of the constituents. For inferring to which viewpoint an event

2.2 Computational Representation of Symbolic Musical Structures 13

τ description [τ] Derived from
st start-time of the event {0, 1, 2, . . .} st

pitch pitch Z pitch
duration fraction of duration {1, 2, 3, 4, 6, 8, 12, 16} duration
keysig key signature {-4,...,+4} keysig
timesig time signature {12,16} timesig
fermata is (not) in fermata {T, F} fermata
deltast rest or not {T, F} st
accent accentuation Z accent
voice voice to which it belongs Z voice
timbre instrumentation Z timbre
gis221 difference to start-time {1, 2, . . .} st

posinbar position of event in bar {0,...,15} st
fib initial event in a bar {T, F} st

seqint sequential melodic interval Z pitch
contour same, above or under the last event {-1,0,1} pitch

hdcontour contour with extended metric {-4,...,4} pitch
referent referent of piece {0, . . . , 11} keysig
intfref vertical interval from referent {0, . . . , 11} pitch
inscale in/not in scale {T, F} pitch
intfib interval from fib [seqint] pitch
intfip interval from fip [seqint] pitch

intphbeg interval from beginning of phrase [seqint] pitch
thrbar seqint at bars [seqint] ×Z+ pitch, st
lphrase length of phrase Z+ fermata, st
thrph seqint at phrases [seqint] ×Z+ pitch, st
thrqu seqint at quarters [seqint] ×Z+ pitch, st

Table 2.3: List of possible basic and derived viewpoints and their description

belongs, it is necessary to compute the probability of belonging to that context, which involves

converting the event’s surface string to the sequences belonging to that viewpoint. That is done

by using a function Φτ that is empty for an empty event and the extension of all elements in the

viewpoint until that moment plus the current event if defined.

In a musical context, we can have several types of basic and derived elements. A summary of

possible viewpoints can be seen in Table 2.3.

For the first 2 bars of the example of Figure 2.1, a set of multiple viewpoints that could be

extracted is represented in the table 2.4.

2.2.3 Geometric Modeling

Proposed by Maidín in 1998 [48], the geometric representations for music present a technique

for creating a 2-dimensional graphic representation of the pitch-duration contour of a music score

by plotting the pitch of the notes versus their duration on a sequential timeline, with a similar

result as a piano-roll sheet. This technique allows for the use of mathematical concepts, such

14 Knowledge Support Systems for Music: A literature review

Type e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17
st 10 12 14 16 18 19 20 21 22 23 24 26 28 30 31 32 34

pitch 55 55 50 43 59 60 62 60 59 57 59 50 43 55 57 59 55
duration 2 2 2 2 1 1 1 1 1 1 2 2 2 1 1 2 2
keysig 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
timesig 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
deltast ⊥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

posinbar 10 0 2 4 6 7 8 9 10 11 0 2 4 6 7 8 10
fib F T F F F F F F F F T F F F F F F

seqint ⊥ 0 -5 -7 16 1 2 -2 -1 -2 2 -9 -7 12 2 2 -4
contour ⊥ 0 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 -1

hdcontour ⊥ 0 -3 -3 4 1 1 -1 -1 -1 1 -4 -3 4 1 1 -2
referent 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
thrbar ⊥ 0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
thrqu ⊥ 0 ⊥ -12 ⊥ ⊥ 19 ⊥ ⊥ ⊥ -4 ⊥ -16 ⊥ ⊥ 16 ⊥

Table 2.4: List of some basic and derived viewpoints for the first two bars’ events of Figure 2.1

as area and spatial transformations, when processing music scores, which are particularly useful

when computing similarities between two musical sequences. This method can be extended for

representing other features of the notes by increasing the number of dimensions used.

For the example of Figure 2.1, a possible geometric representation would be as shown in

Figure 2.2 where circled in red, we can observe similarities between small fragments of the melody

and in blue, similarities between bigger fragments of the melody.

2.2.4 Multidimensional Point Sets

The idea of using a set of points in a multidimensional Euclidean space to represent music in

the context of pattern recognition algorithms is a result of the work of Meredith [53], in order to

overcome the limitations of string-based modeling methods which, as described by the author, are

inefficient when dealing with polyphonic music (which produces a combinatorial explosion in the

number of strings required) or trying to find highly embellished occurrences of a query pattern.

In this approach, the author defines a musical object as a tuple of 5 elements in which the first

element indicates the onset time of the note and the second defines the respective chromatic pitch

(MIDI pitch - 21) for the note. The third element gives the diatonic pitch, defined by an integer that

indicates the position of the head of the note on the staff. The fourth element marks the duration

of the note and the fifth, the voice to which the note belongs.

From these point sets, it is possible to do a 2- or 3-dimensional projection, which is particularly

useful in searching for patterns as it is possible to visually discover repetitions by analyzing the

relative position of the points in the space and the geometric figures they make. Choosing the

variables for the projection depends on the kind of pattern we are aiming to find and the style

of music we are analyzing. For Tonal Music, a 2-dimensional projection using onset time and

diatonic pitch of each note is more relevant than one using chromatic pitch, as two occurrences of

2.2 Computational Representation of Symbolic Musical Structures 15

Figure 2.2: Geometric Modeling for the first four bars of J. S. Bach’s Prelude Courante of his
Suite No. 1 in G major, BWV 1007

a motive on different degrees of a scale might be perceived to be similar even if the corresponding

chromatic intervals in the patterns differ. This conversion can be made using a pitch spelling

algorithm such as ps13, which tries to compute the correct pitch names of the notes in a passage of

tonal music when given only the onset-time, chromatic pitch and possibly the duration and voice

of each note [54].

For the example of Figure 2.1, a projection of onset time and chromatic pitch and a projection

of onset time and diatonic pitch would be as shown in Figures 2.3 and 2.4. The set of multidimen-

sional points for this musical sequence would be:

{ <0, 34, 20, 2, 1>, <2, 34, 20, 2, 1>, <4, 29, 17, 2, 1>, <6, 22, 13, 2, 1>, <8, 38, 22, 1, 1>, <9,

39, 23, 1, 1>, <10, 41, 24, 1, 1>, <11, 39, 23, 1, 1>, <12, 38, 22, 1, 1>, <13, 36, 21, 1, 1>, <14,

38, 22, 2, 1>, <16, 29, 17, 2, 1>, <18, 22, 13, 2, 1>, <20, 34, 20, 1, 1>, <21, 36, 21, 1, 1>, <22,

38, 22, 2, 1>, <24, 34, 20, 2, 1>, <26, 31, 18, 2, 1>, <28, 37, 16, 2, 1>, <30, 15, 09, 2, 1>, <32,

36, 21, 1, 1>, <33, 38, 22, 1, 1>, <34, 39, 23, 1, 1>, <35, 38, 22, 1, 1>, <36, 36, 21, 1, 1>, <37,

34, 20, 1, 1>, <38, 33, 19, 2, 1>, <40, 29, 17, 2, 1>, <42, 17, 10, 2, 1>, <44, 29, 17, 1, 1>, <45,

31, 18, 1, 1>, <46, 33, 19, 1, 1>, <47, 34, 20, 1, 1>, <48, 36, 21, 1, 1>, <49, 38, 22, 1, 1>, }

2.2.5 Models based on Formal Grammars and Syntax Trees

In 1979, Curtis Roads [71] presents a small survey on several theories for using formal grammars

for representing musical sequences until that moment, such as in [79] where Smoliar implements

16 Knowledge Support Systems for Music: A literature review

Figure 2.3: Multidimensional Point Sets projection of onset time and chromatic pitch for the first
four bars of J. S. Bach’s Prelude Courante of his Suite No. 1 in G major, BWV 1007

a language for musical analysis using a tree structure, [57] in which Moorer suggests that context-

free grammars may be augmented with procedures to perform transformations to enhance the

context-sensitivity and in the Generative Theory of Tonal Music system of Lerdahl and Jackend-

off, a grammar attempts to model a "formal description of the musical intuitions of a listener who

is experienced in a musical idiom", focusing on four hierarchical systems: Grouping (related to

motives, phrases, periods and sections), Metric (regular alternation of strong and weak beats),

Time-span reduction (TSR), derived from metrical and grouping structures to at all temporal lev-

els of a work and Prolongational reductions (PR) which describe the moments of tension and

relaxation along a piece [43].

He concludes that grammars and parse trees had been found useful formal models for repre-

senting the syntax of musical structures as they allow for a very concise manner of modeling as

the production rule of a grammar is a powerful abstraction but that they were always considered

insufficient by itself, particularly in the context-free form, as the context in music is both parallel

and sequential whereas, in the formal grammars, it is only sequential.

Some more experiences were undergone in trying to apply formal grammars for representing

musical contexts, as in [51], where Mardsen and Pople proposed a grammar, implemented in

the Bol Processor, to model improvisations in North Indian tabla drumming as it is very similar

to speech. This type of music is rule-based and its rhythmic patterns are very similar to those

encountered in formal grammars. The major limitation presented for this system was that "expert

systems represent knowledge at a low (non-hierarchical) theoretical level, and so it was impossible

2.2 Computational Representation of Symbolic Musical Structures 17

Figure 2.4: Multidimensional Point Sets projection of onset time and diatonic pitch for the first
four bars of J. S. Bach’s Prelude Courante of his Suite No. 1 in G major, BWV 1007

to separate general analytical statements from specific instances of facts" [51].

As noted by Rizo in [70], the hierarchy of subdivisions of the figure duration as always been

represented in theory books, such as in [46], like a tree. For that reason, as a means to understand

and model perceived rhythms from notation, several grammars were proposed to, assuming that a

listener unconsciously performs this kind of parsing. These can be encountered in a survey done

by C. S. Lee. in [41]. However, none of those implemented the grammars in a computational

algorithm.

The OpenMusic tool, implemented at IRCAM [7], uses trees for representing the hierarchical

nature of subdividing the musical figures and groupings, allowing for the representation of tied

figures.

In [11], a grammar learns the segmentation of melodies from the ESSEN corpus, with man-

ually separated phrases, using Data-Oriented Parsing (DOP) and in [33], the parsing of simple

monophonic melodies into tree structures using a probabilistic context-free grammar allows for

their melodic reduction.

David Rizo, in his dissertation thesis in 2010 [70], presented a novel tree representation for

both monophonic and polyphonic music, suitable for doing similarity computation of musical

sequences. The construction of the three followed a metrical based hierarchical subdivision of

time, similar to that proposed by Lee [41]. The notes are only represented in the leaves of the

tree, so a set of rules were proposed for propagating the labels from the leaves upwards, labeling

the internal nodes. For polyphonic music, all voices are simply merged in the same tree with

18 Knowledge Support Systems for Music: A literature review

node labels being represented by sets of pitch classes when there are various notes played in the

different voices at the same time (chords) and using multi-sets to encode cardinalities of the labels

for representing their duration. He concluded that this tree structure is very versatile as it is able

to fit more elaborate information than simply notes or rhythm, as the musical form or harmony but

presents two main drawbacks related to its tight dependency on the meter structure of the input

source, and its difficulty to represent ties, dots, and syncopations.

2.2.6 Graph-based representations

In 2001, Marsden [49] presented his work on describing a melody as the product of successive

elaborations of a simple outline. He called his structure an E-Graph, which consisted of places,

elaborations and links. The structure is intended as a sequence of at least two places and a pair

of places can be connected by an elaboration, generating a new intermediate place, without cross-

ing links, making it interpretable as an acyclic graph, which can be easily converted in a tree

representation.

A place (representation of a note) is constituted by time (expressed in terms of a particular

metre), pitch (distinguishes between enharmonically equivalent pitches) and articulation (tied or

untied, to describe if the pitch was already sounding or not). Some particular functions were de-

veloped for dealing with pitch and time, such as chromaticUp/Down(pitch), stepUp/Down(pitch),

arpeggioUp/Down(pitch), octaveUp/Down(pitch) and timeDivision(time1, time2).

Elaborations are composed of characteristics in metre (relation between metres of places con-

nected by the elaboration to the new place resulting from this elaboration), time (same as metre but

relating to time) and pitch, and can be simple or accented. This is most important, as the kind of

elaborations allowed will, to a certain degree, define a musical language. There are various kinds

of simple elaborations, where a new note is simply inserted between two existing notes, such as

shorten (the new place is a rest), repetition (the pitch of the new place is the same as the pitch of

the first parent place), anticipation (the pitch of the new place is the same as the pitch of the second

parent place), and relating to the style of the music, (chromatic and not) passing notes, arpeggios

in the key harmony and octave jumps. The accented elaboration types refer to cases in which the

time of the original notes is unchanged, such as delays, suspensions of notes from one time to the

other and accented passing notes.

Although this representation was presented as having several potential uses, particularly for

pattern recognition in cases when the same pattern can generate different sequences of pitches or

intervals because of harmonic or pitch context differences or when a pattern is not on a top-level,

it was subsequently abandoned as excessively complex in computational terms, especially consid-

ering that it only could represent well single-line melodies and a mechanism for their parsing was

required.

Another approach to a graph representation was posteriorly presented in [80], in which the

graph intends to model a global, time-independent signature of the melody, with its pitches en-

coded in the 12-tone system, capturing its global structure while being invariant under transfor-

mations such as inversions and retrogradations. New weights were proposed for the edges of the

2.3 Generative Algorithms 19

representative graph, containing information on basic rhythmic features and order of events.

2.3 Generative Algorithms

In their theory of GTTM, Lerdahl and Jackendoff [43] state that

"the importance of parallelism [i.e., repetition] in musical structure cannot be overes-

timated. The more parallelism one can detect, the more internally coherent an analy-

sis becomes, and the less independent information must be processed and retained in

hearing or remembering a piece."

The discovery of repeated patterns is a known problem in different domains, including com-

puter vision, bioinformatics, and music information retrieval (MIR).

As explained in the introduction to this chapter, "discovering the important repetitions in a

passage of music is an essential step towards achieving a rich understanding of it" [53]. However,

most of the patterns that occur in the musical pieces were not planned by the composers or are not

even perceived when listening to it. Thus, a tool for discovery of repeated patterns in a musical

surface must be capable of discovering those interesting, relevant patterns.

In this section, we will present the algorithms that have been studied to find the redundancy in

musical structures and in particular, those that were later applied in the generation of new musical

sequences based on those patterns. Most of these algorithms also apply to text, as the treatment of

musical sequences is similar to the treatment of the text.

2.3.1 Compression algorithms

General-purpose lossless compression algorithms use the redundancy of input sequences for com-

pressing them in order to reduce their size, maintaining the maximum possible information from

the original. For that reason, it was suggested that they might be useful for finding musically rele-

vant patterns. In the next few sections, some of these algorithms will be explained as well as their

use in pattern discovery for music.

2.3.1.1 Lempel-Ziv 77 and 78

The algorithms Lempel-Ziv 77 (LZ77) [93] and 78 (LZ78) [94] were developed by Abraham Lem-

pel and Jacob Ziv in 1977 and 1978, respectively and are some of the most popular lossless data-

compression algorithms.

Both the algorithms work as a dictionary-based approach, creating a dictionary of tokens that

appear in the original input sequence. LZ77 does it by creating a search buffer where it stores the

offset of positions to move backward to reach the start of a pattern, its length, and the event after

the pattern by finding the longest match of a string that starts at the current position with a pattern

available in the search buffer. This buffer is constructed over a sliding window so the encoder and

decoder only have this data to create and get the references. The larger the sliding window is, the

20 Knowledge Support Systems for Music: A literature review

longer back the encoder may search but all data can be encoded and decoded by incorporating

a flexible and easy form of run-length encoding, repeating a single copy of data multiple times

until necessary [93]. LZ78 creates an explicit dictionary in the format dictionary[...] = index,

event and encodes the input stream by replacing repeated occurrences of data with references to

the dictionary which is constructed by searching in it for a match and if exists, replacing the index

(that refers to the last match found for that event) for the index of the event being processed. If a

match is not found, then a new dictionary entry is created and the index of the last match is reset

for the new event being processed. When the end of the input stream is reached, the algorithm

outputs the index of the last match.

In the musical domain, they were mostly used in genre-classification contexts such as in [44]

or music analysis by encountering patterns as in [47], where various general-purpose compression

algorithms were explored in pattern discovery in music for classifying folk song melodies. One of

the conclusions taken from this research was the correlation between compression factor and score

for all the algorithms, as the best classifications were achieved from the shortest representations.

2.3.1.2 Burrows–Wheeler transform

The Burrows–Wheeler transform [15] is an algorithm for preparing the data without loss for data-

compression invented by Michael Burrows and David Wheeler in 1994. Its implementation has

linear time complexity, using a suffix array for executing a permutation of the input sequence as to

bring equal elements closer together, in order of increasing the probability of finding a character c

at a point in a sequence in case of c already occurring near this point. Along with Move-to-front

coding, this means a better compression effect.

The Move-to-front algorithm encodes the string incoming from the Burrows–Wheeler trans-

form by building the alphabet of the events in the input sequence by reading it from left to right,

and then constructing a vector of the indexes of the sequence events in the alphabet. To ensure

reversibility, the algorithm needs to return the alphabet, the index vector and the index of the row

of the Burrows–Wheeler transform’s resulting matrix corresponding to the original input [47].

2.3.1.3 SIA-based algorithms

The Structure Induction Algorithm (SIA) and the SIATEC (TEC stands for translational equiva-

lence classes) were presented in 2001 [56] for discovering maximal repeated patterns in any set of

points in Cartesian spaces of any dimensionality, in particular in musical surfaces.

SIA can be described as the computation of a structure set of all the maximal subsets from a

dataset of any set of points with any number of dimensions for which can be encountered a metric

that gives their total ordering, removing repetition under symmetry for helping prevent waste of

effort and duplication of results but admitting unlimited gaps in the patterns found [52].

2.3 Generative Algorithms 21

SIATEC extends SIA by calculating all the occurrences of each of the maximal repeated pat-

terns computed by this algorithm, generating a set of translational equivalence classes. Transla-

tional equivalence between patterns happens if one can be obtained from the other only by trans-

lation. Each pattern can only be contained in a TEC, as it contains all the translationally invariant

patterns [52].

