83,055 research outputs found

    Automatic music classification problems

    Get PDF
    Attempts to categorise music by extracting audio features from a sample have had mixed results. Some categories such as classical are easy to identify but attempts to distinguish between various types of popular music yield poor results. Part of the difficulty is that humans also disagree with each other when classifying music. We report on experiments that compare human classification of music samples to that based on audio feature extraction and machine learning techniques. We extracted a set of audio features and applied a range of machine learning techniques to aset of 128 pieces of music. Our work demonstrates that a single feature and a simple machine learning approach achieve results that are almost as consistent as humans for the same task. Further experiments revealed an even greater inconsistency amongst humans in selecting categories for music. Using a self organising map on the same set of pieces and features produced some meaningful song clusters, that is, pieces by the same artist or composer, or of the same genre, were grouped together. It also showed some of the same cross-genre relationships shown by the human-based classifications

    A prototype for classification of classical music using neural networks

    Get PDF
    As a result of recent technological innovations, there has been a tremendous growth in the Electronic Music Distribution industry. In this way, tasks such us automatic music genre classification address new and exciting research challenges. Automatic music genre recognition involves issues like feature extraction and development of classifiers using the obtained features. As for feature extraction, we use features such as the number of zero crossings, loudness, spectral centroid, bandwidth and uniformity. These are statistically manipulated, making a total of 40 features. As for the task of genre modeling, we train a feedforward neural network (FFNN). A taxonomy of subgenres of classical music is used. We consider three classification problems: in the first one, we aim at discriminating between music for flute, piano and violin; in the second problem, we distinguish choral music from opera; finally, in the third one, we aim at discriminating between all five genres. Preliminary results are presented and discussed, which show that the presented methodology may be a good starting point for addressing more challenging tasks, such as using a broader range of musical categories

    Segmentation process and spectral characteristics in the determination of musical genres

    Get PDF
    Over the past few years there has been a tendency to store audio tracks for later use on CD-DVDs, HDD-SSDs as well as on the internet, which makes it challenging to classify the information either online or offline. For this purpose, the audio tracks must be tagged. Tags are said to be texts based on the semantic information of the sound [1]. Thus, music analysis can be done in several ways [2] since music is identified by its genre, artist, instruments and structure, by a tagging system that can be manual or automatic. The manual tagging allows the visualization of the behavior of an audio track either in time domain or in frequency domain as in the spectrogram, making it possible to classify the songs without listening to them. However, this process is very time consuming and labor intensive, including health problems [3] which shows that "the volume, sound sensitivity, time and cost required for a manual labeling process is generally prohibitive. Three fundamental steps are required to carry out automatic labelling: pre-processing, feature extraction and classification [4]. The present study developed an algorithm for performing automatic classification of music genres using a segmentation process employing spectral characteristics such as centroid (SC), flatness (SF) and spread (SS), as well as a time spectral characteristic

    Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks

    Get PDF
    Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale audio classification has shown that CNN architectures, originally developed for image problems, can be applied successfully to audio event recognition and classification with little or no modifications to the networks. In this paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% when CNN architectures are trained using acoustic representations from motivic patterns

    Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings

    Full text link
    In this paper we introduce multi-label ferns, and apply this technique for automatic classification of musical instruments in audio recordings. We compare the performance of our proposed method to a set of binary random ferns, using jazz recordings as input data. Our main result is obtaining much faster classification and higher F-score. We also achieve substantial reduction of the model size