Using the SIATEC algorithm, it’s authors design COSIATEC, a data-compression algorithm

to generate a compressed or efficient representation of a dataset [53]. It works by extracting the

TECs resulting from running SIATEC on a dataset and from these selecting the "best" ones that

don’t overlap. This compression algorithm was used in [53] to find themes and motives in a set of

15 Two-Part Inventions (BWV 772–786) by J. S. Bach. The musical sequences were represented

by using the Multidimensional Point Sets and the results generated by COSIATEC for these pieces

were concluded to be similar to what one might expect from a thematic analysis of an expert music

analyst.

In more recent works, a new extension of these algorithms, RECURSIA-RRT (Recursive trans-

latable point-set pattern discovery with the removal of redundant translators) was proposed, de-

signed to increase the compression factor achieved using any TEC cover algorithm [55].

2.3.2 Genetic Algorithms

Genetic Algorithms model the evolutionary processes without needing domain-specific knowledge

of the problem [59]. The general scheme of the algorithm implies the generation of a random

starting population of a given number of chromosomes (binary coded symbol strings that represent

an individual) and for each chromosome, the calculation of a fitness score using a fitness function

that usually represents a rule-based system that examines the ability of a chromosome to fulfill the

objective. If a chromosome achieves a score higher than a given threshold, the result is deemed as

good enough and the process terminates. Otherwise, the chromosomes with the highest scores are

sent to the next generation unmodified or are submitted to a mutation (elements of the chromosome

are modified in position) or crossover (elements of the chromosome are crossed with elements of

another chromosome, giving rise to new chromosomes that are a mix of the two). Those are the

new population for the next phase, for which the process is repeated.

The first use of Genetic algorithms for music generation was documented by Horner [39],

using a technique of thematic bridging for specifying the thematic material and delegating the

development of the new melodic sequences to the genetic algorithm.

In [64], Papadopoulos and Wiggins achieve a system for the generation of melodies of vari-

able length and rhythmic structure over chord sequences by using an automatic fitness evalua-

tion that evaluated, among other aspects, the similarity between patterns. In the following year,

Townsey [83] applied the algorithm to existing melodic material describing 21 melodic features

used as the basis for a multidimensional fitness function and mutation procedures.

In 2007, Waschka [89] implemented a system called GenDash that employs evolutionary com-

putation to help compose pieces with various instrumentation.

22 Knowledge Support Systems for Music: A literature review

In 2016, a novel evolutionary technique combining Feasible/Infeasible two-population method

(FI-2POP) and multi-objective optimization was used to create an extensible framework for music

composition called MetaCompose [76].

A recent trend in genetic algorithms seems to be the use of artificial immune systems to op-

timize the objective function that encodes the musical features, by returning multiple candidate

solutions, instead of the usual optimal one, which feats better when thinking about musical cre-

ation, where we require different solutions to the same problem. ChordAIS [58] uses Opt-aiNet

(Artificial Immune Network for Optimization) with this finality in order to assist its user in gener-

ating realistic and functional chord progressions.

2.3.3 Markov Models

In music generating systems, the use of Markov models to capture the statistical occurrence of

features in a particular piece or corpus to generate music having the distributions of those features

similar to the ones captured is one of the most explored techniques. The first system that attempted

to use Markov models was Pinkerton’s “Banal Tune-Maker” [69] in 1956, in which the author

analyzed simple nursery songs, taking the sequential probabilities of its notes (First-Order Markov

model) and then produced similar using a random walk process. In the next year, n-grams with

n in the range 1 to 8 were constructed to analyze a corpus of melodies [14] and then generate

similar ones. In the discussion of the results, the authors noted that the use of elevated order

values led to sequences most similar to the original, while lower values generate more random

results. This problem has been examined by Papadopoulos [62], where the author studies the

problems of plagiarism arising from higher-order Markov chains, proposing a mechanism to curb

excessive repetitions of source material by implementing a maximum allowable subsequence order

in a generated sequence.

2.3.3.1 N-grams

N-grams are a specific type of Markov model in which N corresponds to the total number of

preceding symbols plus the current symbol being analyzed.

One of the limitations of these contiguous n-grams is that they offer no alternatives with the

dependence of every event only on the respective contiguous neighbors (data sparsity problem)

but if all neighbors where permitted, the number of associations between events would explode in

combinatorial complexity with the increase of n and the length of the sequence. These limitations

are overcome by introducing skip-grams.

The skip-grams are a generalization of n-grams in which the events processed do not have to

be contiguous and the gaps that are skipped over. The maximum length of the skips allowed can

be fixed to a threshold in the fixed-skip model, where the tokens are only evaluated if they are

within a fixed range of skips of the event processed or can follow a variable-skip approach, useful

for sequences of events that depend on temporal structure, where the events are evaluated if the

inter-onset interval(s) (IOI) between them occur within a specified upper boundary [77].

2.3 Generative Algorithms 23

In [77], the authors analyzed the influence of fixed length of skips allowed as well as the

IOI for the variable-skip approach for reducing sparsity in pattern discovery and prediction tasks

while modeling harmony using a corpus consisting of four datasets of Western classical music in

symbolic form. They concluded that skip-grams significantly outperformed contiguous n-grams

in discovering cadences.

2.3.3.2 Hidden Markov Models

The Hidden Markov Models (HMM) are from the family of the Markov models and are used

to model relations between states that are partially hidden (from which we typically only know

part of the information, usually not enough to determine the state). For that, they use a discrete

probability distribution at each state which defines the probability of emitting a specific alphabet

symbol in this hidden state. These models are defined by a tuple of five elements, (Σ, Q, a, b,

π). Σ corresponds to the finite alphabet of visible symbols, Q is the finite set of states, a and b

relate to the mappings defining the probability of transitions between hidden states and emission

probability of each visible symbol at a given hidden state, respectively (in range 0 to 1) and π refers

to the initial probabilities of the hidden states (in range 0 to 1). For all the states, the sum of all the

probabilities of transitions between hidden states and the sum of all the emission probabilities for

each visible symbol have to amount to 1, as well as the sum of all the initial probabilities [75].

Some implementations of Hidden Markov Models in automatic generation of musical se-

quences can be observed in [32], [75] and [92]. The first consists of an HMM implementation

of the Forward-Backward, Viterbi, and Baum-Welch algorithms for learning pitch, rhythm, and

dynamics from a musical sequence and a generator that goes through the model to create new

sequences. In [75], a melodic arc analysis calculates the parameters of an HMM of first, higher, or

mixed order by using empirical counts to model the melodic arc and an accompaniment analysis

learns chords in the chord progression with their duration. Generation is not achieved by calcu-

lating the most probable sequence of notes, but rather by sampling from the distributions obtained

from the analysis, using a chosen style and tempo, time signature, scale, and respective instru-

ments are adopted from that style [75]. In their last example [92], the authors consider various

Markov models, with special attention to HMMs to solve the task of composing classical piano

pieces in the style of the Romantic era. They conclude that the major limitation of the techniques

used is that the resulting pieces lack melodic progression.

2.3.3.3 Variable Order Markov Models

Although the Hidden Markov Models provide flexible structures that can model complex sources

of sequential data, as explored in the last section, to restrict possible model architectures it is

necessary a considerable understanding of the problem domain and a large number of training

examples.

The Variable order Markov Models (VMM) extend the Markov chain models, learning from

conditional distributions where context lengths |s| vary in response to the available statistics in the

24 Knowledge Support Systems for Music: A literature review

training data, providing the means for capturing both large and small order Markov dependencies

based on the observed data. [8]

There are many algorithms for learning VMMs, but all of them are structured using three

base components: counting, smoothing (probabilities of unobserved events) and variable-length

modeling. The counting component estimates the probability for events by counting the number of

occurrences of that event appearing after a certain context in the training sequence. The smoothing

component deals with elements that were not observed in the input sequence (zero frequency

problem). The third component is where the biggest changes occur from algorithm to algorithm,

as they can construct only one or various models and may include a threshold for the considered

contexts or calculate the maximal context size from the data incoming. [8]

Some of these algorithms for constructing VMMs include:

• Prediction by Partial Match (PPM), a compression algorithm that needs a threshold value

for the maximal Markov order of the model to create and uses mechanisms of escape (a

probability for all symbols that did not appear after the context is calculated and the exceed-

ing value is allocated to the symbols have non-zero counts for this context) and exclusion

(if a symbol appears after the context it is not counted as part of the alphabet for the escape

mechanism) as its smoothing component; [19]

• Context Tree Weighting Method (CTW), works by combining many VMMs of bounded

order, calculating a set of probability distributions for each one, using a set of fixed weights;

[90]

• Probabilistic Suffix Trees (PST) which attempts to optimize the construction of a single with

a known upper-bound VMM. The objective of this algorithm is to identify a good suffix set

for a PST tree and to assign a probability distribution over the alphabet for each symbol; [74]

• Bayesian Variable Order Markov Models (BVMM) create a tree of partitions, where the

disjoint sets of every partition correspond to different contexts in a similar way to CTWs but

the weights are updated at each time taking into account the given new observations. [27]

For the generation of music, [29] implements a variant of PST for creating models for various

styles of music and generating new instances of musical sequences that respect each explicit style.

The results were more interesting as new transitions were introduced and not just juxtapositions

of motifs.

2.3.4 Factor Oracle

The Factor Oracle structure was introduced in 1999 by Allauzen, Crochemore, and Raffino [1] as

an acyclic automaton that recognizes at least the factors of a word p, having the fewer number

of states as possible (minimum is length of p plus 1) and a linear number of transitions that had

its use in optimal string matching algorithms, but were easily extended for computing repeated

2.3 Generative Algorithms 25

factors in a word and for data compression. This oracle is learned on-line, in an incremental way

and has linear complexity in time and space.

A sequence of symbols is learned by the model by creating labeled forward transitions (fac-

tor links) for sequentially numbered states and non-labeled backward transitions (suffix links) for

higher-numbered states to previous ones. These links are constructed by following the ones start-

ing in the last analyzed state (i-1) and going backward, creating a suffix link labeled with the

symbol being processed from each state to the state i, until a state is reached where there is a di-

rect transition labeled with this symbol or there are no more suffix links to follow. A suffix link is

added in i to this state, if existent, or to the initial state if not. All states are considered as accepting

states.

In a pattern discovery context, the factor links represent states that produce similar patterns

by continuing forward while suffix links correspond to states that share the largest similar subse-

quence from the input sequence.

Its first use in music dates back to 2004 in [5], where its application in a "real life" machine

improviser in a complex performance situation was proposed. In this system, the machine impro-

viser "listens" to three synchronized sources: a metric source that generates a stream of pulses,

a harmonic source that sends harmonic labels, and a melodic source that sends a stream of time-

tagged note events. The improviser continuously learns from the harmonic and melodic sources

and aligns with the metric source. When triggered, it generates a harmonic or melodic part. [5]

Two years later, and with the same finality, the authors used this model in the OMax Project has

the learning and generator model. [6].

Recently, some extensions have been made to this model to adapt probabilities in [82] and

[26]. The first extends a version of the Factor Oracle with the Probabilistic Non-deterministic

Timed Concurrent Constraint (pntcc) to decrease the probability of choosing a sequence previously

improvised by assigning integers to the links of the FO with which it is possible to calculate

probabilities to choose a link based on a probability distribution. These weights are calculated by

decreasing the weight of the forward link when chosen and computing the length of the common

suffix (context) associated with each suffix link to calculate its reward. In the second approach,

they present a system that combines interpolated probabilistic models with a factor oracle, in

which the probabilities are trained in a musical corpus and another model in which several factor

oracles, each representing a musical dimension, can communicate through message passing, using

belief propagation on a cluster graph which can use the other system. This can be applied in cases

of polyphonic or multidimensional music, as well as in improvisations with various musicians.

Another important extension was presented in 2007, by Cheng-I Wang and Shlomo Dubnov

that allows for the processing of continuous dataflows such as audio. [30] The great differences in

the algorithm are that it does not assign symbols to transitions, instead of presenting one-to-one

correspondences from states to frames in the audio buffer and it needs to calculate the degree of

similarity between frame descriptions using a distance function and a threshold value associated

with the metric over the feature space.

26 Knowledge Support Systems for Music: A literature review

2.3.5 Variable Order Markov Oracle

The Variable Order Markov Oracle (VMO) was proposed in 2014 by Cheng-I Wang and Shlomo

Dubnov [84] for clustering multivariate time series data points without specifying the number of

clusters, following along the research on both Factor and Audio Oracles.

The VMO explores the AO construction by explicitly identifying the clusters of frames formed

during it, maintaining the on-line nature of the algorithm by treating the cluster labels as the

symbolic sequence would in the factor oracle and keeping the pointers to the events in the incoming

time series according to the cluster they belong to. The threshold for calculating the degree of

similarity between is calculated via a measure of information rate (IR) which describes the extent

of the inherent structured quality of a time series, using the entropy of the events in the series. If

this value is very low, every incoming data point is considered different from all other data points

observed which translates in every data point being assigned to a different cluster, meaning no real

pattern can be abstracted from the structure. A high threshold diminishes the number of different

clusters encountered and in an extreme case, there will only be one cluster abstracted in which all

events observed are contained, and the structure does not retain any characteristics of the original

time series. [84]

The VMO was used [85] to synthesize new music audio signals by using a query music signal

that provided the map to how the materials should be recombined to guide a path traversing the

target one. The same experience was executed for both symbolic and audio musical sequences in

[87] and shown to achieve state-of-the-art performance on the JKU-PDD dataset although, because

of the use of the chroma to represent the events incoming, different occurrences of the same pattern

were not always recognized as the information from some of the voices in the musical piece is

discarded by this type representation.

In [88], the authors made a first attempt at establishing a statistical model for VMO by making

an analogy to the Hidden Markov Models based on the inference of emission probabilities. This

research was conducted to improve the machine improvisation scheme of the OMax project but did

not introduce probabilities to the transitions themselves. That was proposed a year later in [86],

where the authors assign a VMO for recording the location and length of the longest repeated

suffixes at every time step and then extract the Markov transition probabilities from the VMO,

using the lengths of longest repeated suffixes, which provide variable-length Markov transition

information. The VMO-HMM was experienced in a case study on analyzing Jazz music harmonic

progression and used in the same improvisation context as before. The authors conclude that this

new implementation provides a more compact and abstract representation of the oracle structure

while keeping its variable-length Markov properties and making it possible to unify different VMO

structures belonging to different pieces in a unique one for a whole corpus.

2.3.6 Deep Learning Techniques

In later years, deep learning has become a big domain for classification and prediction tasks which

can be explained by the increasing amount of available data, the increase in efficient and affordable

2.4 Summary 27

computing power. An area in which deep learning is growing is in the generation of content,

which includes musical content. In this domain, the focus has been in applying these techniques

to available corpora to automatically learn musical styles and to generate new musical content

based on these.

This review on architectures used as deep learning techniques for generating musical se-

quences has been based on a survey done by Jean-Pierre Briot, Gaëtan Hadjeres and François-

David Pachet. [13]

The main types of deep learning architectures used for music generation are:

• Feedforward:
The feedforward neural network is a multilayer network composed of at least three lay-

ers: input, output and hidden layers. The hidden layers can be combined with a nonlinear

activation function to make the network a universal approximator.

• Autoencoder:
This architecture consists of a neural network composed by one hidden layer. The number

of input nodes has to be equal to the number of output nodes, as the output mirrors the

input. The training of this model is classified as unsupervised learning because the exam-

ples provided are not labeled but it is implemented using conventional supervised learning

techniques. The decoder used to reconstruct the information compressed by the encoder

presents a high-level control of content generation.

• Restricted Boltzmann Machine (RBM):
The RBM is a generative stochastic artificial neural network that learns a distribution of

probabilities over a set of inputs. It is organized in two layers: the visible one (similar to an

input layer but also works as output) and the hidden one, and connections between nodes in

the same layer are not allowed. It is trained in an unsupervised learning manner by using

contrastive divergence. In the context of music generation, it is especially interesting for

learning (and generating) chords, as the combinatorial nature of possible notes forming a

chord is large and the number of examples is usually smaller.

• Recurrent Neural Networks (RNN):
An RNN is a feedforward neural network extended with recurrent connexions for learning

series of items, whose order is important for its comprehension. The output of the hidden

layer reenters itself as an additional input for trying to predict the next element in the se-

quence. The long short-term memory (LSTM) can be added to a RNN for helping prevent

too many repetitive generations by securing information in memory.

2.4 Summary

After reviewing the literature on models that abstract patterns from representations of music struc-

tures and because of the capacity of the VMOs for achieving a better balance between the quantity

28 Knowledge Support Systems for Music: A literature review

of available information and the optimization of the generation, this algorithm will be the one

explored for our system.

Also, despite the great benefits that deep learning brought to the area of generation of content,

in particular, musical content, we will be focusing on the more conservative techniques that are the

target of study of the first line of research that we mentioned earlier and that allow us to obtain this

type of information as we want to study the implications of representation in the model’s intrinsic

structure, adapted to varying volumes of musical information provided, for which we need greater

transparency of the model of temporal relations, which cannot be yet achieved using these novel,

neural-network based techniques. Another reason for not using deep learning is that the amount

of data necessary for learning a model is very big and we want to model variate quantities of data

that may be quite small, which would not result in good models in this type of machine learning.

At the same time, although the representation frameworks have been developed, most of the

systems that reached the artistic community only use formal string representations, mainly cap-

tured from MIDI information. This kind of representation, as seen in Section 2.2 captures only a

small amount of the desired information to be extracted from symbolic musical structures. The

representation that seems to lead to a more powerful modelling is the Multiple Viewpoint Models

as they permit the modeling of both simple and derived information and, thus will be the ones

explored during the research and further construction of our system.

Chapter 3

Encoding Information from Symbolic
Music Manifestations: A Multiple
Viewpoint Model Approach

This chapter presents a comprehensive explanation of the methodology used to encode information

from a symbolic musical score in MyMusicalSuggester.

In light of the multidimensional and hierarchical structure of music, we explore a representa-

tion structure that is constructive (possible to create the music represented), derivable (possible to

derive a representation from the music represented), meaningful (significant differences in musical

objects should translate in different representations), decomposable (possible to segment the rep-

resentation as we would divide the respective musical objects represented), hierarchical (possible

to distinguish different levels of detail in the representation corresponding to different levels of

significance) and generative (possible to infer relations between elements in the musical structure

from the respective representation) [50]. As we detailed in Chapter 2, the representation structure

that better achieves these principles is the Multiple Viewpoint Models, proposed by Conklin and

Witten in 1995 [21].

The Multiple Viewpoint Models comprise a collection of different attributes of the musical

structure. For a complete list of the viewpoints adopted in our work please refer to Appendix A.

All the names mentioned in Sections 3.4.2 and 3.5 will be references to the ones listed there.

We will start by documenting the process of extracting and encoding the information from

symbolic music manifestations encoded in the MusicXML syntax. We will then detail our imple-

mentation for abstracting the different viewpoints from the musical score. A general organization

of the different viewpoints can be observed in Figure 3.1. The description of the reverse process of

translating the encoded musical events, organized as viewpoints, to a score in MusicXML format

will also be provided as it is revelant in our work.

29

30
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

Figure 3.1: Organization of All Viewpoints. Dotted arrows represent relations of Viewpoint
categories to events and full arrows represent dependencies between Viewpoint categories.

3.1 Unpacking a Musical Score

Western music notation adopts a symbolic representation which encodes both single and multi in-

strumental parts. Each part is typically attributed to a unique instrument, which can be performed

by a single player or doubled by multiple players of the same instrument. However, a musical part

can have be multiple voices to be interpreted by different players. Those voices are usually explic-

itly written, identified as a unique voice but they can also be written as chords, if the instrument

is not a polyphonic one. A single instrumentalist will not be able to play multiple notes simulta-

neously, unless the instrument is polyphonic or in very particular extended techniques, called as

multiphonics, where the simultaneous notes played are produced either with new fingerings, by

using different embouchure positions, or voicing the throat with conventional fingerings and are

not intended to be listened as chords. Hereafter, in the context of this dissertation, a part linked to a

single instrument (to be performed either by a single player or group of players) will be addressed

as Part. A single hand of a piano part will also be considered as a single Part, and each voice

explicitly written in the musical score will also be represented as a single Part. Three examples

of part division can be seen in Figures 3.2, 3.3 and 3.4, where each color represents a different

part. In the first example, a fugue from Bach, each part comes from an explicitly written voice,

3.1 Unpacking a Musical Score 31

that is very clearly seen on the musical score. In the second example, a choral music from Whyte,

multiple vocal voices exist as chords in the same staff. As a human voice is not a polyphonic in-

strument, the notes overlapping (identified as two-note chords) will be identified as different parts.

In the tenor and baritone staff, the first measure was written with two explicit voices. They will

still be identified as different parts. In the third example, each hand of the piano will be identified

as a part, but the chords will not be divided because they make sense in the same part, as they

correspond to an accompaniment and not different, independent voices.

Figure 3.2: Part division of the first six measures of J. S. Bach’s Fugue I in C Major, BWV 846
from the Well Tempered Clavier (First Book).

Figure 3.3: Part division of the first two measures of J. M. Whyte’s We shall hear a voice, an
immortal voice (1890).

On the other hand, if the musical score has more than one part, to fully unpack its structure,

we have to examine the relations across the different parts at each moment of the musical time.

These relations mainly refer to the vertical concurrent aggregates resulting from the overlaying of

different parts. In music theory, these vertical studies are addressed in the study of harmony. In

the context of our dissertation, these relations are an important stylistic element, which ought to be

32
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

Figure 3.4: Part division of the first four measures of the 3rd Movement (Rondo Alla Turca) of
Mozart’s Piano Sonata No. 11, K.331.

captured from the datasets and in this sense, we denote these structures as inter-part dependencies

as they work as a reduction of the score to a succession of events that represent everything that is

happening in the score in a vertical sense.

For both types of parts, the analysis of the musical events is made from the perspective of the

basic components: every note, rest or chord is identified as a single event of the same type as the

part that has its characteristics and absorbs the characteristics of the what is happening in the part

at the time it occurs. Each event is identified by its offset, the time of the musical score in which

it occurs, measured at quarter notes from the beginning of the part and a dictionary of viewpoints,

organized by category.

In what follows, the constitution of each type of events will be described, taking into account

the musical meaning of each viewpoint and its connection to the other viewpoints and categories.

3.2 MusicXML

MusicXML1 was first presented in 2004 by Michael Good (and Recordare LLC) as a XML-based

file format to represent Western musical notation digitally [34]. The MusicXML format is de-

signed to standardize a syntax across music notation software, so that digital music scores can be

shared across multiple software. Currently, the version 2.0 of MusicXML has become the standard

for representing music notation and has been incorporated by most score editing software, such

as Musescore2, Finale3, Sibelius4 or Dorico5, but also musical sequencers like Cubase6 or Logic

Pro7.

The use of XML as the basis for this musical file format translates in an easiness of parsing

and manipulation for automated tools. In that sense, it is very similar to HTML but the tags are

musically orientated, for instance <key>, <time> or <pitch>, which allows for the representation

of essential characteristics of music that increase the level of expressiveness that can be extracted

from it.

1https://www.MusicXML.com/
2https://musescore.org/en
3https://www.finalemusic.com/
4https://www.avid.com/sibelius
5https://new.steinberg.net/dorico/
6https://new.steinberg.net/cubase/
7https://www.apple.com/logic-pro/

3.3 Music21 33

(a) music21’s makeVoices (b) Our implementation of voice division

Figure 3.5: Voice making in a passage with 2-note chords that should be divided in two voices

3.3 Music21

Music218 is a toolkit for Python developed by Cuthbert, launched in 2008 and since then fre-

quently developed, that aims to bring computational musicology tools to scholars and other active

listeners working in Python so that they can easily promote the creation of tools for the analysis

and generation of musical content. [23]

It uses an object-oriented skeleton that makes it easier to handle complex musical data. One

of its main features is the possibility to parse musical information from various types of formats,

such as MusicXML, MIDI9, MuseData10, TinyNotation11, MEI12 or Humdrum13, and includes a

corpus of more than 500 musics in the compressed .mxl format, which we used as a database.

3.4 Abstracting multiple viewpoints from parts

This section first describes the method for extracting the parts from a musical score in MusicXML

format and then, it details the existent viewpoints that abstract the information from the musical

surface of a given part.

From a single part, we can extract great amounts of information such as notes (or chords, in

the case of a polyphonic instrument) and rests and every underlying aspect of those basic compo-

nents, such as pitch and duration but also expressive components as, for instance, articulations and

ornaments or time and key information that give us the perception of how the basic components

relate between themselves.

3.4.1 Part Segregation: Separation of Voices

Music21 has both a makeVoices implementation that isolate all overlaps of a part into unique

voices and a voicesToParts implementation that extracts each different voice into a new part.

We found that they did not achieve the results we were expecting, in most cases, as the division

did not really occur, either if used inside every measure, the parts or the musical score. The result

of music21’s makeVoices and our implementation can be observed in Figure 3.5, where we can

clearly see that music21’s supposed division didn’t occur, even though it should have divided the

chords in two voices, while our implementation correctly divided the chords in two voices.

8http://web.mit.edu/music21/
9https://www.midi.org/

10https://musedata.org/
11https://web.mit.edu/music21/doc/usersGuide/usersGuide_16_tinyNotation.html
12https://music-encoding.org/
13https://www.humdrum.org/

34
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

Additionally, the particular instruments have idiosyncrasies in terms of overlaps in light of

their capacity to perform polyphony. Therefore, we created our own algorithm for segregating the

voices into parts, whenever they belong to an instrument that is not capable of performing multiple

notes at the same time.

Our implementation starts by evaluating the instrument that the part is written for. If it is a

monophonic instrument (i.e., if it belongs to the winds, brass families or is a human voice) with

note overlaps or different voices, an ideal number of voices will be calculated from the whole

score, by identifying the maximum number of different notes that exist simultaneously. Every

measure will be parsed to extract the total number of voices. To this end, we either use the in-

formation encoded in the voice layer information of the MusicXML score, or divide the notes of

the chords in the same number of voice layers. Otherwise, if the instrument is polyphonic and has

written voice layers, the original music21 voicesToParts will be adopted. In case the instru-

ment is not recognized by music21, the default instrument assigned to the part will be the piano,

as typically happens in most notation software.

3.4.2 The Part Events’ Viewpoints

Multiple Viewpoint Models were adopted to abstract information from the musical surface in order

to have the most comprehensive set of descriptions from the surface. A set of different charac-

teristics can achieve better results in predicting and modeling the complex surface relations of a

musical work. As such, it was important for us to explore a great number of possible representa-

tions, organized by categories that we thought pertinent for the problem. Some viewpoints share

relationships of dependence with elementary viewpoints (those that can be extracted directly from

the score). We call them derived viewpoints. A visual graph that explains the relations between

viewpoints belonging to part events and their general organization can be observed in Figure 3.6.

3.4.2.1 Metadata Viewpoints

The metadata viewpoints allow us to learn global information, such as title and composer, as well

as number and type of instruments included. In the specif case of single work, and most noticeably,

solo musical pieces, none of the viewpoints of this category will variate at all and thus, won’t be of

much utility for modeling. Metadata viewpoints have a greater importance when generating from

a large set of works from multiple composers.

3.4.2.2 Basic Viewpoints

The basic viewpoints include fundamental attributes of Western music without whom it would be

impossible to recreate new musical sequences. The events can be either annotated as grace notes,

rests or chords. If an event does not include any annotation, it is assumed to be a note event. A

different basic viewpoint is the bioi, which translates as the basic offset interval of the event to the

previous one.

3.4 Abstracting multiple viewpoints from parts 35

Figure 3.6: Organization of Part Viewpoints, by category.

36
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

3.4.2.3 Duration Viewpoints

The duration viewpoints represent the span of musical time in which a musical event exists. Al-

though this information is also essential to the musical understanding, it is so important on its own

that we felt the necessity of separating it from the basic viewpoints. The viewpoints that express

duration are length, that is the fundamental numeric value of the duration of a single event; type,

which relates to the musical notation name attributed to the duration, if existent. Otherwise, it

is interpreted as a ’complex’ duration; dots, as in the amount of dots applied to the type of the

duration; and slash, that makes reference to the existent of slashes in grace notes that make its

duration smaller, as a grace note parsed with music21 has no duration length or type. If an event

is tied to another, the type and style of the tie are also stored.

3.4.2.4 Pitch Viewpoints

The pitch viewpoints depict the fundamental characteristics inherent to a note. Pitch is often

described as the perceptual property of sound that makes it possible to qualify the sounds in a

perceptual scale according to their physical property of frequency. It can be viewed in a numeric

scale, which we call the chromatic scale, stored as the cpitch viewpoint, or as a combination of

properties that we know as diatonic note name (dnote), accidental and octave number. In contem-

porary Western music practice and non-Western musical traditions, the pitch is often divided into

smaller intervals which are called microtones. They are measured in cents, and its use is named as

microtonality. Because we aim to provide the means for potentiating the creativity of living con-

temporary composers that usually incorporate these techniques in their works, we expand existing

viewpoint models by storing this information as the microtone viewpoint. Quarter-tones are also

expressed in the accidental viewpoint, as they are frequently adopted. We also store the value of

the pitch in the twelve-tone scale as the pitch class.

For events that are chords in the parts (for example, chords on a piano part), we store the

root as the pitch and store the other pitches that make part of the chord as chordPitches, in their

chromatic pitch value.

3.4.2.5 Expression Viewpoints

This category of viewpoints portray the symbolic notations that alter the meaning of the musical

events, described by their basic viewpoints. In this category, we included articulations, text ex-

pressions, ornamentation, existence of fermatas, breath marks or rehearsal marks, type and fill

of noteheads, if there is parenthesis surrounding an event, volume, dynamic marks and spanner-

like information such as if the event is at the beginning, middle or end of slurs or crescendo and

diminuendo lines. Although not really an expression, we also include the clef of the staff at that

point in time as an expression viewpoint. Some of these viewpoints are usually very important in

extracting temporal meaning of musical excerpts, such as fermata and breath mark and slurs that

often delimit phrases.

3.4 Abstracting multiple viewpoints from parts 37

3.4.2.6 Time Viewpoints

The temporal organization of the musical events is one of the most important things when we talk

about music. For that motive, it is essential that the information on time be stored in a way that

facilitates the learning of how the organization of music takes place. To this effect, we store the

time signature information in its conventional form but also the pulses that form the length of a

bar and that same length as numeric values. We also extract metronome marks as a tuple of text, to

identify movements, value and sounding value, in order to describe tempo and changes in tempo

and the referent type and value. We store all this information as it happens at the time of the part

event.

Other temporal organization of music related to measures and phrasing is the existence of

repetitions or explicit separations. In order to absorb these characteristics, we save the existence

of double barlines after an event and the existence of repeating barlines before an event, as they

can appear at the start and end of a sequence and the respective direction. We also note as a single

viewpoint if the last barline is a repetition barline, as this one is not included in the others because

it happens after the end of the score.

3.4.2.7 Key Viewpoints

The key viewpoints convey the relationships between musical events as a whole. The key signature,

expressed in number of sharps (positive) or flats (negative) alludes to the musical convention of

reducing the number of accidentals used in the staff to make reading of it easier.

We used the music21 analysis module for deducing the keys, a concept that translates possible

perceptual relations between notes and are the basis of classical, Western music. Acquiring this

information by using the key signature is not always reliable as, sometimes, the music implies

relations that are too fast for changing the key signature and it is more efficient to use simple

accidentals in that passage or simply because the key signature does not discriminate between

modes. Because the music21 analysis module works on the basis of key areas, which is very

complicated to calculate automatically, we store the keys discovered in measure areas (the analysis

is done every measure) and at every change in key signature. We know that both of these area

measurements are not ideal as they can lead to too small and too large windows of analysis but we

thought that combined, they could lead to a better perception than if we used only one of them.

Then, we store the degree of the event (in case it is a note) in relation to the scale inherent to

both areas’ keys.

3.4.2.8 Phrase Viewpoints

The parsing of a musical score doesn’t explicitly express phrasing information, such as start and

end of phrases, but we can predict it by analysing the values of the other viewpoints. This informa-

tion, although it could be interpreted as derived, is important enough to be stored on its own and it

is only calculated after choosing the importance of the other viewpoints for the model. The view-

points stored are the boundary value of the event (that identifies if the event is in the beginning,

38
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

ending or middle of a phrase) and length of the phrase in which the event is inserted. The method-

ology used for calculating this information is detailed in the next Chapter, in the Section 4.2.2.

3.4.2.9 Derived Viewpoints

Derived viewpoints, as observed before, represent features of the score that cannot be directly

extracted from its parsing and need to be calculated from other viewpoints’ information and, in

some cases, using knowledge of other events’ viewpoints.

Most of the derivations that we chose relate to Pitch viewpoints. These are:

• Sequential Interval between event and last note event

• Contour indication from last note event to current event, in which it can be a descendent

movement (-1), an ascendant movement (1) or no movement (0)

• HD Contour which indicates a quantified sequential interval value in a step of -4 to 4:

HDContour(int) =



0, if 0 <= int < 1

sgn(int), if 1 <= int < 3

2∗ sgn(int), if 3 <= int < 5

3∗ sgn(int), if 5 <= int < 8

4∗ sgn(int), if int >= 8

• The last three events are doing an upwards movement?

• The last three events are doing a downwards movement?

• The last three events have no movement?

• The last three movements are in a closure shape? This viewpoint is a score viewpoint that

can have as values 0, 1 and 2. A point is attributed to the event if there is a change of

direction and another point is attributed for a tone smaller than the preceding one.

• Registral Direction: Is the event in a large jump (>= perfect fifth) followed by a direction

change or a small (<= perfect fourth) jump followed by a move in the same direction?

• Intervalic Difference: Is the event in a large jump followed by a smaller (3 semitones smaller

if in the same direction or 2 semitones if reversing the direction) jump? Is a small jump

followed by a similar interval?

Related to bioi and duration information we have:

• Bioi Contour indication from last event to current event, in which it can be less space be-

tween events (-1), more space between events (1) or the same space between events (0)

3.5 Abstracting multiple viewpoints from inter-part dependencies 39

• Bioi Ratio indication of ratio from last event to current event, calculated by the division of

the respective bioi values

• Duration Contour indication from last event to current event, in which it can be a faster

duration (-1), an slower duration (1) or the exact same duration (0)

• Duration Ratio indication of ratio from last event to current event, calculated by the division

of the respective duration values

The other ones relate mostly to time information. These are:

• Event is the first element in a bar? (fib)

• Position of the Event in the bar in which it belongs. (posinbar)

• Strength of the Event in relation to bar to which it belongs. (For example, in a three beats

measure, the first beat has a higher strength than the other two and the third beat has a

smaller strength than the second.

• Is the event in a tactus beat?

• Is the event an anacrusis?

The next two viewpoints have a relationship with more than one viewpoint. The intfib repre-

sents the sequential interval of the event to the fib of the same measure, while the thrbar represents

the sequential interval of a fib event to the last fib before it, thus joining an information derived

from time and information related to pitch.

At last, after the segmentation process, the intphrase viewpoint connects each event to the

beginning of the phrase to which it belongs, by storing the sequential interval between these two

events.

3.5 Abstracting multiple viewpoints from inter-part dependencies

The information related to inter-part dependencies is extracted from a music by "chordifying" the

originally parsed musical score. The word "chordifying" was invented by the music21 developer

with the meaning of "reducing a complex score with multiple parts to a succession of chords in

one part that represent everything that is happening in the score" [24]. This process can also be

called “salami slicing”, because it cuts the score to completely represent every single moment that

happens in it. Every one of these slices will be regarded as a Vertical event.