    Features for the classification and clustering of music in symbolic format

    Get PDF
    Tese de mestrado, Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2008Este documento descreve o trabalho realizado no âmbito da disciplina de Projecto em Engenharia Informática do Mestrado em Engenharia Informática da Faculdade de Ciências da Universidade de Lisboa. Recuperação de Informação Musical é, hoje em dia, um ramo altamente activo de investigação e desenvolvimento na área de ciência da computação, e incide em diversos tópicos, incluindo a classificação musical por géneros. O trabalho apresentado centra-se na Classificação de Pistas e de Géneros de música armazenada usando o formato MIDI. Para resolver o problema da classificação de pistas MIDI, extraimos um conjunto de descritores que são usados para treinar um classificador implementado através de uma técnica de Máquinas de Aprendizagem, Redes Neuronais, com base nas notas, e durações destas, que descrevem cada faixa. As faixas são classificadas em seis categorias: Melody (Melodia), Harmony (Harmonia), Bass (Baixo) e Drums (Bateria). Para caracterizar o conteúdo musical de cada faixa, um vector de descritores numérico, normalmente conhecido como ”shallow structure description”, é extraído. Em seguida, eles são utilizados no classificador — Neural Network — que foi implementado no ambiente Matlab. Na Classificação por Géneros, duas propostas foram usadas: Modelação de Linguagem, na qual uma matriz de transição de probabilidades é criada para cada tipo de pista midi (Melodia, Harmonia, Baixo e Bateria) e também para cada género; e Redes Neuronais, em que um vector de descritores numéricos é extraído de cada pista, e é processado num Classificador baseado numa Rede Neuronal. Seis Colectâneas de Musica no formato Midi, de seis géneros diferentes, Blues, Country, Jazz, Metal, Punk e Rock, foram formadas para efectuar as experiências. Estes géneros foram escolhidos por partilharem os mesmos instrumentos, na sua maioria, como por exemplo, baixo, bateria, piano ou guitarra. Estes géneros também partilham algumas características entre si, para que a classificação não seja trivial, e para que a robustez dos classificadores seja testada. As experiências de Classificação de Pistas Midi, nas quais foram testados, numa primeira abordagem, todos os descritores, e numa segunda abordagem, os melhores descritores, mostrando que o uso de todos os descritores é uma abordagem errada, uma vez que existem descritores que confundem o classificador. Provou-se que a melhor maneira, neste contexto, de se classificar estas faixas MIDI é utilizar descritores cuidadosamente seleccionados. As experiências de Classificação por Géneros, mostraram que os Classificadores por Instrumentos (Single-Instrument) obtiveram os melhores resultados. Quatro géneros, Jazz, Country, Metal e Punk, obtiveram resultados de classificação com sucesso acima dos 80% O trabalho futuro inclui: algoritmos genéticos para a selecção de melhores descritores; estruturar pistas e musicas; fundir todos os classificadores desenvolvidos num único classificador.This document describes the work carried out under the discipline of Computing Engineering Project of the Computer Engineering Master, Sciences Faculty of the Lisbon University. Music Information Retrieval is, nowadays, a highly active branch of research and development in the computer science field, and focuses several topics, including music genre classification. The work presented in this paper focus on Track and Genre Classification of music stored using MIDI format, To address the problem of MIDI track classification, we extract a set of descriptors that are used to train a classifier implemented by a Neural Network, based on the pitch levels and durations that describe each track. Tracks are classified into four classes: Melody, Harmony, Bass and Drums. In order to characterize the musical content from each track, a vector of numeric descriptors, normally known as shallow structure description, is extracted. Then they are used as inputs for the classifier which was implemented in the Matlab environment. In the Genre Classification task, two approaches are used: Language Modeling, in which a transition probabilities matrix is created for each type of track (Melody, Harmony, Bass and Drums) and also for each genre; and an approach based on Neural Networks, where a vector of numeric descriptors is extracted from each track (Melody, Harmony, Bass and Drums) and fed to a Neural Network Classifier. Six MIDI Music Corpora were assembled for the experiments, from six different genres, Blues, Country, Jazz, Metal, Punk and Rock. These genres were selected because all of them have the same base instruments, such as bass, drums, piano or guitar. Also, the genres chosen share some characteristics between them, so that the classification isn’t trivial, and tests the classifiers robustness. Track Classification experiments using all descriptors and best descriptors were made, showing that using all descriptors is a wrong approach, as there are descriptors which confuse the classifier. Using carefully selected descriptors proved to be the best way to classify these MIDI tracks. Genre Classification experiments showed that the Single-Instrument Classifiers achieved the best results. Four genres achieved higher than 80% success rates: Jazz, Country, Metal and Punk. Future work includes: genetic algorithms; structurize tracks and songs; merge all presented classifiers into one full Automatic Genre Classification System

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference
    corecore