An example of chordifying a musical piece can be seen in Figure 3.7, where the first represents

an excerpt of the original score and the second, the reduced result of the chordifying process.

The viewpoints that characterize the inter-part dependencies of musical events in a musical

score in a similar manner to those that represent musical events that come from parts. As we can

observe in the next sections, some of them can even be applied equally. However, these events

40
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

(a) Original Score

(b) "Chordified" Score

Figure 3.7: Original and Chordified Versions of the first five measures of J.S. Bach’s Cantata,
"Schwingt freudig euch empr", BWV 36

embed different perspectives than the ones above in the sense that they must concentrate joined

information of simultaneous part events belonging to different parts.

A visual graph that explains the relations between viewpoints belonging to vertical events and

their general organization can be observed in Figure 3.8 and every category of vertical viewpoints

is detailed in the next sections.

3.5.1 Metadata and Duration Viewpoints

The metadata viewpoints function similarly to the ones that are present in the part events. However,

only the ones related to common score attributes (title of the work and composer) make sense in

this context and thus, they are the only ones extracted.

The duration information relative to vertical events is stored exactly in the same way as the

one for the part events.

3.5.2 Key Viewpoints

The representation of the key information of a vertical event works similarly to the manner in

which it is represented in the part events. Instead of storing the scale degree, we store the function

of the chord in relation to the key analysed at both measurements (measure and signature) and the

certainty of the analysis.

3.5.3 Chord Viewpoints

As the result of a chordifying process, the inter-part events are essentially chord-like events. There-

fore, the most important information that we must take from this type of events is chord basic

characteristics. A chord is firstly defined by its pitches. From those, we can identify the cardinal-

ity of the chord, as the number of pitches that exist in the chord, the root of the chord (as its most

important note), and its inversion, the prime form, which is described as the most compact form

the chord can take (i.e., leftwards packed or smallest in lexicographic order), either in the normal

form or as one of its inversions and its quality. In the sense of simplifying the quality of a chord,

we implemented test viewpoints (called quality viewpoints) that evaluate the chord to most of the

known chord qualities: is the chord consonant? a major or minor (complete or incomplete) triad?

3.5 Abstracting multiple viewpoints from inter-part dependencies 41

Figure 3.8: Organization of Inter-Part Viewpoints.

42
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

an augmented triad? an augmented sixth? Of which type: german, swiss, italian or french? Does

it have a seventh? Is it half-diminished, diminished or dominant?

Other characteristics can be extracted from chords, including pitch class information. This

category deals with this knowledge, and stores the pitch classes that compose the chord (ordered

and unordered), the cardinality of the unique pitch classes and the Forte Class Number, that repre-

sents the pair of Allen Forte numbers assigned to the prime form of each pitch class set, with and

without inversion distinction.

3.6 From part events to a new Musical Score

At the moment, our application only allows the creation of sequences for parts, as it is what a

composer usually needs in their composition process. As the result depends on what viewpoints

where used, the conversion to a musical score can be very different every usage.

If the user selected the generation of multiple part sequences, the names of the parts are anal-

ysed to verify if they should be written in the same staff or in separate staves. Voices that were

originally in the same staff and chords that were interpreted as voices (belonging to monophonic

instruments) will be written in the same staff, as opposed to different instruments or separated in-

strumental parts, that will be written to different staves. Each part will be written using the process

explained bellow and at the end, the first event of every part will be analysed to understand if the

note is an anacrusis. In that case, every part will be moved the amount of the respective position

in bar, if existent.

Converting each sequence of events related to a single part presents some problems, regarding

the multiplicity of possible combinations of used viewpoints.

On the beginning, if the part is being joined with an already written staff, it will acquire the

last’s starting characteristics, such as its key and time signatures, instrument name and metronome

mark. Otherwise, it will start as an empty staff. A new voice will be created in order to include

the new notes, chords and rests that are represented by the events, in both situations.

At the processing of each event, the viewpoints regarding general components of a score, in

particular the ones mentioned above, will be analysed to determine if a change occurred. In such

a case, the respective music21’s object will be inserted into the staff, with the new information. In

the same sense, if new dynamics exist, they will also be inserted.

Then, the duration of the event is evaluated. If existent, length, type and dots information of

duration are used to create the Tuple. If not, only length will be processed. Whereas some duration

type values were not being correctly read by the music21 Duration object, in particular, complex

duration values and the ones minor to a demisemihemidemisemiquaver (type signaled as 2048th),

we choose to bypass type and dots when this situation occurs, also. In the case that the user doesn’t

pretend to learn the rhythm, considering that the default value of duration length is one (equivalent

to a quarter note), all notes, chords and rests generated will be thus interpreted as quarter notes.

3.6 From part events to a new Musical Score 43

The processing for rest events is very simple: a music21 rest object with the duration calcu-

lated previously is inserted in the voice at its’ highest offset. If articulations, expression marks or

ornaments were learnt for that event, they will be appended to the rest prior to insertion.

On the other hand, the processing of note or chord events is much more complex, particularly

if pitch components were not selected. If neither pitch components nor sequential intervals were

learnt, the pitch chosen will be the last pitch of the original part. In case sequential intervals exist

but not pitch information, the first pitch of the original score is used as reference for constructing

the sequence from the intervals between pitches. Otherwise, if diatonic name notes, accidentals

and octave exist, it will try to construct from that information, primarily using name notes. Pro-

vided that chromatic pitch values exist, the note achieved using the last viewpoints is compared

and corrected, if necessary. Chords will be written if the chord pitches were learnt. Otherwise,

only the root of the chord will be processed as a single note. After, volume, notehead fill and

type information and existence of parentheses surrounding the note are assimilated, if existent. At

the end, if the note was annotated as a grace note, the respective conversion will be done and the

current event will be regarded as an appogiatura. Articulation, expression marks and ornaments

are appended to the note prior to insertion in the voice.

When all events were processed, the existence of slurs, crescendos and diminuendos will be

evaluated and written. These musical components are particularly difficult to process as they de-

note a relationship among elements of the original part that are now in different orders. Nonethe-

less, they are very important to understand the expressiveness of the music and creating new se-

quences without them, if selected, would result in poorer musical suggestions. The implemented

processing is similar for the three spanner-like components: from the events, we extract the ones

that begin the specified spanner; for every one, we select the corresponding note, chord or rest al-

ready inserted in the staff, create a new spanner of that type and connect it to that basic component.

Then, for every note, chord or rest following that one, the note is inserted in that spanner until one

whose event’s viewpoint is at the ending of a spanner of that specific type or it is the last note in

the sequence. That will be the last note of that spanner. One problem with this implementation is

that it often leads to too big spanners. A possible future improvement, could pass for annotating

the length of each spanner for all events that share a relationship with it, as is done with phrase

length, and implement a threshold system that allows to divide too big spanners.

The measures are calculated from the notes and time signatures, automatically, using a function

called makeNotation that is provided by the music21 toolkit.

The conversion to a MusicXML score from a single-part generation will proceed similarly.

44
Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model

Approach

Chapter 4

My Musical Suggester

This chapter details the implementation of My Musical Suggester, a software prototype which

explores a model for assisting the creative process of a composer. Briefly, the software learns

stylistic features from a symbolic music corpus and suggests novel musical content to the user

(i.e., composer). Multiple ranked sequences for varying a given musical phrase or creating con-

tinuations of a given context are proposed. The ranking order of the musical sequences follows a

proximity-based metric, which should ultimately guide the user in the selecting process.

In Section 4.1, we present the architecture of the software. In Section 4.2, we briefly address

the representation of symbolic musical structures and the implementation a Multiple Viewpoint

Model. In Section 4.3, the VMO implementation and the generation of new sequences from

the temporal models is detailed. Finally, in Section 4.4, we detail the interface of My Musical
Suggester, as well as its integration with the notation software, Musescore.

4.1 Architecture

Figure 4.1: General Architecture of My Musical Suggester.

My Musical Suggester was developed in Python and QML. The first was used because of

the already existing implementation of VMO and greatly-used libraries for dealing with musical

45

46 My Musical Suggester

scores in MusicXML, as well as its suitability for this kind of tasks. The second was chosen as

it enables an easy integration with Python and is the language in which the plugins of Musescore

must be implemented. Figure 4.1 shows the architecture of . It features two core modules, the

logic and interface modules.

The first module addresses the logic behind My Musical Suggester and communicates with

the interface module that makes them visible to the user. It is divided in two sub-modules: The

representation sub-module and the sub-generation module, which will be the ones tackled in Sec-

tions 4.2 and 4.3. This module also deals with retrieving files from an existing database of already

parsed musical information.

Figure 4.2: Structure of My Musical Suggester’s Representation Sub-Module.

The representation sub-module is structured as shown in Figure 4.2 to address the representa-

tion of symbolic musical surfaces, by implementing a Multiple Viewpoint Model. It consists on

multiple parsers for extracting and storing symbolic musical information from MusicXML files,

notably temporal structure, such as phrasing and segmentation and reverse-parsing of these struc-

tures for creating new, standard-compatible musical files.

The generation sub-module addresses the generation of stylistic-driven music structures. In

modeling existing musical structures, the component algorithms of this module learn characteris-

tics enforced by the representations to promote the generation of new sequences with structural

resemblances. This sub-module is structured as shown in Figure 4.3.

The second module concerns the interface of My Musical Suggester. It allows composers to

interact with the processes that are incorporated in the first module, either in the form of a single

cross-platform application, or as a plugin integrated with the music notation editor, Musescore.

This module is structured as shown in Figure 4.4.

4.2 Representation Sub-Module 47

Figure 4.3: Structure of My Musical Suggester’s Generation Sub-Module.

Figure 4.4: Structure of My Musical Suggester’s Interface Module.

4.2 Representation Sub-Module

This section details the implementation of the Multiple Viewpoint Model as discussed in Chap-

ter 3, as well as pre-processing functions for formatting the resulting data according to the require-

ments of the temporal model, VMO.

4.2.1 Multiple Viewpoint Models

A musical score incoming in the MusicXML format is parsed by a MusicParser class that divides

the musical information in Parts by the process described in 3.4.1. It retains every part information

as an array of part events, whose name is the respective instrument (if existent, otherwise as a

generic Piano) and voice number (if more than one exists for the same instrument). This events

are obtained by a PartParser, that traverses the original part score and retains the information of

every note, rest or chord into an event containing viewpoints. The MusicParser also creates the

artificial ’inter-part’ by ’chordifying’ the score and retaining the information that pertains to the

48 My Musical Suggester

relationship between the multiple-parts using a InterPartParser. The MusicParser exports and

imports already parsed music to an existing database, in either JSON or pickle format, retaining

its parts and inter-part and respective events.

The part and inter-part events are encoded as classes PartEvent and InterPartEvent that de-

scend from a new class Event. The latter represents an Event in a musical score. An Event is

identified by its offset and a dictionary of the respective viewpoints, described in 3.4 and 3.5,

nested by categories. For compatibility with the distance functions and the VMO creation algo-

rithm used, an Event can easily be converted in a feature list or a dictionary of flattened features,

in which features that can have more than one value are subdivided in the necessary boolean fea-

tures. To non-existent values in features, a large value of 10000 is attributed. Before being used, all

events as lists of features are normalized using a normalization function that sums all normalized

values to one with media to zero. This process is showed in Figure 4.5.

Figure 4.5: Process of Extracting the Multiple Viewpoints for both Part and Inter-Part Events,
starting from Part extraction to normalization of features.

The part events as features can be reversed into PartEvents and from there a ScoreConver-

sor translates the information back into a musical score in MusicXML format, using the process

described in Section 3.6.

4.2 Representation Sub-Module 49

4.2.2 Segmentation of events

Temporal music structure, such phrases, sections (e.g., chorus) or any above hierarchy is not ex-

plicitly encoded in a musical score, or its digital MusicXML counterpart. Due to the relevancy of

this information in modelling music structure, it was vital to implement an automatic segmentation

method that could identify in the musical time these structural boundaries, so that a much deeper

understating of the surface could be captured by the model..

Particular relevancy was given to phrase segmentation. Several algorithmic method based on

music-theoretical and computational approaches have been proposed for the task at hand, such as

The Local Boundary Detection Model [17], Grouper [81], ATTA [35], the multi-strategy system

proposed in [73] and the state-of-the-art Peak Picking Boundary Location [67].

We adopted the Peak Picking Boundary Location algorithm by Pearce and Wiggins, that is

based on statistical learning. It identifies phrase boundaries from musical sequences as peaks in

a function capturing the information content and entropy from multiple attributes of the musical

surface. This algorithm can be summarized in the following three steps:

1. The event following a boundary should have a greater or equal boundary strength than the

one following it;

2. The event following a boundary should have greater or equal boundary strength than the one

preceding it;

3. The event following a boundary should be higher than a threshold based on the linearly

weighted mean and standard deviation of all events preceding it, which translates in the

formula:

Sn > k

√
∑

n−1
i=1 (wiSi− S̄w,i...n−1)2

∑
n−1
1 wi

+
∑

n−1
i=1 wiSi

∑
n−1
1 wi

(4.1)

The parameter k determines how many standard deviations higher than the mean of the

preceding values a peak must be to be selected.

To calculate the boundary strength of an event, its normalized feature list representation, and

the ones of the previous and posterior events are used. It is estimated by multiplying itself to the

change degree to both previous and following events, as can be observed in the Algorithm 4.1.

Not all features achieve good results in segmenting a musical phrase. Those that do are bioi,

being a rest event, chromatic pitch, having a fermata, being in a closure sequence, the degree of

the event in the scale, both considering the key analysis at the measure level and change in key

signature and existence of double barlines or repeats, as they have direct influence in the perception

of musical phrases.

The features used for segmenting the part scores are dependent on the viewpoints selected by

the user of the application and those mentioned above. From the viewpoints selected, those that

do not belong in the group of ’better’ segmentation viewpoints are filtered and not used in the

segmentation process.

50 My Musical Suggester

Algorithm 4.1 Boundary Strength Calculation

1: function CHANGEDEGREE(Event1 = (v10v11...v1n), Event2 = (v20v21...v2n))
2: D← Array of length n+1
3: for i = 0→ n do
4: if v1i 6= v2i then
5: D[i]← |v1i− v2i|/(v1i + v2i)
6: else
7: D[i]← 0
8: return D

9: function BOUNDARYSTRENGTH(CurrentEvent = (v10v11...v1n), PreviousEvent,
NextEvent)

10: D1← CHANGEDEGREE(PreviousEvent, CurrentEvent)
11: D2← CHANGEDEGREE(CurrentEvent, NextEvent)
12: S← Array of length n+1
13: for i = 0→ n do
14: S[i]← D1[i]+D2[i]
15: S[i]← S[i]∗ v1i

16: return S

The first and last events are always considered boundaries (beginning and ending, respec-

tively).

After the calculation of the boundaries, the following viewpoints are added to the event and

attributed the highest existent weight value to the respective weights:

• ’phrase.boundary’, with possible values minus one, zero and one, corresponding to begin-

ning, middle and ending of a phrase.

• ’phrase.length’, matching the length of the phrase in which the event is located.

• ’derived.intphrase’, that corresponds to the numeric interval to the last phrase beginning.

4.2.3 Multiple Viewpoint Weights

One of the core features of our system is that we allow for choosing the weights to assign to each

viewpoint that will be used to differentiate the importance of each viewpoint while calculating the

level of similarity of the events. In order to assign weights to the viewpoints, including weight zero

that means that the viewpoint will not be used at all, we explore two different solutions: manual

assignment and automatic computation.

We always wanted to give the possibility of complete decision to the user, so that they can de-

cide which information to learn. For example, a composer that has a pre-defined melodic sequence

in mind, but is uncertain what rhythm to use, he/she could probably be more interested in learning

rhythmic-only features. Furthermore, not every feature is either considered in the database works

or equally important. Each user is then able to subjectively adapt their generation by defining

different sets of weights. In this sense, manual assignment was always the preferred solution.

4.3 Generation Sub-Module 51

However, given the elevated number of different possible viewpoints to choose from, it is

confusing and time-consuming to assign the weight of each viewpoint, one to one. To overcome

this difficulty, we implemented an automatic calculation of the viewpoints’ weights. It is a good

initial strategy for the user, as it makes an initial guess of the importance of each feature so the

end combination better captures style. The more prominent the weight, the more relevant the

viewpoint is for the model.

To automatically compute viewpoints’ weights we consider the standard deviation of a view-

point as a good indicator of its relevancy within the musical structure under analysis, as it measures

the amount of variation present in its value. If a feature has a standard deviation of zero, it means

that it does not variate at all during the piece. Then, it is not a good feature to learn, as it means

that in the final model, every event will be considered equal, using that viewpoint. On the other

hand, a high standard deviation indicates that the values of the viewpoints can spread far from the

mean and thus, the values will be important to learn as they will lead to less equal events and more

realistic connections. All the viewpoint’s values variances are normalized to the [0, 100] range, in

order to facilitate its perception.

While experimenting with different features and weights, we found that some features required

a stronger weight calculation in order to achieve better results in view of metric and modulations.

Those are, for example, the position of an event in a bar or the keys at an event, which if not all

equal, can lead to a lot of jumps between events in different keys, that musically does not make

much sense. Therefore, we implemented a flag system to identify these viewpoints, which we

called ’fixed’ weight. A ’fixed’ weight forces the evaluation of the similarity of events to give even

more importance to the features marked, in the sense that they must be exactly equal for the events

to be considered similar. Otherwise, the events will be considered not-similar, even if the distance

between events calculated with the other normally-weighted viewpoints would not be so great.

4.3 Generation Sub-Module

The Generation Sub-Module includes the algorithm for modeling the temporal structures derived

from the multiple viewpoints model in the as an VMO automata, which can then be adopted

to generate new musical sequences that retain stylistic traits from the original modelled music.

Ultimately, we aim to promote the generation of novel, diverse musical sequences that can unlock

the creative process of a composer.

In the next subsections, we will introduce the mechanics of the VMO automata (Section 4.3.1)

and the generation of new sequences from these (Section 4.3.2). To generate new sequences, we

explore two strategies: a Single-Part generation (Section 4.3.2.1), that goes through a single VMO

in order to generate a musical sequence of just a part, and a Multiple-Part generation mechanism

(Section 4.3.2.2) that synchronizes multiple VMOs, corresponding to different parts of a musical

score, including an artificial line extracted from inter-parts information, in order to generate a

sequence comprised of multiple parts.

52 My Musical Suggester

4.3.1 Variable Order Markov Oracle

The algorithm for the Variable Order Markov Oracle (VMO) was first proposed by Wang and

Dubnov [85] in 2014 for clustering multivariate time series of discrete data without a priori spec-

ification of the number of clusters. The algorithm is based on the following two automata models:

FO [1] and FO [30].

Departing from the Python implementation of the VMO made available by Wang on his Github

repository1, we modified the code in order to make possible the use of different weights, including

a distance measure that allows for a mix of fixed and non-fixed weights.

The VMO is, essentially, a finite state automaton that is constructed online from incoming

discrete symbols. Contrarily to the finite nature of the alphabet in the FO, the VMO (and its pre-

decessor, FO) can process multi-variate feature in infinite range values. Each symbol is associated

with a new state and the VMO states can be connected by two types of links: forward and suffix

links. For computing the links, a threshold θ is used as the criterion to determine the similarity be-

tween symbols, represented by feature vectors. The online construction of a VMO is documented

in the Algorithms 4.2 and 4.3.

Algorithm 4.2 Online Construction of VMO
Require: Time Series as O = O1O2...OT

1: Create an Oracle P with initial state p0
2: sfxP[0]←−1, B← /0, N← 1
3: for t = 1→ T do
4: Oracle(P = p1...pt)← AddSymbol(Oracle(P = p1...pt−1),Ot)

5: return Oracle(P = p1...pT)

1https://github.com/wangsix/vmo

4.3 Generation Sub-Module 53

Algorithm 4.3 Adding Symbol to VMO

Require: Oracle P = p1...pt , time series instance Ot+1
1: Create a new state t +1
2: qt+1← 0, sfxP[t +1]← 0
3: Create a new transition from t to t +1, δ (t,qt+1) = t +1
4: k← sfxP[t]
5: while k >−1 do
6: D← distances between Ot+1 and O[δ (k, :)]
7: if all distances in D is greater than θ then
8: δ (k,qt+1)← t +1
9: k← sfxp[k]

10: else
11: Find the forward link from k that minimizes D, k′← δ (k, :)[argmin(D)]
12: sfxp[k]← k′

13: break
14: if k =−1 then
15: sfxP[t +1] = 0
16: Initialize a new cluster with current frame index, bN+1← t +1
17: B← [B;bN+1]
18: Assign a label to the new cluster, qt+1← N +1
19: Update number of clusters, N← N +1
20: else
21: Assign cluster label based on assigned suffix link, qt+1← qk′

22: bqk′ ← [bqk′ ; t +1]

23: return Oracle(P = p1...pt+1)

(a) (b)

Figure 4.6: VMO in 4.6b constructed with the duration length information of the notes in the
score in 4.6a.

Figure 4.6b presents a VMO constructed from the duration length information of the score in

Figure 4.6a. The blue lines represent forward links, while the red lines correspond to suffix links.

The first state is an artificial state that happens before the start of the music. As we can observe,

the forward links capture continuations in the temporal structure, by storing the symbol associated,

providing an efficient way to retrieve the factors of a sequence from its beginning and following

a unique path. There are two types of these connections: the internal forward links, that connect

two consecutive states; and the external forward links, that point to non-consecutive states. From

these links, we can get sequences similar to the original one.

The suffix links point backwards and connect states to ones that share the longest repeating

suffix of the online sequence up to the current state. It identifies repeated patterns in the sequence.

54 My Musical Suggester

The VMO implementation adopted equally promote a greater number of paths across the states

by storing reverse suffix links (i.e., pointers of the states that jump to this one), without losing the

characteristics that distinguish the suffix links. In the case of Figure 4.6, the first pattern to appear

is that of two repeated semiquavers. Then, when a quaver and two semiquavers appear, even if

not in the exact positions in the measure, the suffix links recognize that this is the new longest

repeated pattern in those states. In the second measure, as the duration lengths are exactly equal to

the ones of the first measure, the suffix links go back to the exact state in which the same pattern,

starting at the current length appeared the first time. The set of the first measure’s duration lengths

becomes the pattern.

Tracking the suffix links across the states of the oracle structure and grouping the states gives

rise to the formation of clusters where: 1) a minor distance than θ is ensured between states

connected by suffix links; 2) their relation to other clusters is sequential, by virtue of their first

state being dependent on its previous one, which belongs to the last cluster; and 3) the unique

suffix link at each state guarantees the every state belongs exclusively to a single cluster. The

clusters are maintained by introducing a list of pointers that relate the states to each cluster.

The threshold θ is calculated by analysing the Information Rate (IR) measure for various can-

didate thresholds and selecting the one with the highest value, similarly to the threshold estimation

created for AO [28]. This is made using a cumulative IR calculation, specified in Algorithm 4.4,

upon oracles constructed with every candidate threshold. It is a time-expensive process if the

number of events to be accumulated is very high.

Algorithm 4.4 IR using VMO introduced during the development of AO [28].

Require: Array K containing a list of VMO encoding event occurrences, unconditional complex-
ity C = log2(|δ (0, :)|), M = max(LRS), and sequence length N

1: for i = 1→ |K|−1 do
2: L = K(i+1)−K(i)
3: IR[K(i) : K(i+1)] = max(C− log2(N)+ log2(M)L,0)
4: return Array IR

However, this value is extremely important, as a too small IR value can lead to the formation of

a very high number of clusters. As every symbol is typically unique, no “real” pattern or repeated

motifs could be extracted otherwise. A too large IR threshold identifies all symbols as equals,

grouping them in the same cluster which will mean that the whole sequence will be identified as a

single pattern and no stylistic attributes from the original sequence will be learned, as is possible

to observe in Figure 4.7. For the information that was used to construct the VMOs presented in

the figure, the one represented by Figure 4.7d (θ = 0.3) would be the selected one, as it is the one

that achieves the best IR result. We can see that the VMO constructed with this threshold is more

balanced than the others: does not have too many forward nor suffix links, which indicates that

neither the whole sentence will be identified as a pattern (as clearly happens in Figure 4.7a), or no

pattern will be identified (Figure 4.7f). Using the IR metric, we guarantee that the best possible

amount of patterns from the original sequence will be recognized [85].

4.3 Generation Sub-Module 55

(a) VMO constructed with θ = 0,
IR = 0.0

(b) VMO constructed with
θ = 0.1, IR = 41.24

(c) VMO constructed with
θ = 0.2, IR = 52.51

(d) VMO constructed with
θ = 0.3, IR = 58.11

(e) VMO constructed with
θ = 0.4, IR = 54.77

(f) VMO constructed with θ = 0.9,
IR = 45.11. Following θ = 0.5, all
VMOs had this configuration and

IR value.

Figure 4.7: VMOs constructed with different threshold values from the same sequence and same
feature weights.

Our alteration to the original implementation allows for different feature weights when cal-

culating the distance between symbols (represented as feature lists). This similarity is calculated

using weighted cosine distances conjugated with fixed weights. First, the features selected as fixed

are compared. If they are not exactly equal, the distance is discarded as too long, using a fixed

value of 100000. Otherwise, the cosine distance will be calculated using the weights coming from

the user. This increment is important because we want the possibility of getting stronger links

between states in accordance with different criteria and different features.

4.3.2 Generation of sequences

Generating new musical sequences from the resulting VMO is a fundamental problem of current

research. There are two different modalities that the user can choose for the sequences to be

generated, either musical sequences for extending an existing part of a score or to address the

entire texture and instrumentation, thus tanking into account all the parts and their synchronization.

What follows details these two modalities. Note that, at the moment, MyMusicalSuggester only

permits continuations of the musical events modeled and, as such, all the generations should start

in the last state of the oracle. In future versions of the software, we hope to facilitate the choice

to the user of whether the sequences created should be continuations or variations (starting on the

first state of the model).

56 My Musical Suggester

4.3.2.1 Single-Part Generation

The first modality was already implemented in the original version of the VMO and was ported by

its developers from the earlier FO algorithm.

The process of a single oracle generation, starts in the last state of the oracle, as we want to

generate continuations sequences, and at each new iteration of the algorithm, a new state will be

calculated and the respective symbol will be saved to the new sequence.

Algorithm 4.5 Single Part Generation

Require: Oracle P, length to generate N, probability of forward links p, minimum LRS θ , algo-

rithm type choice

1: k← number of states in P - 1

2: for i = 0→ N−1 do
3: if sfxP[k] 6= 0 then
4: if RAND(0.0,1.0)< p then Copy forward according to transitions

5: I← δP(k, :)

6: if I = /0 then
7: k← sfxP[k]

8: ktrace← [ktrace; k]

9: I← δP(k, :)

10: sym← I[RANDINT(0, length(I)−1)]

11: Seq← [Seq; sym]

12: else find backward links and copy any of the next symbols

13: ktrace← [ktrace; k]

14: kvec← FINDLINKS(/0,sfxP,rsfxP,k)

15: kvec← [x | x ∈ kvec, lrs[x]≥ θ]

16: lrs_vec← [lrs[x] | x ∈ kvec]

17: if kvec 6= /0 then
18: if choice = "max" then
19: sym← kvec[argmax(lrsvec)]

20: else if choice = "weight" then
21: sym← BALANCEDSYM(kvec, lrs_vec)

22: else
23: sym← kvec[RANDINT(0, length(kvec)−1)]

24: if sym = length(sfxP)−1 then
25: sym = sfxP[sym]+1

26: else
27: Seq← [Seq; sym+1]

28: else
29: sym← k+1

30: if k ≥ length(sfxP)−1 then

4.3 Generation Sub-Module 57

31: sym← sfxP[k]+1

32: Seq← [Seq; sym]

33: else
34: sym← k+1

35: if k ≥ length(sfxP)−1 then
36: sym← sfxP[k]+1

37: Seq← [Seq; sym]

38: k← sym

39: ktrace← [ktrace; k]

40: if k ≥ length(sfxP)−1 then
41: k = 0

42: Return Seq, ktrace

In Algorithms 4.5 the algorithm for generating a new sequence is provided. At every step, if

no suffix links exist in the current state of the VMO, it goes forward to the next state, adopting

the symbol that corresponds to this transition. In the specific case of reaching the last state of the

VMO if no suffix links exist, the generative algorithm moves to the first state of the automaton

(state zero) which directs itself to the next state, i.e., the first symbol of the original sequence.

Algorithm 4.6 Single Part Generation Auxiliary Calculations

1: function FINDLINKS(kvec, sfx, rsfx, k)

2: kvec← SORT(kvec)

3: if 0 /∈ kvec then
4: if sfx[k] /∈ kvec then
5: kvec← [kvec; sfx[k]]

6: for link ∈ rsfx[k] do
7: if link /∈ kvec then
8: kvec← [kvec; link]

9: for link ∈ kvec do
10: kvec← FINDLINKS(kvec,sfx,rsfx, link)

11: if 0 ∈ kvec then break
12: return kvec

13: function BALANCEDSYM(kvec, lrs_vec)

14: max_lrs← max(lrs_vec)

15: query_lrs← max_lrs− f loor(RAND(0,expovariate(1)))

16: if querylrs ∈ lrsvec then
17: indexes← [x | x ∈ lrs_vec, lrs_vec[x] = query_lrs]

18: tmp← indexes[RANDINT(0, length(indexes)−1)]

19: else

58 My Musical Suggester

20: tmp← argmin([|x−query_vec| | x ∈ lrs_vec)
return kvec[tmp]

If the state has a connection to another state by a suffix link, a random probability dictates

whether it will follow one the possible transitions, randomly selected and learn its respective

symbol or try to find the possible sfx and rsfx recursively (by using the FindLinks function in

Algorithm 4.6 and pick one to jump to. This choice is done depending on the algorithm selected

when calling the generator, comprised by the three options: 1) uniformly among all the possible

sfx and rsfx given the current state; 2) the one having the longest repeated suffix (LRS); or one

backward jump that favors longer LRSs than shorter ones, done using the BalancedSym function

in Algorithm 4.6. After, if the state to which the jump occurred is not the last one, it follows the

forward transition to the next state and stores the symbol in the sequence. At the end of each

iteration of the algorithm, it is analysed if the current state is the last one of the VMO, and in that

case, it returns to the state zero.

In Figure 4.8, we can observe three of the four different situations that can happen during the

generation process. In this case, as the last state has a suffix link, we cannot show the case in

which we reach the last state and it does not have a suffix link.

4.3.2.2 Generation of synchronized Multiple Parts

The multiple-part generation presents an additional synchronization challenge in comparison with

the single part generation. An existing solution to this problem has not been addressed in the

literature using the FO or any of its subordinate models (such as the FO or VMO). Yet, the task

at hand if fundamental in composition, thus we advance with a solution which aims to capture the

stylistic and relational attributes of the inter-part texture (i.e., the vertical relations between the

parts of a musical score). To this end, we propose a parallel VMO algorithm, which includes as

many VMO as the number of individual parts of a composition to be modelled plus one artificial

line resultant from the extracted inter-part events. Figure 4.9 represents four part oracles and an

artificial line, surrounded by a green box, corresponding to a Bach choral.

The parallel VMO algorithm starts by identifying a leading oracle as the one featuring the

larger number of states. It is important that we make this choice, in order to have a reference

during the generation process, because not every oracle will have a state at a certain point in time.

Choosing the one with the larger number of states (and probably the one with most movement) will

assure that the generation can reach all points in time. In most cases, as we are using the ’inter-

part’ line, it will be the one selected, because it samples the original parts in chords of smaller

duration comprising at least the same amount of states as the original part with the highest number

of states, as we can see in Figure 4.9, where the grey lines denote the synchronization of the states

at a point in time. If another part has an event in an offset where that part doesn’t, this ’inter-part’

line will still have that as another event. This happens, for example, at the seventh line, in which

only the first two parts have a state and still, the artificial line includes that state.

4.3 Generation Sub-Module 59

(a) We start at the last state of the oracle. From this state, we do not have a forward transition, so we will
choose one of the suffix links. As there are various possible suffix links that have LRS greater than 2, we

randomly jump to state 9 and go to state 10.

(b) Now we are at state 10. As the probability that was randomly selected is lower than 0.26, we can
choose from the forward links. We randomly choose to take the one that is not going to the next state, but

to state 13.

(c) After some iterations, we are now on state 4. In this state, no suffix links go backwards. Then, we go
forwards, to state 5.

Figure 4.8: Three Conditions in a generation from a single oracle, that started with a threshold
LRS of 2 and probability of taking forward links of 26%. The algorithm used to choose sfx is the
one that chooses uniformly among all the possible suffix (or reverse suffix) links given the current
state. The current state is annotated by a green box and the next real state by a blue circle. In the

jump by suffix links, a red box is used to annotate the state to which the jump occurs.

The multiple-part generation follows similar principles as the single-part generation. At each

iteration of the algorithm, we follow a similar approach to the one used in the single-line genera-

tion, except that for the symbol stored, the whole synchronized block will be copied, instead of just

the one symbol for each part. As described by Algorithm 4.7, this is done by finding the beginning

offset of all parts at the offset of the next state and the correspondent part and the highest offset of

all parts at the beginning of the state right after. If there is no event in a part at the beginning offset,

the difference to the first event offset after is annotated as a "no state". The same occurs when the

last event of a part finishes before the max offset for all parts. That way we can guarantee that

the whole block is synchronous and there won’t be complete destruction of the vertical relations

60 My Musical Suggester

Figure 4.9: A multiple part model, in which the last VMO, surrounded by a green box, matches
the artificial line extracted from inter-part information.

between parts of the generated score, although some new pauses that were not in the original score

will be written. The process of establishing a block for a transition is illustrated in Figure 4.10.

To start the generation, if the last synchronized state does not correspond to the last state of

every oracle, we depart from the state before the last state in which all the oracles are synchronized

and then make a straight-forward transition to that completely synchronized state, without storing

any symbol. This allows for synchronization of the parts, as every oracle will start its generation

from the initial state of the last block of states.

Because the description of the multi-line generation algorithm is very complex and cannot be

fully represented in a single figure, a video demo is provided in 2 to facilitate the understanding of

the process. There, we can observe that if the current state is not the last and there are no suffix

links from the current states, every oracle will transition to their next state. In the new generated

sequence, a vertical block of symbols that corresponds to the transition will be retained. This

block comprises the symbols of all oracles until reaching the end duration of the largest retrieved

symbol. If any of the oracles is in the last state, a suffix link is chosen from those of all parts,

preferably one that leads to a state which features synchronized events in all oracles. Then, we

compute the block of events for that suffix link (taking into account the oracle to which it belongs)

and transition to the state after the end of the block. If all oracles have suffix links departing from

the current states, a randomly generated number will indicate the probability of transitioning to

another state by following a forward-link to a symbol-connected state or a suffix link. In both

2https://github.com/NadiaCarvalho/Dissertation/wiki

4.3 Generation Sub-Module 61

Algorithm 4.7 Block Recognition and Storing

Require: Oracles = P1P2...PN , states at resulting ’symbol’ for every oracle next_states, offsets at
every state of each oracle

1: min_offset← min([offsets[i][next_states[i]]| i ∈ Oracles])
2: max_offset← max([offsets[i][next_states[i]+1]| i ∈ Oracles])
3: for i = 1→ N do
4: if offsetsi[next_states[i]] 6= min_offset then If there is no state starting at that time for the

oracle, add an artificial state
5: Sequences[i]← [Sequences[i]; ′None_′+ string(offsetsi[next_states[i]]−min_offset])
6: for j = next_states[i]→ length(offsetsi) do
7: if offsetsi[j+1]≤ max_offset then
8: Sequences[i]← [Sequences[i]; j]
9: ktraces[i]← [ktraces[i]; j]

10: else Add an artificial state to rectify lack at end of block
11: Sequences[i]← [Sequences[i]; ′None_′+ string(max_offset−offsetsi[j])]
12: Continue

(a) (b)

Figure 4.10: In Figure 4.10a, we can observe a block identification for a forward transition,
where the current state is the one in the green box and the transition chosen was the one made by
the blue arrow in the artificial line. The block stored is the one in the blue box. In Figure 4.10b,

we can see the respective musical score.

62 My Musical Suggester

cases, the preference will be given to connections that lead to states where all the parts have a state

at that offset. The choice from the suffix links for this type of generation always maximizes the

largest longest repeated suffix, as they are the ones that capture the most important patterns in the

music.

4.3.2.3 Ordering the Generated Sequences

We established from the beginning that the sequences should be provided to the user in an ordered

way, by proximity to the original sequence. To calculate this distance, we use a similar measure

for both single-part and multiple-part generations, as the use of blocks of states in the multiple-part

generation guarantees the synchronous characteristic of the original sequences.

We measure the ratio of jumps per number of transitions, as that number indicates the number

of times that the resulting sequence does not lead to original sequence continuations. For multiple-

part sequences, we make this calculation for every part and use its average as the distance value.

4.4 Interface Module

This section details the interface module which aims to provide a high-level access to all afore-

mentioned functions via a GUI. The interface was implemented in the framework Qt, and has

two different components: 1) a cross-platform application, that can run independently by simply

calling the executable; and 2) a plugin for the notation software Musescore that merely calls the

application with the score currently open in that software and being modified.

The MyMusicalSuggesterPlugin serves as a connection for the application to the notation

software Musescore, so that a composer working on that software can call the application from the

notation software. By simply clicking on the plugin the software loads the currently open score as

the principal music from which it will create the VMO.

In what follows, we will explain the functioning of the standalone application, its interfaces

and flow of utilization.

4.4.1 Standalone Application

The application module was developed in PyQt (version 5)3, a popular Python binding for the Qt

cross-platform C++ framework.

3https://wiki.python.org/moin/PyQt

4.4 Interface Module 63

Figure 4.11: General Features of the GUI.

The graphical user interface (GUI) features a main window, with a toolbar for the two main

buttons that allow for going back and forward between menus, which are presented in the central,

top part of the window, as seen in Figure 4.11. The user can go back on their decisions at any time,

after the processes are concluded, signalized by the stopping of a waiting spinner, that appears at

the beginning of processing or an alert message. The three following menus are the primary GUI

elements in My Musical Suggester and appear in the space fixed in Figure 4.11 by a green box.

They allow the user to control: 1) the database – a menu to select information to be learned by

the model; 2) the viewpoints – a menu for visualizing and adapting the viewpoints weights; and 3)

the generation – a menu for selecting the generative modality between single or multiple. Each of

these menus will be detailed next.

4.4.2 The Database Menu

The database menu is the first menu that appears and is when the application loads. It includes

three main panels, illustrated in Figure 4.12.

64 My Musical Suggester

Figure 4.12: The Database Menu with music on the database path, and a few music selected to
parse.

In the left panel, the user is able to select folders from an existing database the user wants to

include in the model. If necessary, they can choose the path to the database, by clicking on the

button on the top panel and traverse the file selector dialog. The current path will appear next to

the button.

In the right panel, the user can import their own musical collection in MusicXML (i.e., .xml or

.mxl). Then, the contents are parsed and saved to the database in the syntax adopted by the format

used by My Musical Suggester. A progress bar indicates the state of completion of the parsing.

Once the parsing is completed, the folders with the composers’ last name will appear in the left

panel featuring the internal database folders.

4.4.3 The Viewpoints Menu

The viewpoints menu is one of the core GUI elements in My Musical Suggester. It allows the

definition of the weights to be adopted in the model construction.

The user definition of the weights was implemented by a panel for presenting the computed

statistics of each viewpoint, by type of event, and a weight decider as showed in Figure 4.13.

4.4 Interface Module 65

Figure 4.13: The Viewpoints Menu after clicking on View Automatic Weights.

In the top part of the menu we encounter three primary buttons: ’Show Automatic Viewpoints’,

’All Weights Equal’ and ’Clear Weights’. The first button must be used before the other two. It

triggers the calculation of the viewpoints’ statistics, as well as computing the best combination of

weights for the viewpoints using the method described in 4.2.3. This automatic weights assign-

ment streamlines the process, as the user has about 80 and 40 viewpoints to specify for the single

part and multiple-part generation methods, respectively.

In the main part of the menu, we encounter two tabs for part and inter-part viewpoint settings.

The latter only appears if there are inter-part events (multiple parts) in the original scores. Each tab

is composed by a list of viewpoints and a panel in which the information regarding its statistics are

displayed. This information consists of a brief description of the viewpoint and their occurrence in

the music processed. It consists in unique values of viewpoint (or number if higher than three), the

percentage of total appearance of the viewpoint, the media and median of the percentages of each

unique value and its variance and standard deviation, as shown in the right side of Figure 4.13.

In the lower part of the panel, the weights for the viewpoints can be manually set by the user

66 My Musical Suggester

by manipulating the slider values (0-100 scale range). Furthermore, a checkbox, named ’Fixed

Weight’, forces the viewpoints condition to be met in the model. If selected, the weights slider is

disabled and the specified value ignored.

Once the weights are selected, should advance to a new menu by clicking the ’next’. If the all

weights equals zero, the last menu becomes inaccessible.

As the names clearly indicate, the ’All Weights Equal’ and ’Clear Weights’ buttons set all

weights to equal values (arbitrarily set to half of the slider) or zero, respectively.

4.4.4 The Generation Menu

In the Generation Menu, the user specifies the generative strategy as either single, selecting ’Single

Part Oracle’ and the part from which to generate in the selection box bellow, or ’Multiple Part

Oracle’ and click on the ’Generate Oracle’ button. Once the oracle is constructed, a ’number

box’ requires the user to specify the number of sequences to be generated. Figure 4.14 shows the

interface of the menu after selecting the generative strategy.

Figure 4.14: The Generation Menu after clicking on Create Oracle.

4.4 Interface Module 67

After the generation is finished, a message will guide the user to the folder (one per generation)

where the generated sequences are ordered by similarity to the original data. The distance measure

can be observed in the name of the file following a ’distC’. The user can, then, open the sequences

in the notation software they wish, as they are saved in the MusicXML format.

68 My Musical Suggester

Chapter 5

Evaluation and Results

This chapter details the evaluation of MyMusicalSuggester. To this end, we collected expert-

based feedback across composers. A twofold experiment protocol was adopted, aiming to evaluate

complementary aspects of MyMusicalSuggester. Next, we start by detailing the tests protocol and

then the collected results.

5.1 Evaluation protocols

The twofold experiment protocol was adopted to evaluate both the utility of MyMusicalSuggester
and its potential for for an expert-based community of composers. As such, the participants of this

test were selected from a pool of post-graduate composition students.

The evaluation was conducted online and consisted of two phases. The first talk was a task-

oriented test, conducted in a informal setting, and designed to assess most of the features of My-
MusicalSuggester and evaluate its interface. The second followed was the Creativity Support

Index questionnaire, in order to evaluate the creative potential of MyMusicalSuggester.

5.1.1 Task-Oriented Test

We defined three tasks aiming to cover the multiple modelling and generation modes of MyMu-
sicalSuggester. An interview with open-questions followed the tasks, which were designed to

not only allow the participants to learn the tool but also experiment with their their own musical

material. In order to cover the widest possible number of features, we developed three different

usage tests within various contexts of the application.

The first test aimed at evaluating the capacity of the application to learn the style of a Bach

chorals corpus. The first task was equally designed for the participants to get acquainted with

the interface of the MyMusicalSuggester and the backend techniques that are used to generate

novel musical sequences. The task could be performed either on MyMusicalSuggesterPlugin in

Musescore or in the standalone application. The details list of steps are shown in Figure 5.1.

69

70 Evaluation and Results

1. Open MyMusicalSuggester.

2. Observe the initial menu and choose the Bach Chorals folder provided in the compressed
folder that came with the application or ’select all’.

3. Click ’Next’ in the toolbar.

4. Explore the viewpoints menu, by clicking on the ’View Automatic Weights’ button and
reviewing the existent viewpoints and their statistics.

5. Observe the weights automatically attributed to the viewpoints and relate them to their statis-
tics.

6. (Optional) Choose which viewpoints you want to model and their relevance by moving the
weight slider from left to right, increasing their importance. If you want a specific viewpoint
to be strict in calculating similarity of musical events, click on its ’fixed’ checkbox. You can
clean the viewpoints or set their importance to the same, central level by using the ’Clear
Weights’ and ’All Weights Equal’ buttons.

7. Click ’Next’ in the toolbar.

8. Select ’Multiple Part Oracle’.

9. Click on ’Generate Oracle’.

10. Wait for oracle to be generated.

11. Input the number of suggestions that should be generated.

12. Click on ’Generate Sequences’.

13. Wait for sequences to be generated.

14. Click on the link in the dialog box and go to the folder where the sequences were stored.

15. Open the sequences in your notation software, taking into account the order in which they
are present in the folder.

16. Comment on the style-coherency of the results with the original sequence, also present in
the generated folder, including the general synchronization of the multiple parts generated.

17. Review the viewpoints used and their weights by going back to the viewpoints menu and
analyse the generated sequences in face of the viewpoints chosen.

Figure 5.1: Instructions of First Task.

5.1 Evaluation protocols 71

The second and third tasks were used to evaluate the application’s ability to process the com-

positors’ own work, either by learning characteristics and generating sequences from a single part

of the original musical score, as in the case of the second test or from its multiple parts. Both of

the tests were done from a single score and no database, for the participant better understand the

resulting output. The participant composers chose viewpoints that they know to be relevant for

their compositions or specific viewpoint combinations that lead to different results. At the end, the

participants should comment on the utility of the tool in the flow of their composition process and

elaborate on the similarity and usefulness of the resulting sequences, in the context of their own

works. The steps they followed are detailed in Figure 5.2. The major differences in the two tests

are in the item 11 whose selection in the first test corresponds to ’Single Part Oracle’ and in the

second to ’Multiple Part Oracle’ and in the second test, the step 12 should be ignored.

At the end of the tasks, participants were asked to detail the 1) suitability of the interface and

its potential utility in real life situations, as well as 2) suggestions for the interface and new features

to develop.

5.1.2 Creative Support Index

Based on concepts and theories from creativity research, the Creativity Support Index (CSI) was

proposed by Carroll and Latulipe [18] as a standard for evaluating creative tools, such as the ability

of a tool to support, promote, or enable creativity.

The CSI stems from the structure and easy usability of the NASA Task Load Index, a stan-

dard in human-computer interaction. However, the original factors like work performance, men-

tal, physical and temporal demand and effort and frustration were replaced by dimensions better

adapted to the creative flow, namely:

• exploration: capacity of the tool for exploring different options and ideas without too much

repetition;

• collaboration: capacity of working with others during the use of the tool;

• engagement: level of involvement while using the tool and possibility of frequent usage

• effort/reward trade-off: whether the results are worth the effort of using the tool;

• transparency: ability to concentrate in the activity instead of simply in the tool that supports

the activity; and

• expressiveness: creative potential of the composer while using the tool for support.

The test is divided in two parts. In the first part, the participant must fill a short survey with six

statements, one for each factor of the ones listed above, to indicate their level of agreement with

each statement on a twenty point scale, where zero stands for total disagreement and 20 for total

agreement. Then, the participant has to rate the relative importance of each factor against all the

others.

72 Evaluation and Results

1. Open MyMusicalSuggester.

2. Observe the initial menu and select ’Choose Files’ on the right panel.

3. Choose a file of your own, in MusicXML format.

4. Click on ’Parse Files’ and wait for file to be parsed.

5. Make sure no database is selected on the left panel.

6. Click ’Next’ in the toolbar.

7. Explore the viewpoints menu, by clicking on the ’View Automatic Weights’ button and
reviewing the existent viewpoints and their statistics.

8. Observe the weights automatically attributed to the viewpoints and relate them to their statis-
tics.

9. (Optional) Choose which viewpoints you want to model and their relevance by moving the
weight slider from left to right, increasing their importance. If you want a specific viewpoint
to be strict in calculating similarity of musical events, click on its ’fixed’ checkbox. You can
clean the viewpoints or set their importance to the same, central level by using the ’Clear
Weights’ and ’All Weights Equal’ buttons.

10. Click ’Next’ in the toolbar.

11. Select ’Single Part Oracle’.

12. Select the Part to generate the oracle from. (If applicable.)

13. Click on ’Generate Oracle’.

14. Wait for oracle to be generated.

15. Input the number of suggestions that should be generated.

16. Click on ’Generate Sequences’.

17. Wait for sequences to be generated.

18. Click on the link in the dialog box and go to the folder where the sequences were stored.

19. Open the sequences in your notation software, taking into account the order in which they
are present in the folder.

20. Comment on the style-coherency of the results with the original sequence, also present in
the generated folder, and if they would make good continuations for that specific musical
work.

21. Review the viewpoints used and their weights by going back to the viewpoints menu and
analyse the generated sequences in face of the viewpoints chosen.

Figure 5.2: Instructions of Second Task.

5.2 Results 73

The value of the creativity support index is computed by multiplying each factor ranking in the

first part of CSI by its importance, counted as number of times it is more important than another

factor. Then, we sum these values and divide the sum by 3 to normalize the value to a scale of

zero to one-hundred.

5.2 Results

We add a pool of four composer participants (alumni) that are in the beginning of their careers.

Half of them are currently following different artistic directions, namely by purposing their careers

abroad. This trait was meant to promote a large array of diversity in the tested ideas. In the next

sections, we detail the feedback that was provided in the interview phase and the results of the

creative support index.

5.2.1 Task-Oriented Test

For the first task, the opinions were that the harmonic successions seem to work predominantly

well but sometimes the melodies had not always very Bach-like jumps. Nevertheless, depending

on the viewpoints chosen, the result can variate greatly in the capture of some stylistic features

of the original. For example, a general opinion seemed to be that the end of a phrase (given by

suspended chords, placed on fermata points), seem to appear at indiscriminate times, not very

similarly to the original.

When using MyMusicalSuggester with original, contemporary music, either monophonic or

polyphonic, the repetition of ideas is quickly learned and simple or containing the same motive

repeated a lot of times generates sequences very similar to the original. It was discussed that

it could be a good thing, in the sense that it would work as an advice to the composer that the

material used is in a static state and it should be worked on, in order to achieve greater variety in

the composition. At the same time, if there was a better variety of material, the results would be

equally more variate and, sometimes, completely different than expected. These were the traits

highlighted by the composers, as they thought immediately of combinations that they could use in

the tool. It was unanimous that the tool achieved its purpose and the material generated could give

a composer a new way of bypassing potential block.

All the tasks were easily done, without too much hassle and the participants were very im-

pressed with the results and the possibility of using MyMusicalSuggester to help support their

composition process.

5.2.2 Creative Support Index

The results of the Creative Support Index support the interview results. In the first part of the test,

where the participants had to assign a score of 0 to 20 to each factor, according to their views

on the software and its capacities, there was no negative score attributed to any factor, which we

thought that transmitted the positive impact of MyMusicalSuggester. At the same time, all the

74 Evaluation and Results

factors have an average value rounding from 15.5 to 19, as seen in Figure 5.3. This leads us to the

same conclusion.

Figure 5.3: CSI average score by factor, measured from 0 (less relevance of the software in this
factor) to 20 (higher relevance of the software in this factor).

From the factors’ average result, a clear distinction can be made from the ones that scored

higher to the other ones. Although not the worst, we start by evaluating the collaboration fac-

tor, that had an average score of 16. This score was relatively higher than we were expecting

as MyMusicalSuggester did not have a collaboration component, per se. We think that it was

interpreted as the possibility of composers sharing their pieces and learning from those, or even

the possibility of collaborating on viewpoint choice, not on the application itself, but during the

composition process. At the same time, the interest in this factor is clearly low, as may be observed

in the graphic in Figure 5.4, which perhaps explains the not so low score in the part one results.

The low interest was expected, in the sense that the composition process is mostly an individual

process and only in singular situations, such as improvisation, collaboration between composers

or musicians is really expected, and in the case of MyMusicalSuggester, it was not factored.

On the other hand, the transparency of the tool, was the factor that rated the most negative.

This can be derived from some bugs that occurred during the tests, as well as the time that it took

to generate the oracles and sequences from a larger number of events. Additionally, as the process

behind the sequence generation is transparent, it can lead to frustration, due to the resulting lack

of understanding. More integration with the notation software could help in increasing the score

of this factor, as well as increasing the efficiency of the generation processes. The interest of the

users in this factor is, however, less relevant to their composition activity.

Exploration and expressiveness both rate high in the interest of the participants. They are the

two most important factors for composers while creating their works. The exploration part is easily

understood in MyMusicalSuggester: from a single model generated, it is possible to generate

countless sequences, without making a lot of repetitive steps: after the VMO(s) are generated,

simply clicking on the generate sequences button can be done multiple times. Even if a user

5.2 Results 75

wants to modify the viewpoints for the same music, they only have to go back a menu, modify the

ones they want and generate the VMO(s) once more, to remember new information. At the same

time, the high score attributed to expressiveness is equally explained by the potential of using the

composer’s own musical pieces and not only style-limited music, as in most tools. This increases

the perception of possible expression of the composer’s own ideas, which is most relevant to all

the participants.

Effort/Reward Tradeoff and engagement had the highest factor scores, as all participants

agreed that the resulting sequences, specially the ones that were generated from models of their

own works were worth the time they took to generate. However, we must note that this factor was

ranked lower in terms of interests. The participants all concurred that they would use MyMusical-
Suggester with frequency in their composition process, particularly in the beginning phase, were

generating a lot of different suggestions, even if they will not be all used, can trigger new ideas for

the musical compositions.

Figure 5.4: Average values of factors importance, measured from 0 (less interest) to 5 (higher
interest).

At the end, the final score of the CSI test (89.1 out of 100, with the participants scores rang-

ing from 81 to 98). The final score suggests that MyMusicalSuggester shows great potential to

support creative music tasks, namely in assisting the composition process.

76 Evaluation and Results

Chapter 6

Conclusions

6.1 Summary

In this dissertation, we presented MyMusicalSuggester, a software prototype which explores a

model for assisting the creative process of a composer by learning stylistic features from a sym-

bolic music corpus and suggesting novel musical content to the user. Generated sequences are pre-

sented to the user ranked by proximity to the original. The model behind MyMusicalSuggester
expands on the combination of Multiple Viewpoint Models for representing musical information

from variable length contexts (e.g., single works or large corpus). VMO was adopted to capture

temporal relations between musical events and generate new sequences from the user-input ma-

terial. The information captured by the models is always dependent on the user, that has total

freedom to choose the viewpoints adopted, as well as their relative weight.

The main challenge encountered in the development of this tool concerned the synchronization

of multiple parts, either in how to deal with their extraction from the musical scores or how to learn

and generate music synchronized sequences.

The results of the evaluation process, both the task-oriented test commentaries and the creativ-

ity support index result of 89.1 in 100, support the conclusion that MyMusicalSuggester has the

potential to be a great tool for composers in their creative activity, to help unlock the process in

blocking situations but also to use generically, during the composition process.

6.2 Contribution

With this research, we contributed to the artistic and scientific community with the development

of a new support tool for the compositional creative process that suggests new musical sequences,

ordered by level of proximity to the original. The created sequences aim to unlock the composition

process and give the total freedom to the composers to manipulate what the system learns from a

musical corpus, as well as the type of sequences we want to generate.

We implemented a generation system for simultaneous musical lines, expanding of the VMO

algorithm, which has not been widely explored in literature to process harmonic generation (from

77

78 Conclusions

multiple layers). In literature, only the generation from a single automaton has been explored.

Our work advances with a solution to the problem with relative success. Furthermore, while

undergoing the construction of the oracles, the application of weights to the viewpoints, including

fixed weights was not at all envisioned in previous VMO systems, yet they showed great potential

in constructing different degrees of dependency across the viewpoints.

The process of viewpoint extraction from musical scores in MusicXML, while not new, intro-

duced a series of new possible features to learn from and their organization in part and inter-part

events made it possible to increase the level of information that can be extracted and modeled from

a musical score. At the level of part extraction, we feel that our method brings some improvement

over the one already existent in music21 because it allows for taking into account the different

characteristics of the various instruments while extracting every part.

6.3 Future Work

The interface was not our main priority at this stage of development of the work. The developed

interface was designed to accommodate most functions and does not strive for a more simple

or appealing visual. In order to reach a wider community of users, i.e., composers, we aims to

improve the interface design, as well as allow further degrees of freedom to the user. Some features

suggested include the possibility to request the threshold of similarity values of the final sequences,

as well as the possibility to choose single works from the folders in the database. Remaining

improvements should enhance the viewpoints organization in the interface per by category and

integrate different controls for weight selection, such as a MIDI controller.

Concerning the backend processes, further optimization of the VMO should be considered in

the future for greater efficiency. Notably, reducing the time needed for calculating the oracle when

the size of the information to learn is very high ought to be considered. Parsing the information

could not be much faster, unfortunately. We aim to introduce even more derived viewpoints in

next versions of the MyMusicalSuggester, notably those related to the duration in the part events

and with temporal cadences in the inter-part events.

References

[1] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor Oracle: A New Structure
for Pattern Matching. In Jan Pavelka, Gerard Tel, and Miroslav Bartošek, editors, Proceed-
ings of the 26th Conference on Current Trends in Theory and Practice of Informatics on
Theory and Practice of Informatics, volume 1725 of SOFSEM ’99, pages 295–310, Berlin,
Heidelberg, 1999. Springer-Verlag.

[2] Charles Ames. Automated Composition in Retrospect: 1956-1986. Leonardo, 20(2):169–
186, 1987.

[3] Christopher Ariza. Navigating the landscape of computer aided algorithmic composition sys-
tems: A definition, seven descriptors, and a lexicon of systems and research. In Proceedings
of International Computer Music Conference, 2005.

[4] Christopher Ariza. An Open Design for Computer-Aided Algorithmic Music Composition:
Athenacl. PhD thesis, New York University, USA, 2005.

[5] G. Assayag and S. Dubnov. Using factor oracles for machine improvisation, 2004.

[6] Gérard Assayag, Georges Bloch, Marc Chemillier, Arshia Cont, and Shlomo Dubnov. OMax
brothers: A dynamic yopology of agents for improvization learning. Proceedings of the ACM
International Multimedia Conference and Exhibition, (October):125–132, 2006.

[7] Gérard Assayag, Camilo Rueda, Mikael Laurson, Carlos Agon, and Olivier Delerue.
Computer-assisted composition at ircam: From patchwork to openmusic. Comput. Music
J., 23(3):59–72, September 1999.

[8] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order Markov
models. Journal of Artificial Intelligence Research, 22(1):385–421, 2004.

[9] D E Berlyne. Novelty, complexity, and hedonic value. Perception & Psychophysics,
8(5):279–286, 1970.

[10] John Biles. Genjam: A genetic algorithm for generating jazz solos. 07 1994.

[11] Rens Bod. A general parsing model for music and language. In Christina Anagnostopoulou,
Miguel Ferrand, and Alan Smaill, editors, Music and Artificial Intelligence, pages 5–17,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[12] Dimitri Bouche, Jérôme Nika, Alex Chechile, and Jean Bresson. Computer-aided Composi-
tion of Musical Processes. Journal of New Music Research, 46(1):3–14, jan 2017.

[13] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learning Techniques
for Music Generation. Computational Synthesis and Creative Systems Series. Springer,
November 2019.

79

80 REFERENCES

[14] F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright. An experiment in musical
composition. IRE Transactions on Electronic Computers, EC-6(3):175–182, Sep. 1957.

[15] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Tech-
nical report, 1994.

[16] Allen Clayton Cadwallader, David Gagne, and Frank Samarotto. Analysis of tonal music.
Oxford University Press, 1998.

[17] Emilios Cambouropoulos. The local boundary detection model (lbdm) and its application in
the study of expressive timing. 01 2001.

[18] Erin Cherry and Celine Latulipe. The creativity support index. pages 4009–4014, 01 2009.

[19] J. Cleary and I. Witten. Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communications, 32(4):396–402, April 1984.

[20] Darrell Conklin and Christina Anagnostopoulou. Representation and discovery of multiple
viewpoint patterns. In International Computer Music Conference, pages 479–485, 2001.

[21] Darrell Conklin and Ian H. Witten. Multiple Viewpoint Systems for Music Prediction. Jour-
nal of New Music Research, 24(1):51–73, 1995.

[22] Lelouda Custodero, Lori A. and Stamou. 9. International Conference on music perception
and cognition : 6. Triennial Conference of the European society for the cognitive sciences
of music : abstracts : Alma Mater Studiorum, University of Bologna Italy, August 22-26,
2006. In Engaging classrooms: Flow Indicators as tools for pedagogical transformation,
pages 1666 – 1673. Bononia University Press, 2006.

[23] Michael Cuthbert and Christopher Ariza. Music21: A toolkit for computer-aided musicology
and symbolic music data. pages 637–642, 01 2010.

[24] Michael Scott Cuthbert. User’s guide, chapter 9: Chordify, 2006-2017. https://web.
mit.edu/music21/doc/usersGuide/usersGuide_09_chordify.html, Last ac-
cessed on 2020-06-18.

[25] Daichi Ando and Hitoshi Iba. Interactive composition aid system by means of tree repre-
sentation of musical phrase. In 2007 IEEE Congress on Evolutionary Computation, pages
4258–4265, Sep. 2007.

[26] Ken Déguernel, Emmanuel Vincent, and Gérard Assayag. Probabilistic Factor Oracles for
Multidimensional Machine Improvisation. Computer Music Journal, 42(2):52–66, jun 2018.

[27] Christos Dimitrakakis. Bayesian variable order Markov models. In Journal of Machine
Learning Research, volume 9, pages 161–168, 2010.

[28] S. Dubnov, G. Assayag, and A. Cont. Audio oracle analysis of musical information rate. In
2011 IEEE Fifth International Conference on Semantic Computing, pages 567–571, 2011.

[29] Shlomo Dubnov, Gérard Assayag, Gill Bejerano, and Olivier Lartillot. A System for Com-
puter Music Generation by Learning and Improvisation in a Particular Style. IEEE Computer,
10(38):1–15, 2003.

REFERENCES 81

[30] Shlomo Dubnov, Gérard Assayag, and Arshia Cont. Audio oracle: A new algorithm for
fast learning of audio structures. In International Computer Music Conference, ICMC 2007,
pages 224–227, 2007.

[31] B. Eno. A Year with Swollen Appendices. Faber & Faber, 1996.

[32] Lee Frankel-Goldwater. Computers Composing Music: An Artistic Utilization of Hidden
Markov Models for Music Composition. Journal of Undergraduate Research, 5(1 and 2):17–
20, 2007.

[33] Édouard Gilbert and Darrell Conklin. A probabilistic context-free grammar for melodic
reduction. 01 2007.

[34] Michael Good. Musicxml: An internet-friendly format for sheet music. 01 2001.

[35] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Automatic time-span tree analyzer
based on extended gttm. In in Proceedings of the Sixth International Conference on Music
Information Retrieval, ISMIR 2005, pages 358–365, 2005.

[36] Pierre Hanna, Matthias Robine, Pascal Ferraro, and Julien Allali. Improvements of alignment
algorithms for polyphonic music retrieval. pages 244–251, 2008.

[37] D. Herremans and E. Chew. Morpheus: automatic music generation with recurrent pattern
constraints and tension profiles. In 2016 IEEE Region 10 Conference (TENCON), pages
282–285, Nov 2016.

[38] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. A functional taxonomy of music
generation systems. ACM Computing Surveys, 50(5):1–30, Sep 2017.

[39] Andrew Horner and David Goldberg. Genetic algorithms and computer-assisted music com-
position. Urbana, 51:437–441, 01 1991.

[40] Phillip B. Kirlin and Paul E. Utgoff. A framework for automated Schenkerian analysis. In
ISMIR 2008 - 9th International Conference on Music Information Retrieval, pages 363–368,
feb 2008.

[41] C. S. Lee. The rhythmic interpretation of simple musical sequences : towards a perceptual
model. Musical Structure and Cognition, 1985.

[42] Kjell Lemström and Jorma Tarhio. Transposition invariant pattern matching for multi-track
strings. Nordic Journal of Computing, 10(3):185–205, 2003.

[43] Fred Lerdahl and Ray Jackendoff. A generative theory of tonal music. The MIT Press, 1983.

[44] Ming Li and Ronan Sleep. Genre classification via an lz78-based string kernel. pages 252–
259, 01 2005.

[45] Feynman T. Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. Automatic stylistic
composition of bach chorales with deep lstm. In ISMIR, 2017.

[46] Christiane Linster. On Analyzing and Representing Musical Rhythm, page 414–427. MIT
Press, Cambridge, MA, USA, 1992.

[47] Corentin Louboutin and David Meredith. Using general-purpose compression algorithms for
music analysis. Journal of New Music Research, 45:1–16, 02 2016.

82 REFERENCES

[48] Donncha O Maidín. A geometrical algorithm for melodic difference. In Computing in
Musicology, number 11, page 65–72, 1998.

[49] Alan Marsden. Representing melodic patterns as networks of elaborations. Language Re-
sources and Evaluation, 35(1):37–54, 2001.

[50] Alan Marsden. Generative structural representation of tonal music. Journal of New Music
Research, 34(4):409–428, dec 2005.

[51] Alan Marsden and Anthony Pople. Computer representations and models in music. Aca-
demic Press, 1992.

[52] Dave Meredith, Geraint Wiggins, and Kjell Lemström. Pattern induction and matching in
polyphonic music and other multidimensional datasets. Proceedings of the 5th World Multi-
Conference on Systemics, Cybernetics and Informatics, 10, 08 2002.

[53] David Meredith. Point-set algorithms for pattern discovery and pattern matching in music.
In Tim Crawford and Remco C. Veltkamp, editors, Content-Based Retrieval, number 06171
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[54] David Meredith. The ps13 pitch spelling algorithm. Journal of New Music Research,
35(2):121–159, 2006.

[55] David Meredith. RecurSIA-RRT: Recursive translatable point-set pattern discovery with
removal of redundant translators. jun 2019.

[56] David Meredith, Geraint Wiggins, and Kjell Lemström. Pattern discovery and pattern match-
ing in polyphonic music and other multidimensional datasets. 06 2001.

[57] James Anderson Moorer. Music and computer composition. Commun. ACM, 15(2):104–113,
February 1972.

[58] María Navarro-Cáceres, Marcelo Caetano, Gilberto Bernardes, and Leandro De Castro.
Chordais: An assistive system for the generation of chord progressions with an artificial
immune system. Swarm and Evolutionary Computation, 06 2019.

[59] Gerhard Nierhaus. Algorithmic Composition: Paradigms of Automated Music Generation.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[60] Doug Van Nort, Pauline Oliveros, and Jonas Braasch. Electro/acoustic improvisation and
deeply listening machines. Journal of New Music Research, 42(4):303–324, 2013.

[61] Francois Pachet. The continuator: Musical interaction with style. Journal of New Music
Research, 32:333–341, 08 2010.

[62] Alexandre Papadopoulos, Pierre Roy, and François Pachet. Avoiding plagiarism in Markov
sequence generation. In Proceedings of the National Conference on Artificial Intelligence,
volume 4, pages 2731–2737, 2014.

[63] Alexandre Papadopoulos, Pierre Roy, and Francois Pachet. Assisted lead sheet composition
using flowcomposer. volume 9892, 09 2016.

[64] George Papadopoulos and Geraint A. Wiggins. A genetic algorithm for the generation of
jazz melodies. 2000.

REFERENCES 83

[65] M. Pearce. The Construction and Evaluation of Statitical Models of Melodic Structure In
Music Perception And Composition. PhD thesis, City University, London, 2005.

[66] Marcus Pearce. Idyom, 2005-2020. https://github.com/mtpearce/idyom/wiki,
Last accessed on 2020-06-28.

[67] Marcus Pearce, Daniel Müllensiefen, and Geraint Wiggins. A comparison of statistical and
rule-based models of melodic segmentation. pages 89–94, 01 2008.

[68] Anna Pienimäki. Indexing Music Databases Using Automatic Extraction of Frequent
Phrases. 3rd Int. Conf. on Music Information Retrieval, pages 25–30, 2002.

[69] Richard C. Pinkerton. Information theory and melody. Scientific American, 194(2):77–87,
1956.

[70] D. Rizo. Symbolic Music Comparison with Tree Data Structures. PhD thesis, Universidad
de Alicante, 2010.

[71] C. Roads and Paul Wieneke. Grammars as Representations for Music, 1979.

[72] Curtis Roads. Microsound, volume 1. 2019.

[73] Marcelo E. Rodríguez-López, Anja Volk, and Dimitrios Bountouridis. Multi-strategy seg-
mentation of melodies. In ISMIR, 2014.

[74] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilistic
automata with variable memory length. Machine Learning, 25(2-3):117–149, 12 1996.

[75] W. Schulze and B. van der Merwe. Music generation with markov models. IEEE MultiMedia,
18(03):78–85, jul 2011.

[76] Marco Scirea, Julian Togelius, Peter Eklund, and Sebastian Risi. Metacompose: A compo-
sitional evolutionary music composer. In Colin Johnson, Vic Ciesielski, João Correia, and
Penousal Machado, editors, Evolutionary and Biologically Inspired Music, Sound, Art and
Design, pages 202–217, Cham, 2016. Springer International Publishing.

[77] David R. W. Sears, Andreas Arzt, Harald Frostel, Reinhard Sonnleitner, and Gerhard Wid-
mer. Modeling harmony with skip-grams. ArXiv, abs/1707.04457, 2017.

[78] SMC. Smcroadmap, 2020. http://www.smcnetwork.org/roadmap, Last accessed
on 2020-07-03.

[79] Stephen Smoliar. Schenker: a computer aid for analysing tonal music. ACM SIGLASH
Newsletter, 10:30–61, 12 1976.

[80] Paolo Tagliolato. A Generalized Graph-Spectral Approach to Melodic Modeling and Re-
trieval Categories and Subject Descriptors. pages 89–96, 2008.

[81] David Temperley. The Cognition of Basic Musical Structures. The MIT Press, 2004.

[82] Mauricio Toro. Probabilistic extension to the concurrent constraint factor oracle model for
music improvisation. Inteligencia Artificial, 19(57):37–73, 2016.

[83] Michael Towsey, Andrew Brown, Susan Wright, and Joachim Diederich. Towards melodic
extension using genetic algorithms. Educational Technology and Society, 4, 04 2001.

84 REFERENCES

[84] C. Wang and S. Dubnov. Variable markov oracle: A novel sequential data points cluster-
ing algorithm with application to 3d gesture query-matching. In 2014 IEEE International
Symposium on Multimedia, pages 215–222, Dec 2014.

[85] Cheng I. Wang and Shlomo Dubnov. Guided music synthesis with variable Markov Oracle.
In AAAI Workshop - Technical Report, volume WS-14-18, pages 55–62, 2014.

[86] Cheng-i Wang and Shlomo Dubnov. Context-Aware Hidden Markov Models of Jazz Music
with Variable Markov Oracle. In Eighth International Conference on Computational Cre-
ativity (ICCC 2017), number October, 2017.

[87] Cheng i. Wang, Jennifer Hsu, and Shlomo Dubnov. Music pattern discovery with variable
Markov oracle: A unified approach to symbolic and audio representations. In Proceedings
of the 16th International Society for Music Information Retrieval Conference, ISMIR 2015,
pages 176–182, 2015.

[88] Cheng I. Wang, Jennifer Hsu, and Shlomo Dubnov. Machine improvisation with Variable
Markov Oracle: Toward guided and structured improvisation. Computers in Entertainment,
14(3):1–18, 2016.

[89] Rodney Waschka II. Composing with Genetic Algorithms: GenDash, pages 117–136.
Springer London, London, 2007.

[90] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method:
basic properties. IEEE Transactions on Information Theory, 41(3):653–664, May 1995.

[91] R Wooller, AR Brown, E Miranda, R Berry, and D Joachim. A framework for comparison of
processes in algorithmic music systems. Generative Arts Practice. Creativity and Cognition
Studios Press, Generative:109–124., 2005.

[92] Anna K. Yanchenko and Sayan Mukherjee. Classical Music Composition Using State Space
Models. PhD thesis, 2017.

[93] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23(3):337–343, May 1977.

[94] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, Sep. 1978.

Appendix A

Table of Viewpoints

Index Name Part/Inter-Part Category Derived

From

Definition Type

0.1 (Info) part Part Metadata Name of the Part in

which the Event ex-

ists.

String

0.2 (Info) voice Part Metadata Voice related to Part

in which the Event

exists.

String

0.3 (Info) instrument Part Metadata Instrument name of

the Part in which the

Event exists.

String

0.4 (Info) piece_title Both Metadata Title of the musical

Work in which the

Event exists.

String

0.5 (Info) composer Both Metadata Composer of the mu-

sical Work in which

the Event exists.

String

1.1 rest Both Basic Is a rest Event? Bool

1.2 chord Part Basic Is a chord Event? Bool

1.3 grace Part Basic Is a grace note Event? Bool

continued on next page

85

86 Table of Viewpoints

continued from previous page

1.4 bioi Part Basic Basic Interval of Off-

set of the Event to

penultimate Event.

Float

2.1 length Both Duration Length of the Event Float

2.2 type Both Duration Typical name of du-

ration of Event (quar-

ter/half note,...).

String

2.3 dots Both Duration Number of dots added

to type.

Integer

2.4 slash Part Duration The rhythmic figure

has a slash? (only ap-

plies to grace note).

Bool

2.5 type Both Duration (Tie) Has a tie? Is it nor-

mal?.

String

2.6 style Both Duration (Tie) Style of the Tie (Dot-

ted, normal, etc. . .).

String

3.1 articulation Part Expressions Articulations applied

to Event.

List of

Strings

3.2 breath_mark Part Expressions Is in a breath mark? Bool

3.3 dynamic Part Expressions Dynamics applied to

Event.

List of

Strings

3.4 fermata Part Expressions Has a fermata? Bool

3.5 expression Part Expressions Text Expressions ap-

plied to Event.

List of

Strings

3.6 ornamentation Part Expressions Special Expressions

(ornaments) applied

to Event.

List of

Strings

3.7 rehearsal Part Expressions Is in a rehearsal

mark?

Bool

continued on next page

Table of Viewpoints 87

continued from previous page

3.8 volume Part Expressions Volume of Event

(Applies informa-

tion from other

expressions such

as dynamics and

articulation).

Integer

3.9 type Part Expressions

(Notehead)

Type of Notehead. String

3.10 fill Part Expressions

(Notehead)

Notehead is filled? Bool

3.11 parenthesis Part Expressions

(Notehead)

Notehead has paren-

thesis?

Bool

3.12 slur.begin Part Expressions

(Slur)

Is the Event begin-

ning a slur?

Bool

3.13 slur.between Part Expressions

(Slur)

Is the Event in a slur,

but is not beginning

or ending it?

Bool

3.13 slur.end Part Expressions

(Slur)

Is the Event ending a

slur?

Bool

3.14 crescendo.begin Part Expressions

(Crescendo)

Is the Event begin-

ning a crescendo?

Bool

3.15 crescendo.between Part Expressions

(Crescendo)

Is the Event in a

crescendo, but is not

beginning or ending

it?

Bool

3.16 crescendo.end Part Expressions

(Crescendo)

Is the Event ending a

slucrescendor?

Bool

3.17 decrescendo.begin Part Expressions

(Decrescendo)

Is the Event begin-

ning a decrescendo?

Bool

continued on next page

88 Table of Viewpoints

continued from previous page

3.18 decrescendo.betweenPart Expressions

(Decrescendo)

Is the Event in a de-

crescendo, but is not

beginning or ending

it?

Bool

3.19 decrescendo.end Part Expressions

(Decrescendo)

Is the Event ending a

decrescendo?

Bool

3.20 clef Part Expressions Clef at the time of the

event.

String

4.1 cpitch Part Pitch Midi pitch (plus cents

has decimals) of note

Event.

Float

4.2 dnote Part Pitch Name of note

(C,D,E,F,G,A,B).

String

4.3 octave Part Pitch Number of octave. Integer

4.4 accidental Part Pitch Accidental (including

quarter tones).

String

4.5 microtonal Part Pitch Cents applied to note. Float

4.6 pitch_class Part Pitch Pitch class of note. Integer

[0,11]

4.7 chordPitches Part Pitch Pitches (cpithes) of

Event if Event is

chord.

Array of

Floats

5.1 keysig Both Key Number of sharps (+)

or flats (-) in key sig-

nature.

Integer

[-7,7]

5.2 key Both Key (at Key Sig-

natures)

Name of key and

mode.

String

5.3 Inter-Part Inter-Part Key (at Key Sig-

natures)

Certainty in avaliat-

ing the key.

Float

continued on next page

Table of Viewpoints 89

continued from previous page

5.4 scale_degree Part Derived Pitch, Key

(at Key

Signa-

tures)

melodic degree of

note relatively to key.

Integer

5.5 signatures.function Inter-Part Derived Key (at

Key Sig-

natures)

Harmonic function

of chord relatively to

key.

String

5.6 key Both Key (at Mea-

sures)

Name of key and

mode.

String

5.7 certainty Both Key (at Mea-

sures)

Certainty in avaliat-

ing the key.

Float

5.8 scale_degree Part Derived Pitch,

Key (at

Measures)

melodic degree of

note relatively to key.

Integer

5.9 measures.function Inter-Part Derived Key (at

Measures)

Harmonic function

of chord relatively to

key.

String

6.1 timesig Part Time Time signature (in

string ‘4/4’).

String

6.2 pulses Part Time Nominator of time

signature.

Integer

6.3 barlength Part Time Denominator of time

signature.

Integer

6.4 value Part Time -

metro(nome)

Value of metronome

if existent.

Integer

6.5 sound Part Time -

metro(nome)

Value of audible

metronome (may not

be the same of value

in specific situations).

Integer

continued on next page

90 Table of Viewpoints

continued from previous page

6.6 text Part Time -

metro(nome)

Tempo as Text written

on metronome, such

as ’Andante’, ’Ada-

gio’, etc.

String

6.7 value Part Time - reference Value of reference du-

ration.

Integer

6.8 type Part Time - reference Type of reference du-

ration (refer to dura-

tion).

String

6.9 double Part Time - barlines Has a double barline

after?

Bool

6.10 repeat(_exists_

before)

Part Time - barlines -

repeat

Has a repeat barline

before?

Bool

6.11 direction Part Time - barlines -

repeat

Direction of the re-

peat barline, if exis-

tent.

String

6.12 is_end Part Time - barlines -

repeat

Is at the end of piece?

(Does not appear in

6.10)

Bool

7.1 seq_int Part Derived Pitch Interval to last non-

rest note.

Float

7.2 contour Part Derived Pitch Moviment direction

from last non-rest

note.

Integer

[-1,1]

7.3 contour_hd Part Derived Pitch Quantized Interval

from last non-rest

note.

Integer

[-4,4]

7.4 closure Part Derived Pitch Shape defined by the

last 3 notes: 1p for

change of direction

and 1p for a tone

smaller than the pre-

ceding one.

Integer

[0,2]

continued on next page

Table of Viewpoints 91

continued from previous page

7.5 registral_

direction

Part Derived Pitch Is a large (>= perfect

fifth) jump followed

by a direction change

or a small (<= perfect

fourth) jump followed

by a move in the same

direction?

Bool

7.6 intervalistic_

difference

Part Derived Pitch Is a large jump fol-

lowed by a smaller (3

semitones smaller if

in the same direction

or 2 semitones if re-

versing the direction)

jump? Is a small jump

followed by a similar

interval?

Bool

7.7 upwards Part Derived Pitch The last 3 Events

are an ascending se-

quence?

Bool

7.8 downwards Part Derived Pitch The last 3 Events

are a descending se-

quence?

Bool

7.9 no_movement Part Derived Pitch The last 3 Events are

the same pitch (there

was no movement)?

Bool

7.10 bioi_ratio Part Derived Basic

(Bioi)

Bioi divided by the

previous bioi.

Float

7.11 bioi_contour Part Derived Basic

(Bioi)

Contour (-1, 0, 1)

from the bioi of the

last Event.

Float

7.12 dur_ratio Part Derived Duration Current duration

length divided by the

previous duration.

Float

continued on next page

92 Table of Viewpoints

continued from previous page

7.13 dur_contour Part Derived Duration Contour (-1, 0, 1)

from the duration

length of the last

Event.

Float

7.14 fib Part Derived Time Is the first element in

a bar?

Bool

7.15 posinbar Part Derived Time Position of Event in

bar.

Integer

[0,bar-

length]

7.16 beat_strength Part Derived Time Event Strength relat-

ing to position in bar

and accentuations.

Float

7.17 tactus Part Derived Time Is on strong/tactus po-

sitions in a bar?

Bool

7.18 anacrusis Part Derived Time Event is in an Anacru-

sis Tempo.

Bool

7.19 intfib Part Derived Pitch,

Time

Interval from note to

fib of respective bar.

Float

7.20 thrbar Part Derived Pitch,

Time

Interval from note (if

fib) to last fib.

Float

7.21 intphrase Part Derived Pitch,

Time,

Phrase

Interval from note to

first note in respective

phrase.

Float

8.1 boundary Part Phrase All the

others

(or not,

chosen)

Is a beginning (1),

end (-1) or middle (0)

of a phrase?

Integer

[-1,1]

8.2 length Part Phrase Number of events in

the phrase to which

the Event belongs

Integer

9.1 root Inter-Part Basic (Chord) Pitch Root of the chord. Float

(cpitch)

continued on next page

Table of Viewpoints 93

continued from previous page

9.2 pitches Inter-Part Basic (Chord) Pitch Pitches that make Part

of the chord.

List of

Float

(cpitch)

9.2 cardinality Inter-Part Basic (Chord) Pitch Number of notes in

chord.

Integer

9.3 inversion Inter-Part Basic (Chord) Pitch Inversion of the

chord.

String

9.4 prime_form Inter-Part Basic (Chord) Pitch Chord pitches in 0-11

scale, sorted.

String

9.5 quality Inter-Part Basic (Chord) Pitch Quality of the under-

lying triad of a triad

or sEventh, either

major, minor, dimin-

ished, augmented, or

other.

String

10.1 forte_class Inter-Part Classes (Chord) Pitch Forte set class name

as a string.

String

10.2 forte_class_

number

Inter-Part Classes (Chord) Pitch Number of the Forte

set class within the

defined set group.

Integer

10.3 pc_ordered Inter-Part Classes (Chord) Pitch Pitch Classes of the

chord, ordered.

Array of

Integers

10.4 pc_cardinality Inter-Part Classes (Chord) Pitch Number of unique

pitch classes.

Integer

10.5 pitch_class Inter-Part Classes (Chord) Pitch All pitch classes in

the chord as integers.

Not sorted.

Array of

Integers

11.1 is_consonant Inter-Part Quality (Chord) Basic

(Chord)

is a consonant chord? Bool

11.2 is_major_triad Inter-Part Quality (Chord) Basic

(Chord)

is a major triad

chord?

Bool

continued on next page

94 Table of Viewpoints

continued from previous page

11.3 is_incomplete_

major_triad

Inter-Part Quality (Chord) Basic

(Chord)

is an incomplete ma-

jor triad chord?

Bool

11.4 is_minor_triad Inter-Part Quality (Chord) Basic

(Chord)

is a minor triad

chord?

Bool

11.5 is_incomplete_

minor_triad

Inter-Part Quality (Chord) Basic

(Chord)

is an incomplete mi-

nor triad chord?

Bool

11.6 is_augmented_

sixth

Inter-Part Quality (Chord) Basic

(Chord)

is an augmented sixth

chord?

Bool

11.7 is_french_

augmented_

sixth

Inter-Part Quality (Chord) Basic

(Chord)

is a french augmented

sixth chord?

Bool

11.8 is_german_

augmented_

sixth

Inter-Part Quality (Chord) Basic

(Chord)

is a german aug-

mented sixth chord?

Bool

11.9 is_italian_

augmented_

sixth

Inter-Part Quality (Chord) Basic

(Chord)

is an italian aug-

mented sixth chord?

Bool

11.10 is_swiss_

augmented_

sixth

Inter-Part Quality (Chord) Basic

(Chord)

is a swiss augmented

sixth chord?

Bool

11.11 is_augmented_

triad

Inter-Part Quality (Chord) Basic

(Chord)

is an augmented triad

chord?

Bool

11.12 is_diminished_

seventh

Inter-Part Quality (Chord) Basic

(Chord)

is a diminished sev-

enth chord?

Bool

11.13 is_half_di-

minished_

seventh

Inter-Part Quality (Chord) Basic

(Chord)

is an half diminished

seventh chord?

Bool

11.14 is_dominant_

seventh

Inter-Part Quality (Chord) Basic

(Chord)

is a dominant seventh

chord?

Bool

95

96 Creativity Support Index Form

Appendix B

Creativity Support Index Form

B.1 Part I

Figure B.1: Part I of Creativity Support Index

B.2 Part II 97

B.2 Part II

Figure B.2: Part II of Creativity Support Index

98 Creativity Support Index Form

	Table of Contents
	List of Figures
	List Of Tables
	Abbreviations
	Introduction
	1.1 Context and Motivation
	1.2 Problem Definition and Objectives
	1.3 Methodology
	1.4 Document Structure
	1.5 Publication

	Knowledge Support Systems for Music:A literature review
	2.1 Knowledge Support Music Systems
	2.1.1 Important Concepts in Music Informatics
	2.1.2 An Overview of CAAC Systems

2.1.2 An Overview of CAAC Systems

	2.1.2.1 CAAC Systems that use Statistical Modeling
	2.1.2.2 CAAC Systems that use Deep Learning

	2.2 Computational Representation of Symbolic Musical Structures
	2.2.1 String Modeling
	2.2.1.1 String Modeling of Monophonic Music
	2.2.1.2 String Modeling of Polyphonic Music

	2.2.2 Multiple Viewpoint Models
	2.2.3 Geometric Modeling
	2.2.4 Multidimensional Point Sets
	2.2.5 Models based on Formal Grammars and Syntax Trees
	2.2.6 Graph-based representations

	2.3 Generative Algorithms
	2.3.1 Compression algorithms
	2.3.1.1 Lempel-Ziv 77 and 78
	2.3.1.2 Burrows–Wheeler transform
	2.3.1.3 SIA-based algorithms

	2.3.2 Genetic Algorithms
	2.3.3 Markov Models
	2.3.3.1 N-grams
	2.3.3.2 Hidden Markov Models
	2.3.3.3 Variable Order Markov Models

	2.3.4 Factor Oracle
	2.3.5 Variable Order Markov Oracle
	2.3.6 Deep Learning Techniques

	2.4 Summary

	Encoding Information from Symbolic Music Manifestations: A Multiple Viewpoint Model Approach
	3.1 Unpacking a Musical Score
	3.2 MusicXML
	3.3 Music21
	3.4 Abstracting multiple viewpoints from parts
	3.4.1 Part Segregation: Separation of Voices
	3.4.2 The Part Events’ Viewpoints
	3.4.2.1 Metadata Viewpoints
	3.4.2.2 Basic Viewpoints
	3.4.2.3 Duration Viewpoints
	3.4.2.4 Pitch Viewpoints
	3.4.2.5 Expression Viewpoints
	3.4.2.6 Time Viewpoints
	3.4.2.7 Key Viewpoints
	3.4.2.8 Phrase Viewpoints
	3.4.2.9 Derived Viewpoints

	3.5 Abstracting multiple viewpoints from inter-part dependencies
	3.5.1 Metadata and Duration Viewpoints
	3.5.2 Key Viewpoints
	3.5.3 Chord Viewpoints

	3.6 From part events to a new Musical Score

	My Musical Suggester
	4.1 Architecture
	4.2 Representation Sub-Module
	4.2.1 Multiple Viewpoint Models
	4.2.2 Segmentation of events
	4.2.3 Multiple Viewpoint Weights

	4.3 Generation Sub-Module
	4.3.1 Variable Order Markov Oracle
	4.3.2 Generation of sequences
	4.3.2.1 Single-Part Generation
	4.3.2.2 Generation of synchronized Multiple Parts
	4.3.2.3 Ordering the Generated Sequences

	4.4 Interface Module
	4.4.1 Standalone Application
	4.4.2 The Database Menu
	4.4.3 The Viewpoints Menu
	4.4.4 The Generation Menu

	Evaluation and Results
	5.1 Evaluation protocols
	5.1.1 Task-Oriented Test
	5.1.2 Creative Support Index

	5.2 Results
	5.2.1 Task-Oriented Test
	5.2.2 Creative Support Index

	Conclusions
	6.1 Summary
	6.2 Contribution
	6.3 Future Work

	References
	Appendix A: Table of Viewpoints
	Appendix B: Creativity Support Index Form

